Estudio del uso de residuos industriales no peligrosos a través del proceso de compostaje y su aplicación para el cultivo de maíz y frijol

TESIS QUE PARA OBTENER EL GRADO DE MAESTRA EN BIOTECNOLOGIA APLICADA

Presenta

WENNNDY LOPEZ WONG

DIRECTORA DE TESIS: DRA. MARIA MYRNA SOLIS OBA

TLAXCALA, MEXICO JUNIO 2010
ACTA DE REVISIÓN DE TESIS

En la Ciudad de Tepetitlán, siendo las 11:00 horas del día 27 del mes de Mayo del 2010 se reunieron los miembros de la Comisión Revisora de Tesis, designada por el Colegio de Profesores de Estudios de Posgrado e Investigación de CIBA-TLAXCALA para examinar la tesis titulada:

"ESTUDIO DEL USO DE RESIDUOS INDUSTRIALES NO PELIGROSOS A TRAVÉS DEL PROCESO DE COMPOSTAJE Y SU APLICACIÓN PARA CULTIVO DE MAÍZ Y FRUJOL"

Presentada por el alumno:

LOPEZ WONG WENNDY

Apellido paterno Apellido materno Nombre(s) Con registro: A 0 8 0 3 8 8

aspirante de:

MAESTRIA EN BIOTECNOLOGIA APLICADA

Después de intercambiar opiniones, los miembros de la Comisión manifestaron APROBAR LA DEFENSA DE LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISIÓN REVISORA

Director(a) de tesis

Dra. María Myrna Solís Oba

Dra. Martha Dolores Bibbins Martínez

Dra. María Carmen Villegas Hernández

M. C. Karla Naliely Rivera Hernández

Centro de Investigación en Biología Aplicada

Dr. Joel Diaz Reyes

PRESIDENTE DEL COLEGIO DE PROFESORES

Dra. Alma Leticia Martínez Ayala
En la Ciudad de Tepeitlán, Tlaxcala el día 11 del mes de junio del año 2010, el (la) que suscribe Wemdy López Wong alumno (a) del Programa de Maestría en Biotecnología Aplicada con número de registro A080388, adscrito a Centro de Investigación en Biotecnología Aplicada, manifiesta que es autor (a) intelectual del presente trabajo de Tesis bajo la dirección de Dra. Myrna Solís Obi y cede los derechos del trabajo titulado Estudio del uso de residuos industriales no peligrosos a través del proceso de compostaje y su aplicación para el cultivo de maíz y frijol, al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección: wongdy_03@hotmail.com. Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Wemdy López Wong
Nombre y firma
INDICE GENERAL

ABREVIACIONES--- 11
RESUMEN -- 14
ABSTRACT --- 16
1.INTRODUCCION --- 19

2.ANTECEDENTES --- 22
 2.1 COMPOSTAJE -- 22
 2.1.1 Definición e importancia ---------------------- 22
 2.1.2 Tipos de compostaje --------------------------- 25
 2.1.3 Etapas del compostaje ------------------------- 27
 2.1.4 Factores que influyen en el proceso de compostaje ------------------------- 29
 2.1.5 Ventajas del uso de composta -------------- 37
 2.2 SUELO Y FERTILIDAD . ----------------------------- 39
 2.2.1 Fertilidad.--- 39
 2.2.2 Factores que afectan la fertilidad del suelo --------------- 40
 2.2.3 Propiedades físicas del suelo --------------------- 41
 2.2.4 Propiedades químicas del suelo ------------------ 44
 2.2.5 Propiedades biológicas del suelo ----------------- 45
 2.2.6 Elementos esenciales en la nutricion vegetal ------ 47
 2.2.7 Fertilizacion química -------------------------- 48
 2.2.8 Impacto ambiental por el uso de fertilizantes químicos------ 52
 2.3 CULTIVOS AGRICOLAS -------------------------------- 53
 2.3.1 Insumos para la produccion de maiz en Tlaxcala ----- 53
 2.3.2 Importancia del frijol en el sector agropecuario nacional ---- 55
 2.3.3 Agricultura en el municipio de Altzayanca ----------- 59
 2.3.4 Problemas ambientales en Tlaxcala ---------------- 60
 2.3.5 Fertilización orgánica -------------------------- 62
 2.4 RESIDUOS SÓLIDOS ------------------------------- 64
 2.4.1 Descripcion de los residuos sólidos----------------- 64
 2.4.2 Generación de residuos sólidos a nivel nacional ----- 65
 2.4.3 Generación de residuos sólidos en Tlaxcala --------- 69
 2.4.4 Impacto ambiental asociado a residuos sólidos--------- 69
 2.4.5 Generación de lodos, tratamientos y contaminación ------ 70
 2.4.6 Los lodos, y su acción sobre el suelo ---------------- 75
 2.4.7 Impacto ambiental por vertido de lodos -------------- 77

3. JUSTIFICACION -- 79
 OBJETIVOS--- 80
 General --- 80
Especificos

4. MATERIALES Y METODOS

4.1 SITIO DE ESTUDIO

4.2 PROCESO DE COMPOSTAJE

4.2.1 Preparación de mezclas para compostaje

4.2.2 Seguimiento del proceso de compostaje

4.2.3 Descripción de métodos para el seguimiento del proceso de compostaje

4.3 PROCESO DE SIEMBRA

5. RESULTADOS Y DISCUSIÓN

5.1 PROCESO DE COMPOSTAJE

5.1.1 Cambios físicos: olor, color y apariencia

5.1.2 Análisis de parámetros físicoquímicos

5.2 PRUEBA DE MADUREZ DE COMPOSTAS

5.3 COMPARACIÓN DE PARÁMETROS FÍSICOQUÍMICOS CON LA NORMA PARA MEJORADORES DE SUELO

5.4 COMPARACIÓN DE PARÁMETROS MICROBIOLÓGICOS DE LAS COMPOSTAS CON LA NORMA DE MEJORADORES DE SUELO

5.5 EVALUACIÓN DE SIEMBRA DE FRIJOL EN INVERNADERO (ESTADÍSTICOS)

5.5.1 Germinación

5.5.2 Crecimiento

5.6 SIEMBRA DE FRIJOL EN PARCELAS EXPERIMENTALES (ESTADÍSTICOS)

5.6.1 Crecimiento

5.6.2 Rendimiento

5.7 SIEMBRA DE MAÍZ EN PARCELAS EXPERIMENTALES (ESTADÍSTICOS)

5.7.1 Crecimiento

5.7.2 Rendimiento

5.8 EVALUACIÓN GLOBAL DEL EFECTO DE APLICACIÓN DE COMPOSTAS

5.8.1 Evaluación para el cultivo de frijol en parcelas experimentales

5.8.2 Evaluación para el cultivo de maíz en parcelas experimentales

...
INDICE DE FIGURAS

Fig. 1 Proceso de Compostaje ---22
Fig. 2 Sucesión microbiota y ambiental durante el proceso de compostaje---30
Fig.3 Nutrición en la reacción suelo-planta ---------------------------------45
Fig.4 Factores que intervienen en la nutrición de las plantas -------------46
Fig.5 Superficie total sembrada, participación promedio anual de los cuatro cultivos principales en México -----------------------------------56
Fig.6 Generación de residuos sólidos en México por habitante -------------66
Fig.7 Generación de residuos sólidos por regiones en México ----------------68
Fig.8 Composición de los residuos sólidos generados en México----------------68
Fig.9 Disposición final de los residuos sólidos en México ----------------69
Fig.10. Porcentaje total de lodos según tratamiento que sigue en México---75
Fig.11. Aprovechamiento benéfico de lodos en México------------------------75
Fig.12 Diagrama de estrategia de estudio ---------------------------------83
Fig.13 Diseño experimental de siembra en parcelas experimentales -97
Fig.14 Comportamiento del pH durante el compostaje ----------------------101
Fig.15 Comportamiento de la conductividad eléctrica durante el compostaje---103
Fig.16 Comportamiento del porcentaje de cenizas durante el compostaje---104
Fig.17 Comportamiento del porcentaje de materia orgánica durante el compostaje---106
Fig.18 Comportamiento de la relación carbono-nitrógeno durante el compostaje---108
Fig.19 Prueba de madurez para compostas con germinación de semillas comerciales de lechuga --111
Fig. 20 Cinética de crecimiento de cultivo de frijol en invernadero--116
Fig. 21 Prueba de Tukey al 95% crecimiento de frijol en invernadero 119
Fig.22 Cinética de crecimiento de cultivo de frijol en parcelas experimentales --120
Fig.23 Comparación en el crecimiento de frijol en parcelas experimentales con las aplicaciones de mateado y capa --------------------121
Fig.24 Prueba de Tukey al 95% crecimiento foliar promedio de frijol en parcelas experimentales---122
Fig.25 Rendimiento de frijol en parcelas experimentales con las dos formas de aplicación capa y mateado -------------------------------123
Fig.26 Prueba de Tukey al 95% rendimiento de frijol en parcelas experimentales--124
Fig.27 Cinética de crecimiento de cultivo de maíz en parcelas experimentales --126
Fig.28 Comparación en el crecimiento de maíz en parcelas experimentales en ambas aplicaciones mateado y capa ------------------126
Fig.29 Prueba de Tukey al 95% para crecimiento maíz en parcelas experimentales ---126
Fig. 30 Número de plantas crecidas en subparcelas y rendimiento de maíz con las aplicaciones de compost en capa y mateado para parcelas experimentales

Fig. 31 Prueba de Tukey 90% rendimiento de maíz en parcelas experimentales
INDICE DE TABLAS

Tabla 1. Valores y clasificación de los suelos con base en la densidad y % de porosidad---44
Tabla 2. Distribución de diferentes poros en suelos de tres clases texturales.--45
Tabla 3. Principales elementos en la nutrición de la planta ---49
Tabla 4. Importancia de los elementos esenciales en la nutrición vegetal--50
Tabla 5. Ventajas y desventajas del uso de fertilizantes químicos ----54
Tabla 6. Precios de los insumos para maíz ciclo agrícola P-V 2003 ---56
Tabla 7. Rendimientos y costos de producción de los cultivos de riego de maíz en grano y frijol en el estado de Tlaxcala---------57
Tabla 8. Rendimiento y costo de producción del cultivo de temporal de maíz en grano en Tlaxcala ---------------------------------60
Tabla 9. Rendimiento y costo de producción del cultivo de temporal de maíz en grano en Tlaxcala ---------------------------------61
Tabla 10. Producción y porcentaje en toneladas de cultivo de temporal de frijol en Tlaxcala.---------------------------------------61
Tabla 11. Superficie sembrada, cosechada, rendimiento por hectárea y valor de la producción ---61
Tabla 12. Censo agrícola en el municipio de Altzayanca-------------------62
Tabla 13. Grados de erosión en el estado de Tlaxcala ---------------------64
Tabla 14. Límites permisibles para metales pesados en biosólidos---75
Tabla 15. Clasificación de lodos con base en el contenido microbiológico ---75
Tabla 16. Clasificación de los lodos con base en el aprovechamiento76
Tabla 17. Parámetros fisicoquímicos de los residuos orgánicos usados en el compostaje---86
Tabla 18. Proporciones en volumen de los residuos orgánicos industriales utilizados para la preparación de las pilas para compostaje--87
Tabla 19 Parámetros fisicoquímicos de las compostas experimentales y parámetros de la norma para mejoradores de suelos. ---111
Tabla 20. Parámetros microbiológicos indicados en la norma PROY-NTEA-006-SEGEM-RS-2005 para la producción de los mejoradores de suelos elaborados a partir de residuos orgánicos --------------------------114
Tabla 21. Análisis microbiológicos reportados por laboratorio certificado para las compostas experimentales--114
Tabla 22. Porcentaje de germinación de semillas de frijol en condiciones de invernadero Condiciones experimentales para la siembra --116
Tabla 23. Análisis de Varianza para el crecimiento de frijol en invernadero---118
Tabla 24. Relación de factores físico-químicos y efecto en el no. de plantas, crecimiento y rendimiento en parcelas experimentales con frijol

Tabla 25. Relación de factores físico-químicos y efecto en el no. de plantas, crecimiento y rendimiento en parcelas experimentales con maíz.

Tabla 26. Parámetros físicoquímicos del suelo antes y después de la producción agrícola
<table>
<thead>
<tr>
<th>Abreviaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>CE</td>
</tr>
<tr>
<td>CIC</td>
</tr>
<tr>
<td>Cl</td>
</tr>
<tr>
<td>CNA</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>COPLADET</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>DA</td>
</tr>
<tr>
<td>DR</td>
</tr>
<tr>
<td>EPA</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>FERTIMEX</td>
</tr>
<tr>
<td>ha</td>
</tr>
<tr>
<td>Hg</td>
</tr>
<tr>
<td>INE</td>
</tr>
<tr>
<td>INEGI</td>
</tr>
<tr>
<td>INIFAP</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>MO</td>
</tr>
<tr>
<td>MSW</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>NOM</td>
</tr>
<tr>
<td>NPM</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>P.V.</td>
</tr>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>PTAR</td>
</tr>
<tr>
<td>RSU</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>SAGARPA</td>
</tr>
<tr>
<td>SEDESOL</td>
</tr>
<tr>
<td>SEMARNAT</td>
</tr>
<tr>
<td>SFA</td>
</tr>
<tr>
<td>SIAP</td>
</tr>
<tr>
<td>SO₂</td>
</tr>
<tr>
<td>STV</td>
</tr>
<tr>
<td>TLCAN</td>
</tr>
<tr>
<td>ton</td>
</tr>
<tr>
<td>Vs</td>
</tr>
<tr>
<td>Vt</td>
</tr>
<tr>
<td>Zn</td>
</tr>
</tbody>
</table>
RESUMEN

La generación de grandes volúmenes de lodos de plantas de tratamiento de aguas industriales en el estado de Tlaxcala, representan riesgos ambientales si no son manejados adecuadamente y un problema económico para quienes los generan, ya que la disposición final de éstos, resulta costosa, además que sus componentes ricos en carbono y nutrientes como N y P, elementos esenciales para las plantas, que pueden ser aprovechados y reciclados mediante el proceso de compostaje para mejorar el suelo, es desperdiciada. El valor económico que se da a residuos como éstos lodos, se incrementa al demostrarse que pueden ser transformados en un abono orgánico, que ademas de mejorar las propiedades del suelo, puede ser utilizado como enmienda orgánica para suelos altamente erosionados, e incrementa la fertilidad del mismo aportando nutrientes disponibles para el aprovechamiento en cultivos.

En este trabajo se estudió el uso de residuos industriales no peligrosos a través del proceso de compostaje y su aplicación para el cultivo de maíz y frijol en una de las zonas más erosionadas del estado de Tlaxcala, en el municipio de Altzayanca.

Se prepararon 5 compostas en proporciones distintas con residuos sólidos no peligrosos: lodos de dos plantas de tratamiento de agua, residuos de una empacadora de chile y rastrojo de maíz, se montaron en pilas estáticas durante 6 meses, con volteos semanales en el que eran regadas para proveerlas de la humedad necesaria; durante el proceso se hicieron análisis fisicoquímicos: pH, conductividad eléctrica, % cenizas, % Nírogeno total , % Materia Orgánica, % Carbono Orgánico así como prueba de madurez o fitotoxicidad a 3 y 6 meses del proceso de compostaje; y los parámetros microbiológicos que indica la norma, estos al final del proceso de compostaje para asegurarse de la inocuidad de las compostas antes de aplicarla en suelo. Se evaluaron las compostas con cultivo de frijol en invernadero y en parcelas experimentales y con cultivo de maíz en parcelas experimentales; utilizándose como testigos: fertilizante químico, suelo sin adición de fertilizantes y peat-moss. Las variables de respuesta fueron el porcentaje de germinación, crecimiento foliar y rendimiento por parcela para cada tratamiento; para el registro de éstas variables, el muestreo se hizo con un diseño de bloques al azar, se realizó un análisis de varianza para encontrar diferencias entre tratamientos, compostas y testigos. Se hicieron análisis fisicoquímicos al suelo antes de la aplicación de compostas en las parcelas experimentales y al final de la cosecha con la finalidad de comparar el efecto de éstas en el mismo. Los resultados muestran que los residuos industriales tanto los lodos de las plantas de tratamiento de agua como los residuos agroindustriales mediante el proceso de compostaje se transformaron en material inocuo, rico en nutrientes en forma que estuvieron disponibles para el aprovechamiento en cultivos. El material que se utilizó mostró cambios físicos durante el compostaje en función del tiempo, reducción de olor, cambio de apariencia, textura y color; los análisis fisicoquímicos mostraron que hubo una disminución de la materia
orgánica, de la relación C/N y del pH; aumentó en la conductividad eléctrica y el porcentaje de cenizas, lo cual coincide con lo reportado por la literatura. Con todas las compostas se obtuvo mayor crecimiento producción de maíz y frijol comparado con el testigo donde no se aplicó composta, el rendimiento fue un poco menor al que reportan que se obtiene en la región aplicando fertilizante químico. Los análisis del suelo efectuados después de la cosecha mostraron que quedaron nutrientes en el suelo, con un aumento ligero en el porcentaje de materia orgánica, mostrando que la aplicación de las compostas tuvo un efecto positivo en el suelo después de un ciclo agrícola, se sabe que el efecto de la materia orgánica se ve reflejado después de varios años de aplicación.

Palabras clave: compostaje, residuos sólidos, lodos residuales, enmiendas orgánicas.
ABSTRACT

The generation of great volumes of sludge of wastewater industrial treatment plants in the state of Tlaxcala, represents an environmental risk if they are not handled in a right way and the represent an economic problem because the final disposition are expensive; in addition their components rich in carbon and nutrients like N and P, essential elements for plants can be taken advantage of and recycled by the composting process to improve the soil characteristics. The economic value of these sludge, could be improved by demonstrating that they can be transformed in organic fertilizer, that besides to get better the properties of the soil, it can be used like organic amendment for highly eroded soil, and increase the fertility of soil releasing nutrients available for use on yield.

We study the use of non-hazardous industrial wastes sludges through composting and their application for the cultivation of maize and beans in one of the most eroded areas in Tlaxcala, in Altzayanca.

There were prepared five composts in different proportions with non-hazardous: sludges from two wastewater treatment plants, organic waste of Chile and maize stubble, they were mounted in static piles during 6 months, and they were composted weekly and watered to provide them with the necessary humidity; during the process we made physicochemical analysis: pH, electric conductivity, % ashes, % total nitrogen, % organic matter, % organic carbon; as well as a test of maturity or phytotoxicity at 3 and 6 months of the composting process; and the microbiological parameters like the n-nitrogen, these at the end of the composting process and before they use in soil. Composts were evaluated in growth of bean in greenhouse and in experimental plot, and maize was tested in experimental plots; controls were: chemical fertilizer plot, soil without fertilizer addition and peat-moss. The answer variables were the percentage of germination, foliar growth and yield by plot for each treatment; for the registry of these variables, the sampling was in random way with a design of blocks, with a statistical analysis ANOVA to find differences between treatments, composts and controls. We made physicochemical analysis to the soil before the application of composts in the experimental parcels and at the end of the harvest with the purpose of compare the effect of these in the soil. Results show that industrial of composting process could be transformed in innocuous material, rich in nutrients for the growth of plants. Material used showed physical changes during composting like reduction of odor, change in appearance, texture and color; the physicochemical analysis show that there was a diminution of organic matter, in the C/N relation and in pH; increase in the electrical conductivity and the percentage of ashes, like reports in literature. With all composts the growth of plants and yield of beans ans maize were better comparing with the control, in wich there was not addition of compost, the yield was less than the reported one for yield in the region using chemical fertilizer. The analysis of soil after the
crop showed that there were left nutrients in soil with a slight increase in the percentage of organic matter, showing that the application of comports have a positive effect in the soil after one agriculture cycle, that the effect of the organic matter is reflected after several years of application.

key words: composting, solid wastes, waste sewage sludge, organic amendments.
1. INTRODUCCION

La sociedad actual, debido al modelo productivo genera un gran volumen y variedad de residuos de diversos orígenes. Se ha experimentado un aumento progresivo del volumen de residuos biodegradables y de la cantidad de materia orgánica que se desecha, lo que plantea un grave problema social por la contaminación que ocasiona su eliminación y para la conservación del medio ambiente (Fuentes, 2006). La contaminación por residuos representa hoy en día, una de las principales formas de deterioro, provocando problemas ambientales como plagas, patógenos, lixiviados y malos olores que causan daño a la salud pública. Los lodos de las plantas de tratamiento de agua son un material rico en nutrientes. Para facilitar el manejo de éstos, se someten a procesos de espesamiento, digestión y deshidratación, adquiriendo así la categoría de biosólidos (Vélez, 2007). Estos contienen materia orgánica y nutrientes esenciales para las plantas que pueden ser reciclados como fertilizantes y mejoradores del suelo, sin embargo, el contenido de metales pesados y organismos patógenos puede ser un factor limitante para su aprovechamiento en usos urbanos y agrícolas (Logan et al. 1997, NOM-004 2002). Los contaminantes principales son clasificados fundamentalmente en los siguientes grupos: 1) Metales principalmente zinc (Zn), cobre (Cu), níquel (Ni), cadmio (Cd), plomo (Pb), mercurio (Hg) y cromo (Cr). El peligro de éstos son su potencial de acumulación en los tejidos humanos; los metales están siempre presentes, en concentraciones bajas en las aguas residuales domésticas, pero las concentraciones preocupantes son sobre todo las que se encuentran en las aguas residuales industriales (Matthews, 1996). 2) Nutrientes y materia orgánica, su peligrosidad radica en su potencial de eutrofización para las aguas subterráneas y superficiales, sin embargo, se pueden considerar como fertilizantes valiosos al igual que la materia orgánica (Matthews, 1996). 3) Contaminantes orgánicos son los plaguicidas, disolventes industriales, colorantes, plastificantes, agentes tensoactivos y muchas otras moléculas orgánicas complejas, generalmente con poca solubilidad en agua y elevada capacidad de adsorción, tienden a acumularse en los lodos (Matthews, 1996). Todos estos contaminantes son motivo de preocupación por sus efectos potenciales sobre el medio ambiente y sobre la salud humana (Vélez, 2007).

Existen diversas alternativas para la disposición de lodos, desde depositarlos en rellenos sanitarios, incinerarlos, hasta utilizarlos provechosamente en producción vegetal, sin embargo, hay limitaciones para su utilización en agricultura debido a que pueden presentar una alta carga patogénica y presencia de elementos traza metálicos que pueden afectar a la cadena trófica a través de los cultivos y/o contaminar las aguas freáticas (Legret et al., 1988; Gennaro et al., 1991; Barbarick et al., 2004). Una cantidad considerable de los lodos generados por las plantas de tratamiento de agua son descargados al drenaje, o son desechadas sin ningún tipo de tratamiento en presas, terrenos o en las mismas fuentes de suministro, y en el mejor de los casos son dispuestos en lagunas y rellenos sanitarios (Castrejón et. al, 2002; Barrios et.al.,
Dado que el principal problema que presentan los lodos es su alto contenido microbiológico (Castrejón et al., 2002), el desecharlos sin algún control generan una doble problemática: por un lado el vertido de los lodos en sitios inadecuados puede generar severos problemas de contaminación, y por otro, se están desperdiciando las propiedades benéficas de los lodos, que pudieran ser aprovechadas en las actividades agrícolas, pues se sabe que estos lodos son ricos en materia orgánica, nitrógeno y fósforo principalmente. Aunado a esta problemática se tiene por otro lado los altos costos inherentes al manejo de los mismos, para su traslado y confinamiento en rellenos sanitarios.

Hasta el 2001 existían en el país 1,132 plantas de tratamiento de aguas residuales municipales, de las cuales el 47 % son lagunas de estabilización (CNA, 2001) por lo que los sedimentos se quedan en esas lagunas. El resto de las plantas tienen diferentes procesos (lodos activados, filtros rociadores, tanques sépticos, primario avanzado, biológicos, anaerobios, zanjas de oxidación y tanques Imhoff (CNA, 2001), donde se obtiene subproductos como es el caso de los lodos

Por otro lado el cambio hacia nuevas técnicas de cultivo, la utilización masiva y sistemática de abonos minerales, el empleo de herbicidas selectivos, la quema de rastrojos y la eliminación de residuos de las cosechas entre otros factores, han incidido negativamente en el mantenimiento del contenido de materia orgánica del suelo ocasionando erosión en los suelos (Fuentes, 2006). La erosión está relacionada con la pérdida de la cubierta vegetal y por tanto con la fertilidad de los suelos, ésta se ve disminuida por la pérdida de materia orgánica por la extracción de nutrientes por las plantas cultivadas y por lixiviación, ocasionando incremento en la acidez en suelos y en ocasiones efectos tóxicos debido a la alteración de los componentes químicos del suelo. Este empobrecimiento de los suelos ocasiona que los productores agrícolas recurran a la fertilización de los suelos para incrementar su producción. Sin embargo el uso indiscriminado de fertilizantes químicos, mayormente los de tipo nitrogenados, son fuentes de contaminación sobre todo de las aguas superficiales, ya que estos compuestos, por estar en forma de sales, pueden disolverse fácilmente mermando la calidad del agua para su consumo. La materia orgánica, es uno de los factores más importantes para determinar la productividad de un suelo, por lo que la aplicación de materia orgánica de forma sistemática es de trascendental importancia para mejorar las propiedades físicas, químicas y biológicas del suelo y buscar la sustentabilidad agrícola de los sistemas productivos, para garantizar el abastecimiento de alimentos (INIFAP, 2002).

Entre los diferentes métodos de adecuación de los residuos orgánicos para fines agrícolas destaca el compostaje (Abad y Puchades, 2002; Climent et. al, 1996), tanto desde el punto de vista ecológico como económico, (Raviv, 1998), al mismo tiempo que es una forma de reciclaje y manejo sustentable de residuos industriales y domésticos. El compostaje es el sistema que más respeta el ciclo de conservación de la materia y el que mayor aplicación encuentra en
Agricultura (Soliva, 2001). Al mismo tiempo, esta estrategia de manejo ayuda a aprovechar la materia orgánica de los residuos. Adicionalmente, el reciclaje ayuda a preservar grandes cantidades de elementos nutritivos, particularmente N y P, los cuales normalmente se encuentran en grandes concentraciones en los residuos mencionados, reduciéndose en consecuencia la necesidad de fertilizantes sintéticos (Ambus, 2002, Hargreaves, 2008). El compostaje es un proceso biológico aeróbico de descomposición oxidativa, se lleva a cabo bajo condiciones controladas, sobre sustratos sólidos orgánicos heterogéneos, en el que se transforman compuestos disponibles y de fácil asimilación además se reduce su peso, volumen y peligrosidad (Peña, 2002).

Los materiales que pueden someterse a éste proceso son todos los residuos de origen vegetal o animal, como los residuos orgánicos domiciliarios, industriales, de actividades agrícolas o las que se generan en el mantenimiento de áreas verdes (poda, corte de césped) y que se denominan residuos verdes (INIFAP, 2002). La finalidad del proceso es acelerar la degradación de los residuos orgánicos, que en la naturaleza tiene lugar en períodos prolongados de tiempo. El compostaje produce un material valioso con alto contenido de humus, que puede utilizarse como mejorador de suelos y fertilizante, la composta (INE, 2007). Desde el punto de vista agrícola, con el compostaje se obtiene un material maduro, estable e higienizado, con un alto contenido en materia orgánica y componentes húmicos denominado composta, el cual puede ser utilizado sin riesgo en agricultura por ser inocuo y no contener sustancias fitotóxicas, favoreciendo el crecimiento y el desarrollo de las plantas (Soliva, 2001), aumentan la fertilidad y mejoran las propiedades físico-químicas de los suelos, pues la materia orgánica estabilizada y rica en nutrientes disponibles aumentan la microbiota de éstos, aumentan la retención de agua, la capacidad de intercambio cationico, mejoran el pH, la textura y porosidad; convirtiéndose por tanto en un material con valor agronómico que puede ser utilizado para enmiendas orgánicas, aplicable para los distintos tipos de suelo y en cultivos tanto hortícolas, de jardinería, agrícola como en invernadero (Mora, 2006). Se les considera como productos fertilizantes de lenta liberación cuya acción se prolonga en el tiempo (acción residual) que contribuyen a mejorar la calidad del medio ambiente y favorecer la producción sostenible de alimentos (Acuña, 2003; Soto, 2003). Existe una amplia cantidad de referencias bibliográficas que señalan el efecto positivo del uso de diversos productos orgánicos en las condiciones del suelo y la productividad de los agroecosistemas (Bertsch 1998, Soto 2003, Meléndez y Molina 2003).

El presente trabajo donde se demostró la eficiencia del compostaje de residuos industriales no tóxicos se llevó a cabo en el municipio de Altzayanca del estado de Tlaxcala, debido a que es uno de los principales productores de maíz en grano a nivel nacional y por otro lado ocupa el séptimo lugar en porcentaje en erosión, con 93% de su superficie degradada (INE, 2007), por lo que los productores deben aplicar fertilizantes para la obtención de sus cosechas ya que los suelos son muy pobres, en nutrientes.
La evaluación a nivel invernadero se realizó en las instalaciones del CIBA (Centro de Investigación en Tecnología Aplicada) Tlaxcala. Los análisis fisicoquímicos efectuados a las compostas y suelos se desarrollaron en el laboratorio de Ciencias Ambientales modulo Suelo del Centro de Investigación en Ciencias Biológicas de la Universidad Autónoma de Tlaxcala y en el Laboratorio de Microbiología de Suelos del Centro de Investigaciones en Ciencias Microbiológicas del Instituto de Ciencias, de la Benemérita Universidad Autónoma de Puebla.

2.- ANTECEDENTES

2.1 COMPOSTAJE

2.1.1 Definición e importancia

El arte del compostaje es muy antiguo y sus principios básicos han sido apreciados y usados a lo largo de los siglos aunque con distinta intensidad según la situación económica de la época (Mishra y col., 2003). Últimamente ha vuelto a recuperarse debido al crecimiento desmesurado de la generación de residuos, problemas de suelos pobres en materia orgánica, falta de espacios para ubicar tiraderos y a medidas ambientales más restrictivas que afectan el manejo de los residuos orgánicos en los tiraderos, así como a la necesidad de reducir las emisiones de CO₂ (Smith et., 2001; Favoino, 2002). Es un proceso dinámico, biológico, aerobio y en consecuencia termófilo (Saña y Soliva, 1987) que para llevarse a cabo necesita materia orgánica, población microbiana inicial y las condiciones óptimas para que ésta se desarrolle con multiplicidad de funciones y actividades sinérgicas, para ello y para que la población microbiana sea lo más variada posible debe mantenerse una serie de equilibrios: aire/agua, biopolímeros y nutrientes en la mezcla inicial y dar las condiciones físicas y fisicoquímicas necesarias a la matriz que se va a someter al compostaje, según la Fig. 1.

![Fig. 1 Proceso de compostaje (Stofella, 2003).](attachment:image)
El vocablo compost proviene del latín *componere* que significa juntar. De aquí que el compost puede ser considerado como la agrupación de un conjunto de restos orgánicos que a través de un proceso de fermentación origina un producto inodoro y con alto contenido de humus (García, 1995). El compostaje es un proceso biológico termofílico en donde la materia orgánica es descompuesta por una gran cantidad de microorganismos. Bacterias, hongos, protozoos, ácaros, miriápodos, entre otros organismos aeróbicos, digieren los compuestos orgánicos transformándolos en otros más simples (Rynk, 1992).

Desde una mirada ambientalista, el compost posee un inestimable valor pues se trata de la recuperación de materia orgánica a partir de los desechos originados por la actividad humana, que sin ningún tratamiento contaminarían el entorno. El aporte de materia orgánica a los terrenos agrícolas puede hacerse entonces mediante la aplicación de compost (García, 1995). El compostaje es una técnica de reciclaje, estabilización y tratamiento de residuos orgánicos biodegradables, tiene múltiples funciones, según el objetivo a alcanzar (Soliva, 2001). Desde la perspectiva medioambiental, el compostaje facilita la gestión de los residuos orgánicos, reduciendo su peso, volumen y peligrosidad. También puede llevarse a cabo únicamente como tratamiento previo a la incineración o el vertido, ya que al reducir el volumen de los mismos se hacen más manejables y menos contaminantes (Soliva, et.al).

El compostaje es un tratamiento biológico de degradación aerobia frecuentemente utilizado, cuando la conversión de la materia orgánica fresca a substratos, (azúcares, aminoácidos, lípidos, celulosa) con un alto grado de descomposición, bajo condiciones controladas, es realizada en un período de tiempo relativamente corto (habitualmente pocos meses); implica una serie de procesos metabólicos complejos procedentes de la actividad integrada de un conjunto de microorganismos. Los cambios químicos y especies involucradas en el mismo varían de acuerdo a la composición del material que se quiere degradar (Abad, 2002). Pueden ser bacterias, hongos y actinomicetos mesófilos; posteriormente, se lleva a cabo la descomposición de los materiales más recalcitrantes (hemicelulosa y lignina) (Hoitink y Changa, 2004) por organismos termófilos como las levaduras y algunos actinomicetos. Las altas temperaturas (45 - 65 °C), durante la fase termofílica, causan la muerte efectiva de patógenos y semillas de malezas evitando que sean transferidos a cultivos sucesivos, para pasar luego a la formación de sustancias húmicas, durante la fase de enfriamiento y maduración.

El compostaje está regulado por factores específicos como: temperatura, humedad, aireación y pH principalmente, transformando la materia orgánica en nutrientes asimilables como CO₂, H₂O, iones minerales y materia orgánica estabilizada, rica en substancias húmicas que recibe el nombre de humus (Atiyeh et al., 2000a; Soto y Muñoz, 2002; Pereira y Zezzi-Arruda, 2003). La finalidad del proceso es acelerar la degradación de los residuos orgánicos, que en la naturaleza tiene lugar en periodos prolongados de tiempo. Las materias primas utilizadas en el
compostaje representan una amplia gama de residuos orgánicos tales como los residuos sólidos municipales (MSW, por sus siglas en inglés), los lodos de aguas negras (biosólidos), residuos de jardín y verdes, estiércoles, entre otros (Chefetz, 1998). Desde el punto de vista agrícola, con el compostaje se obtiene un material maduro, estable e higienizado, con un alto contenido en materia orgánica, el cual puede ser utilizado sin riesgo en agricultura por ser inocuo y no contener sustancias fitotóxicas, favoreciendo el crecimiento y el desarrollo de las plantas. Esta puede utilizarse como mejorador de suelos y fertilizante, es un nutriente para el suelo que mejora la estructura y ayuda a reducir la erosión, ayuda a la absorción de agua y nutrientes por parte de las plantas (Soliva, et. al).

La utilidad del compostaje es el resultado de dos funciones básicas: (1) cambia las cualidades de los materiales difíciles y a veces indeseables, produciendo un producto que es, como mínimo más fácilmente utilizable y manejable, y (2) crea compost un producto que tiene mejores usos y más valor que las materias primas a partir de las cuales se elabora; debido a la primera función, el compostaje es un método para tratar subproductos orgánicos, o residuos, permitiéndoles ser reciclados de manera económica y segura (Stofella, 2005).

Los objetivos del compostaje son:

- Reducir el volumen de residuos
- Estabilizar la materia orgánica de los residuos
- Higienizar el producto, dejarlo libre de patógenos debido a las temperaturas alcanzadas en el compostaje.
- Aprovechamiento de residuos, permite la utilización no contaminante del abono orgánico
- Facilita el manejo de los residuos, reduce el olor
- Puede ser almacenado sin problema (Diaz, 2001)
- El control de microorganismos patógenos
- La remoción de sustancias tóxicas orgánicas e inorgánicas (Gea, 2004)

2.1.2 Tipos de compostaje

Los sistemas de compostaje tienen como finalidad facilitar el control y la optimización de parámetros operacionales, para obtener un producto final con la suficiente calidad tanto desde el punto de vista sanitario como de su valor fertilizante (INIFAP, 2002). Debido a las diferencias en el costo y la gestión de los residuos, la clasificación más común se realiza en función del aislamiento del material que va a someterse al proceso de compostaje con respecto al exterior, en cuyo caso se tienen: sistemas abiertos y cerrados. En ellos la variable sobre la que más se incide es el suministro de oxígeno, mediante diferentes sistemas de aireación (Moreno, 2008).

Sistemas abiertos:
Son los más generalizados constituyen la forma tradicional de compostaje, los sustratos a compostear se disponen en montones o pilas (agrupamiento de residuos en montones que generalmente adoptan forma triangular, con una altura recomendada menor de 2.7 m y sin una limitación en cuanto a su longitud) sin que se compriman excesivamente para permitir que el aire quede retenido; pueden estar al aire libre o en naves. El tamaño y la forma de las pilas se diseñan para permitir la circulación del aire a lo largo de la pila, manteniendo las temperaturas en el rango apropiado. Si las pilas son demasiado grandes, el oxígeno no puede penetrar en el centro, mientras que si son demasiado pequeñas no se calentarán adecuadamente. El tamaño óptimo varía con el tipo de material y la temperatura ambiente (Moreno, et. al). La aireación de la masa fermentable puede hacerse por volteo mecánico de la pila o mediante ventilación forzada. La frecuencia de los volteos depende del tipo de materiales a compostar, de la humedad y de la rapidez con la que se desea que se realice el proceso; para establecer esta frecuencia es preciso controlar la temperatura de la pila o bien fijarse si se desprenden malos olores (INIFAP, 2002). Siendo habitual realizar un volteo cada 6 -10 días. Los volteos sirven para homogeneizar la mezcla y su temperatura, a fin de eliminar el excesivo calor, controlar la humedad y aumentar la porosidad de la pila para mejorar la ventilación. Después de cada volteo, la temperatura desciende del orden de 5 ó 10 ºC, subiendo de nuevo en caso que el proceso no haya terminado (Stofella, et. al). Se ha usado con éxito para el compostaje de estiércol, residuos vegetales, lodos y residuos sólidos urbanos. El proceso logra buenos resultados de una amplia variedad de residuos orgánicos y funciona satisfactoriamente mientras se mantienen las condiciones aerobias y el contenido de humedad. Actualmente se tiende a realizarlo en naves cubiertas, sin paredes, para reutilizar el agua de los lixiviados y de lluvia para controlar la humedad de la pila. La duración del proceso es de unos dos o tres meses, más el período de maduración (Moreno, et. al).

En las pilas por volteo mecánico la aireación de la pila se realiza de forma periódica y por lo tanto el nivel de oxígeno no se mantiene constante impidiéndose el aumento de las oxidaciones biológicas y haciendo que el proceso de compostaje sea más lento. Por otro lado, las instalaciones requieren mayor espacio que en otros métodos, porque las pilas se voltean lateralmente. Otro aspecto a destacar es, que éste sistema es menos efectivo en la inactivación de patógenos que los métodos estáticos (Alviar, 2004). En el caso de las pilas mediante ventilación forzada se basa en ventiladores para airear y ventilar los materiales de compostaje. Las pilas se construyen encima de un sistema de conductos de aireación que proporciona y suministra el aire a través de los materiales de compostaje, el material a compostar se coloca sobre un conjunto de tubos perforados conectados a un sistema que aspira o insufla aire a través de la pila. La aireación forzada suministra O2 enfría la pila y elimina el vapor de agua, CO2 y otros productos de descomposición. Cuando la temperatura excede el óptimo, unos sensores que controlan el ventilador lo activan para inyectar el aire necesario para enfriar la pila abasteciéndola de oxígeno (Stofella, et.al). Esta tiene la ventaja de permitir el control del nivel de oxígeno, así como de la humedad y de la temperatura; la ventilación controlada
impulsa la actividad de los microorganismos que intervienen en el compostaje por lo que se consigue una rápida transformación de los residuos en 4-8 semanas. Es importante la homogeneidad del material que se somete al compostaje, pues durante el proceso no se realiza mezcla mecánica de materiales; además supone menores costos y necesidad de menos espacio, evitándose los inconvenientes del volteo de las pilas (Moreno et. al, 2008).

Sistemas cerrados.

En estos sistemas la fase inicial de fermentación se realiza en reactores o contenedores que pueden ser horizontales o verticales, aireados-agitados, túneles dinámicos y reactores de tambor rotativos (Moreno, et. al), mientras que la fase final de maduración se hace al aire libre o en naves abiertas. En los sistemas de compostaje cerrados, la mayoría de los métodos emplea aireación forzada y algunos mecanismos de agitación. El entorno que rodea al compostaje está controlado. Los ejemplos de reactores incluyen contenedores de acero aireados, tubos amplios de polietileno, reactores cilíndricos o rectangulares orientados verticalmente y varias configuraciones de depósitos cerrados (Stofella, et. al). Son sistemas desarrollados para reducir considerablemente las superficies de compostaje, y lograr un mejor control de los parámetros de fermentación y controlar los olores de forma más adecuada. Aunque estos sistemas requieren costos de instalación superiores a los anteriores, presentan la ventaja de ser más rápidos y por tanto requerir menos espacio (INIFAP, 2002). Se requieren alrededor de de 560 m³/ton de materia orgánica por día. La ventaja de éste método es que se pueden planificar cómo va a ocurrir el proceso, aunque siempre es deseable hacerlo al margen de la temperatura termófila para la eliminación de patógenos y por la aceleración del proceso a esas temperaturas (Castillo, 2005).

2.1.3. Etapas del compostaje

La utilización o no de una operación dada depende de las materias primas, el método de compostaje empleado, y el uso que se pretende y los mercados de la composta. Molienda, mezcla, cribado, tratamiento de olor y maduración son las operaciones de apoyo más comunes (Stofella, et.al, 2003).

Molienda:

La molienda acelera el proceso de compostaje con la reducción de los tamaños de partícula. También mejora la manipulación de materiales y puede facilitar otras operaciones como la mezcla. Es una operación necesaria para materias primas leñosas grandes, paja, residuos sólidos mezclados, hojas, vegetación y alimentos. Molinos de martillos, trituradores y tambores rotativos todos pueden ser efectivos en la reducción del tamaño de la materia prima antes del comostaje (Diaz y col. 1982; Richard, 1992).
El proceso de compostaje consta básicamente de las siguientes etapas:

- Mezclado
- Estabilización termofílica
- Estabilización final

Además existen dos etapas opcionales que son: el secado y el cribado (Barrera, 2006)

Mezclado

Es la primera etapa del proceso y consiste en obtener una mezcla homogénea al revolver el material acondicionador con el lodo. La mezcla final debe tener una porosidad de 30 a 35 % (espacios libres) y una humedad inferior al 60% (Barrera, 2006).

Cuando dos o más materiales separados son compostados conjuntamente, la mezcla de materia prima antes del compostaje normalmente tiene lugar como una operación separada. Sin embargo, para métodos que incluyen agitación regular como hileras o contenedores agitados, sería suficiente cargar la materia prima conjuntamente en proporciones aproximadas y confiar en la agitación durante el compostaje para crear una mezcla homogénea. Cuando se realiza la mezcla como una operación separada se lleva a cabo con volteos, equipos de mezcla que utilizan hélices o paletas, amasadoras o volteos de hileras (Higgins y col.,1981, Rynk, 1994).

Estabilización termofílica

La etapa termofílica tiene lugar después del mezclado y requiere de tres o cuatro semanas para completarse. En esta etapa se produce un aumento progresivo de la temperatura del material a compostar. Durante este período la mezcla debe tener aireación manual o forzada con el fin de proporcionar el oxígeno necesario para que los microorganismos mesófilos realicen la biodegradación y se generen altas temperaturas (50-55 ºC). Durante estos cambios de temperatura las poblaciones bacterianas se van sucediendo unas a otras, hacia los 70º C cesa prácticamente la actividad microbiana debido al agotamiento de nutrientes, esta temperatura es necesaria para la destrucción de microorganismos patógenos. Según Haug (1979), es la etapa de alta actividad microbiana caracterizada por la presencia de microorganismos termofílicos y alta reducción de sólidos volátiles biodegradables, es la etapa que requiere de mayor control (Romero, 2000).

Estabilización final o fase de maduración
Se realiza después de la estabilización termofílica y su duración es de aproximadamente 30 días. Es una etapa muy importante donde se puede lograr la degradación adicional de compuestos difícilmente biodegradables (Romero et al, 1989). A medida que el compost madura, la generación de calor y la demanda de O₂ disminuye sustancialmente debido a la limitación de nutrientes, con un descenso importante de la actividad microbiana. La maduración es una fase posterior de compostaje en la que la velocidad de descomposición decrece a un paso lento continuo y el compost madura en temperaturas (< 40 °C) bajas mesofílicas (Haug, 1993; Rynk et. al). La maduración típicamente engloba el amontonar parcialmente el compost acabado en pilas que se airean pasivamente. Cada vez más, las pilas de maduración se airean por ventiladores para evitar condiciones anaeróbicas, olores y temperaturas excesivas. Es difícil trazar la frontera entre el compostaje activo y la maduración, el punto en el cual el compostaje activo acaba y empieza la maduración es típicamente determinado por la temperatura o el tiempo. Una vez finalizado el proceso, se obtiene un producto humificado estable o maduro en que los mecanismos de descomposición microbiana no ocurren o lo hacen de forma muy lenta (Stofella, et.al).

Secado y cribado

Tanto el secado como el cribado son etapas opcionales en el proceso de compostaje, tienen como propósito la obtención de un material de mejor calidad. El cribado permite una mejor recuperación del material acondicionador que puede reciclarse al proceso y un producto de tamaño homogéneo dependiendo del uso que quiera darse a la composta (INIFAP, 2002). El cribado se utiliza más a menudo para eliminar partículas grandes (por ejemplo palos, rocas, astillas) del compost acabado para mejorar la apariencia o el rendimiento del compost. El cribado también se utiliza para recuperar partículas grandes de material de relleno para su reutilización en el proceso de compostaje y para la separación de materiales particulares de las materias primas por ejemplo (eliminación de suelo, en los restos de broza antes de la molienda). Los tipos de sistemas de cribado más comunes que se utilizan en las instalaciones de compostaje son las cribas giratorias (Rynk, et.al, 1992). Las cribas de disco de agitación, vibración o rotación también se utilizan para la clasificación por tamaños (Stofella, et.al).

2.1.4. Factores que influyen en el proceso de compostaje.

La degradación de la materia orgánica ocurre fundamentalmente en la superficie de las partículas orgánicas, por ello, además de la composición del sustrato, su estructura, la cantidad de agua y oxígeno; el pH y la temperatura son factores abióticos determinantes del tipo y actividad de las poblaciones microbianas que se desarrollan durante el compostaje. A estos factores se suman otros como el grado de homogenización del material, el tamaño de la pila o del reactor, la frecuencia de volteos, el tiempo de maduración, el empleo de agentes texturizantes, las condiciones ambientales externas y la técnica de compostaje que también habrían de tenerse en cuenta. Todos estos factores son modificables y su control permitirá
desarrollar el proceso de forma óptima, para ello es imprescindible conocer la influencia de los mismos en el desarrollo de las poblaciones microbianas activas (Moreno, et. al, 2008). La Fig. 2 muestra la interacción de los factores ambientales en el desarrollo de las poblaciones microbianas durante el compostaje.

![Diagrama de compostaje con etapas y factores ambientales](image)

Fig. 2 Sucesión microbiana y ambiental durante el proceso de compostaje (Moreno, et.al, 2008).

El compostaje se basa en la acción de diversos microorganismos aeróbios (Haug, 1993), que actúan de manera sucesiva, sobre la materia orgánica original en función de la influencia de determinados factores, produciendo elevadas temperaturas, reduciendo el volumen y el peso de los residuos y provocando su humificación y oscurecimiento (Nakasaki, 2005). Durante este proceso se han de controlar los distintos factores que aseguren una correcta proliferación microbiana y por consiguiente, una adecuada mineralización de la materia orgánica (Cronje et.,al, 2003).
Entre los parámetros de seguimiento se encuentran: temperatura, humedad, pH, aireación y espacio de aire libre. Entre los relativos a la naturaleza del sustrato: materiales acondicionadores, tamaño de partícula, relaciones C/N y C/P, nutrientes, materia orgánica y conductividad eléctrica. Los valores o intervalos óptimos para el funcionamiento adecuado del proceso están influenciados por las condiciones ambientales, el tipo de residuo a tratar y el sistema de compostaje elegido (Moreno, et.al,2008; Sundberg y col., 2004.; Ekinci y col , 2006; Liang y col., 2006)

Temperatura

Tan pronto como se ha apilado la materia orgánica comienza la actividad microbiana, si las condiciones son las adecuadas. El indicio más claro de esta actividad es el incremento de temperatura en toda la masa. La velocidad con que se incrementa la temperatura depende del tipo de material que se somete al proceso de compostaje y de los factores ambientales, pero en general se considera que, como mínimo, a los dos días de haberse hecho la pila con los residuos la temperatura puede haber llegado a los 55°C. El grupo que resulta favorecido por una temperatura concreta descompondrá la materia orgánica del resíduo, utilizándola como fuente de energía y desprendiendo como consecuencia calor (Tiquia, 2005). Este calor provoca una variación de la temperatura de la pila que dependerá de la adecuación de los demás factores a los intervalos óptimos, del tamaño de la pila (el calor generado es proporcional al volumen o masa de la pila, pero la pérdida es proporcional a la superficie), de las condiciones ambientales y del tipo de adición de aire a la pila, ya sea con volteos o con aire a presión (Ekinci y col, 2004). La temperatura es uno de los factores que influye de forma más crítica sobre la velocidad de descomposición de la materia orgánica durante el compostaje. Las temperaturas óptimas del proceso se encuentran entre 45 y 59 ºC. Temperaturas menores de 20 ºC frenan el crecimiento microbiano, y por tanto, la descomposición de los materiales. Los microorganismos que toman parte en la descomposición de los residuos sólidos son fundamentalmente bacterias y hongos, que mantienen su actividad en un determinado intervalo de temperatura; de esta forma, se pueden distinguir microorganismos mesófilos, que desarrollan su actividad entre 15 y 45°C y termófilos, que desarrollan su actividad entre 45 y 70°C (INIFAP, 2002). Si la temperatura es superior a 59 ºC se inhibe el desarrollo de gran parte de los microorganismos o provoca su eliminación, con lo que se reduce la tasa de descomposición microbiana.

Por tanto, un proceso de compostaje será más efectivo en cuanto las temperaturas se mantengan en los niveles más elevados que no permitan la inhibición de la actividad microbiana. En este sentido, algunos datos indican que el proceso de compostaje es autolimitante, de modo que la generación y acumulación de calor no permite de forma general, que las temperaturas medias más elevadas no superen los 60 ºC la cual es suficiente para asegurar la muerte de patógenos tanto humanos como vegetales (Stofella, 2003). La temperatura es considerada como el indicador más importante de la eficiencia en el proceso de
Compostaje (Imbeah, 1998). La temperatura óptima del compostaje refleja un compromiso entre la pérdida mínima de nutrientes y la máxima inactivación de patógenos y malezas ([Larney et al., 2003; Larney y Blackshaw, 2003, Hanajima et al., 2006; Zhang y He, 2006 y Larney y Hao, 2007]. La pasteurización se lleva a cabo durante la fase termofílica y consiste en dos etapas. En la primera se incrementa la temperatura de los materiales a cerca de 35°C para favorecer la germinación de semillas y esporas. En la segunda, se eleva a 55°C y se mantiene el material a esa temperatura durante varios días, hasta que se presenta la fase de la muerte de los microorganismos termofílicos. Cuando la temperatura baja después de la pasteurización, sólo se desarrollarán los microorganismos que estén presentes en el suelo natural. La pasteurización es necesaria para eliminar los patógenos de plantas, animales y humanos (INE, 2007).

Stentiford (1996) sugiere que las temperaturas entre 45°C y 55°C permiten tasas máximas de biodegradación y entre 35°C 40°C mayor diversificación microbiana en el proceso de compostaje. Cerca de 40°C, la nitrificación y desnitrificación, por lo tanto las emisiones de N2O son suprimidas porque la actividad de bacterias autotróficas nitrificantes cesa (Hellmann y col., 1997). Para inactivar patógenos la temperatura deberá alcanzar 55°C mínimo durante 15 días. (Gea, 2004). Stofella y colaboradores (2003) y Moreno y colaboradores (2008) sugieren que de acuerdo con las variaciones térmicas indicadas y las reacciones metabólicas predominantes en el compostaje, se presentan cuatro fases: Fase bio-oxidativa o de crecimiento activo de los microorganismos, en la que existe una elevada disponibilidad de nutrientes, también llamada fase mesófila (10-42°C); al final de la cual se producen ácidos orgánicos; fase termófila (45-70°C); fase de enfriamiento y fase de maduración, considerándose finalizado el proceso cuando se alcanza de nuevo la temperatura inicial.

Contenido de humedad.

En el proceso de compostaje es importante que la humedad alcance unos niveles óptimos del 40-60 %. La mezcla lodo-material texturizante deberá tener un nivel de humedad no mayor de 60%, especialmente en el compostaje en pila estática (Haug, et.al); si el contenido en humedad es mayor, el agua ocupará todos los poros y por lo tanto el proceso se volvería anaeróbico, es decir se produciría una putrefacción de la materia orgánica. Si la humedad es excesivamente baja se disminuye la actividad de los microorganismos y el proceso de degradación se entorpece haciéndose más lento. El contenido de humedad dependerá de las materias primas empleadas. Para materiales fibrosos o residuos forestales gruesos la humedad máxima permitible es del 75-85 % mientras que para material vegetal fresco, ésta oscila entre 50-60%; Kiely (1999) indica valores óptimos de humedad entre el 50-60% para garantizar una eficiente actividad metabólica, porcentajes menores a 20 % cesan la biodegradación y el proceso se vuelve más lento (Barrera, et. al, 2006); por encima del 60% el agua desplaza al aire en los espacios libres existentes entre las partículas, reduciendo la transferencia de oxígeno y
producéndose una anaerobiosis. Cuando las condiciones se hacen anaerobias se originan malos olores y disminuye la velocidad del proceso (Moreno, et. al, 2008). El exceso de humedad puede ser reducido aumentando la aireación (Haug, 1993). A su vez, con un buen control de la humedad y de la aireación, puede llevarse a cabo el control de la temperatura porque el exceso de aire puede secar la mezcla (INE, 2007). Esto es debido a que durante el proceso de compostaje se debe llegar a un equilibrio entre los huecos entre partículas (de tamaño variable) que pueden llenarse de aire o de agua. Por lo tanto, la humedad óptima depende del tipo de residuo (Haug, 1993). En una operación de compostaje, sea ésta a gran o pequeña escala, debe haber un monitoreo de la humedad. Si hay exceso de humedad, se puede airear la mezcla o agregar elementos secos como paja y desperdicio de papel que absorban la humedad; si falta humedad, se puede regar la mezcla o taparla con plástico para reducir la evaporación del agua (INE, 2007).

Balance de la relación C/N

Los microorganismos de una composta utilizan el carbono para conseguir energía y el nitrógeno para la síntesis de proteínas. El parámetro que mide esta proporción se llama relación “carbono/nitrógeno” (C/N) (INE, 2007). La relación C/N se usa tradicionalmente como índice para determinar la madurez y estabilidad de la materia orgánica; la cantidad de carbono necesaria es considerablemente superior a la de nitrógeno, ya que los microorganismos lo utilizan como fuente de energía, y porque está presente en el material celular en una cantidad muy superior a la del nitrógeno. Durante el proceso hay pérdidas de nitrógeno por volatilización y lixiviación perdiéndose uno de los nutrientes principales en forma de NH₃. Si el material de partida contiene demasiado carbono, la relación será muy alta y el proceso de fermentación será lento, el carbono se perderá en forma de CO₂. Si, por el contrario, el material contiene demasiado nitrógeno, la relación es baja y se producirá NH₃, permitirá un incremento del crecimiento bacteriano y una aceleración de la descomposición de la materia orgánica; sin embargo, este exceso de actividad provoca un déficit en oxígeno por lo que el proceso se vuelve anaerobio. En cambio, la falta de nitrógeno resulta en un deficiente crecimiento del cultivo y correcta actividad microbiana, por lo que la velocidad de descomposición se ve disminuida (INE, 2007). Durante el compostaje la pérdida de N ocurre en el rango de 16–74%, con un porcentaje de pérdida reportado de N de 40% (Raviv y col., 2004). La pérdida de N durante el proceso de compostaje puede ser controlado por el incremento de la relación C/N de la materia prima para aumentar la inmovilización y para reducir el pH del producto (Dewes,1996; Raviv et. al, 2004); se considera que una relación carbono/nitrógeno para un buen compostaje se encuentran entre 25 y 35. Durante el proceso de compostaje se producen pérdidas de carbono en forma de CO₂, por lo que la relación C/N irá disminuyendo hasta alcanzar un valor entre 12 y 8 en el producto final, valor que también depende del material de partida. Si el valor final de C/N es inferior, indica que la composta se ha mineralizado excesivamente, y si es muy alto, puede indicar que no se ha descompuesto suficientemente. La
estabilidad de este valor es un buen indicio de que la degradación ha finalizado y la composta se ha estabilizado o madurado. La relación C/N puede mejorarse adicionando un material texturizante con suficiente carbón ya que el lodo residual generalmente tiene una relación C/N de más o menos 15/1 (Stoffella, et. al, 2003); por tanto es importante adicionar un material texturizante que sea fuente de energía y carbono, suministrando nutrientes rápidamente disponibles mejorando y ajustando la pila (Kuter y col., 1995). La relación C/N ideal para una composta totalmente madura es cercana a 10 similar a la del humus. En la práctica se suele considerar que una composta es suficientemente estable o madura cuando la C/N es de 20, aunque esta es una condición necesaria pero no suficiente. Si los productos que se someten al compostaje poseen una relación C/N baja (inferior a 18-19), éste se lleva a cabo con mayor rapidez (Zhu, 2006). Si el residuo tiene una alta relación C/N, pero la materia orgánica es poco biodegradable, la relación C/N disponible realmente para los microorganismos es menor y el proceso evolucionará rápidamente, pero afectará solo a una proporción de la masa total (Moreno, et.al, 2008)

Airación y oxígeno

El compostaje es un proceso biológico a través del cual los microorganismos convierten materiales orgánicos en composta. Es predominantemente un proceso aeróbico o que requiere oxígeno (O$_2$) los microorganismos consumen O$_2$, para extraer energía y nutrientes de la materia orgánica. Durante la mayor parte del periodo de compostaje, la cantidad de aireación necesaria para el descenso de la temperatura excede enormemente la cantidad necesaria para la eliminación de la humedad o suministro de O$_2$. De esta forma, la necesidad de aireación es más a menudo determinada por la temperatura que por la concentración de O$_2$ (Stofella, et. al, 2003). La insuficiencia de O$_2$ provoca que los microorganismos cambien su tipo de producción de energía hacia procesos fermentativos, mucho menos eficientes (menos producción de calor, más lento el proceso). Los procesos anaeróbicos los cuales generan productos secundarios indeseables (metano y sustancias de malos olores), no favorece el aumento necesario de la temperatura, por lo que sanitariamente el producto puede contribuir a la fitotoxicidad si no logra la estabilización biológica total del producto (Moreno, et.al, 2008).

El oxígeno es elemento esencial para la descomposición aerobia y la supervivencia de la microbiota de la composta, para conseguir una buena distribución del oxígeno en toda la masa se hace necesaria la adición de un material texturizante (triturado de poda o madera) que proporcione estructura y porosidad al residuo a compostear o algún otro sistema de aireación. El oxígeno usado para la degradación de la materia orgánica durante el compostaje es sólo del 5 al 15% del requerido por el proceso para elevar la temperatura y evaporar el agua en exceso (INIFAP, 2002).
Esta cantidad de oxígeno puede ser proporcionada mediante equipo de aireación tales como ventiladores centrífugos de baja presión, incluyendo en la pila partículas de diferentes tamaños que generan bolsas o túneles de aire (aireación natural), volteando o revolviendo las pilas (aireación manual o mecánica), o introduciendo tubería a la mezcla, a través de la cual se puede forzar el aire (aireación forzada). El método de aireación natural se basa en la diferencia de temperatura entre el interior del material que está compostándose y el ambiente, lo cual produce un flujo de aire y la formación de micro túneles; este método no requiere de manipulación frecuente. El método de aireación forzada requiere de una fuente externa de energía (INIFAP, 2002.).

Material texturizante y de enmienda

Los biosólidos generados en las Plantas de tratamiento de aguas residuales (PTAR) presentan tendencia a la compactación y baja porosidad que ocasionan dificultades durante el proceso de compostaje por una inadecuada aireación, lo que se puede corregir adicionando materiales texturizantes para mejorar la porosidad y estructura de las pilas de compostaje y garantizar el ingreso del oxígeno necesario para favorecer las condiciones aeróbicas del proceso (Kuter, et al., 1995). Los materiales texturizantes son variados: vegetales leñosos como residuos de poda de zonas verdes o de jardinería, aserrín, paja, materiales previamente composteados (EPA, 1999); trozos de neumáticos, astillas de pino, viruta de madera y desechos agrícolas (Uribe, 2005). Algunos materiales de soporte actúan también como enmienda, al contribuir al mejoramiento de las características químicas del producto final, como es el caso de la cascarilla de arroz que, además de mejorar la estructura de la pila, aporta potasio (Wef, 1998).

Los materiales de enmienda son fuente de energía y carbono y suministran nutrientes rápidamente disponibles, mejorando y ajustando además el contenido de humedad de la pila (Kuter et al., 1995). Los biosólidos son residuos ricos en nitrógeno con relaciones C/N entre 5,0 y 11,0; los materiales de enmienda, ricos en carbono, permiten ajustar esta relación a los valores recomendados para garantizar la eficiencia del proceso (20 a 30) (Fernández y Pereira Da Silva, 1999). Algunos materiales utilizados son: residuos orgánicos municipales, paja, bagazo y cachaza de caña (residuos de la industria del azúcar) (Prosab, 1999), materiales minerales como la fosforita (Imery, 2005), viruta de madera, tallos de maíz, ceniza, pulpa de remolacha (Kuter et al, 1995).

Debido a que el lodo sólo es parcialmente desaguado, el contenido de humedad es de 75 a 83% por lo que es necesario incrementar su contenido de sólidos adicionando un material texturizante que además ayude a proporcionar la estructura, porosidad y textura necesarias para permitir las condiciones aeróbicas, las partículas de material acondicionador necesitan también tener dureza y capacidad de adsorber humedad. Se requiere también de un material
acondicionador que proporcione suficiente carbono para aumentar la relación carbono/nitrógeno (Stoffella, et. al, 2003).

La mezcla lodo/texturizarte debe tener 50 a 60% de humedad. Además de estos requisitos básicos se debe tomar en cuenta la disponibilidad y el costo del material texturizante. Se debe enfocar la atención sobre todo en aquellos desechos agroindustriales que se producen en grandes volúmenes como pedacería de madera, bagazo de caña, cascarilla de arroz, basura orgánica, etc. otros materiales pueden considerarse como una fuente estacional de material por ejemplo, algunos desperdicios de la cosecha como olote ó rastrojo (Stoffella, et.al, 2003).

Es importante el tamaño de las partículas del material de partida, aunque no es estrictamente necesario, es conveniente moler la materia orgánica. La actividad primera de los microorganismos es sobre la superficie de las partículas sólidas donde están presentes el agua y el O2 ahí pueden hidrolizar los compuestos orgánicos en formas solubles más degradables (Golueke, 1972). Es preciso vigilar el grado de trituración, puesto que las partículas de tamaño pequeño proporcionan mayor superficie de acceso de los microorganismos y, por lo tanto, la descomposición aumenta, permiten degradaciones más rápidas y homogéneas. Sin embargo, partículas muy pequeñas reducen el tamaño de los poros en los materiales de compostaje, lo cual dificulta la aireación, originándose problemas de compactación. El tamaño ideal de partícula es prácticamente imposible de especificar porque depende de la materia prima, estado del proceso, sistema de aireación y otros muchos factores dinámicos. Generalmente, una mezcla de partículas gruesas y finas en el rango de 3 a 50 mm funciona bien (Gray y Biddlestones, 1974; Rynk et. al, 1992).

pH

El proceso de desarrollo y crecimiento de las poblaciones de microorganismos que efectúan la degradación de la materia orgánica depende de reacciones químicas y la velocidad con que se efectúan estas reacciones está influída por la temperatura y el tiempo. El pH tiene una influencia directa en el compostaje debido a su acción sobre la dinámica de los procesos microbianos. En muchos trabajos se usa esta variable para estudiar la evolución del compostaje; mediante éste, se puede obtener una medida indirecta del control de la aireación de la mezcla, ya que si en algún momento se crean condiciones anaeróbicas se liberan ácidos orgánicos que provocan el descenso del pH. Según algunos autores la evolución del pH en el compostaje presenta tres fase: durante la fase mesófila inicial se observa una disminución del pH debido a la acción de los microorganismos sobre la materia orgánica más lábil (Moreno, et. al, 2008), produciéndose una liberación de ácidos orgánicos; en una segunda fase se produce una progresiva alcalinización del medio, debido a la pérdida de los ácidos orgánicos y la generación de amoniaco procedente de la descomposición de las proteínas (Sánchez-
Monedero, 2001); y en la tercera fase el pH tiende a la neutralidad debido a la formación de compuestos húmicos que tienen propiedades tampón (Moreno, et. al, 2008).

El pH del sistema de compostaje debe estar en un intervalo 6-8, debido a que la mayor parte de los microorganismos tienen una actividad y crecimiento máximo dentro de este valor. pH extremos de 5 o de 11 retardan el proceso durante algunos días, debido a que el proceso tiende a estabilizarse en un pH neutro. El pH inicial del proceso dependerá del tipo de residuo o mezcla de residuos a compostar y, generalmente, a lo largo del proceso se manifiesta una progresiva alcalinización del medio. El pH tiende a ser una medida que indica cómo avanza el proceso, en un inicio su descenso hasta 6.5 indica un proceso normal. Conforme el tiempo transcurre se estabiliza el valor entre 7 y 8, lo que permite la degradación y la maduración. Un valor superior a 8 provoca pérdidas de nitrógeno en forma de amoníaco (Stofella, et. al, 2003).

2.1.5. Ventajas del uso de composta

Uno de los abonos orgánicos que ha sido más estudiado en los últimos años es la composta. Se ha comprobado que mejora una gran cantidad de características del suelo como la fertilidad, la capacidad de almacenamiento de agua, la mineralización del nitrógeno, el fósforo y potasio, mantiene valores de pH óptimos para la agricultura, evita cambios extremos en la temperatura, fomenta la actividad microbiana y controla la erosión. Los efectos mencionados permiten mejorar los suelos agrícolas, incluyendo los suelos de zonas áridas y semiáridas, que en general presentan pobreza de fertilidad, materia orgánica, nutrimentos, capacidad de retención de agua y pH alto. (FAO, 1991; Trueba, 1996; Ruíz, 1996). Desde el punto de vista económico es atractivo su uso, ya que el costo a granel de composta representa aproximadamente el 10% menos que el uso de fertilizantes químicos (Trápaga y Torres, 1994).

La utilización de la composta como enmienda orgánica o producto restituidor de materia orgánica en los terrenos de labor tiene un gran potencial e interés en México, ya que la presencia de dicha materia orgánica en el suelo en proporciones adecuadas es fundamental para asegurar la fertilidad y evitar la desertización. Además, cabe comentar que la materia orgánica en el suelo produce una serie de efectos de repercusión agrobiológica muy favorable (INIFAP, 2002). Entre las ventajas del uso de compostas se encuentran:

Mejora las propiedades físicas del suelo:
La materia orgánica contribuye favorablemente a mejorar la estabilidad de la estructura de los agregados del suelo agrícola (serán más permeables los suelos pesados y más compactos los ligeros), aumenta la permeabilidad hídrica y gaseosa, y contribuye a aumentar la capacidad de retención hídrica del suelo mediante la formación de agregados (INIFAP, 2002).

Mejora las propiedades químicas:
La materia orgánica aporta macronutrientes N, P, K y micronutrientes y mejora la capacidad de intercambio de cationes del suelo. Esta propiedad consiste en absorber los nutrientes catiónicos del suelo, poniéndolos más adelante a disposición de las plantas, evitándose de esta forma la lixiviación. Por otra parte, los compuestos húmicos presentes en la materia orgánica forman complejos y quelatos estables, aumentando la posibilidad de ser asimilados por las plantas (INIFAP, 2002).

Mejora la actividad biológica del suelo:
La materia orgánica del suelo actúa como fuente de energía y nutrición para los microorganismos presentes en el suelo. Estos viven a expensas del humus y contribuyen a su mineralización. Una población microbiana activa es índice de fertilidad de un suelo (INIFAP, 2002). El producto obtenido al final de un proceso de compostaje, el compost, posee un importante contenido en materia orgánica y nutrientes, pudiendo ser aprovechado como abono orgánico o como substrato (Abad et. al, 2002).

En la mayoría de las granjas, el estiércol es más un residuo que un subproducto con valor añadido. Los principales inconvenientes son los olores y la contaminación por nitratos. El compostaje puede disminuir principalmente el peso, el volumen, el contenido en humedad, y la actividad de los estiércoles, con esto se reducen los problemas, pues se minimiza las pérdidas de nitrógeno, debido a que se encuentra en una forma orgánica más estable y es menos susceptible de lixiviarse y perderse en forma de amonio (INIFAP, 2002). La mayoría de los estiércoles tienen una elevada relación carbono/nitrógeno. Cuando se aplican al directamente suelo, el exceso de carbono en los estiércoles hace que el nitrógeno en el suelo quede inmovilizado y, por tanto, no disponible para el cultivo. El compostaje disminuye la relación carbono/nitrógeno a niveles aceptables para la aplicación al suelo, el calor generado mediante el proceso de compostaje reduce la viabilidad de las semillas que pudieran estar presentes en el estiércol. La destrucción de patógenos durante la fase termófila permite la utilización no contaminante del abono orgánico (Abad et. al, 2002) por lo que disminuye los riesgos de contaminación y malos olores; es mucho más fácil de manejar que los estiércoles y se almacena sin problemas de olores o de insectos y puede ser aplicado en cualquier época del año (Díaz, 2001).

Otra de las bondades de la composta es su aplicación a todo tipo de suelo con potencial agrícola, debido a que proporciona al mismo los nutrimentos y propiedades físico-químicas que son alteradas por las labores culturales propias de la agricultura. Los efectos de la composta se han estudiado principalmente en hortalizas, como tomate, brécol y chile. Los resultados muestran un incremento en el rendimiento y calidad de los productos cosechados (Valdtighi et. al, 1996; Vogtmann y Fricke, 1989), una mayor disponibilidad de nutrimentos como nitrógeno, fósforo y potasio y una mejora general en las características físicas del suelo (Bernal et. al, 1998; Minna y Jorgensen, 1996; Nieto-Garibay, 2002).
2.2 SUELO Y FERTILIDAD

2.2.1 Fertilidad

La fertilidad del suelo se define como la cualidad que permite a un suelo proporcionar los compuestos adecuados, en la cantidad conveniente y en el equilibrio apropiado, para el crecimiento de determinadas plantas cuando otros factores son favorables. La productividad del suelo, por otra parte, se define como la capacidad de un suelo para producir una planta determinada o secuencia de plantas bajo un sistema dado de manejo. Para que un suelo sea productivo por necesidad debe ser fértil (Millar et al, 1961). La Fertilidad del Suelo es una cualidad resultante de la interacción entre las características físicas, químicas y biológicas del mismo y que consiste en la capacidad de poder suministrar condiciones necesarias para el crecimiento y desarrollo de las plantas. En lo referente al suministro de condiciones óptimas para el asentamiento de las plantas, estas características no actúan independientemente, sino en armónica interrelación, que en conjunto determinan la fertilidad del suelo. Por ejemplo, un suelo puede estar provisto de suficientes elementos minerales -fertilidad química- pero que no está provisto de buenas condiciones físicas y viceversa. Igualmente, la fertilidad del suelo no es suficiente para el crecimiento de las plantas; el clima juega un papel importante y determinante en muchos casos. Por ejemplo se puede tener un suelo fértil y que dadas las temperaturas extremas no es capaz de producir buenas cosechas, entonces es un suelo fértil, no productivo (Sánchez, 2007). El manejo de suelos afecta el contenido de materia orgánica según el número de años de agricultura, los cultivos, las labranzas, las rotaciones, el manejo del cultivo, la fertilización, y los períodos de barbecho. Desde el punto de vista agrícola, la fertilidad del suelo se ve menguada por la pérdida de la materia orgánica por procesos de oxidación, por alta tasa de extracción de nutrientes por las plantas cultivadas, por lixiviación, por altas precipitaciones, ocasionando incremento en la acidez del suelo y en ocasiones efectos tóxicos, debido a la alteración o desequilibrio de los componentes químicos del suelo. Los suelos agrícolas se caracterizan por contener menores cantidades de materia orgánica que los suelos forestales (Instituto de suelo, 2002). Las prácticas para el manejo de la fertilidad de los suelos constituyen un componente esencial de cualquier sistema de producción agrícola cuyo objetivo sea la obtención de altos rendimientos en esta actividad; con ellas se pretende preservar, recuperar y mejorar las características de los suelos para garantizar su productividad en el tiempo, además de incorporar y reponer oportunamente los nutrimentos esenciales demandados por los cultivos que el suelo no puede suplir en la cantidad y calidad requerida. En la actualidad se hace énfasis en la necesidad de establecer prácticas que permitan mantener el nivel de productividad de los suelos, incrementar la producción agrícola y preservar los ecosistemas en el tiempo (Matheus, 2007).

Mogollón (2000), señala que las prácticas de fertilización deben garantizar el suministro de los nutrimentos esenciales, así como una reacción del suelo adecuada que no ocasionen problemas.
de salinidad; además, mejorar la superficie interna del suelo, la estructuración, su capacidad de retención de humedad e intercambio gaseoso y promover las poblaciones de los microorganismos y su actividad.

2.2.2 Factores que afectan la fertilidad del suelo

Los factores que determinan la fertilidad se pueden clasificar en:

Físicos: que condicionan el desarrollo del sistema radicular, y su aporte hídrico. La fertilidad física se identifica por: textura, estructura, porosidad, aireación, capacidad de retención hídrica, estabilidad de agregados, etc (Navarro, 2003).

Químicos: que hace referencia a la reserva de nutrientes y su aporte a las plantas. Se caracteriza por: capacidad de cambio de cationes, pH, materia orgánica, macronutrientes (N, P, K, Ca, Mg, S) y micronutrientes (B, Fe, Mo, Mn, Zn, Cu, Na y Cl) y sus formas químicas en el suelo que condicionan su biodisponibilidad (Navarro, et al 2003).

Biológicos: determinados por la actividad de los microorganismos del suelo. La microflora del suelo utiliza la materia orgánica como sustrato y fuente de energía, interviniendo en la producción de enzimas, ciclo de C y de N, transformaciones biológicas de nutrientes y procesos de humificación y mineralización (Navarro, et al 2003).

La materia orgánica es un factor clave en la fertilidad del suelo, ya que actúa sobre las propiedades físicas (porosidad, capacidad de retención hídrica, estabilidad de agregados, etc); sobre las químicas, aportando nutrientes mediante los procesos de mineralización a través de su capacidad de cambio de cationes, actúa como una reserva nutricional y sobre las biológicas, ya que mantiene la actividad microbiana del suelo (Navarro, et al, 2003).

La materia orgánica se define como el total de compuestos orgánicos presentes en el suelo, incluida la biomasa microbiana y vegetal, pero excluyendo la macroflora y macrofauna. Los componentes de la materia orgánica del suelo se pueden dividir en tres fracciones: fracción orgánica biodegradable, las sustancias húmicas (ácidos húmicos, ácidos fúlvicos y humina) y la biomasa microbiana. La comunidad microbiana es pequeña con respecto al conjunto de la materia orgánica presente en el suelo, pero la mayor parte de las transformaciones que sufre la materia orgánica se llevan a cabo por los microorganismos (Navarro, et al, 2003).

Los principales efectos de la materia orgánica en el suelo se pueden resumir en: color, que puede facilitar el calentamiento del suelo; la retención hídrica, que ayuda a prevenir cambios bruscos de humedad y contracciones del suelo; su interacción con la arcilla, permite unir las partículas del suelo formando agregados estables; el poder de complejación, que controla la
disponibilidad de micronutrientes; la capacidad tampón ayuda a mantener el pH del suelo; su capacidad de cambio catiónico actúa como reserva de nutrientes; el proceso de mineralización supone una fuente de nutrientes para el crecimiento vegetal (Navarro, et. al, 2003).

2.2.3 Propiedades físicas del suelo

a) **Textura:** El término textura, se refiere a la proporción de arena, limo y arcilla expresados en porcentaje.

En la fracción mineral del suelo, son de interés edafológico solamente las partículas menores de 2 mm de diámetro. A las partículas mayores de 2 mm de diámetro se les denomina “modificadores texturales”, dentro de este concepto también se incluyen los carbonatos, la materia orgánica, las sales en exceso, etc., consecuentemente: % arena + % limo + % arcilla = 100%.

La textura es una propiedad física primaria y guarda relación con otras, como por ejemplo: La permeabilidad, capacidad retentiva del agua, porosidad, aireación, densidades real y aparente, capacidad de intercambio catiónico y estructura (Sánchez et al, 2007).

b) **Estructura:** Es la manera como se agrupan las partículas de arena, limo y arcilla, para formar agregados, NO debe confundirse “agregado” con “terrón”. El terrón es el resultado de las operaciones de labranza y no guarda la estabilidad que corresponde a un agregado. El factor cementante de los agregados del suelo lo constituyen la materia orgánica y la arcilla básicamente. Del mismo modo, el calcio favorece mucho a la agregación, mientras que el sodio tiene un efecto dispersante. La Estructura se juzga por: tipo o forma del agregado: laminar, prismática, columnar, bloque cúbico angular, bloque cúbico subangular, granular, migajosa (Sánchez, et. al, 2007).

c) **Densidad Aparente y Densidad Real:**
La densidad aparente (DA) y la densidad real (DR) se expresan así:

\[DA = \frac{Ms}{Vt} \]
\[DR = \frac{Ms}{Vs} \]

Donde:

Ms = masa o peso de sólidos
Vs = volumen de sólidos
Vt = volumen total

La composición mineral es más o menos constante en la mayoría de los suelos, por tanto se estima que la DR varía entre 2.6 a 2.7 g/cm³ para todos los suelos. En tanto que la DA
depende del grado de soltura o porosidad del suelo, es un valor más variable que depende además de la textura, el contenido de materia orgánica y la estructura.

La densidad real DR, mide el grado de compactación de un determinado suelo cuando éste ha sido sometido a trabajos constantes de maquinaria pesada sobre la capa arable, pudiendo mostrarse esa compactación en esa misma capa o en la subyacente (Sánchez, et. al, 2007) en la tabla 1 se muestra la clasificación de los suelos según su densidad.

| Tabla 1. Valores y clasificación de los suelos con base en la densidad y % de porosidad |
|-----------------------------------|---------------------------------|-----------------|
| Clase Textural | Densidad Aparente | % Porosidad |
| | Unidades (g/cm³) | |
| Arenoso | 1.6-1.8 | 30-35 |
| Franco arenoso | 1.4-1.3 | 35-40 |
| Franco | 1.3-1.4 | 40-45 |
| Franco limoso | 1.2-1.3 | 45-50 |
| Arcilloso | 1.0-1.2 | 50-60 |

Por lo expuesto, se desprende que la DR es un valor estable (en tanto no se puede modificar el volumen de los sólidos), en tanto que la DA es más variable (debido a la inestabilidad de la soltura de los suelos). Así, un suelos recién preparado para la siembra tendrá valores de DA más bajos, en tanto que el mismo suelo después de la cosecha, mostrará altos valores de DA, sobre todo si ha sido sometido a procesos de cultivo con maquinaria pesada (Sánchez, et. al, 2007).

d) Porosidad: La porosidad, no es otra cosa que el porcentaje de espacios vacíos (o poros) con respecto del volumen total del suelo (volumen de sólidos + volumen de poros). A su vez, la porosidad incluye macroporosidad (poros grandes donde se ubica el aire) y la microporosidad (poros pequeños, que definen los capilares donde se retiene el agua). La tabla 2 muestra la distribución de poros en los tipos de suelo.

| Tabla 2. Distribución de diferentes poros en suelos de tres clases texturales: |
|-----------------------------|-----------------|--------|
| Suelo Textura | Porosidad (% total) | Microporosidad | Macroporosidad |
| Arenoso | 37 | 3 | 34 |
| Franco | 50 | 27 | 23 |
| Arcilloso | 53 | 44 | 9 |
Consecuentemente se deduce que los suelos arenosos tienen excelente capacidad de aireación, pero mínima capacidad de retención de agua. En el extremo, los suelos arcillosos, retienen gran cantidad de agua, pero muestran deficiente aireación (Sánchez, et. al, 2007).

e) Coeficientes Hídricos: Los suelos tienen diferente capacidad de retener y habilitar agua para las plantas. Estos valores se expresan a través de los coeficientes hídricos: Capacidad de campo y Punto de Marchitez.

La Capacidad de Campo: es la máxima capacidad de agua que el suelo puede retener, es decir el agua que está retenida a 1/3 de atm de tensión y que no está sujeta a la acción de la gravedad. En términos prácticos, para un suelo franco, sería la cantidad de agua que tiene el suelo al segundo o tercer día después de un riego pesado o una lluvia intensa (Sánchez, et. al, 2007).

El Punto de Marchitez: Es más bien un término fisiológico, que corresponde al contenido de humedad del suelo, donde la mayoría de las plantas, no compensan la absorción radicular con la evapotranspiración, mostrando síntomas de marchitez permanente. En este punto, el agua es retenida por el suelo a una tensión de 15 atm (Sánchez, et. al, 2007).

Agua Disponible y Agua Aprovechable: Agua disponible es la cantidad de agua que existe como diferencia entre la capacidad de campo y el punto de marchitez; mientras que agua aprovechable es aproximadamente el 75% del agua disponible (Sánchez, et. al, 2007).

2.2.4 Propiedades Químicas del suelo

a) Reacción del suelo (pH): Es una propiedad que tiene influencia indirecta en los procesos químicos, disponibilidad de nutrientes, procesos biológicos y actividad microbiana.

Es definido como el logaritmo inverso de la actividad de iones hidrógeno en la solución suelo. Normalmente el rango de pH de los suelos varía entre 3.5 a 9.0, la razón por la que no se alcanza valores extremos de 1 ó 14 se debe a que la solución suelos no es una solución verdadera, sino una solución coloidal. A la mayoría de especies cultivadas, les favorece pH entre valores de 5.5 a 7.5, pero cada especie y variedad tiene un rango específico donde se desarrolla mejor. Normalmente entre pH 6.5 y 7.0 es el rango que se maneja especialmente para cultivos bajo técnicas de fertirrigación (Sánchez, et. al, 2007).

Los suelos de pH fuertemente ácidos, no son recomendables por la gran cantidad de aluminio y la disminución de la actividad microbial. Los suelos alcalinos, originan una escasa disponibilidad de elementos menores, excepto molibdeno, mostrando una marcada deficiencia (Sánchez, et. al, 2007).
b) *Las Arcillas del Suelo:* La fracción mineral de los suelos lo constituyen las arcillas. Si bien desde el punto de vista de su tamaño, adoptan ese nombre las partículas < 2 mm de diámetro, es mucho más trascendente el comportamiento coloidal que exhiben, es decir la capacidad de mostrar cargas negativas en donde se absorben los cationes que constituyen la posibilidad de reserva de nutrientes (Sánchez, et. al, 2007).

c) *Capacidad de Intercambio Catiónico (CIC):* Es una propiedad química que designa los procesos de: (a) Adsorción de cationes por el complejo de cambio desde la solución suelo y (b) Liberación de cationes desde el complejo de cambio hacia la solución suelo. Esta propiedad es atribuida a la arcilla (coloide mineral) y al humus (coloide orgánico), de manera que la CIC, está influenciada por: la cantidad y tipo de arcilla, la cantidad de humus, el pH o reacción del suelo (Sánchez, et. al, 2007).

2.2.5 Propiedades biológicas del suelo

La cantidad de materia orgánica (MO), está ligada a la cantidad, tipo y actividad microbiana. De este modo el mantenimiento de la "fertilidad biológica" sugiere inalterabilidad del ambiente sobre todo microbiológico del suelo. Son variadas las ventajas y actividades de los microorganismos del suelo, participando en: procesos de humificación y mineralización de la materia orgánica, procesos de fijación biológica de N (simbiótica y libre), solubilización de componentes minerales del suelo (asociación micorrítica), reducción de nitratos y sulfatos, hidrólisis de la úrea (Sánchez, et. al, 2007).

La nutrición y la relación suelo-planta.

Es un sistema abierto en que los elementos (M) son constantemente removidos de un lado (fase sólida) a otro donde es acumulado (planta), ver Fig3.

![Fig.3 Nutrición en la relación suelo-planta](image)

Donde:

FS = Fase Sólida; constituida por la materia orgánica y la fracción mineral. Ocurren reacciones de: disponibilidad, desorción, mineralización de la materia orgánica.
SN = Solución; compartimiento para la absorción radicular. Ocurren reacciones de absorción, fijación e inmovilización. A = Absorción E = Excreción I = Inmovilización T = Transporte R = Redistribución (Sánchez, et. al, 2007).

La Fig. 4 muestra los factores que intervienen en la nutrición de la planta, siendo estos de mucha importancia pues influyen directamente y están íntimamente relacionados para abastecer a la planta de lo necesario para un buen desarrollo. Factores físicos como el clima, sol, lluvia, viento son importantes para llevar a cabo el proceso de fotosíntesis y conversión de los nutrientes absorbidos en energía para su crecimiento, el intercambio gaseoso indispensable para la síntesis de compuestos esenciales para su crecimiento.

Fig. 4 Factores que intervienen en la nutrición de las plantas (tomado de Domínguez, 1997)

Así como también factores químicos del suelo que provean las condiciones necesarias para la absorción de nutrientes incluyendo la cantidad de materia orgánica en éste, tipo de suelo pues dependiendo del tipo habrá o no mayor intercambio gaseoso de O₂ y retención hídrica, así como variará la capacidad de intercambio catiónico resultando en mayor o menor movilidad en los nutrientes, y otra parte fundamental en la nutrición de la planta es la micro y macrobiota de éste, pues de ellos depende la mineralización de la materia orgánica y por tanto que exista mayor o menor nutrientes en el suelo, también es importante la humedad y la temperatura, así
como el pH asociado a la actividad microbiana en el suelo; si estos factores se encuentran en equilibrio habrá mayor absorción de nutrientes a través de las raíces, aunado al tipo de suelo en el que la permeabilidad está en función de la textura y estructura del suelo, y es de suma importancia para aprovechar la retención de humedad y no existan pérdidas por lixiviación. Por otro lado las malas prácticas agrícolas en las que por ejemplo, existe un riego intensivo, van lavando los minerales del suelo y esto provoca acidificación en éstos, perdiendo por tanto su fertilidad.

2.2. 6 Elementos esenciales en la nutrición vegetal

Dos de los criterios comúnmente usados para establecer el grado en que un elemento es necesario para la nutrición vegetal son: 1) la necesidad que tenga la planta del nutriente para completar su ciclo de vida y 2) Su intervención directa en la nutrición de la planta, además de los posibles efectos en la corrección de alguna condiciones desfavorables del suelo o del medio de cultivo. A la fecha dieciséis elementos han pasado a formar parte de la lista de los esenciales para el crecimiento de las plantas, éstos se dividen en dos grupos, basándose en la cantidad requerida por las plantas. Los elementos mayores o macroinmutrientes se requieren en cantidades relativamente grandes. Se presenta en la tabla 3 una lista de ambos grupos.

<table>
<thead>
<tr>
<th>Tabla 3. Principales elementos en la nutrición de la planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos Mayores</td>
</tr>
<tr>
<td>Carbono</td>
</tr>
<tr>
<td>Hidrógeno</td>
</tr>
<tr>
<td>Oxígeno</td>
</tr>
<tr>
<td>Nitrógeno</td>
</tr>
<tr>
<td>Fósforo</td>
</tr>
<tr>
<td>Potasio</td>
</tr>
<tr>
<td>Calcio</td>
</tr>
<tr>
<td>Magnesio</td>
</tr>
</tbody>
</table>

Las plantas toman sus elementos nutritivos de tres fuentes: aire, agua y suelo. El carbono y algo del oxígeno los obtienen del aire; mientras que el hidrógeno, algo del oxígeno y posiblemente algo del carbono los toman de la solución del suelo. Las leguminosas con bacterias nodulantes efectivas obtienen parte de su nitrógeno del aire. Algo de azufre puede difundirse dentro de las hojas como (SO₂) y es utilizado por la planta. Otros elementos nutritivos deben tomarse del suelo bajo condiciones naturales. La función de todos los elementos no está aún bien entendida, pero se cree que éstos afectan el crecimiento vegetal en una o tal vez más de las siguientes formas: 1) son constituyentes del tejido vegetal, 2) actúan como catalizadores o estimulantes, 3) efectúan procesos de oxido-reducción en el planta, 4) pueden ayudar a regular el contenido de ácido en la planta, 5) pueden afectar la
presión osmótica y 6) pueden afectar la entrada de otros elementos a la planta; o bien pueden ayudar al crecimiento de la planta proporcionando un medio más favorable para las raíces de las mismas. Cada nutriente efectúa tareas definidas dentro de la planta y ninguno de ellos puede ser sustituido por otro. Aunque cada elemento lleva a cabo una cierta función específica, todos deben trabajar juntos para producir los mejores resultados (Mortvedt, 1983) (Tabla 4.)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Importancia en la nutrición vegetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, H, O</td>
<td>Síntesis de los carbohidratos, proteínas, grasas y compuestos relacionados con ellos. Estos son los principales constituyentes en la mayoría de los compuestos vegetales (Mortvedt, et. al, 1983)</td>
</tr>
<tr>
<td>N</td>
<td>Abundante en las partes en crecimiento de las plantas. Constituyente de cualquier célula viva, parte de muchas proteínas, que actúan como enzimas, parte de la molécula de clorofila, presente en las semillas en cantidades mayores que en cualquier otra parte de la planta,</td>
</tr>
<tr>
<td>P</td>
<td>Presente en las semillas en cantidades mayores, partes jóvenes de las plantas en crecimiento, constituyente de todas las células vivas, forma parte de fosfolípidos, nucleoproteínas y de la fitina, reserva de las semillas, muy importante en la transformación de la energía en la célula, necesaria para la asimilación de las grasas.</td>
</tr>
</tbody>
</table>

Fuente: (Mortvedt, et. al, 1987)

2.2.7 Fertilización química

Según la fuente de suministro de nutrimentos se distinguen dos alternativas para la fertilización de los cultivos: la química o sintética y la orgánica. La primera de ellas consiste en la aplicación de abonos producidos industrialmente que reúnen condiciones técnicas de calidad como proveedores de nutrimentos a los cultivos; como son las sales solubles, altamente concentradas, de fácil y rápida liberación, pero generalmente de corta acción residual (Bertsch, 1998; Soto, 2003). Es la práctica usual y recomendada como la forma más eficiente de suplir minerales a las plantas, su principal ventaja radica en la capacidad de proporcionar mayor cantidad de nutrimentos en menor volumen de material fertilizante, lo que facilita su manejo en el transporte y distribución en el campo. Además, al tener un balance homogéneo de componentes químicos, este tipo de fertilización permite establecer con mayor precisión la dosificación requerida (Meléndez y Molina 2003). La fertilización del suelo se realiza con el objeto de reponer los nutrientes extraídos de este por la planta, la misma que necesita tomar de los suelos los elementos que les son indispensables en proporciones adecuadas para lograr su normal desarrollo. Cuando a un suelo le falta o tiene en proporción insuficiente algún
elemento esencial, la producción disminuye. La carencia de un elemento puede ser corregida, en muchos casos, por simple adición al suelo de compuestos que contengan dicho elemento, es decir, por adición de fertilizantes (Yuféra, 1981).

Fertilizantes químicos, son sustancias que contienen elementos o compuestos químicos nutritivos para los vegetales, en forma tal que pueden ser absorbidos por las plantas. Se les utiliza para aumentar la producción, reponer y evitar deficiencias de nutrientes y propender al mejoramiento sanitario de las plantas. Algunos de los efectos perjudiciales de su uso son el aporte de nitratos a las capas de agua en las áreas de cultivos intensivos, concentraciones de pesticidas, bacterias y residuos agroquímicos. Por ello, deben seguir ajustándose las cantidades que se aplican a las necesidades de los cultivos, mejorar la composición de pesticidas y fertilizantes y manejar las plagas en forma integral. Además, se deben respetar las precauciones indicadas en las etiquetas de los envases y productos. El uso únicamente de fertilizantes minerales tiene unos efectos perjudiciales: Destruye progresivamente la estructura del suelo, ya que con la mineralización del humus disminuye la cantidad de complejo arcilloso-húmico. El terreno se apelmaza, y en algunos casos los fertilizantes químicos actúan como agentes cementantes. Por ello, y sumando los efectos del peso del tractor sobre un terreno desestructurado y la labor, el suelo se convierte en una capa compacta donde los cultivos tienen dificultades para enraizarse (CASAFE, 1993).

Materiales Fertilizantes.

Cualquier material que contenga uno o más de los nutrientes esenciales y que se añada al suelo o se aplique sobre el follaje de las plantas con el propósito de complementar el suministro de nutrientes a éstas se denomina fertilizante (Etcheveres, 2004).

Los fertilizantes incluyen a todos aquellos materiales que se agregan a los suelos para suministrar ciertos elementos esenciales al crecimiento de las plantas. No obstante, el término fertilizante se refiere a los fertilizantes químicos, éstos no contienen nutrientes vegetales en forma de elementos, como nitrógeno, fósforo o potasio, sino que éstos se encuentran en compuestos que suministran las formas iónicas de tales sustancias que las plantas pueden observar (Mortvedt, 1983).

Con base en su contenido de nutrientes primarios (N, P₂O₅, K₂O), los productos fertilizantes se denominan de un solo nutriente o multinutrientes. Los primeros se conocen fertilizantes simples mientras que los otros se les conoce fertilizantes mezclados o complejos y pueden ser combinados u homogéneos. Los fertilizantes que contienen uno o más nutrientes primarios reciben una designación de tres números. Esta se denomina grado y representa, respectivamente, el porcentaje en peso de N, fosfato y potasa que contiene un fertilizante (Etcheveres, et.al, 2004). Los fertilizantes minerales convencionales son los más conocidos y usados, especialmente en agricultura. Se caracterizan porque se disuelven con facilidad en el
suelo y por tanto las plantas disponen de esos nutrientes en pocos días después (Navarro, 2000), los más usados son:

- **Fertilizantes Nitrogenados.** Urea (45-0-0), nitrato amónico (33-0-0), sulfato amónico, nitrato potásico, nitrato cálcico, nitrato sódico, etc.
- **Fertilizantes Fosfóricos.** Superfósforo, fosfato amónico entre otros.
- **Fertilizantes Potásicos.** Cloruro potásico y sulfato potásico (Navarro, 2000)

Fertilizantes Nitrogenados

Cerca del 98% del fertilizante nitrogenado producido en el mundo es amoníaco o uno de sus derivados. Se han hecho frecuentes intentos para determinar la eficiencia relativa de los fertilizantes nitrogenados aplicando cantidades de nitrógeno por acre en diversos materiales, para un cultivo dado. Como hay tantos factores que afectan la acción de cualquier fertilizante nitrogenado tales como las condiciones de temperatura y humedad, la reacción del suelo, lavados, clase de cultivos y tiempo y métodos de aplicación, los valores relativos de fertilizantes así obtenidos pueden ser engañosos. El nitrógeno, en la forma de nitratos es fácilmente soluble en agua y es utilizado con rapidez por la mayoría de los cultivos. Los nitratos son lavados del suelo con la lluvia fácilmente, debido a su alta solubilidad y a que no son fijados o retenidos en el suelo en una cantidad apreciable (Navarro, 2000).

El sulfato de amoníaco tiene una riqueza en nitrógeno del 21%, aporta una importante cantidad de azufre (24%). A pesar de su gran solubilidad no se pierde por lixiviación, ya que el nitrógeno se encuentra en forma amoniaca (NH_4^+) y es adsorbido por las arcillas del suelo. Únicamente puede haber pérdidas por lixiviación en suelos muy sueltos (arenosos) con poca capacidad de retención de nutrientes; debido al ion sulfato (SO_4^{2-}), este fertilizante tiende a acidificar el suelo, por lo que resulta adecuado para aquellos cultivos que requieren un medio ácido, en suelos salinos y cuando se requiere acidificar el suelo.

El sulfato de amoníaco como cualquier otro fertilizante amoniacoal, produce amoníaco en un suelo alcalino, puede perderse por volatilización, por este motivo conviene enterrarlo al momento de su aplicación, de lo contrario se pueden tener pérdidas importantes de nitrógeno. Por la misma causa, el sulfato de amonio no debe mezclarse con otros fertilizantes que contengan calcio (nitrato de calcio, fosfato bicálcico) (Navarro, 2000).

La urea se hidroliza rápidamente en suelos cálidos y húmedos para formar carbonatos de amoníaco. El amoníaco se puede usar directamente por las plantas o se puede convertir en nitrato y ser utilizado en esta forma. La urea-formaldehído es uno de los fertilizantes nitrogenados recientemente desarrollados y no es soluble en agua, su alto costo limita grandemente su uso (Navarro, 2000). Tiene una concentración del 46% de un nitrógeno orgánico (amidico), que
pasa a nitrógeno amoniacal con mucha rapidez cuando se incorpora al suelo, si es que las condiciones de humedad y temperatura son adecuadas

Fertilizantes Fosfóricos.
La única fuente importante de fosfatos minerales empleados para fabricar fertilizantes actualmente es la roca fosfórica. El superfosfato más concentrado contiene cerca del 20% de fósforo o el equivalente del 45% de P_2O_5. Al superfosfato concentrado se le llama superfosfato triple; ambos tipos de superfosfatos son iguales en calidad como fertilizantes cuando la misma cantidad de fósforo se aplica. Los fosfatos de amonio son buenas fuentes, tanto de fósforo como de nitrógeno siendo el fósforo soluble en agua (Navarro, 2000).

El fosfato diamónico contiene 18% de nitrógeno y 46% de fósforo. Es un fertilizante complejo que tiene el mayor contenido de nutrientes por tonelada de producto (640 kg/ton). No produce cambios en la reacción del suelo (pH), por lo que es adecuado para todo tipo de suelos. El superfosfato triple de calcio presenta una riqueza de 46% de fósforo. El 90% del contenido de fósforo es soluble en agua y por ende completamente disponible para la planta. Es un fertilizante de acción rápida y adecuado para todo tipo de suelos, no modifica de manera importante la reacción del suelo. El fosfato monoamónico contiene 11% de nitrógeno y 52% de fósforo (Finck, 1988).

Fertilizantes Potásicos.
La mayor cantidad de potasio proviene de las minas y cerca del 95% del fertilizante potásico es cloruro de potasio. El segundo fertilizante potásico, aunque se emplea en menor extensión es el K₂SO₄, que tiene cerca del 40 % de K o 48 % de K₂O. También se produce una cantidad muy pequeña de KNO₃. Todas las sales de potasio usadas como fertilizantes son solubles en agua y se considera que en general son fácilmente aprovechables. Puede decirse que hay muy poca diferencia en sus efectos sobre la producción de los cultivos, excepto en algunos casos muy especiales. (Navarro, 2000). El sulfato de potasio tiene una riqueza del 50% de potasio, aporta, además un 18% de azufre (Finck, et. al, 1988).

El nitrato de potasio es un fertilizante binario que contiene 13,5% de nitrógeno y 44% de potasio, lo hace ser un fertilizante especial para cultivos altamente exigentes en potasio, proporcionando al mismo tiempo, un tipo de nitrógeno inmediatamente aprovechable para la planta (NO₃) en una proporción ideal a sus necesidades (Finck, et. al, 1988). La tabla 5 resume las ventajas y desventajas de los fertilizantes químicos.

<table>
<thead>
<tr>
<th>Tabla 5. Ventajas y desventajas del uso de fertilizantes químicos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventajas del uso de fertilizantes</td>
</tr>
<tr>
<td>Suplen nutrientes específicos (necesidades de los cultivos)</td>
</tr>
</tbody>
</table>
Se encuentran en forma de sales que son muy solubles en agua
Son de acción inmediata
Existe una gran variedad
Los agroquímicos se utilizan en conjunto con los fertilizantes para el control de plagas
Mejores rendimientos en los cultivos

2.2.8 Impacto ambiental por el uso de fertilizantes químicos

El uso excesivo de fertilizantes traen contaminaciones a las plantaciones, aguas subterráneas que se encuentran cercanos a las proximidades de los cultivos, nitrógeno en forma de NO₃ y fósforo proviniente de campos agrícolas, estimula el crecimiento excesivo de algas (Altieri, 2003; Echeverre et al, 2004). Destructuyen la vida silvestre y la biodiversidad (Conway y Pretty, 1991). El uso tradicional de fertilizantes químicos trae consecuencias directas en la contaminación del suelo, subsuelo, agua y atmósfera (Peña, y Grageda, 1997), también han sido ligados a la acidificación y a la salinización de los suelos y a la alta incidencia de las plagas y las enfermedades a través de la mediación negativa de los nutrientes en los cultivos (McGuinnes, 1993). Los pesticidas que son utilizados juntos con los fertilizantes para el control de plagas deterioran las poblaciones de depredadores y especies salvajes, e inducen la resistencia de las plagas. La agricultura es una fuente directa de contaminación atmosférica pues emite metano, oxido nitroso, amoníaco y derivados de la combustión de biomasa (Conway y Pretty, 1991), estos en los alimentos son fuente de alteración, aún no completamente cuantificada, en los consumidores en los que también se reportan efectos que van desde las alergias hasta las inmunosupresiones (Morales et al, 2001). Altas concentraciones de NO₃ resultan tóxicos en las aguas de bebida que afectan al ser humano y los animales domésticos; al entrar estos en nuestro cuerpo y estar en contacto con residuos químicos consumidos a través de alimentos contaminados puede producir cáncer y también mutaciones. El consumo de éstos está relacionado también con la metahemoglobinemia en los niños y con cánceres gástricos, cáncer a la vejiga y óseos en adultos (Conway y Pretty 1991).

2.3 Cultivos agrícolas

2.3.1 Insumos para la producción de maíz en Tlaxcala.

En Tlaxcala las fuentes de fertilizantes tradicionalmente empleados son: urea y superfosfato de calcio triple. El empleo de fertilizantes participa con el 20% de la estructura de los costos de
producción del maíz. Los insumos químicos de mayor uso para la producción de maíz son los herbicidas “Gesaprin Cal. 90 y Hierbamina”, empleado para disminuir la población de maleza anual que compite por espacio y nutrientes con el cultivo y en menor escala los plaguicidas (Furadán 300 TS), plaguicida de amplio espectro que mata todo tipo de plagas, utilizado para el control de plagas como pulgones, frailecillo y chapulín, representando su uso el 7% de los costos de producción.

Con base en los estudios de potencial productivo de maíz en Tlaxcala realizados por el INIFAP, (Ramírez, 2003) denotan que los riesgos de siniestro del cultivo de maíz en áreas de muy buena y buena productividad varían entre 10 y 30 % y son mayores los siniestros para las áreas de mediana y baja productividad (Consejo Estatal de Productores de Maíz del Estado de Tlaxcala, 2004). Los factores que limitan la producción de maíz son los siguientes: baja cantidad de lluvia e irregular distribución, heladas tempranas, granizadas, profundidad de suelo, textura de la capa arable, pendiente y baja fertilidad de los suelos, dado esté último por el alto grado de erosión además del uso de variedades criollas de bajo rendimiento y susceptibles al acame. En Tlaxcala, las áreas de muy buena productividad abarcan una superficie aproximada de 14 mil hectáreas correspondientes al Valle del Distrito de Desarrollo Rural 164 de Tlaxcala ubicado en la región sur del Estado, donde el rendimiento se puede incrementar de 6 a 8 toneladas por hectárea (Consejo Estatal de Productores de Maíz del Estado de Tlaxcala, 2004).

La Tabla 6 muestra el costo por actividad e insumos requeridos para la producción agrícola de maíz en el estado de Tlaxcala, dentro de los cuales cabe mencionar que los costos por fertilización química son de los más altos. Para reducir gastos por fertilización química se puede utilizar abono orgánico a partir de residuos sólidos orgánicos.

La liberación de las importaciones de maíz en el marco del TLCAN, productores agrícolas y responsables de implementar la política agrícola coinciden en apuntar como única solución al problema de la baja productividad el incremento en el uso de insumos (fertilizantes químicos y semilla mejorada), sin considerar otras posibilidades menos agresivas al ambiente, igualmente efectivas y sobre todo de menor costo. El mercado de fertilizantes químicos incrementó las importaciones 32 % entre 1997 y 2004, a pesar de lo cual su consumo ha disminuido 30% debido principalmente al incremento de los precios y a la desaparición de la empresa estatal FERTIMEX, (INIFAP, 2005), sin embargo el consumo nacional de fertilizantes a partir del tratado de libre comercio (TLCAN) se incrementó 42% después de haber disminuido 6% durante el periodo 1988-1994, en ese contexto el grueso de las importaciones corresponde a los fertilizantes nitrogenados que han tenido una tendencia creciente desde la década de 1980 (Rojas, 2005).

<table>
<thead>
<tr>
<th>ACTIVIDAD O LABOR</th>
<th>Unidad/ha</th>
<th>CANT.</th>
<th>COSTO UNITARIO</th>
<th>COSTO POR ha</th>
<th>%Parcial</th>
<th>%Total</th>
<th>SUBTOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREPARACION DEL TERRENO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbecho</td>
<td>ha.</td>
<td>1</td>
<td>$500.00</td>
<td>$500.00</td>
<td>50%</td>
<td></td>
<td>$1000.00</td>
</tr>
<tr>
<td>Rastreo</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surcado</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>25%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>SIEMBRA O PLANTACION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adquisición de semilla</td>
<td>kg</td>
<td>20</td>
<td>$3.00</td>
<td>$60.00</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siembra</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>80%</td>
<td>6%</td>
<td>$310.00</td>
</tr>
<tr>
<td>FERTILIZACION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>kg</td>
<td>250</td>
<td>$2.44</td>
<td>$62%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superfosfato de calcio triple</td>
<td>kg</td>
<td>100</td>
<td>$2.37</td>
<td>24%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación de fertilizante</td>
<td>jornal</td>
<td>2</td>
<td>$70.00</td>
<td>14%</td>
<td>20%</td>
<td>20%</td>
<td>$987.00</td>
</tr>
<tr>
<td>LABORES CULTURALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escarda</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>33%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primera labor</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>33%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segunda labor</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>33%</td>
<td>15%</td>
<td>$750.00</td>
</tr>
<tr>
<td>HERBICIDAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesaprin Cal, 90</td>
<td>lt</td>
<td>1</td>
<td>$135.00</td>
<td>$135.00</td>
<td>33%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hierbamina</td>
<td>lt</td>
<td>1</td>
<td>$65.00</td>
<td>$65.00</td>
<td>16%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicación de herbicidas</td>
<td>jornal</td>
<td>3</td>
<td>$70.00</td>
<td>$210.00</td>
<td>51%</td>
<td>8%</td>
<td>$410.00</td>
</tr>
<tr>
<td>CONTROL DE PLAGAS Y ENF.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furadan 300 TS</td>
<td>lt</td>
<td>1</td>
<td>$160.00</td>
<td>$160.00</td>
<td>100%</td>
<td>3%</td>
<td>$160.00</td>
</tr>
<tr>
<td>COSECHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piza</td>
<td>jornal</td>
<td>16</td>
<td>$70.00</td>
<td>$1,120.00</td>
<td>82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarreo</td>
<td>ha.</td>
<td>1</td>
<td>$250.00</td>
<td>$250.00</td>
<td>18%</td>
<td>27%</td>
<td>$1,370.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4,987.00</td>
</tr>
</tbody>
</table>

2.3.2 Importancia del frijol en el sector agropecuario nacional

Para México, el frijol es un producto estratégico en el desarrollo rural del país, debido a que conjuntamente con el maíz, representa toda una tradición productiva y de consumo, cumpliendo diversas funciones de carácter alimentario y socioeconómico que le han permitido trascender hasta la actualidad. Para México no sólo en un alimento tradicional, sino también un elemento de identificación cultural, comparable con otros productos como el maíz y el chile (Acosta, 2003).

El frijol se cultiva en prácticamente todas las regiones del país, bajo todas las condiciones de suelo y clima. A nivel nacional existen alrededor de 500 mil agricultores dedicados a la
producción del cultivo. Como generador de empleo, es una importante fuente dentro de la economía del sector rural, pues se ha estimado (mediante un modelo de costo de producción promedio) que demanda 35 jornales por hectárea, generando, sólo en la etapa de producción agrícola, un total de 78,316,105 jornales; ello equivale a 382,029 empleos permanentes en el sector rural. De esta forma, existe un sector poblacional campesino constituido por pequeños propietarios, ejidatarios, comuneros y colonos que siembran frijol, además del maíz para su subsistencia. Después del maíz, el frijol ocupa el segundo lugar en importancia dentro de la superficie sembrada total a nivel nacional, misma que registró un promedio anual en la década de 1994–2003, de 16.5 millones de hectáreas sembradas, de las cuales el frijol aportó el 14 por ciento en dicha superficie, es decir, 1.9 millones de hectáreas (Acosta, 2003)

La Fig. 5 muestra la superficie total sembrada y la participación promedio de cultivos principales en México.

![Fig. 5. Superficie total sembrada participación del promedio anual de los cuatro cultivos principales en México, Fuente: SIAP, 2005](image)

Por lo que se refiere al ámbito nacional, la producción de frijol es muy vulnerable a las condiciones climatológicas que prevalecen durante el ciclo productivo, debido a que aproximadamente el 87 por ciento de la superficie destinada a este cultivo se ubica en áreas de temporal.

El costo de producción del frijol es mayor en comparación con el de los cereales esto se debe a la disminución de los costos de producción de los cereales, cuyo cultivo es totalmente mecanizado, con respecto a los costos de producción del frijol, donde su cultivo en buena proporción es aún artesanal con alto insumo de mano de obra, lo cual hace aparecer al frijol como un producto caro con respecto a los cereales (Serrano, 2005).
Los aspectos de tipo técnico que limitan la producción de frijol en México, de los cuales existe abundante información en diferentes trabajos realizados tanto por Instituciones públicas como privadas y que a grandes rasgos resumió de la manera siguiente:

1. Deficiente y mala distribución de la precipitación. Este es el factor que más influye en los rendimientos debido a la gran superficie cultivada bajo temporal, que es de aproximadamente el 85% respecto al total nacional.
2. Incidencia de enfermedades, insectos plaga y altas densidades de semilla de maleza en los terrenos agrícolas dedicados al cultivo de frijol.
3. Bajo uso de variedades mejoradas, principalmente en las áreas temporaleras de alto riesgo.
4. Limitado uso de insumos industriales. Los bajos rendimientos obtenidos en las áreas temporaleras provocan que los propios agricultores y la banca privada y oficial no dispongan de recursos para productos químicos por el temor a perder la inversión.
5. Suelos pobres en nutrientes (nitrógeno y fósforo) y materia orgánica, en algunos casos con pendientes pronunciadas y con alta capacidad erosiva y baja capacidad de retención de humedad. (Serrano, 2005).

La Tabla 7 muestra la superficie cosechada, los rendimientos y costos de producción de los cultivos de riego de maíz en grano y frijol en Tlaxcala, observándose que los costos de producción se incrementan año con año y la superficie cosechada es la misma.

Tabla 7. Rendimientos y costos de producción de los cultivos de riego de maíz en grano y frijol en el estado de Tlaxcala

<table>
<thead>
<tr>
<th>Cultivos de riego en Tlaxcala</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Frijol</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Superficie Cosechada (ha)</td>
</tr>
<tr>
<td>Rendimiento (ton / ha)</td>
</tr>
<tr>
<td>Producción (ton)</td>
</tr>
<tr>
<td>Precio Medio Rural ($/ton)</td>
</tr>
<tr>
<td>Valor de la Producción (millones de $)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maíz Grano</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Superficie Cosechada (ha)</td>
</tr>
<tr>
<td>Rendimiento (ton / ha)</td>
</tr>
<tr>
<td>Producción (ton)</td>
</tr>
<tr>
<td>Precio Medio Rural ($/ton)</td>
</tr>
<tr>
<td>Valor de la Producción (millones de $)</td>
</tr>
</tbody>
</table>

Fuente: SFA con datos SIAP, 2009
La Tabla 8. muestra el rendimiento y costo de producción del cultivo de temporal de maíz en grano en Tlaxcala, observándose que fue menor para el año 2009 en comparación con el 2008 en costos y en rendimiento.

Tabla 8. Rendimiento y costo de producción del cultivo de temporal de maíz en grano en Tlaxcala

Cultivos de temporal en Tlaxcala

<table>
<thead>
<tr>
<th>Maíz Grano</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie Cosechada (ha)</td>
<td>107,493.5</td>
<td>97,524.0</td>
<td>102,379.8</td>
</tr>
<tr>
<td>Rendimiento (ton/ha)</td>
<td>2.2</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Producción (ton)</td>
<td>235,410.8</td>
<td>251,319.3</td>
<td>245,318.3</td>
</tr>
<tr>
<td>Precio Medio Rural ($/ton)</td>
<td>2,218.9</td>
<td>2,776.1</td>
<td>2,772.9</td>
</tr>
<tr>
<td>Valor de la Producción (millones de $)</td>
<td>522.3</td>
<td>697.7</td>
<td>680.3</td>
</tr>
</tbody>
</table>

Fuente: SFA con datos SIAP, 2009

La Tabla 9. muestra la producción y porcentaje en toneladas de cultivo de riego y temporal de frijol en Tlaxcala.

Tabla 9. Producción y porcentaje en toneladas de cultivo de riego y temporal de frijol en Tlaxcala.

Fuente: SFA con datos SIAP, 2009

La Tabla 10. muestra la producción y porcentaje en toneladas de cultivo de temporal de frijol en Tlaxcala.

Fuente: SFA con datos SIAP, 2009
2.3.3 Agricultura en el municipio de Altzayanca

En el municipio de Altzayanca, también se presenta problemática para el cultivo de frijol, la Tabla 11. indica la situación agrícola de Altzayanca en dicho cultivo.

Tabla 11. Superficie sembrada, cosechada, rendimiento por hectárea y valor de la producción agrícola por tipo de cultivo en Altzayanca Año agrícola 2004/05

<table>
<thead>
<tr>
<th>TIPO CULTIVO</th>
<th>SUPERFICIE SEMBRADA (Hectáreas)</th>
<th>SUPERFICIE COSECHADA (Hectáreas)</th>
<th>VOLUMEN (Toneladas)</th>
<th>RENDIMIENTO Ton./Ha.</th>
<th>VALOR (Miles de pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>8 556</td>
<td>8 534</td>
<td>N.A</td>
<td>N.A</td>
<td>36 705.6</td>
</tr>
<tr>
<td>CULTIVOS CÍCICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAÍZ-GRANO</td>
<td>5 160</td>
<td>5 160</td>
<td>2 188.0</td>
<td>2.4</td>
<td>2 844.4</td>
</tr>
<tr>
<td>CEBADA-GRANO</td>
<td>110</td>
<td>110</td>
<td>269.0</td>
<td>1.2</td>
<td>375.2</td>
</tr>
<tr>
<td>TRIGO-GRANO</td>
<td>392</td>
<td>392</td>
<td>274.4</td>
<td>0.7</td>
<td>397.9</td>
</tr>
<tr>
<td>MAÍZ FORRAJE</td>
<td>694</td>
<td>694</td>
<td>26 171.0</td>
<td>37.7</td>
<td>3 925.7</td>
</tr>
<tr>
<td>FRIJOL</td>
<td>918</td>
<td>918</td>
<td>371.2</td>
<td>0.4</td>
<td>2 412.8</td>
</tr>
</tbody>
</table>

Durante el ciclo agrícola 2004/05 el municipio contaba con una superficie total sembrada de cultivos cíclicos de 7 666 hectáreas, de las cuales 5 160 fueron de maíz grano, 918 de frijol, 694 de maíz forraje, 392 de trigo grano, 160 de avena forraje, 110 de cebada grano y 100 de papa (Tabla 11.). El rendimiento de maíz en grano fue de 2.4 ton/ha y el de frijol de 0.4 ton/ha (COPLADET ,2005).

Fertilizantes utilizados en el municipio de Altzayanca.

Durante el año agrícola de 2007 se fertilizaron un total de 8 524 hectáreas; se logró una superficie mecanizada de 7 309, se sembró una superficie con semilla mejorada de 2 905 hectáreas; se atendió con servicio de sanidad vegetal a 620 hectáreas (INEGI,2007) (Tabla 12.)

Tabla 12. Censo agrícola en el municipio de Altzayanca. Según (INEGI,2007)

Fuente: (INEGI, 2007)
2.3.4 Problemas ambientales en Tlaxcala

La degradación de las tierras implica la reducción o la pérdida de la productividad y complejidad biológica o económica de las tierras agrícolas, los pastizales, y las regiones forestadas, y se debe principalmente a la variabilidad climática y a las actividades del hombre no sustentables. Se produce por una combinación de procesos que actúan sobre el ambiente. Estos incluyen la erosión hídrica, la eólica y la sedimentación provocada por estos agentes; pérdida de la cobertura vegetal (la reducción a largo plazo de la cantidad o la diversidad de la vegetación natural), sobrepastoreo, actividad ganadera, deforestación, quema y tala de bosques, aplicación de riego inapropiado y la salinización o solidificación de los suelos; asentamientos humanos, actividades mineras, industriales y urbanas; extracción de materiales áridos, arcilla (Oleaga, 2001).

La importancia que tiene la evaluación de la degradación del suelo radica en que algunos aspectos de ésta son reversibles a largo plazo (declinación de materia orgánica) o son irreversibles como la erosión. Entre las causas de erosión, las humanas juegan un papel mayor en de los suelos, a través del uso y abuso de los recursos naturales (INIFAP, 2002). Los cambios en los modos de vida culturales y socioeconómicos, el crecimiento demográfico, la mancha urbana, el desarrollo industrial y la carencia de programas específicos para la protección ambiental que genere un equilibrio en el desarrollo, ha traído como consecuencias negativas hacia el medio ambiente, un desequilibrio ecológico, en el estado de Tlaxcala en las últimas décadas del siglo XX. principalmente: la erosión, deforestación, contaminación de cuerpos de aguas y mantos freáticos, desechos de residuos sólidos tóxicos y la pérdida de la biodiver-sidad (INE, 2007). El estado de Tlaxcala no es la excepción, pues según información...
del INEGI se considera la totalidad de la superficie estatal como afectada por procesos erosivos con diversos grados de afectación desde leves hasta altos, ya que de las 401,600 hectáreas que conforman la superficie de la entidad, 120 mil presentan un grado de alteración. Esto hace que la erosión sea uno de los principales problemas estatales. En lo que se refiere a las entidades de la República Mexicana, Tlaxcala ocupa el séptimo lugar en erosión, ya que por lo menos 93% de los suelos están erosionados en diversos grados la Tabla 13. muestra los grados de erosión del estado de Tlaxcala. En términos porcentuales se observa que 18% del territorio tlaxcalteca presenta indicios de erosión; 52% erosión moderada; 19% tiene grados erosivos acelerados; 2% totalmente erosionado y sólo 9% no presenta procesos erosivos. La erosión eólica es la que más daño causa a la tierra; las zonas más erosionadas se encuentran en municipios como Altzayanca, Tequexquitla, Terrenate, Hueyotlipan, Sanctórum e Ixtacuixtla (INE, 2007).

<table>
<thead>
<tr>
<th>GRADOS DE EROSIÓN EN EL ESTADO DE TLAXCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosión inicial</td>
</tr>
<tr>
<td>Erosión moderada</td>
</tr>
<tr>
<td>Erosión acelerada</td>
</tr>
<tr>
<td>Totalmente erosionada</td>
</tr>
<tr>
<td>Superficie erosionada</td>
</tr>
</tbody>
</table>

| % | 93.7 de la superficie |

2.3.5 Fertilización orgánica

La fertilización orgánica se fundamenta en el aprovechamiento de la biomasa de las plantas, residuos vegetales post-cosecha, excrementos animales, lodos residuales, desechos industriales, agroindustriales y urbanos. Son desechos sólidos, líquidos y semilíquidos que procesados y aplicados al suelo mejoran sus condiciones físicas, químicas y biológicas (Soto, 2003). En la actualidad existe una gran variedad de métodos, técnicas y prácticas (biodegradación aeróbica, biodigestión, lombricultura) dirigidas al manejo de desechos orgánicos que permiten su aprovechamiento como materia prima para la elaboración de abonos orgánicos contribuyendo a resolver problemas de contaminación ambiental. El uso de estos subproductos orgánicos en la agricultura requiere del establecimiento de diversas alternativas tecnológicas, según las condiciones de cada país y/o región, para producir abonos de buena calidad al menor costo posible que coadyuven solos o combinados con los fertilizantes químicos en la nutrición vegetal, además de contribuir con la activación biológica y el mejoramiento paulatino de las propiedades físicas de los suelos (Datzellet.al, 1991). Con esta práctica de fertilización se reciclan componentes nutricionales de estos desechos y se mejora
la calidad física y biológica del suelo. El abono orgánico ofrece la ventaja de restablecer el equilibrio biológico, físico, químico y ecológico del suelo; incrementa la cantidad y diversidad de la flora microbiana benéfica, permite la reproducción de lombrices de tierra al tiempo que libera los elementos químicos que las plantas necesitan. Se le considera como producto fertilizante de lenta liberación cuya acción se prolonga en el tiempo (acción residual) que contribuyen a mejorar la calidad del medio ambiente y favorecer la producción sostenible de alimentos (Acuña, 2003; Soto, 2003). Aunque el abono orgánico es uno de los fertilizantes más antiguos, desde hace algunos años ha tomado relevancia el uso de este producto como fertilizante para la producción agrícola, particularmente a partir de la década de 1980, mediante el establecimiento de sistemas de desarrollo integrado de nutrición de plantas, en los que se promueve el empleo de fuentes orgánicas de nutrimentos, así como el uso oportuno y estratégico de fertilizantes químicos sintéticos, lo que constituye un enfoque sustentable (ecológica, social y económicamente viable) y ambientalmente correcto de manejo de los sistemas agrícolas; ya que mientras los fertilizantes sintéticos facilitan el manejo efectivo, inmediato y económico de nutrimentos específicos, los materiales orgánicos no solo suplen nutrimentos, sino que también mejoran las propiedades físicas y biológicas del suelo, incrementando la productividad de los sistemas agrícolas en el tiempo (Valerio, 2000). La dinámica de los procesos de descomposición de los materiales orgánicos, su acción residual y aporte en la nutrición de las plantas y propiedades del suelo, depende de un conjunto de variables como la naturaleza de los productos, características del suelo, las poblaciones de organismos y su actividad, así como las características climáticas; el seguimiento de los mismos es complejo y difícil de caracterizar por su dinámica, diversidad e interrelaciones de los factores y procesos que intervienen. A pesar de ello, es referido claramente por diversos investigadores, el efecto prolongado de los abonos orgánicos y su acción residual en el mediano y largo plazo sobre las características del suelo que definen su fertilidad (Meléndez, 2003). Las plantas fertilizadas orgánicamente no pueden infectarse con bacterias patógenas, porque el calor y la microflora benéfica controlan esas poblaciones, además los ácidos húmicos contenidos en la materia orgánica humificada aumentan la capacidad de retención de agua y la aireación del suelo, mejora la agregación del suelo y evita su encostramiento. En la planta los ácidos húmicos estimulan el desarrollo de raíces y tallos, mejoran la absorción de nutrientes, estimulan y aumentan la absorción de nitrógeno entre otros. (Herrán, Torres 2008).

Beneficios de la materia orgánica

La calidad del suelo se ha definido en términos de sus propiedades químicas, físicas y biológicas. Entre estas propiedades, la materia orgánica (MO) es considerada como el más importante indicador de la calidad de suelo (Hodge, 2000). La MO es la fracción orgánica del suelo excluyendo residuos vegetales y animales sin descomponer, entre sus componentes se incluyen los residuos vegetales y animales en descomposición (10-20%), la biomasa microbiana (1-5%) y el humus (50-85%). La importancia de la MO radica en su relación con numerosas propiedades del suelo. Los organismos vivos del suelo juegan un rol muy
importante en la transformación de la materia orgánica. Su presencia es indispensable para la fertilidad de los suelos. Cuando el suelo se contamina por exceso de pesticidas y fertilizantes químicos, los organismos vivos se reducen o mueren, lo que afecta la fertilidad (García, 2004). La aplicación de materia orgánica humificada aporta nutrientes y funciona como base para la formación de múltiples compuestos que mantienen la actividad microbiana, como son: las sustancias húmicas (ac. húmicos, fúlvicos y huminas), que al incorporarla ejercerá distintas reacciones en el suelo como son:

- Mejora la estructura del suelo, facilitando la formación de agregados estables con lo que mejora la permeabilidad de éstos, aumenta la fuerza de cohesión a suelos arenosos y disminuye ésta en suelos arcillosos (Bellapart, 1996)
- Mejora la retención de humedad del suelo y la capacidad de retención de agua (Guerrero, 1996)
- Estimula el desarrollo de plantas (Hartwigsen, 2000)
- Mejora y regula la velocidad de infiltración del agua, disminuyendo la erosión producida por el escurrimiento superficial (Bollo, 1999).
- Eleva la capacidad tampón de los suelos (Bollo, 1999)
- su acción quelante contribuye a disminuir los riesgos carenciales y favorece la disponibilidad de algunos micronutrientes (Fe, Cu, Zn) para la planta (Tradecorp, 2001)
- El humus aporta elementos minerales en bajas cantidades y es una importante fuente de carbono para los microorganismos del suelo (Bollo, 1999). También es importante reconocer que el humus favorece el desarrollo normal de cadenas tróficas (Bollo, 1999). Otro beneficio de la materia orgánica humificada es un potencial para controlar poblaciones de patógenos del suelo (Hadar, Mandelbaum, 1992).

Desventajas del uso de materia orgánica.

- Efecto lento, ya que el suelo se adapta a cierto manejo y al retirarle al 100% los compuestos a los que estaba acostumbrado dicho suelo, puede no ser muy provechoso, por lo que se recomienda un sistema combinado (convencional y orgánico) en el afán de hacer un cambio gradual y ayudarle al suelo a reestablecer el equilibrio natural.
- Los resultados se esperan a largo plazo el cambio debe ser gradual ya que poco a poco el suelo restituirá los procesos de formación y degradación de la materia orgánica hasta llegar a un nivel donde requerirá una mínima cantidad de nutrientes para mantener dicha actividad sin embargo durante este proceso mejorará la fertilidad del suelo observándose un menor % de germinación, mejor adaptación de plántulas al transportarla al mismo, entre otros (Tredecorp, 2001).
2.4 Residuos sólidos

2.4.1 Descripción de los residuos sólidos

El término *Residuo* se aplica a todo aquel material generado por las actividades de producción y consumo, el cual no alcanza ningún valor económico en las condiciones particulares de tiempo y de lugar en que se ha producido, y que es preciso recoger y tratar por razones de salud y de contaminación ambiental, para evitar ocupaciones innecesarias de espacio, o simplemente por motivaciones estéticas. Los residuos se pueden clasificar, según su naturaleza, en orgánicos e inorgánicos, destacando los orgánicos por su elevado volumen de producción y su fuerte impacto medioambiental (Abad y Puchades, 2002), ya que contaminan la atmósfera, el suelo y las aguas (superficiales y subterráneas), debido principalmente a sus altos contenidos en materia orgánica -inestable e inmadura- y elementos minerales, y a la presencia de compuestos orgánicos recalcitrantes, metales pesados, fitotoxinas, patógenos vegetales y animales, los cuales son altamente contaminantes (Cegarra y col, 1994; Vogtmann y col, 1993). Por otro lado, Los residuos sólidos también pueden clasificarse de otras diversas formas, por ejemplo: de acuerdo a su origen (doméstico, industrial, comercial, institucional, público); a su composición (materia orgánica, vidrio, metal, papel, textiles, plásticos, inerte y otros); o de acuerdo con su peligrosidad (tóxicos, reactivos, corrosivos, radioactivos, inflamables, infecciosos).

Residuos sólidos urbanos municipales (RSU)

Los residuos sólidos urbanos son aquellos provenientes de la generación residencial, comercial, institucional, industrial (pequeña industria y artesanía) y los residuos sólidos resultantes del barrio de calles de un conglomerado urbano y cuya gestión está a cargo de las autoridades municipales. El componente residencial o doméstico está constituido por desperdicios de cocina, papeles, plásticos, depósitos de vidrio y metálicos, cartones, textiles, desechos de jardín, tierra (INE, 2001). El valor agrícola que pudieran tener reside en la composición de la materia orgánica e inorgánica que contienen, dependiendo del tipo de material que lo constituye. Por otro lado su uso vendrá determinado por el objetivo final de su aplicación poner nutrientes a disposición de los cultivos (abono), aumentar el nivel de humus en el suelo (enmienda orgánica) o utilizarlo como soporte total o parcial de los cultivos (sustrato). El valor de la aplicación de la fracción orgánica de los RSU puede considerarse como abono de origen orgánico de baja graduación con una carga importante de nitrógeno de lenta mineralización. El valor nutritivo de los RSU no debe circunscribirse al contenido de los tres más importantes elementos: N, P, K sino que debe valorarse también la aportación de micronutrientes (Naclares, 2004)
2.4.2 Generación de residuos sólidos a nivel nacional

Los residuos sólidos urbanos (RSU) son los generados principalmente en los hogares. El volumen estimado de generación nacional de RSU creció, entre 1997 y 2008, alrededor de 28%, pasando de 29.3 a 37.6 millones de toneladas. La generación per cápita diaria creció en el mismo periodo de 840 a 970 gramos, estos se muestra en la Fig.6.

![Generación de RSU en México, 1997-2008](image)

Fig. 6 Generación de Residuos sólidos en México por habitante
Fuente: SEDESOL, 2009

En 2008, las entidades que generaron mayor volumen de RSU fueron México (16.4% del total nacional para ese año), Distrito Federal (12.6%) y Jalisco (7.2%). En contraste, Colima, Baja California Sur, Campeche, Nayarit, Tlaxcala, Zacatecas y Aguascalientes contribuyeron en conjunto con 5.1% a la generación de RSU, esto se muestra en la Fig. 7 (SEDESOL, 2009).
Si se considera la generación por tipo de localidad, las zonas metropolitanas fueron las mayores generadoras. Paralelamente al crecimiento en la generación, la composición de los residuos también ha cambiado: mientras que en la década de los años cincuenta el porcentaje de residuos orgánicos oscilaba entre 65 y 70%, para 2008 se había reducido al 52% esto se muestra en la Fig.8 (SEDESOL, 2009).
Las cifras actuales sobre la generación de RSU a nivel nacional presentan limitaciones importantes, básicamente porque no se trata de mediciones directas, sino de estimaciones. La estimación de la generación nacional se calcula, conforme a lo establecido en la norma NMX-AA-61-1985 sobre la Determinación de la Generación de Residuos Sólidos, con base en la generación promedio de residuos sólidos por habitante (medida en kg/hab/día), a partir de la información obtenida de muestreos aleatorios en campo, con duración de ocho días, para cada uno de los estratos socioeconómicos de la población. A partir de las estimaciones de generación per cápita puede calcularse la generación diaria y un estimado anual a nivel nacional (SEDESOL, 2009).

Los rellenos sanitarios constituyen la mejor solución para la disposición final de los residuos sólidos urbanos y de manejo especial. Este tipo de infraestructura involucra métodos y obras de ingeniería particulares que controlan, a través del tratamiento de los lixiviados (es decir, de los líquidos que escurren directamente de los residuos o por efecto de la lluvia), así como de la quema de gases, la reforestación en el área del relleno y el control de olores, los posibles impactos de los residuos al ambiente y la salud humana (SEMARNAT, 2008).

En 2007, se estimó que 67% del volumen generado de RSU (residuos sólidos urbanos) en el país se dispuso en rellenos sanitarios y sitios controlados y el restante se depositó en sitios no controlados. Esto resulta un incremento importante si se considera que en 1997 cerca de 60% se depositaba en sitios no controlados mostrado en la Fig.10. Si se analiza a nivel de entidad federativa, en 2007 el Distrito Federal, Aguascalientes y Nuevo León dispusieron casi la totalidad de sus residuos en rellenos sanitarios y sitios controlados. Sin embargo, Oaxaca, Hidalgo y Chiapas dispusieron un volumen bajo de RSU en este tipo de instalaciones, con valores menores a 30%; del total generado: 37.6 millones de ton/annual, el 3.8% se recupera con fines de reciclaje y 69.3% tiene una disposición final en relleno sanitario, mientras que 26.9% se dispone en sitios no controlados, es decir, que 10 millones de toneladas son dispuestas a cielo abierto provocando problemas ambientales, de salud y de imagen. Se espera para 2012 una generación de 40 millones de toneladas de residuos sólidos urbanos, de las que el 80% tendrá una disposición final adecuada. La Fig. 9 muestra la disposición final de los residuos sólidos, observándose que existe un alto porcentaje de los RSU que no se disponen adecuadamente (sitios no controlados).
2.4.3 Generación de residuos sólidos en Tlaxcala

En el ámbito de la contaminación ambiental por residuos sólidos ocupan un lugar preponderante, ya que son materiales que requieren de un manejo eficaz y con normas de seguridad para evitar daños al ambiente. En términos generales se puede decir que las principales fuentes de generación de residuos sólidos municipales son los domicilios, los comercios, los servicios, las áreas públicas y la industria. En Tlaxcala se producen diariamente cerca de 1,556 toneladas de basura, alrededor del 85% de origen municipal y la diferencia (25%) es generada por la industria y los servicios. Para la disposición final de este material contaminante, el estado cuenta con 6 rellenos sanitarios, organizados distritalmente para satisfacer los requerimientos de los diferentes municipios que componen la entidad. Estos rellenos son los de Panotla, Chiautempan, Nanacamilpa, Tetla, Huamantla y San Pablo del Monte. El distrito de Huamantla (ubicado en la localidad de Benito Juárez) atiende con el relleno sanitario a los municipios de Huamantla, Cuapiaxtla, El Carmen Tequexquitla, Ixtenco, Zitlaltépec y Atizayanca. En tanto que Terrenate deposita su basura en el distrito de Tetla. La vida útil que tiene el relleno sanitario del distrito descrito es de 6 años, mientras que el tiempo que lleva funcionando es ya de 10 años, ocupando 7.5 hectáreas, teniendo una generación de residuos de 94.6 toneladas al día.
2.4.4 Impacto ambiental asociado a los residuos sólidos

El manejo ineficiente o inadecuado de las sustancias químicas y sus residuos puede resultar en sitios contaminados. Los sitios contaminados pueden definirse como aquellos lugares donde ha habido depósito, enterramiento o vertido de sustancias químicas o residuos, vinculados a actividades industriales, comerciales, agrícolas o domésticas. Entre las principales causas que pueden provocar la contaminación de un sitio están: a) la disposición inadecuada de residuos sólidos urbanos, residuos sólidos peligrosos y residuos sólidos especiales en terrenos baldíos, bodegas, almacenes y patios de las industrias; b) fugas de materiales o residuos peligrosos de tanques y contenedores subterráneos, tuberías y ductos, así como de alcantarillados y drenajes industriales o públicos; c) lixiviació de materiales en sitios de almacenamiento y donde se desarrollan actividades productivas, o bien, de rellenos sanitarios y tiraderos a cielo abierto; d) derrames accidentales de sustancias químicas durante su transporte; e) aplicación de sustancias químicas potencialmente tóxicas en el suelo, instalaciones y edificaciones; y f) la descarga de aguas residuales que contienen residuos peligrosos y sustancias químicas potencialmente tóxicas sin tratamiento previo (SEMARNAT, 2008).

Otro problema del manejo de los residuos sólidos municipales es que una práctica común en nuestro país ha sido la de arrojar los residuos sólidos en basureros a cielo abierto lo que ha tenido repercusiones en la calidad del aire, agua y suelo. así como en la salud de los habitantes, por las emanaciones de gases que producen malos olores e incendios. Entre los factores que reducen la calidad de las aguas superficiales y subterráneas destacan las descargas directas de agua o residuos sólidos provenientes de las actividades domésticas, agropecuarias o industriales, indirectamente, la disposición inadecuada en el suelo de residuos sólidos urbanos o peligrosos puede ocasionar que escurrimientos superficiales en forma lixiviados filtran a la tierra contaminando los mantos acuíferos) y la proliferación de fauna nociva (SEMARNAT, 2008) Además el inadecuado manejo está generando el deterioro estético de los centros urbanos y del paisaje natural de muchas ciudades de la región (García, 2003).

2.4.5 Generación de lodos, tratamientos y contaminación.

Existe la norma NOM-004-ECOL, que establece las especificaciones y los límites máximos permisibles de contaminantes, en los lodos y biosólidos, para su aprovechamiento y disposición final. El objetivo de esta norma es posibilitar el aprovechamiento de los lodos y proteger al medio ambiente y la salud humana. El problema de la acumulación de residuos sólidos generados por las plantas de tratamiento de aguas residuales es un problema ambiental que cada día cobra mayor relevancia en México. La NOM-004-SEMARNAT-2002 (SEMARNAT 2002), establece que los lodos residuales que han sido estabilizados por algún proceso se denominan biosólidos. En México no se conoce de estadísticas de generación de lodos, aunque se puede tratar de dimensionar la problemática considerando las plantas de tratamiento construidas; actualmente en el país existen en operación 1182 plantas de tratamiento de aguas residuales que procesan 60,243 lts/seg de las cuales 259 son lodos activados, 32 son filtros biológicos y 12 s lagunas aireadas. En total estos tres procesos tratan 30,138 lts/seg y a la vez desechan una gran cantidad de biosólidos que deben ser tratados antes de su disposición; actualmente el
El tratamiento de lodos constituye una parte fundamental de las plantas de tratamiento y supone un 50% del costo de inversión, además de los costos de mantenimiento y control (Torres, 2000). La tecnología de tratamiento para lodos residuales generados en las plantas de tratamiento de aguas residuales (PTAR) en Estados Unidos y Europa se realiza utilizando alguno de los siguientes procesos:

A) **Espesamiento**: que permite reducir al mínimo el volumen para facilitar su manejo, transporte y almacenamiento. Se suele realizar por procedimientos como centrífugación o flotación (Torres, 2000).

B) **Estabilización o digestión**: Puede ser aerobia o anaerobia.

Digestión aerobia: proceso de aireación prolongada (dotando al sistema de O2) para provocar el desarrollo de microorganismos aerobios hasta sobrepasar el periodo de síntesis de las células y llevar a cabo su propia auto-oxidación, reduciendo así el material celular (Oropeza, 2006). Se elimina la parte fermentable de los lodos; en este proceso los lodos disminuyen de forma continua por la acción de los microorganismos existentes en el reactor biológico, a la vez que se produce una mineralización de la materia orgánica. Los productos finales de este proceso metabólico son anhídrido carbónico, agua y productos solubles inorgánicos. Una adecuada estabilización reducirá los sólidos en suspensión en un 30 al 35%. El proceso termofílico utiliza el calor metabólico producido por la biodegradación de la materia orgánica,
alcanzándose temperaturas entre 45 y 65 ºC, con ello se produce la destrucción de patógenos (Torres, 2000).

Digestión anaerobia: Comprende dos fases, en la primera se forman ácidos volátiles y en la segunda las bacterias anaerobias producen gas metano a partir de dichos ácidos, todo esto en ausencia de oxígeno molecular (O2) (Oropeza, 2006). Se considera el método más adecuado para obtener un producto final aséptico. La descomposición de la materia orgánica por las bacterias se realiza en ausencia de aire. La digestión pasa por procesos de: licuefacción, gasificación y mineralización produciéndose un producto final inerte y con liberación de gases. La digestión está influenciada por una serie de factores que determinan su eficacia, como: temperatura (rango óptimo 29-33ºC), concentración de sólidos, mezcla de lodos, pH (debajo de 6.2 la supervivencia de microorganismos productores de metano es imposible), ácidos volátiles (Torres, 2000).

C) Estabilización química: se realiza una acción bactericida, por la adición a los lodos de productos químicos que los inactivan generalmente se usa cal por su reducido costo y que aumenta el pH, lo que dificulta la acción biológica de los lodos; favoreciéndose la liberación de amoniaco (le quita valor fertilizante al lodo) (Torres, 2000).

D) Deshidratación de lodos: La eliminación de agua de los lodos se consigue mediante espesado, el producto podrá alcanzar en algunos casos el 10 o muy excepcionalmente, el 20%, sin que, por ello, pueda manejarse con pala), deshidratación por drenaje natural, escurrido mecánico, secado térmico (Oropeza, 2006)

E) Desinfección: Es el proceso mediante el cual se trata de eliminar una gran cantidad de organismos patógenos presentes en los lodos y que pueden suponer un riesgo sanitario en su utilización. En la actualidad no es un proceso generalizado, pero países como Suiza, Alemania ya contemplan en su legislación normas sobre desinfección de lodos con fines agrícolas. Los métodos que se utilizan son la pasteurización que somete a los lodos a temperaturas de 70ºC durante 30 minutos, el compostaje y la estabilización termofílica aerobia o anaerobia que provoca temperaturas de 60ºC y un pH de 8 durante 48 horas o 24 horas si el pH es diferente (Torres, 2000). Salvo en los procesos de aireación prolongada, tanto los lodos del tratamiento primario como los del secundario requieren de un posterior tratamiento(digestión) para su reuso. Con este tratamiento se logra: Disminución de materias volátiles, mineralización de la materia orgánica, concentración de lodos (Torres, 2000).

Posible destino de los lodos: utilización en agricultura como abono (digestión aerobia), recuperación de terrenos agotados (digestión aerobia), generación de energía eléctrica,
mecánica y calorífica (incineración), compostaje (sin digestión), vertidos directamente al mar, ríos, lagos, relleno de terrenos, escombreras, minas abandonadas, pantanos (Torres, 2000). Dependiendo de los diferentes procesos, pueden presentarse las siguientes alternativas generales:

a) **Lodo peligroso** por la presencia de contaminantes tóxicos de acuerdo a lo establecido en México por la norma NOM- 052-ECOL-1993(Oropeza, 2006)

b) **Lodo no peligroso**, porque las concentraciones de sus componentes son inferiores a los valores establecidos por la NOM- 052-ECOL-1993 o bien por lo que establece la NOM-004-SEMARNAT-2002 en la que se definen la clasificación de los biosólidos como excelente o bueno en función de su contenido de metales pesados como muestra la Tabla. 12, en clase A, B y C en función de su contenido de patógenos y parásitos como se observa en la Tabla.14 y por último el aprovechamiento de los mismos en la Tabla 15.(Oropeza, 2006).

Tabla.14 Límites permisibles para metales pesados en biosólidos

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Excelentes mg/kg</th>
<th>Buenos mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsénico</td>
<td>41</td>
<td>75</td>
</tr>
<tr>
<td>Cadmio</td>
<td>39</td>
<td>85</td>
</tr>
<tr>
<td>Cromo</td>
<td>1200</td>
<td>3000</td>
</tr>
<tr>
<td>Cobre</td>
<td>1500</td>
<td>4300</td>
</tr>
<tr>
<td>Plomo</td>
<td>300</td>
<td>840</td>
</tr>
<tr>
<td>Mercurio</td>
<td>17</td>
<td>57</td>
</tr>
<tr>
<td>Níquel</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>Zinc</td>
<td>2800</td>
<td>7500</td>
</tr>
</tbody>
</table>

Fuente: NOM-004-SEMARNAT-2002

Tabla.15 Clasificación de lodos con base en el contenido microbiológico

<table>
<thead>
<tr>
<th>Clase</th>
<th>Indicador bacteriológico de contaminación</th>
<th>Patógenos</th>
<th>Parásitos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NMP/g en base seca</td>
<td>NMP/g en base seca</td>
<td>en base seca</td>
</tr>
<tr>
<td>A</td>
<td>Menor de 1000</td>
<td>Menor de 3</td>
<td>Menor a 1 (a)</td>
</tr>
<tr>
<td>B</td>
<td>Menor de 1000</td>
<td>Menor de 3</td>
<td>Menor a 10</td>
</tr>
<tr>
<td>C</td>
<td>Menor de 2 000 000</td>
<td>Menor de 300</td>
<td>Menor de 35</td>
</tr>
</tbody>
</table>

NMP: número más probable, (a) Huevos de helminto viable.
Fuente: NOM-004-SEMARNAT-2002
Tabla 16. Clasificación de los lodos con base en el aprovechamiento

Aprovechamiento de biosólidos

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Clase</th>
<th>Aprovechamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>A</td>
<td>Usos urbanos con contacto público directo durante su aplicación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los establecidos para la clase B y C</td>
</tr>
<tr>
<td>Excelente o bueno</td>
<td>B</td>
<td>Usos urbanos sin contacto público directo durante su aplicación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los establecidos para la clase C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usos forestales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejoramiento de suelos.</td>
</tr>
<tr>
<td>Excelente o bueno</td>
<td>C</td>
<td>Usos agrícolas</td>
</tr>
</tbody>
</table>

Fuente: NOM-004-SEMARNAT-2002

En México en un proyecto de evaluación de la calidad de lodos residuales, del total de lodos generados en 18 (PTAR), 304 ton/día se reportó que la mayor parte son estabilizados mediante procesos de digestión, ya que 155.6 ton/día (51%) son tratadas mediante digestión anaerobia y 66.6 ton/día (22%) mediante digestión aerobia; mientras que 76.3 ton (25%) son tratadas por el proceso de estabilización alcalina, ver Fig.10 (Castrejón,2000).

![Diagrama](llaves)

Fig. 10. Porcentaje total de lodos según tratamiento que siguen en México (Castrejón, 2000)

La Fig.11 muestra el porcentaje total de lodos tratados y el tipo de tratamiento que se realiza con ellos. Estos son datos de plantas tratadoras de agua en México.
En cuanto al aprovechamiento benéfico, sólo el 22% de los lodos generados en las plantas analizadas utilizan a los lodos como mejoradores de suelo o como cubierta de rellenos superficiales, lo cual representa un total de 67.2 ton de lodos aprovechados por día (Zuluaga, 2007). La Fig.14 muestra el porcentaje de lodos que son aprovechados. Existe un porcentaje muy alto de lodos que puede ser aprovechados, que sin embargo se mandan a rellenos sanitarios. En otros países, la utilización del lodo requiere de una infraestructura costosa pero con fines justificados, ya que soluciona problemas de contaminación e incorpora nutrientes reciclando elementos vitales en los ciclos biológicos naturales; además de convertir un residuo peligroso en un recurso aprovechable y no peligroso. Así, la denominada gestión de excelencia destina cada residuo a su tratamiento: reciclaje, compostaje, incineración y vertedero. Recientemente se han realizado estudios, que reportan que los lodos residuales que en México, han significado un grave problema pueden ser reutilizados sin riesgos a la salud y al ambiente, demostrando que incrementan del 10 al 85% el rendimiento de los cultivos en relación con fertilizantes comunes, así, estos desechos podrían ser aprovechados después de ser sometidos a diversos procesos de estabilización, generando biosólidos que podrían aplicarse como fertilizante dependiendo de las características del suelo (Oropeza, 2006).

2.4.6 Los lodos y su acción sobre el suelo agrícola

Los lodos se caracterizan por presentar un alto contenido de materia orgánica por lo que su aplicación al suelo proporcionará estos nutrientes. Los lodos líquidos procedentes de un tratamiento primario y secundario contienen entre:

1 – 6.5 % de Nitrógeno, 0.6 – 2.5 % de Fósforo, cuando están digeridos y secados al aire reducen dichos contenidos al 2% de Nitrógeno y 1.5% de Fósforo (Zuluaga, 2007). Una de las alternativas para la disposición final de los biosólidos es su utilización como mejoradores de suelos agrícolas, debido a que son una fuente importante de nutrientes para los cultivos por su contenido de materia orgánica, macronutrientes como el N, P y K y algunos micronutrientes como Cu y Zn (Azevedo y col., 2003) Un ejemplo de usos beneficiosos es la incorporación de biosólidos al terreno para abastecerlo de nutrientes y para renovar la materia orgánica del
terreno. Esta actividad se conoce como aplicación al terreno. Los biosólidos se pueden utilizar en terrenos agrícolas, bosques, campos de pastoreo, o en terrenos alterados que necesitan recuperación. El reciclaje de los biosólidos a través de la aplicación al terreno tiene varios propósitos. Estos mejoran las características del suelo, tales como la textura y la capacidad de absorción de agua, las cuales brindan condiciones más favorables para el crecimiento de las raíces e incrementan la tolerancia de la vegetación a la sequía. La aplicación de biosólidos también provee nutrientes esenciales para el crecimiento vegetal, incluyendo el nitrógeno y el fósforo, así como algunos micronutrientes esenciales, tales como el níquel, el zinc y el cobre. Los biosólidos pueden servir también como una alternativa o sustituto de los costosos fertilizantes químicos Los nutrientes contenidos en los biosólidos ofrecen diversas ventajas, en comparación con los fertilizantes inorgánicos debido a que son incorporados lentamente por las plantas en crecimiento. Estas formas orgánicas de nutrientes son menos solubles en agua y, por lo tanto, tienen una menor probabilidad de lixiviarse al agua subterránea o ser arrastradas a las aguas superficiales; en México, investigaciones recientes reportan beneficios del uso debiosólidos como fertilizante en cultivos como maíz forrajero, la coliflor, y alfalfa. (Pesinova, 2008). Los lodos y biosólidos pueden ser utilizados en la agricultura como abono, es decir como un producto capaz de proporcionar a los cultivos elementos nutritivos necesarios para su crecimiento y desarrollo. También algunos biosólidos transformados en compost o tratados con cal pueden jugar un papel muy importante como fertilizantes, lo cual significa mantener o mejorar la estructura del suelo, su actividad, o también controlar su acidez (ADEME, 2001). Se estima que un 40% de la producción europea de biosólidos de PTAR se utiliza en la agricultura y cerca del 50% en los Estados Unidos (Jaramillo, 2002). El proceso de compostaje constituye una forma viable para una mejor estabilización de biosólidos, principalmente cuando tienen limitaciones de tipo microbiológico para su uso benéfico, lo cual facilita su disposición final al poderlos aplicar directamente en áreas de cultivo para incrementar producción y enriquecer o mejorar la calidad del suelo (Torres, 2005). Desde el punto de vista químico, la composta ofrece grandes beneficios debido a que tiene una capacidad de intercambio catiónico superior al de cualquier arcilla; suministra nitrógeno, potasio, fósforo; aporta oligoelementos tales como hierro, manganeso, zinc, boro, molibdeno y cobre y contribuye a solubilizar algunos elementos minerales del suelo, facilitando su asimilación por las plantas. También la actividad biológica del suelo se ve favorecida no sólo por el aporte de un número importante de bacterias sino por el estímulo al desarrollo de microorganismos autóctonos que contribuyen a la descomposición de componentes minerales insolubles como los fosfatos, que son necesarios para el desarrollo de las plantas y evitan la lixiviación del nitrógeno soluble al transformarlo en nitrógeno orgánico (Romero, 1982). Las características benéficas que los lodos de las plantas podrían aportar a los suelos agrícolas son: alto porcentaje de humedad, materia orgánica, capacidad de intercambio catiónica, macronutrientes y concentración de micronutrientes adecuada (Cardoso, 1999).
2.4.7 Impacto ambiental por vertido de lodos

Los residuos orgánicos tienen un fuerte impacto sobre el medio ambiente, contaminando la atmósfera, el suelo y las aguas (superficiales y subterráneas), debido principalmente a sus altos contenidos en materia orgánica -inestable e inmadura- y elementos minerales, y a la presencia de compuestos orgánicos recalcitrantes, metales pesados, fitotoxinas, patógenos vegetales y animales, los cuales son altamente contaminantes (Cegarra y col., 1994; Vogtmann y col., 1993).

En muchos casos gran parte de los lodos generados en una PTAR son descargados en sistemas de alcantarillado, en cuerpos de agua o dispuestos en tiraderos a cielo abierto sin ningún tratamiento previo que permita tomar las medidas de protección adecuadas para evitar la contaminación del suelo, agua subterránea o la atracción de vectores (insectos, ratas, carroñeros, etc.), generando problemas de contaminación de los mantos freáticos y de salud pública (Oropeza, 2006). Si se considera que solo un 24% del total del agua residual es tratada en nuestro país, la calidad de los lodos descargados representan un riesgo por patógenos, además que el manejo y estabilización de los mismos no es adecuado, pues no cumplen con la norma NOM-004-ECOL. Pues exceden los límites permisibles de éstas en cuanto al contenido de metales pesados y contenido de patógenos, que finalmente donde son dispuestos, como relleno de superficies de tierra, rellenos sanitarios, o su aplicación en tierras de cultivo directo y en el peor de los casos son vertidos en los drenajes municipales, representando un peligro al medio ambiente, ya sea en cuerpos de agua o en caso de que lleguen a la porción de aguas residuales que es tratada, concentrándose nuevamente en los lodos. Según estudios (Castrejón, 2000) la calidad de los lodos de México es deficiente, es importante considerar tratamientos que reduzcan el alto contenido microbiológico. Adicionalmente, se requiere mejorar las eficiencias de destrucción de microorganismos, modificando las condiciones de operación de los procesos existentes o añadiendo procesos que complementen la estabilización microbiológica de los lodos (Castrejón, 2000). La presencia de elementos potencialmente tóxicos presentes en los biosólidos, los cuales pueden ser movilizados hacia la solución del suelo, están en posición de ser absorbidos por las plantas o ser lixiviados hacia los mantos acuíferos, afectando los suministros de agua potable para los seres humanos (Álvarez y col., 2002).; Es por ello que para su aprovechamiento como mejorador de suelo y fertilizante, los biosólidos deben ser declarados “no peligrosos” para el ambiente, en base al análisis CRETIB (corrosividad, reactividad, explosividad, toxicidad, inflamabilidad y biológico-infeccioso) de la Ley General de Equilibrio Ecológico y Proteccional Ambiente (LGEEPA) de la SEMARNAT.(Guerra, 2004, Pesinova, 2008)). Según estudio de evaluación de la calidad de los lodos en PTAR en México , (Castrejón, 2000), menciona que en base al análisis CRETIB se puede concluir que la mayoría de muestras de lodos residuales analizadas se consideraron residuos no peligrosos, ya que únicamente una muestra se considero reactiva, por lo cual prácticamente se puede asegurar que los lodos residuales municipales no son residuos peligrosos.
En México el principal problema que afecta a los lodos es el alto contenido microbiológico que presentan (Barrios y col, Castrejón, 2000). Un hecho que aún no ha podido controlarse totalmente en países como México y que atenta contra las aplicaciones del biosólido, es la descarga de desechos industriales a la red domiciliaria urbana, mientras en países como Francia y Estados Unidos, la utilización de biosólidos es una práctica habitual, en donde las empresas encargadas del sistema de drenaje pagan a intermediarios para transportar el residuo hasta el campo del agricultor (Oropeza, 2006). Generalmente, los lodos tienen alto potencial de aprovechamiento agrícola debido al contenido de materia orgánica y nutrientes, aunque deben someterse a procesos de estabilización e higienización previa para reducir los riesgos asociados a la presencia de patógenos (Rojas, 2000). Dado que el principal problema que presentan los lodos es su alto contenido microbiológico (Castrejón et al., 2002), el desecharlos sin algún control trae consigo una doble problemática: por un lado el vertido de los lodos en sitios inadecuados puede generar severos problemas de contaminación, y por otro, se están desperdiciando las propiedades benéficas de los lodos, que pudieran ser aprovechadas en las actividades agrícolas. Para su uso en agricultura se deben implementar prácticas de control que reduzcan el riesgo para el buen crecimiento de los cultivos y protejan la cadena alimenticia (Cardoso, 1999). Todavía existe un gran desconocimiento sobre la generación, la calidad, y el manejo de biosólidos y su uso como fertilizante y mejorador de suelo en el país (Pesinova, 2008).

La utilización directa de residuos orgánicos frescos en agricultura presenta diferentes inconvenientes: fitotoxicidad (por compuestos orgánicos, elementos y sustancias minerales producidos por la descomposición no controlada de los mismos), inmovilización de nitrógeno y deficiencia de oxígeno a nivel de las raíces de la planta, elevación excesiva de la temperatura en la zona de la rizosfera, entre otros (Abad et al., 2001; Ortega et al., 1996).

Entre los diferentes métodos de adecuación de los residuos orgánicos para fines agrícolas destaca el compostaje (Abad y Puchades, 2002; Climent et al., 1996), tanto desde el punto de vista ecológico como económico (Raviv, 1998), al mismo tiempo que se colabora en la gestión de los residuos sólidos, el compostaje es el sistema que más respeta el ciclo de conservación de la materia y el que mayor aplicación encuentra en agricultura (Soliva, 2001). El compostaje de biosólidos puede ser una buena alternativa como método de control de organismos patógenos ya que las bacterias de origen entérico son sensibles a temperaturas mayores de 42 °C (McCaskey y Martín 1988). Esencialmente el compostaje se lleva a cabo en dos rangos de temperatura, mesofílica (10-40 °C) y termofílica (40 hasta 71 °C), siendo los 55 oC la temperatura crítica para eliminar patógenos humanos (Rynk 1992).
3. JUSTIFICACION

Altzayanca es uno de los municipios del estado de Tlaxcala cuya cultivo principal es el maíz en grano como cultivo cíclico, sin embargo presenta graves problemas de erosión, sus suelos son muy pobres en materia orgánica, su textura es básicamente arenosa; estos factores hacen que los productores tengan que fertilizar año con año para poder obtener el grano, que en muchas de las familias representa su sustento diario. Sin embargo, es importante proponer estrategias que permitan por un lado mejorar los suelos y por otro que se reduzca el consumo de fertilizantes ya que éstos productos químicos dañan los suelos y contaminan mantos freáticos. Por otro lado, los fertilizantes son productos derivados del petróleo por lo que sus precios han ido a la alta y se prevé que sigan incrementando, poniendo en riesgo a los productores agrícolas que deben pagar más por estos insumos en detrimento de las ganancias que obtienen por la producción agrícola.

Una alternativa de solución a esto es la utilización de abonos orgánicos como los obtenidos a través del compostaje, que por obtenerse a partir de residuos son de menor costo que los fertilizantes. Estos abonos pueden obtenerse aprovechando diferentes fuentes de material rico en materia orgánica como: residuos orgánicos de alimentos, desechos de animales y residuos agroindustriales. Materiales que a la fecha están desaprovechados y ocasionan problemas ambientales por su mala disposición, y si son enviados a los rellenos sanitarios sus componentes, principalmente el carbono, nitrógeno y fósforo se desaprovechan e imposibilita que sean usados para enriquecer los suelos.

Los lodos de PTAR son otros de los residuos que pueden emplearse en la formulación de compostas ya que contienen grandes cantidades de materia orgánica, fósforo y nitrógeno, que manejándolos de manera adecuada, a través del proceso de compostaje, se transforman en compuestos asimilables por las plantas y además mejoran la calidad del suelo. Estos residuos se producen en una cantidad importante, los cuales no se valorizan y son enviados a los rellenos sanitarios, generando por un lado, costo para la empresa por el manejo y confinación de los mismos y por el otro, ocupan espacio en los rellenos que podrían destinarse para otro tipo de residuos que requiera su confinamiento en los sitios de disposición final. El estudiar su uso como uno de los componentes para la preparación de abonos orgánicos a través del proceso de compostaje, es por demás interesante, ya que permitirá demostrar que dichos lodos pueden reutilizarse, dárselos un valor y aprovechar sus componentes para el uso como mejoradores de suelo después de varias aplicaciones, incrementando la producción agrícola así como para restaurar la calidad de los suelos. Aunado a lo anterior mediante el compostaje se permite reciclar, reducir el volumen y malos olores de la materia orgánica, estabilizándola e
higienizándola evitando por tanto la atracción de vectores de transmisión de enfermedades a la salud humana.

Por todo lo anterior, en el presente trabajo se utilizaron lodos industriales no peligrosos de PTAR residuos orgánicos industriales y residuos agrícolas para demostrar que este tipo de desechos no utilizados a la fecha, pueden transformarse en abono orgánico mediante el proceso de compostaje cuyos componentes pueden ser asimilables por las plantas y puede usarse para mejorar el rendimiento de la producción de maíz y frijol sin necesidad de aplicar fertilizantes, ello en zonas con alto índice de erosión como es en la zona de Altzayanca, de tal forma que la implementación del presente traiga consigo diversos beneficios económicos: a las empresas generadoras de los residuos, ya que se reducirán los costos por disposición final; y a los productores agrícolas quienes contarán con material más económico que los fertilizantes y les permitirá incrementar su producción agrícola, adicionalmente el uso continuo de la composta mejorará la fertilidad de los suelos y reducirá la erosión de los mismos.. Además se vislumbran beneficios ambientales ya que se reducirán los residuos que permanecen sin manejo adecuado en el ambiente, reduciendo la contaminación de agua, suelo y aire por los mismos;

OBJETIVOS

General.

Estudiar el uso de residuos industriales no peligrosos a través del proceso de compostaje y su aplicación para el cultivo de maíz y frijol.

Específicos

- Preparar mezclas de los residuos industriales orgánicos no peligrosos para el proceso de compostaje.

- Evaluar el proceso de compostaje de los diversos residuos industriales no peligrosos, a través de análisis fisicoquímicos: % Materia Orgánica, % Carbono Orgánico, % Cenizas, pH, Conductividad Electrónica, % Nitrogeno Total, C/N

- Evaluar el efecto de las compostas en la germinación, crecimiento y producción de frijol a nivel invernadero.

- Valorar el efecto de las compostas en la germinación, crecimiento y producción de maíz y frijol en parcelas experimentales.

- Evaluar globalmente el efecto de las compostas en el rendimiento de los cultivos de maíz y frijol.
4 MATERIALES Y METODOS

La Fig.12 muestra el diagrama de la estrategia de estudio que se siguió para el desarrollo experimental del trabajo.

ESTRATEGIA DE ESTUDIO

- **Preparación de mezclas para compostaje**
 - Diseño experimental

- **Proceso de compostaje**
 - Apariencia, olor, color, textura

- **Análisis Fisicoquímicos**
 - pH, % M.O, % C.O, % Cen, C.E, %NT, C/N

- **Prueba de madurez ó fitotoxicidad**

- **Cultivo de frijol y maíz**
 - Parcelas experimentales
 - Evaluación (Anova)
 - % Germinación
 - Crecimiento
 - Rendimiento

- **Cultivo frijol Invernadero**
 - Evaluación
 - % Germinación
 - Crecimiento (Anova)

Testigos utilizados
- T1=Composta Doméstica
- T2= Composta comercial Atizapan
- T3=Suelo de la región Altzayanca
- T4=Peat-moss

Fig.12 Diagrama de estrategia de estudio

El presente proyecto se efectuó para una empresa, donde se utilizaron sus lodos provenientes de su planta de tratamiento de agua para demostrar la factibilidad de procesarlos y darles un valor agregado, por cláusulas de confidencialidad no se dará a conocer el nombre de la empresa ni la procedencia de los lodos que se trabajaron, previamente la empresa demostró que los lodos son no peligrosos, ello con base en los análisis CRETIB que periódicamente mandan a hacer a un laboratorio certificado. Como ya se mencionó la mayor aportación de este trabajo fue el demostrar la factibilidad de uso de los lodos a una escala piloto y aplicando las compostas en parcelas experimentales bajo las condiciones de cultivo y a usanza de la región de Altzayanca.

4.1 Sitio de estudio
El sitio de estudio fue en el municipio de Altzayanca en el estado de Tlaxcala.

Ubicación: en el Altiplano central mexicano a 2 600 metros sobre el nivel del mar, al oriente del estado, el municipio de Altzayanca colinda al norte con el estado de Puebla, al sur con los municipios de Huamantla y Cuapiaxtla, al oriente se establecen linderos con el estado de Puebla, asimismo al poniente colinda con los municipios de Huamantla y Terrenate.

Clima
El clima del municipio es semiseco, con régimen de lluvias en los meses de julio a septiembre. El periodo caluroso se presenta en los meses de marzo a mayo. La dirección de los vientos en general, es de sureste a noroeste. La temperatura promedio mínima anual registrada es de 6.3° C y la máxima de 22.3° C. La precipitación promedio mínima registrada es de 7.3 milímetros y la máxima de 122.7 milímetros.

Flora
Por su ubicación geográfica y clima, el municipio tiene una vegetación compuesta principalmente por bosques de pino y oyamel, en el primer caso las especies representativas son ayacahuite (*Pinus ayacahuite*), pino real (*P. montezumae*), pino colorado (*P. patula*), pino blanco (*P. pseudostrobus*) y teocote (*P. teocote*), y en el segundo caso la especie dominante es el oyamel (*Abies religiosa*). El bosque de pino, constituido por teocotes, pino colorado, pino blanco, y pino ayacahuite, presenta una distribución restringida en la sierra del norte del estado, la cual colinda con el estado de Puebla y frecuentemente se encuentran creciendo en microclimas húmedos. Este bosque de pino se encuentra severamente infectado por balitas o injerto de pino (*Arceuthobium vaginatum*), el cual causa deformaciones sobre troncos y ramas.

A esta vegetación es frecuente encontrar asociado aílites (*Alnus jorullensis*), madroño (*Arbutus xalapensis*), encino rugoso (*Quercus rugosa*) y tepozán de cerro (*Buddleia parviflora*). En la parte baja del municipio hay vestigios de matorral xerófito, comunidad vegetacional que se caracteriza por tener diferentes tipos de plantas suculentas, plantas de hoja arrosetada, plantas sin hojas y plantas de hojas pequeñas y espinosas, las especies que caracterizan a esta comunidad vegetal son: el maguey de cerro (*Agave horrida*), el agave pulquero (*A. salmiana*), el zotol (*Nolina longifolia*), la palma de izote (*Yucca filifera*), la palma (*Dasylirion acrotiche*) y diversas especies de nopal (*Opuntia spp*).

Fauna
Entre la fauna se encuentran: ardilla (*Spermophilus mexicanus*), tuza, tlacuache (*Didelphis marsupialis*), coyote (*Canis latrans*), gato montés (*Linx rufus*) y liebre (*Lepus californicus*), aves como gavián (*Falco sparverius*), lechuza (*Bubo virginanus*) y reptiles como xintete, víbora de cascabel (*Crotalus sp.*).
Tipo de suelo: Tiene un territorio muy accidentado. No obstante también se encuentran mesetas, llanuras y planicies. En Altzayanca existen suelos regosoles districes, con arena eólica de materiales con sedimentos de cuenca y abanicos fluviales de La Malinche. Además de cambisoles entricos, que son suelos de barro café claro recubierto de la capa coluvial arenosa.

Uso actual del suelo
El total de la superficie que ocupan las unidades de producción rural en el municipio de Altzayanca es de 13,747 hectáreas, área que representa el 5.7% de la superficie del estado. De tal extensión, 11 652 hectáreas, o sea el 84.8%, constituyen superficie de labor, es decir, que sus tierras son dedicadas al cultivo anual o de ciclo corto, así como a frutales y plantaciones. El resto del suelo se distribuye en pastos naturales, con 1,923 hectáreas, es decir el 14.0% del total; bosque o selva, con 65 hectáreas que representan sólo el 0.5%; y sin vegetación, con 107 hectáreas, es decir 0.7%.

4.2 Proceso de compostaje
4.2.1 Preparación de mezclas para compostaje
En la Tabla.17 se muestran los análisis fisicoquímicos efectuados a los residuos orgánicos utilizados para la preparación de las compostas, y los del suelo de la región de estudio antes de la aplicación de las compostas. Observándose que el suelo fue pobre en porcentaje materia orgánica, nitrógeno y materia orgánica degradable.

<table>
<thead>
<tr>
<th>Tabla.17 Parámetros fisicoquímicos de los residuos orgánicos usados en el compostaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis fisicoquímicos de los residuos orgánicos industriales para las compostas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>% CO</td>
</tr>
<tr>
<td>% MO</td>
</tr>
<tr>
<td>% HUM</td>
</tr>
<tr>
<td>% MAT. SECA</td>
</tr>
<tr>
<td>% CEN</td>
</tr>
<tr>
<td>% NT</td>
</tr>
<tr>
<td>% NT</td>
</tr>
<tr>
<td>C/N</td>
</tr>
<tr>
<td>pH</td>
</tr>
</tbody>
</table>

Se prepararon cinco mezclas donde el componente a evaluar fue el lodo de la planta de tratamiento de agua de la empresa de bebidas, la cual financió el presente estudio, por ello el diseño experimental se hizo con base en este material. Además se utilizaron:
- aproximadamente 2 ton de lodos de una empresa papelera (L1), ello para evaluar la descomposición de materiales difíciles de degradar como es el caso de materiales celulósicos, este material se nos regaló y solo se pagó el transporte.
- La empresa para la cual se hizo el estudio llevó aproximadamente 4 toneladas de lodos de su planta de tratamiento de agua (L2)
- aproximadamente 6 toneladas de residuos de una empacadora de chile (RC) de la región de Altzayanca, se usó este material por ser un residuo orgánico de fácil descomposición, el material lo regaló la empresa y solo se pagó el transporte
- y aproximadamente 300 kg de rastrojo de maíz (RM) que se colectó en la misma zona de Altzayanca.

El diseño experimental que se siguió para la preparación de las compostas fué con base en los siguientes criterios:
- Cantidad de lodos disponibles
- Cantidad de residuos orgánicos de la empacadora de chile
- Cantidad de rastrojo de maíz, este componente se utilizó en pequeña proporción porque solo se utilizó como material texturizante, para dar porosidad y mejorar la aireación en las mezclas y evitar condiciones anaerobias en las pilas.
- Cantidad de cada componente para dar relaciones C/N adecuadas para llevar a cabo un buen proceso de compostaje, esto según los análisis que se indican en la tabla 15.
- Contar con diferentes combinaciones de material considerando compostas con los diferentes componentes y lodos de la empresa de bebidas y sin ellos, para observar el efecto de la adición de los lodos L2 en el proceso de compostaje y posteriormente su aprovechamiento en los cultivos de maíz y frijol.
- Se prepararon compostas: solo con lodos L1 y L2 sin RC, solo con RC, y combinaciones L1-L2-RC: a) en proporciones iguales, b) mayor proporción de chile (RC) y c) mayor proporción de L1.

Las mezclas se prepararon en volumen ya que no se contó con una báscula industrial para el pesado, por lo que se usaron carretillas para la formación de las pilas. La Tabla. 18 muestra las proporciones en volumen utilizadas de los residuos orgánicos para la preparación de las pilas de compostaje.

<table>
<thead>
<tr>
<th>Composición</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>30%</td>
<td>0</td>
<td>45%</td>
<td>0</td>
<td>45%</td>
</tr>
<tr>
<td>L2</td>
<td>30%</td>
<td>35%</td>
<td>25%</td>
<td>0</td>
<td>45%</td>
</tr>
</tbody>
</table>
Las mezclas preparadas con los residuos orgánicos fueron sometidas al proceso de compostaje mediante pilas estáticas durante 6 meses, con volteos semanales para proveer aereación, también fueron regadas semanalmente para mantener la humedad y tener las condiciones óptimas para la degradación de los residuos.

4.2.2 Seguimiento del proceso de compostaje

Debido a que el uso de compostas está dirigido al uso agrícola, estas deben cumplir con características de inocuidad y madurez, para evitar posibles efectos negativos y obtener compostas que cumplan con la normatividad para su posterior aplicación en suelos. La mayoría de los métodos o criterios están basados en el estudio de la evolución de determinados parámetros físicoquímicos y bioquímicos a lo largo del proceso de compostaje, cuyo comportamiento es un reflejo de la actividad metabólica de los microorganismos involucrados en el proceso. La evolución de éstos parámetros indica el grado de descomposición que se va obteniendo en los residuos, por lo que la variación de los mismos son aplicables a la determinación de la madurez de la composta. Sin embargo los parámetros considerados individualmente no son suficientes para establecer el grado de madurez de las compostas comerciales, es necesario el análisis integral de los mismos (Moreno, et. al, 2008).

Se realizó el seguimiento del proceso, a través de análisis físicoquímicos. Para los análisis se tomaron porciones aproximadamente 500 g en varios puntos de la pila, de la parte superior, de enmedio y de abajo de ésta, para conformar una muestra compuesta que fuese representativa de toda la pila; se hicieron dos muestreos a 3 y 6 meses de compostaje para observar el cambio en los mismos. Las muestras fueron homogenizadas, secadas al ambiente y posteriormente fueron molidas y tamizadas en malla de 2mm. Los análisis físico-químicos
que se consideraron para el monitoreo del proceso de compostaje fueron: pH, conductividad eléctrica (C.E.), carbono orgánico (% C.O), materia orgánica (% M.O), % cenizas (% Cen), sólidos totales % (S.T) nitrógeno total % (NT). Cada análisis se realizó por triplicado incluyendo el blanco. Los testigos utilizados fueron: (T1.) Composta madura elaborada con residuos domésticos, (T2) Composta comercial elaborada en la planta de compostaje de Atizapán, (T3) Suelo de la zona de Altzayanca, (T4) Peat-moss.

4.2.3. Descripción de métodos para el seguimiento del proceso de compostaje

A continuación se anexa la metodología que se siguió para los análisis fisicoquímicos.

Medición de PH (1:2) *(NMX-AA-021-REC-NAT-2001 AS-02)*

Se pesó 10 g de muestra, se adicionó 20 mL de agua deionizada, con varilla de vidrio se agitó manualmente a intervalos de 5 minutos, durante 30 minutos. Se dejó reposar durante 15 minutos. Se calibró el medidor de pH HACH cat. No. 54650-18 Sension 156 portable multiparameter enjuagando con agua deionizada los electrodos antes de iniciar las lecturas de las muestras. Se agitó nuevamente la suspensión se introdujo el electrodo en la suspensión., se registró el pH al momento en que la lectura se estabilizó.

Determinación de Conductividad Eléctrica (1:5) *(NOM-AA-021 REC-NAT-2000 Método AS-18)*

Se pesó 10 g de muestra se añadieron 50 mL de agua deionizada, se agitó la suspensión y se dejó reposar durante 24 horas. Para la medición de la CE, se encendió el potenciómetro 5 minutos antes de realizar las mediciones, se colocó la celda en la muestra y se hizo la medición. Entre cada medición se enjuagó la celda 2 ó 3 veces con agua deionizada. Después se tomó la temperatura de la solución. Las lecturas se corrigieron por un factor de temperatura y se expresó de acuerdo a las instrucciones del fabricante El cálculo de la CE se hace mediante la siguiente fórmula.

Cálculo de la Conductividad Eléctrica:

\[
CE = \frac{C_{prob} \cdot K \cdot Ft}{1000}
\]

Donde:
- CE: conductividad eléctrica (Ds m⁻¹) a temperatura ambiente.Ds m⁻¹ =mmho cm⁻¹.
- Cprob=Conductividad de la muestra probablema en µmho
- Ft=Factor de corrección por temperatura (ver tabla)
- 1000= Factor para convertir de µmho a mmho
Donde:

CE: conductividad eléctrica (Ds m$^{-1}$) a temperatura ambiente. Ds m$^{-1} = $mohm cm$^{-1}$.

C_{prob} = Conductividad de la muestra problema en μohm

Ft = Factor de corrección por temperatura (ver Tabla anexol)

1000 = Factor para convertir de μohm a mohm

Determinación de Cenizas NOM-021-RECNAT-2000 TMECC 05.07-A

Se pesó 1 g de muestra previamente secada al ambiente y se colocó en un crisol de porcelana. Se calienta en la mufa a 550°C por dos horas, posteriormente se enfriaron las muestras en desecador y se pesan hasta registrar peso constante y se determina el peso por medio de:

$$\% \text{ Ceniza} = \frac{\text{PCC} - \text{PC}}{\text{Muestra (g)}} \times 100$$

Donde: PCC=Peso crisol con cenizas

PC= Peso del crisol

100=Para referirlo a porcentaje

Determinación de Materia Orgánica y Carbono Orgánico (NOM-021-RECNAT-2000 Método As-07, Wakley y Black)

Se pesó 0.1 g de muestra, para materiales ricos en materia orgánica se agrega menor cantidad de muestra la cual se colocó en un matraz Erlenmeyer de 500 ml. Se procesó un blanco por triplicado se adicionó 10 mL de dicromato de potasio 1N girando el matraz cuidadosamente para que entrara en contacto con toda la muestra. Se agregó cuidadosamente con una bureta 20 mL de ácido sulfúrico concentrado girando nuevamente el matraz, y se agitó durante un minuto. Posteriormente se dejó reposar durante 30 minutos sobre una lámina de asbesto o sobre una mesa de madera, evitando las mesas de acero o cemento. Se procedió a añadir 200 mL de agua demonizada, 5 mL de H$_2$PO$_4$ concentrado y de 5 a 10 gotas del indicador de difenilamina 1% y se agitó y se tituló con la disolución de sulfato ferroso 1N gota a gota hasta un punto final verde claro. El cálculo del porcentaje de carbono orgánico se hizo mediante la siguiente fórmula.

$$\% \text{ c. Orgánico} = \frac{\frac{E - T}{p} \times 39}{m}$$
Donde:

- \(B \) = volumen d sulfato ferroso gastado para valorar el blanco (ml)
- \(T \) = volumen d sulfato ferroso gastado para valorar la muestra (ml)
- \(N \) = Normalidad exacta del sulfato ferroso (valorar por separado al momento de analizar las muestras)
- \(g \) = Peso de la muestra empleada (g)
- \(mcf \) = factor de corrección de humedad

\[
\% \text{Materia orgánica} = \% \text{C.Orgánico} \times 1.724
\]

Determinación de Sólidos Totales (NMX-AA-034-SCFI-2001)

Se pesó 1 g de muestra previamente secado al ambiente y se determinó el porcentaje de sólidos totales en la termobalanza: Adam Equipment Company 2006.

Determinación del % de Humedad (NOM-021-RECNAT-2000 Método As-05)

Se pesó 1 g de muestra previamente secado al ambiente y se determinó el porcentaje de humedad en la termobalanza marca: Adam Equipment Company 2006.

Determinación Nitrógeno total Khjendal (NMX-AA-024-SCFI-2001)

Se pesó 0.25 g de muestra en un tubo de digestión con 1.1 g de mezcla de catalizador comercial de Se-Cu, se agregó 4 mL de ácido sulfúrico concentrado y se dejó reposar durante 24 horas, posteriormente se colocó la muestra a digestar, a una temperatura de 260 °C durante 4 horas, pasado ese tiempo se aumentó la temperatura a 360 °C por 1 hora más. Se dejó enfriar durante 24 horas, posteriormente se llevó a cabo la destilación por arrastre de vapor, agregando a un matraz erlenmeyer 10 mL de la solución de indicadores (mezcla comercial de bromocresol-rojo de metilo), con ácido bórico al 20%; La muestra previamente digestada y fría se agregó al destilador y se enjuagó el tubo de digestión con aproximadamente 5 mL de agua demonizada, se adicionó 10 mL de hidróxido de sodio al 32% (con mucha precaución la reacción es altamente exotérmica), obteniéndose un cambio de coloración en la reacción, y posteriormente se colocó la manguera del destilador dentro de la mezcla de solución de ácido bórico e indicadores, la cual se hizo burbujear durante 10-15 min para la recuperación de un volumen 50 mL de producto. Se procesó un blanco por triplicado; para éste se siguen las mismas condiciones de preparación que en las muestras pero no se agrega muestra.

\[
\% N = \frac{(a - b) \times N - 14}{5 \times 10}
\]
a = ml de H₂SO₄ requeridos para la titulación de la muestra

b = ml de H₂SO₄ requeridos para la titulación del blanco

N = Normalidad del H₂SO₄

14 = Peso atómico del nitrógeno

S = Peso de la muestra seca al aire (g)

Determinación de la relación Carbono/Nitrógeno NOM-AA-67-1985

Cálculo:

\[
\frac{C}{N} = \frac{\%CO}{\%NT}
\]

En donde:

C:N = Relación Carbono-Nitrógeno.

CO = Porcentaje de Carbono Orgánico

NT = Porcentaje de Nitrógeno total Kjeldahl

Se pesó 2.5 g de suelo y se colocó en los tubos de polietileno. Se adicionó 50 ml de la solución extractora, se tapó y se agitó la suspensión en agitador de acción reciproca durante 30 min a 180 oscilaciones por minuto.

Posteriormente, se filtró inmediatamente a través de papel filtro Whatman No. 42 u otro de calidad similar.

Se tomó una alícuota de (5 mL ó 10 mL del filtrado) dependiendo de la concentración de P, (mayor o menor coloración) y se colocó en un matraz aforado de 50 ml. Se prepararon blancos a partir de alícuotas de solución extractora, siguiendo el mismo proceso que para las muestra. Se agregaron 5 ml de la solución reductora, se agitaron y se aforaron. La lectura se realizó después de 30 minutos, pero antes de una hora a una longitud de onda de 882 nm (previamente se leyó curva de calibración).

Se preparó una curva de calibración con patrones de 0, 0.1, 0.2, 0.4, 0.6, 0.8 y 1.0 mg L⁻¹ de P. Para esto se pipetó 0, 1, 2, 4, 6 y 10 ml de una solución de 5 mg L⁻¹ de P a matraces aforados de 50 ml. Se adicionó un volumen de solución extractante de NaHCO₃ 0.5 M igual a la alícuota empleada para medir en las muestras desconocidas, se agregó aproximadamente 40 mL de agua deionizada y se adicionó 5 mL de la solución de ácido ascorbico y se aforaron.
Se agitaron nuevamente. Y se leyeron después de 30 min pero antes de una hora a 882 nm, al igual que las muestras, para procurar el mismo tiempo de reacción desde que se agrega el reactivo que genera el complejo hasta el momento de la lectura.

CALCULOS

\[P(\text{mg Kg}^{-1} \text{de suelo}) = CC \times \frac{Vi}{p} \times \frac{Vf}{a} \]

Donde:
- \(CC = \text{mg L}^{-1} \text{de P en la solución} \) se obtiene graficando la curva de calibración (absorbancia contra mg L \(^{-1}\)) e interpolando en la misma, los valores de absorbancia de las muestras analizadas a las cuales previamente se les ha estado dando el valor promedio de los blanco o por medio de una regresión simple.
- \(Vi = \text{volumen de la solución extractora adicionada} \)
- \(p = \text{peso de la muestra de suelo seca al aire} \)
- \(Vf = \text{volumen final de la solución colorimétrica a leer} \)
- \(a = \text{alícuota de la muestra empleada para la cuantificación} \)

INFORME DE LA PRUEBA

Los resultados se expresan en mg Kg \(^{-1}\). Se deberá expresar mediante el uso de la cifra decimal. Adjunto al resultado debe especificarse el método empleado.

Determinación de textura (NOM-021-RECNAT-2000 Método As-05 Bouyoucos)

Se colocaron 50 g de suelo (seco al aire y tamizado por malla de 2 mm) de textura fina o 100 g de textura gruesa (90-100 % de arena) en una copa de dispersión, se agregó agua deionizada hasta 5 ó 6 cm por arriba de la muestra. Se añadieron 35 ml de la solución de floculante (NaPO\(_3\))\(_6\) y (Na\(_2\)CO\(_3\)). Se colocó la copa en la batidora y puso a dispersión por 6 minutos si el suelo es arenoso. (se coloca durante 10 minutos para arenas finas y 15 minutos para otros suelos).

NOTA. Las arenas no deben dispersarse más de 6 minutos porque causan abrasión.

Después de transcurrido el tiempo de dispersión se virió el contenido de la copa a las probetas de sedimentación lavando perfectamente con una piceta. se colocó el hidrómetro dentro y se completó con agua deionizada a 1130 mL (peso de 50 g de suelo) o a 1250 mL, (peso de 100 g de suelo). Se sacó el hidrómetro, se tapó la boca de la probeta y se agitó vigorosamente varias veces con movimientos de arriba hacia abajo (esta agitación puede hacerse con un agitador manual perforado en su base y logrando movimientos uniformes en sentido vertical), hasta que quedó...
una suspensión bien mezclada se colocó rápidamente en posición vertical y se empezó a contar el tiempo con el cronómetro.
A los 15 ó 20 segundos fue sumergido lentamente el hidrómetro y a los 40 segundos exactamente se hizo la lectura en el menisco superior, si al efectuar la lectura (hay mucha espuma debido a la materia orgánica, entonces se añade una gota de alcohol amílico sobre la superficie de la suspensión antes de hacer la primera lectura), se registró la lectura; se sacó el hidrómetro muy suavemente e inmediatamente se midió la temperatura. Se anotó la hora en que se inició el tiempo después de la agitación.
Al sacar el hidrómetro, se enjuagó y se secó para la siguiente lectura; ésta segunda lectura se efectuó sin agitar la muestra, a las dos horas, que se cuentan a partir del instante en que fue puesta a sedimentar la suspensión.

NOTA: El hidrómetro no debe dejarse dentro de la suspensión entre una lectura y otra, o por largo tiempo, esto interfiere con la sedimentación libre de las partículas.

En cada lectura se tomó la temperatura y por cada grado arriba o debajo de 19.5 °C se aplicó una corrección de .36 graduaciones sobre el hidrómetro (restando 0.36 por cada °C abajo ó sumando 0.36 por cada °C arriba de 19.5 °C respectivamente). Temperaturas extremas a 10 y 38 °C deberán ser evitadas, las lecturas más exactas serán cuando la suspensión tenga 19.5 °C.

Cálculos:

Se corrigieron por temperatura las lecturas del hidrómetro usando la (Tabla anexo II)

Ejemplo:

Cálculo de los porcentajes de arena, limo y arcilla:

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>40 seg</th>
<th>2 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectura</td>
<td>28.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Temperatura °C</td>
<td>22.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Lectura corregida</td>
<td>28.72</td>
<td>20.72</td>
</tr>
<tr>
<td>Lectura corregida x 2</td>
<td>57.44</td>
<td>41.44</td>
</tr>
</tbody>
</table>

\[
\frac{\text{Lectura corregida x 2}}{100 - (\text{Lectura corregida x 2})} \times 100 = \% \text{ de arena}
\]

\[
\frac{\text{Lectura corregida x 2}}{100 - (\% \text{ de arena} + \% \text{ de arcilla})} = \% \text{ de arcilla}
\]

\[
\frac{\text{Lectura corregida x 2}}{100 - (\% \text{ de arena} + \% \text{ de arcilla})} = \% \text{ de limo (diferencia)}
\]

Total (suma de las 3 fracciones) 100.0 %
Prueba de fitotoxicidad o madurez de compostas (según método propuesto por Zucconi, F. Forte, et. al., 1985)

A 2 g muestra previamente seca al ambiente y tamizada en malla 2 mm se agregó 10 mL de agua deionizada, (1:5) se agitó durante 1 hora, posteriormente se filtró la suspensión. Por otro lado se prepararon cajas petri con papel filtro y se colocaron 10 semillas de lechuga marca Happy Flower en cada una. Se agregó 1 mL de filtrado de cada material a cada caja. Las cajas petri se incubaron por 4 días en una cámara marca HACH, BOD incubator modelo 208, a temperatura de 27 ºC. Diariamente y durante cuatro días se registró el número de semillas germinadas por caja. Se determinó el tiempo de germinación de las semillas cuando la germinación fue en más del 50 %.

Al cuarto día se midió la elongación de la raíz ó crecimiento de radícula; como testigo se utilizaron semillas a las mismas condiciones pero usando agua deionizada. Se utilizaron como testigos peat-moss (suelo vegetal), solución nutritiva (simulando fertilizante químico) y suelo de la región de Altzayanca.

Se calculó el porcentaje de germinación relativo (PGR), crecimiento de radícula relativo (CRR) e índice de germinación (IG), según metodología descrita por Tiquia (2000) con las siguientes relaciones:

\[
PGR = \frac{\text{Nº de semillas germinadas en el extracto}}{\text{Nº de semillas germinadas en el testigo}} \times 100
\]

\[
CRR = \frac{\text{elongación de radículas en el extracto}}{\text{elongación de radículas en el testigo}} \times 100
\]

\[
IG = \frac{PGR \times CRR}{100}
\]

4.3 Proceso de siembra

Dado que las compostas presentaron inocuidad según los análisis microbiológicos realizados en un laboratorio certificado (ver anexo) mediante la norma (PROY-NTEA-006-SEGM-RS-2005 para la producción de mejoradores de suelos elaborados a partir de residuos orgánicos) y comprobado la madurez de las compostas mediante índices de germinación en semillas sensibles a componentes tóxicos como la lechuga, se procedió a evaluar las compostas para el cultivo de frijol y maíz.
Las semillas utilizadas fueron de frijol negro y de maíz criollo cultivados en la región de Altzayanca en el ciclo agrícola anterior, se consideró trabajar con la semilla obtenida en la región ya que esta se sabe que germina y crece en el suelo de Altzayanca. Se siguieron dos esquemas de prueba:

a) **Invernadero**, variables de respuesta: porcentaje de germinación y crecimiento foliar. Se colocó 1 kg de composta y 2 kg de suelo de la región de Altzayanca mezcladas en macetas de capacidad aproximada de 4 kg, (Rodríguez, 2006) de frijol. Se colocaron 4 semillas en las macetas por triplicado para cada composta y se utilizaron como testigos: (T1) Peat-moss, (sustrato vegetal comercial), (T2) Fertilizante químico, (utilizándose urea y triple fosfato en relación 2:1 como se aplica en la región de Altzayanca 200 kg de Urea + 100 kg de triple fosfato) y (T3) Suelo de la región de Altzayanca sin fertilización. Se les suministró humedad cada tercer día, se registró la germinación y su crecimiento semanal durante 2 meses. Fueron sembradas en el mes de Agosto/2009.

b) **Parcelas experimentales**, las variables respuesta fueron: porcentaje de germinación, crecimiento foliar y rendimiento.

Así mismo se evaluaron las compostas para el cultivo de maíz, en este caso solo se evaluó en parcelas experimentales ya que el maíz no crece bien en macetas, las variables de respuesta fueron: porcentaje de germinación, crecimiento foliar y rendimiento.

Para la siembra de frijol y maíz en las parcelas experimentales se tomaron como criterios para el diseño experimental:

- **Disponibilidad del área del terrero** Aproximadamente 192 m2
- **División de parcelas** para ocupar todo el terreno, se consideraron de 6 X 4 m2 para cada composta evaluada, divididas en dos subparcelas de 12 m2 cada una para evaluar las dos formas de aplicación de la composta que se consideraron en el presente: en capa y mateado.
- **Cada parcela se dividió en 5 zurcos**
- **Se consideró un total de 8 tratamientos**: evaluación de las 5 compostas y 3 testigos: (T1) Peat-moss (sustrato vegetal comercial), (T2) Fertilizante químico, (utilizándose urea y triple fosfato en relación 1:3 según la forma en que se aplica en la región de Altzayanca), para el cultivo de frijol fue una sola aplicación y para el cultivo de maíz fueron 2 aplicaciones durante el ciclo agrícola, (T3) Suelo de la región de Altzayanca sin fertilización.
- **La parcela fertilizada se dejó al final del terreno, no se intercaló con las compostas**
- **Se hizo diseño multifactorial de (5 X 8) donde la numeración de la composta se hizo al azar.**

La distribución de la composta en las parcelas experimentales se muestra en la Fig.13.
Se sembró en el ciclo agrícola Primavera-Verano concluyendo con la cosecha en el mes de Septiembre del 2010; cada subparcela tuvo aproximadamente 35 puntos de aplicación de semilla, en los cuales se sembraron con 4 semillas de frijol ó 4 de maíz, según la forma en que la realizan en la región de Altzayanca: inmediatamente después de zurcar se colocan las semillas en el fondo del zurco y se van tapando usando el pie para amontonar el suelo.

La aplicación de cada una de las compostas se hizo de dos formas: a) en capa y b) mateado.

a) En capa, primero se adicionó la composta en la superficie del terreno, se extendió en una capa uniforme en la superficie de la subparcela, se mezcló con ayuda del tractor y posteriormente se zurcó y se sembró. Se adicionaron aproximadamente 13 L/m², es decir entre 11.5 y 15 kg de composta/m² (EPA, 1997)

b) Mateado, una vez colocadas las semillas en la base del zurco se aplicó la composta sobre las semillas y después se tapó con el suelo. La cantidad adicionada de composta fue la necesaria para alcanzar una aplicación de 4.5 toneladas por hectárea (SAGARPA)

Se llevó a cabo el experimento durante todo el ciclo agrícola de cada cultivo, que en ambos casos fuede 6 meses de marzo a septiembre. Los cultivos estuvieron provistos de riego constante durante todo el ciclo. El registro de la germinación de las semillas de frijol y maíz se hizo a los 15 días del sembrado; para el registro del crecimiento foliar se hizo cada 15 días midiendo las plantas que se tomaron completamente al azar, en el que se procuró abarcar
toda el área de la subparcela descartando las plantas de las orillas para evitar efecto entre formas de aplicación. Al final del ciclo agrícola se contaron las plantas que crecieron, se colectaron todos los elotes obtenidos en cada subparcela, se contaron y llevaron al invernadero, una vez que el maíz estuvo seco se desgranó y se pesó. En el caso del frijol, se contaron todas las plantas que crecieron en cada subparcela, una vez que este estuvo maduro se recolectó todo el frijol de cada subparcela, se dejó secar en el invernadero, se sacó de las vainas y posteriormente se pesó.

Se realizó el análisis estadístico mediante el análisis de varianza (ANOVA) y prueba comparativa de Tukey en programa Windows XP 2007, tanto para el crecimiento como para la producción de maíz y de frijol, para definir si hubo diferencias significativas entre las compostas y los testigos y entre las dos formas de aplicación de las compostas.

Finalmente se hicieron los mismos análisis fisicoquímicos ya descritos, al suelo al final de la cosecha, con la finalidad de comparar las características de éste con respecto al suelo antes de la aplicación de las compostas y definir el efecto de éstas en el suelo, así como en los cultivos.
V. RESULTADOS Y DISCUSIÓN

5.1 Proceso de compostaje

Fue importante hacer un seguimiento de los cambios que iban sufriendo los residuos en las pilas preparadas para el compostaje como fueron: cambios de apariencia, cambios en sus parámetros físicos y químicos a lo largo del proceso de compostaje, definir que las compostas estaban maduras y estables, un análisis de fitotoxicidad y finalmente análisis y comparación de los mismos con la normatividad, esto último para definir si el producto final cumplía con la normatividad correspondiente para posteriormente aplicarlas en cultivos agrícolas.

Todos los cambios que se fueron registrando en las pilas fueron indicativos de la transformación de los residuos en composta. Durante este proceso se controló la aireación y la humedad condiciones necesarias para la actividad microbiana y por ende la degradación de la materia orgánica.

5.1.1 Cambios físicos olor, color y apariencia

Los componentes de las mezclas tuvieron cambios físicos con respecto al tiempo, los mas notorios fueron en la textura, apariencia, reducción del volumen, tamaño de las partículas, cambio en la coloración y olor, estos cambios se dieron como resultado de la actividad microbiana, que descompusieron los componentes orgánicos de los residuos. Todas las mezclas sufrieron una descomposición similar con respecto al tiempo, tanto las compostas que contenían los dos lodos como la composta con únicamente residuos orgánicos, todas fueron descomponiéndose gradualmente, lo cual indica que los lodos industriales fueron susceptibles de descomposición, mezclados entre ellos ó con otros residuos.

Con el proceso de compostaje la materia orgánica original fue transformada hasta llegar a una textura como un suelo vegetal, no se distinguieron los componentes iniciales, el color cambio en comparación con el color de los residuos y lo más notorio fue que el olor característico de los lodos de la planta de tratamiento de agua fue desapareciendo gradualmente, al final se percibió con olor a suelo húmedo característico de la presencia de actinomicetos.

Las fotografías muestran el cambio gradual que ocurrió en los materiales, la fotografía 1 es al momento de montar las pilas, la fotografía dos es a un mes de iniciado el proceso de compostaje, la fotografía 3 es a 4 meses de compostaje y la fotografía 4 es al final del compostaje y antes de su molido y tamizado.
Es importante resaltar que se midieron las temperaturas en el centro de las pilas, sin embargo debido a la fecha en que se estableció el convenio con la empresa, las pilas se montaron casi a inicio del periodo invernal (noviembre) lo cual ocasionó que las temperaturas registradas fueran menores a 40 grados centígrados y no siguieron el comportamiento esperado según la literatura, incluso hubo días en que las pilas tenían una capa de hielo superficial, por ello no se muestran dichos resultados; sin embargo y a pesar de las condiciones climatológicas se logró la descomposición de los residuos y su transformación en compost.

Los cambios que se observaron fueron producto de una serie de descomposiciones por diferentes organismos, principalmente aerobios, por medio de microorganismos que necesitan oxígeno (O_2). La ecuación bioquímica total puede ser la siguiente: (Stofella, et al, 2003).

\[
\text{Materia orgánica} + O_2 + \text{MICROORGANISMOS} \rightarrow \text{CO}_2 + \text{NH}_3 + \text{productos} + \text{ENERGIA}
\]

Se sabe que el primer nivel de consumidores en una composta son los microorganismos como bacterias, actinomicetos y hongos, que son las especies que descomponen el material, al alimentarse y digerir los residuos orgánicos antes de que ellas sean consumidas por el segundo nivel de organismos, como los protozoos y los ácaros. El tercer nivel de consumidores, es decir los ciempiés y los escarabajos apresan al segundo nivel de consumidores y a ellos mismos. Esta sucesión de organismos constituye un sistema eficiente para el exitoso funcionamiento del proceso de compostaje (Stofella, et al, 2003).

5.1.2 Análisis de parámetros físico-químicos

Adicionalmente para efectuar el seguimiento del proceso de compostaje, se hicieron diferentes análisis físico-químicos a 3 y 6 meses de montado de las pilas. Los resultados se describen a continuación.

pH

El pH es uno de los parámetros importantes que controlan las formas en que se presentan los compuestos en el suelo, también indica del grado de disociación de los iones hidrógeno procedentes de los lugares de intercambio o la extensión de la formación de dichos iones por hidrólisis del ión Al^{3+} (Mondragón, 2005). Este parámetro en el suelo es muy importante ya que predice la disponibilidad de la mayoría de los nutrientes, y en general ésta es máxima cuando el pH del suelo se encuentra cercano a la neutralidad (Castellanos, 2000; Plaster, 2000). En términos de productividad del suelo, el pH empieza a afectar el rendimiento agrícola a medida que alcanza valores menores a 6. En el caso del cultivo de frijol absorbe mejor los nutrientes a valores de pH entre 6.6-7.5 (Castellanos, 2000). Por esto, es importante determinar el pH de las compostas que serán empleadas en los suelos, ya que no basta con la cantidad de nutrientes que aporte sino también del pH para garantizar la biodisponibilidad de los nutrientes en el mismo.
La Fig. 17 muestra los valores de pH medidos a 3 y 6 meses de compostaje, se sabe que éste parámetro debe ir cambiando conforme se va descomponiendo el material, incrementa durante los primeros meses hasta valores cercanos a 9, esto por la degradación de compuestos orgánicos complejos como proteínas (Sánchez-Monedero, 2001) en donde existe liberación de amoniacio; en la fase intermedia del mismo, el pH desciende por la formación de ácidos orgánicos, y hacia el final de éste proceso alcanza valores neutros entre 6.5 y 8, estos por la formación de compuestos tampones como ácidos húmicos. Estos cambios van indicando que se esta favoreciendo la degradación de la materia orgánica (Moreno, 2008).

La disminución observada en el pH del material experimental de 3 a 6 meses del compostaje, indica que se siguió descomponiendo el material, lo cual coincide con los cambios de apariencia observados en las pilas y descritos anteriormente. Entre el tercer y sexto mes de compostaje se observa un descenso en el pH, como lo indica la literatura, y al final (6 meses) las compostas tuvieron valores de pH entre 7 y 8.5.

El valor de pH final para las compostas 1, 3 y 5 se encontraban dentro de los limites permisibles por la norma PROY-NTEA-006-SEGEM-RS-2005, que establece los requisitos para la producción de mejoradores de suelos elaborados a partir de residuos orgánicos, el valor de la norma para el pH es de 6.5 a 8. Los testigos utilizados tuvieron valores de pH dentro de los límites permisibles, a excepción del peat-moss quien presentó un pH bajo, mismo que se explica por el contenido de ácidos húmicos de éste material.

Los valores de pH de las compostas 2 y 4 (C-2 y C-4) rebasan ligeramente del límite máximo permisible en la norma para este parámetro; pero es importante comentar que hay varios autores que reportan valores de pH mayores a 8 en compostas elaboradas con residuos orgánicos industriales; como es el caso de Wu y col. (2000) quienes reportan valores finales de pH para compostas elaboradas con biosólidos y residuos de jardín que alcanzaron valores entre 8.3 - 8.4. Iñiguez et al, (2006) reportaron valores de pH de 8.67 - 8.55 en compostas de biosólidos con residuos de agave. Tongetti et al (2007) reportaron valores de pH de 8.3 - 8-4 para residuos de la fracción orgánica municipal con biosólidos. Es común que utilizando biosólidos los valores de pH sobrepasen el valor de 8, indicado en la norma.

Conductividad eléctrica

Este otro parámetro se midió durante el compostaje ya que es un indicador del nivel de salinidad, y para el caso de los sustratos de cultivo deben mantenerse estos niveles bajos, debido a que el cultivo se va a desarrollar directamente sobre ellos. La salinidad del suelo ó de
la composta afecta negativamente a la mineralización. Estos efectos se producen por inhibición de la amonificación y nitrificación, también puede afectar negativamente el crecimiento de las plantas (Moreno, et al, 2008). La conductividad eléctrica (CE) refleja por lo tanto el contenido de sales solubles, por lo que si este contenido es alto tiene efectos fitotóxicos en el crecimiento de plantas (Reddy, 1998, Cáceres y col., 2006).

La Fig. 18 muestra la variación en la conductividad eléctrica durante el proceso de compostaje, como se esperaba, esta aumentó con respecto al tiempo debido a la transformación de la materia orgánica en sales inorgánicas de Ca y Mg, carbonatos, sulfatos, cloruros, nitratos (Stofella, 2005; Quinchía, 2004; Cáceres et al, 2006). Este comportamiento se observa en todas las compostas a excepción de la C-5, que al final presentó cambios no significativos en este parámetro, lo que podría indicar, que el proceso de degradación fue más lento, pues esta composta tenía la mayor proporción de lodos de la empresa papelera (celulosa de difícil degradación).

Los valores de CE en las compostas presentaron valores entre 0.7-1.7 dS/m. Las dos compostas maduras que se usaron como testigos (T1 y T2) mostraron CE similares a las de las compostas experimentales, sugiriendo por tanto que las compostas experimentales a 6 meses estaban con buen grado de mineralización. Por otro lado, el suelo de la zona de estudio (testigos T3) fue muy deficiente en sales minerales, por ello su CE fue baja, el peat-moss (T4) presentó bajo contenido en sales debido a que este material no estaba completamente descompuesto y además con alto contenido de ácidos húmicos.

La norma para mejoradores de suelos no estipula un valor de CE para las compostas, sin embargo comparando con reportes científicos se puede decir que los valores de CE de las compostas experimentales están en valores aceptables: Moreno, et al (2008) indican que aunque dependerá de las necesidades de la planta a cultivar, se recomienda mantener valores de la C.E. por debajo de 1.50 dS/cm. porque cuando se presenta una cantidad excesiva de sales en el suelo impide la absorción del agua hacia la planta y modifica la adsorción de nutrientes (Portal.2003). Por su parte Tongetti et al (2007) registraron valores de CE de 1.6 mS/cm para la fracción orgánica de desechos de basura composteados con biosólidos; otros valores reportados de CE. son de 2 µS/cm en compostas que utilizaron biosólidos como sustratos (Acosta 2006). Iñiguez et al, (2006) comentan que registraron cambios de conductividad de 1.45 a 3.35 dS/m durante el proceso de mineralización que sufrió la mezcla biosólidos-bagazo de agave. Quinchía (2004), reporta valores de CE de 3.59, 2.96 y 2.68 dS/cm para compostas de biosólidos con aserrín y equinasa. Según Castellanos, 2000 la CE indicada para el rendimiento de 1 ton de frijol debe estar en un valor de 1 dS/m y para maíz de 1.7 dS/m
Cenizas

En términos muy simplificados, una composta puede ser considerada como un compuesto de agua, materias orgánica e inorgánica. La cantidad de agua de una muestra se determina generalmente por métodos de desecación, mientras que las fracciones orgánica e inorgánica por métodos de combustión. La fracción orgánica se somete a combustión y se volatiliza dejando un residuo de cenizas considerado como la parte inorgánica. La fracción combustible, a veces denominada como sólidos volátiles, es un buen índice del contenido orgánico (Naylor, 1996). Para definir la cantidad de materia orgánica e inorgánica remanente en las compostas se cuantificaron las cenizas.

La Fig.18 muestra el % de cenizas a 3 y 6 meses de compostaje, se observa que durante el proceso hubo pérdida de materia orgánica con respecto al tiempo. A 3 meses el contenido de materia orgánica era mayor ya que estaba el proceso de degradación de los residuos, hacia el final del proceso (6 meses) se observa que el porcentaje de cenizas incrementó, indicando por tanto mayor contenido de la fracción inorgánica, esto ocurre durante la descomposición de la materia orgánica cuando el material se mineraliza, es decir se forman sustancias inorgánicas como las sales.

La Fig.19 muestra el % de cenizas en compostas experimentales a 3 y 6 meses de compostaje y de testigos. Por tanto se podría inferir que el proceso de compostaje cumplió con el objetivo de degradar la materia orgánica, independientemente el origen de ésta. El aumento en el % de cenizas a través del tiempo fue indicativo de que se efectuó el proceso en condiciones adecuadas, que permitieron la degradación de la materia orgánica. Como habría de esperarse, las compostas C-2 y C-4 presentaron los menores cambios de % de cenizas en los 6 meses de compostaje, ya que el material de origen de éstas compostas contenía la mayor proporción de residuos orgánicos fácilmente degradables, como el chile, mientras que las compostas restantes, por contener lodos de la empresa fabricante de papel (celulosa) la degradación de éstos fue más lenta a través del proceso de compostaje. En todas las pilas hubo una degradación del material, independientemente del origen de los residuos, esto estuvo en concordancia con reportes científicos, por ejemplo Stofella (2005), Liao y col., (1996), Mckiney y Vestal, (1985) y Wiley y col., (1955) indican que el porcentaje de cenizas aumenta debido a las pérdidas de la fracción orgánica o sólidos volátiles en forma de CO₂, sin embargo estas pérdidas dependen mucho más del material texturizante utilizado. En agentes texturizantes fácilmente biodegradables las pérdidas de sólidos volátiles son menores del 10 %.

![Fig.19 Porcentajes de Cenizas en compostas experimentales a 3 y 6 meses de compostaje y de testigos](image-url)
Mientras que los testigos mostraron una relación inversa entre el % de cenizas y el contenido de materia orgánica degradable o de fácil mineralización, como en el caso la composta doméstica (T1) que fue elaborada a base de residuos de alimentos y poda de jardín, o el peat-moss (T4) cuya composición es rica en materia orgánica. En el caso de la composta comercial (T2) presentó un porcentaje de cenizas cercano a los obtenidos en las compostas experimentales, esto porque su composición de origen fueron residuos orgánicos municipales; para el suelo Altzayanca (T3), se deduce que es un suelo pobre en materia orgánica pues se tiene un valor alto de cenizas.

Materia Orgánica

Este otro parámetro también es de gran importancia, ya que el conocimiento del contenido de materia orgánica en las compostas es fundamental, pues se considera como principal factor para determinar su calidad agronómica (Kiehl, 1985). La cantidad total de materia orgánica (MO) de una composta es un indicador de la cantidad de carbono orgánico que aportará a las plantas y al suelo. La Fig. 20 muestra que los porcentajes de MO disminuyeron con respecto al tiempo por la actividad de los microorganismos que utilizaron la materia orgánica como sustrato para obtener energía. Se observa que todas las compostas sufrieron una buena degradación, durante el proceso de compostaje con una reducción del 3ero al 6to mes de entre el 40 y 50 % de MO, independientemente de la proporción y tipo de residuos en cada una. Se puede observar que el proceso fue relativamente similar para todas las mezclas de residuos, siendo las compostas C-2 y C-5 las que tuvieron el mayor porcentaje de reducción en este parámetro. Cabe señalar que la composta C-5 por su alto contenido en celulosa tardó más en degradarse, y al final es la que presentó el mayor contenido en carbono orgánico en comparación con la C-4 que presentó la mayor reducción de materia orgánica (50.23%), corroborando que la materia prima inicial, principalmente chile, fue degradable durante el proceso de compostaje, de tal forma que su contenido de carbono orgánico no fue alto.

Los testigos muestran que el porcentaje de materia orgánica estuvo en función del origen de los sustratos utilizados para la preparación de las compostas; tal es el caso de las dos compostas maduras utilizadas como testigos: la doméstica (T1) contenía los mayores porcentaje de materia orgánica (desechos de comida y poda de jardín) y la comercial (T2) elaborada con residuos municipales, cuyo valor en MO fue muy similar a los valores que se
El porcentaje de MO para el suelo de Altzayanca (T3) indica que este fue pobre, su composición fue mayor en contenido de arcillas que limo; y en el caso del peat-moss (T4) por ser un sustrato vegetal (residuos de corteza, de bosques, hojas, etc) presento un alto porcentaje de MO. La norma PROY-NTEA-006-SEEGEM-RS-2005 que establece los requisitos para la producción de los mejoradores de suelos, indica que los valores de la MO deben ser mayores al 15%. Las compostas C-2, C-4 y C-5 presentaron porcentajes de este parámetro cercano al requerido por la norma. La C-1 y C-3 tuvieron valores de materia orgánica por debajo del límite minino requerido.

La velocidad de transformación de la MO dependió de la naturaleza física y química, de los residuos, de los microorganismos que intervinieron en la descomposición y de las condiciones físico-químicas del proceso (humedad, aireación, temperatura y pH) (Michel, et al, 2004). Este descenso en materia orgánica se produjo por las diferentes etapas que se consideran en el compostaje, en la primera se transformaron los carbohidratos y compuestos de cadenas carbonadas en compuestos simples, algunos otros se reagrupan para formar moléculas complejas como los compuestos húmicos; en la segunda parte, compuestos como la lignina se van degradando más lentamente y/o transformado en compuestos húmicos (Tomati et al, 2000; Castaldi et al, 2005). Durante el compostaje la MO tiende a descender debido a la mineralización y a la consiguiente pérdida de C en forma de CO2; éstas pérdidas pueden llegar a representar casi el 20 % en peso de la masa composteadada (Zucconi et al, 1987), por ejemplo Iñiguez et al (2006) reportan un descenso de 57.1% en materia orgánica para biosólidos composteados con bagazo de agave. Los resultados obtenidos con las compostas experimentales muestran que el proceso de compostaje fue satisfactorio para el manejo y reducción de materia orgánica en los lodos de las plantas de tratamiento de agua. Siendo la composta C-5 cuya composición fue la de mayor proporción de lodos la que al final se redujo en casi el 50% de la MO.

Relación C/N

La relación C/N de la mezcla de residuos a compostear es uno de los parámetros más importantes para evaluar la calidad así como la madurez de una composta, ya que tanto el carbono como el nitrógeno son dos elementos esenciales para la nutrición de cualquier organismo, por tanto es importante mantener las concentraciones adecuadas de estos nutrientes para llevar a cabo una degradación correcta durante el proceso de compostaje. Con respecto a los factores nutricionales, el carbono es utilizado por los microorganismos como fuente de energía y el nitrógeno para la síntesis de proteínas. Las formas de carbono más fácilmente atacables por los microorganismos son los azúcares y las materias grasas, mientras que el nitrógeno se encuentra en casi su totalidad en forma orgánica, de donde debe ser extraído o modificado por los microorganismos para poder ser utilizado por éstos. Las dos terceras partes del carbono son transformadas en CO2 y el restante entra a formar parte del protoplasma celular de los nuevos microorganismos para la producción de proteínas. Además, se necesita la absorción de otros elementos en menores cantidades como el fósforo y el azufre. (INIFAT, 2002).

La relación C/N inicial teóricamente óptima para el compostaje es de 25-35: 1 (Jhorar et al, 1991). Los biosólidos son residuos ricos en nitrógeno con relaciones C/N entre 5-11:1; los materiales texturizantes, ricos en carbono, permiten ajustar esta relación a los valores recomendados para garantizar la eficiencia del proceso (Fernández y Pereira, 1999). Los materiales texturizantes, como los residuos agroindustriales, son ricos en lignina y celulosa por lo que presentan una relación C/N alta debido la presencia de compuestos de difícil biodegradabilidad (Torres, et al, 2007).

Para el caso de las compostas experimentales se prepararon las mezclas de residuos y se incorporó material texturizante (rastrojo de maíz) para ajustar a las relaciones C/N adecuadas, según lo que recomiendan algunos autores, para llevar a cabo un buen proceso de compostaje, además de agregar valor agronómico a la composta al finalizar el proceso, pues los materiales texturizantes son ricos en nitrógeno. La Fig.21 muestra que los valores de la relación C/N descendieron con respecto al tiempo durante el proceso de compostaje, esto como consecuencia de la disminución del carbono orgánico, mismo que se perdió en forma de

98
dióxido de carbono. Se observa que al final del proceso, las compostas con mayores relaciones C/N fueron las compostas C-3 y C-4, esto puede explicarse porque en ambas, el contenido en carbono orgánico fue mayor que en las restantes, estas dos compostas presentaron el mayor contenido de MO. Las dinámicas de mineralización o degradación del carbono y del nitrógeno estuvieron en función de los sustratos iniciales, así como de los parámetros físico-químicos que rodean al proceso de compostaje, por tanto la actividad microbiana para la degradación de los materiales (Moreno, et al, 2008). Se observa que todas las compostas mostraron una relación C/N final menor a 20 indicando, según la literatura, que tuvieron un buen grado de mineralización, estabilidad y madurez, y disminuyó la disponibilidad del nitrógeno orgánico. Las relaciones C/N menores a 20 tienen mayores tasas de mineralización en el suelo, cuando los valores son mayores a 20 existe mayor inmovilización del nitrógeno en el suelo, las plantas compiten con los microorganismos por el N porque el aporte de N se encuentra menos disponible debido a que hay mayor cantidad de carbono que de N (Castellanos, 2000).

Los testigos de las compostas doméstica (T1) y comercial (T2) cuyos materiales de origen fueron residuos de basura orgánica presentaron relaciones C/N que cumplen con la normatividad. Es de resaltar que las C-1, C-2 y C-5 tuvieron relaciones C/N similares a las de las compostas testigo; el peat-moss (T4), por ser sustrato vegetal presentó la mayor relación C/N; mientras que el suelo de la región de Altzayanca (T3) mostró una relación C/N buena, sin embargo es importante resaltar que esta relación se alcanzó porque su contenido de carbono y nitrógeno fueron bajos (ver Tabla15).

Por otro lado la norma PROY-NTEA-006-SEGEM-RS-2005, indica que la relación C/N debe ser menor a 12, cumpliendo tres de las compostas con este parámetro (C1, C2 y C5); la relación para la C-4 fue muy cercana al valor del máximo permisible; solo la C-3 fue la que superpuso el límite de la norma. Sin embargo diversos autores reportan relaciones C/N similares a los valores aquí obtenidos, para el compostaje de biosólidos con otros materiales de enmienda, por ejemplo Iñiguez el al (2006) reportan relaciones C/N de 11.58 y 11.07 para el compostaje de biosólidos con bagazo de agave; Tognetti (2006), reporta relaciones de 11, 13 y 14 para el compostaje de biosólidos con desechos orgánicos municipales, y aclara que las características de los sustratos juegan un papel fundamental en las dinámicas de carbono y nitrógeno. De lo que se deduce que los lodos son materiales que se pueden compostar y que se pueden mezclar con residuos de diferente origen, los cuales deben tener altos contenidos en nitrógeno para ajustar la relación C/N.

Fig. 21 Valores de la relación Carbono-nitrógeno de compostas experimentales y testigos
5.2 Prueba de madurez de compostas (fitotoxicidad)

Madurez de compostas

Una característica fundamental que deben cumplir los materiales que sean usados como sustrato en los cultivos, es que deben tener estabilidad biológica, de no ser así continuaría su biodegradación dentro del cultivo, generando diversos inconvenientes como fuerte consumo de oxígeno y ambiente reductor en la rizosfera; inmovilización del nitrógeno; producción de sustancias fitotóxicas; alteración de las propiedades físicas del suelo por disminución del tamaño de las partículas, cambios en el empaquetamiento de las mismas y consecuentemente apelmazamiento y reducción del tamaño de los poros y de la porosidad total. Por tanto, es imprescindible extremar el cuidado y verificar el grado de madurez cuando la composta vaya a ser utilizada como sustrato (Casco, 2008). La aplicación al suelo de residuos orgánicos frescos (sin compostar) tienden a producir toxicidad en las plantas, debido principalmente a la inmadurez e inestabilidad de la materia orgánica existente (García et al, 1992), por ello el emplearlos sin un adecuado grado de madurez puede provocar efectos negativos en las plantas, debido a la presencia de metabolitos intermedios fitotóxicos, especialmente cuando se utiliza como componente base de sustratos especializados para uso en viveros (Zucconi et al, 1985).

Los efectos fitotóxicos de un material orgánico inmaduro se deben a diversos factores, entre los cuales destacan los contenidos de amonio, de ácidos volátiles orgánicos, de metales pesados y de sales. Estas sustancias, en elevadas concentraciones, pueden generar efectos perjudiciales en el desarrollo de las plantas, inhibiendo la germinación de semillas ó el crecimiento de raíces, por lo que es altamente riesgosa su utilización en cultivos. Por ejemplo los ácidos alifáticos de cadena corta (ácidos grasos de bajo peso molecular y ácidos grasos volátiles), y varios compuestos fenólicos producidos durante la descomposición activa de los compuestos orgánicos, suprimen la germinación de las semillas, la proliferación de las raíces y el rendimiento de los cultivos (Zucconi et al, 1981; Manios et al, 1987). Diversos autores como Zucconi et al, (1981), Tiquia, (2000) y Emino y Warman (2004) determinan el índice de germinación (IG), integrando el porcentaje relativo de germinación y el crecimiento relativo de raíces durante la descomposición activa de los compuestos orgánicos, suprimen la germinación de las semillas, la proliferación de las raíces y el rendimiento de los cultivos (Zucconi et al, 1981; Manios et al, 1987). Diversos autores como Zucconi et al, (1981), Tiquia, (2000) y Emino y Warman (2004) determinan el índice de germinación (IG), integrando el porcentaje relativo de germinación y el crecimiento relativo de raíces como medida de la madurez. Esto permite establecer tres niveles de fitotoxicidad: severa, moderada y baja ó nula. Según el criterio de interpretación de Zucconi (1985) valores de IG ≥ 80 indican que no hay sustancias fitotóxicas ó están en muy baja concentración; si el IG ≤50 indica que hay una fuerte presencia de sustancias fitotóxicas y si se obtiene un valor entre 50 y 80 se interpretaría como la presencia moderada de estas sustancias.

Para evaluar la madurez o estabilidad de las compostas a los 3 y 6 meses de compostaje se efectuó el ensayo de índice de germinación utilizando semillas de lechuga comercial. La fig. 19 muestra los índices de germinación en semillas de lechuga comercial (fitotoxicidad) obtenidas con extractos de las compostas experimentales y de los testigos utilizados. Se observa que los extractos de todas las compostas a los tres meses de compostaje mostraron un índice de germinación mayor a 60, y a los 6 meses los extractos de todas las compostas registraron valores arriba del 80, también se puede observar que los índices de germinación variaron con respecto al tiempo, tal y como se esperaba. Hacia el tercer mes de compostaje se tuvieron compostas maduras y estabilizadas según lo citado por Zucconi (1985). Indicando que efectivamente hubo una adecuada descomposición del material de inicio y que éste fue transformado en otro inocuo y libre de compuestos fitotóxicos que pudieran inhibir la germinación y crecimiento de las semillas. Estas pruebas fueron importantes para poder hacer el sembrado con la adición de compostas.
Cabe destacar que se obtuvieron valores de IG mayores al 100 % ya que la evaluación se hace con respecto a la germinación utilizando como control agua.

La Fig.22 muestra que todas las compostas, incluso las elaboradas con los lodos industriales, mostraron valores de IG por arriba del valor de 80, que ésto según Zucconi (1985) es indicativo de que no hubo sustancias fitotóxicas, o que se encuentran en muy bajas concentraciones, y que el material presento buen grado de madurez o estabilidad; este parámetro muestra también la eficiencia en las condiciones del proceso de compostaje lográndose degradar la materia orgánica en un material inocuo cuyos compuestos se encontraban asimilables. La composta C-1 presentó el mayor valor de IG, el cual fue similar al del testigo T1 que es la composta madura elaborada con residuos domésticos. Con el fertilizante químico se obtuvo también un alto valor de IG, pues se sabe que contiene nutrientes en forma de sales de forma que son aprovechables, el peat-moss también presentó un alto índice de germinación esto debido a su alto contenido en N y C, y el suelo de la región que es suelo agrícola también favoreció la germinación de las semillas. La materia orgánica favoreció la germinación y asimilación de nutrientes para el crecimiento radicular, corroborando que durante el compostaje se mineralizaron y transformaron los compuestos en sustancias más simples y de fácil asimilación por las semillas.

5.3 Comparación de parámetros fisicoquímicos con la norma para mejoradores de suelo.

Uno de los objetivos de este trabajo fue demostrar que las compostas elaboradas con residuos industriales, en específico lodos provenientes de plantas de tratamiento de agua, se pueden utilizar como mejoradores de suelos después de un proceso de descomposición controlado. Se presenta en la Tabla.18 un resumen de los parámetros físico-químicos de las compostas al final del proceso de compostaje y se comparan con los límites máximos permisibles por la norma PROY-NTEA-006-SEGEM-RS-2005 que establece los requisitos para la producción de los mejoradores de suelos (última columna de la Tabla18), ello para demostrar que el material fue apto para su aplicación en campo.

Se observa que en general, aunque algunos de sus parámetros de las cinco compostas elaborada con los diferentes residuos no se encuentran dentro los límites indicados por la norma para mejoradores de suelo, estos valores fueron más altos comparándolos con el suelo de estudio de la Región de Altzayanca, lo que sugiere que su aplicación puede ayudar a mejorar las condiciones del suelo, pues éste es muy deficiente en nutrientes como nitrógeno,
fósforo y materia orgánica. Se observa además que el material de origen y la concentración de éste si influyó en las propiedades finales de las compostas.

Las compostas C-2 y C-5 fueron las compostas que presentaron valores más cercanos a los establecidos por la norma para mejoradores y fueron las que podrían utilizarse como abono orgánico o mejoradores de suelo; ambas fueron preparadas con lodos residuales de la empresa de bebidas, para la cual se realizó este trabajo, y en especial la C-5 que fue preparada a base de lodos residuales sin adición de residuos orgánicos, demuestra que éstos residuos, hasta ahora desaprovechados pueden ser valorizados a través del compostaje para su uso como mejoradores de suelo.

La composta C-1 se formuló con los lodos de las dos plantas de tratamiento de agua, chile y rastrojo, tuvo un valor de pH ligeramente mayor que el estipulado en la norma, el valor más bajo de materia orgánica respecto a todas las compostas, buena relación C/N y buena aportación de P.

Las compostas C-3 y C-4 mostraron bajos contenidos de MO y una alta relación C/N por lo que los nutrientes principales para las plantas como son el P y N no están equilibrados en estas dos compostas, adicionalmente el pH de la C-4 es mayor al recomendado para cultivos agrícolas.
<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>COM 1</th>
<th>COM 2</th>
<th>COM 3</th>
<th>COM 4</th>
<th>COM 5</th>
<th>SUELO ALTZAYANCA</th>
<th>NOM PROY-NTEA-006-SEGEM-RS-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.25±0.03</td>
<td>8.53±0.002</td>
<td>7.23±0.030</td>
<td>8.47±0.03</td>
<td>7.00±0.04</td>
<td>7.34±0.06</td>
<td>6.6 a 8.0</td>
</tr>
<tr>
<td>% Materia orgánica</td>
<td>8.10±0.070</td>
<td>12.90±0.89</td>
<td>8.33±0.19</td>
<td>11.76±0.51</td>
<td>13.33±0.51</td>
<td>1.64±.20</td>
<td>mayor al 15%</td>
</tr>
<tr>
<td>Relación C/N</td>
<td>8.49±1.40</td>
<td>7.69±1.043</td>
<td>16.46±3.060</td>
<td>13.46±2.233</td>
<td>9.66±1.082</td>
<td>9.133±0.12</td>
<td>menor a 12</td>
</tr>
<tr>
<td>Fósforo (ppm)</td>
<td>149.61±1.70</td>
<td>282.66±11.00</td>
<td>168.88±2.87</td>
<td>210.77± 7.38</td>
<td>185.35±2.95</td>
<td>14.270± 0.64</td>
<td>mayor a 0.10% ó 1.000 ppm</td>
</tr>
</tbody>
</table>
5.4 Comparación de análisis microbiológicos de las compostas con la norma para mejoradores de suelo.

Muchos materiales que se utilizan para compostaje pueden presentar virus, bacterias y hongos patógenos como parte de su microbiota natural, por lo que la PROY-NTEA-006-SEGEM-RS-2005 indica además que deben efectuarse análisis microbiológicos para demostrar la inocuidad del material a emplearse como mejorador de suelos; los límites máximos permisibles y los análisis microbiológicos que se solicitan en dicha norma se indican en la Tabla 19.

Gran parte de los patógenos son eliminados durante el compostaje, ello como resultado de muchas y complejas interacciones, entre las que destacan las siguientes (Moreno, et al, 2008):

1. Las altas temperaturas generadas durante la fase termófila del proceso.
2. La producción de compuestos antimicrobianos tales como los compuestos fenólicos producidos durante la degradación del material ligno-celulósico.
3. La actividad lítica de las enzimas bacterianas
4. La producción de antibióticos por parte de antagonistas microbianos que reducen la capacidad de supervivencia y el crecimiento de los patógenos.
5. La colonización de la composta con diferentes microorganismos que compiten con los patógenos por los nutrientes.
6. La pérdida natural de la viabilidad del patógeno con el transcurso del tiempo

Las variaciones térmicas durante el compostaje permiten la sucesión de poblaciones microbianas, que contribuyen a eliminar a microorganismos patógenos y a modificar las propiedades físico-químicas del sustrato. Constituye una característica diferenciadora del compostaje respecto a procesos de transformación de la materia orgánica en las capas superficiales del suelo (Casco, 2008). Además que durante el proceso de compostaje existe una colonización de la composta y una competencia por nutrimentos, y hay producción de antibióticos por parte de antagonistas microbianos que reducen la capacidad de supervivencia y crecimiento de los patógenos (Casco, 2008).

El uso de lodos de plantas de tratamiento de aguas residuales (PTAR) para el proceso de compostaje, supone una carga alta de materia orgánica, pero también de carga microbiana alta en patógenos. Uno de los objetivos de éste proceso es higienizar el producto y eliminar el contenido de microorganismos patógenos presentes en la materia orgánica, ello a través del incremento de la temperatura durante el proceso de compostaje. La norma PROY-NTEA-006-SEGEM-RS-2005 para mejoradores de suelos elaborados a partir de residuos orgánicos, regula el contenido microbiológico permisible en los abonos orgánicos. Por tanto para poder proceder a la aplicación de las compostas en parcelas experimentales, se hizo una verificación de la inocuidad de las compostas. El efectuar el análisis microbiológico que indica la norma en el CIBA implicaban un costo muy alto por la adquisición de equipo, materiales y reactivos, por tanto se optó por enviar las muestras de compostas después de 6 meses de compostaje y antes de aplicación en campo, a un laboratorio certificado para que se hicieran dichos análisis. Se solicitaron los análisis microbiológicos, conforme a lo que exige la norma: control de coliformes fecales, huevos de helminto y salmonella.

En la Tabla. 19 se muestran los resultados de los análisis microbiológicos realizados a las compostas experimentales (los resultados entregados por el laboratorio se encuentran en el anexo III). Las compostas cumplieron con los límites permisibles por la norma, lo cual aprueba su inocuidad y por tanto su uso para mejorador de suelos. Con el proceso de compostaje se higienizó el producto para ser utilizado como fertilizante. Estos resultados sugieren que el proceso de compostaje de los lodos además de que se efectuó de manera adecuada, se alcanzaron las condiciones necesarias para la eliminación de patógenos en las compostas finales. Se puede observar que las compostas cuyo contenido de origen tenían la mayor proporción de lodos también se encontró en valores microbiológicos aceptables según lo establecido en la norma para mejoradores, es decir el compostaje elimina los microorganismos patógenos que hay en los lodos de las PTAR.
<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>UNIDAD</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composta 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
<td><3</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
<td>23</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
<td><1</td>
</tr>
<tr>
<td>Composta 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
<td><3</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
<td>430</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
<td><1</td>
</tr>
<tr>
<td>Composta 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
<td><3</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
<td>230</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
<td><1</td>
</tr>
<tr>
<td>Composta 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
<td><3</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
<td><3</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
<td><1</td>
</tr>
<tr>
<td>Composta 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
<td><3</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
<td>210</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
<td><1</td>
</tr>
</tbody>
</table>

PARÁMETRO y LÍMITE máximo permisible

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>UNIDAD</th>
<th>LÍMITE máximo permisible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
<td>Menor a 3</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
<td>Menor a 1000</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
<td>Menor a 10</td>
</tr>
</tbody>
</table>
5.5 Siembra de frijol en invernadero

5.5.1. Germinación
Los cambios que ocurren durante la germinación comprenden procesos metabólicos que se producen en estrecha relación con la temperatura, y su efecto se expresa en la capacidad germinativa o en la velocidad de germinación (bibliotecadigital.ilce.ed.mx/sites).

La Tabla.20 muestra el porcentaje de germinación de semillas de frijol en condiciones de invernadero, cuyo total de semillas sembradas fue de 12, se observa que el efecto de las compostas en las semillas fue el mismo, independientemente del porcentaje de cada residuo en la composición de éstas, permitiendo mas del 80% de germinación en todas las compostas; de lo que se puede inferir que el aporte de materia orgánica influyó en la retención de humedad y dada las condiciones de temperatura en el invernadero se favoreció la germinación de las semillas en la todas las compostas. En zonas templadas o frías, en muchos casos se ha visto que las semillas sólo germinan en los intervalos de temperaturas que caracterizan precisamente a las épocas del año más favorables o adecuadas para el establecimiento de las plantas (bibliotecadigital.ilce.ed.mx/sites), pero en el caso de las condiciones de invernadero la temperatura es más constante y por tanto favorable para la germinación. También es importante mencionar que las compostas presentaron buen grado de madurez, pues estas utilizadas como sustrato no fueron tóxicas para las semillas, y la cantidad de sales contenidas en ellas no afectó la germinación. En comparación con los testigos, las semillas bajo el tratamiento de aplicación de fertilizante y el testigo sembradas sobre suelo sin la adición de ningún mejorador, tuvieron un 17% menos de germinación que utilizando las compostas, y solo el testigo peat-moss superó en 8.3% a la C-2 en la germinación. Cabe aclarar que el fertilizante químico se aplicó después de la germinación, para evitar daños en la semilla, la aplicación se hizo cuando tenía 15 cm de altura; mientras que las compostas se aplicaron con el suelo como sustrato para las semillas. Las compostas favorecen en el suelo las propiedades físicas (retención de humedad, densidad aparente, difusión de agua y aire, drenaje) lo cual se puede manifestar como mayor índice de germinación (Quintero, 2004).

Tabla.20 Porcentaje de germinación de semillas de frijol en condiciones de invernadero

<table>
<thead>
<tr>
<th>% GERMINACION</th>
<th>SEMILLAS DE FRIJOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>83.33</td>
</tr>
<tr>
<td>C-2</td>
<td>91.66</td>
</tr>
<tr>
<td>C-3</td>
<td>100</td>
</tr>
<tr>
<td>C-4</td>
<td>100</td>
</tr>
<tr>
<td>C-5</td>
<td>100</td>
</tr>
<tr>
<td>T1</td>
<td>91.66</td>
</tr>
<tr>
<td>T2</td>
<td>83.33</td>
</tr>
<tr>
<td>T3</td>
<td>83.33</td>
</tr>
</tbody>
</table>

T1=Peat-moss, T2=Fert. Quim, T3=Suelo de Alt
5.5.2 Crecimiento

Se sabe que el aporte de nutrientes como N y P en los primeros estadios de la planta son muy importantes, porque de ellos dependen funciones metabólicas a nivel celular en las plantas. El nitrógeno forma parte de muchas proteínas, que actúan como enzimas y es parte de la molécula de clorofila, se encuentra en grandes cantidades en las partes jóvenes y en las plantas en crecimiento; el fósforo forma parte de los fosfolípidos, nucleoproteínas, fitina (reserva de P en las semillas) y es importante en la transformación de energía, en las células. Una abundancia de N promueve un crecimiento rápido de las partes vegetativas aéreas, pero este crecimiento no puede tener lugar excepto en presencia de cantidades adecuadas de P, K y otros elementos esenciales en forma aprovechable (Mortvedt, 1983).

En la Fig. 23 se muestra el crecimiento promedio de frijol cultivado en invernadero, las diferencias que se observan se explican debido a la diferencia en aporte nutricional de cada composta así, se observa que los mayores crecimientos fueron los obtenidos con la aplicación de las compostas C-2, C-1 y C-4. El crecimiento registrado con la aplicación de la C-2 fue mayor porque contiene mayor proporción de nutrientes en formas disponibles (43.81 kg/ha de N, 12.735 kg/ha de P y 336.6 kg/ha de C) comparada con la C-1 y C-4 éstas compuestas mostraron una relación entre ellas, a medida que la relación C/N aumentó el crecimiento disminuyó; y caso inverso para la relación C/P a medida que ésta aumentó el crecimiento fue menor. La demanda de N y P en el cultivo de frijol es alta, y se sabe que si existe disponibilidad de P, el N es fijado mayormente, por tanto se puede explicar que al disminuir la disponibilidad de P, también ocurriese el de N, y por tanto como estos elementos se requieren disponibles en mayor porcentaje durante la etapa de desarrollo vegetativo, ya que intervienen directamente en el metabolismo de las células, al no estar disponibles ó estuvieron limitados en su aportación, el crecimiento se vio limitado. La adecuada nutrición de P, mejora la fisiología de la planta en relación con los procesos de fotosíntesis, fijación de N, floración y fructificación (Castellanos, 2000). A pesar de que algunas de las compuestas presentaron valores de pH alcalinos (entre 8.25-8.53), la disponibilidad de nutrientes no estuvo limitada, obteniéndose un buen crecimiento del cultivo en invernadero. Se podría explicar que pudieran estar presentes algunos microorganismos benéficos a ese pH y por tanto la disponibilidad del P en forma de fosfatos podría estar influenciada por los hongos micorrízicos, éstos juegan un papel importante en el abastecimiento de fósforo, micronutrientes y agua en las raíces de muchas plantas (Castellanos, 2000).

Mientras que las C-3 aunque presentó un pH cercano al neutro, y una alta relación C/N (16.46), no estuvo disponible el nitrógeno (no hubo una mineralización del N en función de tiempo) y por tanto estuvo limitado el N y por tanto el crecimiento. La composta C-5 aunque presentó una relación equilibrada C/N, el aporte de C en esta composta fue el mayor, pudiera ser que debido a la relación manejada en la maceta de composta: suelo de 1:2 haya sido muy alto el contenido de C para permitir una mineralización y tener formas disponibles de N, pues en esta composta aunque fue mayor el crecimiento que en los testigos sin fertilización y fertilizado químico fue menor en crecimiento que el reportado con la aplicación del testigo peat.moss.

Mientras que los testigos suelo sin fertilización (T3) y suelo fertilizado químicamente (T2) estuvieron por debajo (30% menos) en crecimiento que el registrado con la aplicación de C-2, en donde se obtuvo el mayor crecimiento, pero igualmente estuvieron por debajo en crecimiento a todas las demás compostas. El contenido de nutrientes en el testigo sin fertilización fue pobre (4.65 % de N, 0.423 ppm de P y 42.43 % de C), lo cual se vio reflejado en un menor crecimiento, y a pesar de que el T2 (suelo fertilizado) tuvo nutrientes como sales de nitrato y fosfato, la asimilación de éstos no fue tan buena en comparación con los nutrientes aportados en las compostas. Finalmente el peat-moss (T1) a pesar de que tuvo buenos aportes de N y P, incluso mayor al aportado por las compostas, estos no estuvieron disponibles por presentar una relación C/N alta (19.18) y un pH ácido (de 5.31), el crecimiento en este fue aceptable y mayor que los testigos sin fertilización y fertilizado químico.

Estos resultados muestran la importancia de agregar materia orgánica al cultivo, independientemente de que las condiciones de humedad y temperatura pudieran estar más controladas, el aporte de nutrientes en forma de composta, por ser un sustrato de origen vegetal, aportó nutrientes disponibles que fueron aprovechados en el crecimiento de la planta.
Por tanto según lo observado, las compostas aportaron nutrientes elementales como N y P en formas disponibles que fueron aprovechados para el crecimiento de la planta de frijol, superando en crecimiento al testigo con fertilización química.

![Crecimiento foliar de frijol](image)

Fig. 23 Crecimiento promedio de frijol en invernadero

Posteriormente se hizo el análisis estadístico ANOVA para definir si hubo diferencias significativas sobre el crecimiento de las plantas de frijol por la aplicación de las compostas y los testigos. La tabla 21 muestra los resultados del ANOVA.

<table>
<thead>
<tr>
<th>ANÁLISIS DE VARIANZA AL 95%</th>
<th>Promedio de los cuadrados</th>
<th>Fobs</th>
<th>Prob</th>
<th>Fcrit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen de las variaciones</td>
<td>SC</td>
<td>GL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicaciones</td>
<td>3660,27838</td>
<td>4</td>
<td>915,0695949</td>
<td>119,7714</td>
</tr>
<tr>
<td>Compostas y testigos</td>
<td>199,194</td>
<td>6</td>
<td>33,199</td>
<td>4,345</td>
</tr>
<tr>
<td>Error</td>
<td>183,363</td>
<td>24</td>
<td>7,640</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4042,836</td>
<td>34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Como hubo diferencias significativas en el crecimiento de frijol considerando las compostas y los testigos, se procedió a efectuar una comparación de medias Tukey al 5%. Este análisis se muestra en la figura 24. Con las compostas C-2 y C-1 se obtuvo el mayor crecimiento de frijol, y estas presentaron diferencias significativas con los testigos sin fertilizar y fertilizado químico, no así con el peat-moss y se observa que entre las compostas no hubo diferencias significativas en el crecimiento del frijol, lo cual indica que todas las compostas tuvieron los elementos necesarios para el crecimiento de dichas plantas. La C-2 fue la que presentó el mayor contenido de P (12.35 kg/ha) y N (43.81 kg/ha) y un pH adecuado (7.69) que permitió que estos estuvieran disponibles.
A pesar que la C-2, C-1 y peat-moss no fueron las que tuvieron el mayor número de semillas germinadas, resultaron con una buena disponibilidad de nutrientes de C, N y P y tienen relaciones C/P similares 1.19, 1.41, 1.63 que permitieron que las plantas crecidas sobre estos sustratos tuvieran los mayores crecimientos; en esta etapa de desarrollo de la planta a diferencia de la de germinación, es necesario que haya disponibilidad de nutrientes, para poder ser absorbidos y llevar a cabo los procesos metabólicos, en comparación con la germinación en que no necesita nutrientes, pero sí, condiciones adecuadas de temperatura, humedad y aireación.

En importante destacar que una composta en general tiene la mayor parte de N en forma orgánica, y la velocidad de liberación de N mineral es generalmente menor que la del subproducto orgánico original (O Keefe et al, 1986), este nutriente es mas fácilmente asimilado por la planta para su crecimiento. Linden y col (1983), mencionan que los lodos adicionan N y P además de que contienen otros nutrimentos esenciales para el cultivo, incluyendo Ca, Fe, Mg, Mn y Zn. La molécula de la clorofila es determinante en el proceso fotosintético, cuando hay suficiente N se produce mayor cantidad de ésta y asimilación de productos orgánicos, lo cual se traduce en mayor vigor vegetativo, manifestado por una mayor velocidad de crecimiento (Mengel y Kirkby, 1982), todo esto explica el porque se obtuvieron buenos crecimientos en las plantas que crecieron en el suelo adicionado con composta.

A continuación se muestran los resultados para el sembrado en campo, primeramente de frijol y posteriormente de maíz.

Es importante hacer notar que el análisis y discusión de resultados se muestra en dos partes:

- Análisis estadístico donde se hicieron las pruebas adecuadas para definir si hubo diferencia en el crecimiento y producción de frijol y maíz, ello entre las dos formas de aplicación de las compostas que se manejaron (en capa y mateado), y entre las mismas compostas y los testigos y

- Análisis de todos los resultados obtenidos y discusión de los mismos para evaluar como influyeron las compostas sobre el crecimiento y producción de frijol y maíz dependiendo del material de origen y el proceso de compostaje efectuado. En esta parte se comparó además contra los reportes existentes de producción de frijol y maíz para la zona de estudio (municipio de Altzayanca) y con reportes de otros autores que han probado compostas elaboradas con otros residuos.
<table>
<thead>
<tr>
<th></th>
<th>C-2</th>
<th>C-1</th>
<th>T1</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-2</td>
<td>31,01</td>
<td>30,84</td>
<td>30,67</td>
<td>29,85</td>
<td>28,92</td>
<td>28,07</td>
<td>25,86</td>
<td>24,04</td>
</tr>
<tr>
<td>C-1</td>
<td>24,04</td>
<td>6,97</td>
<td>6,80</td>
<td>6,62</td>
<td>5,81</td>
<td>4,87</td>
<td>4,03</td>
<td>1,82</td>
</tr>
<tr>
<td>T1</td>
<td>25,86</td>
<td>5,15</td>
<td>4,98</td>
<td>4,81</td>
<td>3,99</td>
<td>3,06</td>
<td>2,21</td>
<td>0,00</td>
</tr>
<tr>
<td>C-3</td>
<td>28,07</td>
<td>2,93</td>
<td>2,76</td>
<td>2,59</td>
<td>1,78</td>
<td>0,84</td>
<td>0,00</td>
<td>2,21</td>
</tr>
<tr>
<td>C-4</td>
<td>28,92</td>
<td>2,09</td>
<td>1,92</td>
<td>1,75</td>
<td>0,94</td>
<td>0,00</td>
<td>0,84</td>
<td>3,06</td>
</tr>
<tr>
<td>C-5</td>
<td>29,85</td>
<td>1,16</td>
<td>0,99</td>
<td>0,81</td>
<td>0,94</td>
<td>0,94</td>
<td>1,78</td>
<td>3,99</td>
</tr>
<tr>
<td>T1</td>
<td>30,67</td>
<td>0,34</td>
<td>0,17</td>
<td>0,00</td>
<td>0,81</td>
<td>1,75</td>
<td>2,59</td>
<td>4,81</td>
</tr>
<tr>
<td>C-1</td>
<td>30,84</td>
<td>0,17</td>
<td>0,00</td>
<td>0,17</td>
<td>0,99</td>
<td>1,92</td>
<td>2,76</td>
<td>4,98</td>
</tr>
<tr>
<td>C-2</td>
<td>31,01</td>
<td>0,00</td>
<td>0,17</td>
<td>0,34</td>
<td>1,16</td>
<td>2,09</td>
<td>2,93</td>
<td>5,15</td>
</tr>
</tbody>
</table>

significativamente diferentes
significativamente iguales

Fig. 24. Prueba de Tukey al 5% de crecimiento de frijol en invernadero
5.6. Siembra de frijol en parcelas experimentales

5.6.1. Crecimiento

La Fig. 25 muestra el crecimiento promedio de frijol en las parcelas experimentales, donde con la aplicación de la composta C-2, seguida de la composta C-1 se obtuvo el mayor crecimiento. El testigo con fertilización química (T2) no se muestra en la figura ya que hubo problemas en esa parcela y crecieron menos del 10 % de las plantas, lo cual no es significativo por lo que no se hizo comparativo con este tratamiento.

Se realizó un análisis de varianza con un $\alpha = 0.05$ con los datos de crecimiento del cultivo de frijol hasta los 120 días, para definir si hubo efecto por la forma de aplicación de las compostas y entre compostas y testigos; se encontró que no existió efecto en el crecimiento para la forma de aplicación de la composta, que fue en capa (Aplic 1) y mateado (Aplic 2). Esto se muestra en la Fig. 26
El análisis de varianza muestra que no existió diferencias significativas entre las formas de aplicación de la composta para el crecimiento del frijol, pero sí existió diferencia entre compostas y testigos, con P< 0.046; por tanto se hizo una comparación con una prueba de Tukey con un α= 0.05 para observar las diferencias en el efecto del crecimiento con cada composta, los resultados se muestran en la Fig. 27. Con la C-2 el crecimiento fue significativamente diferente al obtenido con las demás compostas y testigos; no hubo diferencias entre los testigos y las compostas C-3 y C-5. La C-4 no fue favorable para el crecimiento del frijol.

5.6.2. Rendimiento

La Fig.28 muestra el número de plantas de frijol que se obtuvo en cada subparcela para las dos formas de aplicación de composta, en capa y mateado, así como el rendimiento de frijol, extrapolado a kg/ha, que se obtuvieron en las parcelas adicionadas con cada composta y en los testigos. El efecto de las formas de aplicación de las compostas fue el mismo, siendo ligeramente mayor el rendimiento del frijol con la aplicación en mateado. Con la adición de la C-5 se obtuvo el mayor rendimiento de frijol de 366.66 kg/ha y también el mayor número de plantas crecidas (56 y 55), seguido de la C-2 con la que se obtuvo un rendimiento de 41% menor que con la C-5; el número de plantas fue de 54 y 32 con las dos formas de aplicación de la composta en capa y mateado respectivamente, siendo superiores al obtenido con los testigos peat-moss y suelo sin fertilización.

Se realizó un análisis estadístico ANOVA con α= 0.05 para determinar el efecto sobre la producción de frijol en parcelas experimentales comparando la forma de aplicación de las compostas y efecto entre compostas. Observándose que no hubo diferencias entre las formas de aplicación, en cambio sí existió diferencia significativa entre compostas (ps0.00021) y testigos. Por tanto se realizó un aprueba comparativa de Tukey α= 0.05 para observar las diferencias entre compostas y testigos, esta se muestra en la Fig.29. Los resultados obtenidos con la C-5 fueron significativamente diferentes a los obtenidos con las demás compostas y testigos; no existió diferencia entre la C-4, C-3 y el testigo sin fertilización; la C-2 y C-1 fueron diferentes al testigo sin fertilización. En este caso no se indica el rendimiento en el tratamiento con fertilización química, ya que como se mencionó crecieron menos del 10 % de las plantas por lo que los resultados no fueron significativos, por ello no se anotaron.
Prueba de Tukey $\alpha=0.05$ crecimiento de frijol en parcelas experimentales

<table>
<thead>
<tr>
<th></th>
<th>C-2</th>
<th>C-1</th>
<th>T1</th>
<th>C-5</th>
<th>C-3</th>
<th>T3</th>
<th>C-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-4</td>
<td>22,40</td>
<td>17,20</td>
<td>13,01</td>
<td>11,15</td>
<td>8,79</td>
<td>8,36</td>
<td>0,00</td>
</tr>
<tr>
<td>T3</td>
<td>14,04</td>
<td>8,85</td>
<td>4,65</td>
<td>2,79</td>
<td>0,43</td>
<td>0,00</td>
<td>8,36</td>
</tr>
<tr>
<td>C-3</td>
<td>13,62</td>
<td>8,42</td>
<td>4,22</td>
<td>2,37</td>
<td>0,00</td>
<td>0,43</td>
<td>8,79</td>
</tr>
<tr>
<td>C-5</td>
<td>11,25</td>
<td>6,05</td>
<td>1,85</td>
<td>0,00</td>
<td>2,37</td>
<td>2,79</td>
<td>11,15</td>
</tr>
<tr>
<td>T1</td>
<td>9,40</td>
<td>4,20</td>
<td>0,00</td>
<td>1,85</td>
<td>4,22</td>
<td>4,65</td>
<td>13,01</td>
</tr>
<tr>
<td>C-1</td>
<td>5,20</td>
<td>0,00</td>
<td>4,20</td>
<td>6,05</td>
<td>8,42</td>
<td>8,85</td>
<td>17,20</td>
</tr>
<tr>
<td>C-2</td>
<td>0,00</td>
<td>5,20</td>
<td>9,40</td>
<td>11,25</td>
<td>13,62</td>
<td>14,04</td>
<td>22,40</td>
</tr>
</tbody>
</table>

* significativamente iguales
* significativamente diferentes

Fig.27 Prueba de Tukey para el crecimiento promedio de frijol comparando entre compostas y testigos en parcelas experimentales
<table>
<thead>
<tr>
<th></th>
<th>C-5</th>
<th>T3</th>
<th>C-2</th>
<th>C-1</th>
<th>C-4</th>
<th>C-3</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>90,42</td>
<td>246,25</td>
<td>156,25</td>
<td>134,58</td>
<td>71,98</td>
<td>21,25</td>
<td>10,21</td>
</tr>
<tr>
<td>C-3</td>
<td>100,63</td>
<td>236,04</td>
<td>146,04</td>
<td>124,37</td>
<td>61,77</td>
<td>11,04</td>
<td>0,00</td>
</tr>
<tr>
<td>C-4</td>
<td>111,66</td>
<td>225,00</td>
<td>135,00</td>
<td>113,34</td>
<td>50,74</td>
<td>0,00</td>
<td>11,04</td>
</tr>
<tr>
<td>C-1</td>
<td>162,40</td>
<td>174,27</td>
<td>84,27</td>
<td>62,60</td>
<td>0,00</td>
<td>50,74</td>
<td>61,77</td>
</tr>
<tr>
<td>C-2</td>
<td>225,00</td>
<td>111,67</td>
<td>21,67</td>
<td>0,00</td>
<td>62,60</td>
<td>113,34</td>
<td>124,37</td>
</tr>
<tr>
<td>T3</td>
<td>246,66</td>
<td>90,00</td>
<td>0,00</td>
<td>21,67</td>
<td>84,27</td>
<td>135,00</td>
<td>146,04</td>
</tr>
<tr>
<td>C-5</td>
<td>336,66</td>
<td>0,00</td>
<td>90,00</td>
<td>111,67</td>
<td>174,27</td>
<td>225,00</td>
<td>236,04</td>
</tr>
</tbody>
</table>

significativamente diferentes

significativamente iguales

Fig. 28 Prueba de Tukey al 5% Rendimiento de frijol en parcelas experimentales
5.7 Siembra de maíz en parcelas experimentales

5.7.1. Crecimiento
La Fig. 29 muestra el crecimiento promedio de maíz en las parcelas experimentales, observándose que la composta con la que se obtuvo el mayor crecimiento de maíz fue con la composta C-4.

![Crecimiento promedio de maíz](image)

Fig. 29. Crecimiento promedio de maíz en parcelas experimentales.

Se realizó un análisis estadístico de varianza ANOVA al 95% para determinar si hubo efecto en el crecimiento por las formas de aplicación de la composta y por la adición de cada una de las compostas; mostrando que no existieron diferencias significativas entre formas de aplicación de las compostas, es indistinto que se apliquen las compostas en forma de capa o mateado; esto se muestra en la Fig. 30.

![Crecimiento con la aplicación de composta en capa y mateado](image)

Fig. 30 Crecimiento de maíz en parcelas experimentales con ambas formas de aplicación de la Composta

Si existieron diferencias en el crecimiento de maíz entre las compostas y los testigos (P≤0.568). Se realizó una prueba comparativa de Tukey con α=0.05, la cual se presenta en la Fig. 31, con la adición de la C-4 se obtuvo el mayor crecimiento de las plantas de maíz y fue significativamente diferente al crecimiento con las otras compostas y testigos. No habiendo diferencias entre la C-1, C-3 y el testigo peat-moss. Tampoco hubo diferencias entre los testigos fertilizado químico y sin fertilización. Es importante resaltar que el crecimiento del maíz con la aplicación de todas las compostas fue significativamente mayor que el obtenido con los testigos, aplicando fertilizante químico y sin fertilización.
Prueba de Tukey al 90% para crecimiento de maíz en parcelas experimentales

<table>
<thead>
<tr>
<th></th>
<th>C-4</th>
<th>C-2</th>
<th>C-5</th>
<th>C-1</th>
<th>C-3</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>245,94</td>
<td>233,00</td>
<td>216,69</td>
<td>205,44</td>
<td>201,81</td>
<td>195,75</td>
<td>175,60</td>
<td>164,81</td>
</tr>
<tr>
<td>T3</td>
<td>164,81</td>
<td>81,13</td>
<td>68,19</td>
<td>51,88</td>
<td>40,63</td>
<td>37,00</td>
<td>30,94</td>
<td>10,79</td>
</tr>
<tr>
<td>T2</td>
<td>175,60</td>
<td>70,34</td>
<td>57,40</td>
<td>41,09</td>
<td>29,84</td>
<td>26,21</td>
<td>20,15</td>
<td>0,00</td>
</tr>
<tr>
<td>T1</td>
<td>195,75</td>
<td>50,19</td>
<td>37,25</td>
<td>20,94</td>
<td>9,69</td>
<td>6,06</td>
<td>0,00</td>
<td>20,15</td>
</tr>
<tr>
<td>C-3</td>
<td>201,81</td>
<td>44,13</td>
<td>31,19</td>
<td>14,88</td>
<td>3,63</td>
<td>0,00</td>
<td>6,06</td>
<td>26,21</td>
</tr>
<tr>
<td>C-1</td>
<td>205,44</td>
<td>40,50</td>
<td>27,56</td>
<td>11,25</td>
<td>0,00</td>
<td>3,63</td>
<td>9,69</td>
<td>29,84</td>
</tr>
<tr>
<td>C-5</td>
<td>216,69</td>
<td>29,25</td>
<td>16,31</td>
<td>0,00</td>
<td>11,25</td>
<td>14,88</td>
<td>20,94</td>
<td>41,09</td>
</tr>
<tr>
<td>C-2</td>
<td>233,00</td>
<td>12,94</td>
<td>0,00</td>
<td>16,31</td>
<td>27,56</td>
<td>31,19</td>
<td>37,25</td>
<td>57,40</td>
</tr>
<tr>
<td>C-4</td>
<td>245,94</td>
<td>0,00</td>
<td>12,94</td>
<td>29,25</td>
<td>40,50</td>
<td>44,13</td>
<td>50,19</td>
<td>70,34</td>
</tr>
</tbody>
</table>

* significativamente iguales
* significativamente diferentes

Fig. 31 Prueba de Tukey al 5% para el crecimiento de maíz en parcelas experimentales
5.7.2. Rendimiento

En la Fig. 32 se muestra el número de plantas de maíz que crecieron en cada subparcela.

![Gráfico de barra para número de plantas por subparcela](image)

Fig. 32 Número de plantas de maíz crecidas en cada subparcela con la aplicación de compostas y testigos

La figura 33 muestra el rendimiento de maíz extrapolado a kg/ha, según las dos diferentes formas de aplicación de las compostas en capa y mateado.

![Gráfico de línea para rendimiento de maíz](image)

Fig. 33 Rendimiento de maíz obtenido por subparcela con la aplicación de composta en capa y mateado

Se realizó un análisis estadístico ANOVA al 90% para definir el efecto en el rendimiento de maíz entre las formas de aplicación de la composta y entre compostas y testigos. Se observa que no hubo diferencia significativa entre la forma de aplicación de las compostas, pero sí hubo diferencia significativa con cada composta y testigos ($P \leq 0.060$). Por tanto se realizó una prueba comparativa de Tukey $\alpha = 0.1$ la cual se muestra en la figura 34. Los mayores rendimientos se obtuvieron con la aplicación de las C-4 y C-5, mismas que no presentan diferencias significativas entre ellas pero sí con las demás compostas y testigos. También se observa que no hubo diferencias en el rendimiento obtenido con aplicación de la C-3 con el testigo fertilizado; C-2 con la C-3 y peat-moss; C-1 y testigo sin fertilización.
<table>
<thead>
<tr>
<th></th>
<th>C-4</th>
<th>C-5</th>
<th>T2</th>
<th>C-3</th>
<th>C-2</th>
<th>T1</th>
<th>C-1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>645,83</td>
<td>1399,92</td>
<td>1185,42</td>
<td>645,77</td>
<td>366,67</td>
<td>197,92</td>
<td>8,34</td>
<td>4,17</td>
</tr>
<tr>
<td>C-1</td>
<td>650</td>
<td>1395,75</td>
<td>1181,25</td>
<td>641,60</td>
<td>362,50</td>
<td>193,75</td>
<td>4,17</td>
<td>0,00</td>
</tr>
<tr>
<td>T1</td>
<td>654,17</td>
<td>1391,58</td>
<td>1177,08</td>
<td>637,43</td>
<td>358,33</td>
<td>189,58</td>
<td>0,00</td>
<td>4,17</td>
</tr>
<tr>
<td>C-2</td>
<td>843,75</td>
<td>1202,00</td>
<td>987,50</td>
<td>447,85</td>
<td>168,75</td>
<td>0,00</td>
<td>189,58</td>
<td>193,75</td>
</tr>
<tr>
<td>C-3</td>
<td>1012,5</td>
<td>1033,25</td>
<td>818,75</td>
<td>279,10</td>
<td>0,00</td>
<td>168,75</td>
<td>358,33</td>
<td>362,50</td>
</tr>
<tr>
<td>T2</td>
<td>1291,6</td>
<td>754,15</td>
<td>539,65</td>
<td>0,00</td>
<td>279,10</td>
<td>447,85</td>
<td>637,43</td>
<td>641,60</td>
</tr>
<tr>
<td>C-5</td>
<td>1831,25</td>
<td>214,50</td>
<td>0,00</td>
<td>539,65</td>
<td>818,75</td>
<td>987,50</td>
<td>1177,08</td>
<td>1181,25</td>
</tr>
<tr>
<td>C-4</td>
<td>2045,75</td>
<td>0,00</td>
<td>214,50</td>
<td>754,15</td>
<td>1033,25</td>
<td>1202,00</td>
<td>1391,58</td>
<td>1395,75</td>
</tr>
</tbody>
</table>

Fig. 34 Prueba de Tukey al 90% para el rendimiento de maíz en parcelas experimentales
5.8 Evaluación global del efecto de aplicación de compostas

5.8.1. Evaluación para el cultivo de frijol

En la Tabla 22 se muestra el resumen de los parámetros fisicoquímicos de las compostas y los resultados obtenidos en el crecimiento y rendimiento del cultivo de frijol, el análisis y discusión de los mismos se hizo tomando en cuenta las siguientes consideraciones:

a) El comportamiento para el cultivo de frijol estuvo afectado principalmente por la relación C/N, contenido de N y P y el pH, los requerimientos para este cultivo son mayormente de N que de P. Según Thung y Lynch (2001), en suelos con bajo contenido de fósforo, al ser aplicado éste como fertilizante es fijado en forma menos disponible para las plantas.

b) El nitrógeno es un elemento de fácil movilidad sus principales funciones son la mayor producción de hojas y mayor vigor vegetativo, todo esto determina mayor producción de granos.

c) En el caso del fríjol, éste consume cantidades altas de nitrógeno, potasio y calcio, y cantidades más bajas de fósforo, magnesio y azufre (FAO, 1985).

d) Los requerimientos nutricionales para el frijol son de 40 kg de N /ton de producto cosechado, 12 kg de P₂O₅/ton y 40 kg de K₂O /ton.

e) Durante los periodos de crecimiento vegetal rápido el P presente en el suelo puede ser reemplazado hasta 10 veces o más al día, a partir de formas en fase sólida,

f) las temperaturas frías con frecuencia inducen deficiencia de P en las plantas a causa de un crecimiento y desarrollo limitado de la raíz,

g) la disponibilidad máxima del P en el suelo ocurre a un pH entre 6.5 y 7
Tabla 22. Resumen de factores físico-químicos, número de plantas, crecimiento y rendimiento en parcelas experimentales con frijol.

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>C</th>
<th>C/N</th>
<th>pH</th>
<th>CE</th>
<th>No. De Plantas</th>
<th>Crecimiento frijol</th>
<th>Rendimiento de frijol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>subparcela mateado</td>
<td>kg/ha</td>
</tr>
<tr>
<td>4,5 ton/ha de composta</td>
<td>dS m-1</td>
<td>capa</td>
<td>mateado</td>
<td>capa</td>
<td>mateado</td>
<td>capa</td>
<td>mateado</td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>24,91</td>
<td>6,75</td>
<td>212,4</td>
<td>8,49</td>
<td>8,25</td>
<td>0,88</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>C-2</td>
<td>43,81</td>
<td>12,735</td>
<td>336,6</td>
<td>7,69</td>
<td>8,53</td>
<td>1,67</td>
<td>54</td>
<td>32</td>
</tr>
<tr>
<td>C-3</td>
<td>13,21</td>
<td>7,605</td>
<td>217,35</td>
<td>16,46</td>
<td>7,23</td>
<td>1,12</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>C-4</td>
<td>22,81</td>
<td>9,495</td>
<td>306,9</td>
<td>13,46</td>
<td>8,47</td>
<td>1,54</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>C-5</td>
<td>31,81</td>
<td>8,325</td>
<td>347,85</td>
<td>10,94</td>
<td>7,00</td>
<td>1,35</td>
<td>56</td>
<td>55</td>
</tr>
<tr>
<td>T1</td>
<td>50,92</td>
<td>29,9</td>
<td>1953,9</td>
<td>19,18</td>
<td>5,31</td>
<td>0,64</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>T2</td>
<td>92,00</td>
<td>20</td>
<td>42,435</td>
<td>9,13</td>
<td>7,34</td>
<td>0,04</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>T3</td>
<td>4,65</td>
<td>0,423</td>
<td>42,435</td>
<td>9,13</td>
<td>7,34</td>
<td>0,04</td>
<td>42</td>
<td>43</td>
</tr>
</tbody>
</table>

N, P, C Nitrógeno, Fósforo, Carbono nutrientes aportados por compost
C/N Relación carbono-nitrógeno
Subparcela de 12 m2
Capa, mateado Formas de aplicación de compostas

T1 Peat-moss
T2 Suelo fertilizado Quim
T3 Suelo sin fertilizar

* significativamente diferentes Tukey α=0.05
Mejores resultados
Las compostas con las que se obtuvieron los mejores resultados en cuanto al número de plantas obtenidas, crecimiento de las mismas y rendimiento de frijol fueron las compostas C-5 y C-2. Analizando la Tabla 22 se observa que:

Composta C-5 tuvo la segunda mayor aportación de N, la tercera mayor aportación de P y la mayor aportación de C, adicionalmente su relación C/N fue muy buena y con un pH neutro. Esto explica porque con esta composta se obtuvo la mayor producción de frijol y de número de plantas así como un buen crecimiento de las mismas, porque a pesar de que su contenido de N fue menor al aportado por la C-2, el pH, a diferencia del de la C-2, permitió que todo el N y P estuvieran disponibles para las plantas de frijol. Adicionalmente su contenido de sales fue bueno. Esta composta se formuló con lodos de las plantas de tratamiento de agua de la empresa de bebidas y de la empresa papelera y utilizando rastrojo como material texturizante, por lo que se puede decir que no es indispensable la adición de materia orgánica, como sería residuos de verduras o frutas para lograr una buena composta, los lodos de las plantas de tratamiento de agua son materiales que aportan los nutrientes necesarios para la germinación, crecimiento, desarrollo y producción agrícola. Esto podría explicarse porque el aporte de nutrientes durante la primera fase de desarrollo fue mayor, al igual que la demanda para el crecimiento vegetativo entonces la disponibilidad de éstos fue inmediata, explicando por tanto el crecimiento de la planta. Según Gómez y col (2008) obtuvieron crecimiento de 53.8 cm para cultivo de frijol, similar a lo observado en la C-5, ello en parcelas experimentales abonadas con compostas con una aplicación de 5 ton/ha.

Composta C-2, la composta con la que se alcanzó el segundo mayor rendimiento fue la C-2, ésta tuvo de los mayores aportes de N, superado únicamente por el peat most; aportó la mayor cantidad de P y un buen aporte de C, superado por el peat most y por la C-5 en contenido de C; debido al alto contenido de N su relación C/N fue baja. El pH fue el mayor (8.53), que a pesar de rebasar el límite máximo permisible por la norma PROY-NTEA-006-SEGEM-RS-2005, según la Fig. (Castellanos, 2000) existió disponibilidad de P y la de nitrógeno apenas comenzó a verse restringida, pero estuvo aun en forma disponible. Adicionalmente su contenido de sales (conductividad eléctrica) fue el mayor. Esto explica el porque con la adición de esta composta se logró muy buen rendimiento en el cultivo de frijol, número de plantas y crecimiento de estas, sin embargo no fue el mejor debido al pH. El pH recomendado ó que le favorece a este cultivo es entre 6-7.5 (Castellanos, 2000), a pH altos la limitante es la disponibilidad de fierro y zinc en menor proporción de manganeso y en ocasiones la del fósforo, pues estos se fijan fácilmente quedando inmovilizados en la solución del suelo (Castellanos, 2000). Esta composta se formuló con lodos de la planta de tratamiento de agua de la empresa de bebidas, con residuos de la empacadora de chile y con rastrojo.

Composta C-1 con ésta se logró el tercer mejor rendimiento, un buen número de plantas y muy buen crecimiento de las mismas; la aportación de N fue la tercera en cantidad mientras que su aportación de P y C fueron bajas; adicionalmente su pH (8.25) no favoreció la disponibilidad de P. Con esta composta hubo buen crecimiento de las plantas, pero los nutrientes fueron insuficientes para alcanzar mejores rendimientos. Esta composta se formuló con ambos lodos de las dos empresas, residuos de la empacadora de chile y rastrojo como material texturizante.

Compostas C-3 dio menores rendimientos de frijol, número de plantas y crecimiento de las mismas que las anteriores compostas, analizando la C-3 su aportación de N fue la menor, aunque tuvo una buena aportación de C, incluso mayor que la C-1, con menor rendimiento de frijol ya que, como se mencionó, el cultivo de frijol es más demandante de N. El pH fue bueno ya que estuvo muy cerca del neutro, pero su bajo contenido de nutrientes no le favoreció. Adicionalmente la relación C/N fue la mayor de todas.

Composta C-4 fue formulada únicamente con residuos de la empacadora de chile y rastrojo, tuvo baja aportación de N, buena aportación de P (la segunda más alta) y C (la tercera más alta), sin embargo el rendimiento fue más bajo de lo esperado, lo cual se puede explicar porque el pH de esta composta fue de 8.47, valor que disminuyó la disponibilidad de nutrientes, además la relación C/N fue alta.

Es importante destacar que con la C-2 se obtuvo mayor rendimiento que con la C-4, la C-2 se formuló también con los residuos de la empacadora de chile, pero además con lodos de la
planta de tratamiento de agua de la empresa de bebidas, es decir que los lodos aportaron N y balancearon el pH, estos lodos mejoraron la composta elaborado con únicamente residuos orgánicos, que además los lodos aportan micronutrientes.

Peat moss por otro lado analizando los testigos se puede decir que sus rendimientos en cultivo de frijol fueron muy bajos, peat moss aportó una gran cantidad de N y C, éste último incluso un orden de magnitud mayor que con las compostas, por lo que su relación C/N fue muy alta, fuera incluso del límite máximo permisible por la normatividad. A pesar de tener un buen contenido de N y P no fue favorable, porque la disponibilidad de éstos nutrientes estuvieron limitadas por presentar una alta relación C/N siendo el N inmovilizado en la solución del suelo, y el P no testuvo disponible pues presenta un pH ácido, por tanto se infiere que no fueron de aprovechamiento para la planta por eso muestra un escaso crecimiento y rendimiento.

Suelo Altzayanca en el suelo sin adición de composta ni fertilizante se obtuvo también un bajo rendimiento, a pesar de su baja aportación de nutrientes hubo un buen número de plantas y crecimiento de las mismas, esto se puede explicar porque el pH fue el adecuado para que los pocos nutrientes presentes en el suelo estuvieran disponibles para las plantas, pero debido a la baja concentración de estos, únicamente se permitió la germinación y crecimiento de plantas pero no fueron los suficientes para la fructificación del frijol; cabe destacar que además la semilla utilizada estaba adaptada a las condiciones de humedad y temperatura del terreno donde se hizo la experimentación.

En general las compostas aportaron buenos porcentajes de MO, la función de la materia orgánica en el suelo contribuyó en la capacidad de intercambio de cationes y aniones en el suelo. La MO del suelo determina la retención, la liberación y la disponibilidad de nutrientes de las plantas, libera N, P, y S inmovilizados durante la descomposición, además es el almacén más importante de nutrientes de la planta, mejora la percolación del agua en el suelo y la retención de la misma por éste, cuanto mayor es la cantidad de MO presente (dentro de los límites recomendados), mejor es la calidad del cultivo (Plaster, 2000).

En cuanto a la producción de frijol, el mayor rendimiento se obtuvo con la aplicación de la C-5, dando una producción de 366.67 kg/ha, siendo este el 91.7 % de lo esperado para la región, seguido de la C-2.. Según COPLADET (2005) la producción de frijol en la zona de Altzayanca es de 400 kg/ha. Aunque la aplicación de compostas no logró el 100% de la producción de frijol esperado con la primera aplicación de composta, éste estuvo ligeramente por debajo de lo esperado. Se prevé que con las subsiguientes aplicaciones, este rendimiento se incremente considerablemente.

5.8.2. Evaluación para el cultivo de maíz

La Tabla 23. muestra los parámetros físico-químicos y el contenido en nutrientes aportados en la aplicación de cada composta y con los testigos, mismos que influyeron en el crecimiento y rendimiento del cultivo de maíz. En general todas las compostas y testigos tuvieron las condiciones óptimas de humedad y temperatura y la viabilidad de las semillas fue buena, el porcentaje de germinación, fue en mas del 90% no siendo significativo entre compostas y testigos.

Las compostas con las que se obtuvieron los mejores resultados en cuanto al número de plantas obtenidas, crecimiento de las mismas y rendimiento de maíz fueron las compostas C-4 y C-5.

Composta C-4 fue la cuarta en aporte de N, segunda mejor en aporte de P y la tercera en contenido de C, estos estuvieron disponibles en las fases de desarrollo vegetativo y de fructificación, y se puede observar que el cultivo es sensible a la disponibilidad sobre todo de P y aunque presenta un pH alcalino de 8.47, que se sabe que limita la disponibilidad de nutrientes, sobre todo el P. Este comportamiento se debe explicar considerando otros factores
Tabla 23. Relación de factores físico-químicos y efecto en el no. de plantas, crecimiento y rendimiento en parcelas experimentales con maíz.

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>C</th>
<th>C/N</th>
<th>pH</th>
<th>CE</th>
<th>No. De Plantas</th>
<th>Crecimiento maíz (cm)</th>
<th>Rendimiento de maíz kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,5 ton/ha de composta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>capa mateado</td>
<td>capa mateado</td>
<td>capa mateado</td>
</tr>
<tr>
<td>C-1</td>
<td>24,91</td>
<td>6,75</td>
<td>212,4</td>
<td>8,49</td>
<td>8,25</td>
<td>0,88</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>C-2</td>
<td>43,81</td>
<td>12,735</td>
<td>336,6</td>
<td>7,69</td>
<td>8,53</td>
<td>1,67</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>C-3</td>
<td>13,21</td>
<td>7,605</td>
<td>217,35</td>
<td>16,46</td>
<td>7,23</td>
<td>1,12</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>C-4</td>
<td>22,81</td>
<td>9,495</td>
<td>306,9</td>
<td>13,46</td>
<td>8,47</td>
<td>1,54</td>
<td>37</td>
<td>51</td>
</tr>
<tr>
<td>C-5</td>
<td>31,81</td>
<td>8,325</td>
<td>347,85</td>
<td>10,94</td>
<td>7,00</td>
<td>1,35</td>
<td>76</td>
<td>40</td>
</tr>
<tr>
<td>T1</td>
<td>50,92</td>
<td>29,9</td>
<td>1953,9</td>
<td>19,18</td>
<td>5,31</td>
<td>0,64</td>
<td>35</td>
<td>XXXXXXXX</td>
</tr>
<tr>
<td>T2</td>
<td>92,00</td>
<td>20</td>
<td>42,435</td>
<td>9,13</td>
<td>7,34</td>
<td>0,04</td>
<td>XXXX</td>
<td>89</td>
</tr>
<tr>
<td>T3</td>
<td>4,65</td>
<td>0,423</td>
<td>42,435</td>
<td>9,13</td>
<td>7,34</td>
<td>0,04</td>
<td>75</td>
<td>XXXXXXXX</td>
</tr>
</tbody>
</table>

N, P, C Nitrógeno, Fósforo, Carbono nutrientes aportados por composta

C/N Relación carbono-nitrógeno

Subparcela de 12 m2 Formas de aplicación de compostas

Capa, mateado Mejores resultados

*significativamente diferentes Tukey α=0.05, 0.1
además del aporte de nutrientes y su bidisopabilidade. Castellanos (2000) indica que hongos benéficos que segregan algunas sustancias que regulan el crecimiento y disponibilidad de nutrientes, como son los hongos micorrízicos, juegan un papel importante en el abastecimiento de fósforo, micronutrientes y agua en las raíces y el maíz es uno de los cultivos a los cuales crece asociado los hongos micorrízicos. Por lo que podría también explicarse que teniendo una alta relación C/N de 13.46 esta baje en función del tiempo a través de bacterias de los géneros *Nitrosomonas* y *Nitrobacter*, que se hacen cargo de transformar el nitrógeno amoniacal (N-NH₄) en nitrógeno nítrico (N-NO₃) (Castellanos, 2000); por ello los nutrientes estuvieran en formas disponibles para el aprovechamiento de la planta en la fase del llenado del grano, obteniéndose el mejor rendimiento de todas las compostas. Esta, fue formulada únicamente con residuos de la empacadora de chile y rastrojo, probablemente el contenido de carbono orgánico y nitrógeno fue más fácilmente asimilado por los microorganismos y su transformación en formas disponibles de fácil asimilación. El P orgánico en las compostas procedentes de vegetales es fácilmente descompuesto para liberar ortofosfato, disponible para las plantas (Stofella, 2008).

Composta C-5, tuvo la segunda mayor aportación de N, la tercera mayor aportación de P y la mayor aportación de C, adicionalmente su relación C/N fue muy buena y con un pH neutral. Esto explica porque con esta composta se obtuvo una muy buena producción de maíz, siendo esta equiparable a la C-4, la cual no presentó diferencias significativas con ésta; también presentó el mayor número de plantas, así como un buen crecimiento de las mismas, porque a pesar de que su contenido de P fue menor al aportado por la C-4 este estuvo disponible en la solución del suelo debido a que presentó un pH neutro. El cultivo del maíz se ve favorecido por relaciones C/N altas, pero cuyo contenido de C sea de fácil mineralización, por tanto se podría explicar que el aporte de C de la C-5 fue mayor que en C-4 y estuvo en forma disponible. Esta composta se formuló con lodos de las plantas de tratamiento de agua de la empresa de bebidas y de la empresa papelera y se utilizó rastrojo como material texturizante, los lodos de las plantas de tratamiento de agua son materiales que aportan los nutrientes necesarios para la germinación, crecimiento, desarrollo y producción agrícola.

Composta C-2, tuvo los mayores aportes de N de las compostas, sólo menor al del peat moss, aportó la mayor cantidad de P y un buen aporte de C; presentó una relación C/N baja de 7.69. Con la adición de esta composta se obtuvieron 41% menos en el número de plantas que con el uso de la C-5, siendo ésta quien permitió el mayor número de plantas; presentó muy buen crecimiento (el segundo mejor) y un rendimiento del 32% menos que la C-4, esto podría explicarse porque tuvo un buen aporte en N y P, que fueron aprovechados durante la etapa de crecimiento, pero insuficientes o limitados debido al valor pH de 8.53 para la fase del llenado del grano, ya que la mayor absorción de nutrientes es en el comienzo de la prefloración y llenado de granos (Agroestrategias consultores). Por otra parte se sabe que el cultivo de maíz, requiere micronutrientes como: Zn, Fe, Cu y Mn (Agroestrategias consultores) y éstos no se encuentran disponibles en el suelo a ese pH, por tanto el rendimiento no se vió favorecido como en el crecimiento. Esta composta se formuló con lodos de la planta de tratamiento de agua de la empresa de bebidas, con residuos de la empacadora de chile y rastrojo.

Composta C-1 con esta se logró un pobre rendimiento, un crecimiento aceptable y un pobre número de plantas, esta fue la tercera en aporte de N, presentó los menores aportes de P y C de todas las compostas, aunque presentó una relación C/N buena de 8.49,estuvieron limitados los nutrientes por un alto valor de pH de 8.25. Además que para este cultivo es muy importante la aportación de carbono orgánico y nitrógeno orgánico de fácil asimilación, y en el caso de la C-1 estos estuvieron limitados en la fase del llenado del grano. Esta composta se formuló con ambos lodos de las dos empresas, residuos de la empacadora de chile y rastrojo como material texturizante.

Composta C-3 su aportación de N fue la menor, aunque tuvo una buena aportación de C, incluso mayor que la C-1 y fue la cuarta en aporte de P, resultó en un 32% menos de rendimiento que la C-4, presentó un crecimiento aceptable y un número de plantas pobre; Esto podría explicarse, porque presentó una alta relación C/N, de 16.46, y se sabe que ésta relación alta en el suelo inmoviliza el N, por lo que se podría explicar que el N no estuvo en formas orgánicas disponibles para el cultivo, a pesar de que esta composta presentó un pH
cercano a la neutralidad, no hubo disponibilidad de los nutrientes, mostrando un pobre rendimiento. Esta composta estuvo formulada con lodo de la papelera en mayor porcentaje, lodo de la empresa de bebidas y de chile en iguales proporciones.

Fertilización química, con este testigo se obtuvo un buen número de plantas, el crecimiento estuvo en 30% menos que con la C-4 con la que se presentó el mayor crecimiento y presentó un 53.5% menor en el rendimiento que con la C-4. A pesar de que el suelo presentó un valor de pH cercano a neutro, y se sabe que este permite la mayor disponibilidad de los nutrientes, no se obtuvo el rendimiento esperado. Esto se puede explicar porque se observó que el suelo de esta subparcela se compactó, a diferencia del suelo aplicado con composta. Las propiedades físicas del suelo juegan además de los factores fisicoquímicos un papel sumamente importante para que los nutrientes se encuentren retenidos y disponibles para la planta; por ello no se vió reflejado en los resultados de una buena producción. Lo que podría sugerir que por el tipo de suelo, pobre en materia orgánica, sales solubles y nutrientes, además de presentar textura arenosa no existió retención de las sales aplicadas como fertilizante, adicionalmente por su solubilidad en agua se pierden fácilmente por lavado o lixiviación, teniendo en cuenta que el ion NO₃ es un anión y no puede ser retenido por las arcillas como ocurre con los cationes NH₄⁺, Ca⁺², Mg⁺², K⁺, Na⁺, es fácilmente transportado por el agua, por tal razón, las láminas de agua excesivas o lluvias abundantes favorecen el arrastre de NO₃ hacia estratos inferiores del suelo, fuera del alcance de las raíces (Castellanos, 2000). En los suelos de textura de arenosa se favorecen las pérdidas por lixiviación debido a que en ellos la velocidad de infiltración suele ser muy alta, y por ende el arrastre de nitratos también (Castellanos, 2000), explicando porque al inicio se favoreció la emergencia de plantas, al estar muy disponible y fácilmente soluble pero al perderse fácilmente no existieron suficientes nutrientes y sales solubles que fueran asimiladas para el crecimiento vegetativo y para el llenado del grano, por eso hubo deficiencias en el crecimiento vegetativo y en el rendimiento traduciéndose en plantas, de menor altura, menor desarrollo vegetativo, menor tamaño de la mazorca y del grano.

Suelo Altzayanca Los factores descritos arriba igualmente explican los resultados obtenidos con el testigo sin fertilización alguna, se observa que debido a que el suelo sin aplicación de composta o fertilizante fue deficiente en nutrientes N, P y sales solubles en el suelo, además de carecer de materia orgánica, las plantas presentaron un pobre crecimiento y rendimiento en el cultivo de maíz. Observándose plantas de menor tamaño, mazorcas pequeñas, mazorcas incompletas en el llenado de granos, menor tamaño de los granos, que en el caso de las parcelas que sí fueron fertilizadas con compostas.

Peat-moss con la adición de éste material se presentó un pobre número de plantas, de los menores crecimientos y un pobre rendimiento, ello a pesar de presentar el mayor contenido de N, P y C incluso en un orden de magnitud mayor que con las compostas, por lo que su relación C/N fue muy alta. Esto se explica porque la inmovilización del N a altas relaciones C/N no permite que se encuentre disponible el N, además que el valor de pH de 5.3 no permitió que se encontraran disponibles algunos micronutrientes y el P, y comenzó a restringirse la disponibilidad de N.

Para el cultivo de maíz la composta con la que se obtuvo mayor rendimiento fue la C-4 con una producción de 2537.5 kg/ha, seguida de la C-5 con una producción 2500 kg/ha, no hubo diferencias significativas entre ambas. Según COPLADET (2005) el rendimiento de maíz en grano en la zona de Altzayanca es de 2.4 ton/ha, es decir que con la aplicación de composta se superó el rendimiento de grano reportado, alcanzándose una producción del 100% para esa zona; mostrando que con la adición de compostas se aporta una fuente de materia orgánica que mejora la productividad del suelo y se prevé que con las subsiguientes aplicaciones se mejoren las propiedades fisicoquímicas del suelo y por tanto se alcancen mejores rendimientos.

El maíz como todas las gramíneas, es muy demandante de N. La principal fuente para el aporte de este nutriente es el nitrógeno orgánico de la materia orgánica del suelo, el cual se pone en disponibilidad con la mineralización. Este es fundamental en todo el ciclo del cultivo, durante las primeras etapas del ciclo, pero en especial en el periodo desde la siembra, crecimiento vegetativo, prefloración, en ese periodo el maíz consume el 70% aproximado del N total, de la misma forma que durante el periodo vegetativo el N es fundamental, también lo es el zinc. Ambos son motores del crecimiento vegetativo (agroestrategias consultores).
El fósforo disponible por la planta es normalmente menor al 1% del fósforo total del suelo, mientras que del 20 al 40% del fósforo en las compostas puede estar a disposición de las plantas (Vogtmann et al., 1993). La disponibilidad de K para la planta en la composta puede ser mayor del 85% del contenido total de este elemento (Vogtmann et al., 1993). La incorporación de composta como enmienda del suelo incrementará su capacidad de intercambio catiónico (CIC) (Hortenstine y Rothwell, 1973), proporcionándoles la capacidad para retener de forma eficaz más nutrientes (Stoffella, 2008). La materia orgánica estabilizada, como es el caso de las compostas, contribuye favorablemente a mejorar la estabilidad de la estructura de los agregados del suelo agrícola (serán más permeables los suelos pesados y más compactos los ligeros), aumenta la permeabilidad hídrica y gaseosa, y contribuye a aumentar la capacidad de retención hídrica del suelo mediante la formación de agregados (INIFAT, 2002). Cubero (1994) y Labrador (2003) afirman que el uso de compostas ofrece ventajas importantes tanto para los cultivos como para el sustrato suelo. Entre ellas destacan el aumento en la capacidad de retención de agua, aumento en la capacidad de intercambio catiónico y en el aumento del intercambio de nutrientes del suelo a las plantas.

5.8.3. Evaluación de suelo al final del ciclo productivo

Para concluir el presente proyecto, ademas se compararon las propiedades del suelo antes de hacer el sembrado de maíz y frijol con las propiedades del suelo después del mismo, ello para definir si el beneficio de la aplicación de compostas se mostró solo en los cultivos o también en el suelo. En la Tabla 24. se presentan los parámetros fisicoquímicos iniciales del suelo donde se hizo la experimentación, en este caso se tomaron muestras del suelo antes de la siembra, para conocer como se encontraba el suelo en dicho terreno; se muestran también los valores de los diferentes parámetros medidos después de que se levantó la cosecha, ello para definir como quedó el suelo después de haberse aplicado la composta y obtenerse un ciclo agrícola.

| Tabla 24. Parámetros fisicoquímicos del suelo antes y después de la producción agrícola |

| Suelo inicial antes de la aplicación de las compostas |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| pH | CE dS m-1 | CO % | MO % | NT % | C/N | P mg/ kg |
| 7,34 | 0,04 | 0,945 | 1,63 | 0,103 | 9,133 | 9,385 |

| Suelo después un ciclo de producción agrícola de maíz |
|------------------|------------------|------------------|------------------|------------------|
| C-1 | 6,99 | 0,18 | 1,29 | 2,22 | 0,23 | 5,64 | 27,14 |
| C-2 | 7,01 | 0,21 | 1,24 | 2,13 | 0,20 | 6,20 | 56,01 |
| C-3 | 7,89 | 0,17 | 1,71 | 2,95 | 0,22 | 7,82 | 37,40 |
| C-4 | 8,05 | 0,22 | 1,67 | 2,88 | 0,33 | 5,02 | 34,70 |
| C-5 | 7,07 | 0,15 | 1,38 | 2,39 | 0,24 | 5,82 | 21,72 |

| Suelo después un ciclo de producción agrícola de frijol |
|------------------|------------------|------------------|------------------|
| C-1 | 7,05 | 0,19 | 1,18 | 2,04 | 0,29 | 4,01 | 19,93 |
| C-2 | 7,05 | 0,22 | 1,70 | 2,94 | 0,27 | 6,40 | 55,33 |
| C-3 | 7,05 | 0,13 | 1,36 | 2,34 | 0,18 | 7,51 | 22,99 |
| C-4 | 7,03 | 0,14 | 1,40 | 2,41 | 0,15 | 9,21 | 31,20 |
| C-5 | 7,03 | 0,17 | 1,51 | 2,61 | 0,18 | 8,37 | 35,60 |

CE=conductividad eléctrica MO=Materia orgánica
CO=Carbono orgánico NT=Nígeno total P= fósforo

Analizando la tabla y comparando los valores del suelo antes del cultivo y después de éste, se observa que el suelo quedó con mayor cantidad de materia orgánica, indicando que
efectivamente la composta sirvió como aporte de nutrientes en formas solubles, que fueron aprovechadas por los cultivos, y que además parte de estos quedaron en el suelo. El pH se mantuvo cerca de la neutralidad, la adición de la composta no varió sustancialmente este parámetro; la conductividad eléctrica aumentó respecto al suelo antes del proceso de cultivo, ello debido a las sales minerales que quedaron en el mismo; un comportamiento similar se observó para el porcentaje de CO y MO, que aumentaron también. Se sabe que dentro de los elementos importantes para los cultivos están el nitrógeno y el fósforo, mismos que también se incrementaron respecto al suelo inicial.

Este análisis para definir los parámetros fisicoquímicos después del ciclo de cultivo es muy interesante ya que indica que con la adición de las compostas se logró un efecto positivo tanto en la germinación, crecimiento y producción agrícola de maíz y frijol como en las propiedades del suelo. Estos resultaron sugerir que el uso de composta en función del tiempo mejorará a mediano plazo las propiedades del suelo, ya que se irá agregando materia orgánica y sales minerales, que permitirán ir corrigiendo el problema de erosión aumentando la capa vegetal superior; permitirá además al suelo retener mayor cantidad de agua, así como mejorará la capacidad de intercambio catiónico, que permitirá darle fertilidad al mismo y por tanto se tendrán mejores rendimientos en futuras cosechas, ya que los abonos orgánicos favorecen las propiedades del suelo en forma integral, debido a que mejoran las propiedades (Quintero y Lara, 2004):

a) físicas: retención de humedad, densidad aparente, difusión de agua y aire, drenaje, penetración y crecimiento de las raíces, formación de agregados, estructura y menor compactación.

b) químicas: aportan todos los nutrimentos minerales, mejoran la capacidad amortiguadora del pH y la capacidad para almacenar nutrimentos, reducen el efecto antagónico que presentan algunas sustancias

c) microbiológicas crean el medio apropiado para el desarrollo de bacterias, hongos y actinomicetos benéficos para el suelo y las plantas, debido a que aportan nitrógeno, solubilizan fósforo, favorecen la absorción de nutrimentos y agua por parte de las plantas y estimulan el crecimiento de las raíces, principalmente en las primeras etapas de su crecimiento; además, crean un ambiente antagónico a los agentes fitopatógenos, por lo cual reducen la incidencia de enfermedades de diversas especies vegetales.

Considerando que en el municipio de Altzayanca se cuenta con 2206 unidades de producción agrícola, de las cuales 43 unidades son de riego y 2163 unidades de producción son de temporal; de estas 2033 utilizan fertilizantes químicos y 390 abonos naturales y que de las 7666 hectáreas sembradas en 2004/2005, 5160 fueron de maíz grano y 918 de frijol se puede inferir que proyectos de este tipo pueden tener un impacto muy importante en la región. Las unidades de producción que existen en el municipio que utilizan fertilizantes químicos son varias veces mayores que las que utilizan abonos naturales, esto representa económicamente hablando mayores costos de producción, así como riesgos al medio ambiente, pues por el tipo de suelo de la región, estos se lixian más fácilmente, además que no son aprovechados en su totalidad por los cultivos. Mientras que el uso de compostas aporta muchos beneficios, se reciclan materiales de desecho, se reduce el costo por almacenaje y manejo de éstos; a través del proceso de compostaje se aprovechan los nutrientes como N, P y sales minerales de los residuos que se transforman en sustancias más asimilables para los cultivos, su costo de producción y comercialización es menor que los fertilizantes químicos y corrige problemas ambientales en función del tiempo, como la erosión, aportando materia orgánica que mejora con el tiempo las propiedades físico-químicas del suelo, que se traduce finalmente en un suelo fértil y de mayor productividad.

Además algo importante durante el proyecto fue que efectivamente es factible el reciclaje y aprovechamiento de los lodos de planta de tratamientos de aguas residuales mediante el compostaje, sus nutrientes fueron aprovechados para obtener buenos rendimientos en los cultivos de maíz y frijol, muy cercanos a los que se obtienen en la región con fertilización química, y se prevé que la adición continua de materia orgánica en forma de composta mejoren las propiedades del suelo, mejorando cada ciclo el rendimiento de los cultivos.
VI. CONCLUSIONES Y RECOMENDACIONES

- Los residuos de las plantas de tratamiento de aguas mediante el proceso de compostaje fueron transformados en material libre de olor y con aspecto similar a suelo, que además cumplió con la norma para la producción de los mejoradores de suelos a partir de residuos orgánicos.

- El uso de los lodos de plantas de tratamiento de agua para la elaboración de compostas es una forma de valorización de los mismos.

- La materia orgánica, independientemente de su naturaleza, fue favorablemente mineralizada a través del proceso de compostaje, obteniéndose un material no fitotóxico, donde además sus componentes se transformaron en compuestos asimilables por los cultivos de maíz y frijol.

- La aplicación de compostas incrementa el crecimiento y producción de cultivos respecto al suelo sin adición de fertilizantes, pero además la aplicación continua de la misma puede mejorar la calidad de los suelos y disminuir problemas como la erosión.

- La adición de composta, incluso con una sola aplicación al suelo, tuvo un efecto positivo en éste, mejorando el % de MO, contenido de N, P y sales solubles. Se prevé que futuras aplicaciones mejoren las propiedades físicas, químicas y biológicas dando mayor fertilidad al suelo.

- De acuerdo con la evaluación de todos los parámetros fisicoquímicos y su efecto de aplicación en los cultivos de maíz y frijol se puede decir que la composta C-5 fue la que tuvo mejores características agronómicas y que fueron muy favorables para los dos cultivos, maíz y frijol, independientemente de los requerimientos de cada uno, supliendo las necesidades nutricionales de ambos. Demostrando que los lodos son aprovechables a través del compostaje, transformándose eficazmente en abono orgánico.

RECOMENDACIONES Y TRABAJO FUTURO

- Estos resultados muestran el efecto positivo sobre el suelo, se podría seguir haciendo el seguimiento de los parámetros fisicoquímicos del suelo en cada ciclo de los cultivos, para corroborar que efectivamente las propiedades del suelo van mejorando con la aplicación de compostas con respecto al tiempo, mejorando la textura, porosidad, y drenaje del mismo, además de saber si existe o no mayor retención de nutrientes, debido a un aumento en la retención hídrica; se podría analizar si mejora el crecimiento de la planta, contenido de nutrientes en las plantas, si mejora el rendimiento del grano con respecto a las propiedades del suelo.

- Es importante considerar que además se debe evaluar la dinámica de las comunidades microbianas para definir si la aplicación de compostas tiene efecto positivo o negativo sobre la microbiota, ya que se sabe que hay diversos microorganismos, principalmente bacterias que crecen en simbiosis con las plantas y son necesarios para el buen desarrollo de las mismas.

- Es además interesante el evaluar la aplicación de compostas para enmiendas de otros tipos de suelos, como es el caso de suelos ácidos o cálcareos.
• Por otro lado hay un número importante de residuos orgánicos de tipo industrial que presentan características muy diversas que sería interesante evaluar como mejora las propiedades de una composta.

• Adicionalmente es importante evaluar el efecto de las compostas sobre otros cultivos como hortícolas, en huertos o cultivos frutales. ya que los requerimientos nutricionales de cada cultivo varían.

• Evaluación de variables fisicoquímicas durante el proceso de compostaje, mediante técnicas de determinación rápida como IR (infrarrojo), espectrómetro de masas

• Implementación de pláticas técnicas en las comunidades rurales para difundir la importancia de la materia orgánica para la fertilidad de los suelos, impartiendo la técnica del compostaje, pues en muchos casos se lleva a cabo solo como conocimiento empírico.

• También sería interesante proponer el estudio para la restauración de suelos boscosos ya que en México es grave el problema de deforestación en diferentes estados de la república por lo que se podría estudiar el efecto de las compostas para el establecimiento de viveros para producción rápida de plántulas de pinos y demás especies nativas de la zona de interés.
7. BIBLIOGRAFÍA

• COPLADET, Dirección de Informática y Estadística. Unidad de Estadística
• Cuevas, G, Martínez F. and Walter I. Field grown maize (Zea mays L.) with composted sewage sludge effects on soil and grain quality Spanish Journal of Agricultural Research 1(3) Madrid, España, 2003 págs. 111-119.
• Firman E. Bear. Los Suelos en relación con el crecimiento de los cultivos. Ediciones Omega, S.A. Barcelona 1969.
• Fuentes Colmeiro Ramón. Agrosistemas sostenibles y ecológicos La reconversión agropecuaria. Universidad de Santiago de Compostela, 2006, pág. 250.
• Fuentes Romero Juan A. Legislación sobre los residuos urbanos y asimilables. 145. cap. v. el compostaje y el compost. revista internacional de Contaminación Ambiental.
• Íñiguez Gilberto Parra Javier,Velasco Patricia A. *Utilización de subproductos de la industria tequilera parte 8: Evolución de algunos constituyentes de la mezcla de biosólidos-bagazo de agave durante el compostaje* Rev. Int. Contam. Ambient. 22 (2) Jalisco, México, 2006 págs. 83-93,
• ISO 11465. “*Determination of dry matter and water content on a mass basis - Gravimetric method*”.Soil quality International Organization for Standardization, Genève, Switzerland. 1993. 3p.7.2

• Moreira R., Sousa J.P., Canhoto C. Biological testing of a digested sewage sludge and derived composts Bioresource Technology 99 Coimbra, Portugal (2008) págs. 8389

• Moreno Casco Joaquín. Compostaje. Publicado por Mundi-Prensa Libros, Madrid España, 2008, Pág. 570.

• Mylavarapu R.S., Zinati G.M Improvement of soil properties using compost for optimum parsley production in sandy soils Scientia Horticulturae 120 USA, 2009, págs. 426–430

• Peña Turrueza, Elizabeth, Carrión Ramírez Miriam, Martínez Francisco, Rodríguez Adolfo Nodals y Compiononi Nelson C. Manual para la producción de abonos orgánicos en la agricultura urbana INIFAT, patrocinado por el programa de las naciones unidas para el desarrollo Cuba, 2002 págs. 23-65

• Rodríguez Valadez Francisco J, García Erika N, Prado Fabian Robles “Implementación del proceso de compostaje para el tratamiento de biosólidos generados en plantas de tratamiento de aguas municipales” Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Depto. de Bioprocesos. 2008.

• Sánchez V. Javier Fertilidad del suelo y nutrición mineral de plantas Conceptos Básicos* Fertitec S.A JSV-GG-FT Enero/2007

• Stoffella Peter J, Kahn Brian A. Utilización de compost en los sistemas de cultivo hortícola. Publicado por Mundi-Prensa Libros. Madrid Barcelona, Págs. 379.

• Suelos;url:http://app1.semarnat.gob.mx/dgeia/informe_04/03_suelos/cap3_1.html.2003.

• Torres Patricia, Pérez Andrea, Escobar Juan C., Uribe Iris E Imery Ricardo Compostaje de biosólidos de plantas de tratamiento de águas residuales Eng. Agríc., Jaboticabal, v.27, n.1 jan./abr. 200, Colombia, págs. 267-275

• Torres Cedillo Luis, Elaboración de composta, SAGARPA, México pág. 8

• Warman P.R., Rodd A.V. Hicklenton P. The effect of MSW compost and fertilizer on extractable soil elements and the growth of winter squash in Nova Scotia Agriculture, Ecosystems and Environment 133 Canada (2009) 98–102

8. ANEXOS

ANEXO I
TABLA DE CORRECCION DE CONDUCTIVIDAD

Factores de corrección por temperatura para datos de conductividad eléctrica en extractos de suelo.

<table>
<thead>
<tr>
<th>°C</th>
<th>Ft</th>
<th>°C</th>
<th>Ft</th>
<th>°C</th>
<th>Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0</td>
<td>1.218</td>
<td>23.0</td>
<td>1.043</td>
<td>28.4</td>
<td>.936</td>
</tr>
<tr>
<td>17.0</td>
<td>1.189</td>
<td>23.2</td>
<td>1.038</td>
<td>28.6</td>
<td>.932</td>
</tr>
<tr>
<td>18.0</td>
<td>1.163</td>
<td>23.4</td>
<td>1.034</td>
<td>28.8</td>
<td>.929</td>
</tr>
<tr>
<td>18.2</td>
<td>1.157</td>
<td>23.6</td>
<td>1.029</td>
<td>29.0</td>
<td>.925</td>
</tr>
<tr>
<td>18.4</td>
<td>1.152</td>
<td>23.8</td>
<td>1.025</td>
<td>29.2</td>
<td>.921</td>
</tr>
<tr>
<td>18.6</td>
<td>1.147</td>
<td>24.0</td>
<td>1.020</td>
<td>29.4</td>
<td>.918</td>
</tr>
<tr>
<td>18.8</td>
<td>1.142</td>
<td>24.2</td>
<td>1.016</td>
<td>29.6</td>
<td>.914</td>
</tr>
<tr>
<td>19.0</td>
<td>1.136</td>
<td>24.4</td>
<td>1.012</td>
<td>29.8</td>
<td>.911</td>
</tr>
<tr>
<td>19.2</td>
<td>1.131</td>
<td>24.6</td>
<td>1.008</td>
<td>30.0</td>
<td>.907</td>
</tr>
<tr>
<td>19.4</td>
<td>1.127</td>
<td>24.8</td>
<td>1.004</td>
<td>30.2</td>
<td>.904</td>
</tr>
<tr>
<td>19.6</td>
<td>1.120</td>
<td>25.0</td>
<td>1.000</td>
<td>30.4</td>
<td>.901</td>
</tr>
<tr>
<td>19.8</td>
<td>1.117</td>
<td>25.2</td>
<td>.996</td>
<td>30.6</td>
<td>.897</td>
</tr>
<tr>
<td>20.0</td>
<td>1.113</td>
<td>25.4</td>
<td>.992</td>
<td>30.8</td>
<td>.894</td>
</tr>
<tr>
<td>20.2</td>
<td>1.107</td>
<td>25.6</td>
<td>.988</td>
<td>31.0</td>
<td>.890</td>
</tr>
<tr>
<td>20.4</td>
<td>1.102</td>
<td>25.8</td>
<td>.983</td>
<td>31.2</td>
<td>.887</td>
</tr>
<tr>
<td>20.6</td>
<td>1.097</td>
<td>26.0</td>
<td>.979</td>
<td>31.4</td>
<td>.884</td>
</tr>
<tr>
<td>20.8</td>
<td>1.092</td>
<td>26.2</td>
<td>.975</td>
<td>31.6</td>
<td>.880</td>
</tr>
<tr>
<td>21.0</td>
<td>1.087</td>
<td>26.4</td>
<td>.971</td>
<td>31.8</td>
<td>.877</td>
</tr>
<tr>
<td>21.2</td>
<td>1.082</td>
<td>26.6</td>
<td>.967</td>
<td>32.0</td>
<td>.873</td>
</tr>
<tr>
<td>21.4</td>
<td>1.078</td>
<td>26.8</td>
<td>.964</td>
<td>32.2</td>
<td>.870</td>
</tr>
<tr>
<td>21.6</td>
<td>1.073</td>
<td>27.0</td>
<td>.960</td>
<td>32.4</td>
<td>.867</td>
</tr>
<tr>
<td>21.8</td>
<td>1.070</td>
<td>27.2</td>
<td>.956</td>
<td>32.6</td>
<td>.864</td>
</tr>
<tr>
<td>22.0</td>
<td>1.064</td>
<td>27.4</td>
<td>.953</td>
<td>32.8</td>
<td>.861</td>
</tr>
<tr>
<td>22.2</td>
<td>1.060</td>
<td>27.6</td>
<td>.950</td>
<td>33.0</td>
<td>.858</td>
</tr>
<tr>
<td>22.4</td>
<td>1.055</td>
<td>27.8</td>
<td>.947</td>
<td>33.2</td>
<td>.843</td>
</tr>
<tr>
<td>22.6</td>
<td>1.051</td>
<td>28.0</td>
<td>.943</td>
<td>33.4</td>
<td>.829</td>
</tr>
<tr>
<td>22.8</td>
<td>1.047</td>
<td>28.2</td>
<td>.940</td>
<td>33.6</td>
<td>.815</td>
</tr>
</tbody>
</table>
ANEXO II

TABLA DE CORRECCION POR TEMPERATURAS PARA LA TEXTURA

Corrección por temperaturas a las lecturas del hidrómetro, calibrado a 20 °C

<table>
<thead>
<tr>
<th>Temperatura (°C)</th>
<th>Corrección</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) resta</td>
<td>(+) suma</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>.18</td>
<td>20.5</td>
</tr>
<tr>
<td>19.0</td>
<td>.36</td>
<td>21.0</td>
</tr>
<tr>
<td>18.5</td>
<td>.54</td>
<td>21.5</td>
</tr>
<tr>
<td>18.0</td>
<td>.72</td>
<td>22.0</td>
</tr>
<tr>
<td>17.5</td>
<td>.90</td>
<td>22.5</td>
</tr>
<tr>
<td>17.0</td>
<td>1.08</td>
<td>23.0</td>
</tr>
<tr>
<td>016.5</td>
<td>1.26</td>
<td>23.5</td>
</tr>
<tr>
<td>16.0</td>
<td>1.44</td>
<td>24.0</td>
</tr>
<tr>
<td>15.5</td>
<td>1.62</td>
<td>24.5</td>
</tr>
<tr>
<td>15.0</td>
<td>1.80</td>
<td>25.0</td>
</tr>
<tr>
<td>14.5</td>
<td>1.98</td>
<td>25.5</td>
</tr>
<tr>
<td>14.0</td>
<td>2.15</td>
<td>26.0</td>
</tr>
<tr>
<td>13.5</td>
<td>2.34</td>
<td>26.5</td>
</tr>
<tr>
<td>13.0</td>
<td>2.52</td>
<td>27.0</td>
</tr>
<tr>
<td>12.5</td>
<td>2.70</td>
<td>27.5</td>
</tr>
<tr>
<td>12.0</td>
<td>2.88</td>
<td>28.0</td>
</tr>
<tr>
<td>11.5</td>
<td>3.06</td>
<td>28.5</td>
</tr>
<tr>
<td>11.0</td>
<td>3.24</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Menores de 20 °C se resta la corrección
Mayores de 20 °C se suma la corrección

ANEXO III

ANALISIS MICROBIOLOGICOS DE LABORATORIO PARA EL LODO 2 (EMPRESA DE BEBIDAS)
INFORME DE RESULTADOS DE PRUEBA

REQUERIDA POR: CIBA-IPN TLAXCALA

Ref. Cliente: LAB
N° L De P.: 1463

INFORMACION DE LA MUESTRA: Suelos muestreados por el cliente en contenedores adecuados y temperatura adecuada, entregados a nuestro laboratorio el 2009-06-17.

<table>
<thead>
<tr>
<th>No. de Muestra: 908855</th>
<th>Identificación: Composta 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Unidad</td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. de Muestra: 908856</th>
<th>Identificación: Composta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Unidad</td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. de Muestra: 908857</th>
<th>Identificación: Composta 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Unidad</td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/Kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. de Muestra: 908858</th>
<th>Identificación: Composta 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Unidad</td>
</tr>
<tr>
<td>Salmonella</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>NMPC Fecales</td>
<td>NMP/gST</td>
</tr>
<tr>
<td>Huevos de Helminto</td>
<td>HH/2gST</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/Kg</td>
</tr>
</tbody>
</table>

Hoja 1 de 2
ANEXO IV
ANALISIS CRETIB LODO 2 (EMPRESA DE BEBIDAS)

<table>
<thead>
<tr>
<th>PARAMÉTERO</th>
<th>METODO DE PRUEBA</th>
<th>UNIDAD</th>
<th>CONCENTRACIÓN CUANTIFICADA EN BASE SECA</th>
<th>LIMITES MÁXIMOS PERMISIBLES EXCELENTES mg/L en base Seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenico</td>
<td>EPA-7061A-1962</td>
<td>mg/Kg</td>
<td>1,470</td>
<td>41</td>
</tr>
<tr>
<td>Cadio</td>
<td>EPA-7130-1966</td>
<td>mg/Kg</td>
<td>19,500</td>
<td>39</td>
</tr>
<tr>
<td>Cromo Total</td>
<td>EPA-7190-1686</td>
<td>mg/Kg</td>
<td>145,100</td>
<td>1200</td>
</tr>
<tr>
<td>Cobre</td>
<td>EPA-7210-1986</td>
<td>mg/Kg</td>
<td>36,160</td>
<td>1500</td>
</tr>
<tr>
<td>Plomo</td>
<td>EPA-7420-1986</td>
<td>mg/Kg</td>
<td>106,500</td>
<td>300</td>
</tr>
<tr>
<td>Mercurio</td>
<td>EPA-7470A-1994</td>
<td>mg/Kg</td>
<td>0,240</td>
<td>17</td>
</tr>
<tr>
<td>Niquel</td>
<td>EPA-7520-1986</td>
<td>mg/Kg</td>
<td>42,500</td>
<td>420</td>
</tr>
<tr>
<td>Zinc</td>
<td>EPA-7950-1986</td>
<td>mg/Kg</td>
<td>115,900</td>
<td>2800</td>
</tr>
<tr>
<td>Caleidos Fecales</td>
<td>NMX-AA-042-1987</td>
<td>NRPIg</td>
<td>< 3</td>
<td>Menor de 1,000</td>
</tr>
<tr>
<td>Huevo de Helminio</td>
<td>NMX-AA-113-SCFI-1999</td>
<td>Huevos/Kg</td>
<td>0,0</td>
<td>Menor de 1</td>
</tr>
</tbody>
</table>

Nota: Los datos expresados avalan únicamente los resultados de la muestra probada. Este reporte no debe ser alterado en ninguna de sus partes, ni reproducirse sin la aprobación del laboratorio enero.

INTERPRETAR LA COMA(,) COMO SIGMA DECIMAL DE ACUERDO A LA NOM-008-SCFI-2002(SR)

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Unidad</th>
<th>Resultado</th>
<th>Metodo</th>
<th>L.P.</th>
<th>L.D.</th>
<th>Evaluacion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesechado al Ambiente</td>
<td>Tabla 2</td>
<td>Metales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plata</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6010B</td>
<td>5.0</td>
<td>0.02</td>
<td>Completo</td>
</tr>
<tr>
<td>Bronce</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6010B</td>
<td>5.0</td>
<td>0.001</td>
<td>Completo</td>
</tr>
<tr>
<td>Seleno</td>
<td>mg/L</td>
<td>0.003 + 0.0005</td>
<td>EPA 6010B</td>
<td>1.0</td>
<td>0.01</td>
<td>Completo</td>
</tr>
<tr>
<td>Toxicidad al Ambiente</td>
<td>Tabla 3</td>
<td>Organicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.5</td>
<td>0.0015</td>
<td>Completo</td>
</tr>
<tr>
<td>Cloroformo</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>6.0</td>
<td>0.018</td>
<td>Completo</td>
</tr>
<tr>
<td>Chloro de etila</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.2</td>
<td>0.0012</td>
<td>Completo</td>
</tr>
<tr>
<td>Chlorbenzeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>100</td>
<td>0.010</td>
<td>Completo</td>
</tr>
<tr>
<td>1,1-Diolbenozeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.7</td>
<td>0.009</td>
<td>Completo</td>
</tr>
<tr>
<td>1,2-Diolbenozeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.5</td>
<td>0.0020</td>
<td>Completo</td>
</tr>
<tr>
<td>Metal Bic Enano</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>200</td>
<td>0.0165</td>
<td>Completo</td>
</tr>
<tr>
<td>Tetracloro de Carbono</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.5</td>
<td>0.0015</td>
<td>Completo</td>
</tr>
<tr>
<td>Trietilbenzo</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.5</td>
<td>0.0012</td>
<td>Completo</td>
</tr>
<tr>
<td>Triclorobenzeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6260B</td>
<td>0.7</td>
<td>0.0099</td>
<td>Completo</td>
</tr>
<tr>
<td>Furfural</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>5.0</td>
<td>0.0016</td>
<td>Completo</td>
</tr>
<tr>
<td>3,4-Dichlorobenzeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>7.5</td>
<td>0.0004</td>
<td>Completo</td>
</tr>
<tr>
<td>Hexacloroazoto</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>3.0</td>
<td>0.0011</td>
<td>Completo</td>
</tr>
<tr>
<td>o-Cresol</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>200</td>
<td>0.0027</td>
<td>Completo</td>
</tr>
<tr>
<td>m,p-Cresol</td>
<td>mg/L</td>
<td>0,527 + 0,03</td>
<td>EPA 6270C</td>
<td>200</td>
<td>0.0006</td>
<td>Completo</td>
</tr>
<tr>
<td>Nitrobenzeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>2.0</td>
<td>0.0111</td>
<td>Completo</td>
</tr>
<tr>
<td>Hexacloro-1,3-Buxadeno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.5</td>
<td>0.0007</td>
<td>Completo</td>
</tr>
<tr>
<td>Pentachlorfenol</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>100</td>
<td>0.0069</td>
<td>Completo</td>
</tr>
<tr>
<td>2,4,6 Triclorofenol</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>2.0</td>
<td>0.0030</td>
<td>Completo</td>
</tr>
<tr>
<td>2,4,5 Triclorofenol</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>400</td>
<td>0.0030</td>
<td>Completo</td>
</tr>
<tr>
<td>Hexacloroazoto</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.13</td>
<td>0.0049</td>
<td>Completo</td>
</tr>
<tr>
<td>Lixadano</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.13</td>
<td>0.0016</td>
<td>Completo</td>
</tr>
<tr>
<td>Hidrocarburo epoxido</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.008</td>
<td>0.0028</td>
<td>Completo</td>
</tr>
<tr>
<td>Cianolano</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.008</td>
<td>0.0028</td>
<td>Completo</td>
</tr>
<tr>
<td>EDTN</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.03</td>
<td>0.0011</td>
<td>Completo</td>
</tr>
<tr>
<td>Tolueno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.09</td>
<td>0.0002</td>
<td>Completo</td>
</tr>
<tr>
<td>Metilbenceno</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.05</td>
<td>0.0013</td>
<td>Completo</td>
</tr>
<tr>
<td>Metiltoluol</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>0.05</td>
<td>0.0013</td>
<td>Completo</td>
</tr>
<tr>
<td>Acido 2,4-Diclorofenilacético</td>
<td>mg/L</td>
<td>N.D.</td>
<td>EPA 6270C</td>
<td>10.0</td>
<td>0.0001</td>
<td>Completo</td>
</tr>
</tbody>
</table>

L.D. = Límite de Determinación, L.P. = Límite Permiteable *Mínimo a Cuaratilo, N.D. = No Detectado, N.G. = No Aplicable.

Nota: Si se encuentra a determinar el valorado dado en esta nota, que defina los límites de los valores superiores a inferior del terceró de confianza a 90%, fue obtenido experimentalmente con la aplicación del procedimiento, sumando en sus magnitudes máximas, por lo que puede afectar del que se obtiene en la medida prasada. En consecuencia, este es el que debemos interpretar y las señales del caso.

Signatarios:

- Ing. Norma A. Hernández B.
- T.S.U. Letícia Carranza Rodriguez
- T.C. Alfredo Crescencio Morral
- I.Q. Osvaldo Colale Peña

AVISO: ESTE INFORME ES PARRÍCÍPICO DE LAS CARACTERÍSTICAS DE LA MUESTRA RECIBIDA, Y NO DEL COMPORTAMIENTO DE SUS ELEMENTOS, NO PODEMOS DETECTAR O DETERMINAR TANLO INDICABLES EN LA ANÁLISIS CON EL MÉTODO DE LÁSER MICROANÁLISIS, S.A. DE C.V.

DIRECCIÓN: GENERAL, SOTEFINAS, S.A. DE C.V., C.P. 55350, MEXICO, D.F.
TELEFONOS: 5768-7210, 5768-7430, 5768-7430
FAX: 5768-7430
CORREO ELECTRÓNICO: ventas@meklobal.com
WEB: www.meklobal.com
ANEXO V
ANALISIS CRETIB LODO 1 (EMPRESA DE PAPEL)

Anexo a la presente le remitimos los resultados analíticos de la muestra del residuo identificado como: Lodos efectuaron las pruebas y se recabó la información necesaria para determinar sus características de Corrosividad, Reactividad, Toxicidad, Inflamabilidad y Biológico Infeccioso, de acuerdo a los procedimientos y parámetros considerados en las Normas NOM 052 SEMARNAT 1993 y NOM 053 SEMARNAT 1993.

Los resultados de las pruebas efectuadas y evolución de la información recabada al residuo identificado como: Lodos con No. de lab: MX05-2385 y No. de muestra: 1 se resumen a continuación:

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>NUMERAL (NOM-052-SEMARNAT 1993)</th>
<th>ALCANCE</th>
<th>RESULTADO</th>
<th>LMP</th>
<th>LDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSIVIDAD 5.5.1</td>
<td>5.5.1.1</td>
<td>A</td>
<td>7.752</td>
<td>U de pH</td>
<td>2 ≤ pH ≤ 12.5</td>
</tr>
<tr>
<td></td>
<td>5.5.1.2</td>
<td>A</td>
<td>ND</td>
<td>mm/ano</td>
<td>6.35 mm/ano</td>
</tr>
<tr>
<td>REACTIVIDAD 5.5.2</td>
<td>5.5.2.2 H2O</td>
<td>B</td>
<td>NR</td>
<td></td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>5.5.2.3 HCl</td>
<td>B</td>
<td>NR</td>
<td></td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>5.5.2.3 NaOH</td>
<td>B</td>
<td>NR</td>
<td></td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>5.5.2.4</td>
<td>A</td>
<td>ND</td>
<td>mg/Kg de HCN</td>
<td>250 mg HCN/Kg</td>
</tr>
<tr>
<td></td>
<td>5.5.2.4</td>
<td>A</td>
<td>ND</td>
<td>mg/Kg de H2S</td>
<td>500 mg H2S/Kg</td>
</tr>
<tr>
<td>EXPLOSIVIDAD 5.5.3</td>
<td>5.5.3.2</td>
<td>@</td>
<td></td>
<td></td>
<td>No es explosivo</td>
</tr>
<tr>
<td>TOXICIDAD AL AMBIENTE 5.5.4</td>
<td>5.5.4.1</td>
<td>A</td>
<td></td>
<td></td>
<td>Ver anexo de resultados</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ver anexo de resultados</td>
</tr>
<tr>
<td>INFLAMABILIDAD 5.5.5</td>
<td>5.5.5.1</td>
<td>A</td>
<td>< 24,0 %</td>
<td>% vol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5.5.2</td>
<td>A</td>
<td>No inflamable</td>
<td>> 60 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5.5.3</td>
<td>@</td>
<td>No provoca fuego o cambios explosivos</td>
<td></td>
<td>Negativo</td>
</tr>
<tr>
<td></td>
<td>5.5.5.4</td>
<td>C</td>
<td>No es gas oxidante</td>
<td></td>
<td>Negativo</td>
</tr>
</tbody>
</table>

Queda Prohibida la reproducción parcial o total de este documento sin la autorización previa por escrito de Intertek Testing Services. Los resultados que aparecen en este reporte pertenecen únicamente a la muestra analizada.

OFICIO DE ACREDITACIÓN DE LA RAMA DE RESIDUOS: FRA-186-E271982

Intertek Testing Services de México, S.A. de C.V.
Bld. Manuel Avila Camacho No. 102 Col. Santa Fe de Chapultepec

141
Como se puede observar de los datos anteriores, el residuo:

- No Es Corrosivo
- No Es Reactivo
- No Es Explosivo
- No Es Tóxico
- No Es Inflamable

Biológico-Infeccioso, la autoridad definirá en base al origen y a la declaratoria del cliente de decir verdad si el residuo es no peligroso por biológico infeccioso.

Esperando que la información le sea de utilidad, quedo a sus órdenes para cualquier aclaración al respecto.

ATENTAMENTE

[Signature]

SIGNATARIO AUTORIZADO

Consideraciones:

* A. Condiciones normales de presión y temperatura de la Cd. de México
* B. Solo se reportan los valores que exceden el LMP, para detalles ver anexo de resultados
* NP: No proporcionado
* E: Estimado
* NA: No Aplica
* Prueba subcontratada
* ▲ Resultado estimado abajo del LCE,

Estos acréditamientos sólo aplican para métodos listados en los mismos. No garantiza que todo lo que se encuentre contenido en este reporte esté acreditado. Todo lo no acreditado será señalado con este símbolo (▲).

Para determinar el LCE (límite de cuantificación estimado) se deberá multiplicar el LDM por el factor de dilución requerido (solicitar al Laboratorio) y el resultado por 3. En caso de que el resultado sea menor al LDM y el factor de dilución sea diferente a 1, considerar el LCE.

ANEXOS:

- Informe de Resultados
- Informe de otros compuestos químicos detectados no sancionados
- Documentos analíticos de soporte - cromatogramas
- Protocolo de Muestreo
- Documentación proporcionada por el Generador. NP

(Cualquier reproducción o publicación de este documento sin la autorización previa por escrito de Intertek Testing Services. Los resultados que aparecen en este reporte pertenecen únicamente a esta muestra(s) analizada(s).

OFICIO DE ACREDITACIÓN DE LA RAMA DE RESIDUOS: FRA-186-027/02

Intertek Testing Services de México, S.A. de C.V.
IDENTIFICACION DE LA MUESTRA: MX05-2385-1
IDENTIFICACION DEL CLIENTE: Lodos
PROCEDENCIA DEL RESIDUO: Proviene de la fabricación del papel
PROCESO PRODUCTOR DEL RESIDUO: NP
No. DE ORDEN: MX05-2385
No. DE LABORATORIO: MX05-2385-1
FECHA DE MUÉSTREO: 2005-12-29
NOMBRE DE LA PERSONA AUTORIZADA QUE REALIZÓ EL MUÉSTREO: Benjamin Valdez (ITSI)
FECHA DE RECEPCIÓN DE LA MUESTRA EN EL LABORATORIO: 2005-12-29

INFORME DE RESULTADOS

APARIENCIA:
ESTADO FÍSICO: Sólido
DESCRIPCIÓN FÍSICA: Trazos de cartón (Lodos)
COLOR: Sin olor aparente
No. FASES (SOLO EN LIQUIDOS): NA
ACUOSA % v/v: NA
ORGANICA % v/v: NA
SÓLIDA % v/v: NA
OLOR: Gris claro

COMPOSICIÓN FÍSICA (NOM 053 SEMARNAT 93):
% (p/p) DE SÓLIDOS HUMEDOS: 100 %
% (p/p) DE LIQUIDO DRENADO: NA

CORROSIVIDAD (INCISO 5.5.1 NOM 052)
5.5.1.1 pH:
MUESTRAS SOLIDAS (EPA 9045C-1995) pH DISPERSION ACUOSA (1:1 p/p) 7,752 u de pH +/- 0,01
LMP: MAYOR O IGUAL A 2,0 MENOR O IGUAL A 12,5

Analizado por: MELA Fecha: 2006-01-04 Referencia: BAL385sp9

5.5.1.2 CORROSIVIDAD AL ACERO
EPA 1110-1996: ND

Analizado por: ILM Fecha: 2005-12-29.30 Referencia: BAL331p49

LMP: MENOR O IGUAL A 6.35 mm/año

Garde Prohibida la reproducción parcial de este documento sin la autorización previa por escrito de Intertek Testing Services. Los resultados que aparecen en este informe pertenecen únicamente a la(s) muestra(s) analizada(s).

OFICIO DE ACRÉDITACIÓN DE LA RAMA DE RESIDUOS: FRA-188-027602
Intertek Testing Services de México, S.A. de C.V.
REACTIVIDAD (INCISO 5.5.2 NOM-052)

5.5.2.2 NO REACCIONA VIOLENTAMENTE FORMANDO GASES, VAPORES O HUMOS EN CONDICIONES NORMALES (25º C Y PRESION ATMOSFÉRICA) CUANDO SE PONE EN CONTACTO CON AGUA EN RELACIÓN (RESIDUO-AGUA) DE 5:1, 5:3, 5:5.

5.5.2.3 NO REACCIONA VIOLENTAMENTE FORMANDO GASES, VAPORES O HUMOS BAJO CONDICIONES NORMALES CUANDO SE PONE EN CONTACTO CON SOLUCIONES DE pH ACIDO (HCl 1.0 N) EN RELACIÓN (RESIDUO-SOLUCION) DE 5:1, 5:3, 5:5.

5.5.2.3. NO REACCIONA VIOLENTAMENTE FORMANDO GASES, VAPORES O HUMOS BAJO CONDICIONES NORMALES CUANDO SE PONE EN CONTACTO CON SOLUCIONES DE pH BÁSICO (N/10 N) EN RELACIÓN (RESIDUO-SOLUCION) DE 5:1, 5:3, 5:5.

<table>
<thead>
<tr>
<th>5:1</th>
<th>5:3</th>
<th>5:5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>HCl 1.0 N</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NaOH 1.0 N</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

R/NR: Reactivo / No Reactivo
Observaciones generales:

Analisado por: MEIA
Fecha: 2006-01-11
Referencia: BAL313p361

EXPLOSIVIDAD (INCISO 5.5.3 NOM-052)

5.5.3.2 EXPLOSIVIDAD (NO ES CAPAZ DE PRODUCIR UNA REACCION O DESCOMPOSICIÓN DETONANTE O EXPLOSIVA A CONDICIONES NORMALES DE LA CIUDAD DE MÉXICO).

INFLAMABILIDAD (INCISO 5.5.5 NOM-052)

5.5.5.1 NO CONTIENE MÁS DE 24% DE ALCOHOL ETÍLICO EN VOLUMEN CUANDO ESTÁ EN SOLUCION ACUOSA. (EPA 82608)

% DE ALCOHOL = < 24,0 %

Analisado por: GSN
Fecha: 2006-01-11
Referencia: BAL313p361

5.5.5.2 NO ES LIQUIDO POR LO TANTO ESTE PUNTO NO APLICA

LMP: > 60º C

Analisado por: CMC
Fecha: 2006-01-02
Referencia: BAL362p125

5.5.5.4 NO ES GAS COMPRESADO INFLAMABLE O AGENTE OXIDANTE Y POR LO TANTO ESTE PUNTO NO APLICA.

Analisado por: CMC
Fecha: 2006-01-02
Referencia: BAL362p125

Queda Prohibida la reproducción parcial de este documento sin la autorización previa por escrito de Intertek Testing Services. Los resultados que aparecen en este reporte pertenecen únicamente a los muestras analizadas.

OFICIO DE ACRÉDITACION DE LA RAMA DE RESIDUOS. FRA-186-027/02

Intertek Testing Services de México, S.A. de C.V.

 هذا الملف محظور للنسخ الفعلي بدون إذن مسبق من Intertek Testing Services. النتائج المدرجة في هذا 报告仅适用于被分析的样品。
TOXICIDAD AL AMBIENTE POR LA CONCENTRACION DE COMPUESTOS EN EL LIXIVIADO DURANTE EL PROCESO DE EXTRACCIÓN (INCISO 5.5.4 DE LA NOM 052)

<table>
<thead>
<tr>
<th>CLAVE</th>
<th>NOMBRE</th>
<th>METODO</th>
<th>LMP (mg/l)</th>
<th>LDM/LDME* (mg/l)</th>
<th>RESULTADO (mg/l)</th>
<th>U Expand</th>
<th>ANALISTA</th>
<th>FECHA DE ANALISIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1.01</td>
<td>ARSENICO</td>
<td>EPA 7042</td>
<td>5</td>
<td>0.0006</td>
<td>ND</td>
<td>0.08</td>
<td>LTN</td>
<td>2006-01-10</td>
</tr>
<tr>
<td>C.1.02</td>
<td>BARI</td>
<td>EPA 7060</td>
<td>100</td>
<td>0.2</td>
<td>ND</td>
<td>0.12</td>
<td>HYC</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.1.03</td>
<td>CADMIO</td>
<td>EPA 7130</td>
<td>1</td>
<td>0.007</td>
<td>0.028</td>
<td>0.05</td>
<td>HYC</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.1.04</td>
<td>CROMO HEXAVALENTE</td>
<td>EPA 7197</td>
<td>5</td>
<td>0.02</td>
<td>ND</td>
<td>0.13</td>
<td>AVL</td>
<td>2006-01-09</td>
</tr>
<tr>
<td>C.1.05</td>
<td>NIQUEL</td>
<td>EPA 7199</td>
<td>6</td>
<td>0.013</td>
<td>ND</td>
<td>0.98</td>
<td>AVL</td>
<td>2006-01-09</td>
</tr>
<tr>
<td>C.1.06</td>
<td>MERCURIO</td>
<td>EPA 7197</td>
<td>1</td>
<td>0.0001</td>
<td>ND</td>
<td>0.09</td>
<td>AVA</td>
<td>2006-01-09</td>
</tr>
<tr>
<td>C.1.07</td>
<td>PLATA</td>
<td>EPA 7170</td>
<td>5</td>
<td>0.01</td>
<td>0.014</td>
<td>0.06</td>
<td>HYC</td>
<td>2006-01-12</td>
</tr>
<tr>
<td>C.1.08</td>
<td>PLOMO</td>
<td>EPA 7140</td>
<td>5</td>
<td>0.02</td>
<td>0.45</td>
<td>0.12</td>
<td>AVL</td>
<td>2006-01-09</td>
</tr>
<tr>
<td>C.1.09</td>
<td>SELENIO</td>
<td>EPA 7142</td>
<td>1</td>
<td>0.0004</td>
<td>0.0005</td>
<td>0.13</td>
<td>LTN</td>
<td>2006-01-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLAVE</th>
<th>NOMBRE</th>
<th>METODO</th>
<th>LMP (mg/l)</th>
<th>LDM/LDME* (mg/l)</th>
<th>RESULTADO (mg/l)</th>
<th>U Expand</th>
<th>ANALISTA</th>
<th>FECHA DE ANALISIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.V.01</td>
<td>BENZENO</td>
<td>EPA 8260(B-1996)</td>
<td>0.5</td>
<td>0.0250</td>
<td>ND</td>
<td>0.20</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.02</td>
<td>TOLUENO</td>
<td>EPA 8260(B-1996)</td>
<td>14.4</td>
<td>0.0250</td>
<td>ND</td>
<td>0.10</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.03</td>
<td>CLOROFORMO</td>
<td>EPA 8260(B-1996)</td>
<td>6</td>
<td>0.0250</td>
<td>ND</td>
<td>0.20</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.04</td>
<td>CLORURO DE METILENO</td>
<td>EPA 8260(B-1996)</td>
<td>8.6</td>
<td>0.100</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.05</td>
<td>CLORURO DE VINIL</td>
<td>EPA 8260(B-1996)</td>
<td>0.2</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.06</td>
<td>1,2-DICLOROTETRANO</td>
<td>EPA 8260(B-1996)</td>
<td>0.5</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.07</td>
<td>1,1,1-TRICLOROTETRANO</td>
<td>EPA 8260(B-1996)</td>
<td>0.7</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.08</td>
<td>1,1,2,2-TETRACLOROTETRANO</td>
<td>EPA 8260(B-1996)</td>
<td>10</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.09</td>
<td>1,1,2,3-TETRACLOROTETRANO</td>
<td>EPA 8260(B-1996)</td>
<td>1.3</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.10</td>
<td>1,1,2,2-TETRACLOROTETRANO</td>
<td>EPA 8260(B-1996)</td>
<td>0.5</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.11</td>
<td>TETRACLOROTETILENO</td>
<td>EPA 8260(B-1996)</td>
<td>0.7</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.12</td>
<td>1,1-TRICLOROTETILENO</td>
<td>EPA 8260(B-1996)</td>
<td>30</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.13</td>
<td>1,1,2-TRICLOROTETILENO</td>
<td>EPA 8260(B-1996)</td>
<td>1.2</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.14</td>
<td>TRICLOROTETILENO</td>
<td>EPA 8260(B-1996)</td>
<td>0.6</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.15</td>
<td>1,2-DICLOROTILENO</td>
<td>EPA 8260(B-1996)</td>
<td>100</td>
<td>0.250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.16</td>
<td>ACETONILO</td>
<td>EPA 8260(B-1996)</td>
<td>5</td>
<td>0.100</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.17</td>
<td>ETIL BIS (2-CLORO ETILICO)</td>
<td>EPA 8260(B-1996)</td>
<td>0.06</td>
<td>0.0080</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.18</td>
<td>DIQUILURO DE CARBONO</td>
<td>EPA 8260(B-1996)</td>
<td>14.4</td>
<td>0.0250</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.19</td>
<td>SORBANOL</td>
<td>EPA 8260(B-1996)</td>
<td>36</td>
<td>1.5</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.20</td>
<td>ETILEMETILECIONA</td>
<td>EPA 8260(B-1996)</td>
<td>200</td>
<td>0.150</td>
<td>ND</td>
<td>0.24</td>
<td>GSN</td>
<td>2006-01-11</td>
</tr>
<tr>
<td>C.V.21</td>
<td>PIRIDINA</td>
<td>EPA 8270(C-1996)</td>
<td>5</td>
<td>0.0080</td>
<td>ND</td>
<td>0.24</td>
<td>ENA</td>
<td>2005-12-22</td>
</tr>
</tbody>
</table>

Queda Prohibida la reproducción parcial de este documento sin la autorización previa por escrito de Intertek Testing Services. Los resultados que aparecen en este informe podrán no reflejar los resultados de otros métodos (análisis).

OFICIO DE ACREDITACIÓN DE LA RAMA DE RESIDUOS: FRA-185-02/702

Intertek Testing Services de México, S.A. de C.V.
<table>
<thead>
<tr>
<th>CLAVE</th>
<th>NOMBRE</th>
<th>METODO</th>
<th>LIM (mg/l)</th>
<th>LDM/IDME (mg/l)</th>
<th>RESULTADO (mg/l)</th>
<th>U (mg/l)</th>
<th>ANALISTA</th>
<th>FECHA DE ANALISIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.V.07</td>
<td>1,2-DICLOROBENCENO</td>
<td>EPA 8260(C-1996)</td>
<td>3.9</td>
<td>0.0250*</td>
<td>ND</td>
<td>GSN</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.08</td>
<td>1,4-DICLOROBENCENO</td>
<td>EPA 8260(C-1996)</td>
<td>7.5</td>
<td>0.0350*</td>
<td>ND</td>
<td>GSN</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.10</td>
<td>HEXACLOROBETANO</td>
<td>EPA 8270(C-1996)</td>
<td>0.13</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.13</td>
<td>HEXACLOROBENCENO</td>
<td>EPA 8270(C-1996)</td>
<td>0.5</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.14</td>
<td>HEXACLORO 1,3-BUTADENO</td>
<td>EPA 8270(C-1996)</td>
<td>0.13</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.07</td>
<td>2,4-DINITROTOLUENO</td>
<td>EPA 8270(C-1996)</td>
<td>0.13</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.13</td>
<td>NITROBENCENO</td>
<td>EPA 8270(C-1996)</td>
<td>2</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.02</td>
<td>CLORDANO</td>
<td>EPA 8061</td>
<td>0.03</td>
<td>0.0001</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.08</td>
<td>ENDRIN</td>
<td>EPA 8061</td>
<td>0.02</td>
<td>0.0002</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.09</td>
<td>HEPTACLORO</td>
<td>EPA 8061</td>
<td>0.008</td>
<td>0.0002</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.09</td>
<td>HEPTACLORO EPÓXIDO</td>
<td>EPA 8061</td>
<td>0.008</td>
<td>0.0001</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.09</td>
<td>INDANO</td>
<td>EPA 8061</td>
<td>0.4</td>
<td>0.0001</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.09</td>
<td>METOXICLORO</td>
<td>EPA 8061</td>
<td>10</td>
<td>0.001</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.16</td>
<td>TOXAFENO</td>
<td>EPA 8061</td>
<td>0.5</td>
<td>0.0055</td>
<td>ND</td>
<td>LRR</td>
<td>2006-01-11</td>
<td></td>
</tr>
<tr>
<td>C.V.03</td>
<td>D-CRESOL</td>
<td>EPA 8270(C-1996)</td>
<td>200</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.04</td>
<td>M-CRESOL / p-CRESOL</td>
<td>EPA 8270(C-1996)</td>
<td>200</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.12</td>
<td>FENOL</td>
<td>EPA 8270(C-1996)</td>
<td>14.4</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.14</td>
<td>PENTACLOROFENOL</td>
<td>EPA 8270(C-1996)</td>
<td>10</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.15</td>
<td>2,3,4,6-TETRACLOROFENOL</td>
<td>EPA 8270(C-1996)</td>
<td>1.5</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.17</td>
<td>2,4,5-TRICLOROFENOL</td>
<td>EPA 8270(C-1996)</td>
<td>400</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
<tr>
<td>C.V.18</td>
<td>2,4,6-TRICLOROFENOL</td>
<td>EPA 8270(C-1996)</td>
<td>2</td>
<td>0.0080*</td>
<td>ND</td>
<td>CHAENA</td>
<td>2006-01-10</td>
<td></td>
</tr>
</tbody>
</table>

HERBICIDAS

| C.V.06 | 2,4-DICLOROFENOXICETICO (2,4-D) | EPA 8321 | 10 | 0.1 | ND | NOVA | 2006-01-10 |
| C.V.19 | AC. 2,4,5-TRICLOROFENOXIPROPIONICO (SILVEK) | EPA 8321 | 1 | 0.1 | ND | NOVA | 2006-01-10 |

La muestra no es explosiva a condiciones normales de presión y temperatura.
La inflamabilidad no aplica por ser muestra sólida.
Reactividad: Ligeras efervescencia con el HCl.

COMPUESTOS ENCONTRADOS NO SANCTIONADOS:

<table>
<thead>
<tr>
<th>Compuesto no sancionado encontrado</th>
<th>Concentración estimada</th>
</tr>
</thead>
</table>

Queda prohibida la reproducción parcial de este documento sin la autorización previa por escrito de InterTek Testing Services. Los resultados que aparecen en este reporte pertenecen únicamente a la(a) muestra(s) analizada(s).

OFICIO DE ACREDITACIÓN DE LA RAMA DE RESIDUOS: FRA-186-027/02

InterTek Testing Services de México, S.A. de C.V.