Propuesta de un sistema de tratamiento de aguas residuales provenientes del lavado de frascos de mermelada para su reutilización.

Titulación por opción curricular
Para obtener el grado de Ingeniero Biotecnólogo

Presenta:
Kevin Eduardo Mendoza Hernández

14 de mayo de 2015

Asesor Interno: Dr. José Alfredo Hernández Maldonado.
Revisor: M.C. Yazpik Hernández Vargas
Propuesta de un sistema de tratamiento de aguas residuales provenientes del lavado de frascos de mermelada para su reutilización.

Kevin Eduardo Mendoza Hernández
<table>
<thead>
<tr>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen .......................................................... 4</td>
</tr>
<tr>
<td>Introducción .......................................................... 4</td>
</tr>
<tr>
<td>Antecedentes .......................................................... 4</td>
</tr>
<tr>
<td>Planteamiento del problema .................. 6</td>
</tr>
<tr>
<td>Justificación .......................................................... 7</td>
</tr>
<tr>
<td>Objetivos .......................................................... 7</td>
</tr>
<tr>
<td>Objetivo general .......................................................... 7</td>
</tr>
<tr>
<td>Objetivos específicos ................................................... 7</td>
</tr>
<tr>
<td>Marco Teórico .......................................................... 7</td>
</tr>
<tr>
<td>Tratamiento de aguas ..................................................... 7</td>
</tr>
<tr>
<td>Relaciones de equilibrio para adsorbentes ................................. 8</td>
</tr>
<tr>
<td>Adsorción en carbón activo ........................................... 9</td>
</tr>
<tr>
<td>Intercambio iónico ..................................................... 10</td>
</tr>
<tr>
<td>Mecanismo básico de intercambio iónico ................................ 11</td>
</tr>
<tr>
<td>Materiales y métodos .................................................. 13</td>
</tr>
<tr>
<td>Aparatos y equipo ....................................................... 13</td>
</tr>
<tr>
<td>Para sólidos totales ..................................................... 14</td>
</tr>
<tr>
<td>Para sólidos suspendidos totales y sólidos suspendidos ..................................................... 14</td>
</tr>
<tr>
<td>Resultados y Discusiones ............................................... 15</td>
</tr>
<tr>
<td>Sólidos totales ......................................................... 15</td>
</tr>
<tr>
<td>Sólidos suspendidos ..................................................... 16</td>
</tr>
<tr>
<td>Sólidos disueltos totales ............................................. 16</td>
</tr>
<tr>
<td>Propuesta del sistema de tratamiento de agua .................................. 16</td>
</tr>
<tr>
<td>Pasos para la depuración ............................................. 16</td>
</tr>
<tr>
<td>Diagrama de operación propuesto .................. 18</td>
</tr>
<tr>
<td>1. Filtro de arena silíca .............................................. 18</td>
</tr>
<tr>
<td>2. Filtro de carbón activo ............................................ 18</td>
</tr>
<tr>
<td>3. Filtro suavizador ................................................... 18</td>
</tr>
<tr>
<td>4. Filtro pulidor ......................................................... 19</td>
</tr>
<tr>
<td>Comparación de equipos ............................................... 19</td>
</tr>
<tr>
<td>Equipo propuesto ..................................................... 21</td>
</tr>
<tr>
<td>Costo de mantenimiento ............................................. 22</td>
</tr>
<tr>
<td>Recuperación del costo de inversión ................................ 24</td>
</tr>
<tr>
<td>Beneficio del ahorro de los recursos ................................ 24</td>
</tr>
<tr>
<td>Mantenimiento .......................................................... 24</td>
</tr>
</tbody>
</table>
Resumen

Se llevaron a cabo las estancias profesionales en la empresa Cristalita® S.A. de C.V. ubicada en: Irapuato, Guanajuato, con domicilio en Matamoros sur No. 42 zona centro.

La Cristalita® se encarga de la congelación e industrialización de frutas que se utilizan en la industria de la panificación y el consumo del público en general. Produce y comercializa mermeladas, almíbares, frutas cristalizadas y congeladas.

El objetivo es proponer un sistema de tratamiento de aguas para optimizar el recurso utilizado, mediante la implementación de un sistema de tratamiento de aguas se logrará dicho objetivo; ya que al ser tratada, el agua podrá ser reutilizada o aprovechada en otro proceso dentro de la planta. Asimismo se reducirán los costos de mantenimiento que se destinan al generador de vapor puesto que cada tres meses se le da mantenimiento correctivo y preventivo y una vez al año mantenimiento general.

El sistema de tratamiento consiste en primer paso bombar el agua hacia un filtro de arena sílica para retener macromoléculas, posteriormente a un filtro de carbón activado para eliminar la materia orgánica presente, que por último pasará hacia un filtro suavizador para enviarla a la caldera o en su defecto reutilizarla en el mismo proceso de lavado de frascos. El porcentaje de agua no tratada se destinará para el lavado de pisos y baños.

Los equipos se seleccionaron en función de las necesidades de la caldera de vapor, de la empresa y del lavado de frascos.

Introducción

Antecedentes

Los términos de contaminación al ambiente, protección al ambiente, ecología y todo lo relacionado a lo anterior mencionado ha tenido relevancia en las últimas 4 décadas, la contaminación y el desperdicio de recursos no renuentes es un problema serio y se desea que la sociedad éste consciente de ello, asimismo el hombre es capaz de contrarrestar y corregir los daños que ha provocado gradualmente al medio ambiente.

Técnicamente hablando el problema de la contaminación del agua no es un problema difícil de resolver, en efecto es relativamente sencillo, posee gran amplitud y suficiente complejidad y diversas disciplinas deben coexistir para conseguir óptimos resultados y alta eficiencia. El tratamiento de aguas residuales engloba la participación de distintas disciplinas tales como: ciencias aplicadas e ingeniería (ingeniería sanitaria, de obras públicas, química, otros campos como mecánica, eléctrica, y ciencias básicas como química, física); ciencias biológicas, ciencias de la tierra (geología, hidrología, oceanografía); y ciencias sociales y económicas (sociología, derecho, ciencias políticas, relaciones públicas, administración)

El desarrollo de obras públicas ha sido base para las actividades de ingeniería respeto a la corrección de la contaminación de aguas. En el inicio de la actividad la mayoría de las aguas residuales eran de origen urbano-doméstico, cuya composición no varía significativamente. Asimismo los métodos de tratamiento están relativamente estandarizados, lo que limita el número de procesos unitarios y operaciones que integran las líneas de tratamiento. Los métodos tradicionales de tratamiento incluían depósitos de
hormigón, donde se llevaba a cabo una sedimentación y aireación, filtros percoladores, cloración, cribado entre otras operaciones.

Es por ello que para el ingeniero era requisito conocer problemas constructivos e hidráulicos y por ende la ingeniería de obras públicas para poder diseñar correctamente las instalaciones necesarias. Con el paso del tiempo esto ha ido cambiando gradualmente por la llegada de la industrialización y como resultado de la gran variedad de procesos industriales, se producen aguas residuales de diversos tipos, unos que requerirán tratamientos más complejos y todo lo contrario. El tratamiento de aguas residuales lleva consigo gran variedad de procesos de tratamiento y equipos, operaciones unitarias y de proceso.

Las aguas residuales municipales actuales ya no son las aguas residuales o aguas negras de antes. Puesto que todos los municipios en zonas industrializadas manejan una combinación de aguas residuales domésticas e industriales. Los problemas técnicos y económicos obligan en muchos casos a hacer tratamientos separativos de aguas industriales antes de su descarga en el alcantarillado municipal.

Para el tratamiento de las aguas residuales domésticas e industriales se deben tener en cuenta nuevas tecnologías disponibles, nuevos procesos y nuevas líneas de tratamiento. Unificar procesos unitarios que tengan como base operaciones físicas y químicas.

La estrategia correcta para un programa de reducción de la contaminación industrial es aquella en la que se tienen en cuenta todas las oportunidades para el tratamiento de aguas residuales integradas en el proceso básico de la actividad industrial.

Para llevar a cabo una reducción de la contaminación de las aguas residuales en origen engloba principalmente 3 fases:

1. **Fase 1.** Llevar a cabo una campaña de revisión de todos los efluentes de la planta. Es decir hacer un inventario de todas las fuentes, y para cada corriente de aguas residuales determinar los caudales y cargas contaminantes.
   a) Caudales. Para caudales continuos basta con determinar cifras en m$^3$/h. para descargas intermitentes se suele proceder a estimar o bien los totales diarios o los valores horarios.
   b) Cargas contaminantes. La carga contaminante de las distintas corrientes (concentración o valores totales de productos contaminantes en dichas corrientes)

2. **Fase 2.** Revisión de los datos obtenidos en la fase 1 para establecer los objetivos de reducción de la contaminación posibles. Los cuales son: incrementar el reciclaje en los sistemas de aguas de refrigeración; eliminación de enfriamiento por contacto para gases de escape; recuperación de productos químicos contaminantes; reutilización de aguas procedentes de tanques de acumulación, condensadores de vacío, purgas de bombas; diseño de unidades de recuperación de calor para eliminar corrientes con vapores; eliminación de escapes y mejor del mantenimiento

3. **Fase 3.** Evaluación de los ahorros potenciales en inversión y costes de operación de una posible planta de tratamiento separada, si cada una de las corrientes consideradas en las fases anteriores se eliminan o reducen. Diseño de la planta de tratamiento para conseguir hacer frente a la reducción de contaminación. Comparación de los costos de inversión y operación de las distintas alternativas consideradas.
Planteamiento del problema

En la línea de producción de mermelada se cuenta con un sistema de lavado de frascos, utilizando agua proveniente de un pozo propio que posee la Cristalita, en promedio se utiliza 5 m$^3$/día de agua, el agua de desecho se envía a una cisterna que posteriormente se destina para el lavado de pisos y baños, en ocasiones no se ocupa toda en las actividades anteriores por lo que se desecha al efluente sin pasar por un tratamiento de agua previo puesto que el agua no contiene carga contaminante significativa.

La Cristalita cuenta con dos equipos de generador de vapor o calderas para diversos procesos, en promedio las calderas usan 2 m$^3$/día de agua proveniente directamente del pozo sin pasar antes por un tratamiento de suavización (reducción de sales) por lo que las calderas sufren rápidamente corrosión e incrustación de sales que repercute directamente en altos costos de mantenimiento y combustible; y el desgaste prematuro del equipo. Se le da mantenimiento general 1 vez al año, mantenimiento correctivo y preventivo cada 3 meses lo que implica un costo$^1$.

El proyecto influye directamente en la línea de producción de mermelada generando impacto ambiental, técnico y económico. Se da un impacto ambiental positivo ya que al reutilizar el agua tratada se ahorra dicho recurso conservando por más tiempo los espacios ecológicos de donde es obtenida el agua. El agua utilizada en el proceso de producción de mermelada se extrae de un pozo pasándola a una cisterna que abastece a toda la empresa y posteriormente se llenan los tanques de la línea donde se lavan los frascos de mermelada.

La empresa no cuenta con los equipos necesarios para hacer el proceso de tratamiento de agua, incluso como ya se mencionó líneas arriba el agua del pozo pasa directamente a la cisterna principal sin antes proporcionarle un tratamiento previo de reducción de sales. El agua residual proveniente del lavado de frascos pasará primero por un filtro de sedimentos para retener macromoléculas (partículas derivadas de la corrosión de la tubería, granos de arena, partículas de materia orgánica, etc.), un adsorbente de carbón activado con el objetivo de remover totalmente la materia orgánica, contaminantes que le dan sabor, olor y color al agua de lavado, después de este proceso se enviará a un suavizador para reducir hasta en un 0% las sales presentes (principalmente calcio y magnesio) el agua proveniente del suavizador se bombeará a la caldera de vapor o en su defecto nuevamente a los tanques de lavado o bien a otra línea de proceso donde pueda ser aprovechada el agua tratada.

Cristalita cuenta con pozo propio y por ende no se genera un gasto en el consumo de agua. Por otra parte los equipos de los que se dispondrá generan un costo de implementación y un costo de mantenimiento, esté último es mínimo comparado con la inversión anual del mantenimiento general de la caldera y basado en las condiciones de calidad de agua a obtener.

---

$^1$ No se proporcionó la cantidad gastada para los mantenimientos.
Justificación

- Es responsabilidad de todos evitar el desperdicio de los recursos naturales, en este caso el agua debe ser aprovechada al máximo.
- Para reutilizar el agua es necesario pasarla por un proceso de tratamiento para eliminar aquellos componentes no deseables y cumplir con los requisitos que se tienen para ser una empresa socialmente responsable.
- Se obtendrán muestras de agua cuando termine el proceso de limpieza de frascos, a éstas muestras se le harán análisis físico-químicos y así poder seleccionar el equipo adecuado y sus características ya que dependiendo de cómo salgan los análisis se puede definir cuales equipos (filtros, membranas, columna de lechos, etc.) son los ideales para obtener el agua deseada, también se medirá el volumen del agua que día con día se utiliza en el proceso para saber la capacidad con la que deberán contar nuestros equipos.
- Los avances tecnológicos para el tratamiento de aguas residuales disponibles en este siglo permiten reutilizar y aprovechar el agua siempre y cuando cumpla con las normas establecidas para su reutilización, sabiendo que es un recurso básico para todos, es por ello que se debe contar con información precisa de cómo administrar correctamente el uso del agua.

Objetivos

Objetivo general
- Desarrollar una propuesta para la depuración de aguas residuales provenientes del lavado de frascos de mermelada para su reutilización.

Objetivos específicos
- Proponer una operación unitaria para el tratamiento de aguas residuales usadas en el lavado de frascos de mermelada.
- Determinar los equipos específicos para obtener agua que cumpla con la calidad para ser reutilizada en la caldera o en el proceso de lavado de frascos.
- Optimizar el uso del agua teniendo el sistema de tratamiento adecuado para las características del agua residual estudiada.
- Disminuir costos de mantenimiento de la caldera disponiendo de un agua apta para la caldera.

Marco Teórico

Tratamiento de aguas
Se le conoce como tratamiento de aguas a todos los procesos u operaciones unitarias físico-químico, biológico que tiene como objetivo la depuración, eliminación o reducción de todos los posibles contaminantes presentes en el agua provenientes de los mantos acuíferos, abastecimiento, en procesos industriales y/o zonas urbanas. El propósito del tratamiento de aguas es obtener el tipo de agua adecuado para el uso posterior que será destinado y consecuentemente no desperdiciar dicho recurso natural. (Russell, 2006)
En los procesos de adsorción, uno o más componentes de una corriente de gas o de líquido se adsorben en la superficie de un sólido y se lleva a cabo una separación. El adsorbente generalmente tiene la forma de partículas pequeñas en un lecho fijo. El fluido pasa por el lecho y las partículas sólidas adsorben componentes del fluido. Si el lecho se satura, el flujo se detiene y el lecho se generalmente se regenera térmicamente, a esto se le conoce como deserción. De esta forma se recupera el material adsorbido (adsorbato) y el adsorbente sólido queda listo para otro ciclo de adsorción.

Entre las aplicaciones de la adsorción en fase líquida están la eliminación de compuestos orgánicos del agua o de soluciones orgánicas, la eliminación de impurezas coloreadas de sustancias orgánicas y la eliminación de diversos productos de fermentación de las descargas de los fermentadores. Las separaciones incluyen la de parafinas de compuestos aromáticos y la de fructuosa de glucosa utilizando zeolitas.

Existen varios adsorbentes comerciales entre los más comunes se destacan:

1. **Carbón activado.** Éste es un material microcristalino que proviene de la descomposición térmica de madera, cortezas vegetales, carbón, etc., y tiene áreas superficiales de 300 a 1200 m$^2$/g con un promedio de diámetro de poro de 10 a 60 A. Las sustancias orgánicas generalmente se adsorben carbón activado.

2. **Gel de sílice.** Este adsorbente se fabrica tratando con ácido una solución de silicato de sodio y luego secándola. Tiene un área superficial de 600 a 800 m$^2$/g y un promedio de diámetro de poro de 20 a 50 A. Se utiliza principalmente para deshidratar gases líquidos y para fraccionar hidrocarburos.

3. **Alúmina activada.** Para preparar este material se activa el óxido de aluminio hidratado calentándolo para extraer el agua. Se usa ante todo para secar gases y líquidos. Las áreas superficiales fluctúan entre 200 y 500 m$^2$/g con un promedio de diámetro de poro de 20 a 140 A.

4. **Zeolitas tipo tamiz molecular.** Estas zeolitas son aluminosilicatos cristalinos porosos que forman una red cristalina abierta que tiene poros de uniformidad precisa. Por tanto, el tamaño uniforme del poro es diferente al de otros tipos de adsorbentes que tienen una gama de tamaños de poro.

4. **Polímeros o resinas sintéticas.** Los que se generan a partir de compuestos aromáticos como el estireno y el divinil-benceno se usan para adsorber compuestos orgánicos no polares de soluciones acuosas. Los que provienen de ésteres acrílicos se utilizan para solutos más polares en soluciones acuosas. (Geankoplis, 1998)

**Relaciones de equilibrio para adsorbentes**

La concentración en la fase sólida se expresa como $q$, en kg de adsorbato (soluto)/kg de adsorbente (sólido) y en la fase fluida (gaseosa o líquida) como $c$, en kg de adsorbato/m$^3$ de fluido.

Los datos corresponden a una ley lineal y se expresan mediante una ecuación similar a la ley de Henry:

$$q = Kc$$

Donde $K$ es una constante determinada experimentalmente en m$^3$/kg de adsorbente. Esta isoterma no es muy común, pero en la región diluida se puede usar para aproximar datos de muchos sistemas. La ecuación de la isoterma de Freundlich que es empírica, sirve a menudo para aproximar los datos para muchos sistemas de adsorción físicos y es útil para líquidos

$$q = Kc^n$$
Donde K y n son constantes que se determinan experimentalmente. En una gráfica log-log de q en función de c, la pendiente es el exponente adimensional n. las dimensiones de n dependen del valor de n. La isoterma de Langmuir tiene una base teórica y está dada por la siguiente ecuación, \( q_0 \) y K son constantes empíricas:

\[
q = \frac{q_0c}{K + c}
\]

Donde \( q_0 \) es una constante en kg de adsorbato/kg de sólido, y K es una constante, en kg/m\(^3\). La ecuación fue deducida suponiendo un número fijo de sitios activos disponibles para la adsorción que solo se forma una monocapa y la adsorción es reversible alcanzando una condición de equilibrio. En la mayoría de los sistemas de adsorción a medida que aumenta la temperatura la cantidad adsorbida por el adsorbente va disminuyendo con rapidez, lo cual es útil porque la adsorción normalmente se hace a temperatura ambiente y la desorción se puede efectuar aumentando la temperatura. (Geankoplis, 1998)

**Figura 1. Isotermas de adsorción. (Geankoplis, 1998)**

**Adsorción en carbón activo**

Se le llama adsorción a la concentración de un soluto en la superficie de un sólido. Este fenómeno se lleva a cabo cuando se coloca dicha superficie en contacto con una solución. Una capa de moléculas de soluto se acumula en la superficie debido al desequilibrio de las fuerzas superficiales. (fig. 2)

**Figura 2. Representación de fuerzas en un sólido. (Ramalho, 2001)**

En el interior del sólido, las moléculas están rodeadas totalmente por moléculas similares y por lo tanto sujetas a fuerzas equilibradas, tal como indican las flechas de la figura 2. Las moléculas en la superficie están sometidas a fuerzas no equilibradas. Debido a que estas fuerzas residuales son suficientemente elevadas, pueden atrapar moléculas de un
soluto que se halle en contacto con el sólido. A este fenómeno se le conoce como adsorción física o de Van der Waals.

Al carbón activado se denomina adsorbente y al soluto a adsorber se denomina adsorbato. La capacidad de adsorción es función de la superficie total del adsorbente, ya que cuanto mayor sea ésta superficie se dispone de mayor número de fuerzas residuales no equilibradas para la adsorción.

Los carbones activos, granulares, o en forma de polvo, se han empleado profusamente como adsorbentes en las plantas de tratamiento de agua para eliminar los olores y sabores que producen los contaminantes.

Preparación de los carbones activos. Los carbones activos se preparan a partir de materias primas carbonosas tales como madera, lignito, carbón y cáscaras de nuez mediante procesos térmicos que implican la deshidratación y carbonización, seguidos por la aplicación de vapor caliente. Se obtiene una estructura muy porosa con grandes áreas superficiales (hasta 1000 m$^2$/g).

Reactivación de los carbones activos. La ventaja del utilizar el carbón activo como adsorbente recae en la posibilidad de reactivación (30 veces o más) sin pérdida apreciable de poder de adsorción. Usualmente la reactivación se lleva a cabo calentando el carbón agotado hasta 930ºC aproximadamente en una atmósfera aire-vapor (reactivación térmica). Esta operación puede realizarse en hornos de hogar múltiple o en hornos rotativos. Los productos orgánicos adsorbidos se queman y el carbón activo se restaura básicamente hasta su capacidad inicial de adsorción.

**Intercambio iónico**

También llamado suavizador o ablandador. Es un proceso en que los iones que se mantienen unidos a grupos funcionales sobre la superficie de un sólido por fuerzas electrostáticas se intercambian por iones de una especie diferente en disolución. La desmineralización completa puede alcanzarse mediante intercambio iónico, es posible utilizar proceso de tratamiento de corriente partida, en los que parte del agua residual afluente se desmineraliza y se combina después con parte del afluente que ha sido desviado del tratamiento para producir un efluente de calidad específica (determinada dureza).

Resinas de intercambio iónico. Se usan resinas sintéticas como intercambiadores iónicos tales como estireno y divinil benceno (DVB). Estas resinas son polímeros insolubles a los que se añaden grupos básicos o ácidos mediante reacciones químicas.

Estos grupos son capaces de intercambio reversible con los iones presentes en una disolución. El número total de grupos funcionales por unidad de peso o de volumen de resina determina la capacidad de intercambio, mientras que el tipo de grupo funcional determina la selectividad iónica y la posición del equilibrio de intercambio. Las partículas de resina tienen diámetros de 0.5 mm aproximadamente y se emplean en columnas rellenas utilizando caudales de aguas residuales de 200 a 500 L/(min*mts).
En la figura 3 el punto de ruptura se alcanza a una concentración del efluente $C_E$. A $C_D$ el lecho está casi exhausto. Las concentraciones $C_E$ y $C_D$ se eligen normalmente para el 5% y el 95%, respectivamente, de la concentración del afluente $C_0$.

**Mecanismo básico de intercambio iónico**

Existen dos tipos básicos de intercambiadores iónicos: catiónicos y aniónicos.

*Intercambiadores catiónicos*. Las resinas de intercambio catiónico separan los cationes de una solución. Intercambiándolos por iones sodio o por iones hidrógeno. La separación se representa para la ecuación 1. (R indica la resina y $M^{2+}$ el catión ($Cu^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Ca^{2+}$, $Mg^{2+}$))

\[
\text{Ciclo del sodio Na}_2R + M^{2+} \rightleftharpoons MR + 2Na^+ \quad (1a)
\]

\[
\text{Ciclo del hidrógeno H}_2R + M^{2+} \rightleftharpoons MR + 2H^+ \quad (1b)
\]

Los iones $Cu^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Ca^{2+}$, $Mg^{2+}$ quedan retenidos sobre la resina y se produce un efluente ablandado. Este efluente ablandado contiene principalmente sales de sodio (si se emplea el ciclo del sodio) o ácido (ciclo del hidrógeno).

Cuando la capacidad de intercambio de la resina se agota, la resina debe regenerarse. Antes de la regeneración, la columna debe lavarse a contracorriente para eliminar los depósitos de sólidos. La regeneración consiste en el paso a través de la columna de una solución de salmuera ($ClNa$ para el ciclo del sodio) o de una solución ácida, normalmente $H_2SO_4$ o $HCL$ (para el ciclo del hidrógeno).

Las reacciones de los ciclos sodio e hidrógeno son las siguientes:

<table>
<thead>
<tr>
<th>Resina regenerada</th>
<th>Residuo regenerante</th>
</tr>
</thead>
</table>
las concentraciones típicas del regenerante son del 2-5% en peso con caudales de 40-80 L/(min*m²). Commo se muestra en las ecuaciones anteriores el residuo regenerante está formado por sales cationicas. Esta corriente residual suponen del 10-15% del volumen de afluente tratado antes de la ruptura. A continuación de la regeneración el lecho del intercambiador se lava con agua para separar el regenerante residual.

Intercambiadores aniónicos. Las resinas intercambiadores aniónicas separan aniones de una solución intercambiando los por ions oxihidrilo. La separación viene representada por la ecuación 3 en la que A²⁻ representa un anión.

\[ R(OH)_2 + A^{2-} \rightleftharpoons RA + 2OH^- \] (3)

De esta forma, aniones tales como SO₄²⁻, CrO₄²⁻, etc. Se eliminan de la solución. La regeneración se hace después de la ruptura, normalmente precedida por lavado a contracorriente para eliminar los depósitos de sólidos. Los regenerantes normalmente usados son hidróxidos de sodio y amonio. La reacción de regeneración es:
Las concentraciones normales de regenerante son del 5-10% en peso. Los intercambiadores aniónicos son bases fuertes o débiles. Las reacciones de los intercambiadores aniónicos y la dirección de flujo de las diferentes corrientes involucradas en el funcionamiento de un intercambiador aniónico se indican en la figura 5. (Ramalho, 2001)

Materiales y métodos

Para la determinación de sólidos presentes en el agua se utilizó el protocolo establecido por la norma mexicana: NMX-AA-034-1981. Sólo se determinaron los parámetros siguientes ya que son únicamente de interés para los fines ya mencionados.

Aparatos y equipo³
- Balanza analítica
- Vaso de precipitados de 250 mL.
- Mufla eléctrica de 550°C ±25°C
- Estufa de control de temperatura capaz de mantener temperatura de 550°C ± 25°C
- Equipo para evaporación previa (placa de calentamiento, baño maría, baño de arena, mantilla de calentamiento, etc.)

2 Protocolo obtenido de NMX-AA-034-1981
3 Hubo algunos ajustes debido a que el laboratorio no cuenta con algunos materiales.
Discos filtro de fibra de vidrio
Embudo Büchner
Bomba de vacío o eyector
Matraz Kitasato con accesorios

Para sólidos totales
1. En función de la cantidad de sólidos probables, tomar una muestra que contenga como mínimo 25 mg de sólidos totales, generalmente 100 mL de muestra es volumen adecuado.
2. Transferir la muestra a la cápsula que previamente ha sido puesta a masa constante a 550ºC (G).
3. Secar la muestra en la estufa entre 103 y 105 ºC hasta peso constante
Nota: se recomienda hacer una pre-evaporación reduciendo a la muestra a un volumen mínimo tal que se eviten proyecciones o pérdidas de la misma, para realizarlo usar el equipo de evaporación previa; llevar la muestra hasta peso constante
4. Enfriar en desecador hasta temperatura ambiente y determinar su masa (G_1)
5. Expresar los resultados
6. Calcular el contenido de sólidos totales mediante la fórmula
\[ ST = \frac{P_f - P}{V} \times 1000 \]
Dónde:
ST: Sólidos totales en mg/L
P_f: masa de la cápsula con residuo después de la evaporación en mg
P: masa de la cápsula vacía en mg
V: volumen de muestra en cm³

Para sólidos suspendidos totales y sólidos suspendidos
1. Preparar medio filtrante
- Colocar un disco de fibra de vidrio en el crisol Gooch con la superficie rugosa hacia arriba teniendo cuidado de que el disco cubra completamente las perforaciones del Gooch
- Colocar el crisol y el disco en un aparato de filtración, aplicando vacío. Lavar el disco con agua dejando que el agua se drene completamente
- Suspender al vacío y llevar el crisol a masa constante en la mufla a una temperatura de 500ºC ±25ºC durante 15 a 20 min. Sacar el crisol, dejar enfriar y determinar su masa (G_3)
1. Preparar medio filtrante
- Colocar un disco de fibra en el embudo Büchner cubriendo totalmente las perforaciones montado en el equipo de vacío
- Agregar agua destilada y suspender al vacío.
- Añadir la muestra y lavar máximo 3 veces.
- Suspender al vacío hasta que el agua se drene completamente y llevar el filtro a la mufla hasta que se seque (10 a 15 min.) a una temperatura de 109ºC ±2ºC

---

4 Variación utilizada experimentalmente.
2. Preparación de la muestra
   - Colocar el crisol con el disco en el aparato de filtración y aplicar vacío
   - Humedecer el disco con agua
   - Medir con una probeta o pipeta un volumen adecuado de la cantidad seleccionada de muestra previamente homogenizada la cual depende de la concentración esperada de sólidos suspendidos

3. Filtrar la muestra a través del disco y aun aplicando vacío, lavar el disco tres veces con 10 mL de agua, dejando que el agua drene totalmente en cada lavado

4. Suspender el vacío y secar el crisol en la estufa a una temperatura de 103 a 105 ºC durante una hora. Sacar el crisol dejar enfriar en un desecador a temperatura ambiente y determinar su masa (G₄)

5. Expresar resultados

6. El contenido de sólidos suspendidos totales, se calcula con la siguiente fórmula
   \[ SST = \frac{P_f - P_i}{V} \times 1000 \]
   Dónde:
   SST: sólidos suspendidos totales (mg/L)
   Pᵢ: Masa del crisol con el residuo en mg
   Pᵣ: masa del crisol con el disco en mg
   V: volumen de muestra en cm³

1. Para sólidos disueltos totales
   Se aplica la siguiente fórmula
   \[ SDT = ST - SST \]

Resultados y Discusiones

Para determinar y establecer los equipos adecuados para obtener el tipo de agua deseable para la alimentación a la caldera o en la reutilización del mismo proceso de lavado de frascos se dispuso del protocolo establecido por la Secretaría de Comercio y Fomento Industrial, Norma Mexicana: NMX-AA-034-1981. Análisis de agua-determinación de sólidos. Que dicta lo siguiente: "la presente norma establece los métodos para la determinación del contenido de sólidos totales, sólidos totales volátiles, sólidos suspendidos volátiles, sólidos disueltos totales y sólidos disueltos volátiles, en aguas naturales y residuales". De los cuales únicamente son de interés los sólidos totales, sólidos suspendidos totales y sólidos suspendidos. Del protocolo mencionado anteriormente se le hicieron algunas modificaciones debido a que el laboratorio de operaciones unitarias no cuenta con algunos materiales y por ende varió ligeramente el procedimiento para sólidos suspendidos totales y sólidos suspendidos sin embargo los resultados no se vieron afectados por dicho cambio. Se realizó por triplicado cada una de las pruebas y los resultados son los siguientes:

### Sólidos totales

<table>
<thead>
<tr>
<th>Muestra</th>
<th>P (mg)</th>
<th>Pᵢ (mg)</th>
<th>Temperatura (ºC)</th>
<th>Volumen (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.093</td>
<td>0.09367</td>
<td>182</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>0.106</td>
<td>0.10607</td>
<td>251</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>0.093</td>
<td>0.09305</td>
<td>251</td>
<td>50</td>
</tr>
</tbody>
</table>

*Tabla 1*
Sustituyendo valores y aplicando la fórmula

\[ ST = \frac{P_f - P_i}{V} \times 1000 \]

ST\(_1\)=0.0067 mg/L  
ST\(_2\)=0.0014 mg/L  
ST\(_3\)=0.001 mg/L  
ST\(_{Promedio}\)=0.003 mg/L

**Sólidos suspendidos**

<table>
<thead>
<tr>
<th>Muestra</th>
<th>P(_i)</th>
<th>P(_f)</th>
<th>Volumen (cc)</th>
<th>Temperatura de secado (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.77</td>
<td>0.85</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>0.74</td>
<td>0.77</td>
<td>100</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>0.8</td>
<td>100</td>
<td>109</td>
</tr>
</tbody>
</table>

*Tabla 2*

Sustituyendo valores y aplicando la fórmula

\[ SST = \frac{P_f - P_i}{V} \times 1000 \]

SST\(_1\)= 0.8 mg/L  
SST\(_2\)= 0.3 mg/L  
SST\(_3\)= 0.5 mg/L  
SST\(_{Promedio}\)=0.53 mg/L

**Sólidos disueltos totales**

\[ SDT = ST - SST \]

SDT=0.527 mg/mL

De acuerdo a la norma oficial mexicana nom-127-ssa1-1994, "salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización", puede aplicar al sistema de aguas a tratar ya que se trata de tratamiento de aguas en la industria alimenticia y de acuerdo a la norma los sólidos disueltos totales permisibles son como máximo de 1000 mg/mL, por lo que el valor obtenido de SDT es ínfimo y facilitara la depuración de agua proveniente del lavado de frascos.

**Propuesta del sistema de tratamiento de agua**

**Pasos para la depuración**

1. Filtro de arena sílica para la remoción de macropartículas  
2. Filtro de carbón activado para la remoción, retención de sólidos disueltos totales.  
3. Filtro suavizador para reducción hasta un 90% de dureza.
En la figura 6 se representa el diagrama que se tiene en la empresa, el agua de pozo es bombeada hacia una cisterna que se encuentra en la línea de lavado que posteriormente el agua es utilizada para la limpieza de cualquier residuo que puedan tener los frascos sellados, también se utiliza el agua para bajar la temperatura. Cabe recalcar que la caldera es alimentada directamente con agua de pozo, lo que provoca que se generen incrustaciones.

Figura 6. Abastecimiento de agua
La figura 7 representa al diagrama de operación propuesto, los círculos enumerados se refieren a los pasos que a continuación se detallan.

1. **Filtro de arena sílica.** Se bombea el agua hacia el filtro de arena sílica a un flujo de 21 LPM. La finalidad de este filtro es remover aquellas sustancias con tamaños promedio de 5 micras que corresponden a todos los sólidos suspendidos y algunos sólidos sedimentables tales como: tierra, basura, residuos de mermelada etc. Es decir aquellas sustancias que se pueden ver a simple vista.

2. **Filtro de carbón activado.** Posteriormente el agua pasa a través del carbón activado a un flujo de ~20.4 LPM. Remueve la mayor parte de contaminantes del agua tales como bacterias, color, olor entre otros. Se utilizará carbón activado granular ya que tiene un área de contacto mayor. Y remueve hasta 99 % dichos contaminantes que para nuestro propósito es muy importante eliminar.

3. **Filtro suavizador.** Una vez libre de sólidos totales el agua debe ser ablandada, por lo que se sucede por un filtro suavizador que como se ha mencionado reduce hasta en un 90 % las sales presentes Elimina la dureza del agua tales como sales de magnesio, calcio y silicio, evita la incrustación y obstrucción de tuberías ahorrándose reparaciones costosas, se reduce casi por completo la dureza total del agua. Es conveniente desalinizar el agua debido a que cuando se condensa el agua en la caldera las sales se precipitan y se incrustan en las paredes lo que provoca una transferencia de calor menor a la establecida, asimismo las tuberías
se tapan y continuamente se deberán hacer mantenimientos para eliminar las incrustaciones.

4. **Filtro pulidor.** Para asegurar que el agua esté libre de sólidos totales y transportarla a la caldera, el agua tratada debe pasar por último a través de un filtro pulidor, para que el agua no tenga ninguna partícula orgánica, ya que si contiene una mínima cantidad, la caldera puede tener serios problemas. Análogo al filtro de arena sílica, pero de material sintético (polipropileno), retiene partículas de hasta 5 micras. El filtro se debe cambiar en un periodo de tiempo de 4 a 6 meses.

Obsérvese que las cantidades de materia indeseable van disminuyendo en cada operación, hasta finalizar por el filtro suavizador en el cual sólo se tratarán 2 m³ de agua para enviarla a la caldera o a la cisterna adyacente a la caldera ya que sólo se utiliza en promedio dicha cantidad al día.

**Comparación de equipos**

*Fase 1. Filtro de partículas*

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Material</th>
<th>Características</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentos</td>
<td>Polipropileno, celulosa, poliéster</td>
<td>Retira partículas grandes (&lt;5 μm)</td>
<td>Retiene hasta un 85 % de partículas</td>
<td>Cambio de cartuchos o bolsas, costo elevado, servicio a caudales bajos</td>
</tr>
<tr>
<td>Lecho profundo</td>
<td>Antracita</td>
<td>Carbón mineral, negro y brillante</td>
<td>Flujo de servicio alto, menores caídas de presión</td>
<td>Escaso, costo elevado</td>
</tr>
<tr>
<td>Lecho profundo</td>
<td>Arena sílica</td>
<td>Arena, color marrón, granulo duro</td>
<td>Compuesto en abundancia, retiene partículas de hasta 5 μm, económico</td>
<td>-</td>
</tr>
<tr>
<td>Lecho profundo</td>
<td>Zeolita</td>
<td>Mineral color blanco</td>
<td>Aplicable en una alta gama de tratamiento, retiene partículas de 5 μm, Retiene sales</td>
<td>Es necesario regenerarla cada que se saturan los minerales, de la misma forma que los filtros suavizadores</td>
</tr>
</tbody>
</table>

*Tabla 3*
### Fase 2. Filtros adsorbentes

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Material</th>
<th>Características</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón activado</td>
<td>Derivado de madera, cáscaras de coco, de maní, carbón, etc.</td>
<td>Presentación en polvo o granular, 1200 $\frac{m^2}{g}$ de área superficial. Diametro de poro de 10 a 60 A</td>
<td>Económico, fácil de conseguir, 95-100 % de adsorción, reactivación, remueve plagas, herbicidas, olor y sabor, detergentes, aceites disueltos entre otros.</td>
<td>Retiene metales pesados con baja eficiencia, no ayuda en la disminución de dureza</td>
</tr>
<tr>
<td>Gel de sílice</td>
<td>Solución de silicato de sodio agregando ácido</td>
<td>800 $m^2/g$ de área superficial, diámetro de poro de 20 a 50 A</td>
<td>Deshidrata gases líquidos y fracciona hidrocarburos</td>
<td>costo elevado</td>
</tr>
<tr>
<td>Polímeros o resinas sintéticas</td>
<td>Generados a partir de acrilamida y copolímeros</td>
<td>Polímeros adsorbentes de compuestos orgánicos no polares, tamaño varía según especificaciones</td>
<td>Capaz de retener partículas de hasta 0.05 μm.</td>
<td>Costo elevado, rápida saturación, no soporta grandes caudales</td>
</tr>
</tbody>
</table>

### Tabla 4

### Fase 3. Filtros suavizadores

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Material</th>
<th>Características</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catiónico</td>
<td>Estireno y divinil benceno</td>
<td>Resinas</td>
<td>Remueve hasta un 99.9 % de dureza (Ca y Mg)</td>
<td>Es necesario regenerar las resinas cierto periodo de tiempo</td>
</tr>
<tr>
<td>Aniónico</td>
<td>Estireno y divinil benceno</td>
<td>Resinas</td>
<td>Remueve hasta un 99.9 % de dureza $SO_4^{2-}, CrO_4^{2-}$</td>
<td>Es necesario regenerar las resinas cierto periodo de tiempo</td>
</tr>
<tr>
<td>Lecho profundo</td>
<td>Zeolita natural</td>
<td>Mineral color blanco</td>
<td>Fácil aplicación, elimina la dureza de 7000 a 12000 g/m³</td>
<td>-</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------------------------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lecho profundo</td>
<td>Zeolita sintética</td>
<td>Polvo fino color blanco</td>
<td>Fácil aplicación, elimina la dureza de 20000 a 60000 g/m³</td>
<td>Costo muy elevado</td>
</tr>
</tbody>
</table>

Tabla 5

**Equipo propuesto**

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Volumen de medio filtrante (m³)</th>
<th>Volumen de tanque (m³)</th>
<th>Flujo ideal (L/min)</th>
<th>Flujo de retrolavado (L/min)</th>
<th>Altura (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro de arena silica</td>
<td>0.028</td>
<td>0.044</td>
<td>16-21</td>
<td>9.2</td>
<td>1.21</td>
</tr>
<tr>
<td>Filtro pulidor</td>
<td>0.0013</td>
<td>0.0023</td>
<td>16.7-20</td>
<td>n.a.</td>
<td>0.75</td>
</tr>
<tr>
<td>Carbón activado</td>
<td>0.028</td>
<td>0.044</td>
<td>16.7-20</td>
<td>16.7</td>
<td>1.21</td>
</tr>
<tr>
<td>Suavizador</td>
<td>0.028</td>
<td>0.032</td>
<td>11.36-18</td>
<td>11.36</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Tabla 6. Características de los equipos

Los equipos propuestos son los ideales ya que no afectaría en nada el proceso normal de la producción de mermelada debido que para el proceso de lavado de frascos se requieren 3.47 L/min, para la caldera se requiere un flujo de 1.38 L/min y como se observa en la tabla 2 los flujos son superiores, esto con el objeto de tener un mayor margen.

Se muestra en la tabla 7 el costo de la inversión para su funcionamiento

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Precio unitario (M.N.)</th>
<th>Cantidad</th>
<th>Costo total puesto en planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanque de lecho profundo</td>
<td>1061.63</td>
<td>3</td>
<td>3184.89</td>
</tr>
<tr>
<td>Tanque de salmuera</td>
<td>1737.21</td>
<td>1</td>
<td>1737.21</td>
</tr>
<tr>
<td>Carbón mineral activado</td>
<td>579.072</td>
<td>1</td>
<td>579.072</td>
</tr>
<tr>
<td>Grava</td>
<td>144.64</td>
<td>1</td>
<td>144.64</td>
</tr>
<tr>
<td>Resina para suavizador</td>
<td>173.69</td>
<td>1</td>
<td>173.69</td>
</tr>
<tr>
<td>Costal de sal</td>
<td>95</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Tubería de PVC</td>
<td>10.41</td>
<td>32</td>
<td>333.12</td>
</tr>
<tr>
<td>Válvulas check</td>
<td>173.69</td>
<td>4</td>
<td>694.76</td>
</tr>
<tr>
<td>Cabeza para filtro 2 etapas</td>
<td>2500</td>
<td>2</td>
<td>5000</td>
</tr>
<tr>
<td>Cabeza para filtro 3 etapas</td>
<td>5000</td>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>Hidroneumático</td>
<td>3299</td>
<td>1</td>
<td>3299</td>
</tr>
<tr>
<td>Filtro pulidor</td>
<td>1000</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Costo de instalación</td>
<td>800</td>
<td>1</td>
<td>800</td>
</tr>
</tbody>
</table>

Tabla 7

Total 20246.382
Costo de mantenimiento

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Cantidad mensual</th>
<th>Cantidad anual</th>
<th>Precio por unidad (M.N.)</th>
<th>Costo anual (M.N.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón activado</td>
<td>-</td>
<td>3 kg(^5)</td>
<td>$ 35/kg</td>
<td>135</td>
</tr>
<tr>
<td>Costal de sal</td>
<td>1</td>
<td>12</td>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>Cartucho filtro pulidor</td>
<td>-</td>
<td>2</td>
<td>75</td>
<td>150</td>
</tr>
</tbody>
</table>

| Total               |                  |                |                         | 1485               |

\(^{5}\) El carbón activado se recomienda cambiar cada año y el costo por agua tratada es de 0.6 centavos por cada metro cúbico de agua

Para obtener la cantidad utilizada al año de sal se hizo uso de la siguiente tabla

<table>
<thead>
<tr>
<th>Tipo de Suavizador</th>
<th>Por pié(^3)</th>
<th>Eficiencia</th>
<th>Kg de sal consumidos al año suavizando 10,000 l de agua por día con dureza:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 mg/L</td>
</tr>
<tr>
<td>Suavizadores Plus Hidroagua</td>
<td>20,000</td>
<td>1.8 kg</td>
<td>730 g</td>
</tr>
<tr>
<td>Suavizadores estándar Hidroagua</td>
<td>20,000</td>
<td>2.5 kg</td>
<td>518 g</td>
</tr>
<tr>
<td>Suavizadores comunes en capacidad mínima</td>
<td>20,000</td>
<td>2.7 kg</td>
<td>475 kg</td>
</tr>
<tr>
<td>Suavizadores comunes en capacidad máxima</td>
<td>30,000</td>
<td>6.8 kg</td>
<td>285 g</td>
</tr>
</tbody>
</table>


Utilizando un suavizador común en capacidad mínima\(^5\) y sabiendo que la dureza del agua a tratar es de 400 mg/L se realizó una extrapolación y el cálculo correspondiente para tratar 2000 L de agua al día.

La información de los costos de mantenimiento correctivo y preventivo de la caldera fueron denegados por la empresa, sin embargo se contactó a una empresa que se dedica al mantenimiento básico y como ya se mencionó antes se trata de una caldera Cleaver Brooks modelo M de 40 cc. Dicha información fue recibida de manera satisfactoria y el costo es como se muestra a continuación en la siguiente tabla

**COSTO EN MANO DE OBRA:** $ 9,072.00

**MATERIALES UTILIZADOS:**

| 6 | PZA.  | 6061770 | EMPAQUE METALICO REG. MANO | $ 32.00 | $ 192.00 |
| 3 | PZA.  | 6064434 | EMPAQUES TAPA             | $ 268.00 | $ 804.00 |
| 1 | PZA.  | 6062687 | EMPAQUE CAJA FLOTADOR    | $ 20.00  | $ 20.00  |
| 12| PLG.  | 6091350 | TUBO DE NIVEL DE 5/8"    | $ 7.50   | $ 90.00  |
| 20| PZA.  | 6095070 | BROCHES DE PRESION       | $ 4.00   | $ 80.00  |

\(^5\) El carbón activado se recomienda cambiar cada año y el costo por agua tratada es de 0.6 centavos por cada metro cúbico de agua

\(^6\) La capacidad se refiere al flujo que pasa a través del suavizador
TOTAL DE MATERIALES: $ 4,975.50

TRASNP. Y VIATICOS: $ 1,060.00

TOTAL DEL SERVICIO: $ 15,107.50 + IVA

FORMA DE PAGO: ANTICIPADO.

EL MANTENIMIENTO BASICO CONSISTE EN:
1. Abrir Caldera.
2. Revisar condiciones de los refractarios.
3. Resane de refractarios.
4. Lavar con equipo de alta presión por el lado del fuego.
5. Quitar tortugas y desarmar columnas, lavar por el lado del agua revisando el grado de incrustación de metales.
6. Colocación de empaques nuevos de tortugas, columnas y llenado de agua a la caldera.
7. Prueba hidrostática en la que se verifica que no existan fugas en los nuevos empaques montados, como en los metales (tubos flux, hogar y espejo), revisando el estado de los mismos.
8. Colocación de empaques de tapas y cierre de Caldera.
9. Arranque de Caldera que a su vez consiste en:
   a) Limpieza y ajuste de quemador.
   b) Limpieza y ajuste al múltiple
   c) Revisión y ajuste de varillaje.
   d) Revisión y ajuste de piloto.
   e) Encendido de Caldera.
   f) Carburación y medición de las variables de la combustión con equipo Bacharach 300, midiendo:
      Temperatura de chimenea.
      % de oxígeno
      % de eficiencia de combustión
      % de exceso de aire
      % de CO2
      % de pérdidas por chimenea
      PPM de Co

El precio puede variar debido a la inflación ya que la fecha de solicitud fue el 28 de mayo de 2014
Recuperación del costo de inversión

Sabiendo que el costo de inversión es de $20 246.38 más el costo de mantenimiento anual del tren de separación es de $ 1485 y el costo del mantenimiento general de la caldera es de $ 15 107.50 sin tomar en cuenta el mantenimiento preventivo y correctivo que se le da cada 3 meses, se puede asumir que la recuperación es de un año, haciendo notar que al implementar el tren de separación no será necesario el mantenimiento básico.

Beneficio del ahorro de los recursos

Una vez recuperado el costo de inversión si se toma en cuenta los años que se ha estado trabajando de la misma manera en el mantenimiento de la caldera, que según datos del gerente de producción, la caldera lleva poco más de 20 años siguiendo el mismo protocolo y asumiendo que el costo de mantenimiento básico ha sido constante, se tiene una inversión de $ 302 150; como el tren de separación evita dicho mantenimiento y el costo de mantenimiento del tren de separación en 20 años es de $ 29 700, no se compara en absoluto a la cantidad invertida por el mantenimiento a la caldera.

No sólo se observa el beneficio monetario, sino también el beneficio del ahorro en el consumo del agua; recordando que para la línea de producción del lavado de frascos de mermelada se ocupan 5 m³ de agua, el agua residual obtenida del proceso se destinaba para el lavado de pisos y baños de la cual sólo se ocupaba aproximadamente 2 m³ al día el resto se tiraba al alcantarillado se tiene por año una cantidad desperdiciada de 1080 m³, que con el tren de separación propuesto no será una cantidad desperdiciada sino aprovechada. La caldera ocupa 2 m³ de agua al día por lo que también se estaría ahorrando una cantidad de 720 m³ Así que se tiene un ahorro total de 1800 m³ al año.

Mantenimiento

Para el mantenimiento general de los equipos consiste en darles un retrolavado que se rige bajo el mismo principio para los 3 equipos propuestos, en la figura 8 se muestra el principio básico del retrolavado.
Pasos para retrolavado:

Retrolavado: se cambia el flujo, haciendo pasar agua potable por el tubo que se encuentra en medio (salida de agua tratada) a alta presión; el agua aplicada removerá las partículas que se encuentran saturadas en el adsorbente llegándose a disolver o simplemente generar fuerzas de enlace dejando la resina libre (arena sílica y carbón activado), este paso dura aproximadamente 10 minutos.

Enjuague rápido: análogo al paso anterior para asegurar que no haya partículas indeseadas. Toda el agua utilizada en el retrolavado se tira al efluente.

Lo descrito anteriormente aplica para el filtro de arena sílica y carbón activado. Para el suavizador es básicamente lo mismo que el anterior añadiendo un paso más después del retrolavado:

Salmuera y enjuague: una vez realizado el retrolavado para arrastra partículas y lodos acumulados se debe reponer la cantidad específica de sal esto para regenerar la resina, repasando brevemente se refiere a que la resina atrapará los iones de sodio de la salmuera y va a ceder los iones de calcio y magnesio, posteriormente cuando finaliza la succion de salmuera el suavizador pasará a la fase de enjuague lento cuya función es prolongar el tiempo de contacto entre la resina y la salmuera para incrementar la eficiencia de la regeneración, para finalizar se realiza un enjuague rápido que remueve las trazas de salmuera y reacomoda la resina. Todo este proceso dura en promedio 1 hora.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Retrolavado</th>
<th>Salmuera y enjuague</th>
<th>Enjuague rápido</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena sílica</td>
<td>10 min.</td>
<td>NA</td>
<td>15 min.</td>
<td>30 min.</td>
</tr>
<tr>
<td>Carbón activado</td>
<td>10 min.</td>
<td>NA</td>
<td>15 min.</td>
<td>30 min.</td>
</tr>
<tr>
<td>Suavizador</td>
<td>10 min.</td>
<td>1 h</td>
<td>25 min.</td>
<td>55 min.</td>
</tr>
<tr>
<td>Total</td>
<td>30 min.</td>
<td>1 h</td>
<td>55 min.</td>
<td>2 h 25 min</td>
</tr>
</tbody>
</table>

Tabla 11. Tiempo de retrolavado
Para determinar el número de retrolavados que se tienen que hacer por periodo se extrapolaron algunos datos proporcionados por una empresa de purificación de agua \(^8\), esos datos son características similares del agua y contaminantes microbianos \(^9\) que de acuerdo a la norma oficial mexicana "NOM-001-SEMARNAT-1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales" para sólidos sedimentables es de 2 mg/L, sólidos suspendidos es de 60 mg/L, demanda bioquímica de oxígeno \(^10\) de 60 mg/L considerando a la Cristalita® como uso público urbano no excede los parámetros establecidos.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Retrolavados al año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecho profundo y carbón activado</td>
<td>24</td>
</tr>
<tr>
<td>Suavizador</td>
<td>12</td>
</tr>
</tbody>
</table>

**Tabla 12. Retrolavados por año**

**Conclusiones**

Es importante hacer uso de los avances tecnológicos, no sólo para obtener un beneficio económico sino también para generar un menor impacto ecológico, asimismo aprovechar los recursos intelectuales, económicos y naturales para que estos actúen en sinergia y si esto sucede se puede obtener una mayor sustentabilidad, debido a que algunas empresas no hacen énfasis en el impacto ecológico, ya que asumen que al implementar algún sistema que reduzca la huella ecológica solo genera costos, pero la realidad es otra puesto que es todo lo contrario; se genera una empresa sustentable y amigable con el ambiente.

Se debe crear conciencia a toda la población que no se necesita llegar al extremo en el cual los costos por los recursos no renovables serán inalcanzables, ya que aún se está a tiempo para tomar medidas prevenibles que gracias a la tecnología es ahora mucho más alcanzable la remediación del impacto ambiental, además es crucial tener una educación en la que cualquier recurso tanto renovable como no renovable se deba reutilizar puesto que no es posible prescindir de ellos, dado que se depende completamente de dichos recursos para llevar una cierta calidad de vida.

**Referencias**


\(^8\) El propietario solicitó disculpa acerca de la información de la empresa

\(^9\) Aunque no se realizó un análisis microbiano se asume que está debajo de los límites máximos permitidos

\(^10\) No se hizo el análisis experimental, asimismo se justifica que la empresa ha tirado el agua al efluente sin pasar por un proceso previo de reducción de agentes biológicos por lo que se asume que el agua no posee altas concentraciones de estos mismos que no son perjudiciales para la salud.

