EL MRP COMO ESTRATEGIA PARA INCREMENTAR LA PRODUCTIVIDAD DEL ÁREA DE FUNDICIÓN EN LA EMPRESA INDUSTRIAS IMISA, S.A. DE C.V.

TESIS

PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS EN ADMINISTRACIÓN DE NEGOCIOS

PRESENTA:

PALOMINO ADAME LAURA LORENA

DIRECTOR DE TESIS:

DR. ZACARÍAS TORRES HERNÁNDEZ

MÉXICO, D.F. FEBRERO, 2012
INSTITUTO POLITÉCNICO NACIONAL
SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

ACTA DE REVISIÓN DE TESIS

En la Ciudad de MÉXICO, D. F. siendo las 10:30 horas del día 18 del mes de ENERO del 2012 se reunieron los miembros de la Comisión Revisora de Tesis designada por el Colegio de Profesores de Estudios de Posgrado e Investigación de LA E. S. C. A. para examinar la tesis de grado titulada:

"EL MRP COMO ESTRATEGIA PARA INCREMENTAR LA PRODUCTIVIDAD DEL ÁREA"

DE FUNDICIÓN EN LA EMPRESA INDUSTRIAS IMISA, S. A. DE C. V."

Presentada por el alumno:

PALOMINO
Apellido paterno

ADAME
Apellido materno

LAURA LORENA
Nombre(s)

Con registro: B 0 9 2 1 8 5

aspirante de:

MAESTRÍA EN CIENCIAS EN ADMINISTRACIÓN DE NEGOCIOS

Después de intercambiar opiniones los miembros de la Comisión manifestaron SU APROBACION DE LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISIÓN REVISORA

Director de tesis
DR. ZACARIAS TORRES HERNANDEZ

DRA. SUSANA ASEL GARDUÑO ROMAN

DRA. MARÍA DEL PILAR PEÑA CRUZ

M. EN C. MARTÍN JESÚS MILLÁN MANJARREZ

M. EN C. ENRIQUE RODRÍGUEZ JACOB

EL PRESIDENTE DEL COLEGIO

DRA. MARÍA ANTONIETA ANDRADE VALLEJO
En la Ciudad de México, D.F. el día 17 del mes Febrero del año 2012, el (la) que suscribe Laura Lorena Palomino Adame, alumno (a) del Programa de Maestría en Ciencias con Especialidad en Administración de Negocios con número de registro B092185, adscrito a Escuela Superior de Comercio y Administración Unidad Santo Tomás, manifiesta que es autor intelectual del presente trabajo de Tesis bajo la dirección del Dr. Zacarías Torres Hernández y cede los derechos del trabajo titulado “El MRP como estrategia para incrementar la productividad del área de fundición en la empresa Industrias IMISA, S.A. de C.V.”, al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección lau_lore@hotmail.com. Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Lic. Laura Lorena Palomino Adame
La administración es el órgano de las instituciones, el órgano que convierte a una multitud en una organización y a los esfuerzos humanos en acciones. Peter Drucker

"Si pudiéramos saber primero dónde estamos y hacia dónde nos dirigimos, podríamos entonces juzgar mejor qué hacer y cómo hacerlo." Abraham Lincoln

"Donde hay una empresa de éxito, alguien tomó alguna vez una decisión valiente." Peter Drucker
ÍNDICE

RESUMEN .............................................................................................................. i
ABSTRACT ........................................................................................................... ii
ÍNDICE DE TABLAS ............................................................................................ iii
ÍNDICE DE FIGURAS ........................................................................................... v
ÍNDICE DE GRÁFICAS ........................................................................................ vii
RELACIÓN DE SIGLAS Y ABREVIATURAS UTILIZADAS ........................................ viii
GLOSARIO .......................................................................................................... x
INTRODUCCIÓN .................................................................................................. 1
CAPÍTULO 1. PLANTEAMIENTO DEL PROBLEMA .................................................. 4
1.1 Antecedentes de la situación problemática ..................................................... 4
1.1.1. Productividad en América Latina ............................................................... 8
1.1.2. Estadísticas de la productividad en México ............................................... 10
1.1.2.1. El sector manufacturero en México ....................................................... 12
1.2. Condiciones de la empresa bajo estudio ...................................................... 15
1.2.1. Historia de la empresa ............................................................................. 17
1.2.2. Filosofía empresarial ............................................................................... 18
1.2.3. Estructura organizacional ....................................................................... 19
1.2.4. Operación de la empresa ........................................................................ 20
1.2.5. Operación del área de fundición ............................................................. 20
1.3. Descripción del problema ............................................................................ 30
1.4. Enunciado del problema ............................................................................. 33
1.5. Objetivos ..................................................................................................... 33
1.5.1. Objetivo general ..................................................................................... 33
1.5.2. Objetivos específicos ........................................................................................................ 34
1.6. Preguntas de investigación.................................................................................................. 34
1.7. Justificación....................................................................................................................... 35

CAPÍTULO 2. FUNDAMENTACIÓN TEÓRICA DE LA INVESTIGACIÓN.......................... 37
2.1. Productividad..................................................................................................................... 37
2.1.1. Definiciones básicas de productividad.......................................................................... 37
2.1.2. Factores que afectan la productividad ........................................................................ 42
2.1.3. ¿Cómo se mide la productividad?.................................................................................. 47
2.1.4. Modelos de productividad............................................................................................ 50
  2.1.4.1. Modelo de Sutermeister ......................................................................................... 51
  2.1.4.2. Modelo de Schoeder .............................................................................................. 52
  2.1.4.3. Modelo de Sumanth .............................................................................................. 53
  2.1.4.4. Modelo de Prokopenko ........................................................................................ 56
2.1.5. Problemas de mejoramiento de la productividad ......................................................... 65
2.2. Administración de la producción ................................................................................... 65
  2.2.1. Función de la administración de la producción ......................................................... 68
  2.2.2. Planeación de operaciones ....................................................................................... 70
  2.2.3. Estrategia de operaciones y decisiones operativas estratégicas............................... 74
  2.2.4. El método MRP ........................................................................................................ 76
    2.2.4.1. Programa Maestro de Producción (MPS: Master Production Schedule) .......... 81
    2.2.4.2. Lista de materiales (BOM: Bill Of Materials) .................................................... 83
    2.2.4.3. Gestión de Stock .................................................................................................. 84
    2.2.4.4. MRP ................................................................................................................... 85
    2.2.4.5. Beneficios del sistema MRP ............................................................................. 86
2.3. Proceso de fundición ...................................................................................................... 86
CAPÍTULO 3. TRABAJO EMPÍRICO DE LA INVESTIGACIÓN.............................................. 94

3.1. Tipo de investigación.............................................................................................. 95

3.2 Diseño de la investigación....................................................................................... 97

3.3. Variables de la investigación .............................................................................. 99

3.4. Selección del estudio de caso ............................................................................. 100

3.5. Validez del diseño .............................................................................................. 101

3.6. Recursos de evidencia utilizados................................................................. 101

3.6.1. Técnica utilizada para el análisis de la evidencia........................................ 103

3.7. Aplicación del proceso técnico (MRP) .............................................................. 106

3.7.1. Análisis de software para el sistema MRP.................................................. 130

CAPÍTULO 4. ANÁLISIS Y DISCUSIÓN DE RESULTADOS. .................................. 145

CONCLUSIONES ........................................................................................................ 150

RECOMENDACIONES .............................................................................................. 158

BIBLIOGRAFÍA ........................................................................................................... 160
RESUMEN

El presente trabajo tiene como objetivo detectar los principales factores internos que intervienen en la productividad, con el propósito de proponer estrategias para aumentar la productividad del área de fundición de una empresa. Es necesario realizar un diagnóstico para evaluar los procesos y forma de operar que actualmente se tiene en el área de fundición de la empresa Industrias IMISA, S.A. de C.V.; así como los posibles factores que pueden impactar en la productividad. La investigación es documental de tipo descriptivo; se contó con la de información de documentos y el apoyo de una persona asignada por la empresa para dar respuesta a las dificultades que surjan en relación con la operación. Al combinar una programación efectiva y planeación de los pedidos se puede tener la oportunidad de hacer modificaciones que repercutan en reducción de costos, mayor calidad y aumento en la productividad de la empresa. Para lo cual se utiliza el método de Planeación de Requerimientos de Material, conocido por sus siglas en inglés como MRP; teniendo como resultado un mayor control sobre los materiales y un incremento en la productividad al lograr obtener más del doble de productos que se realizaban a la semana.
ABSTRACT

The present paper is intended to detect the main internal factors in productivity, in order to propose strategies to increase the productivity of a company smelter area. It is necessary to make a diagnosis to evaluate processes and way of operating that currently is in the area of Foundry of the company Industrias IMISA, S.A. de C.V.; as well as the possible factors that can impact productivity. The research is descriptive documentary; there will be information of documents and the support of a person assigned by the company to respond to the difficulties that may arise in relation to the operation. Improving the programming and planning of orders can be an opportunity to make changes that have an impact on cost reduction, higher quality and increased productivity of the company. For which the method of Material Requirements Planning, known by its acronym as MRP; resulting in greater control over the materials and an increase in productivity to get more than twice as many products that were done a week.
ÍNDICE DE TABLAS


TABLA 2. MATERIALES REQUERIDOS PARA LAS MOLDURAS..................................................27

TABLA 3. COMPARATIVO DE MODELOS DE PRODUCTIVIDAD....................................................64

TABLA 4. PRINCIPALES PROCESOS DE FUNDICIÓN DE METALES............................................88

TABLA 5. DESCRIPCIÓN DE TIPOS DE ESTUDIO DE ACUERDO A HERNÁNDEZ...........................95

TABLA 6. DESCRIPCIÓN DE TIPOS DE ESTUDIO SEGÚN ZORRILLA..........................................96

TABLA 7. CLASIFICACIÓN DE LOS DISEÑOS DE INVESTIGACIÓN.............................................98

TABLA 8. MATRIZ DE CONGRUENCIA.........................................................................................104

TABLA 9. PLANEACIÓN DEL ÁREA DE FUNDICIÓN DE LA EMPRESA INDUSTRIAS IMISA ............110

TABLA 10. PLANEACIÓN DETALLADA DE LA SEMANA 36.......................................................110

TABLA 11. PLANEACIÓN DETALLADA DE LA SEMANA 37.......................................................111

TABLA 12. PLANEACIÓN DETALLADA DE LA SEMANA 38.......................................................112

TABLA 13. PLANEACIÓN DETALLADA DE LA SEMANA 39.......................................................113

TABLA 14. PLANEACIÓN DETALLADA DE LA SEMANA 40.......................................................113

TABLA 15. LISTA DE MATERIALES UTILIZADOS EN LOS PROCESOS DEL ÁREA DE FUNDICIÓN DE LA EMPRESA INDUSTRIAS IMISA, S.A. DE C.V. ..............................................114

TABLA 16. REQUERIMIENTOS DE MATERIAL DE LA SEMANA 36.............................................117

TABLA 17. REQUERIMIENTOS DE MATERIAL DE LA SEMANA 37.............................................119

TABLA 18. REQUERIMIENTOS DE MATERIAL DE LA SEMANA 38.............................................121

TABLA 19. REQUERIMIENTOS DE MATERIAL DE LA SEMANA 39.............................................123

TABLA 20. REQUERIMIENTOS DE MATERIAL DE LA SEMANA 40.............................................125
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>Stock óptimo para el área de fundición de la empresa Industrias IMISA, S.A. de C.V.</td>
<td>127</td>
</tr>
<tr>
<td>22.</td>
<td>Planeación de los requerimientos de material (MRP) del área de fundición</td>
<td>129</td>
</tr>
<tr>
<td>23.</td>
<td>Características del software ERP LN</td>
<td>134</td>
</tr>
<tr>
<td>24.</td>
<td>Características del software Infor Syte Line</td>
<td>135</td>
</tr>
<tr>
<td>26.</td>
<td>Características del software Microsoft Dynamics AX.</td>
<td>138</td>
</tr>
<tr>
<td>27.</td>
<td>Características del software Microsoft Dynamics Navision.</td>
<td>139</td>
</tr>
<tr>
<td>28.</td>
<td>Características del software SAP para Maquinaria Industrial y Componentes.</td>
<td>140</td>
</tr>
<tr>
<td>29.</td>
<td>Características del software Aspel-PROD 2.0</td>
<td>141</td>
</tr>
<tr>
<td>30.</td>
<td>Propuestas de solución (estrategias).</td>
<td>155</td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

FIGURA 1. ESTRUCTURA ORGANIZACIONAL “INDUSTRIAS IMISA, S.A. DE C.V.” ......................... 19
FIGURA 2. COLOCACIÓN DEL MODELO DE MADERA EN LA CAJA ........................................ 21
FIGURA 3. RELLENO DE LA CAJA CON LA TIERRA ................................................................. 21
FIGURA 4. COLOCACIÓN DE LOS CARGADORES EN LA CAJA ............................................. 22
FIGURA 5. TERMINAR DE LLENAR LA CAJA CON LA TIERRA ................................................. 23
FIGURA 6. COMPACTAR LA TIERRA ...................................................................................... 23
FIGURA 7. RETIRO DE PALOS PARA CARGADORES ............................................................ 24
FIGURA 8. VARIOS MODELOS POR CAJA ............................................................................. 24
FIGURA 9. RETIRO DE MODELO Y APLICACIÓN DE PINTURA ............................................. 25
FIGURA 10. PRECALENTADO DEL HORNO DE INDUCCIÓN ..................................................... 26
FIGURA 11. VACIADO DEL HORNO DE INDUCCIÓN ............................................................. 28
FIGURA 12. PIEZAS PARA LA ELABORACIÓN DE EMBUDOS ................................................ 28
FIGURA 13. RECOCIDO DE LAS PIEZAS .............................................................................. 29
FIGURA 14. LIMPIEZA DE LAS PIEZAS .............................................................................. 30
FIGURA 15. FACTORES QUE INFLUYEN EN LA PRODUCTIVIDAD .......................................... 45
FIGURA 16. MODELO DE PRODUCTIVIDAD DE SUTERMEISTER ......................................... 51
FIGURA 17. MODELO DE SCHOEDER (RUEDA DE LA PRODUCTIVIDAD)................................. 53
FIGURA 18. ELEMENTOS DE RESULTADOS DEL MODELO DE PRODUCTIVIDAD TOTAL. ............ 54
FIGURA 19. ELEMENTOS DE INSUMOS CONSIDERADOS POR EL MODELO DE PRODUCTIVIDAD TOTAL. 54
FIGURA 20. MODELO DE PROKOPENKO (FACTORES DE PRODUCTIVIDAD EN LA EMPRESA) ....... 57
FIGURA 21. VISIÓN GENERAL DE LAS PRINCIPALES ACTIVIDADES DE PLANEACIÓN DE LAS OPERACIONES EN EMPRESAS MANUFACTURERAS ...................................................... 71
FIGURA 22. INFORMACIÓN REQUERIDA PARA EL SISTEMA DE PLANEACIÓN DE LA PRODUCCIÓN. ...... 73
FIGURA 23. ESQUEMA GENERAL DE UN MRP ................................................................. 79
FIGURA 24. PROCESO DE PLANEACIÓN ............................................................................ 82
FIGURA 25. PROCESO GENERAL DE FABRICACIÓN DE METALES FERROSOS. ............... 93
FIGURA 26. DESARROLLO DEL TRABAJO .......................................................................... 106
FIGURA 27. DIAGRAMA DEL PROCESO DE FUNDICIÓN .................................................... 108
FIGURA 28. MATERIALES REQUERIDOS PARA UNA OLLA DEL Horno DE INDUCCIÓN DE TIPO
    “MATERIAL NORMAL” ........................................................................................................ 115
FIGURA 29. MATERIALES REQUERIDOS PARA UNA OLLA DEL Horno DE INDUCCIÓN DE TIPO
    “MATERIAL ESPECIAL” .................................................................................................. 115
FIGURA 30. MATERIALES REQUERIDOS PARA UNA OLLA DEL Horno DE INDUCCIÓN DE TIPO
    “MATERIAL NÍQUEL-CROMO” ........................................................................................ 116
FIGURA 31. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 36 ................................ 117
FIGURA 32. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 37 ............................... 118
FIGURA 33. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 38 (MATERIAL NORMAL) .... 120
FIGURA 34. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 38 (MATERIAL ESPECIAL) .......... 120
FIGURA 35. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 39 (MATERIAL NORMAL) ........ 122
FIGURA 36. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 39 (MATERIAL ESPECIAL) ........ 122
FIGURA 37. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 40 (MATERIAL NORMAL) .......... 124
FIGURA 38. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 40 (MATERIAL ESPECIAL) .......... 124
FIGURA 39. REQUERIMIENTO DE MATERIALES PARA LA SEMANA 40 (MATERIAL NÍQUEL-CROMO) . 125
FIGURA 40. ESQUEMA DE FUNCIONAMIENTO DE DE LOS SISTEMAS ................................. 144
ÍNDICE DE GRÁFICAS

Gráfica. 1 Evolución de la Productividad en México. .........................................................5

Gráfica. 2 Tasa de crecimiento anual promedio de la productividad 2000-2008. ............6

Gráfica. 3 Evolución de la Productividad Laboral: México vs. Otros países. ...............7


Gráfica. 5 PIB Nacional por división de actividad económica. .....................................13
### RELACIÓN DE SIGLAS Y ABREVIATURAS UTILIZADAS

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFS</td>
<td>American Foundary Society</td>
</tr>
<tr>
<td>ANEPC</td>
<td>Acuerdo Nacional para la Elevación de la Productividad y la Calidad</td>
</tr>
<tr>
<td>AOD</td>
<td>Descarburación por argón – oxígeno</td>
</tr>
<tr>
<td>ATO</td>
<td>Ordenar para Ensamblar (Assemble to order)</td>
</tr>
<tr>
<td>BOM</td>
<td>Lista de materiales (Bill Of Materials)</td>
</tr>
<tr>
<td>CIDAC</td>
<td>Centro de Investigación para el Desarrollo A.C.</td>
</tr>
<tr>
<td>DTO</td>
<td>Ordenar para diseñar (Design to order)</td>
</tr>
<tr>
<td>EDI</td>
<td>Intercambio electrónico de datos (Electronic Data Interchange)</td>
</tr>
<tr>
<td>ERP</td>
<td>Planeación de los recursos empresariales (Enterprise Resource Planning)</td>
</tr>
<tr>
<td>ETO</td>
<td>Ordenar para ingeniería (Engineering to order)</td>
</tr>
<tr>
<td>F1-ALC</td>
<td>Alcohol</td>
</tr>
<tr>
<td>F1-ARE</td>
<td>Arena Silica</td>
</tr>
<tr>
<td>F1-BAR</td>
<td>Barro</td>
</tr>
<tr>
<td>F1-BEN</td>
<td>Bentonita</td>
</tr>
<tr>
<td>F1-ESC</td>
<td>Escoriador</td>
</tr>
<tr>
<td>F1-PIN</td>
<td>Pintura</td>
</tr>
<tr>
<td>F1-SAR</td>
<td>Sarset</td>
</tr>
<tr>
<td>F2-CHA</td>
<td>Chatarra</td>
</tr>
<tr>
<td>F2-CRO</td>
<td>Cromo</td>
</tr>
<tr>
<td>F2-GRA</td>
<td>Grafito</td>
</tr>
<tr>
<td>F2-MAN</td>
<td>Manganeso</td>
</tr>
<tr>
<td>F2-NIQ</td>
<td>Níquel</td>
</tr>
<tr>
<td>F2-SIL</td>
<td>Silicio</td>
</tr>
<tr>
<td>F2-TIT</td>
<td>Titanio</td>
</tr>
<tr>
<td>F3-DIS</td>
<td>Discos de esmeril</td>
</tr>
</tbody>
</table>
ME Material Especial
MPS Programa Maestro de Producción (Master Production Schedule)
MRP Planeación de los Requerimientos de Material (Material Requirement Planning)
MTO Ordenar para Hacer (Make to order)
MTS Almacenar para Hacer (Make to stock)
NI-CR Material Níquel – Cromo
OECE Organización Europea para la Cooperación Económica
SQL Lenguaje de consulta estructurado (Structured Query Language)
## GLOSARIO

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administración de la producción</td>
<td>Es el diseño, la operación y el mejoramiento de los sistemas de producción que crean los bienes o servicios primarios de la compañía. (Chase, Aquilano, &amp; Jacobs, 2000)</td>
</tr>
<tr>
<td>Comparabilidad</td>
<td>Permite la exacta medición del cambio en la productividad entre un periodo y otro. (Tristán, 2005)</td>
</tr>
<tr>
<td>Decisiones de programación</td>
<td>Planes para ajustar la producción a los cambios en la demanda. (Heizer &amp; Render, 2004)</td>
</tr>
<tr>
<td>Demanda independiente</td>
<td>Aquella que se genera a partir de decisiones ajenas a la empresa, por ejemplo la demanda de productos terminados acostumbra a ser externa a la empresa en el sentido en que las decisiones de los clientes no son controlables por la empresa (aunque sí pueden ser influidas). (Arana, 2008)</td>
</tr>
<tr>
<td>Demanda dependiente</td>
<td>Es la que se genera a partir de la demanda de otros productos o servicios. (Chase, Aquilano, &amp; Jacobs, 2000)</td>
</tr>
<tr>
<td>Eficacia</td>
<td>Consiste en alcanzar las metas establecidas en la empresa. (Generalidades sobre administración, 2005)</td>
</tr>
<tr>
<td>Eficiencia</td>
<td>La capacidad de obtener objetivos por medio de una relación deseable entre insumos y productos finales, es decir, de existencia de productividad de los insumos empleados y/o mínimo costo de obtención del producto. (Bardhan, 1995)</td>
</tr>
<tr>
<td>Estrategia operativa</td>
<td>Se refiere a la elaboración de políticas y planes para la utilización de los recursos de las empresas en apoyo de la competitividad de la organización a largo plazo. (Chase, Aquilano, &amp; Jacobs, 2000)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Factores de la productividad</td>
<td>Son las variables que constituyen la productividad, su ordenamiento factorial, su interacción sinérgica, dentro de un juego articulado que permita una función positiva o negativa con un amplio margen de operatividad (Asomoza, 1985)</td>
</tr>
<tr>
<td>Indicador</td>
<td>Los indicadores tienen por finalidad medir el grado en que se ha alcanzado determinado objetivo o resultado (Ghai, 2003)</td>
</tr>
<tr>
<td>Lista de materiales (BOM)</td>
<td>Lista de los componentes, su descripción y la cantidad necesaria de cada uno para hacer una unidad de un producto. (Heizer &amp; Render, 2004)</td>
</tr>
<tr>
<td>Merma</td>
<td>Inventario por el que nadie es responsable entre la recepción y la venta del producto final. (Heizer &amp; Render, 2004)</td>
</tr>
<tr>
<td>Planeación agregada</td>
<td>Enfoque para determinar cantidades y tiempos de producción para un futuro intermedio. (Heizer &amp; Render, 2004)</td>
</tr>
<tr>
<td>Planeación de los recursos empresariales (ERP)</td>
<td>Sistema de información para planear e identificar los amplios recursos empresariales necesarios para tomar, hacer, embarcar y contabilizar las órdenes del cliente. (Heizer &amp; Render, 2004)</td>
</tr>
</tbody>
</table>
Planeación de los requerimientos de materiales (MRP) Técnica de demanda dependiente que usa lista de materiales, inventario, facturación esperada y programa maestro de producción, con la finalidad de determinar los requerimientos de materiales. (Heizer & Render, 2004)

Planeación Total Implica traducir los planes empresariales anuales y trimestrales a unos amplios planes de trabajo y producción a mediano plazo. (Chase, Aquilano, & Jacobs, 2000)

Proceso de fundición Todas las piezas fundidas en metales comienzan de la misma manera: se crea un molde con una cavidad que define una forma y se introduce metal líquido en el molde para crear la pieza fundida. (Koblecovsky, 2005)

Productividad Es el empleo óptimo de los factores de producción, con el mínimo posible de mermas, para obtener la mayor cantidad de producto de esos insumos, en las cantidades planificadas, con la calidad debida, en los plazos acordados. (Arnoletto, 2006)

Programa Maestro de Producción (MPS) Es el plan de escalonamiento del tiempo que especifica cuándo planea la firma constituir cada artículo final. (Chase, Aquilano, & Jacobs, 2000)

Tiempos de entrega En los sistemas de compras, el tiempo que transcurre entre el reconocimiento de la necesidad de un pedido y su recepción; en los sistemas de producción, es la suma de los tiempos de ordenar, esperar, hacer cola, preparar y correr la producción de cada componente. (Heizer & Render, 2004)
INTRODUCCIÓN

Hoy en día es muy común hablar de productividad como llave del éxito como una forma de lograr la competitividad, crecimiento y estabilización de las empresas. Las cuales enfrentan nuevos retos que exigen obtener el máximo aprovechamientos de sus recursos y así sobrevivir en el entorno actual. La importancia de la presente investigación se centra en la necesidad de conocer, comprender y aplicar un proceso técnico que encamine a formular cursos de acción que permitan incrementar la productividad en un área específica de una empresa manufacturera. Comprende cuatro capítulos estructurados de la siguiente forma:

En el capítulo 1 se aborda el contexto de la situación problemática, planteamiento del problema, establecimiento de objetivos, formulación de preguntas de investigación y justificación de la investigación.

En el capítulo 2 se realiza una revisión teórica con la finalidad de encontrar los elementos centrales que puedan definir claramente en qué consiste la productividad, sus factores determinantes y los modelos para su medición. Se hace énfasis en la relación que tiene la productividad y la administración de la producción, los sistemas de planeación derivando en el análisis del método de planeación de los requerimientos materiales (MRP).
En el capítulo 3 se establece que es una investigación de tipo documental, descriptiva/correlacional y como estrategia metodológica el estudio de caso. Se definen las variables que se utilizaran en la investigación y se describe el desarrollo del trabajo, vinculando la teoría y los antecedentes en la obtención de datos al utilizar la planeación de requerimientos de materiales (MRP) para desarrollar el estudio. Y se analizan distintos software que podrían facilitar las actividades de planeación y control de la producción de la empresa.

En el capítulo 4 se analizan los resultados obtenidos de la investigación, conjuntando la información obtenida de las distintas etapas en que se fue llevando a cabo el MRP, así como los beneficios de obtener un software que les permita realizar rápidamente la planeación de los requerimientos y tener control durante el proceso.

Posteriormente se presentan como parte de las conclusiones, los cursos de acción como solución a los problemas detectados y se da una serie de recomendaciones a efecto de que sean consideradas por la organización para una mejora continua dentro de la empresa. Además de tomar en cuenta algunas recomendaciones para futuras investigaciones.

El objeto de estudio del presente trabajo es la producción, específicamente en el área de fundición; y el sujeto de estudio es una empresa denominada Industrias IMISA, S.A. de C.V.

Respecto al alcance de la investigación, se pretende proponer algunos cursos de acción que valoren e integren el proceso que se lleva a cabo con la finalidad de minimizar costos, aprovechar los recursos con los que se cuenta y por ende aumentar la productividad. De esta forma se puede contribuir a que la organización se solidifique y se alcancen los objetivos de...
la investigación. Sin embargo algunas de las limitaciones de la investigación son: no generalizar lo resultados obtenidos, únicamente se estudia una pequeña parte del proceso de producción y por último que en la realización de este estudio se dificultó recabar documentación que permitiera fundamentar la problemática y medir la productividad del área de fundición de la empresa Industrias IMISA, S.A. de C.V.; en razón a que es una empresa previamente conocida y sabido que esta empresa enfrenta problemas, principalmente en el área de producción. Además los directivos se encuentran en buena disposición para mejorar sus resultados y qué mejor que sea el tema de productividad, motivo de estudio en un programa de estudios de posgrado. Esto se vio como una magnífica oportunidad para relacionar los conocimientos académicos con la realidad de una empresa.
CAPÍTULO 1. PLANTEAMIENTO DEL PROBLEMA

Este capítulo contempla los antecedentes e importancia de la productividad comenzando desde América Latina, México y enfocándose en su sector manufacturero, además de destacar la importancia de dicho sector para la economía mexicana.

También se describe el problema y el objetivo general de la investigación, así mismo se establecen las preguntas de investigación y los objetivos específicos, necesarios para el desarrollo y guía de la investigación. Igualmente, se establece la justificación de la investigación, la cual identifica la relevancia e implicación práctica, teórica y la utilidad metodológica.

1.1 Antecedentes de la situación problemática

De acuerdo con la Organización Internacional del Trabajo (OIT), la productividad como indicador es importante ya que muestra la salud económica de un país, además mide la eficiencia, niveles salariales, precios, y posteriormente el nivel de vida. América Latina y en especial México, reportan bajos índices de productividad; en 2009 la tasa de crecimiento acumulada de México fue de 2.1% lo cual está relacionado a la crisis que hubo entre 2008 y 2009 como lo muestra la gráfica 1, en la cual se muestra un histórico de la tasa de crecimiento de la productividad en México de 1992 a 2009. Además en dicha gráfica se muestra la relación de los periodos de crisis con el crecimiento de la productividad laboral en México; es a partir de 1997 cuando la tasa de crecimiento era de -10% que comenzó el crecimiento, para 1999 ya mostraba cifras positivas aunque decayó a 0% entre 2001 y 2002. Recuperándose paulatinamente, sin
embarazo es en 2007 que alcanza su punto cuando alcanza su máximo y para los años subsecuentes baja hasta llegar en 2009 a 2.1%.

Gráfica. 1 Evolución de la Productividad en México.

Evolución de la Productividad en México


Por otra parte el Economic Surveys Mexico 2009 relaciono el efecto demográfico, la productividad laboral, el Producto Interno Bruto (PIB) per cápita y la utilización laboral de varios países entre los cuales se encuentra México; en la gráfica 2 se puede observar que la productividad laboral de México es de las más bajas en comparación con países como Rusia (RUS), Estados Unidos (USA), Turquía (TUR) y Chile (CHL). Los países con mayor productividad laboral son China (CHN) e India (IND) que muestran un PIB per cápita mayor a 2% al igual que Chile. Sin embargo China destaca en su PIB per cápita siendo este poco más de 8%.
Gráfica. 2 Tasa de crecimiento anual promedio de la productividad

En la gráfica 3 se puede apreciar de manera más clara los problemas de productividad que tiene México, comparándolo con otros países. La productividad en México disminuyó desde 1992 hasta 1997, año en el que comenzó a crecer, sin embargo es en 2000 cuando alcanza cifras positivas en el crecimiento; para continuar con algunos altibajos y llegar a 2009 con 2.1% siendo el más bajo de los países que se muestran en la gráfica. Posteriormente le sigue España con 22.6%, Francia con 26.4%, Alemania con 27.3%, Japón con 31.7%, Portugal con 34.1%, Estados Unidos con 34.9%, Irlanda con 64.2% y Corea del Sur con 82.2% siendo estos últimos dos países los que mayor productividad alcanzaron para el año 2009.
Gráfica. 3 Evolución de la Productividad Laboral: México vs. Otros países.

Evolución de la Productividad Laboral: México vs. Otros países
1991 – 2009

Además se sabe que el sector manufacturero es de los principales aportadores al Producto Interno Bruto de México; según datos del Instituto Nacional de Estadística y Geografía (INEGI) en el 2009 dicho sector aporto el 17% del PIB; razón por la que se decidió estudiar la productividad en una empresa del sector manufacturero de México. El Centro de Investigación para el Desarrollo, A.C. (CIDAC) mencionó en un artículo para CNN Expansión que si la productividad en México hubiera crecido 5% cada año por los últimos 20 años, los mexicanos tendríamos el doble de ingreso que tenemos hoy (Productividad mexicana, estancada: CIDAC, 2011).
Capítulo 1: Planteamiento del problema

Existen varias razones por las que la productividad en México no ha aumentado, siendo la principal lo referente al nivel bajo en la educación, los avances tecnológicos y una mejor capacitación y cultura del trabajo según datos reportados por la Organización para la Cooperación y el Desarrollo Económicos (OCDE). Sin embargo se considera importante estudiar los problemas de productividad de una empresa perteneciente al sector ya que es el que tiene mayor impacto en el PIB.

1.1.1. Productividad en América Latina.

El Presidente del Banco Interamericano de Desarrollo, Luis Alberto Moreno, comentó durante el II Foro Económico Internacional América Latina y el Caribe (2010) que la productividad baja y lenta ofrece una mejor explicación para el bajo nivel de ingresos de América Latina en comparación con las economías desarrolladas y su estancamiento en relación con otros países en desarrollo de actuación más dinámica. Al mismo tiempo que la productividad de América Latina no es sino la mitad de su nivel potencial y no está acortando distancias con los niveles de frontera. Si la brecha de productividad con respecto a otros países se cerrara, de este modo las diferencias en el ingreso per cápita se irían reduciendo.

Eduardo Lora y Carmen Pagés en su artículo titulado Cara a cara con la productividad (2011), comentan que no es la falta de inversión sino la producción ineficiente lo que frena el ingreso en América Latina; provocando que el ingreso per cápita de un país latinoamericano típico sea una sexta parte del ingreso en Estados Unidos. El problema más grave de América Latina es el lento crecimiento de la productividad total de los factores y la falta de atención a la productividad, la cual resulta costosa; y acelerar el aumento de la productividad es algo complejo y va más allá de promover la
innovación y el desarrollo tecnológico. Y suele ser el resultado de varios factores como: fallas del mercado, malas políticas. Por tal motivo se pretende investigar sobre los factores internos de las empresas que se deben estudiar para lograr incrementar la productividad. Ya que en ocasiones el considerar elementos de la administración de la producción pueden resultar útiles en la reducción de costos y por consiguiente impactar en la productividad que se tiene.

En la segunda mitad del siglo XX, América latina intentó seguir la senda de alcanzar la prosperidad a través del desplazamiento de los trabajadores que se dedicaban a la agricultura y actividades artesanales hacia los sectores de manufactura industrial más productivos, como ocurrió en los países desarrollados, pero no fue posible del todo, ya que debido a los elevados aranceles, las empresas se enfocaron en mercados nacionales pequeños como para fomentar la competencia. Por otro lado los sectores manufactureros de América Latina apenas emplean al 20% de la fuerza laboral (Lora & Pagés, 2011).

Es posible que no para todos los países la productividad en dichos sectores sea representativa, por lo que aún cuando se puedan solucionar los problemas de productividad no contribuiría mucho a superar el subdesarrollo en el que se encuentran.

Por otro lado la visión de la Organización Internacional del Trabajo (OIT) en alusión a la problemática de la baja productividad en América Latina, hace referencia a la influencia que pueden tener las políticas sociales al aumento de la productividad. Enrique Brú (Empresa humanizada: trabajo decente y productividad, 2001) menciona que la OIT está recopilando datos que demuestren que la calidad del empleo puede resultar rentable por sí sola, debido a los progresos en materia de productividad. Enfocándose más al
desarrollo del recurso humano, la cultura organizacional y los puestos de trabajo.

1.1.2. Estadísticas de la productividad en México.

En el artículo “Productividad laboral en México, a la baja” (Martínez & Amador, 2010) se menciona que la productividad registró una caída de 2.1 % en 2009, conforme a datos del Instituto Nacional de Estadística y Geografía (INEGI), sobre todo porque la capacidad de producción de la industria disminuyó de manera considerable debido a la crisis económica entre 2008 y 2009.

De acuerdo con P. Martínez y O. Amador (2010), en la baja productividad laboral inciden cuatro aspectos fundamentales: poco personal calificado; baja capacitación y programas de actualización; poca utilización de la tecnología y la falta de reformas estructurales, entre ellas la Ley Federal del Trabajo.

Según la OCDE en (Martínez & Amador, 2010) la productividad es un indicador importante ya que muestra la salud económica de un país, mide la eficiencia, niveles salariales, precios y posteriormente el nivel de vida. Y México presenta el menor nivel de productividad dentro del bloque de países miembros, ubicándose 30% por debajo de Estados Unidos. En la gráfica 4 se puede observar una comparación sobre la tasa de crecimiento anual promedio de la productividad que abarca del año 2000 al 2008 entre México y países como Eslovaquia, Corea, Estados Unidos y Canadá. Para visualizar la gran diferencia que existe entre otros países y México; y así tratar de colaborar para que la productividad del país aumente y se vea reflejado en los ingresos per cápita.

La evaluación por parte de la Organización para la Cooperación y el Desarrollo Económicos (OCDE) tampoco es optimista, en el Survey on Mexico, 2004, señala que "no obstante, la amplitud de las reformas estructurales de los últimos 15 años, incluyendo la entrada al Tratado de Libre Comercio de América del Norte (TLCAN), todavía no ha generado un aumento inequívoco de la productividad del empleo ni de los factores totales del crecimiento productivo."

La inversión en nuevas tecnologías juega y ha jugado un rol importante en el crecimiento de la productividad (León, 2006), vía la dispersión del conocimiento técnico y un efecto convergencia. En todo caso, habría un área de oportunidad en promover inversiones selectivas para el crecimiento de la productividad tomando en cuenta las características de los empresarios involucrados en estas actividades. Así mismo algunos economistas han señalado que, en la identificación de áreas de oportunidad de políticas específicas para una mayor productividad, es necesario recuperar algunas "enseñanzas" de la teoría del desarrollo.
Y como menciona Quijano (2004) lo más conveniente sería la innovación tecnológica de los procesos y la utilización óptima de los recursos, bajo la responsabilidad social de no deteriorar el medio ambiente, proyectando para provocar efectos a través de la conformación de bienes, así como la implantación de nuevos y mejores servicios.

Conviene destacar que las experiencias exitosas de empresas con crecimiento significativo de la productividad han estado ligadas al establecimiento de redes regionales y al desarrollo de cadenas productivas. Estas experiencias deberían ser identificadas y replicadas en otras regiones del país (Rodríguez - Clare, 2005).

1.1.2.1. El sector manufacturero en México.

La industria manufacturera representa el 17% del total del PIB, siendo este de $7,929,588,079.00 miles de pesos a precios de 2003; esto según datos del INEGI 2009. A continuación se muestra en la gráfica 5, la aportación al PIB Nacional de las diversas actividades económicas de México, y como se puede observar la principal aportación al PIB proviene de la industria manufacturera.
Las estimaciones para la productividad laboral en la actividad manufacturera, con base en datos de los censos industriales de 1970 a 2004 respecto al producto por hombre o mujer ocupado en términos de niveles, que se muestra en la tabla 1, permiten observar que su nivel es prácticamente el mismo. Se calculamos su tasa de crecimiento a lo largo del período, ésta es de menos 0.09 por ciento en promedio anual. Se excluye el año 1988, que puede considerarse atípico, el nivel fluctúa entre 281 y 258 miles de pesos de 1980.
Capítulo 1: Planteamiento del problema


(MILES DE PESOS DE 1980)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>264</td>
<td>277</td>
<td>255</td>
<td>320</td>
<td>281</td>
<td>245</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>-1.6</td>
<td>7.8</td>
<td>-2.5</td>
<td>-2.7</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Censos Industriales, INEGI.

De 1970 a 1980 se observó un crecimiento del 0.4% promedio anual, de 1980 a 1985 de -1.6%, con una recuperación relativa de 1985 a 1988, al alcanzar una tasa de 7.8%, y para el periodo de 1988 a 1993 decrece hasta llegar a una tasa de -2.5%; de 1993 a 1998 baja un poco más hasta llegar -2.7% y después de 1998 a 2004 logra una ligera recuperación, con un crecimiento de 1.04%.

La dinámica en el crecimiento de la productividad (tabla 1) muestra claramente dos periodos divididos por una serie de años de retroceso o estancamiento. Un primer periodo de 1955-1982 de crecimiento significativo de la productividad laboral y factorial total, y un segundo de 1990 a por los menos 2004 en que la productividad creció a un ritmo mucho menor.

Esto se puede explicar debido a los "nuevos sectores dinámicos" les falta integración con las cadenas productivas y muestran un bajo potencial de crecimiento de la productividad (Ross, El Crecimiento Económico en México y Centroamérica: Desempeño Reciente y Perspectivas, 2004). También tiene lugar el efecto indirecto de un crecimiento dualista de la productividad. Por una parte el crecimiento del producto es generado a través de un
número menor de trabajadores en el "sector formal", donde el crecimiento ha sido muy limitado e incluso en algunos periodos de crisis (2008-2009) se ha perdido empleo. Lo cual ha provocado el aumento consecuente del empleo en el "sector informal", donde el nivel de productividad es menor al "sector formal" dada la menor disponibilidad de capital.

Según el Centro Mexicano para la Producción más Limpia (1998), en México existen 618 empresas activas dedicadas a la fundición, de las cuales únicamente se dispone de información de 250 empresas con una producción promedio de 701.243 toneladas anuales.

1.2. Condiciones de la empresa bajo estudio.

INDUSTRIAS IMISA México es una empresa mediana, dedicada a la fabricación de moldes para la industria del vidrio y cuenta con más de 50 años en el ramo industrial. Elabora moldes tanto de formas regulares como irregulares, los cuales son fabricados completamente en la planta México, ya que el proceso comienza desde la fundición del metal (incluyendo aleaciones especiales) hasta el acabado y el envío de las piezas a los clientes.

Es una empresa con alta flexibilidad de fabricación para fabricar cualquier tipo de moldes, desde los clásicos cilíndricos hasta moldes irregulares con grabados especiales.

Cuenta con dos fábricas una en Orizaba, Veracruz y otra en el Distrito Federal con el fin de acercarse a las vidrieras para brindarles un mejor servicio que representa mejor tiempo de entrega, ahorrando costos de transporte, y por otro lado, estar de inmediato al alcance para cualquier urgencia de trabajo, dando con esto mayor confianza al cliente. Cuentan
con su propia fundición, en donde junto con sus ingenieros metalúrgicos garantizan el respaldo de su material. La materia prima que utiliza son fierro, hierro y aleaciones de este tipo de materiales, sus principales proveedores son los siguientes:

- Proveedora Industrial de Insumos Básicos S.A. de C.V.: en lo referente a la adquisición de materiales como arenas silica y pintura.
- Equipos refractarios ARO S.A. de C.V.: provee de los materiales refractarios.
- Distribuidora de Aleaciones y Metales, S.A. de C.V.: para adquirir aleaciones y diferentes tipos metal.
- Mario Godínez: chatarra.
- Comercial Darmy S.A. de C.V.: para proveer alcohol.
- Comercializadora Xalostoc: para diversos tipos herramientas y materiales.
- Equipos y aleaciones industriales S.A. de C.V.: para la adquisición de soldadura.

Sus principales competidores son:

- Grupo industrial Saavedra (México)
- Asia SA de CV (México)
- Zeta Zeta maquinados SA de CV (México)
- Perego (Italia)
- Ross Mold (EUA)
- OMCO (EUA)

Principalmente tiene impacto en la zona metropolitana, Jalisco y Veracruz que es en donde están ubicadas las empresas, además de que también tiene clientes en Italia y EUA.
1.2.1. Historia de la empresa

Los inicios de IMISA México surgen a mediados de la década de 1950, cuando Salvador Zavaleta Suárez, junto con Juan Villada trabajaban en la entonces Fábrica Nacional de Vidrio (Fanal) y luego para Vidrieras México. Fue luego de trabajar en Vidrieras México que Salvador Zavaleta Suárez decidió emprender su propio negocio y consiguió un local en la colonia Tacubaya, donde montó un pequeño taller, aunque sin los resultados que esperaba.

Para 1965 vendió el taller que aun se ubicaba en Tacubaya y decidió ir a Tijuana a emprender el negocio, pero no tardó en regresar a la Ciudad de México y se asoció con Josué Pascoe y retomaron el negocio en Tacubaya.

Para 1968 decidieron mudarse al domicilio actual, en San Juan Ixhuatepec, y en 1969 murió Salvador Zavaleta Suárez y se hizo cargo de la planta José Luis Reyes Calderón hasta 1983, cuando Salvador Zavaleta Calderón tomó el mando de IMISA México hasta la fecha.

Hoy la empresa IMISA México tiene presencia no solo en México, sino también en Estados Unidos y Europa, con clientes muy importantes como Kimbel Glass Inc., Coca Cola, Vidrios Panameños, solo por mencionar algunos, y con expectativas de aumentar su mercado.
1.2.2. Filosofía empresarial

**Misión:**

Fabricar moldes para la industria del vidrio brindándole a nuestro cliente la mejor calidad en los productos a través del uso de tecnología avanzada, logrando ser competitivos nacional e internacionalmente, además de generar empleos como parte de nuestro compromiso con la sociedad.

**Visión:**

Ser reconocidos a nivel nacional e internacional como empresa líder en la fabricación de molduras para la industria del vidrio, capacitándonos constantemente para brindarle el mejor servicio y calidad al cliente.

**Valores:**

- [x] Responsabilidad
- [x] Compromiso
- [x] Honestidad
- [x] Respeto y Tolerancia
- [x] Lealtad
- [x] Liderazgo
1.2.3. Estructura organizacional

La empresa cuenta con aproximadamente setenta trabajadores, el director general es el que se encarga de autorizar todas las operaciones del negocio como ventas, compras, producción, pedidos de los clientes. Cuenta con los departamentos de contabilidad, compras y producción, desarrollo e ingeniería y fundición; como se observa en la figura 1. Cada departamento tiene que mandarle la información al director general el cual se encarga de tomar decisiones.

Figura 1. Estructura Organizacional “Industrias IMISA, S.A. de C.V.”
Fuente: Industrias IMISA, S.A. de C.V.
1.2.4. Operación de la empresa

La operación de la empresa comienza en el área de fundición ya que es ahí donde se moldean las piezas que se deben fabricar para posteriormente ser detalladas en el taller de moldes. Una vez que se tienen las molduras se entregan al cliente.

1.2.5. Operación del área de fundición

El proceso de fundición de la empresa comienza al llegar los dibujos de las molduras que solicita algún cliente. El dibujo indica las medidas y el tipo de material que debe llevar.

En caso de que sean medidas que no se puedan ajustar a los modelos que se tienen en la fábrica, se acude con un modelista para obtener el modelo en madera de la moldura con medidas un poco grandes a las que indica el dibujo para poder trabajar sobre el molde.

Por otra parte, los directivos y encargados de producción elaboran un programa de fundición, tomando en cuenta las fechas acordadas con los clientes para realizar las entregas.

Ya que se tiene el modelo de madera, se coloca en una caja vacía que servirá para sacar una impresión del molde. En la figura 2 se observa cómo se acomoda la pieza de madera en la caja para después cubrirla de tierra.
La tierra que se utiliza para cubrir la caja es una mezcla de arena silica y bentonita; esta tierra es reutilizable y en ocasiones se llega a combinar con tierra nueva. En la figura 3 se muestra la forma en que se va cubriendo el modelo con la tierra.
Antes de terminar de rellenar el modelo con la tierra, se colocan dos palos de madera que posteriormente servirán como cargadores, es decir, a través de ellos se vacía el metal líquido para y el segundo sirve para verificar que el metal líquido ha cubierto por completo la parte de la moldura. En la figura 4 se aprecia la colocación de los cargadores en la caja antes de que esta se llene de tierra.

Figura 4. Colocación de los cargadores en la caja
Fuente: Industrias IMISA, S.A. de C.V.

Después se termina de llenar la caja con la tierra y se va compactando para que quede firme como se muestra en las figuras 5 y 6.
Una vez que la tierra está completamente firme, se retiran cuidadosamente los palos de madera, lo cual se ejemplifica en la figura 7 en donde los trabajadores están retirando los palos.
A continuación se quitan con mucho cuidado y con ayuda de algunas herramientas los modelos de madera quedando cóncava la silueta de la moldura.

Dependiendo del tamaño de la moldura, en ocasiones es posible colocar más de un modelo en una caja para así obtener más piezas por caja. En la figura 8 se puede apreciar una caja de donde se obtendrán ocho piezas.
Prácticamente la caja está lista para esperar a que el metal fundido sea vaciado en ella, sin embargo aún faltan unos detalles que permiten que la tierra endurezca un poco más y facilitan el desprendimiento del molde una vez que se enfría el metal, para que esto suceda es necesario pintar la parte de la arena en donde se introducirá el metal. La pintura que se ocupa, se prepara mezclándola con alcohol. En la figura 9 se puede observar cómo queda marcada la forma de los modelos de madera y también una de las cajas ya pintada.

![Figura 9. Retiro de modelo y aplicación de pintura](image)

Fuente: Industrias IMISA, S.A. de C.V.

Más tarde cuando ya están pintadas todas las cajas que se van a ocupar de acuerdo al programa, se les prende fuego. En este momento, las cajas están listas para recibir el metal fundido.
Mientras algunos trabajadores terminan de preparar las cajas necesarias, el horno de inducción se va preparando ya que este debe estar caliente al momento de agregar los materiales. En la figura 10 se encuentra el horno en el momento en que se está precalentando.

![Figura 10. Precalentado del horno de inducción](image)

La carga (olla) del horno es de 700 kg de metal líquido. Las molduras se dividen en tres tipos de materiales: material normal, material especial y material níquel – cromo. En la tabla se muestran los requerimientos para obtener una olla de los diferentes tipos de material.
Tabla 2. Materiales requeridos para las molduras

<table>
<thead>
<tr>
<th>Material Normal</th>
<th>Material Especial</th>
<th>Material Níquel-Cromo</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 kg de silicio</td>
<td>3 kg de silicio</td>
<td>4 kg de silicio</td>
</tr>
<tr>
<td>1 kg de manganeso</td>
<td>2 kg de manganeso</td>
<td>2 kg de manganeso</td>
</tr>
<tr>
<td>2 kg de grafito</td>
<td>3 kg de grafito</td>
<td>3 kg de grafito</td>
</tr>
<tr>
<td>650 kg de chatarra</td>
<td>2 kg de titanio</td>
<td>21 kg de níquel</td>
</tr>
<tr>
<td></td>
<td>1 kg de cromo</td>
<td>2 kg de cromo</td>
</tr>
<tr>
<td></td>
<td>2 kg de níquel</td>
<td>650 kg de chatarra</td>
</tr>
<tr>
<td></td>
<td>650 kg de chatarra</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.

Una vez que se colocan todos los materiales en el horno, dependiendo del tipo de material que se requiera fundir; se programa el horno para que la temperatura llegue hasta 1,600°C y en aproximadamente una hora y media la mezcla está lista para su vaciado. Antes de vaciar el metal, se le agrega a la olla un puño de escoridador para separar las impurezas del metal. El la figura 11 se observa como vacían el metal líquido en una cucharilla para posteriormente verterlo en las cajas.
Después de llenar todas las cajas que se prepararon, con la finalidad de no desperdiciar el material que sobra, este se ocupa para la elaboración de embudos utilizando las piezas que se muestran en la figura 12.
Se dejan enfriar aproximadamente dos horas todas las piezas, para luego poder desmoldarlas y se separa de la moldura las partes que sirvieron como cargadores, todo este material se reutiliza para elaborar otras molduras. Posteriormente se acomodan las piezas para introducirlas al horno de recocido. Este proceso permite darle dureza al material. En la figura 13 se presentan las piezas que entraran al horno de recocido.

![Figura 13. Recocido de las piezas](image)

**Figura 13. Recocido de las piezas**

Fuente: Industrias IMISA, S.A. de C.V.

Al salir del recocido, las piezas se limpian utilizando un esmeril para retirar el exceso de material como se puede ver en la figura 14.
Al terminar de ser limpiadas las piezas pasan al área de desbaste en donde se cortan las piezas y se limpian nuevamente.

El barro y las cubetas de sarset se utilizan para recubrir el horno y así prevenir algún daño que pudiera ser provocado por las altas temperaturas que se manejan.

En el apartado de elementos empíricos (capítulo 3) se aborda con mayor detalle el proceso productivo de fundición de la empresa.

En este contexto del proceso de fundición es donde se identificó el problema siguiente:

1.3. Descripción del problema

Dentro del área de fundición se han presentado los siguientes problemas:
El programa de fundición no se cumple completamente; por lo que hay rezagos en la producción sin saber qué modelos quedan pendientes de entregar. Cada semana se cuenta con un programa que constantemente se modifica y que por dar preferencia a pedidos urgentes se va atrasando lo programado sin tener un control de lo que se hace y lo pendiente.

Los moldes o molduras que se entregan a los clientes se conforman de distintas piezas dependiendo del diseño, las cuales se conocen como: bombillo, obturador, molde, embudo y fondo. En el programa que se maneja no se hace referencia al tipo de pieza y moldura que se debe trabajar, únicamente se señalan las medidas y formas que debe tener. De ese modo, el control sobre el seguimiento a pedidos es nulo, ya que la gente de área de fundición no sabe qué pieza están moldeando y tampoco tienen identificada la moldura.

En la empresa se trabaja con tres tipos de materiales para fabricar las molduras. Dependiendo del tipo de material con que se elabore, la moldura puede tener una resistencia y durabilidad mayor; sin embargo esta valiosa información no es considerada al momento de realizar la programación; por lo que el programa semanal de fundición no identifica los materiales (normal, especial y níquel cromo) con que se debe preparar cada moldura, dando lugar a inconformidades por parte de los clientes al momento en que son entregadas.

El proceso del área de fundición considera que al salir las piezas del horno, estas deben pasar al área de esmerilado para ser limpiadas; sin embargo se da preferencia a las piezas de mayor tamaño (moldes y bombillos) en el proceso de esmerilado para posteriormente pasar al área de maquinados, quedándose rezagadas las piezas pequeñas (fondos y obturadores) y
ocasionando retrasos para poder entregar las molduras completas a los clientes.

No se cuenta con un almacén, por lo que todos los materiales se tienen que comprar al momento; estas compras de urgencia para dar comienzo con los pedidos de los clientes en algunos ocasiones llegan a ser costosas y en caso de que algún proveedor no pueda entregar el material, se retrasa la fundición y los tiempos para fabricar la moldura se van acortando.

Por otro lado, las piezas que salen con imperfecciones no se separan, esto ocasiona problemas de calidad y que en el proceso de maquinados se requiera de mayor tiempo para tratar de corregir esas fallas. Siendo que este tipo de imperfecciones se pueden detectar al momento de que las piezas se limpian y las piezas con defectos se pueden reutilizar en la fundición para sacar nuevas piezas.

La falta de planeación y control dentro del área de fundición de la empresa, aunado a algunos incidentes que se puedan tener en las demás áreas que abarcan el proceso para obtener la moldura, generan que el pedido se entregue fuera de tiempo e incompleto al cliente.

Además de mencionar que se adquirió un horno nuevo (horno de inducción), con el que se tiene la capacidad de producir poco más de 21 toneladas a la semana y sin embargo siguen obteniendo alrededor de 6 toneladas de material por semana, como se venía trabajando con el horno anterior y no se ha visto aumento en la productividad.
1.4. Enunciado del problema

Por el listado anterior de algunos problemas recurrentes en el área de producción (fundición), se observa con claridad que se presenta un problema mayor de planeación de producción en el área de fundición en la empresa de referencia, por lo que cabría preguntarse si:

¿El método planeación de los requerimientos de materiales conocido por sus siglas en inglés como MRP permitirá al área de fundición de la empresa Industrias IMISA aumentar su productividad al utilizar al máximo sus recursos?

1.5. Objetivos

Los objetivos establecen lo que se pretende alcanzar con la investigación, son las guías que deben estar presentes durante el desarrollo de la investigación. Se dividen en objetivo general y específicos y estos últimos están relacionados con las preguntas te investigación.

1.5.1. Objetivo general

Conocer, comprender y aplicar un proceso técnico que conduzca a formular cursos de acción en la producción, que le permitan al área de fundición de la empresa Industrias IMISA elevar la utilización de sus factores determinantes de la productividad.
1.5.2. Objetivos específicos

- Describir la importancia de la productividad, considerando los antecedentes tanto a nivel internacional como nacional.
- Analizar las condiciones del área de fundición de la empresa bajo estudio.
- Identificar los factores involucrados en la baja productividad del área de fundición de la empresa.
- Diseñar un proceso técnico que permita el uso eficiente de los factores que determinan la productividad del área de fundición de la empresa.

1.6. Preguntas de investigación

- ¿Cuál es la importancia de la productividad, considerando los antecedentes tanto a nivel internacional como a nivel nacional?
- ¿Cuáles son las condiciones del área de fundición de la empresa?
- ¿Cuáles son los factores involucrados en la baja productividad del área de fundición de la empresa?
- ¿Cómo se puede diseñar un proceso técnico que permita utilizar al máximo los factores que determinan la productividad del área de fundición de la empresa?
1.7. Justificación

Es necesario exponer las razones del por qué se realiza la investigación, así como puntualizar por qué es conveniente llevar a cabo la investigación, la relevancia de la misma y la implicación práctica de la misma.

Para que la empresa siga creciendo, o incluso para mantenerse en el estado actual, es necesario lograr una mejora continua ante un mercado cada vez más exigente. De no ser así la empresa dejaría de ser competitiva originando su cierre, o un nuevo cambio de su negocio objetivo.

Otra razón que obliga a la excelencia de las empresas, es el actual entorno financiero global en el que está sumergida la sociedad. Esta crisis financiera universal, únicamente serán capaces de superarla las empresas más rentables e innovadoras, aquellas que estén por encima de la media de su sector.

Además de describir la importancia de la productividad a nivel mundial, el alcance de la investigación es a nivel organizacional enfocándose únicamente en el área de fundición de la empresa, en donde pretende incrementar la productividad, lo cual trae consigo beneficios para toda la empresa como la rentabilidad y la competitividad.

De forma que si es imperativamente necesario lograr mejoras significativas en el rendimiento y en el servicio a los clientes, la mejor manera es definir unos procesos de producción que mejoren las deficiencias detectadas en los procesos actuales y que mejoren el servicio a los clientes, sin dejar de apostar por las continuas innovaciones técnicas que ya se llevan a cabo en el diseño de cada nueva máquina.
El proceso actual derrocha tanto recursos humanos como económicos, genera desconfianza en los clientes al no poder informar, ni cumplir los plazos de entrega de las molduras, y obliga a los directivos a una excesiva dedicación a tareas rutinarias para lograr el buen funcionamiento de la empresa, ya que son ellos los que definen lo que se debe realizar en cada momento. Es necesario cambiar el proceso actual para lograr el crecimiento y supervivencia de la empresa.

Se considera que el mejor medio para lograrlo es mediante la aplicación correcta y personalizada del sistema *MRP*, ya que es un sistema diseñado para la organización de la producción y del inventario en la organización estudiada. Para la correcta aplicación del método, éste se deberá adecuar a las características de los productos: la poca estandarización y a una demanda muy variable y poco predecible. Mediante la aplicación del *MRP*, una vez conocida la demanda de una moldura específica, se conocerán de forma rápida, las necesidades materiales necesarias en cada momento y en cantidad.
CAPÍTULO 2. FUNDAMENTACIÓN TEÓRICA DE LA INVESTIGACIÓN

En este capítulo se desarrolla el marco teórico que sustenta la investigación. Primero se analiza la productividad comenzando con sus definiciones, los factores de productividad haciendo una distinción entre los diferentes modelos de productividad y los factores que cada uno considera. En seguida se estudia como parte de la administración de la producción lo que es la planeación de operaciones y las estrategias operativas.

2.1. Productividad

Como se comentó en el capítulo anterior, la productividad es de gran importancia para la prosperidad de un país u organización, lo cual se puede ver reflejado en el nivel de vida, PIB y muestra la salud económica de un país.

El único camino para que un negocio pueda crecer y aumentar su rentabilidad (o sus utilidades) es aumentando su productividad. Y el instrumento fundamental que origina una mayor productividad es la utilización de métodos, el estudio de tiempos, y un sistema de pago de salarios.

2.1.1. Definiciones básicas de productividad

¿Qué es la productividad?
Se pueden encontrar varias acepciones de lo que significa la palabra productividad:
De acuerdo a la OCDE en (Ardavín, 2011) la productividad es igual a producción dividida por cada uno de sus elementos.

Para Arnoletto (2006) es el empleo óptimo, con el mínimo posible de mermas de todos los factores de la producción para obtener la mayor cantidad de producto de esos insumos, en las cantidades planificadas, con la calidad debida, en los plazos acordados.

Productividad puede definirse como la relación entre la cantidad de bienes y servicios producidos y la cantidad de recursos utilizados. En la fabricación la productividad sirve para evaluar el rendimiento de los talleres, las maquinas, los equipos de trabajo y los empleados.

Según James A. F. Stoner (1992), en su libro titulado "Administración" menciona que la productividad es la medida de la eficacia con que funciona el sistema de operaciones.

Mientras que Zacarías Torres Hernández en su tesis sobre productividad (1997), comenta que la productividad varía según el área de acción de quien lo define: el administrador, el economista, el ingeniero, el político, el líder sindical o empresarial tienen su propio concepto.

Antecedentes sobre las definiciones de productividad (Tristán, 2005):

1766 – es posible que en este año apareciera por primera vez el término de productividad en un artículo del fisiócrata Francois Quesnay, quien mencionaba que la riqueza proviene de la propia naturaleza y que a medida de que ésta es más productiva, genera mayor riqueza.
1860 – Litre (Larousse, etimological Dictionary, 1949) define la productividad como la facultad de producir, asocia el deseo de hacer a la acción de producir.

1908 – F.W. Taylor al igual que Henry Ford, conciben la productividad como la relación que existe entre la producción obtenida y el trabajo empleado; en lo cual interviene la división de trabajo, reducción de costos, incentivos y racionalización de tiempos y movimientos con beneficios bilaterales al empresario y al trabajador (Taylor, 1947). Quedando definida la productividad como la relación entre producción y medios empleados para lograrla.

1950 – La Organización Europea para la Cooperación Económica (OECE) define la productividad como el cociente que se obtiene al dividir la cantidad producida entre uno de los factores de producción, capital, inversión, materia prima, etc.

1954 – Se debe entender por productividad el mejor aprovechamiento de los recursos de la producción; para lo cual es indispensable hablar de sus consecuencias, realizar estudios de la actividad industrial y en cada una de las fábricas por gobierno, trabajadores y patrones (CeNaPro, 1980)

1957 – Producir más con el mismo consumo de recursos, es decir el mismo costo en lo que se refiere a tierra, tiempo-máquina o mano de obra; o también que se obtiene la misma cantidad de producción utilizando menos recursos de tierra, materiales, tiempo-máquina o mano de obra, pudiendo dedicarse los recursos así economizados a la producción de otros bienes.
1962 – S. Fabricant señala que la productividad siempre es una razón entre la producción y los insumos.

1966 – William G. Scott cita a Khan y Morse, por su investigación con el enfoque de sistemas, comentando que la productividad es el número de unidades de trabajo que se logran en un período dado.

1974 – Optimización de todos los recursos, y el contribuyente principal de éstos es el elemento humano; el máximo desarrollo del mismo se concibe únicamente con la aplicación de un sistema eficiente de bienestar social, que permita liberar al trabajador de los sentimientos de frustración y lo convierta en una persona productiva (Posición sindical de la C.T.M. manifestada en el Primer Seminario Nacional sobre Productividad; 23 de septiembre – 18 de octubre de 1974.)

1979 – Koontz y O'Donnel mencionan que una de las metas primordiales de cualquier sociedad es la productividad, y que la eficiencia administrativa se define como “lo bien”, y con qué grado de eficiencia los administradores alcanzan los objetivos de su empresa; por lo tanto: Eficiencia = f (eficacia…); eficacia = (productividad…) y Productividad = (relación de productos e insumos).

En la década de los setenta prevalece el concepto de productividad concebida como la relación que existe entre producción obtenida y los medios o insumos utilizados en esa producción alcanzada.

1981 – Adam E. señala que su concepto hace referencia a la relación en la conversión de insumos (materias primas, mano de obra, capital, materiales y energía) a productos en el sistema que se
considere. Y menciona que las influencias en la productividad residen en variables sutiles que se encuentran dentro de los trabajadores, más que en el medio ambiente.

1983 – El Centro de Productividad Japonés señala que “sobre todo la productividad es un estado del espíritu. Es una actitud de progreso, de un mejoramiento constante. Es la seguridad de sentirse capaz de ser mejor hoy más que ayer. Es la voluntad de mejorar la situación presente ya sea que parezca buena o que realmente sea buena. Es el ajuste constante de la vida social y económica a las condiciones que cambian; el esfuerzo continuo por aplicar nuevas técnicas y métodos; es la fe en el progreso humano.”

1985: Kohei Gashi, fundador del Japan Productivity Center comentó que la productividad es un concepto que implica un progreso continuo (tanto material como espiritual).

1987: Se concibe a la productividad como la relación entre la producción obtenida por un sistema y los bienes utilizados en su obtención. Es decir, el uso eficiente de los recursos (trabajo, capital, tierra, materiales, energía, información) en la producción de diversos bienes y servicios.

1990: No se cuenta con un concepto aceptado universalmente, sin embargo se hace referencia para considerar la productividad como un sinónimo de rendimiento o eficiencia, componente del desempeño organizacional.

productividad se refiere a un cambio cuantitativo que permite hacer mejor las cosas a las organizaciones; utilizando racionalmente los recursos disponibles, participar activamente en la innovación y avances tecnológicos.

1993: Relación volumétrica entre los resultados alcanzados en un periodo de tiempo determinado y los insumos utilizados.

Como se puede observar las diversas definiciones otorgan cualidades distintas dependiendo del enfoque que le de cada autor. Sin embargo el concepto de productividad implica la interacción entre los distintos factores del lugar de trabajo, dentro de los cuales se encuentra la calidad y la disponibilidad de los materiales, la escala de operaciones y el porcentaje de utilización de la capacidad, la actitud, la motivación y la efectividad de los administradores. La manera en cómo estos factores se relacionan entre sí tiene un importante efecto sobre la productividad resultante (Bain, 1995).

2.1.2. Factores que afectan la productividad

Es necesario identificar las variables que constituyen la productividad, su ordenamiento factorial, su interacción sinérgica, dentro de un juego articulado que permita una función positiva o negativa con un amplio margen de operatividad (Asomoza, 1985)

Los factores que intervienen en la productividad de cada industria son muchos y todos están relacionados al depender de los demás. La importancia de cada factor obedece al tipo de industria, situación, o país en el que se encuentren.
Son diversos los factores que están relacionados con la productividad, pero para Tristán (2005), los que afectan directamente la productividad son:

1. **Mano de obra**
2. **Maquinaria**
3. **Materiales**
4. **Métodos de trabajo**

**Mano de obra.** El recurso humano es el punto clave de la productividad, ya que de él depende en gran parte si se es productivo o no. En la medida que el personal que labora en una planta evite las siguientes causas, la productividad se verá favorecida:

- ❌ Tareas innecesarias.
- ❌ Partes innecesarias de las tareas.
- ❌ Tareas que podrían hacerse más rápido.
- ❌ Tareas que podrían simplificarse.

**Maquinaria.** El contar con la maquinaria suficiente en cantidad y calidad ayuda a poder efectuar un trabajo de una forma más rápida y eficiente, si no se cuenta con ello un trabajo que se debería desarrollar en una hora por un obrero, se realiza en tres utilizando a dos obreros.

Este recurso no se puede separar normalmente de la mano de obra ya que están íntimamente ligados, operario y maquina; y si se detecta y se elimina un desperdicio en la maquinaria esta acción tiene un doble valor, porque una sola acción reeditúa un doble beneficio.

**Materiales.** La importancia de cada uno de los recursos que intervienen en el proceso de fundición, esto varía según el tipo de empresa de que se
Capítulo 2: Fundamentación teórica de la investigación

trate, la disponibilidad y el costo de cada uno de ellos. Existen empresas en donde el costo de las materias primas representa el 60 por ciento de los gastos o más del costo de producto terminado, correspondiendo el 40 por ciento restante a mano de obra y gastos en general.

Los materiales de consumo para los trabajos de mantenimiento por lo tanto deben de ser cuidadosamente seleccionados al efectuar las compras, para poder contar con ellos en cantidad, calidad y oportunidad.

- **En cantidad**, ya que se debe solicitar la necesaria, para poder efectuar los trabajos que se han programado.
- **Calidad**, se deben surtir materiales que cumplan con los requisitos que se estipulan en las solicitudes de compra, ya que un material que no reúna estos requisitos ocasiona problemas posteriores ya que su tiempo de vida puede ser más corto o insuficiente.
- **Oportunidad**, ya que se programa para contar con él en el tiempo necesario.

**Métodos.** Estos corresponden a una parte de un procedimiento e indican la manera específica de hacer una labor. Cuando estos métodos son confusos o no existen la empresa vive un caos originado por las ideas equivocadas que cada individuo le da al trabajo al tratar de aplicar el procedimiento que cada uno de ellos supone mejor y que va cambiando con el tiempo y la experiencia de cada persona, conforme ésta va adquiriendo mayor experiencia y nuevos conocimientos.

En las industrias donde el costo de la mano de obra es reducido, en comparación con el de la materia prima o con el capital invertido en instalaciones y equipos, el área de oportunidad de reducir costos está en el mejor aprovechamiento de las materias primas y las instalaciones; como es
el caso para la empresa que se está estudiando. Algunos autores como Stoner (1989) consideran que son muchos los factores que intervienen en la productividad, y son muy complejos si analiza la figura 15.

**Figura 15. Factores que influyen en la Productividad.**


A continuación se desglosan algunos de los factores más importantes:

1. La estructura de la **fuerza de trabajo** es de vital importancia para la productividad, ya que por ejemplo un obrero sin capacitación puede contribuir a disminuir la tasa de productividad.

2. Los **costos de la energía**, por ejemplo la energía dependiendo del horario, tiene un costo superior, lo cual afecta a la operación.
3. El nivel de **inversión en desarrollo e investigación**, originalmente se ha encaminado al ahorro de energía y el control de la contaminación, haciendo a un lado aspectos tan importantes como el desempeño de los trabajadores.

4. Cambios en las **actitudes y motivación del trabajador**, los trabajadores actuales ya no tienen la ética laboral tradicional, es decir, ya no tienen la misma fidelidad a su empresa ni trabajan como antes.

5. La **inflación** es otro de los factores de gran peso ya que afecta el crecimiento de la productividad al hacer difícil la previsión y el control de los costos de producción.

6. Otros factores como son la drogadicción, el alcoholismo y la desintegración familiar, también influyen en la productividad ya que impactan directamente en la calidad de vida de los trabajadores.

Es importante mencionar que los factores que afectan la productividad difieren entre los autores, por lo que de la misma manera los modelos de productividad que se mencionan más adelante consideran diversos factores.

Sin embargo, para la investigación es importante la relación que tienen los materiales con la productividad como lo sugiere Tristán. (2005). Ya que la escasa planeación y control que se tiene sobre ellos ha desembocado en una situación problemática que se desarrolla en el área de fundición de la empresa Industrias IMISA S.A. de C.V. y que además afecta a otras áreas de la organización.
2.1.3. ¿Cómo se mide la productividad?

Cuando existe la necesidad de evaluar cualquier sistema para auxiliarse en el análisis de decisiones, se tiene que crear o determinar un mecanismo de medición que nos permita saber cuál es el camino que está tomando la empresa, o como lo cita David Bain, (1995) "existe en todas partes interés en medir la productividad ante todo, porque se requiere de un indicador relativo de la efectividad con la que la organización ha venido consumiendo los recursos en el proceso del cumplimiento de los resultados deseados".

Es decir, los directivos requieren saber cómo están las cosas, comparar el desempeño anterior con el que actualmente tienen; y así definir si se está avanzando o se está retrocediendo; en qué magnitud y las posibles alternativas

Aunque por sí mismos los índices de productividad por lo general no muestran las razones por las que surgen los problemas, cuando se les compila adecuadamente, con la oportunidad y en un formato fácilmente comprensible, sirven a la Dirección para descubrir los problemas y su magnitud (Bain, 1995)

La productividad es la medida global en que las organizaciones satisfacen los siguientes criterios:

1. Eficiencia.
2. Eficacia.
3. Comparabilidad.
Capítulo 2: Fundamentación teórica de la investigación

La definición de eficiencia va muy de la mano con el concepto de eficacia. La eficacia es el cumplimiento de objetivos; mientras que la eficiencia es el logro de las metas con la menor cantidad de recursos. (Koontz & Weihrich, 1998)

A continuación se dan algunas formas de medir la productividad:

\[
\text{PRODUCTIVIDAD} = \frac{\text{PRODUCTO MEDIDO EN CANTIDADES FÍSICAS}}{\text{INSUMO MEDIDO EN CANTIDADES FÍSICAS}}
\]

\[
\text{PRODUCTIVIDAD DEL TRABAJO} = \frac{\text{CANTIDADES FÍSICAS DEL TRABAJO}}{\text{HORAS-HOMBRE TRABAJADAS}}
\]

\[
\text{PRODUCTIVIDAD PARCIAL} = \frac{\text{PRODUCTO TOTAL}}{\text{UN INSUMO DETERMINADO}}
\]

Sumanth (1999) ofreció sus definiciones acerca de la productividad:

1. **Productividad Parcial**.- Es la proporción que viene del resultado de una clase de insumos. Por ejemplo, el resultado por horas-hombre (medida de la productividad de la mano de obra) es un concepto parcial de la productividad.
2. **Factor de Productividad Total.**- Es la proporción entre el resultado neto y la suma de los insumos por mano de obra y capital. En este caso, el resultado neto también se conoce como *resultado de valor agregado*. Esta proporción, solo considera explícitamente los factores de insumos del capital y la mano de obra en el denominador.

3. **Productividad Total.**- Es la proporción entre el resultado total y la suma de todos los factores de insumos. Es una medida holística que considera el impacto asociado y simultáneo de todos los recursos de los insumos en la producción como fuerza de trabajo, materiales, máquinas, capital, energía, etc.

4. **Índice de la productividad total global.**- Es el índice de la productividad total, multiplicado por el índice del factor tangible. Es la forma de medición más elaborada; extiende la medida de la productividad total para incluir factores cualitativos definidos por el usuario.

Un paso importante para mejorar la productividad en cualquier organización consiste en idear e implantar mediciones significativas. La organización puede o no haber cruzado o tratar de cruzar ese puente que vincula el conocimiento teórico con el compromiso personal, si todavía no se ha intentado medir su productividad. Lo que sigue puede ayudar a empezar bien. Si ya existen mediciones de la productividad es interesante compararlas con los siguientes criterios (Tristán, 2005):

- **Validez:** refleja con precisión los cambios en la productividad.
- **Totalidad:** toma en cuenta todos los componentes, tanto de la producción, como del insumo, de un determinado índice de productividad.
Capítulo 2: Fundamentación teórica de la investigación

- **Comparabilidad**: permite la exacta medición del cambio en la productividad entre un periodo y otro.
- **Exclusividad**: toma en cuenta y mide por separado la productividad de todas las actividades.
- **Oportunidad**: asegura que la información se comunica a los directivos con suficiente prontitud para que puedan tomarse las acciones correctivas cuando surgen los problemas.
- **Efectividad en costos**: consigue mediciones de modo que cause el menor número de interrupciones a los procesos productivos continuos en la organización.

2.1.4. Modelos de productividad

Existen varios modelos para efectuar la medición de la productividad, cada uno de ellos basado en un aspecto en particular que el autor le da mayor énfasis, por ejemplo el desempeño del trabajador, las influencias del entorno, los agentes endógenos en los cuales la empresa no tiene influencia directa, etc. De esta variedad de modelos para efectuar la medición de la productividad, a continuación se enlistan cuatro de ellos:

1. Modelo de Sutermeister.
2. Modelo de Schoeder.
3. Modelo de Sumanth.
4. Modelo de Prokopenko.
2.1.4.1. Modelo de Sutermeister

"Este modelo da un particular interés a los aspectos suaves centrando su preocupación en el desempeño del trabajador. Valora los aspectos tecnológicos pero no profundiza en ellos, su preocupación está centrada en las personas. Considera que la productividad se explica básicamente a partir de la habilidad de los trabajadores y su motivación. Dicho de otra forma, valora llanamente dos cosas: que la gente pueda y quiera.

Es verdad que indica el desarrollo tecnológico como una variable clave. Desgraciadamente no profundiza en esta idea, lo que si hace en el caso del desempeño del trabajador en el puesto. (Rivas, 2001) En la figura 16 se detalla el modelo de Sutermeister.

Figura 16. Modelo de Productividad de Sutermeister.
Este enfoque, aunque respetable, olvida que la productividad puede provenir de la materia prima, así como de los métodos de trabajo, aspectos que Sutermeister considera poco importantes, razón por la cual este modelo es de alcance reducido y poco explicativo.

2.1.4.2. Modelo de Schoeder

Este modelo por otra parte considera seis factores que para el autor incluyen todos los factores que afectan la productividad.

“El modelo valora por ejemplo las influencias del entorno, aspecto olvidado en el método de Sutermeister, además estudia aspectos como capacidad de inventario y estudia cuestiones consideradas tradicionalmente adjetivas como: la planeación de las capacidades, y la estrategia de compras. Factores subestimados en la práctica, pero que son en efecto muy explicativos, ya que forman parte de la logística interna que es un factor vinculado a la creación de valor y muchas veces la fuente única para la ventaja competitiva. Este modelo se describe en la figura 17.

Este modelo es una progresión del anterior, no valora aspectos que han aparecido muy recientemente como determinantes en el estudio de la productividad, los servicios postventa, la función de logística externa que incluye la estrategia de distribución y la gestión de la fuerza de ventas. Además este modelo no considera los factores claves de éxito los cuales, como se sabe dependen en gran medida del sector industrial.
2.1.4.3. Modelo de Sumanth

El modelo de productividad total fue desarrollado en 1979, define una medida de productividad total que incluya todos los factores de resultados y todos los factores de insumos. Este modelo se basa en elementos medibles o cuantificables directamente. (Fig. 18 y 19)
Figura 18. Elementos de resultados del modelo de productividad total.
Fuente: Sumanth, D. Administración para la productividad total: elementos de resultados mostrados en el TPM.

Figura 19. Elementos de insumos considerados por el modelo de productividad total.
Fuente: Sumanth, D. Administración para la productividad total: elementos de resultados mostrados en el TPM
Este modelo considera el punto de vista de los sistemas en su totalidad, como el punto de vista de los subsistemas y es tanto diagnóstico como prescriptivo en su naturaleza.

Características únicas del modelo de productividad total

• **Concepto de unidad operacional.** Una de las muchas características del modelo radica en su habilidad de proporcionar índices de productividad, tanto totales como parciales y no tan sólo al nivel de agregado de la empresa, sino que también al nivel de las micro operaciones que se requieran. Este modelo puede aplicarse a cualquier tipo de organización en donde existan personas o se usen máquinas, equipo, materiales y energía.

• **Características micro y macro.** Es una herramienta sistemática para medir y supervisar la productividad total y las productividades parciales de las unidades operacionales de una empresa, así como de la empresa en su totalidad. Debido a que es agregado y detallado en su naturaleza, también es diagnóstico en cuanto a que muestra las tendencias de la productividad, y prescriptivo, ya que puede señalar algunos recursos de insumos que no se utilizan con efectividad y eficiencia.

• **Integración a la administración de productividad.** Le facilita a la empresa la instalación de un sistema de medición de su productividad, mismo que constituirá la base para una evaluación formal, planeación y mejoramiento de la productividad total.

El modelo de productividad total se desarrolla como un ciclo de productividad tal como se muestra en la siguiente fórmula.
Capítulo 2: Fundamentación teórica de la investigación

En esta perspectiva todas las mejoras tienen su origen en un sistema de medición basado en la productividad total, de todos los sistemas de medición basados en la productividad total.

2.1.4.4. Modelo de Prokopenko

El último de los modelos que se presenta es una adaptación del de Prokopenko a partir de los distintos modelos existentes.

La productividad de una empresa depende de muchos factores, algunos de los cuales son responsabilidad directa de las empresas, mientras otros son exógenos y están fuera de control de la empresa. En el caso de éstos últimos la firma puede tomar medidas para modificar su impacto. Es importante que la empresa que decide aumentar la productividad identifique los problemas derivados de factores externos y, a su vez, determine sobre los factores que puede actuar directamente. La figura 20 muestra los factores que propone este modelo.

Factores Internos

Los factores internos se diferencian según su grado de facilidad de modificación, distinguiéndose los “duros” de los “blandos”. Los factores “duros” son los que resultan más difícil de modificar y los “blandos”, los que son fácilmente cambiables.
Entre los factores “duros” o difíciles de modificar se distinguen los productos, la tecnología, los equipos y los materiales y energía, los cuales se detallan a continuación:

- **Producto.**

Una mejora en el producto, de modo que satisfaga en mejor forma las exigencias del consumidor puede traducirse en que el cliente esté dispuesto a pagar más por un producto de mejor calidad. Esto se puede lograr a través de mejoras en el diseño y especificaciones del producto, a través de una disponibilidad de éste en el lugar adecuado, en el momento oportuno y a un precio razonable.

![Figura 20. Modelo de Prokopenko (Factores de Productividad en la Empresa)](image)

Capítulo 2: Fundamentación teórica de la investigación

- **Planta y equipo.**
  La productividad puede mejorarse a través de medidas tendientes a un buen mantenimiento del equipo, de la eliminación de “cuellos de botella”, de la reducción del tiempo parado y el uso eficaz de la capacidad instalada.

- **Tecnología.**
  La innovación tecnológica constituye una fuente importante de aumento de la productividad. Se puede lograr un mayor volumen de bienes y servicios, un perfeccionamiento de la calidad, la introducción de nuevos métodos de comercialización, etc., mediante una mayor automatización y tecnología de la información. La automatización puede asimismo mejorar la manipulación de los materiales, el almacenamiento, los sistemas de comunicación y el control de calidad.

- **Materiales y energía.**
  Un pequeño esfuerzo por reducir el consumo de materiales y energía puede producir notables resultados en la productividad. Esas fuentes de la productividad incluyen las materias primas y los materiales indirectos como productos químicos, lubricantes, combustibles, piezas, entre otros.

  Mientras que entre los factores más fácilmente modificables o “blandos” se distingue a las personas que son la fuerza de trabajo, los sistemas o procedimientos organizacionales, los métodos de trabajo y los estilos de dirección.
o **Fuerza de trabajo.**
Las personas constituyen el principal factor de aumento de productividad. Cada persona tiene una función determinada en la empresa y su forma de realizar esa función va a depender de su dedicación y eficacia. La dedicación depende de la motivación para realizar las tareas.

Para aumentar la dedicación deben existir incentivos que pueden ser salariales o no salariales. Entre éstos últimos se puede mencionar un ambiente laboral favorable, buenos canales de comunicación y un sistema de participación de los trabajadores.

El segundo factor que interviene en el papel desempeñado por las personas en el aumento de la productividad es la eficacia. La eficacia es la medida en que la aplicación del esfuerzo humano produce los resultados deseados en cantidad y calidad. La capacidad para desempeñar un empleo productivo se puede mejorar a través de la capacitación y perfeccionamiento profesional; de la rotación de tareas y de la promoción en el empleo, entre otros.

o **Organización y métodos de trabajo.**
Una organización debe ser dinámica, estar orientada hacia objetivos concretos y tener la flexibilidad necesaria para enfrentar los cambios. Por otra parte, el mejoramiento de los métodos de trabajo constituye un campo importante para mejorar la productividad, especialmente en los países en desarrollo y en los sectores intensivos en mano de obra. Los métodos de trabajo se perfeccionan mediante el análisis sistemático de los métodos actuales, la eliminación del trabajo innecesario y la realización necesario con más eficacia y menos esfuerzo, tiempo y costo.
Factores Externos.

Entre los factores externos que influyen en la productividad de la empresa, se encuentran las políticas públicas y los mecanismos institucionales; la situación política, social y económica; el clima económico; la disponibilidad de los recursos financieros, energía, agua, medios de transporte, comunicaciones y materias primas.

El contexto macro influye en la productividad nacional, regional, sectorial y de la empresa. A su vez, los cambios de productividad modifican la estructura.

Factores demográficos.

Los cambios demográficos repercuten en las personas que buscan empleo y en la demanda de bienes y servicios. Los cambios geográficos de la población afectan también la productividad, dado que la densidad demográfica varía de una región a otra.

Entre los factores sociales debe prestarse particular atención al aumento porcentual en la participación de las mujeres en la fuerza de trabajo, la que si bien aún es menor que la de los hombres, continúa en aumento. Un cambio en la relación entre los hombres y las mujeres que trabajan influye en los ingresos.

Actualmente, los hombres perciben ingresos medios superiores a los de las mujeres, diferencia que se atribuye en gran parte, a la educación, el trabajo de tiempo completo o tiempo parcial y a la extensión de la experiencia laboral, pero también a factores culturales de discriminación. A medida que esos hechos se modifican, es muy probable que también se modifiquen la
productividad y la estructura de los ingresos. La productividad se ve afectada por la educación, y por actitudes culturales, que pueden promover u obstaculizar la productividad.

**Dotación y utilización de recursos naturales.**

Los más importantes son la mano de obra, la tierra, la energía y las materias primas. La capacidad de una nación para generar, movilizar y utilizar los recursos es determinante para mejorar la productividad.

- **Mano de obra.**

El ser humano es el recurso natural más valioso. Países desarrollados que carecen de tierra, energía y recursos minerales, han descubierto que su fuente más importante de crecimiento es la población, su capacidad técnica, su educación y formación profesional, sus actitudes y motivaciones. La inversión en esos factores mejora la calidad de la gestión y de la fuerza de trabajo. Los países desarrollados cuentan con una población mejor capacitada e instruida.

La atención prestada a la salud y al ocio ha provocado un tremendo ahorro ocasionado por la reducción de enfermedades, la mayor esperanza de vida y el aumento de la vitalidad. La calidad general de la mano de obra ha aumentado al mejorar la salud y la educación.

- **Tierra.**

La tierra, factor material más abundante, exige una administración, explotación y política nacional adecuados. Las presiones para que aumente la productividad agrícola por trabajador y por hectárea pueden acelerar la erosión del suelo, lo que se traduce, a menudo, en la utilización de más fertilizantes, pero con un costo cada vez mayor y con el peligro de contaminación ambiental.
La elevación del costo de los insumos agrícolas de gran densidad de energía, la limitada disponibilidad de nuevas tierras y la apremiante necesidad de una economía agropecuaria más cuidadosa para impedir graves erosiones abogan por un uso más prudente de las tierras disponibles.

- **Materias primas.**
Las materias primas constituyen un factor de productividad importante. Los precios de las materias primas están sujetos a fluctuaciones del mismo tipo que los precios del petróleo, aunque en formas menos extremas. Como ejemplo del impacto de las materias primas sobre la productividad, se puede mencionar que a medida que las fuentes de minerales más ricas y accesibles se van agotando, la necesidad de explotar categorías inferiores de yacimientos en lugares más difíciles obliga a recurrir a un uso más intensivo del capital y del trabajo, lo que reduce el aumento de la productividad en las minas a pesar del incremento de la automatización. La explotación de minas cada vez más marginales hace decrecer aún más la productividad.

- **Administración pública e infraestructura.**
Las políticas, estrategias y programas estatales repercuten fuertemente en la productividad: políticas de control de precios, ingresos y remuneraciones, de transporte y comunicaciones, de incentivos fiscales.

Numerosos cambios estructurales que afectan a la productividad tienen origen en leyes, reglamentos o prácticas institucionales. La productividad del sector público es importante debido a que permite a los gobiernos prestar más servicios con los mismos recursos o proporcionar los mismos servicios a un costo inferior.
Comparativo de los modelos de productividad

Una vez analizados los cuatro modelos de productividad, a manera de resumen se muestra la tabla 3 para comparar cada uno de los modelos y mencionar los factores que cada uno considera para el cálculo de la productividad.

El modelo de Sutermeister no es aplicable para la investigación ya que únicamente se enfoca en el desempeño del trabajador y en los aspectos tecnológicos, dando mayor prioridad al primero.

Mientras que el modelo de Schoeder considera entre otros factores la capacidad e inventario, haciendo referencia a la planeación de la actividad, el inventario y las compras. Por lo que está relacionado a lo que se pretende realizar en la investigación. Y los factores en los que se enfocaría la investigación conforme a este modelo son: capacidad de inventario, proceso y calidad.

El modelo de Sumanth también considera los materiales como un factor determinante de la productividad, en lo que él llama los factores de insumos.

Y finalmente el modelo de Prokopenko, como parte de los factores duros se encuentra la tecnología y los materiales y energía; y como factores blandos lo que maneja como métodos de trabajo, para obtener resultados en la mejora de la productividad.
### Tabla 3. Comparativo de Modelos de Productividad.

<table>
<thead>
<tr>
<th>Factores que considera</th>
<th>Descripción y características</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Modelo de Sutermeister</strong></td>
<td>El desempeño del trabajador y los aspectos tecnológicos sin profundizar en estos últimos.</td>
<td>No considera lo relacionado a las materias primas, los métodos de trabajo. Es reducido y poco explicativo.</td>
</tr>
</tbody>
</table>
| **Modelo de Schoeder** | *Factores externos*  
*Capacidad de inventario*  
*Producto*  
*Proceso*  
*Fuerza de trabajo*  
*Calidad* | No considera aspectos un poco más recientes como los servicios postventa o las estrategias de distribución. |
| **Modelo de Sumanth** | Los factores de resultados y los factores de insumos para calcular la productividad total. | Considera únicamente factores que son cuanti ficables o medibles. |
| **Modelo de Prokopenko** | *Factores Internos*:  
-Factores duros:  
*Producto*  
*Planta y equipo*  
*Tecnología*  
*Materiales y energía*  
-Factores blandos:  
*Personas*  
*Organización Sistemas*  
*Métodos de trabajo*  
*Estilos de Dirección*  
**Factores externos**:  
-Socioeconómicos  
-Recursos naturales  
-Administración e infraestructura | Dentro de los factores que considera, los que son externos o exógenos aún cuando tienen impacto en la productividad, están fuera de control de la empresa. |

Fuente: Elaboración propia.
2.1.5. Problemas de mejoramiento de la productividad

En las organizaciones se pueden presentar diversos problemas para mejorar o incrementar la productividad, algunos de ellos se mencionan a continuación:

1. Desarrollar mediciones de la productividad en todos los niveles de la organización
2. Establecer objetivos para el mejoramiento de la productividad, estos deben ser realistas
3. Desarrollar planes para alcanzar metas
4. Poner en marcha el plan
5. Medir los resultados. Este proceso requiere la obtención de datos y la evaluación periódica del progreso del alcance de los objetivos.

2.2. Administración de la producción

Sintetizando algunas ideas de Chase, Aquilano y Jacobs (2000), se puede decir que la “Administración de la Producción”, también conocida como Administración o Gerencia de Operaciones puede ser definida como el diseño, la operación y el mejoramiento de los sistemas de producción que crean los bienes o servicios primarios de la compañía.

De acuerdo a Domínguez Machuca (1995) y concibiendo a la empresa como un sistema complejo y abierto que se divide en los siguientes subsistemas:

- Subsistema comercial: es el que diferencia a las empresas de otros tipos de organizaciones.
Subsistema de producción: es el que produce u obtiene los bienes y servicios para satisfacer la demanda.

Subsistema de inversión / financiación: se ocupa de proporcionar y administrar los recursos de capital necesarios para las inversiones en activo fijo como circulante.

Subsistema de dirección y gestión: penetra a los anteriores a nivel estratégico, táctico y operativo.

Subsistema de recursos humanos: proporciona el personal necesario a todo el sistema de la empresa.

Subsistema de información: es como un tejido nervioso que enlaza a todas las áreas entre sí y con el entorno.

La producción como sistema

Tiene como misión la obtención de los bienes y servicios que deberán satisfacer las necesidades detectadas por el subsistema comercial, y/o generadas por el departamento de investigación y desarrollo según Domínguez Machuca (1995).

La configuración del subsistema de producción comienza con la definición de objetivos a largo plazo y el diseño de las estrategias acordes.

Dentro del subsistema de operación se reconocen dos niveles: el estratégico, que se refiere a los objetivos a largo plazo para los que se diseña el subsistema, y otro táctico y operativo, que está vinculado con el mediano, corto y muy corto plazo. Y se debe contar con los organismos y funciones que permitan realizar:

- La planificación de la producción y la capacidad (a mediano plazo)
- La programación de la producción y la capacidad (a corto plazo)
- La ejecución de la producción (a muy corto plazo)

Lo cual implica otra tarea fundamental:
La planificación y control de inventarios, tanto de materias primas como de materiales de proveedores, de elementos en curso de fabricación y de productos terminados.

Si no hay un sistema de planificación no puede haber un sistema de control, cuya tarea no es como la mayoría de las veces se supone, castigar los errores o encontrar culpables; sino detectar y corregir lo antes posibles las desviaciones con respecto a los objetivos que se marcaron, retroalimentando el sistema con información que permita seguir el rumbo previsto.

Según Hayes y Wheelwright, hay cuatro fases en la competitividad de la producción.

- **Etapa 1 - Internamente neutral**: el papel de la producción es resolver el tema, haciendo que el producto pueda ser entregado a los clientes de acuerdo a lo previsto, ya que el éxito depende, más bien del marketing o del diseño.

- **Etapa 2 – Externamente neutral**: no basta resolver el tema de la fabricación, ya que también deben alcanzarse los estándares de coste, calidad y plazo de entrega de la competencia, imitando sus procesos y técnicas de gestión.

- **Etapa 3 – Apoyo interno**: ya no se trata de imitar a la competencia, sino de hacer que la administración de la producción se ajuste a la estrategia competitiva elegida por la empresa y ayude a concretarla.

- **Etapa 4 – Apoyo externo**: la administración de la producción desempeña un papel clave en la estrategia corporativa, desarrollando competencias y capacidades superiores a las de los demás competidores.
Según Chase, Aquilano y Jacobs, (2000) mencionan algunas aportaciones que se pueden hacer desde la Administración de la Producción para afrontar el desafío competitivo.

La Comisión de Productividad Industrial del MIT, realizó en 1985 las siguientes recomendaciones:

- Poner menos énfasis en las inversiones financieras de corto plazo y priorizar las inversiones en investigación y desarrollo.
- Revisar las estrategias corporativas para incluir respuesta a la competencia. Lo cual requiere mayor inversión en personas y equipos, para mejorar la capacidad de manufactura.
- Eliminar las barreras de comunicación en las organizaciones y reconocer la coincidencia de intereses con otras compañías y proveedores frente a la competencia internacional.
- Reconocer que la fuerza laboral es un recurso que debe nutrirse.
- Volver a cuestiones básicas de la administración, incorporar calidad en las etapas de diseño, hacer énfasis en innovaciones de procesos.

2.2.1. Función de la administración de la producción

La Administración de la Producción tiene como objetivo el planteamiento, diseño, implementación, ejecución y control de los sistemas de producción y control de una empresa.

Las actividades relacionadas con el sistema de producción se refieren al diseño del producto, diseño del proceso, selección del equipamiento, selección y capacitación del personal, selección de los materiales, selección de los proveedores, localización de plantas, distribución interna de plantas, programación del plan e implementación del sistema.
Las actividades relacionadas con el sistema de control hacen referencia al control de calidad, control del programa de producción, control de inventarios, control de la productividad, definición de las políticas de control, diseño del sistema de control, implementación del sistema y su evaluación.

Es normal que la Administración de la Producción produzca una delegación de funciones, lo cual da origen a algunos departamentos de la organización. Sin importar la diversificación funcional, los objetivos estratégicos fundamentales son:

- La reducción de costos por medio de una mayor eficiencia y productividad.
- El cumplimiento en tiempo y forma de los plazos, las entregas, etc.
- La mejora de la calidad.
- El aumento de la flexibilidad en suministros, procesos, productos, equipamientos, mano de obra.
- La mejora en el servicio a los clientes, por medio de la vigencia efectiva de los atributos de una buena calidad de servicio: confianza, sensibilidad, habilidad, accesibilidad, cortesía, comunicación, credibilidad, seguridad, todo basado en un amplio conocimiento del cliente.

Chase, Aquilano y Jacobs (2000), plantean la siguiente síntesis de los principales problemas que enfrentan las empresas en esta materia:

- Como acortar el tiempo que requiere la producción de bienes nuevos.
- Como desarrollar sistemas de producción flexibles.
- Como administrar redes de producción globales.
Capítulo 2: Fundamentación teórica de la investigación

Como desarrollar e integrar nuevas tecnologías de procesos en los sistemas de producción existentes.

Como obtener rápidamente un alto nivel de calidad y como conservarlo en los cambios y reestructuraciones.

Como administrar una fuerza laboral compleja.

Como adaptarse a las restricciones ambientales, las normas éticas y las restricciones gubernamentales.

Ubicación de las organizaciones empresariales.

Interacción con otras funciones de la empresa.

2.2.2. Planeación de operaciones

Las principales actividades de planeación de las operaciones incluyen tareas como: planeación de las capacidades a grandes rasgos, la planeación de los requerimientos de materiales y de capacidad. Dichas actividades se dividen por tipo de planeación de acuerdo a la dimensión del tiempo en largo, mediano y corto plazo como se muestra en la figura 21.

La planeación total implica traducir los planes empresariales anuales y trimestrales a amplios planes de trabajo y producción a mediano plazo (6 a 18 meses). Su objetivo es minimizar el costo de los recursos requeridos para satisfacer la demanda durante ese periodo. (Chase, Aquilano, & Jacobs, 2000)

La planeación a largo plazo por lo general se realiza anualmente, enfocándose en un horizonte superior a un año. La planeación a mediano plazo abarca un periodo de 6 a 8 meses, puede tener incremento de tiempo ya sea mensual o trimestral. Y la planeación a corto plazo cubre de un día o
menos hasta 6 meses y considera incrementos de tiempo usualmente semanal.

La planeación del proceso determina las tecnologías y procedimientos específicos requeridos para producir un bien o servicio. La siguiente actividad es la planeación estratégica de la capacidad con lo cual se busca determinar las capacidades a largo plazo del sistema de producción. Posteriormente el proceso de planeación total que como se mencionó es la traducción de los planes anuales a planes más cercanos para satisfacer la

Figura 21. Visión general de las principales actividades de planeación de las operaciones en empresas manufactureras.
demanda de dicho periodo. Después, la información del grupo de control de producción, existente o proyectada, se ordena en lo que se conoce como programa maestro de producción (Master Production Schedule) (MPS). Este programa genera las cantidades y fechas de los artículos que se requieren para cada pedido. Luego se utiliza la planeación de la capacidad a grandes rasgos para verificar que haya instalaciones para el almacenamiento y la producción, el equipo y la mano de obra disponibles. La planeación de los requerimientos de materiales (Material Requirements Planning) (MRP) toma los requerimientos de del producto final del MPS y los descompone en sus partes y subensamblajes para crear un plan de materiales, el cual especifica cuándo deben colocarse en cada parte la producción y las órdenes de compra y el subensamblaje para completar los productos que marca el programa. Por último, la programación de órdenes semanal o diaria de máquinas específicas, de líneas de producción o de centros de trabajo.

Para realizar la planeación de la producción se requiere tener información no sólo de la organización, sino también de factores externos a la misma como lo es el comportamiento de los competidores, la disponibilidad de las materias primas y las condiciones económicas entre otros. En la figura 22 se representan los factores tanto internos como externos que intervienen en la planeación de la producción.
Figura 22. Información requerida para el sistema de planeación de la producción.


Por lo general los factores externos están fuera de control directo de las organizaciones; sin embargo en algunas firmas, lo referente a la demanda de productos se puede prever a través de la administración de la demanda utilizando:

- La fijación de precios y la promoción.
- Los productos complementarios.
Para los planeadores es importante estar al pendiente de las proyecciones de ventas y los pedidos prometidos por función de mercadeo. Los factores internos difieren en su control; la capacidad física normalmente se fija a corto plazo, por otro lado la fuerza laboral se puede ver afectada por los acuerdos de los sindicatos que pueden limitar; la capacidad física no siempre se puede incrementar y los directivos o la alta gerencia son los responsables de fijar los límites y la cantidad de dinero a vincular en los inventarios.

2.2.3. Estrategia de operaciones y decisiones operativas estratégicas

La estrategia operativa se refiere a la elaboración de políticas y planes para la utilización de los recursos de las empresas en apoyo de la competitividad de la organización a largo plazo. (Chase, Aquilano, & Jacobs, 2000)

La palabra “estrategia” implica siempre un proceso a largo plazo que tiende a fomentar la realización de cambios necesarios para la mejor adecuación y respuesta de la empresa ante los cambiantes requerimientos del contexto; es decir, la realización de objetivos permanentes en medio de circunstancias variables.

Los objetivos de la construcción de una estrategia de operaciones son:

- Traducir las prioridades requeridas en requerimientos de desempeño específicos para las operaciones.
- Diseñar los planes necesarios para asegurar que las capacidades operativas y empresariales sean suficientes para cumplir esos requerimientos.
Sobre dicha orientación, las etapas o pasos para desarrollar esas prioridades son:

- Segmentar el mercado de acuerdo con los grupos de productos.
- Identificar los requerimientos del producto, los patrones de demanda y los márgenes de utilidad de cada grupo de productos.
- Determinar los criterios captadores de pedidos y calificaciones de pedidos de cada grupo de productos.
- Convertir los criterios captadores de pedidos en específicos requerimientos de desempeño.

Existen cinco estrategias de manufactura, las cuales están relacionadas al uso de inventarios y el comienzo de la producción. A continuación se detallan cada una de ellas:

- **Make to stock (MTS):** las empresas bajo este enfoque comienzan la producción para generar inventario de productos terminados, por lo que el tiempo de entrega al cliente es corto.
- **Make to order (MTO):** en este esquema el tiempo de entrega es mayor ya que no se tienen inventarios y la producción comienza hasta que se llega el cliente y se tiene el diseño.
- **Assemble to order (ATO):** la producción se queda hasta la mitad hasta que llega la orden de pedido del cliente.
- **Engineering to order (ETO):** se realice el trabajo bajo un modelo, se realizan cambios de ingeniería y como consecuencia el tiempo de entrega es mayor que el MTO.
- **Design to order (DTO):** cuando llega el cliente se realiza el diseño. Este esquema tiene el mayor tiempo de espera.
Actualmente la empresa trabaja bajo un esquema o estrategia de manufactura conocido en inglés como *make to order (MTO)*, en el cual no se tiene un inventario y los materiales de piden hasta que se tiene el diseño del cliente.

### 2.2.4. El método MRP

El método de planificación *MRP*, se ha dividido históricamente en dos métodos diferenciados, el “*MRP I*” y el “*MRP II*”. En realidad el “*MRP II*” es la evolución del “*MRP I*”. La metodología *MRP* está diseñada para, una vez conocida la demanda independiente de los productos finales de una organización, se pueda calcular de forma rápida y precisa la demanda dependiente provocada por dichos productos, y las necesidades que la fabricación de dichos productos terminados va a generar; es una solución a un problema clásico en la producción: controlar y coordinar los materiales para que se encuentren disponibles cuando sea necesario y sin tener la necesidad de tener un inventario excesivo.

Las siglas “*MRP I*”, provienen del inglés “Material Requirements Planning” que podría traducirse como “Planificación de necesidades de materiales”. Este proceso de planificación, basado en el álgebra matricial del método Gozinto, lo desarrolló por primera vez, en el año 1954, Andrew Vaszonyi y lo dio a conocer a través de la publicación de un artículo en la revista norteamericana “Management Science”. Pero hasta 1975, cuando Joseph Orliky, desde IBM, publicó su libro “Material Requirements Planning”, no se puso en práctica ni se popularizó con el nombre de *MRP*.

El *MRP* se creó en 1954 pero no se aplicó hasta 21 años más tarde, en 1975 cuando Joseph Orliky publicó su libro, debido a la falta de capacidad
computacional de los ordenadores de la época. El sistema MRP necesita elevada información, tanto del proceso de producción como de la demanda de los productos, de forma que no es rentable tratarla manualmente y los ordenadores de 1954 no eran capaces de tratarla. La fiabilidad del sistema MRP dependerá exclusivamente de la fiabilidad de dichos datos, de forma que es necesario que sean lo más precisos posible.

El sistema MRP parte de la base de que si es posible conocer o estimar la demanda de los productos finales, ya que esta sí es independiente a los demás productos, se puede conocer de forma directa cuál será la demanda de los artículos que los componen y en qué momento van a ser necesarios. Mediante esta información es posible calcular qué se debe aprovisionar y/o fabricar, en qué cantidad y en qué momento. Esta información permite reducir el stock de las empresas. Conocer la cantidad de los artículos y en qué momentos son necesarios, permite reducir el stock de seguridad, o eliminar por completo el stock total de algún artículo mientras este no sea necesario.

Este sistema de planificación de la producción y de gestión de stocks responde a las siguientes preguntas:

- ¿Qué?
- ¿Cuánto?
- ¿Cuándo?

Se debe de fabricar y/o aprovisionar para cumplir con los compromisos adquiridos.

El procedimiento del MRP está basado en dos ideas principales:

- La demanda de la mayoría de los artículos no es independiente, únicamente lo es la de los productos terminados.
Las necesidades de cada artículo y el momento en que deben ser satisfechas estas necesidades, se pueden calcular a partir de datos sencillos:

- Las demandas independientes
- La estructura del producto

Por lo que se puede decir que el MRP es un cálculo de las necesidades netas de los artículos (productos terminados, subconjuntos, componentes, materia prima, etc.) introduciendo el factor de plazo de fabricación o compra de cada uno de los artículos, lo que conduce a modular a lo largo del tiempo las necesidades, ya que indica la oportunidad de fabricar (o aprovisionar) los componentes con la debida planificación respecto a la utilización en la fase siguiente de fabricación.

En la figura 23 se muestran los documentos o ficheros básicos de un sistema MRP (MPS, BOM y Stocks), indicando la información que cada uno recibe, almacena y transmite. El Plan Maestro de Producción conocido como MPS recibe los pedidos (procedentes de marketing) y, en base a la demanda de los clientes fijos y los pronósticos de la demanda de clientes aleatorios se determina el plan maestro que responde esencialmente a las preguntas de qué se debe fabricar y cuándo, dentro de una política de un plan agregado de producción. Este programa maestro se combina con la estructura del producto, y con los archivos de la lista de inventarios procesándose en el fichero MRP que a su vez emite los programas de producción y/o aprovisionamiento. Este ciclo se modifica de acuerdo a la factibilidad de los programas emitidos por el MRP.

La información que comprende el sistema MRP es obtenida principalmente por tres fuentes que a su vez suelen ser generados por otros subsistemas
específicos, este sistema se puede concebir como un proceso cuyas entradas de información son:

![Figura 23. Esquema general de un MRP](image)

1. **Programa maestro de producción (**MPS: Master Production Schedule**). Este documento contiene las cantidades y fechas en que han de estar disponibles los productos de la planta que están sometidos a demanda externa o independiente (productos finales fundamentalmente y, posiblemente piezas de repuesto).

2. **Estado de inventarios o stock.** Recoge las cantidades de cada una de las referencias de la plana que están disponibles o en curso de fabricación. Es
Capítulo 2: Fundamentación teórica de la investigación

necesario conocer la cantidad de artículos en stock para poder calcular la necesidad real de cada producto y consumir los stocks innecesarios.

3. La lista de materiales (BOM: Bill Of Materials). Representa la estructura de fabricación en la empresa. Se indican los artículos y la cantidad de cada uno, necesarios para producir cada uno de los productos o referencias que aparecen en el Plan Maestro de Producción.

A partir de estos datos, la explosión de las necesidades proporciona como resultado la siguiente información:

- **El plan de producción** de cada uno de los artículos o ítems que han de ser fabricados, especificando cantidades y fechas en que han de ser lanzadas las órdenes de fabricación.

- Para calcular las cargas de trabajo de cada una de las secciones de la planta y posteriormente para establecer el programa detallado de fabricación.

- **El plan de aprovisionamiento**, detallando las fechas y tamaños de los pedidos a proveedores para todas aquellas referencias que son adquiridas en el exterior.

- **El informe de excepciones**, que permite conocer qué órdenes de fabricación van retrasadas y cuáles son sus posibles repercusiones sobre el plan de producción y en última instancia sobre las fechas de entrega de los pedidos a los clientes. Se comprende la importancia de esta información con la finalidad de renegociar estas, si es posible, o, alternativamente, el lanzamiento de órdenes de producción urgentes, adquisición en el exterior, contratación de horas extraordinarias u otras medidas que el responsable de producción considere oportunas.
De este modo, la explosión de necesidades de fabricación, no es más que el proceso por el que las demandas externas correspondientes a los productos finales son traducidas en órdenes concretas de fabricación y aprovisionamiento para cada uno de los ítems que intervienen en el proceso productivo.

En los apartados siguientes se detalla la información de cada una de las fuentes que comparten información para conformar el MRP.

2.2.4.1. Programa Maestro de Producción (MPS: Master Production Schedule)

De acuerdo con Heizer & Render (2004) El Programa Maestro de Producción (MPS) especifica el número de productos o artículos que deben realizarse y cuando. Y debe ser acorde al plan de producción; el cual establece el nivel global de producción en términos generales, como se muestra en la figura 24.

A medida que el proceso de la planeación va avanzando del plan de producción a la ejecución, cada etapa debe de ser factible. En caso de que algún nivel no lo sea, retrocede al nivel inmediato anterior para realizar los ajustes necesarios. De las principales fortalezas de los sistemas MRP es la capacidad de determinar la factibilidad de los programas dentro de las restricciones de capacidad.

El plan de producción marca los límites para el programa maestro de producción. Siendo este último el resultado del proceso de planeación de la producción. El programa maestro de producción indica los requerimientos para satisfacer la demanda y cumplir con el plan de producción; el programa
Figura 24. Proceso de planeación

Capítulo 2: Fundamentación teórica de la investigación

específicamente qué artículos hacer y cuándo hacerlos, es decir, desagrega el plan agregado de producción.

Mientras que en la planeación agregada se utiliza para la distribución de los recursos, con intervalos de estudio que suelen ser de un mes y alcance de un año. El programa maestro es más detallado y se utiliza para establecer las tasas de producción y hacer el cálculo de las necesidades, los intervalos de estudio suelen ser de una semana y el alcance entre dos y cuatro meses.

Para garantizar una buena programación maestra, se debe:

- Incluir todas las demandas de ventas de producto, reposición de depósitos, repuestos y requerimientos entre plantas.
- Nunca perder de vista el plan total.
- Involucrarse con las promesas de pedidos de los clientes.
- Identificar y comunicar todos los problemas.

2.2.4.2. Lista de materiales (BOM: Bill Of Materials)

La lista de materiales es una lista de las cantidades de componentes, ingredientes y materiales necesarios para hacer un producto. Los dibujos individuales de los productos, además de describir las dimensiones físicas, detallan cualquier proceso especial y la materia prima necesaria para producir cada una de las partes.

Los productos se pueden definir en una lista de materiales, al proporcionar la estructura del producto. Estas listas, además de proporcionar los
requerimientos, son útiles para determinar costos y pueden servir como listas de artículos o ítems que deben considerarse para la producción.

Para definir la estructura de los productos se debe considerar:

1. Cada componente o material que interviene debe tener asignado un código que lo identifique.
2. Realizar un proceso de racionalización de la estructura por niveles. Tomando en cuenta que el nivel cero corresponde al producto final y que los componentes o materiales que intervienen en lo último para conformar el producto final son el nivel uno.

2.2.4.3. Gestión de Stock

El estado del inventario reúne las cantidades de cada una de las referencias (materiales) que están disponibles en almacén o que están en curso de fabricación. Para el cálculo de las necesidades se requiere evaluar las cantidades y fechas en que han de estar disponibles los materiales y componentes que intervienen. Estas necesidades se comparan con las existencias de dichos artículos o materiales en inventario (stock) para tener como resultado las necesidades netas de cada uno de ellos.

En ocasiones existe material en stock que está comprometido para otros fines, por lo que es indispensable tener conocimiento de la situación que guardan los materiales en stock.

Para que el sistema MRP funcione, es importante contar con una buena administración de inventarios ya que si no se tiene un adecuado registro, la planeación de los requerimientos de materiales no funciona.
La administración es la encargada de establecer cuándo se necesitan los productos y debe determinar en qué momento adquirirlos. En el momento en que se realizan las órdenes de compra, el área de producción debe tener acceso a información de los registros de los pedidos y a las fechas de entrega programadas. Es indispensable que exista buena comunicación y coordinación entre el área de compras y el área de producción con la finalidad de cumplir lo que planeo.

Para un artículo manufacturado, el tiempo de entrega consiste en la suma de los tiempos necesarios para mover, preparar y ensamblar o hacer una corrida para cada componente. Mientras que para un artículo comprado el tiempo de entrega incluye el tiempo desde que se reconoce la necesidad de adquirirlo y el momento en que está disponible para producción.

El mantener un inventario en las organizaciones es necesario por las siguientes razones (Chase, Aquilano, & Jacobs, 2000):

1. Permite desarrollar y alcanzar economías de escala.
2. Ajustarse a la variación de la demanda de los productos.
3. Permite una flexibilidad en la programación de la producción.
4. Proporciona protección de la incertidumbre
5. Actúa como amortiguador en interfaces críticas en la cadena de abastecimiento.

2.2.4.4. **MRP**

El sistema *MRP* se basa y controla el conocimiento o previsión de la demanda, la lista detallada de los materiales del producto, el inventario disponible en cada momento, los pedidos a los proveedores pendientes y los plazos de entrega de estos, con la finalidad de definir qué se debe...
fabricar y qué se debe pedir a los proveedores en cada momento y en qué cantidad.

2.2.4.5. Beneficios del sistema MRP

Las empresas que optan por utilizar algún sistema que agilice y controle información indispensable para el proceso de planeación y la toma de decisiones de la empresa obtienen beneficios como:

- Mejorar el tiempo de respuesta a las demandas de los clientes.
- Reducción del inventario.
- Capacidad de cambiar el programa maestro.
- Reducción de los costos de preparación.
- Prever los momentos en que la producción debe agilizarse o se puede demorar sin mayor problema.
- Se reducen los tiempos de inactividad.
- La planeación de la capacidad.

En la siguiente parte se pretende analizar la parte teórica del proceso de fundición, para comprender la operación del área que se está investigando.

2.3. Proceso de fundición

De acuerdo a un estudio de la Universidad de Belgrano (Koblecovsky, 2005), todas las piezas fundidas en metales comienzan de la misma manera: se crea un molde con una cavidad que define una forma y se introduce metal líquido en el molde para crear la pieza fundida.
Otras operaciones que pueden producirse durante la fundición son la elaboración del modelo, la carga del horno, el desmoldeo, el enfriamiento, el manejo de la arena, el temple y el acabado. El proceso de fundición real es mucho más complejo dado que hay muchas formas de realizar las operaciones nombradas anteriormente.

La American Foundary Society (AFS) ha descrito 38 métodos para producir una pieza fundida en metal. Cada proceso ofrece ventajas distintivas que son familiares para los diseñadores y especialistas que las explotan. Sin embargo, se pueden agrupar en seis categorías amplias, resumidas en la tabla 4 que podemos ver a continuación.

Por otro lado, el Manual de solicitud de Autorización Ambiental Integrada: Aplicación a las Instalaciones que desarrollan Actividades de Producción y Transformación de Metales (Cantabria, 2002) menciona que en el proceso de fundición se pueden distinguir las siguientes etapas, que se pueden llevar a cabo en una sola instalación, o en varias completamente separadas:

1. PREPARACIÓN DE MATERIAS PRIMAS
La primera etapa para poder llevar a cabo la fabricación de un producto a partir de un metal, es obtener la materia prima. La materia prima se puede obtener a partir de la extracción del mineral, o por otro lado, a partir de la chatarra o “acero viejo”, que tiene la cualidad de ser reciclable en su totalidad cuantas veces se quiera.
Tabla 4. Principales procesos de fundición de metales

<table>
<thead>
<tr>
<th>PRINCIPALES PROCESOS DE FUNDICIÓN DE METALES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Moldeo convencional</strong></td>
</tr>
<tr>
<td>Moldeo en arena en verde</td>
</tr>
<tr>
<td>Moldeo de alta densidad</td>
</tr>
<tr>
<td>Moldeo por secado superficial</td>
</tr>
<tr>
<td>Moldeo en arena seca</td>
</tr>
<tr>
<td><strong>Moldeo de precisión</strong></td>
</tr>
<tr>
<td>Fundición por recubrimiento</td>
</tr>
<tr>
<td>Fundición bajo presión</td>
</tr>
<tr>
<td>Proceso de moldeo permanente</td>
</tr>
<tr>
<td>Proceso Cosworth</td>
</tr>
<tr>
<td><strong>Moldeo de semi-precisión</strong></td>
</tr>
<tr>
<td>Proceso Shell (en cáscara)</td>
</tr>
<tr>
<td>Fundición a la cera perdida</td>
</tr>
<tr>
<td><strong>Moldeo especial</strong></td>
</tr>
<tr>
<td>Fundición por centrífugado</td>
</tr>
<tr>
<td>Moldeo en cancha y en fosa</td>
</tr>
<tr>
<td><strong>Moldeo en arena auto-fraguante, químicamente aglomerada</strong></td>
</tr>
<tr>
<td>Procesos “No-bake” (sin cocción)</td>
</tr>
<tr>
<td>Caja fría y procesos en SO2</td>
</tr>
<tr>
<td>Sistemas de catalizadores líquidos</td>
</tr>
<tr>
<td><strong>Moldeo innovador</strong></td>
</tr>
<tr>
<td>Moldeo por compresión</td>
</tr>
<tr>
<td>Proceso FM</td>
</tr>
<tr>
<td>“Rheocasting” y “Thixomolding”</td>
</tr>
</tbody>
</table>

Fuente: Koblecovsky. Captura de conocimiento de una PYME industrial y construcción de modelos de simulación de costos de producción a partir del mismo. Universidad de Belgrano, 2005.

En el primer caso, el procedimiento conlleva una serie de operaciones, desde la extracción del mineral, mediante voladura, hasta tratamientos de
molienda, concentración y peletización para reducir las impurezas del mineral que contiene el metal.

Para la producción de hierro y acero son necesarias cuatro materias primas fundamentales: mineral de hierro, coque, piedra caliza y aire.

Los tres primeros se extraen de minas y son transportados y preparados antes de introducirlos al proceso de producción de arrabio. El arrabio es un hierro de poca calidad, su contenido de carbón no está controlado y la cantidad de azufre rebasa los mínimos permitidos en los hierros comerciales. Sin embargo, es el producto de un proceso conocido como fusión primaria del hierro y del cual proceden todos los hierros y aceros comerciales proceden.

A la caliza, el coque y el mineral de hierro se les preparan antes de introducirse al alto horno para que tengan la calidad, el tamaño y la temperatura adecuada, esto se logra por medio del lavado, triturado y cribado de los tres materiales.

En general, se utiliza la chatarra como materia prima en sus procesos, para lo que es necesario tener un control de la chatarra que se recibe.

2. FUSIÓN DEL METAL
La finalidad de esta etapa es calentar el metal a una temperatura lo suficientemente alta para transformarlo completamente al estado líquido, para su posterior vertido en el molde.

En la fundición de hierro los hornos de fusión utilizados pueden ser de tres tipos: hornos eléctricos de inducción de crisol, hornos de cubílotes y hornos rotativos de oxicombustión. Por otro lado, para la fundición de acero, los
hornos de fusión utilizados son dos: hornos de inducción de crisol de media frecuencia y hornos de arco eléctrico. En la fundición de acero también se utilizan en ocasiones los convertidores AOD (Descarburación por argón-oxígeno). Aunque no son hornos fusores propiamente dichos, estos convertidores se emplean para desoxidar, descarburar y ajustar la composición química de los aceros especiales que así lo requieren.

El tipo de horno utilizado para la producción de acero a partir de chatarra es el horno de arco eléctrico. Tras la carga del horno, éste se cierra y se introducen electrodos de grafito a través de los orificios situados en la bóveda. El arco eléctrico producido entre los electrodos y la carga metálica genera una gran cantidad de calor que funde la chatarra. Pueden añadirse elementos de aleación durante el proceso de transformación.

3. MOLDEO
En la etapa de moldeo se elaboran los moldes con las huellas de las piezas que se van a fabricar. Cuando estas piezas tienen orificios internos se utilizan machos para obtener la configuración interna de la pieza fundida hueca sin necesidad de un mecanizado posterior. Los moldes pueden ser de varios materiales, que incluyen arena, yeso, cerámica y metal, siendo los más elaborados los de arena.

Los distintos tipos de procesos de fundición se clasifican de acuerdo a los diferentes tipos de moldes, diferenciándose: moldes de arena en verde, con capa seca, con arena seca, furánicos o de metal. De esta forma, los procesos productivos pueden dividirse en función de la técnica de moldes empleada en:

- Moldeo en verde: el moldeo en verde se caracteriza por el uso como material de moldeo de una mezcla de arena de sílice, hulla, bentonita como aglomerante y agua. Esta técnica es muy versátil, utilizándose tanto para grandes series como para pequeñas.
Moldeo químico: el material de moldeo es una mezcla de arena con un aglomerante químico, generalmente resinas sintéticas (furánicas y fenólicas). Este tipo de moldeo se suele emplear para la fabricación de series cortas y piezas de gran tamaño.

Los machos introducidos suelen ser también de arena y deben ser lo bastante resistentes para soportar el proceso de fundición pero, al mismo tiempo, no han de ser tan fuertes como para oponer resistencia a su extracción de la pieza fundida durante la fase de vaciado.

Una vez preparado el molde de la pieza a realizar y que se han efectuado los análisis químicos o metalúrgicos pertinentes para comprobar la calidad del metal fundido, éste se vierte en el molde ensamblado, bien sea utilizando una cuchara o bien directamente. El metal fundido vertido en el molde empieza a enfriarse hasta alcanzar la temperatura suficiente para el punto de congelación del metal, momento en el que comienza la solidificación del mismo. Se requiere tiempo para que se lleve a cabo este cambio de fase porque es necesario disipar una considerable cantidad de calor.

El metal fundido se enfriía y se desmoldea (se rompe el molde de arena). Toda esta arena se recicla para la construcción de nuevos moldes.

4. ACABADOS
La etapa de acabados de las piezas metálicas ha dado lugar al desarrollo de actividades industriales derivadas de la misma, como las actividades de tratamiento y recubrimiento de superficies metálicas y de su mecanizado (laminado, forja, entre otros).

*Limpieza, acabado superficial y mecanizado.*
Si en la elaboración de los moldes se trabaja con arena, posteriormente a la etapa de desmoldeo, queda una capa de arena calcinada recubriendo la pieza, así como restos de machos en el interior de las cavidades. Mediante la técnica del granallado, la cual consiste en la proyección de un chorro de abrasivo que se hace chocar a gran velocidad contra la superficie de la pieza, se consigue la eliminación de esa arena.

Tras el granallado, se procede al rebarbado de las piezas, que consiste en el cincelado y amolado de las zonas de los ataques de colada y de las mazarotas, las rebarbas y los defectos superficiales. Con todo ello se persigue eliminar todos los excesos de material presentes en la superficie de las piezas, para conseguir que el contorno de las mismas se acomode a la forma y a las dimensiones exigidas.

Entre las operaciones de acabados pueden considerarse también el mecanizado de las piezas, la recuperación por soldadura de los defectos superficiales, el tratamiento térmico (esmaltado superficial) y el pintado.

5. CONTROL DE CALIDAD Y EXPEDICIÓN
Por último, las piezas terminadas se someten a un control de calidad para comprobar que cumplen con las especificaciones con las cuales se había diseñado.

Todas estas etapas del proceso de fundición se esquematizan en la figura 25 para comprender mejor el proceso que sigue una fundición.
Figura 25. Proceso general de fabricación de metales ferrosos.

Fuente: Manual de solicitud de autorización ambiental integrada: aplicación a las instalaciones que desarrollan actividades de producción y transformación de metales, Unidad de Sostenibilidad de la Producción de Cantabria, 2002.
CAPÍTULO 3. TRABAJO EMPÍRICO DE LA INVESTIGACIÓN

En este capítulo se describe el método de trabajo que se utilizó para dar respuesta a las preguntas de la investigación planteadas en el primer capítulo.

El método de acuerdo con Buchenski (1971), “es la forma y manera de proceder en cualquier camino, es decir, de ordenar la actividad a un fin”. Mientras que para Birou (Sierra, 1984) es el “proceso racional que es preciso seguir para llegar a una ciencia o incluso proceso operativo necesario para obtener tal resultado” y para Sierra (1984), “Es la forma de realización de la actividad intelectual del hombre que establece el procedimiento a seguir para que el pensamiento alcance su fin: la formación de conceptos, juicios o proposiciones”. Por consiguiente, es pude decir que es una investigación, documental, descriptiva y incluso un poco correlacional.

La investigación comenzó con la idea de investigar sobre los problemas de productividad que atañen a la industria manufacturera y la importancia de una buena gestión en las operaciones (procesos); así como el impacto de la productividad en los ingresos per cápita. (Lora & Pagés, 2011) Razón por la que se decide tomar a una empresa del sector para realizar la investigación.

Luego de investigar en artículos y otras publicaciones electrónicas la problemática de la productividad que se tiene en América Latina y México, se llegó al planteamiento del problema y a las preguntas de investigación para definir los objetivos (general y específicos) que son las guías de la presente investigación.
De los modelos estudiados en el capítulo anterior, se retoma información del modelo de Prokopenko para utilizar en la investigación tres de los factores que dicho autor relaciona con la productividad, los cuales son: los materiales, la tecnología y los métodos de trabajo; los cuales después de haber realizado un diagnóstico se identificó que estaban involucrados con la baja productividad.

Además se describe cómo se llevó a cabo la investigación y se desarrolla como proceso técnico la planeación de los requerimientos de material como parte de la solución para proponer cursos de acción que permitan incrementar la productividad del área de fundición de la empresa.

3.1. Tipo de investigación

Existen cuatro tipos de estudio por su alcance: descriptivos, exploratorios, correlacionales y explicativos; los cuales se detallan a continuación en la tabla 5. (Hernández, Fernández, & Baptista, 2003)

<table>
<thead>
<tr>
<th>TIPO DE ESTUDIO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratorio</td>
<td>Se realiza cuando el objeto de la investigación ha sido poco estudiado, se tienen muchas dudas o aún no se ha abordado; por lo tanto a través de la investigación se piensa indagar más en el tema para ampliarlo.</td>
</tr>
<tr>
<td>Descriptivo</td>
<td>Se realizan cuando se desea saber cómo es y cómo se manifiesta un fenómeno; por consiguiente, se busca especificar las propiedades, características y los perfiles de los fenómenos que se sometan a análisis.</td>
</tr>
<tr>
<td>Correlacional</td>
<td>Se realizan cuando se desea evaluar la relación que existe entre dos o más conceptos o variables; por lo tanto se busca establecer el comportamiento que sigue una variable con relación a otra (dependiente / independiente).</td>
</tr>
<tr>
<td>Explicativo</td>
<td>Están encaminados al conocimiento de las causas de los fenómenos, sucesos o eventos. Se llevan a cabo para conocer el por qué y en qué condiciones suceden dichos fenómenos.</td>
</tr>
</tbody>
</table>

Mientras que Zorrilla (1993) tomando como criterio el lugar y los recursos donde se obtiene la información requerida menciona que las investigaciones se pueden clasificar como: documental, de campo y mixta. A continuación en la tabla 6 se detalla dicha clasificación.

**Tabla 6. Descripción de tipos de estudio según Zorrilla**

<table>
<thead>
<tr>
<th>TIPO DE ESTUDIO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documental</td>
<td>Es aquella que se realiza a través de la consulta de documentos como: libros, revistas, periódicos, memorias, anuarios, registros, códices, constituciones, etc.</td>
</tr>
<tr>
<td>De campo</td>
<td>Es la que se efectúa en el lugar y tiempo en que ocurren los fenómenos objeto de estudio.</td>
</tr>
<tr>
<td>Mixta</td>
<td>Es aquella que participa de la naturaleza de la investigación documental y de la investigación de campo.</td>
</tr>
</tbody>
</table>


Luego de analizar los tipos de estudio, se determinó que la investigación de acuerdo a su alcance es **descriptiva** ya que se determinan todos los factores que intervienen en el proceso de fundición de la empresa; hechos y acciones que se realizan y la relación de estos con el aumento de la productividad. Incluso pudiera tener un enfoque **correlacional** al analizar la relación que existe entre los factores de productividad electos y la productividad del área en donde se realizará la investigación.

Y considerando la clasificación de Zorrilla, la investigación sería **documental** debido a que gran parte de la información recabada de la empresa es de los documentos internos que se manejan como lo son reportes y listados de pedidos.
3.2 Diseño de la investigación

El diseño hace referencia al plan o estrategia planteada para obtener la información que se desea (Hernández, Fernández, & Baptista, 2003), es decir, señala lo que se debe de realizar para alcanzar los objetivos preestablecidos.

Además de que ningún tipo de diseño es exclusivamente mejor que otro; sino que el enfoque seleccionado, el planteamiento del problema, los alcances de la investigación y la formulación o no de hipótesis lo que determinan qué diseño es el adecuado para un estudio específico. (Hernández, Fernández, & Baptista, 2003)

De acuerdo a libro Metodología de la Investigación de Hernández Sampieri (2003), los diseños de investigación se pueden clasificar en: experimentales, no experimentales; como se presentan en la tabla 7.

Después de esta revisión sobre los diseños de investigación, se seleccionó el diseño no experimental transeccional ya que no se efectúa ningún tipo de manipulación de las variables, y la investigación se realiza en el contexto real de la empresa. Además, la recolección de datos únicamente se lleva a cabo durante un periodo Junio a Septiembre 2011.

Adicionalmente se utilizará el estudio de caso como estrategia metodológica, tomando en cuenta la definición de Yin (1994, pág.13),

“Una investigación empírica que estudia un fenómeno contemporáneo dentro de su contexto de la vida real, especialmente cuando los límites entre el fenómeno y su contexto no son claramente evidentes. Una investigación de estudio de caso trata exitosamente con una situación técnicamente distintiva en la cual
hay muchas más variables de interés que datos observacionales; y, como resultado, se basa en múltiples fuentes de evidencia, con datos que deben converger en un estilo de triangulación; y, también como resultado, se beneficia del desarrollo previo de proposiciones teóricas que guían la recolección y el análisis de datos."

Tabla 7. Clasificación de los diseños de investigación.

<table>
<thead>
<tr>
<th>CLASIFICACIÓN</th>
<th>DESCRIPCIÓN</th>
<th>DIVISIONES</th>
<th>CARACTERÍSTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentales</td>
<td>Relacionado con la investigación cuantitativa; es un estudio en el que se manipulan intencionalmente una o más variables independientes para analizar las consecuencias en la variable dependiente.</td>
<td>▪ Experimentos puros</td>
<td>La variable independiente se puede manipular en dos o más grados: presencia-ausencia y la variación de la variable en grados o cantidades y se mide el efecto en la variable dependiente. Existe un grupo de control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Preexperimentos</td>
<td>Consiste en administrar un estímulo a un grupo y después aplicar una medición en una o más variables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Cuasiexperimentos</td>
<td>Difiere del experimento puro en que los sujetos no se designan al azar, sino que los grupos ya estaban formados antes del experimento por lo tanto disminuye el grado de confiabilidad.</td>
</tr>
<tr>
<td>No experimentales</td>
<td>Aplica tanto para investigaciones cualitativas como cuantitativas. Es un estudio que se realiza sin manipular intencionalmente las variables.</td>
<td>▪ Longitudinales: según su objetivo pueden ser: evaluación de grupo, panel o de tendencia.</td>
<td>Aquellos en donde la recolección de los datos se lleva a cabo a través del tiempo en periodos o puntos; para hacer inferencias respecto al cambio, sus determinantes y consecuencias.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Transeccionales: Dependiendo de su alcance puede ser: exploratorios, descriptivos o correlacionales.</td>
<td>Aquellos en donde la recolección de datos se da en un solo momento, en un tiempo único.</td>
</tr>
</tbody>
</table>

Además, el estudio de caso es particularmente relevante cuando la investigación presenta las tres características siguientes:

1. Las preguntas de investigación responden al ¿cómo? o ¿por qué?;
2. El investigador tiene poco control sobre los eventos; y
3. El centro de investigación es un fenómeno contemporáneo dentro de un contexto real.

Por lo que la investigación siguió el diseño de estudio de caso, pues el objetivo de la investigación respondió a la pregunta ¿cómo conocer, comprender y aplicar un proceso técnico que conduzca a formular cursos de acción en la producción del área de fundición de la empresa que permitan elevar la utilización de los factores determinantes de la productividad? De los tipos de diseños de estudios de caso que existen según Yin (1994), la investigación siguió el tipo simple ya que se trata únicamente de un caso en una unidad en donde se pretende tener una visión holística del área de fundición, enfatizando en los factores establecidos.

### 3.3. Variables de la investigación

Después del análisis teórico realizado en el capítulo anterior sobre los diversos modelos de productividad y derivado de la problemática que presenta el área de fundición de la empresa, se decidió contemplar como variables independientes los siguientes factores de la productividad:

- **Materiales**
- **Tecnología**
- **Método de trabajo**
Mientras que la variable dependiente es la productividad, ya que el comportamiento de ésta dependerá de cómo se manejen o utilicen las variables independientes dentro del proceso de producción.

3.4. Selección del estudio de caso

Para la selección de la empresa estudiada se tomaron en cuenta los siguientes factores: la aportación de la industria manufacturera al PIB y la productividad de la empresa.

**Primero:** se revisó en el marco conceptual, sobresaliendo la importancia de la productividad como un indicador de la salud económica de un país, además de destacar que el sector manufacturero es de los principales aportadores al PIB, siendo su contribución del 17% (INEGI, 2009), por lo que fue relevante elegir a una empresa situada en este sector.

**Segundo:** la empresa debería presentar dificultades con su productividad y estar dispuesta a colaborar y recibir propuestas para mejorar.

Por lo que, Industrias IMISA es la empresa elegida, ya que corresponde al sector manufacturero y además se encuentra con dificultades en sus procesos productivos, los cuales afectan su productividad y además está en total disposición de contribuir al desarrollo de la investigación.
3.5. Validez del diseño

La validez en general hace referencia al grado en que un instrumento mide realmente la variable que pretende medir. Para lograr la validez en el diseño de la investigación se cubrieron las siguientes pruebas:

1. **Validación del constructo:** Para ésta prueba se estableció que para conocer, comprender y aplicar un proceso técnico enfocado a formular cursos de acción que conduzcan a elevar la utilización de factores vinculados a la productividad de la empresa, se estudiarían algunos modelos de productividad y se analizaría en su totalidad el proceso que lleva a cabo el área de fundición.

2. **Validación externa:** Los resultados de la investigación se podrían utilizar por empresas del mismo giro que cuenten con características similares a la empresa estudiada.

3. **Confiabilidad:** Se trianguló la información, como una de las actividades sugeridas por Yin (1994), y se desarrolló una planeación de los requerimientos de material, dejando evidencia de los pasos que se siguieron, vinculando la información con la parte teórica de la investigación.

3.6. Recursos de evidencia utilizados

Según Yin (1994), el uso de múltiples recursos de evidencia aumenta la validez en el constructo. De este modo, en la investigación se utilizaron los recursos que se mencionan a continuación:
1. **Entrevistas semiestrucruradas**: Se realizaron tres entrevistas al dueño de la fábrica y cinco al encargado del área de fundición, las cuales fueron grabadas y transcritas en su totalidad para generar una base de datos. Todas fueron de gran utilidad, primero al dar una panorámica de la empresa y después profundizar en el área en la que se realizó la investigación.

2. **Observación directa**: Durante el periodo en que se desarrolló la investigación se tuvo la oportunidad de observar en diferentes ocasiones las actividades del proceso de fundición, la forma de operar desde la solicitud de la materia prima, hasta que la moldura pasa al área de maquinados para continuar con el proceso de fabricación; de este modo se pueden comprobar los procesos que se siguen e identificar las áreas de oportunidad y los factores que determinan la productividad.

3. **Análisis documental**: Se tuvo acceso a la mayoría de los documentos solicitados durante la investigación, como: listas de proveedores, pedidos de materiales, reportes de ventas, programas de fundición, entre otros.

4. **Análisis de archivos históricos**: Se analizaron los históricos de ventas, así como algunos programas de fundición de años anteriores con el objetivo comparar la productividad que se tiene en el área. Además de poder comprobar el incremento de la productividad a través del uso del MRP.
3.6.1. Técnica utilizada para el análisis de la evidencia

Una vez que la información se recolectó, se procedió al análisis de la misma. Según Yin (1994) el análisis de datos consiste en la conceptualización, categorización, tabulación o recombinación de la evidencia para dar dirección a la investigación. Por lo tanto, el análisis se fundamenta en el marco teórico desarrollado para las variables y tomando en cuenta la propuesta realizada por el mismo autor para la estrategia de análisis de pattern-matching, que consiste en comparar un patrón basado en la teoría con uno pronosticado; en caso de que los patrones sean compatibles entonces la validez interna de la investigación aumenta. Dicha comparación se puede sustentar en un criterio cuantitativo o en la capacidad interpretativa del investigador. En la presente investigación se empató la información tanto del marco conceptual como del marco teórico con los datos recolectados del área de fundición para la aplicación del MRP.

En la tabla 8 se puede observar a grandes rasgos el desarrollo de la investigación; se muestra una matriz de congruencia que reúne los principales conceptos adecuándolos a esta investigación.
<table>
<thead>
<tr>
<th>TÍTULO DE LA INVESTIGACIÓN</th>
<th>SITUACIÓN PROBLEMÁTICA</th>
<th>OBJETIVO GENERAL</th>
<th>OBJETIVOS ESPECÍFICOS</th>
<th>JUSTIFICACIÓN</th>
<th>MARCO TEÓRICO</th>
</tr>
</thead>
</table>
| El MRP como estrategia para incrementar la productividad del área de fundición en la empresa Industrias IMISA, S.A. de C.V. | • América Latina y en especial México reportan bajos índices de productividad.  
• En 2009 la tasa de crecimiento de la productividad de México fue de 2.1%, relacionada con la crisis entre 2008-2009.  
• En México, el sector manufacturero es de los principales aportadores al PIB, siendo su aportación para 2009 del 17%.  
• La productividad es un indicador que muestra la salud económica de un país. | Conocer, comprender y aplicar un proceso técnico que conduzca a formular cursos de acción en la producción, que permitan al área de fundición de la empresa Industrias IMISA elevar la utilización de sus factores determinantes de la productividad. | • Describir la importancia de la productividad, considerando los antecedentes tanto a nivel internacional como nacional.  
• Analizar las condiciones del área de fundición de la empresa bajo estudio.  
• Identificar los factores involucrados en la baja productividad del área de fundición de la empresa.  
• Diseñar un proceso técnico que permita el uso eficiente de los factores que determinan la productividad del área de fundición de la empresa. | Además de describir la importancia de la productividad a nivel mundial, el alcance de la investigación es a nivel organizacional enfocándose únicamente en el área de fundición de la empresa Industrias IMISA, S.A. de C.V., en donde pretende incrementar la productividad lo cual trae consigo beneficios para toda la empresa como la rentabilidad y la competitividad.  
La investigación permitió identificar los desperdicios de recursos y fallas en algunos factores de la productividad. Para elevar la utilización de los recursos operativos relacionados con la productividad se llevará a cabo una planeación de los requerimientos de material de dicha área. | El fundamento teórico incluye:  
Productividad  
• Definiciones de productividad.  
• Factores de la productividad.  
• Modelos de productividad.  
Administración de la producción  
• Función de la administración de la producción.  
• Planeación de operaciones.  
• El método MRP Proceso de fundición. |
<table>
<thead>
<tr>
<th>METODOLOGÍA DE LA INVESTIGACIÓN</th>
<th>CRITERIOS PARA LA ELECCIÓN DE LA EMPRESA</th>
<th>PROBLEMÁTICA DE LA EMPRESA</th>
<th>VARIABLES</th>
<th>FORMAS DE RECOLECCIÓN DE LA EVIDENCIA</th>
<th>ANÁLISIS DE RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>La investigación se diseñó como no experimental tanseccional porque no se buscó la manipulación de las variables y la recolección de la evidencia se realizó en un solo periodo de tiempo: Junio – Septiembre 2011; y se decidió utilizar el método del estudio de caso como estrategia metodológica porque éste constituye la mejor estrategia de investigación al cumplir con las siguientes condiciones: 1. Las preguntas de investigación responden al ¿cómo? o ¿por qué? 2. No se tuvo control sobre los eventos. 3. La productividad es un fenómeno contemporáneo dentro de un contexto real.</td>
<td>Paa la selección de la empresa estudiada se tomaron en cuenta los siguientes criterios: Primero: considerando el marco teórico, la importancia de la productividad como un indicador de la salud económica de un país, además de destacar el sector manufacturero es de los principales aportadores al PIB, siendo su contribución del 17%; por lo que fue relevante elegir a una empresa situada en este sector. Segundo: la empresa debería presentar dificultades con su productividad y estar dispuesta a colaborar y recibir propuestas para mejorar.</td>
<td>Dentro del área de fundición se han presentado los siguientes problemas:  - El programa no se funde completo.  - El programa no hace referencia a las piezas requeridas para elaborar la moldura.  - No se tiene identificada la moldura.  - No se cuenta con un almacén por lo que el proceso de fundición empieza hasta que se tiene todo el material.  - Las piezas con imperfecciones no se separan.  - La falta de planeación y control dentro del área entre otros factores generan que el pedido se entregue fuera de tiempo e incompleto al cliente.  - Se adquirió un nuevo horno con el que se tiene la capacidad de fundir aproximadamente 21 toneladas a la semana y sin embargo siguen obteniendo alrededor de 6 toneladas por semana.</td>
<td>Variables independientes:  - Materiales  - Tecnología  - Método de trabajo  Variable dependiente:  - Productividad</td>
<td>Para llevar a cabo la recolección de la evidencia se utilizaron los siguientes recursos:  1. Entrevistas semiestructuradas  2. Observación directa  3. Análisis documental  4. Análisis del archivo histórico</td>
<td>Los resultados obtenidos después de aplicar el MRP, muestran que la productividad del área de fundición se puede incrementar al planear adecuadamente los requerimientos de material. Además de que a través del uso de la tecnología (software) se tendría mayor control de la producción en cada una de sus etapas.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
3.7. Aplicación del proceso técnico (MRP)

Para realizar la investigación y llevar a cabo el trabajo de campo, fue necesario cubrir los siguientes puntos que se muestran en la figura 26.

1. Ubicar el lugar en dónde se realizaría el trabajo de campo.
   El área de fundición de la empresa Industrias IMISA, S.A. de C.V.

2. Solicitar autorización a los directivos (dueños) de la empresa.
   A través de una reunión agendada, se les pidió permiso para realizar la investigación en la empresa; a lo que ellos indicaron no tener ningún problema y sugirieron que se realizara en el área de fundición ya que ellos notaban ciertos problemas en dicha área.

3. Recorrido y presentación con los encargados del área de fundición.
   Se realizó un recorrido general de la empresa para conocer las distintas áreas y un poco sobre el proceso para elaborar los moldes. Además de conocer a las personas con las que se iba a tener trato para obtener la información necesaria para la investigación.

4. Diagnóstico
   El diagnóstico comenzó con el análisis del proceso de fundición, el cual se detalla en el capítulo 1 y más adelante se muestra el diagrama de flujo de dicho proceso. Después se analizaron algunos documentos de la empresa, como lo son: los programas de fundición y reportes de pedidos.

5. Trabajo de campo.
   Considerando la información proporcionada por la empresa, se desarrolló de manera manual la planeación de los requerimientos de material (MRP). Haciendo referencia a la teoría sobre el MRP, a continuación se detallan cada uno de los pasos para obtener la planeación.

Fuente: Elaboración propia.
En lo relacionado al estudio que se realizó del proceso de fundición que sigue la empresa, en el capítulo 1 se describe detalladamente dicho proceso, el cual se puede resumir utilizando la figura 27 en donde se muestra el proceso que se sigue en el área de fundición de la empresa. Se describen cada una de las acciones que se llevan a cabo indicando si el evento se trata de una operación, transportación, inspección, demora o almacenamiento.

Posteriormente y con referencia a lo analizado en el capítulo 2, concerniente al método MRP; se recaba información de las necesidades del mes de septiembre en relación a los pedidos y los materiales que se utilizan para la fundición.

El desarrollo del proceso se realizó tomando en cuenta cada una de las partes que conforman el MRP, las cuales se detallan a continuación:

**PROGRAMA MAESTRO DE PRODUCCIÓN**

Es importante considerar que el programa maestro de producción es un postulado de lo que debe producirse y no un pronóstico de la demanda; que para la empresa bajo estudio se expresa en cantidad de moldes por cliente.
Figura 27. Diagrama del proceso de fundición

Fuente: Industrias IMISA, S.A. de C.V.
Capítulo 3: Trabajo empírico de la investigación

Una vez que se realiza la planeación a nivel organizacional de la cantidad y el tipo de moldes, contemplando dicha información, el área de fundición realiza su planeación con base al tipo de material y al peso de cada una de las piezas que conforman el molde.

Para realizar el programa maestro de producción del área se deben tener en cuenta las siguientes consideraciones:

- Cada olla del horno de inducción se obtienen 700 kg. de hierro, del cual se tiene una merma aproximada del 2% al momento del vaciado.
- Se debe considerar además del peso de la moldura, 8 kg de los cargadores por cada caja que se utilice para vaciar.
- Durante un día se puede llegar a fundir como máximo 6 ollas.

La planeación agregada indica que en el área de fundición deben realizarse 2,269 piezas, lo equivalente a 42,117.20 Kg de hierro fundido durante el mes de septiembre como se puede observar en la tabla 9.

En lo que corresponde al programa maestro de producción la cantidad mensual se programa por semanas considerando al igual que en la planeación agregada la cantidad de piezas y su equivalente en kilogramos. En la parte de abajo se desglosa por tipo de material que se utiliza, el cual puede ser material normal, material especial o material níquel-cromo.

Durante la semana 36 la planeación es escasa debido a que únicamente contempla dos días de esa semana que corresponde a septiembre. En la semana 37 se tiene previsto realizar la mayor cantidad de piezas llegando a un total de 10,073.60 kg. Mientras que para las semanas 39 y 40 se elaboraran poco más de 200 piezas pero con mayor peso; siendo la semana 40 la de mayor cantidad de kilogramos.
Tabla 9. Planeación del área de fundición de la empresa Industrias IMISA

<table>
<thead>
<tr>
<th>SEMANAS</th>
<th>CANT.</th>
<th>KG.</th>
<th>CANT.</th>
<th>KG.</th>
<th>CANT.</th>
<th>KG.</th>
<th>CANT.</th>
<th>KG.</th>
<th>CANT.</th>
<th>KG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>123.00</td>
<td>821.70</td>
<td>1,096.00</td>
<td>10,073.60</td>
<td>579.00</td>
<td>10,073.60</td>
<td>240.00</td>
<td>9,699.30</td>
<td>231.00</td>
<td>11,451.00</td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

**Programa Maestro de Producción**
- Material Normal: 123.00, 821.70, 1,096.00, 10,073.60, 579.00, 10,073.60, 240.00, 9,699.30, 231.00, 11,451.00
- Material Especial: 139.00, 6,182.00, 106.00, 4,308.00, 47.00, 2,301.00
- Material Niquel - Cromo: 33.00, 1,833.00

Fuente: Elaboración propia con datos de la empresa.

El detalle de la planeación por semana del área de fundición se muestra a continuación en las tablas 10, 11, 12, 13 y 14 respectivamente, en ellas se puede apreciar la parte de la moldura, el código y moldura al que pertenecen, la cantidad de juegos solicitados, el tipo y número de cajas requeridas de acuerdo a la moldura, el tipo de material (en caso de estar en blanco, indica que es material normal; M.E. quiere decir material especial y NI-CR hace referencia a material de níquel-cromo.), el peso por juego, así como el peso del total de juegos y el total considerando el cargador de la caja. También en la planeación se indica el tipo y total de cajas a utilizar, y el total tanto de piezas por vaciar como de kilogramos.

Tabla 10. Planeación detallada de la semana 36

<table>
<thead>
<tr>
<th>SEM</th>
<th>CÓDIGO Y MOLDURA</th>
<th>Tipo (media caña o individual)</th>
<th>Medida en pulgadas (diámetro y largo)</th>
<th>Parte (m, f, b, o, e, c) y cantidad</th>
<th>Cant. de juegos</th>
<th>Tipo de Material</th>
<th>Cajas largas</th>
<th>Cajas cuadradas</th>
<th>Cliente</th>
<th>Peso por juego en Kg.</th>
<th>TOTAL CON CARGADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>WALL FLOWERS 5809014</td>
<td>INDIVIDUAL</td>
<td>2.3/4 X 3.1/4 EL FALQUITO</td>
<td>OBTURADOR</td>
<td>66</td>
<td>11</td>
<td>V.COSMOS</td>
<td>1.6</td>
<td>105.6</td>
<td>193.6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>FREE OZ 50ML 5315541</td>
<td>1/2 CANA TABLEADA NORMAL</td>
<td>6.1/4 X 20</td>
<td>MOLDES</td>
<td>9</td>
<td>18</td>
<td>PEDRO FLORES</td>
<td>62.5</td>
<td>562.5</td>
<td>706.5</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>FREE OZ 50ML 5315541</td>
<td>INDIVIDUAL</td>
<td>2.3/4 X 3.1/4</td>
<td>OBTURADOR</td>
<td>36</td>
<td>6</td>
<td>PEDRO FLORES</td>
<td>1.6</td>
<td>57.6</td>
<td>105.6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>RANCHO ESCONDIDO 750ML 9265300</td>
<td>INDIVIDUAL</td>
<td>4.3/4 X 1 PLATO 7.3/8 X 1.1/4</td>
<td>FONDOS</td>
<td>12</td>
<td>6</td>
<td>VIGUSA</td>
<td>8</td>
<td>96</td>
<td>144</td>
<td></td>
</tr>
</tbody>
</table>

**TOTALES**
- 123
- 18
- 23
- 73.70
- 821.70
- 1,149.70

Fuente: Elaboración propia con información de la empresa Industrias IMISA, SA de CV.
### Tabla 11. Planeación detallada de la semana 37

<table>
<thead>
<tr>
<th>SEM</th>
<th>CÓDIGO Y MOLDURA</th>
<th>Tipo (medida caña o individual)</th>
<th>Medida en polgadas (diameter y largo)</th>
<th>Parte (m, f, o, e, e) y cantidad</th>
<th>Cant. De juegos</th>
<th>Tipo de Material</th>
<th>Cajas largas</th>
<th>Cajas cuadradas</th>
<th>Cliente</th>
<th>Peso por juego en Kg.</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>WALL FLOWERS 5809014</td>
<td>INDIVIDUAL</td>
<td>PLATO DE VIMEX</td>
<td>FONDOS</td>
<td>66</td>
<td>11</td>
<td>V. COSMOS</td>
<td>2</td>
<td>132</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FREE OZ 50ML 5315541</td>
<td>1/2 CAÑA REDONDA</td>
<td>5 X 20</td>
<td>BOMBILLOS</td>
<td>9</td>
<td>18</td>
<td>PEDRO FLORES</td>
<td>59</td>
<td>531</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FREE OZ 50ML 5315541</td>
<td>INDIVIDUAL</td>
<td>3.12 X 1 PLATO DE VIMEX</td>
<td>FONDOS</td>
<td>36</td>
<td>6</td>
<td>PEDRO FLORES</td>
<td>3</td>
<td>108</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>BOT. TEQUILA ESPOLION 750ML</td>
<td>MATRIZ</td>
<td>5 X 2.1/2</td>
<td>EMBUDOS</td>
<td>26</td>
<td></td>
<td>PEDRO FLORES</td>
<td>7.7</td>
<td>200.2</td>
<td>200.2</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SODERA MULTIFRAGOS CTOS 500ML 7156217</td>
<td>INDIVIDUAL</td>
<td>4 X 2.1/2</td>
<td>OBTRUDADOR</td>
<td>30</td>
<td>5</td>
<td>V. VIRREYES</td>
<td>3</td>
<td>90</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>BOT. TEQUILA ELIZARDO 750ML A-1340</td>
<td>INDIVIDUAL</td>
<td>5.12 X 12.1/2</td>
<td>BOMBILLOS</td>
<td>25</td>
<td>50</td>
<td>PEDRO FLORES</td>
<td>45</td>
<td>1125</td>
<td>1525</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>RST 750ML 9169165</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.1/2 X 12.1/4</td>
<td>BOMBILLOS</td>
<td>10</td>
<td>20</td>
<td>V. VIRREYES</td>
<td>58</td>
<td>580</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>RST 750ML 9169165</td>
<td>INDIVIDUAL</td>
<td>4.1/2 X 2.1/2</td>
<td>OBTRUDADOR</td>
<td>12</td>
<td>3</td>
<td>PEDRO FLORES</td>
<td>3</td>
<td>36</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>VELADORA 3958006</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.1/2 X 12.1/2</td>
<td>MOLDES</td>
<td>20</td>
<td></td>
<td>VITOLSA</td>
<td>49</td>
<td>980</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>VELADORA 3958006</td>
<td>INDIVIDUAL</td>
<td>6.1/2 X 3.2/4</td>
<td>BOMBILLOS</td>
<td>20</td>
<td>20</td>
<td>VITOLSA</td>
<td>45.75</td>
<td>915</td>
<td>1235</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1/2 OZ 50ML 5315541</td>
<td>INDIVIDUAL</td>
<td>3.3/8 X 1 PLATO 6.3/8 X 1.1/4</td>
<td>FONDOS</td>
<td>24</td>
<td>6</td>
<td>VITOLSA</td>
<td>7</td>
<td>168</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>M-1022 D.C</td>
<td>INDIVIDUAL</td>
<td>3.3/8 X 1.1/2</td>
<td>OBTRUDADOR</td>
<td>36</td>
<td>6</td>
<td>MILLVILLE</td>
<td>3</td>
<td>180</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>M-1022 D.C</td>
<td>INDIVIDUAL</td>
<td>3.3/8 X 1.1/2</td>
<td>FONDOS</td>
<td>36</td>
<td>6</td>
<td>MILLVILLE</td>
<td>3</td>
<td>180</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>NAIL. BBE ENAMEL 3509297</td>
<td>INDIVIDUAL</td>
<td>1.3/4 X 3.1/4</td>
<td>OBTRUDADOR</td>
<td>140</td>
<td></td>
<td>V. COSMOS</td>
<td>1.8</td>
<td>252</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>RST 750ML 9169138</td>
<td>INDIVIDUAL</td>
<td>MORD. 12.1/2 X 3.1/4</td>
<td>MOLDE CON TEMPLADERA</td>
<td>10</td>
<td></td>
<td>V. VIRREYES</td>
<td>80</td>
<td>800</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>RST 750ML 9169138</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.1/2 X 11.1/2</td>
<td>BOMBILLOS</td>
<td>10</td>
<td>20</td>
<td>V. VIRREYES</td>
<td>57</td>
<td>570</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>RST 750ML 9169138</td>
<td>INDIVIDUAL</td>
<td>5.1/2 X 1 PLATO 8 X 1</td>
<td>FONDOS</td>
<td>12</td>
<td>6</td>
<td>V. VIRREYES</td>
<td>11</td>
<td>132</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>2306 D.C</td>
<td>INDIVIDUAL</td>
<td>4.3/4 X 2.1/2</td>
<td>OBTRUDADOR</td>
<td>18</td>
<td>3</td>
<td>V. VIRREYES</td>
<td>4</td>
<td>72</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S-647 D.G</td>
<td>INDIVIDUAL</td>
<td>3.1/8 X 1 PLATO 5.1/2 X 1.1/8</td>
<td>FONDOS</td>
<td>36</td>
<td>6</td>
<td>KIMBLE</td>
<td>3</td>
<td>108</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S-647 D.G</td>
<td>INDIVIDUAL</td>
<td>2.1/2 X 1.1/4</td>
<td>KIMBLE</td>
<td>6</td>
<td></td>
<td>4.7</td>
<td>169.2</td>
<td>217.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S-647 D.G</td>
<td>INDIVIDUAL</td>
<td>2.3/4 X 3.1/4</td>
<td>OBTRUDADOR</td>
<td>48</td>
<td>6</td>
<td>KIMBLE</td>
<td>1.8</td>
<td>86.4</td>
<td>134.4</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S-647 D.G</td>
<td>MATRIZ</td>
<td>3.5/8 X 1.1/2</td>
<td>EMBUDOS</td>
<td>48</td>
<td></td>
<td>KIMBLE</td>
<td>3.4</td>
<td>163.2</td>
<td>163.2</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S-254 D.G</td>
<td>INDIVIDUAL</td>
<td>1.3/4 X 3.1/4</td>
<td>EMBUDOS</td>
<td>48</td>
<td>8</td>
<td>KIMBLE</td>
<td>1.8</td>
<td>86.4</td>
<td>150.4</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S-254 D.G</td>
<td>INDIVIDUAL</td>
<td>3.5/8 X 2.1/2</td>
<td>EMBUDOS</td>
<td>48</td>
<td></td>
<td>KIMBLE</td>
<td>3.4</td>
<td>163.2</td>
<td>163.2</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FIRST DATE 60ML 5315548</td>
<td>INDIVIDUAL</td>
<td>3.1/8 X 1 PLATO 4.3/4 X 3.1/4</td>
<td>FONDOS</td>
<td>36</td>
<td>6</td>
<td>PEDRO FLORES</td>
<td>2.5</td>
<td>90</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FIRST DATE 60ML 5315548</td>
<td>INDIVIDUAL</td>
<td>3.1/2 X 3</td>
<td>OBTRUDADOR</td>
<td>36</td>
<td></td>
<td>PEDRO FLORES</td>
<td>2.5</td>
<td>90</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>FIRST DATE 60ML 5315548</td>
<td>MATRIZ</td>
<td>4 X 2.1/2</td>
<td>EMBUDOS</td>
<td>30</td>
<td></td>
<td>PEDRO FLORES</td>
<td>4.2</td>
<td>126</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>GROOP BOTTLE 600ML A-1335</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.1/2 X 13.5/8</td>
<td>MOLDE CON TEMPLADERA</td>
<td>13</td>
<td>26</td>
<td>PEDRO FLORES</td>
<td>58</td>
<td>754</td>
<td>962</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>GROOP BOTTLE 600ML A-1335</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.1/2 X 12.1/2</td>
<td>BOMBILLOS</td>
<td>13</td>
<td>26</td>
<td>PEDRO FLORES</td>
<td>58</td>
<td>754</td>
<td>962</td>
<td></td>
</tr>
</tbody>
</table>

**TOTALES**: 1,096 154 194 594.05 10,073.60 12,857.60

Fuente: Elaboración propia con información de la empresa Industrias IMISA, SA de CV.
<table>
<thead>
<tr>
<th>SEM</th>
<th>CÓDIGO Y MOLDURA</th>
<th>Tipo (medida caña o individual)</th>
<th>Medida en pulgadas (diámetro y largo)</th>
<th>Parte (m, f, o, v, e) y cantidad</th>
<th>Cant. De juegos</th>
<th>Tipo de Material</th>
<th>Cajas largas</th>
<th>Cajas cuadradas</th>
<th>Cliente</th>
<th>Peso por juego en Kg.</th>
<th>Totales</th>
<th>TOTAL CON CARGADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>8149 D.C.</td>
<td>1/2 CAÑA TABLEADA NORMAL</td>
<td>6.1/4 X 20</td>
<td>BOMBILLOS</td>
<td>9</td>
<td>M.E.</td>
<td>18</td>
<td>KIMBLE</td>
<td></td>
<td>62.5</td>
<td>562.5</td>
<td>708.5</td>
</tr>
<tr>
<td>SB</td>
<td>8149 S.C.</td>
<td>INDIVIDUAL</td>
<td>3.1/4 X 1.1/2 PLATO</td>
<td>FONDOS</td>
<td>36</td>
<td>8</td>
<td>KIMBLE</td>
<td>216</td>
<td>6</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>8149 D.C.</td>
<td>INDIVIDUAL</td>
<td>3.3/8 X 2.1/2</td>
<td>OBTRUCHARDOR</td>
<td>54</td>
<td>9</td>
<td>KIMBLE</td>
<td>162</td>
<td>7</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>9419 S.C.</td>
<td>INDIVIDUAL</td>
<td>4.1/4 X 1.1/2 PLATO</td>
<td>FONDOS</td>
<td>16</td>
<td>8</td>
<td>KIMBLE</td>
<td>144</td>
<td>9</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>9419 S.C.</td>
<td>INDIVIDUAL</td>
<td>4 X 2.1/2</td>
<td>OBTRUCHARDOR</td>
<td>18</td>
<td>5</td>
<td>KIMBLE</td>
<td>54</td>
<td>3</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>BOT. TEQUILA ELZARCO 750ML</td>
<td>A-1340</td>
<td>INDIVIDUAL</td>
<td>4 X 1 PLATO 6.3/8 X 1.1/4</td>
<td>28</td>
<td>7</td>
<td>PEDRO FLORES</td>
<td>196</td>
<td></td>
<td>252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>BOT. TEQUILA ELZARCO 750ML</td>
<td>A-1340</td>
<td>INDIVIDUAL</td>
<td>3.2/4 X 2.7/8</td>
<td>30</td>
<td>5</td>
<td>PEDRO FLORES</td>
<td>90</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>BOT. TEQUILA ESPolon 750ML</td>
<td>INDIVIDUAL</td>
<td>4.3/8 X 1.1/2 PLATO</td>
<td>FONDOS</td>
<td>27</td>
<td>9</td>
<td>PEDRO FLORES</td>
<td>297</td>
<td></td>
<td>369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>BOT. TEQUILA ESPolon 750ML</td>
<td>INDIVIDUAL</td>
<td>4.1/4 X 2.3/4</td>
<td>OBTRUCHARDOR</td>
<td>30</td>
<td>5</td>
<td>PEDRO FLORES</td>
<td>90</td>
<td></td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>CABO WABO 750ML A-1326</td>
<td>INDIVIDUAL</td>
<td>5.1/2 X 1.1/3 PLATO 7 X 1.1/4</td>
<td>FONDOS</td>
<td>28</td>
<td>14</td>
<td>PEDRO FLORES</td>
<td>308</td>
<td></td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>CABO WABO 750ML A-1326</td>
<td>INDIVIDUAL</td>
<td>4.3/4 X 3</td>
<td>OBTRUCHARDOR</td>
<td>30</td>
<td>5</td>
<td>PEDRO FLORES</td>
<td>120</td>
<td></td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>CABO WABO 750ML A-1326</td>
<td>INDIVIDUAL</td>
<td>5 X 2.1/2</td>
<td>EMBUDOS</td>
<td>28</td>
<td>5</td>
<td>PEDRO FLORES</td>
<td>215.6</td>
<td></td>
<td>215.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>GROOP BOTTLE 1000ML A-1335</td>
<td>INDIVIDUAL</td>
<td>4.3/8 X 1 PLATO 6.3/8 X 1.1/4</td>
<td>FONDOS</td>
<td>16</td>
<td>4</td>
<td>PEDRO FLORES</td>
<td>112</td>
<td></td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>RST 750ML 9169165</td>
<td>INDIVIDUAL</td>
<td>4.1/2 X 1 PLATO 7.3/8 X 1.1/4</td>
<td>FONDOS</td>
<td>10</td>
<td>5</td>
<td>VIREYES</td>
<td>110</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>SKY 1750 9189131</td>
<td>INDIVIDUAL</td>
<td>5.1/2 X 1 PLATO 8.1/8 X 1.1/8</td>
<td>FONDOS</td>
<td>18</td>
<td>9</td>
<td>PEDRO FLORES</td>
<td>119</td>
<td></td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>SKY 1750 9189131</td>
<td>INDIVIDUAL</td>
<td>4.3/4 X 2.1/2</td>
<td>OBTRUCHARDOR</td>
<td>18</td>
<td>9</td>
<td>PEDRO FLORES</td>
<td>81</td>
<td></td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>SODERA MULTIPRODUC TOS 500ML 7156217</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.3/8 X 1.1/4</td>
<td>BOMBILLOS</td>
<td>25</td>
<td>25</td>
<td>52</td>
<td>1300</td>
<td></td>
<td>1700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>SODERA MULTIPRODUC TOS 500ML 7156217</td>
<td>INDIVIDUAL</td>
<td>4 X 1 PLATO 6.3/8 X 1.1/4</td>
<td>FONDOS</td>
<td>28</td>
<td>7</td>
<td>VIREYES</td>
<td>196</td>
<td></td>
<td>252</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TOTALES**  
| 579 | 170 | 178 | 586.20 | 10,071.60 | 12,855.60 |

Fuente: Elaboración propia con información de la empresa Industrias IMISA, SA de CV.
### Tabla 13. Planeación detallada de la semana 39

<table>
<thead>
<tr>
<th>SEM</th>
<th>CÓDIGO Y MOLDURA</th>
<th>Tipo (media caña o individual)</th>
<th>Medida en pulgadas (diámetro y largo)</th>
<th>Parte (m, f, b, s, c, o, y cantidad)</th>
<th>Cant. De juegos</th>
<th>Tipo de Material</th>
<th>Cajas largas</th>
<th>Cajas cuadradas</th>
<th>Cliente</th>
<th>Peso por juego en Kg.</th>
<th>Totales</th>
<th>TOTAL CON CARGADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>FIRST DATE 60ML 531548</td>
<td>1/2 CANA TABLEADA NORMAL</td>
<td>6.1/4 X 20</td>
<td>MOLDES Y BOMBILLOS</td>
<td>18</td>
<td>M.E.</td>
<td>36</td>
<td>PEDRO FLORES</td>
<td>62</td>
<td>1116</td>
<td>1404</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>BOT. TEQUILA ESPOLON 750ML</td>
<td>INDIVIDUAL</td>
<td>MORD. 7.1/8 X 9.3/4</td>
<td>MOLDE CON TEMPLADERA</td>
<td>25</td>
<td></td>
<td>50</td>
<td>PEDRO FLORES</td>
<td>56</td>
<td>1400</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>BOT. TEQUILA ESPOLON 750ML</td>
<td>INDIVIDUAL</td>
<td>MORD. 5.5/8 X 8.1/2</td>
<td>BOMBILLOS</td>
<td>25</td>
<td></td>
<td>25</td>
<td>PEDRO FLORES</td>
<td>38</td>
<td>950</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>CABO WABO 750ML A-1326</td>
<td>INDIVIDUAL</td>
<td>MORD. 7.1/8 X 9</td>
<td>MOLDE CON TEMPLADERA</td>
<td>25</td>
<td></td>
<td>50</td>
<td>PEDRO FLORES</td>
<td>40</td>
<td>1000</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>FREE GQ 50ML 531541</td>
<td>MATRZ</td>
<td>3.5/8 X 2.1/2</td>
<td>EMBUDES</td>
<td>32</td>
<td></td>
<td></td>
<td>PEDRO FLORES</td>
<td>3.4</td>
<td>108.8</td>
<td>108.8</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>RST 750ML 9169165</td>
<td>INDIVIDUAL</td>
<td>MORD. 7.3/8 X 13</td>
<td>MOLDE CON TEMPLADERA</td>
<td>10</td>
<td></td>
<td>20</td>
<td>VIREYES</td>
<td>70</td>
<td>700</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>SKY 1750 9189131</td>
<td>INDIVIDUAL</td>
<td>MORD. 7.3/8 X 12</td>
<td>BOMBILLO CON TEMPLADERA</td>
<td>17</td>
<td></td>
<td>34</td>
<td>PEDRO FLORES</td>
<td>72.5</td>
<td>1232.5</td>
<td>1504.5</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa Industrias IMISA, SA de CV.

### Tabla 14. Planeación detallada de la semana 40

<table>
<thead>
<tr>
<th>SEM</th>
<th>CÓDIGO Y MOLDURA</th>
<th>Tipo (media caña o individual)</th>
<th>Medida en pulgadas (diámetro y largo)</th>
<th>Parte (m, f, b, s, c, o, y cantidad)</th>
<th>Cant. De juegos</th>
<th>Tipo de Material</th>
<th>Cajas largas</th>
<th>Cajas cuadradas</th>
<th>Cliente</th>
<th>Peso por juego en Kg.</th>
<th>Totales</th>
<th>TOTAL CON CARGADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>TARRO DAWN 500GRS 8229003</td>
<td>1/2 CANA TABLEADA NORMAL</td>
<td>6.1/4 X 16.1/2</td>
<td>BOMBILLOS</td>
<td>21</td>
<td>M.E.</td>
<td>21</td>
<td>21</td>
<td>VITOLSA</td>
<td>52</td>
<td>1092</td>
<td>1428</td>
</tr>
<tr>
<td>40</td>
<td>WALL FLOWERS 5850004</td>
<td>1/2 CANA REDONDA</td>
<td>4.1/2 X 20</td>
<td>MOLDES Y BOMBILLOS</td>
<td>26</td>
<td>M.E.</td>
<td>52</td>
<td>V COSMOS</td>
<td>46.5</td>
<td>1209</td>
<td>1625</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>8149 D.C. 500GRS</td>
<td>1/2 CANA TABLEADA JALADA</td>
<td>6.1/4 X 20</td>
<td>MOLDES</td>
<td>12</td>
<td>NI-CR</td>
<td>24</td>
<td>KIMBLE</td>
<td>67.5</td>
<td>810</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>9419 S.C</td>
<td>INDIVIDUAL</td>
<td>MORD. 7.3/8 X 8.1/2</td>
<td>MOLDES Y TEMPLADERA</td>
<td>15</td>
<td>NI-CR</td>
<td>30</td>
<td>KIMBLE</td>
<td>48</td>
<td>720</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>AXIALES A- 11294 CN</td>
<td>INDIVIDUAL</td>
<td>6.3/4 X 10.7/8</td>
<td>MOLDES</td>
<td>6</td>
<td>NI-CR</td>
<td>12</td>
<td>SIVESA</td>
<td>50.5</td>
<td>303</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>AXIALES A-165 RET. V EXP. BOHEMIA 1202</td>
<td>INDIVIDUAL</td>
<td>6.3/4 X 8</td>
<td>BOMBILLOS</td>
<td>48</td>
<td></td>
<td>48</td>
<td>SIVESA</td>
<td>34</td>
<td>1632</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>BOT. TEQUILA ELZARCO 750ML A-1340</td>
<td>INDIVIDUAL</td>
<td>MORD. 6.12 X 13.1/2</td>
<td>MOLDE CON TEMPLADERA</td>
<td>25</td>
<td></td>
<td>50</td>
<td>PEDRO FLORES</td>
<td>68</td>
<td>1700</td>
<td>2100</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>CABO WABO 750ML A-1326</td>
<td>INDIVIDUAL</td>
<td>MORD. 5.7/8 X 8</td>
<td>BOMBILLOS CON TEMPLADERA</td>
<td>25</td>
<td></td>
<td>50</td>
<td>PEDRO FLORES</td>
<td>38</td>
<td>950</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>S-254 D.G</td>
<td>INDIVIDUAL</td>
<td>2.1/2 X 1.1/4 PLATO 3.3/4 X 1.5/8</td>
<td>FONDOS</td>
<td>36</td>
<td></td>
<td>6</td>
<td>KIMBLE</td>
<td>47</td>
<td>1692</td>
<td>1740</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SKY 1750 9189131</td>
<td>INDIVIDUAL</td>
<td>MORD. 8.1/4 X 13.1/8</td>
<td>MOLDE CON TEMPLADERA</td>
<td>17</td>
<td></td>
<td>34</td>
<td>PEDRO FLORES</td>
<td>79</td>
<td>1343</td>
<td>1615</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa Industrias IMISA, SA de CV.
LISTA DE MATERIALES

Dentro del área de fundición se utilizan los materiales que se muestran en la tabla 15, a los cuales les fue asignado un código para identificarlos. Sin embargo, como se mencionó en el capítulo 1, no todos los materiales intervienen en la elaboración de los diferentes tipos de material fundido que se utiliza para los moldes.

**Tabla 15. Lista de materiales utilizados en los procesos del área de fundición de la empresa Industrias IMISA, S.A. de C.V.**

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Unidades</th>
<th>Proveedor</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Litros</td>
<td>Comercial Darmy</td>
<td>F1-ALC</td>
</tr>
<tr>
<td>Cromo</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-CRO</td>
</tr>
<tr>
<td>Manganeso</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-MAN</td>
</tr>
<tr>
<td>Níquel</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-NIQ</td>
</tr>
<tr>
<td>Silicio</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-SIL</td>
</tr>
<tr>
<td>Titanio</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-TIT</td>
</tr>
<tr>
<td>Chatarra</td>
<td>Kilogramos</td>
<td>Mario Godínez</td>
<td>F2-CHA</td>
</tr>
<tr>
<td>Arena Silica</td>
<td>Toneladas</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-ARE</td>
</tr>
<tr>
<td>Barro</td>
<td>Kilogramos</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-BAR</td>
</tr>
<tr>
<td>Bentonita</td>
<td>Toneladas</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-BEN</td>
</tr>
<tr>
<td>Escoriador</td>
<td>Costales</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-ESC</td>
</tr>
<tr>
<td>Grafito</td>
<td>Kilogramos</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F2-GRA</td>
</tr>
<tr>
<td>Pintura</td>
<td>Cubeta</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-PIN</td>
</tr>
<tr>
<td>Sarset</td>
<td>Cubeta</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-SAR</td>
</tr>
<tr>
<td>Discos de esmeril</td>
<td>Piezas</td>
<td>Xalostoc</td>
<td>F3-DIS</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.

Para la investigación se ha tomado como base el tipo de material de los moldes, por lo que de la lista anterior únicamente se considerarán dichos materiales para la elaboración de las estructuras en donde se muestren los materiales requeridos para una olla del horno de inducción de cada tipo de material. En las figuras 28, 29 y 30 se pueden identificar lo que se necesita
Capítulo 3: Trabajo empírico de la investigación

para obtener una olla de material normal, material especial y material níquel-cromo respectivamente.

**Figura 28.** Materiales requeridos para una olla del horno de inducción de tipo “Material Normal”.
Fuente: Elaboración propia con información de la empresa.

**Figura 29.** Materiales requeridos para una olla del horno de inducción de tipo “Material Especial”.
Fuente: Elaboración propia con información de la empresa.
Los tres tipos de material coinciden en el uso de silicio, manganeso, grafito y chatarra; que son los que se utilizan para conformar el material normal. La diferencia radica en la cantidad de material que lleva cada uno, además de que tanto el material especial como el material níquel-cromo requieren de otro tipo de materiales.

De acuerdo a la planeación semanal, para la semana 36 que como se mencionó anteriormente únicamente se contemplaron 2 días, de acuerdo a los kilogramos considerando los cargadores y el 2% de desperdicio; se necesita material para fundir dos ollas de material normal como se puede observar en la figura 31.
Por lo que en la semana 36 se requiere tener 6 kg de silicio, 2 kg de manganeso, 4 kg de de grafito y 1,300 kg de chatarra. En la tabla 16 también se muestra el total de cada uno de los materiales.

Tabla 16. Requerimientos de material de la semana 36

<table>
<thead>
<tr>
<th>SEMANA: 36</th>
<th>Material Normal</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nombre</strong></td>
<td><strong>Cant.</strong></td>
<td><strong>Req.</strong></td>
</tr>
<tr>
<td>Cromo</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Manganoso</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Níquel</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Silicio</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Titanio</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Chatarra</td>
<td>650</td>
<td>1,300</td>
</tr>
<tr>
<td>Grafito</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td><strong>No. de ollas</strong></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.
En la semana 37, de acuerdo a lo planeado se deben fundir 19 ollas de material normal. La figura 32 muestra el total de cada uno de los materiales, es decir 57 kg de silicio, 19 kg de manganeso, 38 kg de grafito y 12,350 kg de chatarra.

![Diagrama de requerimiento de materiales](image)

**Figura 32. Requerimiento de materiales para la semana 37**
Fuente: Elaboración propia con datos de la empresa

En la tabla 17 del mismo modo se muestra el total de cada uno de los materiales requeridos para la semana 37.
Tabla 17. Requerimientos de material de la semana 37

<table>
<thead>
<tr>
<th>SEMANA: 37</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cant.</th>
<th>Req.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cromo</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Manganeso</td>
<td>1</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Níquel</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Silicio</td>
<td>3</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Titanio</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chatarra</td>
<td>650</td>
<td>12,350</td>
<td>12,350</td>
</tr>
<tr>
<td>Grafito</td>
<td>2</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>No. de ollas</td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.

Para la semana 38 se tiene planeado fundir material normal y material especial, conforme al total de kilogramos programados para dicha semana de cada tipo de material se debe tener material para 8 ollas de material normal y 12 ollas de material especial. El total de requerimiento de cada componente dependiendo el tipo de material se aprecia en las figuras 33 y 34 respectivamente.
En la tabla 18 se muestra el total de material para la semana 38, considerando las 12 ollas de material especial y 8 ollas de material normal,
da un total de 12 kg de cromo, 32 kg de Manganeso, 60 kg de silicio, 24 kg de titanio, 52 kg de grafito y 13,000 kg de chatarra.

Tabla 18. Requerimientos de material de la semana 38

<table>
<thead>
<tr>
<th>SEMANA: 38</th>
<th>Material Especial</th>
<th>Material Normal</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cromo</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Manganeso</td>
<td>2</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Niquel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicio</td>
<td>3</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>Titanio</td>
<td>2</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Chatarra</td>
<td>650</td>
<td>7,800</td>
<td>650</td>
</tr>
<tr>
<td>Grafito</td>
<td>3</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>No. de ollas</td>
<td>12</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.

En la semana 39 al igual que en la anterior se utiliza material normal y material especial. Se planea fundir 10 ollas de material normal y 9 de material especial, los requerimientos de cada uno se muestran en las figuras 35 y 36 respectivamente; así como en la tabla 19 en donde se puede mostrar el total de cada uno de los materiales.
Figura 35. Requerimiento de materiales para la semana 39 (Material Normal)
Fuente: Elaboración propia con datos de la empresa

Figura 36. Requerimiento de materiales para la semana 39 (Material Especial)
Fuente: Elaboración propia con datos de la empresa
Para esta semana se requieren 9 kg de cromo, 28 kg de manganeso, 57 kg de silicio, 18 kg de titanio, 12,350 kg de chatarra y 47 kg de grafito para los dos tipos de materiales.

Por último para la semana 40, se utilizaran los tres tipos de materiales, dando un total de 13 ollas de material normal, 5 ollas de material especial y 4 ollas de material níquel – cromo; como se muestra en las figuras 37, 38 y 39 respectivamente.

### Tabla 19. Requerimientos de material de la semana 39

**SEMANA: 39**

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Material Especial</th>
<th>Material Normal</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cromo</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>2</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Níquel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicio</td>
<td>3</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Titanio</td>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Chatarra</td>
<td>650</td>
<td>5,850</td>
<td>650</td>
</tr>
<tr>
<td>Grafito</td>
<td>3</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>No. de ollas</td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos de la empresa
Figura 37. Requerimiento de materiales para la semana 40 (Material Normal)
Fuente: Elaboración propia con datos de la empresa

Figura 38. Requerimiento de materiales para la semana 40 (Material Especial)
Fuente: Elaboración propia con datos de la empresa
Figura 39. Requerimiento de materiales para la semana 40 (Material Níquel-Cromo)
Fuente: Elaboración propia con datos de la empresa

Para poder fundir el total de ollas de cada tipo de material es necesario adquirir 13 kg de cromo, 31 kg de manganeso, 84 kg de níquel, 70 kg de silicio, 10 kg de titanio, 14,300 kg de chatarra y 53 kg de grafito; como se muestra en la tabla 20.

Tabla 20. Requerimientos de material de la semana 40

<table>
<thead>
<tr>
<th>SEMANA: 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Especial</td>
</tr>
<tr>
<td>Cromo</td>
</tr>
<tr>
<td>Manganeso</td>
</tr>
<tr>
<td>Níquel</td>
</tr>
<tr>
<td>Silicio</td>
</tr>
<tr>
<td>Titanio</td>
</tr>
<tr>
<td>Chatarra</td>
</tr>
<tr>
<td>Grafito</td>
</tr>
<tr>
<td>No. de ollas</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos de la empresa
GESTIÓN DE STOCK

Como se mencionó en el capítulo 1, el área de fundición de la empresa en estudio no cuenta con almacén; por lo que al momento de que se registra un pedido por parte de los clientes y después de analizar los dibujos de la moldura es cuando se comienza a solicitar material a los proveedores. Los tiempos de entrega de los materiales, por parte de los proveedores al área de fundición es de dos días, considerando que en el primer día se realizó el pedido y el depósito del mismo. Por lo que al día siguiente el proveedor estaría entregando el material. Sin embargo para realizar la planeación se está considerando un plazo de una semana desde el momento en que se detecta que es necesario comprar algún material.

En una plática con los directivos de la empresa, se llegó a la conclusión de que es conveniente tener un stock de todos los materiales para comenzar con el proceso mientras los proveedores entregan los nuevos requerimientos. Además dicho stock permitirá a la empresa que el desembolso por la compra de materiales no sea tan pesado.

Considerando la demanda de molduras y el espacio disponible en la empresa entre otros factores, se propone en la tabla 21 el stock óptimo para el área de fundición:

Para mantener el stock en mención, se tiene previsto reabastecer cada uno de los materiales cuando queden disponibles menos unidades de las que se establecieron para stock; para lo cual se tiene que planear la adquisición con una semana de anticipación.
Tabla 21. Stock óptimo para el área de fundición de la empresa Industrias IMISA, S.A. de C.V.

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>UNIDADES</th>
<th>PROVEEDOR</th>
<th>CÓDIGO</th>
<th>STOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Litros</td>
<td>Comercial Darmy</td>
<td>F1-ALC</td>
<td>1000 Lts.</td>
</tr>
<tr>
<td>Cromo</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-CRO</td>
<td>50 Kg.</td>
</tr>
<tr>
<td>Manganeso</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-MAN</td>
<td>50 Kg.</td>
</tr>
<tr>
<td>Niquel</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-NIQ</td>
<td>50 Kg.</td>
</tr>
<tr>
<td>Silicio</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-SIL</td>
<td>50 Kg.</td>
</tr>
<tr>
<td>Titanio</td>
<td>Kilogramos</td>
<td>Distribuidora de Aleaciones y Metales</td>
<td>F2-TIT</td>
<td>50 Kg.</td>
</tr>
<tr>
<td>Chatarra</td>
<td>Kilogramos</td>
<td>Mario Godínez</td>
<td>F2-CHA</td>
<td>6000 Kg.</td>
</tr>
<tr>
<td>Arena Silica</td>
<td>Toneladas</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-ARE</td>
<td>1 Ton.</td>
</tr>
<tr>
<td>Barro</td>
<td>Kilogramos</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-BAR</td>
<td>500 Kg.</td>
</tr>
<tr>
<td>Bentonita</td>
<td>Toneladas</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-BEN</td>
<td>1 Ton.</td>
</tr>
<tr>
<td>Escoriador</td>
<td>Costales</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-ESC</td>
<td>2 Costales</td>
</tr>
<tr>
<td>Grafito</td>
<td>Kilogramos</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F2-GRA</td>
<td>50 Kg.</td>
</tr>
<tr>
<td>Pintura</td>
<td>Cubeta</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-PIN</td>
<td>3Cub.</td>
</tr>
<tr>
<td>Sarset</td>
<td>Cubeta</td>
<td>Proveedora Industrial de Insumos Básicos</td>
<td>F1-SAR</td>
<td>5 Cub.</td>
</tr>
<tr>
<td>Discos de esmeril</td>
<td>Piezas</td>
<td>Xalostoc</td>
<td>F3-DIS</td>
<td>15 discos.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.

La cantidad óptima para ordenar a los proveedores, con la finalidad de reducir o equilibrar los costos asociados con satisfacer los requerimientos es para la mayoría de los materiales la cantidad prevista para tener en stock.

El stock y los tiempos de entrega previstos, se consideran a continuación para presentar el MRP del mes de septiembre en el área de estudio de la organización, al igual que la lista de materiales antes mencionada para cada tipo de material que se maneja y todo con base al programa maestro de planeación.
Una vez que se cuenta con toda esa información, fue posible realizar la planeación de los requerimientos de material.

**MRP**

Tomando en cuenta las cantidades previstas de stock y la demanda de molduras, en la tabla 22 se presenta la planeación de requerimientos materiales para dar solución a las necesidades de material requerido por olla de los distintos tipos de material que se realizan los moldes.

Para la chatarra, el primer artículo que aparece en la tabla con código F2-CHA, en la semana 36 se recibe un pedido de 6,000 kg además de tener disponible en stock otros 6,000 kg. Después de haber utilizado 1,300 kg quedaron en inventario para la semana 37 10,700 kg; sin embargo los requerimientos netos son para esa semana de 12,350 kg por lo que el material no es suficiente para cubrir las necesidades planeadas, por lo que desde la semana 36 se comienza con la planeación de 6,000 kg para cubrir los requerimientos netos y además conservar un poco en stock para la siguiente semana. Los pedidos de chatarra se realizan en múltiplos de 6,000 kg; razón por la que en las semanas 37 y 38 se planea adquirir el doble de kilogramos que en la semana 36. Y para cubrir los requerimientos...
Tabla 22. Planeación de los requerimientos de material (MRP) del área de fundición

<table>
<thead>
<tr>
<th>ARTÍCULO</th>
<th>SEMANAS</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2-CHA</td>
<td>Requerimientos brutos</td>
<td>1,300</td>
<td>12,350</td>
<td>13,000</td>
<td>12,350</td>
<td>14,300</td>
<td>12,350</td>
</tr>
<tr>
<td></td>
<td>Disponibles 6,000 Kg</td>
<td>6,000</td>
<td>10,700</td>
<td>4,350</td>
<td>3,350</td>
<td>3,000</td>
<td>6,700</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>1,650</td>
<td>8,650</td>
<td>9,000</td>
<td>11,300</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>6,000</td>
<td>6,000</td>
<td>12,000</td>
<td>12,000</td>
<td>18,000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>6,000</td>
<td>12,000</td>
<td>12,000</td>
<td>18,000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F2-CRO</td>
<td>Requerimientos brutos</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disponibles 50 Kg</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>38</td>
<td>79</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F2-GRA</td>
<td>Requerimientos brutos</td>
<td>4</td>
<td>38</td>
<td>52</td>
<td>47</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Disponibles 50 Kg</td>
<td>50</td>
<td>46</td>
<td>58</td>
<td>56</td>
<td>59</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F2-MAN</td>
<td>Requerimientos brutos</td>
<td>2</td>
<td>19</td>
<td>32</td>
<td>28</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Disponibles 50 Kg</td>
<td>50</td>
<td>48</td>
<td>79</td>
<td>47</td>
<td>69</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>F2-NIQ</td>
<td>Requerimientos brutos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Disponibles 50 Kg</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>F2-SIL</td>
<td>Requerimientos brutos</td>
<td>6</td>
<td>57</td>
<td>60</td>
<td>57</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Disponibles 50 Kg</td>
<td>50</td>
<td>44</td>
<td>37</td>
<td>27</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>13</td>
<td>23</td>
<td>30</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F2-TIT</td>
<td>Requerimientos brutos</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>18</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Disponibles 50 Kg</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>26</td>
<td>58</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Requerimientos netos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Recibo de pedidos planeados</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Expedición de pedidos planeados</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de la empresa.
de la semana 40 y conservar en stock mínimo 6,000 kg se planea desde la semana 39 adquirir 18,000 kg de chatarra.

De igual modo ocurre para los demás materiales, en el momento en que después de cubrir los requerimientos con el material disponible resulte una cantidad menor a lo establecido para stock, se comienza con la planeación de adquirir más material en cantidades que sean benéficas para la empresa.

3.7.1. Análisis de software para el sistema MRP

El programa de planeación de los requerimientos de materiales funciona con base en los archivos de inventarios, el programa maestro y el archivo de la lista de materiales. Opera de la siguiente manera: el programa maestro indica una lista de artículos finales necesarios por periodos de tiempo. En el archivo de lista de materiales se especifica una descripción de los materiales y partes necesarios para hacer cada artículo. El número de unidades de cada artículo y el material disponible en el momento y los que están sobre pedido se encuentran contenidos en los archivos de inventario.

El programa de MRP actúa sobre los archivos de inventarios a la vez de que se refiere continuamente al archivo de lista de materiales para calcular las cantidades necesarias de cada artículo. El número de unidades requeridas de cada artículo se corrige entonces según las cantidades disponibles y el requerimiento neto se contrarresta para permitir el plazo necesario para obtener el material.

Las limitaciones de capacidad dan factibilidad a los programas de producción, por lo que en caso de que el programa de computadora no
considera las limitaciones, el programador deberá realizar las modificaciones pertinentes y examinar los resultados para determinar la factibilidad de la producción.

Derivado del tipo de información que maneja el programa, se pueden emitir diversos informes; los cuales se clasifican como primarios y secundarios.

Los informes primarios son aquellos principales o normalmente utilizados en el control de los inventarios y de la producción, como:

- Los pedidos planeados que serán expedidos en el futuro.
- Los avisos de expedición de los pedidos para ejecutarlos los pedidos planeados.
- Los cambios de las fechas de vencimiento de los pedidos abiertos debido a la reprogramación.
- Las cancelaciones o suspensiones de los pedidos abiertos debido a la cancelación o suspensión de los pedidos en el programa de producción maestro.
- Los datos sobre el estatus del inventario.

Los informes secundarios son los informes adicionales u opcionales en virtud del sistema MRP y se dividen en tres categorías principales:

- Informes de planeación, los cuales se utilizan en la proyección del inventario y la especificación de los requerimientos para algún horizonte de tiempo futuro.
- Informes de desempeño para efectos de señalar los artículos suspendidos y determinar el acuerdo entre los plazos de los artículos reales y programados, y entre la utilización real y programada de las cantidades y costos.
o Informes de excepción, señalan las discrepancias graves como los errores, las situaciones fuera de alcance, los pedidos tardíos o vencidos, los desechos excesivos o las partes inexistentes.

Los sistemas de planeación de recursos de la empresa conocidos por sus siglas en inglés como ERP (Enterprise Resource Planning) son sistemas más avanzados que permiten reunir información de todas las áreas de la empresa. También son llamados al siguiente generación de MRP e incluyen:

- Arquitectura cliente / servidor.
- Base de datos relativa con preguntas a través del lenguaje de consulta estructurado conocido como SQL (Structured Query Language) por sus siglas en inglés y generación de informes.
- Interfaz para usuarios con gráficas de ventanas.
- Soporte de base de datos distribuido.
- Sistemas iniciales para soporte de decisión.
- Intercambio electrónico de datos automatizado, también conocido como EDI (Electronic Data Interchange) por sus siglas en inglés.
- Interoperabilidad con múltiples plataformas (Windows NT y Unix).
- Interfaces de programación de aplicaciones estándar.
- Intercambio de datos de la World Wide Web (WWW) son incluidos con frecuencia para obtener una mejor comunicación con los clientes y proveedores.

Por lo general estos sistemas se dividen en aproximadamente seis módulos que se interrelacionan y comunican. Estos módulos se pueden adquirir por separado, sin que sea necesario instalar todos para el correcto funcionamiento del sistema. Los módulos por lo general son:

- El módulo de proveedores, donde se guarda y se transmite información de éstos.
El módulo de *inventarios de materia prima*, que en función de los pedidos recibidos y el consumo del área de producción conoce las existencias de material en stock.

El módulo de *finanzas* es el que calcula la previsión de facturas a pagar y a cobrar en función de la información transmitida por los módulos de: proveedores, de clientes, el de stock de materia prima y el de stock de producto definitivo.

El módulo *MRP* calcula, en función de las previsiones de demanda, qué se debe fabricar, en qué momento, en qué cantidad, y las necesidades que esta producción va a generar. Éste indicará las necesidades al módulo de stock de materia prima y consultará el stock de producto acabado.

El módulo de *inventario de producto terminado*, gestiona las existencias de productos acabados en stock, en función de los pedidos entregados a los clientes y la producción del área de producción controlada mediante el módulo *MRP*. Este módulo es el encargado de realizar la demanda o previsión de demanda al modulo de producción *MRP*.

El módulo de *clientes*, donde se guarda y se transmite información de los clientes.

Existe una gran variedad de empresas que se centran en la elaboración y venta de *software* empresariales de organización, y en especial *software ERP*. Después de investigar algunas propuestas existentes en el mercado, se han elegido siete *software* que podrían ser los más adecuados para satisfacer las necesidades expuestas en esta investigación. Todos ellos están especializados en el cálculo de necesidades de producción mediante el sistema *MRP* para empresas que trabajan productos personalizados y no productos en serie con demandas previsibles.
El primer *software* propuesto es: “Infor ERP LN” de la empresa Infor. Infor ERP LN es un *software ERP* que engloba múltiples funciones empresariales para responder las necesidades de los fabricantes cuya producción se basa en proyectos personalizados en los sectores de la maquinaria y los equipos industriales, los sistemas electrónicos de alta tecnología, la aviación comercial y la construcción naval. A continuación en la tabla 23 se detallan las características más representativas, para el sistema de organización de la producción propuesto en este estudio, de este *software*.

**Tabla 23. Características del software ERP LN**

<table>
<thead>
<tr>
<th><strong>INFOR ERP LN</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lista de materiales.</strong></td>
<td>Permite elaborar la lista de materiales en forma de árbol. Da la posibilidad de introducir materiales alternativos a algún artículo.</td>
</tr>
<tr>
<td><strong>Control de inventario.</strong></td>
<td>Cuenta con información actualizada sobre el stock de la empresa. Posee un apartado específico donde se indica la última transacción, elementos en stock, elementos bloqueados para futuros programas previstos en el plan de producción, unidades demandadas al cliente, tipología del producto.</td>
</tr>
<tr>
<td><strong>Plan maestro de producción.</strong></td>
<td>En el plan maestro de producción es posible realizar una previsión de demanda, una demanda extra, un plan maestro de producción distinto a la demanda prevista, y un plan de inventario. Este plan de producción se muestra por niveles definidos en la lista de materiales.</td>
</tr>
<tr>
<td><strong>Órdenes de producción.</strong></td>
<td>El <em>software</em> genera las órdenes de producción necesarias para cumplir con el plan maestro de producción definido. Existen un apartado específico donde se muestran todas las órdenes generadas, e indicando su estado (activa, retrasada, realizada, etc.)</td>
</tr>
<tr>
<td><strong>Cálculo de Lead Time.</strong></td>
<td>No, únicamente se debe de introducir como dato.</td>
</tr>
<tr>
<td><strong>Personalizable.</strong></td>
<td>Bajo grado de personalización de las funciones.</td>
</tr>
<tr>
<td><strong>Facilidad de uso.</strong></td>
<td>Pantalla general configurable según las necesidades más corrientes con elevado número de links, por lo que se puede considerar que es de navegación fácil. Posee apartado personal compatible con Outlook, en donde se pueden planificar actividades, recibir mails, entre otras cosas.</td>
</tr>
<tr>
<td><strong>Módulos especializados.</strong></td>
<td>Dispone de herramientas para todos los departamentos típicos de empresas que producen en función de pedidos personalizados, como por ejemplo: finanzas, gestión de almacenes, transportes o servicio postventa.</td>
</tr>
<tr>
<td><strong>Costo del software.</strong></td>
<td>$ 1,021,955.00</td>
</tr>
</tbody>
</table>
El segundo software propuesto es también de la compañía Infor, este es: Infor Site Line. Este software ERP procura alinear la oferta con la demanda, dando soporte a los retos operativos de los fabricantes de productos personalizados. En la tabla 24 se muestran las características.

### Tabla 24. Características del software Infor Syte Line

<table>
<thead>
<tr>
<th></th>
<th>INFOR Syte Line</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lista de materiales.</strong></td>
<td>Lista de materiales interactiva (construcción por accesorios) y con elevada información.</td>
</tr>
<tr>
<td><strong>Control de inventario.</strong></td>
<td>Sí</td>
</tr>
<tr>
<td><strong>Plan maestro de producción.</strong></td>
<td>Los perdidos se realizan directamente a través de la lista de materiales interactiva, en donde se configura el producto final. El plan maestro de producción se genera automáticamente en función de los pedidos realizados.</td>
</tr>
<tr>
<td><strong>Ordenes de producción.</strong></td>
<td>Se crean automáticamente al finalizar la lista de materiales.</td>
</tr>
<tr>
<td><strong>Cálculo del Lead Time.</strong></td>
<td>No, únicamente se introduce como dato.</td>
</tr>
<tr>
<td><strong>Personalizable.</strong></td>
<td>Es posible personalizar los campos de las pantallas. Se puede decir que la personalización de las funciones es de grado medio.</td>
</tr>
<tr>
<td><strong>Facilidad de uso.</strong></td>
<td>La construcción de la lista de materiales es sencilla e intuitiva, pero para acceder al resto del programa hay un elevado número de secciones y puede resultar difícil adecuarse al comenzar a utilizar el sistema.</td>
</tr>
</tbody>
</table>
El software incluye módulos especializados para fabricantes de productos personalizados. Estos son:

- Servicio de atención al cliente y gestión de pedidos.
- Previsión y planificación avanzadas.
- Control de la producción.
- Gestión de materiales e inventario.
- Gestión financiera.
- Gestión y automatización de los procesos empresariales.
- Marco de personalización y kit de herramientas.
- Mensajes sobre el flujo de trabajo.

<table>
<thead>
<tr>
<th>Módulos especializados.</th>
</tr>
</thead>
<tbody>
<tr>
<td>El software incluye módulos especializados para fabricantes de productos personalizados. Estos son:</td>
</tr>
<tr>
<td>- Servicio de atención al cliente y gestión de pedidos.</td>
</tr>
<tr>
<td>- Previsión y planificación avanzadas.</td>
</tr>
<tr>
<td>- Control de la producción.</td>
</tr>
<tr>
<td>- Gestión de materiales e inventario.</td>
</tr>
<tr>
<td>- Gestión financiera.</td>
</tr>
<tr>
<td>- Gestión y automatización de los procesos empresariales.</td>
</tr>
<tr>
<td>- Marco de personalización y kit de herramientas.</td>
</tr>
<tr>
<td>- Mensajes sobre el flujo de trabajo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo del software.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 650,335.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disponibilidad de recursos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>El programa muestra las gráficas de plan de necesidades de capacidad, y ofrece a la vez la posibilidad de consultar el gráfico de Gantt para conocer todas las operaciones que se deben realizar en cada momento y el estado de estas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sitio Web:</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://www.infor.es">www.infor.es</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demo:</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://media.infor.com/ProductDemos/ERP_SyteLine/Web/Infor_ERP_SyteLine.htm">http://media.infor.com/ProductDemos/ERP_SyteLine/Web/Infor_ERP_SyteLine.htm</a></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de www.infor.es

El tercer software propuesto es de la compañía Oracle, y el que más se adecua a las necesidades de la empresa, es el software “E-Business Suite Machinery Solution”. Este es un conjunto de aplicaciones concebidas especialmente para las empresas dedicadas al sector de la construcción de maquinaria industrial. En la tabla 25 que se muestra a continuación se detallan algunas características.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>E-Business Suite Machinery Solution</strong></td>
</tr>
<tr>
<td><strong>Lista de materiales.</strong></td>
</tr>
<tr>
<td><strong>Control de inventario.</strong></td>
</tr>
<tr>
<td><strong>Plan maestro de producción.</strong></td>
</tr>
<tr>
<td><strong>Ordenes de producción.</strong></td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td><strong>Cálculo del Lead Time.</strong></td>
</tr>
<tr>
<td><strong>Personalizable.</strong></td>
</tr>
<tr>
<td><strong>Facilidad de uso.</strong></td>
</tr>
</tbody>
</table>
| **Módulos especializados.** | El software incluye funcionalidades especializadas para fabricantes de maquinaria industrial. Éstas son:  
  o Tratamiento de las máquinas.  
  o Tratamiento de las garantías, reparaciones e incidencias de las máquinas.  
  o Gestión detallada de las máquinas para un adecuado servicio postventa.  
  o Planificador gráfico para conocer el estado de la fábrica. (máquinas, operarios, fases, operaciones, rutas, etc.). |
| **Costo del software.** | $ 1,356,413.00 |
| **Disponibilidad de recursos.** | Dispone de un planificador gráfico para conocer la distribución de los recursos. Se pueden conocer las tareas que debería estar realizando cada operario. |
| **Sitio Web:** | [http://oracle.abast.es/](http://oracle.abast.es/) |

Fuente: Elaboración propia con información de [www.oracle.abast.es](http://www.oracle.abast.es)

El cuarto software que se ha evaluado es el que ofrece la multinacional Microsoft. El gigante de la informática, tras ver los beneficios obtenidos por las empresas de software especializadas en MRP y de gestión empresarial, ha creado, a través de varias adquisiciones, “Microsoft Dynamics” para satisfacer también este nicho de mercado. Una de las soluciones sectoriales del software Dynamics AX, está especialmente diseñado para las empresas productoras de equipamiento y maquinaria industrial. En la tabla 26 se detallan algunas características de dicho software.
Tabla 26. Características del software Microsoft Dynamics AX.

<table>
<thead>
<tr>
<th>Lista de materiales.</th>
<th>Lista de materiales genérica, donde puede indicarse la procedencia de cada uno de los artículos. Posibilidad de copiar las listas de materiales y modificarlas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control de inventario.</td>
<td>Sí, es tratado como un recurso más de la empresa.</td>
</tr>
<tr>
<td>Plan maestro de producción.</td>
<td>Se puede elaborar el plan maestro de producción directamente o a través de un pedido.</td>
</tr>
<tr>
<td>Órdenes de producción.</td>
<td>Posibilidad de planificación hacia adelante o hacia atrás. Posibilitando determinar la fecha de entrega y el precio de productos personalizados.</td>
</tr>
<tr>
<td>Cálculo del Lead Time.</td>
<td>No, únicamente se introduce como dato.</td>
</tr>
<tr>
<td>Personalizable.</td>
<td>Es posible cierta personalización de las herramientas.</td>
</tr>
<tr>
<td>Facilidad de uso.</td>
<td>Al ser un programa de Microsoft, la interfaz es un semejante a los otros programas de la compañía. Además de ofrecer una interfaz personalizada para cada empleado en función de lo que se requiera del programa.</td>
</tr>
<tr>
<td>Módulos especializados.</td>
<td>Existe un módulo para implementar en Dynamics AX específico para el sector “Equipamiento Industrial” al que pertenece la organización en estudio.</td>
</tr>
<tr>
<td>Costo del software.</td>
<td>$ 1,300,670.00</td>
</tr>
<tr>
<td>Disponibilidad de recursos.</td>
<td>Muestra las capacidades de carga de los recursos. Posibilita la gestión simultánea tanto de los recursos de la empresa, como de los materiales limitados.</td>
</tr>
<tr>
<td>Sitio Web:</td>
<td><a href="http://www.microsoft.com/spain/dynamics/ax/product/overview.mspx">http://www.microsoft.com/spain/dynamics/ax/product/overview.mspx</a></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de www.microsoft.com

Este no es el único software que comercializa Microsoft, dispone también de un software más adecuado para pequeñas y medianas empresas. Este dispone de menos potencia y menos prestaciones, sobre todo en las posibilidades de coordinación entre departamentos, de forma que puede ser más económico sin dejar de satisfacer las necesidades de las pequeñas y medianas empresas. Se llama “Microsoft Dynamics Navision” y es el quinto software que se ha evaluado en esta investigación y los resultados se muestran en la tabla 27.
Tabla 27. Características del software Microsoft Dynamics Navision.

<table>
<thead>
<tr>
<th></th>
<th><strong>Microsoft Dynamics Navision.</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lista de materiales.</strong></td>
<td>Dispone de varios tipos de listas de materiales y define automáticamente las órdenes de producción necesarias para realizar dicho producto.</td>
</tr>
<tr>
<td><strong>Control de inventario.</strong></td>
<td>Mantiene actualizada la información de los inventarios de material, y dispone de una herramienta para optimizar el espacio de almacen.</td>
</tr>
<tr>
<td><strong>Plan maestro de producción.</strong></td>
<td>Se puede elaborar el plan de producción en función de las ventas, de las órdenes de producción creadas, o mediante el MPS tradicional.</td>
</tr>
<tr>
<td><strong>Ordenes de producción.</strong></td>
<td>Sí, se crean automáticamente en función del Plan Maestro de producción diseñado.</td>
</tr>
<tr>
<td><strong>Cálculo del Lead Time.</strong></td>
<td>No dispone de ningún módulo que calcule el Lead Time de las operaciones.</td>
</tr>
<tr>
<td><strong>Personalizable.</strong></td>
<td>Es posible cierta personalización de las herramientas.</td>
</tr>
<tr>
<td><strong>Facilidad de uso.</strong></td>
<td>Al ser un programa de Microsoft, la interfaz es semejante a los otros programas de la compañía. Además de ofrecer una interfaz personalizada para cada empleado en función de lo que se requiera del programa.</td>
</tr>
<tr>
<td><strong>Módulos especializados.</strong></td>
<td>Además del módulo de producción, existe un módulo especializado para empresas que trabajan por proyectos.</td>
</tr>
<tr>
<td><strong>Costo del software.</strong></td>
<td>$ 929,050.00</td>
</tr>
<tr>
<td><strong>Disponibilidad de recursos.</strong></td>
<td>La replanificación de calendarios ayuda a crear planes realistas en función de los recursos disponibles, redefiniendo las órdenes de producción.</td>
</tr>
</tbody>
</table>
| **Sitio Web:** | [http://www.microsoft.com/spain/dynamics/nav/product/overview.mspx](http://www.microsoft.com/spain/dynamics/nav/product/overview.mspx)  

Fuente: Elaboración propia con información de [www.microsoft.com](http://www.microsoft.com)

El penúltimo de los software evaluados es el propuesto por SAP, indiscutible líder del sector de los software ERP y de gestión empresarial. Se ha evaluado una solución sectorial: “Maquinaria Industrial y Componentes”, elaborada internamente por la empresa en la tabla 28.
Capítulo 3: Trabajo empírico de la investigación

Tabla 28. Características del software SAP para Maquinaria Industrial y Componentes.

<table>
<thead>
<tr>
<th><strong>SAP para Maquinaria Industrial y Componentes (SAP IM&amp;C).</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lista de materiales.</strong></td>
<td>Mediante el “Project Planning” se pueden introducir lista de materiales aproximadas, y una vez definido completamente el producto, definir definitivamente el producto. Dispone de la posibilidad de añadir planos a la lista de materiales.</td>
</tr>
<tr>
<td><strong>Control de inventario.</strong></td>
<td>Posee información actualizada de todo el material utilizado y adquirido, pudiendo actualizar constantemente el estado de los almacenes.</td>
</tr>
<tr>
<td><strong>Plan maestro de producción.</strong></td>
<td>Mediante el “Sales Order Processing” se puede conocer el coste de la máquina en función del tiempo de fabricación, el material necesario, según la configuración concreta de la máquina. El “Project Planning” permite planificar el proyecto hacia adelante o hacia atrás, teniendo en cuenta la saturación de los recursos, una vez aceptado el proyecto se genera el plan maestro automáticamente en función de lo programado.</td>
</tr>
<tr>
<td><strong>Ordenes de producción.</strong></td>
<td>No sólo genera las órdenes de producción, sino que también posibilita su seguimiento a través del software. Mediante la herramienta “Supervision and Control”</td>
</tr>
<tr>
<td><strong>Cálculo del Lead Time.</strong></td>
<td>No dispone de ningún módulo, ni ninguna herramienta específica para el cálculo del Lead Time. Sería necesario programaría.</td>
</tr>
</tbody>
</table>
| **Personalizable.** | SAP permite a sus clientes adecuar el software a las necesidades específicas, creando su propio software de dos formas:  
  o Elaborando su propio mapa de soluciones, instalando un entramado de herramientas específicas propuestas por SAP.  
  o Programando aquellas funciones no disponibles mediante el entorno ABAP/4. Permitiendo crear funciones nuevas o incluso rediseñar las existentes. |
| **Facilidad de uso.** | La interfaz de usuario se basa principalmente por menús despegables, dificultando así la utilización intuitiva en un inicio. |
| **Módulos especializados.** | SAP ha desarrollado un software específico para el sector Industrial (SAP IM&C). |
| **Costo del software.** | $ 1,393,575.00 |
| **Disponibilidad de recursos.** | Como todo software ERP, en su módulo de fabricación dispone de estadísticas de disponibilidad de recursos y realiza el “plan de producción” en función de estas. |

Fuente: Elaboración propia con información de [www.sap.com](http://www.sap.com)

Por último, el software Aspel-PROD 2.0 permite la planeación y control de los procesos de fabricación de la empresa, cumpliendo con las disposiciones fiscales relacionadas con el manejo del costo de lo vendido, asegurando una óptima administración de costos e inventarios. Interactúa con Aspel-SAE, del que obtiene información de materia prima y subensambles, para realizar los procesos de producción y posteriormente
 actualizar el inventario con los productos terminados. En la tabla 29 se detallan las características de dicho software.

Tabla 29. Características del software Aspel-PROD 2.0.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lista de materiales.</td>
<td>Dispone de varios tipos de listas de materiales y define automáticamente las órdenes de producción necesarias para realizar dicho producto y en caso de que existan faltantes sugiere utilizar materiales sustitutos.</td>
</tr>
<tr>
<td>Control de inventario.</td>
<td>A través del catalogo de inventarios de Aspel – SAE y proporciona un completo control sobre las existencias de materiales y los subensambles en los diferentes almacenes.</td>
</tr>
<tr>
<td>Plan maestro de producción.</td>
<td>Se puede elaborar el plan de producción en función de las ventas, de las órdenes de producción creadas, o mediante el MPS tradicional.</td>
</tr>
<tr>
<td>Órdenes de producción.</td>
<td>Sí, se crean automáticamente en función del Plan Maestro de producción diseñado, a partir del registro de los pedidos. Considerando el stock mínimo y máximo de los productos, los pendientes por recibir y los pendientes por entregar. Permitiendo un seguimiento a las órdenes de producción hasta el cierre de las mismas. Se puede consultar el estado de la orden, el total de gastos directos e indirectos, el estado de avance, entre otros.</td>
</tr>
<tr>
<td>Cálculo del Lead Time.</td>
<td>No, únicamente se debe introducir como dato.</td>
</tr>
<tr>
<td>Personalizable.</td>
<td>Es posible cierta personalización de las herramientas.</td>
</tr>
<tr>
<td>Facilidad de uso.</td>
<td>El sistema maneja una interfaz amigable que permite el fácil acceso a cada una de las herramientas.</td>
</tr>
<tr>
<td>Módulos especializados.</td>
<td>Además del módulo de producción, existen diversos módulos que permiten complementar y agilizar el flujo de información de la empresa, el modulo de SAE es el que permite el vínculo entre todos.</td>
</tr>
<tr>
<td>Costo del software.</td>
<td>$ 7,477.36</td>
</tr>
<tr>
<td>Disponibilidad de recursos.</td>
<td>A través de gráficas, el programa muestra el plan de necesidades de capacidad, y ofrece a la vez la posibilidad de consultar el gráfico de Gantt para conocer todas las operaciones que se deben realizar en cada momento y el estado de estas.</td>
</tr>
<tr>
<td>Sitio Web:</td>
<td><a href="http://www.velop.com">http://www.velop.com</a></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información de [www.velop.com](http://www.velop.com)

Para la elección del software es importante considerar la viabilidad de la empresa para adquirirlo, facilidad de uso, el control sobre los inventarios y las herramientas que permitan dar solución a la problemática que enfrenta el área en estudio de la empresa Industrias IMISA, SA de CV.
El *software* deberá agilizar el cálculo de la planeación de los requerimientos de materiales, además de controlar inventarios. Se busca que emita información y reportes que ayuden a la toma de decisiones.

Actualmente la empresa cuenta con dos *software* de Aspel en el área administrativa. El *Aspel – SAE*, es el sistema administrativo empresarial que controla el ciclo de todas las operaciones de compra-venta de la empresa en forma segura, confiable y de acuerdo con la legislación vigente; proporciona herramientas de vanguardia tecnológica que permiten una administración y comercialización eficientes. La integración de sus módulos (clientes, facturación, vendedores, cuentas por cobrar, compras, proveedores, cuentas por pagar y estadísticas) asegura que la información se encuentre actualizada en todo momento. Genera reportes, estadísticas y gráficas de alto nivel e interactúa con los demás sistemas de la línea Aspel para lograr una completa integración de procesos. Mientras que el *Aspel – Bancos* es un sistema de control bancario que vigila eficientemente los ingresos y egresos de cualquier tipo de cuenta bancaria, ofreciendo información financiera precisa en todo momento. Permite manejar movimientos y saldos en moneda nacional y extranjera, la programación de movimientos periódicos, el control de inversiones en plazo fijo y en acciones, así como la conciliación electrónica con las principales instituciones financieras.

Por lo que el *software* Aspel – PROD podría logar sincronizar de forma eficiente varias departamentos de la empresa, indicando que se debe producir en qué momento teniendo en cuenta los recursos disponibles, qué se debe comprar y en qué momento; el costo y el plazo de entrega de un pedido. El programa de producción se coteja con la disponibilidad de recursos.
Las relaciones que permitirá el sistema se muestran en la figura 40 en donde los recuadros de color verde que corresponden a proveedores y clientes representan una parte de lo que maneja el sistema de administración empresarial, el recuadro de finanzas hace referencia al sistema de bancos y por último la parte central de color azul que conforman el stock de materia prima, el mismo MRP y el stock de productos terminados; que están relacionados al sistema de producción.

Este software representa la mejor opción ya que además de vincularse con los otros sistemas que utiliza la empresa, su costo no es tan elevado siendo de $7,477.36 por la licencia para un usuario. En caso de que se requiera de un usuario adicional el costo sería de $9,720.80 que incluye el programa y la licencia para dos usuarios. También se tiene la opción de rentar mensualmente el sistema; y la empresa también ofrece el servicio de soporte técnico.
Figura 40. Esquema de funcionamiento de los sistemas.
Fuente: Elaboración propia.
CAPÍTULO 4. ANÁLISIS Y DISCUSIÓN DE RESULTADOS.

Mediante la aplicación del sistema MRP se pretenden reducir todos los defectos detectados en la organización de la producción actual, es necesario tener control sobre los inventarios, con la finalidad de que la información que arroje el sistema tenga validez y ayude a agilizar la toma de decisiones.

La planeación agregada de la producción se elaboró para el mes de septiembre tomando en cuenta dos factores relevantes para el área, es decir, la cantidad de piezas y los kilogramos totales a producir. Esta planeación se dividió por semanas para obtener el programa maestro de producción y de igual forma se consideraron para cada semana la cantidad y los kilogramos; detallando en la parte inferior los mismos factores de cada uno de los tipos de material que se utilizan.

La primer semana (36), la cantidad tanto los kilogramos son pocos en comparación con las demás semanas; esto se debe de esa semana únicamente corresponde dos días del mes de septiembre.

Para las demás semanas, las cantidades de piezas es muy fluctuante, sin embargo los kilogramos oscilan alrededor de los 10,000 kilogramos, siendo la semana 40 la de mayor kilogramos a fundir y contempla utilizar los tres tipos de materiales.

En las planeaciones detalladas por semana muestra datos significativos; en la columna código y moldura se indica el nombre y número de la moldura; la columna tipo hace referencia al tipo de moldura que se obtendrá, la cual puede ser individual, media caña tableada normal, media caña jalada, media caña redonda, media caña tableada jalada, o matriz. También se señalan las
medidas del diámetro y largo de las molduras en pulgadas. La columna de parte especifica el segmento o pieza del la moldura, posteriormente se indican la cantidad de juegos que se deben elaborar y el tipo de material que se utilizara para la fundición. Si esta columna aparece en blanco indica que se debe utilizar material normal.

Las columnas de cajas largas y cajas cuadradas se utilizan para señalar la cantidad y tipo de caja requeridas de acuerdo a las dimensiones de las piezas; ya que en ocasiones es posible obtener de una caja varias piezas.

De cada pieza se especifica el peso por juego en una columna, el total indica el peso de todos los juegos de piezas que se deben realizar. Pero es importante para la planeación considerar además del peso de cada juego, 8kg adicionales por caja que es el peso del material que se usa para los cargadores, dicho peso se muestra en la última columna.

Además de los datos mencionados anteriormente, también se detalla para qué cliente se realizará la moldura, o si la moldura es solicitada por alguna de las plantas que se encuentran fuera de la ciudad.

Para continuar con la planeación se definieron los materiales que se ocupan en el área estudiada. Se les asigno un código a cada uno de ellos mencionando en nombre del proveedor.

En la investigación se tomó como base el tipo de material de los moldes considerando los materiales para obtener una olla del horno de inducción de cada tipo, teniendo en cuenta que sin importar el tipo de material de cada olla se obtienen 700 kilogramos y que en un día se pueden fundir como máximo 6 ollas.
El silicio, manganeso, grafito y chatarra son materiales que se utilizan en los tres tipos de material pero en cantidades diferentes y en algunos casos en combinación de otros materiales.

Conforme a la planeación detallada por semana se obtuvo que para la semana 36 únicamente se van a fundir 2 ollas material normal lo que equivale a 1,400 kilogramos de material. Para esa semana considerando el peso de los cargadores se tiene un total de 1,149.70 kilogramos lo que indica que posiblemente quedaría material sin utilizar, sin embargo no es posible contemplar los 1,400 kilogramos completos para las molduras ya que por olla se debe de contemplar aproximadamente un 2% de merma. En caso de que aún así sobrara material, este se ocupa para producir embudos como se menciona en el capítulo 1.

Para la semana 37 sólo se trabajó con material normal y se fundieron 19 ollas, dando un total de 13,300 kilogramos de material fundido; y al igual que en la semana anterior, el restante se ocupa para embudos.

A partir de la semana 38 se comienza a trabajar con dos tipos de materiales de material especial da un total de 12 ollas equivalente a 8,400 kilogramos y de material normal se tiene contemplado 8 ollas, es decir 5,600 kilogramos. Entre los dos tipos de materiales se obtienen 14,000 kilogramos de metal fundido.

En la semana 39 se fundió un total de 19 ollas, de las cuales 9 fueron de material especial y 10 ollas de material normal. Del primero se obtuvo un total de 6,300 kilogramos y del segundo 7,000 kilogramos alcanzando 13,300 kilogramos de metal líquido.
Finalmente para la semana 40 se requiere de los tres tipos de material, 5 ollas de material especial, 13 ollas de material normal y 4 ollas de material níquel – cromo dando un total de 22 ollas y en kilogramos de metal fundido de 15,400.

Todos los cálculos se realizan en base a la demanda, siendo el objetivo principal del sistema MRP cumplir con dicha demanda minimizando el stock. De manera que, el sistema definirá que se debe fabricar en cada momento para cumplir con el plazo de entrega establecido con el cliente, evitando así la fabricación por urgencias y cumpliendo con los plazos de entrega.

El sistema calculará las necesidades de materiales para cumplir con el plan de producción y en qué momento son necesarias, ofreciendo más información al departamento de compras para tratar con los proveedores.

Se evitarán las paradas por falta de material ya que, se mecanizará o se proveerá el material teniendo en cuenta cuando va a ser necesario. La planificación de todas las tareas de fabricación en el tiempo, y la organización de estas en función de la demanda por tipo de material y no de la disponibilidad de material, garantiza un mejor aprovechamiento de los recursos tanto humanos como materiales.

Gracias a este control de las tareas y de los recursos, se puede conocer la utilización de estos y los costos reales de producción de cada moldura. Así mismo se puede llevar un control de la productividad del área y optimizar todos los factores inmersos en la producción. Previsiblemente la motivación de los trabajadores podría aumentar debido a que se sienten más útiles al no desperdiciar su tiempo y al dedicarse a las tareas por los que verdaderamente han sido contratados.
Aunque, como ante todo cambio, también cabe esperar una reacción contraria en los inicios del cambio. Si se logran resultados satisfactorios a corto plazo, el cambio tendrá una mayor acogida general.

Por el contrario, el tener que conocer los plazos de entrega de producción (tiempo de preparación de los materiales y de las máquinas) de antemano, puede ser una dificultad en la implantación del sistema en la organización en estudio. La gran versatilidad de los diseños de moldes, los tamaños y formas, dificultan conocer con exactitud el tiempo de su fabricación.

**SOFTWARE**

Existe gran cantidad de software para la aplicación del sistema MRP, y cada vez son más versátiles para poder adecuarse a cada organización en particular. Esto ha originado que se pueda aplicar esta metodología en organizaciones cada vez más variadas y de sectores muy diferentes como pueden ser los sectores productivos y los de servicios.

Se considera que el sistema MRP es el más adecuado para organizar la producción de la empresa en estudio ya que soluciona todos los problemas detectados, permite adecuarse a las características específicas de la empresa.

El software Aspel- PROD es el sistema más conocido y con vinculación a los otros sistemas que maneja la empresa, además de ser eficaz para tratar la demanda dependiente, de la Organización en estudio; y agilizar la planeación de los requerimientos de material y de la producción, a la vez de tener el control de materiales y conocer el estatus de cada uno de los pedidos. Enlazando la información de producción con la del área administrativa.
CONCLUSIONES

La organización actual de la empresa se realiza mediante la producción por urgencias y en función del material disponible. Una vez se determina un plazo de entrega al cliente, calculado mediante la experiencia de la dirección técnica de la empresa, se pide el material específico a los proveedores y a medida que se recibe el material se van realizando las operaciones de producción necesarias. Mediante este método no se tiene un control óptimo de las operaciones, ni del tiempo dedicado a cada una de ellas, de forma que no se conoce si se podrá cumplir con el plazo de entrega ni el costo real de la producción del producto (molde).

El método de organización de la producción propuesto en este proyecto consiste en determinar el proceso y la programación de los moldes personalizados mediante un sistema MRP, calculado mediante un software ERP. El software, una vez se le haya definido las características generales de los tipos de moldura, enfatizando en el peso y el tipo de material, a través de módulos básicos comunes de la empresa, calculará: todas las operaciones necesarias para su fabricación, y los recursos materiales, así como el tiempo esencial para fabricarla.

Mediante esta información calculará la secuenciación óptima de producción para lograr reducir al máximo el plazo de entrega, y definir las necesidades de los recursos en el tiempo con la intención de reducir el stock de material en curso y programar la mano de obra. Como es un producto de fabricación bajo pedido y, previo a este, no se puede conocer con exactitud los plazos de entrega, el cálculo del sistema MRP se realizará mediante tres fases.
En la primera fase se calculará el sistema ERP hacia atrás suponiendo que se disponen de todos los recursos humanos de la empresa. En la segunda fase se introducirán las actividades, en el orden programado en la primera fase, en el calendario real de la empresa, teniendo en cuenta los recursos de mano de obra disponibles. Es posible que se deban retrasar algunas operaciones por falta de recursos.

Mediante este apartado se obtendrá el plazo de entrega teórico esperado de la moldura, que será el día en que se haya introducido la última operación a realizar. El último paso es volver a aplicar el sistema ERP hacia atrás, pero esta vez introduciendo las operaciones en el calendario partiendo del día de entrega definido en el paso anterior. Esto nos asegurará que no se realizan operaciones antes de lo estrictamente necesario.

La planeación y programación de de los pedidos considerará todas las áreas de producción, por lo que no sólo se beneficiará el área bajo estudio. Este sistema permitirá tener control de los procesos que se siguen para fabricar las molduras.

El sistema de organización de la producción propuesto, calcula el plazo de entrega en función de una programación exhaustiva de los procesos necesarios para la fabricación de la moldura. La secuenciación calculada será aquella que garantice un menor plazo de entrega y un menor stock en curso. Disponer de una programación bien definida ayuda a:

- Reducir el plazo de entrega.
- Mantener un stock óptimo.
- Lograr un elevado control de la producción, detectando los posibles retrasos al no cumplir con la programación.
- Reducir las entregas de material urgente.
Conclusiones

Reducir la producción y ajuste por urgencias reduciendo el sobrecosto que ellos conllevan.

Conocer los recursos necesarios de la empresa, y lograr el máximo aprovechamiento de estos.

Aumentar el control de la producción, y disminuir el tiempo de programación de actividades.

El sistema *MRP* propuesto puede ser una gran ayuda para lograr una eficiente organización de la producción de las molduras, evitando los sobrecostos y deficiencias de la organización actual.

Mediante la implantación personalizada del método *MRP*, se ha conseguido adecuar el sistema *MRP* a las necesidades de la Organización en estudio logrando los objetivos propuestos del proyecto, al incrementar la productividad alrededor del 50% y es posible que siga aumentando conforme se ajusta el uso de esta herramienta en la producción.

Reducir el tiempo de organización de la producción y elevar el control de este. Lo cual se ve reflejado en la productividad tanto del área de fundición como en general de la organización. Al utilizar el *software* se disminuirá drásticamente el tiempo de organización ya que lo realiza el ordenador y únicamente debe supervisar el resultado el director técnico por si, por motivos esporádicos no contemplados por el *software*, se debiera modificar el proceso de fabricación programado.

Al estar todas las operaciones más detalladas y llevar un exhaustivo control del tiempo que históricamente suele necesitarse, el control de la producción es mucho más fácil.
Conocer los tiempos de inicio y fin de cada operación, permite detectar los posibles retrasos o incidencias en la producción a tiempo real.

Reducir el plazo de entrega y poder determinarlo con cierta seguridad, elevando así la calidad del servicio. Derivado del control histórico de los tiempos de fabricación y preparación, y a la definición de los tipos de molduras a través de módulos básicos comunes entre ellas, se pueden definir con cierta facilidad, rapidez, y fiabilidad el costo y plazo de entrega estimado de los pedidos. Bastará con definir, a través de los submódulos básicos, la configuración de la moldura para que el software pueda calcular el precio y el plazo de entrega, al conocer todo el material y operaciones necesarias, aplicando la metodología MRP.

Al reducir las esperas de material, evitar confusiones en las operaciones a realizar, y a seguir un flujo de operación, o proceso para fabricar los moldes, también se logrará reducir el plazo de entrega.

Reducir los costos de fabricación y poder determinarlos de forma más fácil y más precisa. Al definir con precisión el orden, o programa de producción, se conoce de antemano el material que será necesario en cada momento y la urgencia real de los procesos. De esta forma se reducirán los pedidos urgentes a proveedores, las esperas de material, y las fabricaciones y ajustes de urgencia de los productos internos.

Al definir con exactitud los procesos, y los recursos tanto humanos como materiales necesarios, se dispone de la información fiable necesaria para calcular el costo real de producción.

Reducir los niveles de stock y determinar de forma clara los plazos de entrega, al conocer el momento y cantidad exacta de material necesario. Al conocer la
temporización del proceso en cada área, se define las necesidades de los recursos en función del tiempo. De manera que no es necesario disponer del material en stock mucho tiempo, ya que se puede adquirir o fabricar el artículo en el momento que este es necesario para continuar con su producción.

En el caso de que en la elaboración de la moldura se utilice algún material o componente nueva para la compañía, permite determinar en qué momento será necesario adquirirlo o fabricarlo. Si se hace demasiado pronto posiblemente pueda afectar la programación y el stock, mientras que si se hace demasiado tarde retrasará la producción de la moldura.

Conocer con mayor precisión el proceso y temporización de la fabricación, la tecnología y los materiales que se va a utilizar en cada molde en concreto, también ayuda a determinar los conocimientos necesarios para realizar su fabricación correctamente. En el caso de que la empresa carezca de ellos, se conocerá en qué momento van a ser necesarios, y por tanto, cuándo y qué cursos de acción serán útiles para seguir con el programa de producción.

Se ha comprobado que calcular y conocer de antemano con cierta exactitud el proceso de producción de cada moldura conlleva grandes ventajas en la organización de su producción, consiguiendo elevados beneficios como: la reducción del tiempo de entrega, la satisfacción del cliente al ofrecer respuestas veraces en un menor periodo de tiempo, la reducción de stocks y de los costos de producción, la reducción de esperas y trabajos por urgencia.

Pero además de guiar a la Organización hacia la excelencia organizacional mediante el nuevo sistema organizativo, todas estas ventajas y beneficios económicos que serán mayores a la inversión, hacen que esta sea rentable económicamente.
De manera que se puede afirmar que, mediante el sistema *MRP* de organización de la producción propuesto en este estudio y en conjunto con los sistemas que actualmente maneja la empresa simulando un sistema *ERP*, se puede dar solución a la problemática en el área de fundición y alcanzar todos los objetivos del proyecto, además de mejorar el control y planeación completa del área de producción, permitiendo a la organización ser más productiva al optimizar sus recursos.

Con base en lo anterior y a la problemática que enfrenta el área de fundición de la empresa en estudio, se detectaron una serie de situaciones que conduce a deducir que el aprovechamiento de los recursos puede mejorar considerando las propuestas de la tabla 30.

**Tabla 30. Propuestas de solución (algunos cursos de acción).**

<table>
<thead>
<tr>
<th>Observaciones (Problema)</th>
<th>Propuesta de solución (Acciones)</th>
<th>Desarrollo (¿Cómo?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No se dispone de un cálculo de insumos para iniciar la fundición de un pedido.</td>
<td>a) Probar que en efecto no existe una programación de inventarios (véase el apartado 3.1.4. en donde se describe y analiza la situación del stock en la empresa) b) Elaborar los cálculos para determinar un stock óptimo. (véase tabla 17)</td>
<td>Realizar un diagnóstico del área, analizar si se tiene la capacidad y el espacio físico para tener un almacén. Después con base a la demanda y a los pedidos existentes, determinar la cantidad óptima de inventario de cada uno de los materiales.</td>
</tr>
</tbody>
</table>
| 2. La programación de la producción se lleva a cabo de manera precipitada según la urgencia del pedido, lo que origina que no se cumplan por completo lo que se tiene programado. | a) Conocer el diagrama de flujo del proceso con el fin de saber la capacidad de producción. (véase en la figura 15) b) Planear con base en el pedido las adquisiciones de manera manual. (véase tabla 18) | El conocimiento de los procesos es indispensable para hacer una planificación adecuada de cada una de las operaciones que se deben realizar para la fabricación de los pedidos de los clientes. El uso de la tecnología en lo que respecta a los tipos
### Conclusiones

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. No se tiende identificada la moldura en los programas, lo que genera confusión respecto a las piezas que se están moldeando.</td>
<td>a) Asignar un código y un número de moldura que se muestren en los programas de fundición. (véase en tablas 6, 7, 8, 9 y 10)</td>
<td>El tener identificadas las molduras de los pedidos, a través del uso de códigos o nombres permitirá a los directivos de la empresa conocer el estatus que guarda cada una de las piezas que integran los pedidos de los clientes.</td>
</tr>
<tr>
<td></td>
<td>b) Debido a que una moldura se conforma de diversas piezas, es importante identificar cada una de sus partes. (véase en tablas 6, 7, 8, 9 y 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Llevar un control sobre las piezas y molduras que se elaboran, el cual puede ser manual o con ayuda de algún software.</td>
<td></td>
</tr>
<tr>
<td>4. Al desmoldar las piezas no se tiene control, es decir no se separan o identifican para saber el tipo de material que se utilizó para su fabricación.</td>
<td>a) Marcar las piezas por tipo de material, colocando un distintivo en cada una.</td>
<td>La organización de las piezas por tipo de material utilizado en la fundición, a través de un distintivo o área asignada permitirá identificar pronto el tipo de material para así continuar con el proceso y evitar equivocaciones.</td>
</tr>
<tr>
<td></td>
<td>b) Colocar las piezas en un espacio asignado para cada tipo de material.</td>
<td></td>
</tr>
<tr>
<td>5. En la limpieza de las piezas se da preferencia a las piezas grandes (moldes y bombillos), rezagando las pequeñas (fondos y obturadores) lo que causa retrasos.</td>
<td>a) Ordenar la secuencia de limpieza de las piezas.</td>
<td>Dando continuidad al proceso productivo, es decir, conforme van saliendo las piezas del desmolde, es conveniente limpiarlas. Esto proporcionará control al área, ya que los programas de trabajo pasarán completos a la siguiente área de acuerdo al proceso de producción.</td>
</tr>
<tr>
<td></td>
<td>b) Limpia la limpia las piezas conforme van saliendo para no generar rezagos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Limpiar todas las piezas conforme van saliendo para no generar rezagos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) En caso de que se adquieran el software, este permitiría tener control sobre el estatus de cada moldura.</td>
<td></td>
</tr>
<tr>
<td>6. La verificación de los moldes en relación a las imperfecciones</td>
<td>a) Evaluar si las imperfecciones que</td>
<td>Como parte del proceso se deben considerar algunas</td>
</tr>
</tbody>
</table>

**c) Investigar los tipos de software que existen en el mercado y probar la conveniencia de utilizar alguna. (véanse tablas 19, 20, 21, 22, 23, 24 y 25)**

**software que agilizan y controlan desde la planeación los procesos de producción.**
Conclusiones

| Imperfecciones generadas al momento de vaciar el metal no se realizada, provocando que se requiera de mayor tiempo en el proceso de maquinados para tratar de corregir esas fallas. | pudieran tener las piezas pudieran afectar el proceso de maquinados.  

b) Separar las piezas con imperfecciones serias y reutilizarlas para elaborar más material. | acciones de verificación que permitirán incrementar el control que se tiene en el proceso productivo. |
|---|---|---|
| 7. La entrega incompleta o fuera de tiempo de los pedidos a los clientes como resultado de las decisiones y problemas de producción. | a) Tener un registro en donde se pueda saber el estatus de cada moldura y así conocer si los pedidos se han entregado de manera completa, o tener identificado lo que falta por entregar.  
b) Monitorear y conocer los avances de la producción con la finalidad de verificar los tiempos disponibles de acuerdo con la fecha pactada para la entrega.  
c) El uso del software permitirá tener control automático sobre el proceso de producción completo y de ese modo se podrá decidir si es conveniente retrasar o agilizar en algún momento el proceso. | Las fechas de entrega que se convengan con los clientes deben ser razonables, sin comprometer el tiempo requerido en producción. Además de que es importante que cada una de las áreas establezca metas para reducir las entregas fuera de tiempo a los clientes. |

Fuente: Elaboración propia.
RECOMENDACIONES

En relación a las estrategias para incrementar la productividad en el área de fundición de la empresa Industrias IMISA, S.A. de C.V. propuestas, se desprenden las siguientes recomendaciones o sugerencias:

- Registrar y controlar las entradas y salidas de material de cada una de las áreas conforme se ejecuta el proceso de producción.

- Iniciar con la planeación de las adquisiciones de material desde el momento en que se identifica la necesidad.

- Verificar si económicamente es posible adquirir el *software* propuesto para agilizar la planeación, reduciendo costos, vinculando la información con otras áreas para tener un mejor control de la producción y cumplir en tiempo con las fechas de entrega acordadas.

- Revisar los procesos y materiales utilizados en las demás áreas de producción, con la finalidad de tener mayor control.

- Calcular y realizar una planeación de requerimientos de material que incluya a toda la empresa.

- Trabajar en conjunto con los proveedores para crecer (cadena de valor).

- Realizar mediciones de productividad de las diversas áreas de la empresa, con la finalidad de analizar la situación de la empresa y buscar la mejora continua.
Para futuras investigaciones se recomienda:

- Considerar investigar sobre el uso de diferentes materiales que resulten menos agresivos para el medio ambiente y que cuenten con las características requeridas para soportar las altas temperaturas del vidrio.

- El uso de nueva tecnología en la parte de operación y procesos que permita incrementar la capacidad de producción de las empresas, ya que tomando como ejemplo la empresa estudiada, aún existen procesos que podrían considerarse como artesanales debido a los procesos manuales requeridos para la obtención de los moldes.

- Por último se puede investigar sobre la conveniencia y factibilidad de utilizar mecanismos de energía renovable en las plantas de producción en vez de seguir consumiendo grandes cantidades de energía eléctrica, lo cual resulta costoso para las empresas.
BIBLIOGRAFÍA

Amat, J. (2009). Estudio para la implantación del sistema MRP de planificación y control de la producción de una empresa productora de maquinaria de control numérico.


Cárdenas, L. (2007). *Propuesta de un modelo de gestión para PyMEs, centrado en la mejora continua*. Chile.


*Cuestiones sobre Microsoft / SAP*. (s.f.). Recuperado el 30 de octubre de 2011, de http://profesores.ie.edu/enrique_dans/download/marimar.pdf


*Guía tecnológica: Fundición de metales ferrosos*. (s.f.). Recuperado el 10 de octubre de 2011, de http://www.eper-es.com
Bibliografía


INFOR. (2011). Recuperado el 7 de noviembre de 2011, de www.infor.com


Bibliografía


SAP. (s.f.). Recuperado el 06 de noviembre de 2011, de http://www.sap.com/index


164
Bibliografía


