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Before Starting

George Dantzig presented the linear programming model and the simplex method
for solving the problem at an econometrics conference in Wisconsin in the late 40s. The
economist Hotelling stood up, devastatingly smiling, and stated that “But we all know the
world is nonlinear.” The young graduate student George Dantzig could not respond, but
was defended by John Von Neumann, who stood up and concluded that “The speaker titled
his talk ‘linear programming’ and carefully stated his axioms. If you have an application
that satisfies the axioms, well use it. If it does not, then don’t”; he sat down, and
Hotelling was silenced. (See Dantzig’s account of the early history of linear programming
in Lenstra, J. K., Rinnooy Kan, A. H. G. and Schrijver, A. eds., History of mathema-
tical programming. A Collection of Personal Reminiscences, North-Holland, pp. 19-31,
Amsterdam, 1991.)

Nothing in the world takes place without optimization,
and there is no doubt that all aspects of the world

that have a rational basis can be explained
by optimization methods.

Leonhard Euler, 1744.
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Abstract

A solution for the Static Transmission Expansion Planning (STEP) problem with an
Interior Point Method (IPM) considering convex and continuous relaxation modeling is
addressed in this work.

The STEP is a large-scale hard combinatorial optimization problem, with the aim
of deciding, optimally, the best circuit addition configuration in a power system for a
fixed future time. This is a very challenging task because it has a nonlinear, nonconvex
and mixed formulation. However, in order to get a more tractable problem, the classical
convex relaxation in the network representation by the transportation model is used in
this research.

In order to solve the mixed-integer problem, we follow the next strategy. First, the
transportation model is used, but with no integer variable constraints. This leads to a
continuous relaxed Linear Program (LP) which has to be solved in every iteration of the
expansion planning process. In this case, an infeasible logarithmic barrier primal-dual
IPM is applied as a subroutine to solve the resulting LP. The interest in using this kind of
methods, is due to their efficiency for solving large-scale problems (the STEP formulation
is generally a large-scale problem). Finally, the Garver’s Constructive Heuristic Algorithm
(CHA) is used to obtain solutions that satisfy the dropped integer constraints.

For these purposes, a tool in MATLAB R2013a environment was developed, where the
CHA and the IPM were completely coded.

The thesis includes results for the classical 6-bus Garver’s test system and for the
24-bus IEEE test system.
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Resumen

En este trabajo se presenta la solución del problema de la Planeación de la Expansión
de la Transmisión Estática (PETE) considerando una relajación convexa y continua en el
modelado.

La PETE es un problema combinatorio muy complicado y de gran escala que busca
decidir de forma óptima la mejor configuración de adición de circuitos en un sistema de
potencia para una fecha fija futura, el cual sigue siendo un gran reto debido a que su
formulación es no-lineal, no-convexa y mixta. Sin embargo, con la finalidad de lidiar
con un problema más tratable, en este trabajo se usa la clásica relajación convexa para
representar la red v́ıa el modelo de transporte.

Para resolver el problema lineal-entero, se llevó a cabo la siguiente estrategia. Primero,
se usó el modelo de transporte pero sin las restricciones para las variables enteras. Esto
genera un programa lineal continuo que debe ser resuelto en cada iteración del proceso de
la planeación de la expansión. En este caso, se aplicó un método infactible primal-dual de
barrera logaŕıtmica de puntos interiores como subrutina para resolver el programa lineal
que resulta. El interés de usar este tipo de métodos se debe a la eficiencia que presentan al
resolver problemas de gran escala (la formulación de la PETE es en general un problema de
gran escala). Finalmente, con el fin de obtener soluciones que satisfagan las restricciones
omitidas sobre las variables enteras, se usa el conocido algoritmo heuŕıstico constructivo
de Garver.

Para estos fines, se desarrolló una herramienta en MATLAB R2013a, donde se pro-
gramaron completamente tanto el algoritmo heuŕıstico constructivo como el método de
puntos interiores.

La tesis incluye resultados del sistema clásico de prueba de 6-nodos de Garver y del
sistema de prueba de 24-nodos de la IEEE.
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Chapter 1

Introduction

This chapter is devoted to the general context of this research. First, the theoretical background

of STEP is given. Afterwards, the research motivation, the objectives and the literature review of

the IPM applications on optimal power flows and the transmission expansion planning problem

are exposed. A brief history about the evolution of the linear programming solution techniques is

included as well.

Transmission planning is now an essential part of the reliability and security of elec-
tricity supply in which a decision on expansion in the past, affects the performance of
the power system in the present, as well as decisions made in the present will affect the
performance of the power system in the future. As very high economic cost decisions,
both, the design of the strategy of the expansion and the construction of the transmission
elements must be done for long life infrastructure, providing obsolescence of components
and avoiding the waste of financial resources.

STEP has always been a rather complex task in general. For example, the location
and capacity of the load that will be integrated into the system are not known with full
certainty. Moreover, once the load is installed, we should take into account the power
consumption; which also includes the load already installed. This means that the load is
a function that depends on both, space and time. The variation of demand over time is
solved with an appropriate load dispatch, while the problem of the location and capacity
of the load should be considered within the STEP problem.

In general, if a future generation and demand scenario have been given. . .
“the STEP is a problem of synthesis and decision-making with the aim of getting a plan of
construction expansion of transmission elements over a fixed planning horizon, to ensure a
power system able to meet the demand under certain standards of quality and reliability, at
the lowest possible cost for both investment when building while operation when servicing.”

18



CHAPTER 1. INTRODUCTION 19

STEP Objective

The purpose of STEP is to determine the location, amount and type of transmission
elements that should be added (or even removed) for a fixed future time, which will
have proper power transport capacity, capable of withstanding future generation and load
additions as well as their flow requirements [1].

It is expected that the new system meets the constraints of the problem with a certain
level of quality and reliability at the lowest possible cost that must be able to operate
properly at least under N-1 contingency conditions.

Basically, the objective pursued in a static expansion is to decide optimally where?,
how many? and what? transmission elements should be built and/or removed. If the
expansion is dynamic, the question when? to do such maneuvers must be answered.

Solution Methods and Formulations for the STEP Problem

Algorithms for solving the problem of transmission expansion can be classified in [2, 3]:
heuristics, mathematical optimization and metaheuristics.

Heuristics: This type of formulations are based on intuitive arguments and rules
that mostly use common sense and experience to get a good solution. However,
this process does not guarantee finding the optimal solution to any problem. These
methods are usually applied when a problem is very difficult to solve [4].

Mathematical Optimization: Here, the problem is formulated purely as an opti-
mization model with an objective function which measures the performance of any
parameter to be minimized or maximized; subject to a set of constraints that restrict
the solution space.

Metaheuristics: These algorithms integrate the features of optimization and heuris-
tic methods. Due to the non-linear, non-convex and combinatorial nature of the
STEP problem, these methods have been quite used to solve the problem, generat-
ing high quality solutions in short computational times.

When applying any method of solution it is necessary to observe [5]:

1. The uncertainties in the power system. This will focus the study in a

(a) deterministic approach

(b) non-deterministic approach

When the study is deterministic, the expansion plan is designed based on historical
data, choosing the worst scenario ever presented where all parameters (generation,
load growth, etc.) are given by a single value.
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Under a non-deterministic approach we have the possibility of considering the past
experience and future expectation, since at least one of the parameters is presented
by means of a random variable, characterized by a given probability distribution.

2. Temporal treatment. This will produce a

(a) static formulation of the problem

(b) dynamic formulation

When we work from a static formulation, we should determine an optimal solution
for a certain point of time (ideally but not necessarily a short period). Here, the
first three questions of the objective of the STEP problem are answered (where?,
how many? and what? transmission elements should be installed).

From a dynamic formulation –as the gradual temporal variations of the studied sys-
tem are considered for the purpose of research– we should obtain a sequence time
of the accomplishment of the optimal expansion plan. Since this view, in addition
to answering the questions where?, how many? and what? transmission elements
should be built and/or eliminated, the planning process generates an optimal re-
sponse to the question when? to do this.

3. Power system structure. This allows to know if it is a

(a) regulated environment

(b) deregulated environment

Under a regulated environment a vertically integrated utility is the unique responsi-
ble for reaching the mentioned goals of STEP. After deregulation, the transmission
system must be able to become a mean to facilitate and promote competition without
any advantage to an agent as well, between other goals; for an excellent treatment
of the market environment of the transmission expansion you can see [6].

1.1 Research Motivation

The STEP mathematical formulation can be expressed as a Mixed-Integer Nonlinear
Programming (MINLP) problem in the following general form:

minimize f(x)
subject to g(x) = 0

h(x) ≥ 0
(1.1)

where
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x ∈ Zr× Rn: is a vector of decision variables which in the STEP problem could include
continuous variables such as power generation (active and reactive), bus voltages,
bus angles and power flows, and integer variables such as tap ratios of controllable
transformers and/or circuit additions.

f : Zr× Rn → R: is a scalar function that represents the transmission system planning
goal such as investment cost of new circuit additions, reliability cost, congestion
cost, electricity market cost, etc.

g : Zr× Rn → Rp: is a vector of nonlinear functions that contains the AC or DC network
representation.

h : Zr× Rn → Rq: is a vector of nonlinear functions that includes mandatory power system
operational functions such as limits of transmission power in circuits, limits of the
generator output power, limits of voltage levels and limits of the maximum number
of circuits that can be added, between others. This vector can contain optional
constraints such as the limits of the investment, the reliability and security limits,
and the environmental impact limits.

Note that if Zr = ∅, the optimization problem (1.1) is not mixed anymore. The couple
of index p and q give the number of equality and inequality constraints, respectively; we
will consider that total number of constraints will be always m = p+ q. Note also that for
simplicity and without loss of generality, we consider that the variable bounds x ≤ x ≤ x
are included in h(x).

In the more general sense, solving (1.1) is a very challenging and maybe could be an
impossible task to do. Perhaps, the most important drawbacks for the problem are two:

1. One related to the network representation (AC or DC power flow equations). The
nonlinearity and nonconvexity of both formulations joined to the nonconvexity na-
ture of the feasible region produced, yield a problem with a multimodal landscape.
Of course, the chances in the majority of the algorithms to be trapped in a local
minimum are large [7]. In fact, great efforts have been made in order to have simpler
–but more accurate– models of the network [8, 9, 10, 11, 12].

2. The mixed nature of the problem. It is well-known that mixed integer programming
problems belong to the class of NP-hard problems [13, 14], which means that they
cannot be solved exactly by polynomial time algorithms; you can see [15] for a proof
that STEP is a NP-hard problem. Moreover, when one tries solving a nonconvex
MINLP problem, there will be no guarantee to obtain the global optimum solution.
This topic remains unresolved for the most practical optimization models of complex
system [8].
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Roughly speaking and once we have already chosen the network representation (AC
or DC network equations), we can solve the STEP problem in a direct form or in a
relaxed form. Of course, as a very difficult problem and in order to have a more tractable
formulation, relaxations of (1.1) are made in general.

Nevertheless the formal definition of relaxation will be given in Chapter 2, we can say
for the moment that the relaxation of a hard given problem is another problem which
underestimates their objective function and/or their constraints. As a consequence, an
optimum value of the relaxed problem is a lower bound of the one of its original problem.
Two common relaxations are the convex relaxation and the continuous relaxation. A
relaxation is said to be convex if the objective function and the feasible region are convex.
In the case of a mixed problem, the continuous relaxation corresponds to the problem
obtained by dropping the integer restrictions [16].

We could use the latter notion to classify the mathematical modeling approaches of the
STEP as: convex relaxed and continuous relaxed.

When a continuous relaxed modeling is performed, an heuristic to obtain the integer
solutions are usually employed; this still being the most reported and worked approach
for the STEP [7, 17, 18, 19, 20, 21, 22]. On the other hand, when continuous relaxation is
not taken into account in the modeling process, the use of optimization techniques with
the capability to solve the problem considering its mixed nature is necessary; methods like
Benders decomposition and branch and bound are classical approaches for mixed problems
in STEP. Because of the difficulty of the task, only few papers using these methods are
reported in the literature, among these papers are [23, 24, 25]. Moreover, the convex
relaxation can or cannot be made and will lead to a linear or nonlinear optimization
problem inside the STEP formulation, respectively.

1.2 Research Objectives

The state of the art shows that the most demanding and difficult part of the STEP
process is solving the optimization problem which appears in the expansion activity. Thus,
in this work we strive for the efficient solution of the large-scale optimization problem
generated in the process, testing an infeasible IPM which is recognized as the most efficient
method for solving this kind of large formulations; the algorithm described in this thesis
is based on the first part of the work developed at the Statistics and Operations Research
Department of the Princeton University by Vanderbei & Shanno (the algorithm LOQO
for nonconvex nonlinear programming) [26].

In this way, and considering the convex and continuous relaxation formulation of the
STEP problem, the main objectives of the current thesis research are:

• To formulate in detail the STEP problem as a mixed-integer LP using the trans-
portation model.
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• To show the development of an infeasible logarithmic barrier primal-dual interior
point method for solving the continuous relaxation version of the transportation
model to the STEP problem.

• To show the connection between optimality conditions and IPM through the central
path concept.

• To solve the STEP problem using the Garver’s constructive heuristic algorithm in
order to face the continuous relaxation performed.

Moreover, last but not least, in this work –as one of the main objectives– we have done
great efforts at obtaining a formal but at the same time a very understandable document
with a complete development of all subjects, giving clarity on how to model the problem,
on the mathematics used and on the method of solution as well. All this in order to
contribute to continue this line of research.

1.3 Background

Optimal network expansion has always been one of the most important issues in power
system planning, and has been studied extensively during the past several decades. The
people interested in this problem have investigated the transmission expansion with dif-
ferent objectives and constraints, from different aspects such as modeling and solving
methods, and from the electricity market and uncertainty points of view.

For a general review of the transmission expansion planning state of the art, there are
four excellent surveys [2, 3, 27, 28] from 2003, 2006, 2013 and 2014, respectively. In this
section we will comment about those papers which are directly related to our work only.

Since STEP problem by nature can be regarded as an optimal power flow (OPF)
problem with discrete constraints [12], we will begin with a review of the IPM in OPF.
Then, we will show the use of the IPM in transmission network expansion planning when
convex and/or continuous relaxation is performed. Finally, we give a short review of the
works related to STEP in Mexico.

1.3.1 Interior point methods in optimal power flows

The use of IPM in power systems has experienced an awesome expansion as it is shown
in [29], where we can find a collection of the different methods and applications of IPM to
power systems. In particular –speaking about optimal operation of power systems– OPF
is the problem which has been solved most of the times using an IPM, as it is reported in
[30].

The use of IPM in OPF has been very successful. For example, Geraldo Leite in his
outstanding Ph.D. dissertation [31], proposed and investigated in great detail a number of
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IPM for solving some variants of the OPF; here, interior and even noninterior point meth-
ods were successfully applied, including the study of the so-called higher-order IPM: the
predictor-corrector method (PCM) [32], the multiple predictor-corrector method (MPCM)
[33] and the multiple centrality corrections method (MCCM) [34].

The success of the IPM in OPF, encourage to Rider et al. to look for a more robust
IPM –with faster convergence– and they have explored a combination of the PCM, MPCM
and MCCM [35].

In an excellent paper by Capitanescu et al. in 2007 [36], two higher-order methods
–PCM and MCCM– where compared with regard to their performances against the pure
PDIPM when applying to the OPF. In 2012, Frank et al. reported that primal-dual
methods have demonstrated excellent performance in solving many OPF problem variants
[37]. Later, in 2013 Capitanescu and Wehenkel concluded that MCCM was the most
reliable IPM for OPF [38]. In [39] Chiang shows efficient approaches to solve the n − 1
security constrained OPF by using structure-exploiting IPM.

In fact, Leite, Rider et al. and Capitanescu together with Wehenkel verified the IPM
efficiency when working on very large power systems, respectively 2098, 2256 and 8387
buses in their works. Being the first two models part of the Brazilian interconnected
system, and the latter the model of a large part of the interconnected EHV European
power system.

1.3.2 Interior point methods in transmission planning

The use of IPM in power systems has become very important because of its advantages
when large (or very large) optimization problems arise, as it does in transmission planning.

The seminal work of Garver let a clear understanding that when continuous relaxation
is done, it is necessary to solve large LP or NLP subproblems in the transmission planning
process [40]. This has prompted researchers to look for better solvers which can help in
addressing the subproblem.

In 2005, Sánchez et al. presented an IPM as an innovative subroutine for solving the
LP [20]. They performed a convex relaxation –through the transportation model– and a
continuous relaxation as well. Results showed that IPM as a solver inside a CHA found
good quality solutions for medium scale systems (for instance the 46-bus South Brazilian
system and the 93-bus Colombian system).

The approach of continuous relaxation allowed the use not only of linear models for
the network, but also the use of more complicated models as the DC model in [21], the
AC model in [19] and the AC model including reliability constraints in [17]. In these cases
the IPM was as the nonlinear subproblem solver. In Correa et al. [41], IPM were used to
solve linear and non-linear formulation of their environmental model where the emissions
of CO2 were considered.

When the continuous relaxation is not applied, the IPM still play an important role.
In this case, the STEP problem has a more difficult mixed formulation and in such case,
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it is possible to do a convex relaxation through the transportation model in order to solve
the problem as in [24, 25] where a branch-and-bound algorithm was used.

1.3.3 The Mexico’s context

It is known that the problem of the expansion planning of transmission systems is
undoubtedly a very important task in power systems, and in the electrical research and
postgraduate studies section at the ESIME has not gone unnoticed [42, 43, 44]. For
example, nonetheless Molina in [42] did not work on the expansion planning problem itself
but on a post-problem issue (the transmission oeuvre prioritization), he introduced for the
first time these topics in the postgraduate section. More recently, Dı́az [43] developed a
tool for the transmission expansion considering deregulation and Anaya in [44] worked on
the problem of the network expansion including the effects of wind production penetration.

At the UNAM, Zenón worked on a hybrid mechanism for the network expansion in
Mexico, the United States and Canada [45].

On the other hand, the National Grid in Mexico is formed by a transmission system
based on 400 kV, 230 kV and 115 kV lines and since the early 60’s (where the nation-
alization of the electricity industry in Mexico took place) until the energetic reform in
January 2016, the transmission system expansion and planning was centrally performed
by the Federal Electricity Commission (Comisión Federal de Electricidad, CFE) using
public resources, taking into account their own necessities and subject to financial time
constraints.

According to Madrigal [46] and to Ávila and Mota [47], the procedures and methodolo-
gies for transmission management and expansion planning in Mexico from the centralized
point of view of the CFE was based on a minimum cost analysis aimed at minimizing
the expected investment and operational costs, subject to technical and economic con-
straints where the location, sizes and dates for the hydroelectric and thermal plants are
determined at the beginning of the process by the planning division in central offices of
the CFE. This procedure selects projects which show long-term utilization, that improve
system reliability and are least cost options. The planning methodology also includes a
profit analysis which quantifies costs and benefits of the transmission program [46].

After the unbundling of the generation, network activities (transmission and distri-
bution) and retailing segments in the Mexican Electricity Market (where competition in
generation and retailing segments is now allowed), the expansion and upgrading activities
of the National Transmission Network is proposed by the National Control Energy Center
(Centro Nacional de Control de Enerǵıa, CENACE), considering the opinion of the Energy
Regulatory Commission (Comisión Reguladora de Enerǵıa, CRE) and –in a last stage–
authorized by the Energy Ministry (Secretaŕıa de Enerǵıa, SENER).

After deregulation, the objective of the transmission network is to facilitate the compe-
tition being a fair field where all participants of the market can have the same opportunities
and where the market operator can decide for the best option for the consumers.
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1.4 Why to Use an Interior Point Method for a Linear

Programming Problem? A brief history

Linear programming has its roots in the work of Fourier in 1826 in his study of linear
inequalities. The applied side of the subject got its start in 1939 when L. V. Kantorovich
noted the practical importance of a certain class of linear programming problems and gave
an algorithm for their solution; the work was unknown in the West until 1960 when the
English version appeared [48]. Actually, in 1975, the Royal Swedish Academy of Sciences
awarded the Nobel Prize in economic science to L.V. Kantorovich and T.C. Koopmans
“for their contributions to the theory of optimum allocation of resources”.

In a general sense, a LP is a combinatorial problem which selects an extreme point
among a finite set of possible vertices in a polyhedron (which models the feasible region
of the problem defined by the constraints). In 1947, George Dantzig presented the first
algorithm that performs in a systematic way that selection. The algorithm is known as
simplex method. In his work, Dantzig presented the solution for the problem of finding
the best assignment of 70 people to 70 jobs modeled as a LP [49].

Since its beginning and for about 25 years, the simplex method was evolving and
a lot of variants of the method were developed as codes for solving in a very efficient
way large LP. Besides, it is known that the optimal solution of a LP always lies at a
vertex of the feasible region, and that the simplex method proceeds from one vertex to
a neighboring vertex until it hits the optimal one. This could be an inconvenient topic
for certain types of problems as Victor Klee and George Minty showed in their work of
1972 [50]. Klee and Minty proved that, in the worst case, the method has exponential
complexity in the size of the problem, i.e., the method needs an exponential number of
iterations to find the optimal solution1. In their problem –with n variables, n restrictions
and 2n vertex– they showed that the algorithm must visited every vertex before reach
the optimal solution (for a version of the Klee and Minty problem, see [52]). Although
this rarely happens in practice, this was a detonating question and people began to look
for another linear programming algorithm with a polynomial complexity, this means, an
algorithm in which the running time required to compute the solution should be bounded
above by a polynomial in the size, or the total data length, of the problem.

In 1979, based on an ellipsoid method developed by other Russian mathematicians,
Khachiyan presented a polynomial algorithm for LP [53]. Khachiyan showed that his
algorithm had a polynomial complexity of order (nm3 + m4)L, where m represents the
number of rows in a LP formulation, n the number of columns, and L the length of the
data [54]. Of course this had a great attention even on the international press because
of the great theoretical advance. However, it was quickly a big disappointment because
practitioners realized that the best implementation of the ellipsoid method was not com-

1The term complexity refers to the amount of resources required by a computation. For an excellent
treatment of the LP complexity you can see [51].
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petitive with the simplex method; the number of steps required for the ellipsoid method to
terminate was almost always close to the worst case bound –whose value, although defined
by a polynomial, is very large– in contrast to the number of steps for the simplex method
which seems to be roughly linear in m and perhaps logarithmic in n [55].

The last contradiction was solved by Karmakar [56], whose announcement in 1984 of
a new polynomial-time algorithm for LP with the potential to dramatically improve the
practical effectiveness of the simplex method –reporting solution times up to 50 times faster
than this one– made front-pages news in major newspapers and magazines throughout the
world. The complexity of the Karmakar’s method is of order (nm2 +m3)L [54].

Karmakar’s method belongs to a class of methods called interior-point methods. This
kind of methods have been demonstrated to be competitive with the simplex method and
usually superior on very large problems.

1.4.1 Simplex and interior point methods overview

Every LP is based on the Fundamental Theorem of Linear Programming which ensures
that the optimum –if it exists– will be at a vertex of the polyhedron formed by the set of
constraints (Appendix A). According to this, LP solution methods differ basically in the
way of searching that vertex. In fact, the simplex was the first proposal which implemented
an intelligent search of the optimum.

There are some differences between the simplex method and IPM that can be easily
understood from the geometrical point of view.

The simplex algorithm works roughly as follows [57]: We begin with a feasible point at
one of the vertices of the polyhedron. Then we “walk” along the edges of the polyhedron
from vertex to vertex, in such a way that the value of the objective function monotonically
decreases at each step. When we reach a point in which the objective value decreases no
more, we will be finished.

On the other hand, the IPM solves a LP by generating a sequence of points which are
inside of the feasible region starting from an initial (strictly) interior point. This means
that an IPM starts and moves always in the interior of the feasible region towards the
optimum.

From the latter, it is clear that contrary to the simplex method, an IPM never gives
exact optimal solution; instead, it generates an infinite sequence converging towards an
optimal solution. Of course, after a finite number of iterations it is necessary a stopping
scheme for the IPM.

In the Figure 1.1, the searching of the optimum with the simplex method (xs0, x
s
1, . . . , x

s
n)

and with IPM (x0, x1, . . . , xn) is shown.
Each interior point iteration is expensive to compute but can make significant progress

towards the solution, while the simplex method usually requires a larger number of inex-
pensive iterations.
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Figure 1.1: Simplex vs. IPM: Geometrical behavior when searching the optimum.

Instead of Simplex Methods where the founding concept are basis, in IPM the notion
of central path and analytic center are vital.

1.5 Contributions

The author strongly believes that the main contribution of this thesis is the explana-
tion and exposure in detail of the transmission expansion planning problem, its related
mathematics and its solution process using a CHA. As it can be seen along the work, all
the topics were developed in a very comprehensive manner and in such a way that a future
extension for more complicated models can be straightforward.

Added to this, another important contributions are:

• A clear classification of the STEP problem according to the mathematical modeling
approaches (Chapter 1, section 1.1);

• Showing the connection between optimality conditions from the duality theory (2.6)
and from the Karush-Kuhn-Tucker (2.8) points of view (Chapter 2, Observation 2.1);

• The full development of an Infeasible IPM and the detailed description of the algo-
rithm (Chapter 3, Algorithm 3);

• In Chapter 4, obtaining the energy conservation equation (4.14) –which is part of
the DC network model– from the AC transmission line power flow equations (4.3)
and (4.4);

• Also in Chapter 4, obtaining the transportation model of the STEP problem (4.25)
from the relaxation of the DC model (4.19) and a full description of its objective
function and every constraint contained in the model;
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• A detailed example of modeling of the STEP problem with and without redispatch
(Chapter 4, subsection 4.5.1);

• The use of an IPM within the STEP problem as a solver in a Constructive Heuristic
Algorithm and its detailed description (Chapter 5, Algorithm 4);

• Introducing a novel Power System Analysis Toolbox for the test systems operation
condition verification (Appendix C).

The following two small contributions are results of this work as well:

1. International Poster

• Becerril, C., Mota, R. and Badaoui, M. Interior point algorithm as applied to
the transmission network expansion planning problem. SIAM Conference on
optimization, San Diego, California, USA. May 19-22, 2014.

2. Conference paper

• Becerril, C., Mota, R. and Badaoui, M. Solution to the static transmission
expansion planning by a primal-dual interior point method. 7◦ Congreso Inter-
nacional de Ingenieŕıa Electromecánica y de Sistemas, CIIES 2014.

1.6 Scope and General Methodology

The scope of this thesis is to handle a static and deterministic formulation of the
network expansion, modeled basically to cope with a regulated environment problem. The
mathematical model is from the cost minimization standpoint through the transportation
model and the integer solution is reached using an heuristic.

The STEP problem presents a nonconvex mixed optimization formulation and some
modifications to the model are necessary in order to have a more tractable one. So, once
we have relaxed the STEP problem through the transportation model and then into a
continuous LP, we have two tasks when trying to give an expansion plan: one related with
the solution of the LP and the other one related to the integer nature of the problem.

Therefore, the general methodology of this work is as follows: First, we use an interior
point method in order to solve in an efficient way the LP resulting of the relaxation; this
will give us a continuous solution for the expansion. Then, we use the Garver heuristic
to manage the integer part of the problem. If the expansion indicates no more additions,
we stop. If not, we reconfigure the topology network and the model into a continuous
LP once again. The IPM is used as a solver one more time and we obtain a new solution
(continuous) for the Garver heuristic which will work as an integer solver. This is repeated
until no more additions are needed.
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1.7 Thesis Outline

The remainder of this thesis is organized in 5 more chapters as follows:

Chapter 2. This chapter is devoted to the review of the optimality conditions from the
duality and from the KKT (Karush-Kuhn-Tucker) point of view. Finally, at the end
of the chapter we show the connection between these conditions and the central path
concept which is the fundamental stone of the IPM philosophy.

Chapter 3. In this chapter we show in great detail the development of a logarithmic bar-
rier primal-dual IPM. This algorithm is based on the first part of the work developed
at the Statistics and Operations Research Department of the Princeton University by
Vanderbei & Shanno (the algorithm LOQO for nonconvex nonlinear programming).

Chapter 4. The fourth chapter describes the work with the AC transmission line power
flow equations in order to figure out the DC model of the STEP. Then, we apply the
convex and continuous relaxation to obtain the transportation model as a full LP.
Finally, as an example we show in detail the development of the 6-bus Garver’s test
system modeling process for the STEP problem with and without redispatch.

Chapter 5. This chapter presents the solution of the STEP problem using the Garver’s
Constructive Heuristic Algorithm for the two test systems. We show the solution
with and without redispatch for the Garver’s system and the solution with redispatch
for the 24-bus IEEE test system.

Chapter 6. The dissertation ends with the concluding remarks where we summarize the
results and contributions of the thesis and some future work proposed.

The work contains four appendixes as well:

First, in Appendix A we show the Fundamental Theorem of Linear Programming.
This is a very important theorem in LP because it ensures that if a LP has an optimum,
this must be at a vertex of the feasible region. As this is related to the LP geometry and
basic solutions, we give these definitions and terminology including simple theorems of
convexity before arriving to the main theorem.

The algorithm described in chapter three is the first part of a general nonconvex non-
linear algorithm. Thus, the Appendix B provides the equivalence between this algorithm
and a LP giving the corresponding formulas.

The power flow analysis is an essential tool for expansion planning process. We need
to know how the system is operating in at least the steady state conditions before and
after the expansion. Thus, in Appendix C we show all the power flow studies for each
scenario for the 6-bus Garver’s test system. For this purpose, we used the PSAT (Power
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System Analysis Toolbox) which is an open source Matlab toolbox for electric power
system analysis and simulation [58].

Finally, the data for the generation-demand and for the right of ways of the test systems
studied in this work are given in Appendix D. The initial topology configuration of each
system is given as well.



Chapter 2

Linear Program Optimality
Conditions

The efforts of this chapter are focused on showing some theory of the Linear Programming prob-

lem, which is undoubtedly the optimization problem most frequently solved in practice. A review

on the optimality conditions theory is given and we show that they can be obtained from duality

theory and from the Karush-Kuhn-Tucker (KKT) conditions as well. Finally, the central path

concept is introduced as a consequence of these optimality conditions; this concept is an essential

part of the interior point methods philosophy.

2.1 Primal and Dual Linear Problems

A LP is a constrained optimization problem in which the objective function and each
of the constrains are linear in the unknowns. Of course the set of constraints can include
equality and/or inequality functions which defines the feasible solutions set (feasible re-
gion). However, for easy manipulation –which means adding or subtracting (nonnegative)
slack variables in the inequality constraints– any LP can be transformed into the so-called
standard form:

minimize cTx
subject to Ax = b

x ≥ 0
(2.1)

where x, cT ∈ Rn, A ∈ Rm×n and b ∈ Rm. The restriction x ≥ 0 applies componentwise,
that is, all components of the vector x ∈ Rn are required to be nonnegative.

32
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The set
Fp = {x ∈ Rn |Ax = b, x ≥ 0} (2.2)

is the feasible set for the primal problem (2.1) and it is called primal feasible set. A point
x ∈ Fp is called a feasible point, and a feasible point x∗ is called an optimal solution if
cTx∗ ≤ cTx ∀x ∈ Fp. If there is a sequence {xk} such that xk is feasible and cTxk → −∞,
then (2.1) is said to be unbounded.

The dual problem of (2.1) is defined as

maximize bTy
subject to AT y ≤ c

(2.3)

or, in standar form
maximize bTy
subject to AT y + s = c

s ≥ 0
(2.4)

where y ∈ Rm is the dual vector and s ∈ Rn is called dual slack vector. The set

Fd = {(y, s) ∈ Rm ×Rn | AT y + s = c, s ≥ 0, y free} (2.5)

is the feasible set for the dual problem (2.4) and it is called dual feasible set.
According to this, the primal-dual feasible set is defined as follows

F = Fp ×Fd = {w = (x, y, s) |x ∈ Fp, (y, s) ∈ Fd}

The pair (2.1)-(2.3) is called the asymmetric form of duality. The results showed in
this chapter can be extended to the so-called symmetric form of duality which uses the
canonical form in the primal.

2.2 Duality Theorems and Optimality

In the theory of duality there are some theorems which give an important relation
between the primal and dual problems. For example, as it is stated below in the Lemma
2.1, a feasible solution to either of both problems (primal/dual) will produce a bound on
the objective value of the other problem (dual/primal).

Lemma 2.1 (Weak duality lemma) If w ∈ F , then cTx ≥ bTy.

Proof. Since w = (x, y, s) ∈ F from dual cT = yTA+ sT and from primal Ax = b, thus

cTx = yTAx+ sTx = yT b+ sTx = bTy + sTx ≥ bTy

where the inequality relation follows trivially from sTx ≥ 0. 2
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Corollary 2.1 If w∗ = (x∗, y∗, s∗) ∈ F is such that cTx∗ = bTy∗, then w∗ is the optimum.

Proof. Let w′, w′′ ∈ F , w′ = (x, y∗, s∗), w′′ = (x∗, y, s). From Lemma 2.1

cTx ≥ bTy∗ = cTx∗

The primal (2.1) is a minimization problem, hence x∗ is optimum for it. By the same
reasoning from Lemma 2.1

bTy ≤ cTx∗ = bTy∗

The dual (2.4) is a maximization problem, hence (y∗, s∗) is optimum for it. 2

We call cTx − bTy the duality gap, and is a measure of optimality. This was shown
in the last corollary and it will be shown again but in a stronger result in the following
theorem.

Theorem 2.1 (Strong Duality Theorem) Let F be non-empty. Then, x∗ is optimal
for the primal (2.1) if and only if the following conditions hold:

i. x∗ ∈ Fp;

ii. there is (y∗, s∗) ∈ Fd;

iii. cTx∗ = bTy∗.

Proof. See [59] Theorem 10.6, pp. 248. 2

The Strong Duality Theorem tells that, whenever the primal problem has an optimal
solution, the dual problem has one also and there is no duality gap. But what if the
primal problem does not have an optimal solution? The weak duality lemma shows that
the maximum cost of the dual is never above the minimum cost of the primal. Moreover,
the optimal cost of the dual is always less than or –in the best case– equal to the optimal
cost of the primal. Hence, if the cost of one of the problems is unbounded, then the other
problem has no feasible solution. This is formalized in the following theorem.

Theorem 2.2 If one of (2.1) or (2.4) is unbounded then the other has no feasible solution.

Proof. Lets proceed by contradiction. First lets suppose that the objective value of the
primal problem (2.1) is unbounded below (This mean that there must exist a sequence
{x̄k}∞k=0, x̄

k ∈ Rn, x̄k ∈ Fp for every k ∈ {1, 2, . . .}, such that cT x̄k → −∞). Now suppose
that there exist (y, s) ∈ Fd; i.e., a point in the dual problem (2.4) that is feasible. From
this and premultiplying by (x̄k)T , we obtain

(x̄k)TATy + (x̄k)T s = (x̄k)T c
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On one hand, we have that (x̄k)TATy+(x̄k)T s = (Ax̄k)Ty+(x̄k)T s but from the feasibility
of the primal, the feasibility of the dual and from hypothesis we have (Ax̄k)T = 0, s ≥ 0
and (x̄k)T ≥ 0, respectively. Thus

(x̄k)TATy + (x̄k)T s ≥ 0

On the other hand, from hypothesis cT x̄k = (x̄k)T c < 0, giving a contradiction.
It is not difficult to complete the proof by assuming that the dual objective is un-

bounded above and making symmetric arguments. 2

When there are feasible solutions to the primal and dual and combining the weak
duality lemma and its corollary, we can observe that each problem is seeking to reach each
other in such a way that when their cost are equal, both solutions are optimal. The next
theorem is even a stronger result than that of the Strong Duality Theorem, the LP Duality
Theorem.

Theorem 2.3 (LP Duality Theorem) If primal (2.1) and dual (2.4) both have feasible
solutions then both problems have optimal solutions and the optimal objective values of the
objective functions are equal.

Proof. See [52] Theorem 17.2, pp. 329. 2

Optimality from Duality

From the LP Duality Theorem (Theorem 2.3), we have an easy way to verify whether or
not a pair x, (y, s) is optimal with the following system of linear inequalities and equations

ATy + s = c
Ax = b
x ≥ 0
s ≥ 0

cTx− bTy = 0

(2.6)

In the next section we will show that this conditions coincide with the Karush-Kuhn-
Tucker optimality conditions for LP.

2.3 The Karush-Kuhn-Tucker Conditions

Kuhn and Tucker in 1961 developed the first order necessary optimality conditions for
constrained nonlinear programming problems [60]. It was later discovered that W. Karush
in his 1939 master’s thesis at the University of Chicago had proven the same result [61].
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First, lets consider the general nonlinear optimization problem for which f : Rn → R,
g : Rn → Rp and h : Rn → Rq

minimize f(x)
subject to g(x) = 0

h(x) ≥ 0
(2.7)

In order to state the KKT Theorem, the following definitions will be useful.

Definition 2.1 (Regular point, active constraint) We say that x∗ is a regular point
for the constraints if the Jacobian matrix of the equality constraints and the gradient vectors
of the active inequality constraints are linearly independent, i.e., if ∇g(x∗) and ∇hj(x∗)∀j
with hj(x

∗) = 0 are linearly independent.

Definition 2.2 (KKT point) A feasible point x∗ is called a KKT point if the following
KKT conditions hold: There exist (y∗ ∈ Rp, s∗ ∈ Rq) such that (x∗, y∗, s∗) are satisfying

i. ∇Tf(x∗)−∇Tg(x∗)y∗ −∇Th(x∗)s∗ = 0;

ii. hT (x∗) s∗ = 0;

iii. s∗ ≥ 0.

Here, y∗ and s∗ are called the Lagrange or dual multipliers.

Now, we are able to establish the KKT Theorem. Then, we will develop the KKT
conditions for the standard form of a LP.

Theorem 2.4 (Karush-Kuhn-Tucker Theorem) Let f, g, h ∈ C1. Let x∗ be a regular
point and a local minimizer for the problem (2.7). Then x∗ must be a KKT point.

Proof. See [59] Theorem 5.25, pp. 125. 2

If f is convex, g affine, and h is concave, then x∗ is optimal if and only if x∗ is a KKT
point for (2.7). Thus, the necessary condition becomes sufficient.

LP Optimality Conditions

Now, lets consider the LP in standard form given in (2.1) that we rewrite here

minimize cTx
subject to Ax = b

x ≥ 0

where the vector x ≥ 0 will play the role of the inequality constraints h in (2.7).
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The convexity of the problem ensures that KKT conditions are sufficient for a global
minimum. Hence, a KKT point for the LP given above –and thus by the Theorem 2.4 a
global minimizer– is a point (x∗, y∗, s∗) which satisfies

ATy∗ + s∗ = c
Ax∗ = b
x∗ ≥ 0
s∗ ≥ 0

(x∗)T s∗ = 0

(2.8)

The second and third expressions are because it is assumed that x∗ is a feasible point.

The last condition (x∗)T s∗ = 0 is very important in interior point theory and is called
complementarity condition.

Observation 2.1 From the first condition s = c − ATy. If we substitute this in the
complementarity condition, we get xT s = xT c−xTATy, but from the second expression we
have that bT = xTAT , thus

xT s = cTx− bTy

and we find that conditions (2.6) and (2.8) are identical.

It is not difficult to verify that the conditions (2.8) (or (2.6)) are sufficient for x∗ to be
a global solution of (2.1). Let x̂ be any other feasible point, so that Ax̂ = b and x̂ ≥ 0.
Then, from the first expression of (2.8)

cT x̂ = (ATy∗ + s∗)T x̂

= (y∗)TAx̂+ (s∗)T x̂

= (y∗)T b+ (s∗)T x̂

cT x̂ = bTy∗ + x̂T s∗

but x̂T s∗ ≥ 0 thus bTy∗ + x̂T s∗ ≥ bTy∗ and since bTy∗ = cTx∗ from (2.6), we finally have
that cT x̂ ≥ cTx∗. This means that no other feasible point can have a lower objective value
than cTx∗.

The complementarity conditions xT s = 0 implies that at least one of the two vari-
ables xj and sj, ∀j ∈ {1, 2, . . . , n} has to be zero at the optimum. The way in which
complementarity condition is dealt with, determines the type of optimization algorithms.

IPM perturb the complementarity condition and replace xT s = 0 with xT s = µ, where
the parameter µ is gradually reduced and eventually driven arbitrarily close to zero. The
algorithm forces a reduction of µ and the partition of vectors x and s into zero and nonzero
elements is gradually revealed as the algorithm progresses [62].
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2.4 Analytic Center and the Central Path

The most appealing feature of IPM is that they show polynomial complexity. Nowa-
days, it is known that this is because they generate points near an infinitely smooth curve,
called the central path [63]. Moreover, each element of the central path is an analytic
center (for a proof we refer to [64]). Thus, in this section we will briefly discuss these very
important concepts on IPM theory.

The analytic center

If we are at an interior point of a convex body represented by linear inequalities, we
can take the steepest descent step in order to move into another point which results in
a progress on the algorithm. However, this step does not make much advance unless
the current point is central. This means being approximately equidistant from all of the
bounds (Figure 2.1). The point which allows this nice centrality property is the so-called
analytic center, and is the central point of an analytic measure of the convex body in IPM.
The general idea behind this concept is the way in which the central-section algorithms
iterates; you can see [55] and [65] for a review of these details.

Figure 2.1: Centrality.

Central path

Definition 2.3 (Central Path) The central path C is an arc of strictly feasible points
in the primal-dual space, parametrized by a scalar µ > 0, defined by the set of solutions
(xµ, yµ, sµ) of the system [66]:

ATy + s = c
Ax = b
x > 0
s > 0

xT s = µ

(2.9)
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Observation 2.2 The central path can be view as the set: C = {(xµ, yµ, sµ)|µ > 0},
satisfying (2.9).

Observation 2.3 The central path definition matches the optimality conditions except
that

1. for the last expression called µ-complementarity condition. For which it is clear that
if µ = 0 we recover the dual complementarity condition of (2.8) and as µ → 0 the
solution of (2.9) approaches the primal-dual solution; and

2. for the positivity conditions rather than nonnegativity. Regard this, every point of
the central path are bounded away from zero allowing the centrality aforementioned
and lying in the interior of the feasible region F of the primal and dual problems.

Thus, the associated central-path point in primal-dual space is defined as the unique
point that simultaneously satisfies the conditions of strict primal feasibility (second and
third expressions), strict dual feasibility (first and fourth), and µ-complementarity (last
equation) [67].

For each fixed µ, the points in C satisfying (2.9) can be viewed as sets of points in Rn,
Rp, and Rq, respectively. The corresponding points (analytic centers) when µ varies form
the set of a trajectory called the central path (Figure 2.2).

One variant of the general primal-dual IPM is the path following method which restrict
iterations to a neighborhood of the central path, avoiding points that are too close to the
boundary (where x = 0 or s = 0) and where µ decreases so that the points can move every
time closer to a KKT point. Here, instead of taking the pure Newton steps (which would
be obtained in the case of being working with KKT conditions (2.8)), primal-dual IPM
take Newton steps toward points on C (working with (2.9)).

Figure 2.2: Central path [66].



Chapter 3

An Infeasible Interior Point Method

The aim of this chapter is to develop in detail an infeasible interior-point method. The infea-

sible method that we will show here is a logarithmic barrier Primal-Dual Interior Point Method

(PDIPM) and is based on the first part of the work of Vanderbei and Shanno for nonconvex and

nonlinear problems [26]. In order to show the advantages of using the selected algorithm, we

introduce the topic with the classic Fiacco and McCormick’s method. The chapter begins with

some general notions of the interior point algorithms and some comments on its relation with

the transmission expansion problem.

Given a general –continuous– optimization problem

minimize f(x)
subject to g(x) = 0

h(x) ≥ 0

where f : Rn → R, g : Rn → Rp and h : Rn → Rq, we will say that a point is feasible if it
satisfies all the constraints, and infeasible otherwise. A point which satisfies the inequality
constraints but may not satisfy the equality constraints is called interior [68].

When we use the term infeasible interior-point in a primal-dual method, the word
“infeasible” refers to the fact that primal feasibility is not required by the algorithm at
the beginning (and then enforced throughout) and it is only achieved as one approaches
to an optimal solution. The modifier “interior-point” refers to the fact that the slack
variables are required to be strictly positive at the beginning (and then throughout also)
[69].

The first characteristic means that the power balance equations need not be satisfied
at the initial point [31]. This feature can be particularly important when solving STEP
problems in which we may deal often with disconnected buses, where power flow unsolv-

40
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ability is an issue; for instance, new generating or load buses or when an interconnection
with a sub-system has to be done.

It is broadly accepted today that infeasible-primal-dual algorithms are the most effi-
cient interior point methods. A number of attractive features of these methods follows
from the fact that a logarithmic barrier method is applied to the primal and the dual
problems at the same time [62]; this will be a good feature because of the nice properties
of the logarithmic function as a barrier.

3.1 Barrier Methods

The first IPM were presented primarily in the form of barrier methods during the 1960’s
for solving nonlinear constrained problems. The barrier method is usually attributed to
Frisch [70] but were Fiacco and McCormick who developed the mathematical theory of the
subject in the context of nonlinear optimization [71]. Fiacco and McCormick noted the
applicability of barrier methods to LP, however at that time it was the general perceived
opinion that these methods would not be competitive with the simplex method and by the
early 1980s barrier methods were almost without exception regarded as a closed chapter
in the history of optimization. However, soon after Karmakar’s publication, Gill et al. [72]
showed a formal relationship between Karmakar’s method and the classical logarithmic
barrier method, marking the rebirth of the barrier methods.

In order to show the general idea behind barrier methods, lets consider the problem

minimize f(x)
subject to x ≥ 0

The motivation of the barrier methods (and of the penalty methods, too) is to find an
unconstrained minimizer of a composite function B –called barrier function– that reflects
the original objective function f(x) as well as the presence of the constraints. This can be
achieved by combining the function f with a positively weighted “barrier” that prevents
iterates from leaving the feasible region, named φ(x), and

B(x) = f(x) + φ(x)

so that the problem is now written as

minimize B(x)

For example, one option for φ(x) could be:

φ(x) =

{
0 if x is feasible;

+∞ if x is infeasible.
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However, this may result in a wildly discontinuous function which could be impossible
to minimize. Thus, we need a well-behaved function that remains feasible but preserves
nice properties (such as smoothness). This suggests the following desirables properties for
φ(x) [73, 74]:

i. Continuity at all points of the interior of the feasible region

ii. Positivity, i.e., φ(x) ≥ 0

iii. For any sequence of points in the interior converging to a point on the boundary of
the feasible region, φ(x)→ +∞

A good choice for the last requirements is a logarithmic function, i.e., we can define

φ(x) = −log(x)

In fact, this is the overwhelmingly predominant barrier today perhaps for its connection
with Karmakar’s method, and was the basis of the Fiacco and McCormick’s proposal.

3.1.1 The Fiacco and McCormick’s logarithmic barrier method

The classical logarithmic barrier method of Fiacco and McCormick [71] was designed
to solve the problem

minimize f(x)
subject to h(x) ≥ 0

(3.1)

where f : Rn → R and h : Rn → Rq are twice continuously differentiable in Ω = {x ∈
Rn |h(x) ≥ 0}.

Fiacco and McCormick defined the barrier function

B(x, µk) = f(x)− µk
q∑
i=1

log(hi(x))

where µk > 0. It is important to see how B(x, µk) can retain the smoothness properties
of f(x) and h(x) as long as h(x) > 0.

Now, instead of considering the original problem (3.1), the idea is to minimize the
barrier function defined above. This is, to solve –for every index k– a sequence of uncon-
strained problems of the form

min
x
B(x, µk) (3.2)

with lim
k→+∞

µk = 0. The most important contribution of Fiacco & McCormick was to prove

(see [71]), that under certain conditions for the functions f(x) and h(x) –that includes
the regularity assumptions– and while µk → 0, the sequence {x(µk)} generated by (3.2)
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converges to x∗, which is a local minimizer for (3.1). The sequence {x(µk)} is known as the
barrier central path [75]. Thus, we need to alternate between solving (3.2) and decreasing
the value of µ for the next iteration.

The choise of the scheme for reducing µk is not an easy issue, however the simplest
way to handle this decrease is by choosing a parameter γ ∈ (0, 1) –usually 1/10– and set
µk+1 = γµk with µ0 sufficiently large.

The Algorithm 1 shows the Fiacco & McCormick method for solving (3.1).

Algorithm 1: Fiacco & McCormick’s Algorithm

Data: ε > 0, γ ∈ (0, 1) and µ0 sufficiently large
Result: The optimum value x∗

1 begin
2 k ← 0;
3 Choose xk such that h(xk) > 0;
4 while µk > ε do
5 Compute the unconstrained minimum x(µk)← min

x
B(x, µk);

6 Set µk+1 = γµk;
7 k ← k + 1;

end
8 x∗ ← xk;

end

Of course, since the logarithmic barrier function is always applied in the interior of the
set defined by the inequality constraints, the need for the next assumption is clear: The
set {x |h(x) > 0} is non-empty.

This assumption clearly shows the need of feasibility which arises from the fact that
minimizing (3.2) requires a feasible initial –and subsequent– estimate in order to avoid
troubles with the domain of B(x, µk). In fact, IPM were developed under the assumption
that the initial point is feasible and interior. However, for a general LP problem, computing
a feasible point is as difficult as computing an optimal solution [68].

Another drawback of the classical logarithmic barrier method formulation arises from
problems which do not include equality constraints. To solve this, Fiacco and McCormick
added a penalty term to the barrier formulation to transform a more general problem like
(2.7) in

min
x
F (x, µk) = f(x)− µk

q∑
i=1

log(hi(x)) +
1

µk

p∑
i=1

(gi(x))2

Here a penalty term is added to assure that the equality constraints are driven to zero
as µ→ 0. However, this term can also be shown to be very ill-conditioned as µ→ 0 [76].
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The infeasible logarithmic barrier PDIPM proposed by Vanderbei and Shanno [26]
does not need initial feasibility and was developed to handle equality constraints also.

3.2 An Infeasible IPM

Even though we will use the IPM for LP, we keep the general mathematical treatment
given in [26] in order to let open the possibility of an extension. Thus, through this chapter
we will consider the general optimization problem given in (2.7) which we recall here:

minimize f(x)
subject to g(x) = 0

h(x) ≥ 0
(3.3)

where x ∈ Rn, f : Rn → R, g : Rn → Rp and h : Rn → Rq. f , g, h ∈ C2(R), i.e., are twice
continuously differentiable.

The Vanderbei and Shanno’s algorithm follows the general idea of the logarithmic
barrier PDIPM, which is to transform the problem (3.3) into a sequence of unconstrained
problems [77]. We can perform this by following the next steps:

1. Add a vector s of slack variables to the set of inequality constraints h(x) of (3.3) in
order to transform them into another set of equality constraints; according to this,
the original problem is written as:

minimize f(x)
subject to g(x) = 0

h(x)− s = 0
s ≥ 0

(3.4)

where x and s are the vectors of primal variables ; s ∈ Rq
+.

2. Use a barrier function to handle implicitly the remaining inequalities in (3.4) gen-
erated by the nonnegativity slack variables conditions. The classical logarithmic
barrier function of Fiacco and McCormick were used in [26] to reformulate the prob-
lem (3.4) as follows:

minimize f(x)− µk
q∑
i=1

log(si)

subject to g(x) = 0
h(x)− s = 0

(3.5)

Now, because of the logarithmic term, s ∈ Rq
++. Note that if the scalar µ (called

barrier parameter) gets very close to 0, we obtain a good stand-in formulation for
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(3.4). Here, for each µ we get an interior point, and as µ gets closer to zero this inte-
rior point moves closer to the optimal solution of the original optimization problem
(in our case, LP).

Although the original problem could be a LP, by introducing the barrier term, every
subproblem will be now a NLP.

3. Transform the latter subproblem into an unconstrained minimization problem. Note
that if we fix µk, we can transform (3.5) into an unconstrained equivalent problem
by using its related Lagrangian function.

The Lagrangian for the subproblem (3.5) is:

Lµ(w;µk) = f(x)− µk
q∑
i=1

log(si)− λTg(x)− πT [h(x)− s] (3.6)

where (λ, π) ∈ Rp× Rq are the dual variables of the problem, i.e. the Lagrange
multipliers of the equality restrictions and inequality restrictions, respectively. Here,
w := (x, s, λ, π) is defined as the vector that contains all vector variables.

Again, in the same way as in the Fiacco and McCormick’s method (see section 3.1.1),
instead of solving (3.5) we will solve –for every µk– the following unconstrained minimiza-
tion problem

min Lµ(w;µk) (3.7)

where Lµ(w;µk) is the Lagrangian given by (3.6).

3.2.1 Optimality conditions

A local minimizer for (3.7) is characterized by the KKT optimality conditions (see
section 2.3), which in the case of unconstrained optimization problems, are reduced to the
single requirement ∇f(x∗) = 0 and it will be stated formally in the next theorem.

Theorem 3.1 Suppose that f : Rn → R is C1(Rn). If x∗ is a local minimum of f on Rn

then ∇f(x∗) = 0.

Proof. Proceeding by contradiction, suppose that x∗ is a local minimum but ∇f(x∗) 6= 0.
The idea is to show the existence of another point z ∈ Rn, sufficiently close to x∗ such
that f(z) < f(x∗).

Let x∗ be the initial point and z = x∗−α∇f(x∗) a point in the direction of the vector
−∇f(x∗), scaled by α > 0. By Taylor expansion around x∗:

f(z) = f(x∗)− α∇f(x∗)T ∇f(x∗) + o(α) = f(x∗)− α||∇f(x∗)||2 + o(α)
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where o : R → R is such that o(s)/s → 0 when s → 0. Since ||∇f(x∗)|| 6= 0, for a small
enough α > 0,

f(z) < f(x∗)

therefore, x∗ could not be a local minimum, which is a contradiction. 2

Observation 3.1 For n = 1, Theorem 3.1 reduces to the known statement: If x∗∈ R is
a local minimum then f ′(x∗) = 0.

KKT system construction and the central path for the problem

According to the Theorem 3.1, the first order necessary optimality conditions for the
Lagrangian is obtained by taking∇Lµ(w;µk) = 0. Thus, computing the partial derivatives
for (3.6)

∇xL = ∇f(x)−∇gT (x)λ−∇hT (x) π = 0 (3.8)

∇sL = −µk∇
( q∑

i=1

log(si)

)
+∇(πT s) = 0

for this last equation

∇
( q∑

i=1

log(si)

)
=

[
1

s1

1

s2
. . .

1

sq

]T

Defining the diagonal matrix

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sq


we get

S−1 =



1

s1
0 · · · 0

0
1

s2
· · · 0

...
...

. . .
...

0 0 · · · 1

sq
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Using a vector of all ones e ∈ Rq

S−1e =

[
1

s1

1

s2
· · · 1

sq

]T
= ∇

( q∑
i=1

log(si)

)
On the other hand

∇(πT s) = ∇
( q∑

i=1

πisi

)
=


π1
π2
...
πq

 = π

If we remake the same process for vector π (in the same way than with the vector s),
Π would be a diagonal matrix with elements πi and we can write Π e = π.

These results yield
∇sL = −µkS−1e+ Π e = 0

Finally, premultiplying this equation by S

∇sL = −µke+ S Π e = 0 (3.9)

The other two partial derivatives are

∇λL = −g(x) = 0 (3.10)

∇πL = −h(x) + s = 0 (3.11)

From (3.8) to (3.11), the resulting perturbed primal-dual system is

∇f(x)−∇gT (x)λ−∇hT (x) π = 0
−µke+ S Π e = 0

−g(x) = 0
−h(x) + s = 0

(3.12)

Observation 3.2 The second equation of (3.12) can be written in the form

S Π e = µke

or
sTπ = µk (3.13)

It is clear that the right side of (3.13) is a strictly positive scalar due to the barrier
parameter µk. This in fact implies the strict condition π ∈ Rq

++ due to the presence of the
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logarithmic barrier which makes that the vector of primal slack variables s must be strictly
feasible, s ∈ Rq

++.
Thus, the perturbed primal-dual system gives the central path for the problem, where the

third and fourth equations of (3.12) together with s ∈ Rq
++, ensure primal (strict) feasibility

(equivalent to the problem (3.4)). On the other hand, the first equation of (3.12) together
with the implicit condition π ∈ Rq

++, guaranties the dual (strict) feasibility.

As it can be observed in this section, there are many subjects that they have to be
solved. It will be a description of each of these subjects in the next sections.

3.3 Minimization of the Lagrangian

Numerical methods for nonlinear unconstrained optimization problems are iterative.
At the k − th iteration, a current approximate solution xk is available. A new solution
xk+1 is computed by certain techniques, and this process is repeated until a solution point
can be accepted as an optimal solution. There are two fundamental iterative strategies to
compute xk+1: trust region methods and line search methods.

Trust region methods try to find the next solution point within a region called the
trust region which is normally a set (say a ball or box) centered at the current iterate
[78]. Byrd et al. proposed in [79] an interior point algorithm for solving large nonlinear
programming problems which followed a barrier approach and incorporates trust region
strategies.

Line search type methods for minimization search the next solution point in a line which
follows a descent direction, and is the classical method for searching points in optimization
algorithms ([66] and [80] are great references for a general description of this strategy). In
the reference [26], they primarily used a line search algorithm in order to solve (3.7); we
will show this in the next subsections.

In the Algorithm 2, we show a typical line search technique for an unconstrained
optimization problem.

Recalling the line search paradigm for our problem, given a current solution point
wk = (x, s, λ, π) the next step is to find a search direction ∆wk = (∆x,∆s,∆λ,∆π) and
a positive scalar αk (called the step length), and then compute a new solution point wk+1

(in this case for every µk)
wk+1 = wk + αk∆wk (3.14)

in such a way that with this new point a descent on the function that we are minimizing
is obtained.

From (3.14), it is clear that two parameters for every iteration (the search direction and
the step length) and one data for the initial computation (the initial point) are needed.
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Algorithm 2: Descent Unconstrained Optimization Algorithm

Result: The optimum value x∗

1 begin
2 k ← 0;
3 Take a starting point xk;
4 while Termination criterion is not fulfilled do
5 Determine a descent direction ∆xk;
6 Compute a step length αk;
7 Update the point: xk+1 = xk + αk ∆xk;
8 k ← k + 1;

end
9 x∗ ← xk;

end

3.3.1 Computing the search directions

It is well known that Newton’s method is very efficient for linear and convex quadratic
programming [26]. In order to obtain the search directions we will use the Newton’s
method. The directions can be obtained by getting only one step of the method to the
system equations (3.12). This is why we will drop the index k (except for µ which indicates
the current iterate value for it).

Considering the primal dual system (3.12) as a general system of equations F (w) = 0,
the Newton’s method forms a linear model for F around the current point and obtains
the search direction ∆w by solving:

JF (w)∆w = −F (w) (3.15)

where JF (w) stands for the Jacobian of F (w) which in this case is the Hessian of the
Lagrangian function (3.6), i.e., JF (w) = ∇2Lµ(w). For the Lagrangian given, we have

∇2Lµ(w) =


∇2f(x)−∇2gT (x)λ−∇2hT (x) π 0 −∇gT (x) −∇hT (x)

0 Π 0 S
−∇g(x) 0 0 0
−∇h(x) I 0 0


Thus we can write

∇2Lµ(w) ∆w =


−∇f(x) +∇gT (x)λ+∇hT (x)π

µke− S Π e
g(x)

h(x)− s

 (3.16)
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Defining
H(x, λ, π) = ∇2f(x)−∇2gT (x)λ−∇2hT (x) π
D(x) = −∇g(x)
E(x) = −∇h(x)

we can simplify equation (3.16) and write it as follows


H(x, λ, π) 0 DT (x) ET (x)

0 Π 0 S
D(x) 0 0 0
E(x) I 0 0




∆x
∆s
∆λ
∆π

 =


−∇f(x)−DT(x)λ− ET(x)π

µke− S Π e
g(x)

h(x)− s

 (3.17)

The system (3.17) is not symmetric, but is easily symmetrized by multiplying the
second equation by S−1. Thus, the Newton’s system for (3.12) is


H(x, λ, π) 0 DT (x) ET (x)

0 S−1 Π 0 I
D(x) 0 0 0
E(x) I 0 0




∆x
∆s
∆λ
∆π

 =


−∇f(x)−DT(x)λ− ET(x)π

µkS−1e− Π e
g(x)

h(x)− s

 (3.18)

It should be noted that this is a Newton direction toward a point on the central path,
i.e., a point (∆xµ,∆sµ,∆λµ,∆πµ) ∈ C, called the centering direction. A pure Newton
direction –called the affine-scaling direction– aims directly for a point at which the KKT
conditions are satisfied and would be obtained when µ = 0.

3.3.2 Computing the step lengths

In order to obtain the step length, we can compute a common value for both, primal
and dual variables [31]. However, if the problem is a LP, it is recommended to compute a
step length by a separated way, i.e., one step length αkp for primal variables and another
step length αkd for dual variables [26]; this is the simplest step length procedure in which
the goal is to hold the strict positivity conditions (s, π) ∈ Rq

++ × Rq
++. Thus, we will

develop the procedure to obtain the step length focused on this conditions.
Let wk := (xk, sk, λk, πk) be the current point. Assume that this point satisfy the strict

positivity conditions (sk, πk) ∈ Rq
++ × Rq

++. We must ensure that the new point remains
positive, this is, that sk+1 > 0 and πk+1 > 0, i.e., that sk+αk∆sk > 0 and πk+αk∆πk > 0.
Working for s (the other is straightforward)

sk > −αk∆sk
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In a line search paradigm αk > 0, and the feasibility of the current point guarantees
that sk > 0. Thus, we can write

1

αk
> −∆sk

sk
(3.19)

It is easy to see that even if we choose

1

αk
= max

{
− ∆sk

sk

}
the strict inequality in (3.19) is not always ensured, because at least for one value of the
quotient ∆sk/sk, both sides will be equal. To avoid this, we can take t > 1 and set

1

αk
= t max

{
− ∆sk

sk

}
If α0 = t−1 then α0 ∈ (0, 1) and the last expression can be written as

αk = α0

(
max

{
− ∆sk

sk

})−1
Thus, the maximum step length that we can compute and obtain for each variable

would be given by

αkp = α0

(
max

{
− ∆sk

sk

})−1

αkd = α0

(
max

{
− ∆πk

πk

})−1 (3.20)

A value of α0 = 0.95 is recommended in practice [26, 81].

Variables updating

The new values for the primal and the dual variables are calculated as follows

xk+1 = xk + αkp ∆xk

sk+1 = sk + αkp ∆sk
(3.21)

and
λk+1 = λk + αkd ∆λk

πk+1 = πk + αkd ∆πk
(3.22)
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3.4 Reducing the Barrier Parameter

According to the Fiacco and McCormick’s Theorem, one of the main issues in this kind
of IP methods is to establish how to decrease µ.

As it was aforementioned, the simplest way to reduce the barrier parameter is decreas-
ing its value by a fixed factor up to a given lower bound, for example µk+1 = 1

10
µk, or as

Monteiro et al. suggested [82, 83]

µk+1 = µk
(

1− 0.1√
n

)
However, the experience has shown that µ should not be decreased too fast –as in the

first case– because this may result in non-convergence or with a very small multiple as in
the Monteiro’s formula because they are hopelessly slow in practice.

3.4.1 Duality gap criterion

In LP problems, the decrease of the value of µ is usually estimated based on the
predicted decrease of the duality gap

µk+1 =
cTx− bTy
φ(n)

(3.23)

where

φ(n) =

{
n2, n ≤ 5 000

n
√
n, n > 5 000

However, (3.23) is positive only for feasible primal and dual values because the weak
duality lemma, where cTx ≥ bTy (Chapter 2). Lusting et al. did not overlooked this fact
and proposed some modifications for this [82].

Instead of the latter, we can use the complementarity gap as it is shown next.

3.4.2 Complementarity gap criterion

If the iterates converge to an optimum, then the sequence generated by the value of the
complementarity conditions (sk)T πk must converge to zero. This suggests that µk could
be reduced based on a predicted decrease of the complementarity gap given by

ρk = (sk)T πk (3.24)

Thus we can write

µk+1 =
ρk

q
(3.25)
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This is a better criterion to get a reduction for the value of µ, however this follows
the centering direction (see section 2.4 and subsection 3.3.1) and is biased strongly toward
the interior of a nonnegative orthant where s and π are strictly positive and makes little
progress in reducing µ. Then, we can accelerate the reduction by doing

µk+1 = σ
ρk

q
(3.26)

where σ ∈ (0, 1), called the centering parameter, is looking for a perfect mixture between
improving centrality and reducing µ. Note that if σ→1 we would approach to the centering
direction and as σ → 0 we would approach to the affine-scaling direction.

We can choose a fixed value of σ = 0.1 as in this work, or as is proposed in [31],
dynamically chosen as follows

σk+1 = max{0.99σk, 0.1}

with σ0 = 0.2.

3.4.3 Vanderbei and Shanno’s criterion

Based on their experience, Vanderbei and Shanno [26] pointed that this infeasible
algorithm performs the best when the complementarity products sTπ approach zero at a
uniform rate and used

ξ =
mini siπi
πT s/q

in order to measure the distance from uniformity.
Note that ξ is in fact a measure of centrality of the current point. Thus, their proposal

is based on the theoretical IPM results that when the trajectory is far from centrality, a
larger µ promotes centrality for the next iteration, whereas when the trajectory is close
to the central path, a small µ should be chosen. Following these ideas, they suggested an
heuristic for the choice of µ given by

µk+1 = ζ min

(
(1− α0)

1− ξ
ξ

, 2

)3
sTπ

q
(3.27)

where α0 ∈ (0, 1) is the step length parameter described in subsection 3.3.2, which in [26]
defaults to 0.95, and ζ is a settable scale factor, which defaults to 0.1.

3.5 The Stopping Criteria

Ideally speaking, it is expected that optimality conditions (3.12) are satisfied. This
means that, in order to have an approximate local minimum, we need that primal, dual
and complementarity conditions are fulfilled in some sense. Thus, the following stopping
criteria must be satisfied:
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1. Primal stopping criterion. In the case of the primal conditions, it is expected
that

−g(xk) = 0

and
−h(xk) + s = 0

However, we can be content if the maximum norm between all the components of
each vector fall below some tolerance.

Thus, we can use the l∞ norm defined for an n-dimensional vector x as

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}

in order to set up that
‖g(xk)‖∞ ≤ ε1

But, for the second condition –since h(xk) ≥ 0– it is enough to write

max{−h(xk)} ≤ ε1

Finally, we can combine both expressions and obtain the primal stopping criterion
given by [36, 38]

vk1 = max
{
‖g(xk)‖∞, max{−h(xk)}

}
≤ ε1 (3.28)

2. Dual stopping criterion. In the case of the dual conditions, it is expected that

∇f(x)−∇gT (x)λ−∇hT (x) π = 0

Again, we can be content if the maximum norm between all the components of the
last vector fall below some tolerance. Thus, we expect that

‖∇f(x)−∇gT (x)λ−∇hT (x) π‖∞ ≤ ε1

Moreover, we can have a better approximation to the solution if we divide (scale)
the length (given by the norm) by a small number, say for example by the l2 norm
of the vector x given by

‖xk‖2 =
√
xTx

and, in order to avoid the possibility of an undefined expression, we can write the
dual stopping criterion as [36, 38]

vk2 =
‖∇f(xk)−∇gT (xk)λk −∇hT (xk) πk ‖∞

1 + ‖xk‖2
≤ ε1 (3.29)
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3. Complementarity stopping criterion. According to the last discussions, we can
use the complementarity gap (3.24) and write the complementarity stopping criterion
as follows [36, 38]

vk3 =
ρk

1 + ‖xk‖2
≤ ε2 (3.30)

4. µ stopping criterion. Finally, we should consider the value of µ when it gets too
close to zero, i.e., the last stopping criterion is given by [31]

µk ≤ εµ (3.31)

Thus, if the criteria vk1 ≤ ε1, v
k
2 ≤ ε1, v

k
3 ≤ ε2 and µk ≤ εµ are fulfilled, then the

primal feasibility, (scaled) dual feasibility, (scaled) complementarity gap and the µ limit
respectively are satisfied; moreover, when conditions (3.28), (3.29) and (3.30) are satisfied,
the current iterate is a KKT point of accuracy ε1 and ε2.

Typical convergence tolerance values are ε1 = 10−4, ε2 = 10−6 and εµ ≤ 10−12 [31, 38].

3.6 Initial Point

For this kind of methods, a feasible initial point is not mandatory. However, in order
to define the logarithmic barrier terms and to avoid spurious solutions (points that satisfy
the KKT equations but violate the positivity conditions), the strict positivity conditions
on the primal slacks (s ∈ Rq

++) and dual slacks (π ∈ Rq
++) must be satisfied by the initial

point and all subsequent iterates. Towards this end, the method iterates start from a
point that meets these conditions and hold them by following a trajectory in the positive
orthant of the space defined by the primal slack and dual slack variables.

Some techniques can be given for starting points. In [31] four approaches for estimate
w0 are given for the optimal power flow problem and some similar techniques could be
useful for STEP problem. However, in this work we only accomplish the requirement of
strict starting positivity condition on (s, π) by setting w0 = [1, 1, . . . , 1].
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3.7 The Infeasible PD-IPM Algorithm

The Algorithm 3 shows the infeasible primal-dual interior point method described in
this chapter which will be used as a LP solver within the STEP problem process.

Algorithm 3: Infeasible Primal-Dual Interior-Point Algorithm

Data: ε1, ε2 and εµ, σ ∈ (0, 1) and w0 such that (s, π) > 0
Result: The optimal vector w∗

1 begin
2 k ← 0;
3 Compute the initial barrier parameter µk by (3.26) or (3.27);

Form the initial perturbed primal-dual system (3.12);
4 while (3.28)− (3.31) are not verified do
5 Compute the Newton direction ∆wk by (3.17) or by the reduced system

(3.18);
6 Obtain the primal αkp and dual αkd step length in the direction ∆wk using

(3.20);
7 Update the primal (xk, sk) and dual (λk, πk) variables by (3.21) and (3.22);
8 Reduce the barrier parameter µk by (3.26) or (3.27);
9 Update the perturbed primal-dual system (3.12);

10 k ← k + 1;

end
11 w∗ ← wk;

end



Chapter 4

Problem Modeling and Relaxation

This chapter gives the development of the transportation model for the STEP problem. First

we will construct in detail the DC STEP model which is a mixed-integer nonlinear optimization

problem. Then, we will relax the problem to a mixed-integer linear optimization problem to

obtain the transportation model and we will match this model to the structure of (1.1). Finally,

the model development for the Garver’s system is showed, making way to the formulation (3.3)

and (3.4).

4.1 Transmission Line Power Flow

In steady state power system analysis, the lumped parameter π−equivalent model
(Figure 4.1) is often used to model an overhead AC l−th transmission line (linking a bus
i with another bus k) and is characterized by a series impedance (zl) and in each ending
of the line by a shunt admittance (yl0).

Here, the series impedance of the line can be written as

zl = rl + jxl

where rl and xl are referred to as the resistance and reactance of the line, respectively
(the reactance is capacitive if xl < 0 or inductive if xl > 0).

Another important element in power system analysis and network equations is the
series admittance of the line, which is defined as the reciprocal of the series impedance:

yl =
1

zl
=

1

rl + jxl
=
rl − jxl
r2l + x2l

= gl + jbl (4.1)

where gl and bl are referred to as the conductance and susceptance of the line, respectively;
in actual transmission lines rl > 0 and xl > 0 thus gl is positive whereas bl is negative.

57
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Figure 4.1: Pi configuration of a single transmission line.

The shunt admittance is in general a shunt capacitance (a parallel connection between
the device and the electrical ground) which is an effect due to the electric fields between
conductors. In many cases the value of gl0 is too small so it could be neglected.

4.1.1 AC transmission line power flow

The current (Iik) that will be sent from bus i to bus k through a l−th transmission line
is divided into two components (Figure 4.1): one component (Il) flowing through the series
impedance and another component (Il0) flowing through the shunt admittance. That is

Iik = Il + Il0 = (Vi − Vk)yl + Vi yl0

Analogously, the sending complex power (Sik) through the l−th transmission line is

Sik = ViI
∗
ik

= Vi[(Vi − Vk)yl + Viyl0 ]
∗

Sik = Vi[(Vi − Vk)yl]∗ + Vi[Viyl0 ]
∗

Taking the exponential form for voltages and rectangular form for the admittances,
and neglecting the conductance of yl0

Vi = |Vi|ejθi Vk = |Vk|ejθk
yl = gl + jbl yl0 = jbl0

Sik becomes

Sik = |Vi|ejθi
[
(|Vi|ejθi − |Vk|ejθk)(gl + jbl)

]∗
+ |Vi|ejθi

[
j|Vi|ejθibl0

]∗
=

[
|Vi|2 − |Vi||Vk|ej(θi−θk)

]
(gl − jbl)− j|Vi|2bl0

Sik =
[
|Vi|2 − |Vi||Vk| cos(θi − θk)− j|Vi||Vk| sin(θi − θk)

]
(gl − jbl)− j|Vi|2bl0
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Then the complex power flow through a l−th transmission line that links a bus i to a
bus k is

Sik = gl|Vi|2 − gl|Vi||Vk| cos(θi − θk)− bl|Vi||Vk| sin(θi − θk)

−j
[
gl|Vi||Vk| sin(θi − θk) + bl|Vi|2 − bl|Vi||Vk| cos(θi − θk) + |Vi|2bl0

] (4.2)

Thus, from (4.2) the real and reactive power flow through the l−th transmission line
is, respectively

Pik = gl|Vi|2 − |Vi||Vk|
(
gl cos(θi − θk) + bl sin(θi − θk)

)
(4.3)

and
Qik = −|Vi||Vk|

(
gl sin(θi − θk)− bl cos(θi − θk)

)
− |Vi|2(bl + bl0) (4.4)

4.1.2 DC transmission line power flow

The DC transmission line power flow equations form an equivalent model that pro-
vides an approximate solution for a network carrying AC power, supplying all the neces-
sary information in the context of planning. This model captures the physics of an AC
transmission line power flow but in a relaxed form.

The DC transmission line power flow equations are obtained by making the following
assumptions [84]:

Assumption A. The reactance in a transmission line is much bigger than its resistance
(xl >> rl).

In general, the quotient rl
xl

is not high in transmission systems. In fact, high rl
xl

ratios
are anomalous situations which have been investigated because they are related with
convergence difficulties of the power flow algorithms and ill-conditioned power systems
[85, 86, 87, 88, 89, 90]. Thus, we can consider rl ≈ 0. Indeed, from (4.1) we have gl ≈ 0.
This leads to a first reduction for the couple of equations (4.3) and (4.4) as follows

Pik = −|Vi||Vk|bl sin θik (4.5)

Qik = |Vi||Vk|(bl cos θik) + |Vi|2(bl0 − bl) (4.6)

where θik = θi − θk.

Assumption B. The difference in the angle of the voltages phasors are small.
For stability reasons, in power systems one of the main issues is keeping angular separa-

tion between two buses as close as possible, and it is extremely rare to observe differences
that exceeds an angular displacement of 30 to 35◦ across the line [91, 92]. Moreover, for
normal operating conditions this angle separation is always less than 15◦; we refer to the
table C.1 of the Appendix C as an example, where θik < 10◦.
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Thus, it is possible to assume θik ≈ 0 and as a consequence sin θik ≈ θik and cos θik ≈ 1.
This leads to a second reduction yielding

Pik = −|Vi||Vk|blθik (4.7)

Qik = |Vi||Vk| bl + |Vi|2(bl0 − bl) (4.8)

Assumption C. The bus voltage magnitudes |Vi| and |Vk| are very close to 1.0 p.u.
In normal operating conditions the bus voltage magnitudes should fluctuate between

0.95 p.u. y 1.05 p.u. [91, 92]; we refer again to the table C.1 of the Appendix C as an
example. Thus, we can assume that |Vi| ≈ 1 and |Vk| ≈ 1. This leads to a third reduction
that yields

Pik = −blθik (4.9)

Qik = bl0 (4.10)

Finally, in short lines the shunt element bl0 is neglected and in medium and long lines
bl >> bl0 , thus Pik >> Qik. As a consequence, the DC power flow equations consider only
(4.9), i.e., considering assumption A and (4.1), (4.9) is

Pik =
1

xl
θik (4.11)

Observation 4.1 It should be noted that equation (4.11) is an expression of Ohm’s law
for the equivalent DC network and so Kirchhoff’s Voltage Law (KVL) is implicitly taken
into account.

4.2 DC Network Representation for the STEP Prob-

lem

When the DC network representation is used, we have to ensure that both Kirchhoff’s
laws are satisfied by two equivalent expressions. In this section, power conservation equa-
tions in each node (KCL equivalent) and energy conservation equations (KVL equivalent)
are established.

4.2.1 Power conservation (The power balance equations)

The total real power injected by the i−th bus (Pi) to the network is defined as the
difference between the real power generation (PGi) and the real power demanding (PDi)
(Figure 4.2), i.e.

Pi = PGi − PDi =
∑
k∈K

Pik
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where in STEP problem, K denotes the set of all buses connected to the bus i by an
existent or a candidate transmission circuit.

Figure 4.2: Power injected to the network.

Thus, the power conservation equation for each bus i is

−
∑
k∈K

Pik + PGi = PDi (4.12)

where we have to take into account that Pki = −Pik since we are considering a lossless
network.

Equation (4.12) gives an equivalent form of the KCL for the DC model.

Compact writing of the power balance equations

We can use the node-branch incidence matrix (S) in order to obtain a reduced form of
the power balance equations. The incidence matrix formulation allows to take implicitly
into account that Pki = −Pik and for the STEP problem has the following characteristics
for its construction1:

1. Rows correspond to buses and columns to Right Of Ways (ROW).

2. The column for ROW (i, k) has exactly two non-zero entries: −1 in row i and +1 in
row j.

Thus, equation (4.12) can be written as follows

Sf + g = d (4.13)

1A right of way is a portion of land that is owned utility and could be available for the construction
of new transmission circuits
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where now in STEP problem, f is the vector with elements fik which will correspond to
the real power flow Pik through an existent transmission circuit in ROW (i, k) or even
“through” a candidate for construction transmission circuit in ROW (i, k). Analogously,
g is the vector with elements gi which will correspond to the real power generation at the
bus i, PGi , and d is the vector with elements di which will correspond to the real power
demand at the bus i, PDi .

4.2.2 Energy conservation

It has been mentioned in Observation 4.1 that (4.11) is an expression of Ohm’s law for
the equivalent DC network and so Kirchhoff’s Voltage Law (KVL) is implicitly taken into
account (energy conservation). Using the new notation, we can write

fik − γikθik = 0

where again for STEP problem, γik is the susceptance of a transmission circuit that could
be a candidate (nik) or an already existent (n0

ik). This dependency leads to an expression
for the energy conservation for each bus i (∀k ∈ K) as follows [21]:

fik − γik(n0
ik + nik)θik = 0 (4.14)

It should be noted that equation (4.14) is nonlinear because of the products between
the nik variables and the θik variables.

4.3 DC Model for the STEP Problem

We are now able to write the STEP problem formulation using the DC (network)
model.

4.3.1 Objective function

In this work, the objective of the STEP problem is to minimize the construction cost,
represented as a linear function where the cost is directly proportional to the number of
transmission circuits which will be built in a ROW. This can be written as:

Min cTn (4.15)

where cT is the transpose vector containing cik elements which correspond to the cost of
construction of each transmission circuit in a ROW (i, k) and n is a vector of the nik
variables representing the candidate transmission circuits in the ROW (i, k).
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4.3.2 Constraints

DC network representation

Here, equations (4.13) and (4.14) are considered.

Power transfer limits

Due to security reasons, we must limit the transportation of power flows in the candi-
date and existent transmission circuits by a maximum power flow capacity per transmission
circuit (f ik) in a ROW (i, k), which is an element of the vector f . This can be considered
by the following expression [21]:

|f | ≤ (n0 + n) f (4.16)

Here, n0 is the vector containing existing transmission circuits elements n0
ik in a ROW

(i, k).

General constraints

Here, we set general constraints where the vector of maximum generator power output
g and the vector which takes into account the space limitation for transmission circuit
construction n are considered. This is written as follows

0 ≤ g ≤ g (4.17)

0 ≤ n ≤ n (4.18)

The vector g contains elements gi which correspond to the maximum limit generator
power output for the generation bus i. The vector n has nik as elements which refer to
the maximum transmission circuits allowed per ROW.

The model

Finally, the STEP DC model is [21, 93]:

minimize v = cTn

subject to : Sf + g = d

fik − γk(n0
ik + nik)θik = 0 (4.19)

|f | ≤ (n0 + n)f

g ≤ g ≤ g

0 ≤ n ≤ n

n ∈ Zr, f ∈ Rn
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The model given in (4.19) is a difficult mixed-integer, nonlinear, nonconvex optimiza-
tion problem; mixed because of the integer variables of transmission circuit additions and
nonlinear (and nonconvex) because of energy conservation equations.

4.4 Problem Relaxation

As it was introduced in the first chapter, the general idea of relaxation is to formulate
a related problem which underestimates their objective function and/or their constraints.
Of course the optimum value of the relaxed problem will be just a lower bound for that of
the original problem, however this is a very useful approach when the problem is difficult
to solve as it is the case in the DC model (4.19). This model can be relaxed in two possible
forms: convex and continuous relaxation.

Lets begin formalizing the general idea of relaxation with a definition [59]:

Definition 4.1 (Relaxation) . Given the problem to find,

f ∗ := inf
x
f(x)

s.t. x ∈ Q

where f : Rn → R is a given function and Q ⊆ Rn, we define a relaxation to the latter
formulation to be a problem of the following form: find

f ∗R := inf
x
fR(x)

s.t. x ∈ QR

where fR : Rn → R is a function with the property that fR ≤ f on Q, and where Q ⊆ QR.

For example, by proper addition of slack variables, each constraint in (4.19) which is a
mixed-integer, nonlinear, nonconvex problem, can be written as equalities and the feasible
set for the model is

Q =

{
x ∈ Zr× Rn :

hN(x) = 0
hL(x) = 0

}

where hN is the set of nonlinear and nonconvex constraints which contains energy conser-
vation equations (4.14) and hL is the set of linear constraints containing all the remaining
constraints on (4.19).

By eliminating the hN equations, we can obtain the convex relaxed problem and

QR =
{
x ∈ Zr× Rn : hL(x) = 0

}
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The continuous relaxation of the problem can be easily obtained by dropping the
integer constraints, i.e.

Q′R =
{
x ∈ Rn : hL(x) = 0

}
We will use these concepts to obtain a convex-continuous relaxed formulation of the

DC model called transportation model.

4.5 Transportation Model for the Test Systems

The transportation model is the classical convex relaxation of the STEP DC model
and it was first suggested by Garver in his seminal work [40].

As it was aforementioned, the difficulties of the DC model are associated with nonlinear
constraints (4.14) in the network modeling. Thus –as in the previous section– we can define
a relaxation on the feasible set by eliminating those nonlinear constraints, and the model
becomes [20, 22, 93]:

min v = cTn (4.20)

subject to :

Sf + g = d (4.21)

|f | ≤ (n0 + n)f (4.22)

0 ≤ g ≤ g (4.23)

0 ≤ n ≤ n (4.24)

n ∈ Zr, f ∈ Rn

In order to have the structure given by (1.1), lets work with the inequality constraints
as follows:

First, inequality (4.22) can be written as

−(n0 + n)f ≤ f ≤ (n0 + n)f

i.e., as a couple of inequalities in the form

f + f n ≥ −f n0

−f + f n ≥ −f n0
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In the other hand, inequalities (4.23) and (4.24) can be partitioned likewise as

−g ≥ −g
g ≥ 0
−n ≥ −n
n ≥ 0

Finally, the model is

minimize v = cTn

subject to :
Sf + g = d

f + f n ≥ −f n0

−f + f n ≥ −f n0

−g ≥ −g
−n ≥ −n
g ≥ 0
n ≥ 0

(4.25)

n ∈ Zr, f ∈ Rn

Note that this model is now a mixed-integer linear optimization problem (convex
relaxation), and if we relax the integer constraints, the model becomes simply a linear
optimization problem (continuous relaxation).

4.5.1 Garver’s test system model development

The Garver’s test system is a classic in studies of the transmission expansion planning
[40]. Its usefulness is largely a question of a small system –whose mathematical model
with few variables and constraints is very manageable– for which it is known the optimal
solution; this makes it the most widely used test system for those who try to validate new
algorithms and/or planning strategies.

In this subsection the problem statement is made for the Garver’s system. Also,
the transportation model given by (4.25) will be developed with and without generation
redispatch.

Problem statement

Garver’s system initially is a 5-bus system with 6 branches and 6 transmission circuits
–one per branch2–. The system has a current demand d = 190MW and a generating
capacity g = 270MW (Figure 4.3).

2A right of way with at least one built circuit is called a branch.
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Figure 4.3: Original configuration of the Garver’s test system.

Under these conditions, the system operates properly (Appendix C). In order to check
all the system operation scenarios, we use an open source Matlab toolbox for electric power
system analysis and simulation, the PSAT (Power System Analysis Toolbox) [58].

A future condition where demand will grow four times its present value and a new
generation bus with a maximum generating capacity of 600MW is expected. Also, it is
planned a strengthening at bus three which consists of two more units of 120MW each.
The future system (which will be the initial topology for the STEP modeling) is as shown
in Figure 4.4.

To integrate the new bus, the land linking bus 2 with bus 6 and bus 4 with bus 6 has
been purchased, so the system stays with the following characteristics:

• Maximum demand: 760 MW

• Maximum generation capacity: 1110 MW

• ROW’s: 1-2, 1-4, 1-5, 2-3, 2-4, 3-5 (current); 2-6 and 4-6 (new).
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Figure 4.4: Future condition –initial topology for the STEP modeling– of Garver’s system.

The maximum generation and load data of the future condition are shown in Table
4.1; ROW data are shown in Table 4.2.

Then, the question is: Where and how many transmission circuits must be built for
a new configuration of the transmission network that minimizes the cost of construction
and that satisfies the requirements of future conditions?

In order to answer the previous question, we can raise two schemes of modeling:

• One scheme which takes into account a previous generation dispatch where total
generation is equal to demand (called study without redispatch); or

• another scheme where generation is greater than demand, allowing the model to
yield a dispatch of the generation units (called study with redispatch).
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Table 4.1: Generation and load data for Garver’s system
Bus gi di
No. [MW ] [MW ]

1 150 80
2 — 240
3 360 40
4 — 160
5 — 240
6 600 —

Total 1110 760

Table 4.2: Right of way data for Garver’s system
Circuit n0

ik Cost, ×103 f ik
[USD] [MW ]

1-2 1 40 100
1-4 1 60 80
1-5 1 20 100
2-3 1 20 100
2-4 1 40 100
3-5 1 20 100
2-6 0 30 100
4-6 0 30 100

STEP Transportation Model Without Redispatch (WOR)

In a STEP without redispatch, a previous generation dispatch for the future demand
conditions is defined. In this work, we take the dispatch generation proposed in [40]
totaling the 760 MW of demand given by:

g1 = 50MW , g3 = 165MW and g6 = 545MW

to have the following model development.

Objective function. Taking the cost of construction of new circuits data of Table 4.2,
the objective function is:

min v = 40n12 + 60n14 + 20n15 + 20n23 + 40n24 + 20n35 + 30n26 + 30n46

Equality constraints. The node-branch incidence matrix is

S =


−1 −1 −1 0 0 0 0 0
1 0 0 −1 −1 0 −1 0
0 0 0 1 0 −1 0 0
0 1 0 0 1 0 0 −1
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
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Then, the power balance equation (4.21) is


−1 −1 −1 0 0 0 0 0
1 0 0 −1 −1 0 −1 0
0 0 0 1 0 −1 0 0
0 1 0 0 1 0 0 −1
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1





f12
f14
f15
f23
f24
f35
f26
f46


+


50
0

165
0
0

545

 =


80
240
40
160
240
0


According to the expression above, some notes concerning the modeling of the balance

equations are foreseen:

For bus 1: The generation of 50 MW will be taken to meet the demand of 80 MW at
the bus and this bus will be modeled as a 30 MW load bus.

For bus 3: Part of the 165 MW generated will supply the 40 MW of demand and this
bus will be modeled as a generation bus with maximum limit of 125 MW.

Considering the latter and taking p.u. values, the previous matrix expression can be
written as follows

−f12 − f14 − f15 = 0.30
f12 − f23 − f24 − f26 = 2.40

f23 − f35 + g3 = 0
f14 + f24 − f46 = 1.60

f15 + f35 = 2.40
f26 + f46 + g6 = 0

Inequality constraints. The maximum power flow limits given by (4.22) is expanded as

f12 + n12 ≥ −1
−f12 + n12 ≥ −1
f14 + n14 ≥ −0.8
−f14 + n14 ≥ −0.8
f15 + n15 ≥ −1
−f15 + n15 ≥ −1
f23 + n23 ≥ −1
−f23 + n23 ≥ −1
f24 + n24 ≥ −1
−f24 + n24 ≥ −1
f35 + n35 ≥ −1
−f35 + n35 ≥ −1
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f26 + n26 ≥ 0
−f26 + n26 ≥ 0
f46 + n46 ≥ 0
−f46 + n46 ≥ 0

The maximum power generation limits (4.23) are written as

−g3 ≥ −1.25
−g6 ≥ −5.45
g3 ≥ 0
g6 ≥ 0

The positivity on the transmission circuits addition are

n12 ≥ 0
n14 ≥ 0
n15 ≥ 0
n23 ≥ 0
n24 ≥ 0
n35 ≥ 0
n26 ≥ 0
n46 ≥ 0

Note that we have not considered upper bounds in the space for construction, i.e.,
n ∈ Zr+.

Thus, the transportation model for the Garver’s system –including slack variables– is:

minimize v = 40n12 + 60n14 + 20n15 + 20n23 + 40n24 + 20n35 + 30n26 + 30n46

subject to :
−f12 − f14 − f15 = 0.30

f12 − f23 − f24 − f26 = 2.40
f23 − f35 + g3 = 0
f14 + f24 − f46 = 1.60

f15 + f35 = 2.40
f26 + f46 + g6 = 0
f12 + n12 − s1 = −1
−f12 + n12 − s2 = −1
f14 + n14 − s3 = −0.8
−f14 + n14 − s4 = −0.8
f15 + n15 − s5 = −1
−f15 + n15 − s6 = −1

(4.26)
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f23 + n23 − s7 = −1
−f23 + n23 − s8 = −1
f24 + n24 − s9 = −1

−f24 + n24 − s10 = −1
f35 + n35 − s11 = −1
−f35 + n35 − s12 = −1
f26 + n26 − s13 = 0
−f26 + n26 − s14 = 0
f46 + n46 − s15 = 0
−f46 + n46 − s16 = 0

−g3 − s17 = −1.25
−g6 − s18 = −5.45
g3 − s19 = 0
g6 − s20 = 0
n12 − s21 = 0
n14 − s22 = 0
n15 − s23 = 0
n23 − s24 = 0
n24 − s25 = 0
n35 − s26 = 0
n26 − s27 = 0
n46 − s28 = 0

n ∈ Zr+, s ∈ Rn
+ and f ∈ Rn

We have the following characteristics to the STEP model for the Garver’s test system
without redispatch:

• Number of constraints: 34 (6 equality constraints and 28 inequality constraints)

– 6 power balance constraints (one for each bus)

– 16 maximum flow constraints (two per ROW)

– 4 maximum generation constraints (two for each generation bus)

– 8 positivity transmission circuit addition constraints (one for each ROW)

• Number of variables: 46

– 8 variables associated to the circuit addition (n)

– 8 variables related to the power flow in circuits (f)

– 2 variables corresponding to the power generation (g)

– 28 slack variables (s); one per inequality constraint
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STEP Transportation Model With Redispatch (WR)

In this case generation is greater than demand, i.e., no previous dispatch is considered,
instead the maximum generation capacity of each plant will be used in a free manner in
order to satisfy the load. We will show the necessary modifications when the model is
considering redispatch.

First, the power balance equation (4.21) is


−1 −1 −1 0 0 0 0 0
1 0 0 −1 −1 0 −1 0
0 0 0 1 0 −1 0 0
0 1 0 0 1 0 0 −1
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1





f12
f14
f15
f23
f24
f35
f26
f46


+


g1
0
g3
0
0
g6

 =


80
240
40
160
240
0


In this time, we have to consider the following remarks for the modeling of the balance

equations:

For bus 1: This bus with 150 MW of maximum generation available will fulfill the 80
MW of demand; thus, this bus will be modeled as a generation bus with maximum
generation capacity of 70 MW.

For bus 3: This bus with 360 MW of maximum generation available will satisfy the 40
MW of demand; thus, this bus will be modeled as a generation bus with maximum
generation capacity of 320 MW.

For bus 6: This bus will be modeled as a generation bus with maximum generation
capacity of 600 MW.

Considering the latter and taking p.u. values, the previous matrix expression can be
written as follows

−f12 − f14 − f15 + g1 = 0
f12 − f23 − f24 − f26 = 2.40

f23 − f35 + g3 = 0
f14 + f24 − f46 = 1.60

f15 + f35 = 2.40
f26 + f46 + g6 = 0
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The maximum power generation limits (4.23) are written as

−g1 ≥ −0.70
−g3 ≥ −3.2
−g6 ≥ −6.0
g1 ≥ 0
g3 ≥ 0
g6 ≥ 0

Note that the model finishes with 30 inequality constraints (totaling 36 when including
the 6 equality constraints), 1 more variable (g1) and 2 more slacks (totaling 49 variables).

4.5.2 24-bus IEEE test system

The system consists of 24 buses and 32 generation units injecting power in 10 buses with
a current demand d = 2 850MW and a generating capacity g = 3 405MW . However, it is
expected an expansion to a future condition with the generation levels and the loads three
times their original values, i.e., 8 550MW peak demand and up to a total of 10 215MW
maximum generation capacity (Figure 4.5).

Besides the 34 existing branches (with 38 circuits constructed), 7 new right of ways
has been purchased, totaling 41 right of ways. All data for this test system is given in the
Appendix D.

Nevertheless there appears to be enough generation capacity, a load shedding study
shows a load curtailment suggesting a lack in circuits constructed [94].

When rescheduling is allowed, the model has the following characteristics:

• Number of constraints: 165

• Number of variables: 232
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Figure 4.5: Future condition –initial topology for the STEP modeling– of the 24-bus IEEE
test system.



Chapter 5

Solution Algorithm And Results

The results for the 6-bus Garver’s test system and for the 24-bus IEEE test system are reported

in this chapter. We give the solution with and without redispatch for the Garver’s system and

for the 24-bus system only the solution with redispatch is given. First we explain the algorithm

used to handle the integer part of the problem. Then, we show the results of the sensitivity

index used in the algorithm for all the expansion process; the optimal vector solution and the

barrier parameter for the last iteration of the algorithm are shown as well. Finally, the optimal

configuration of the network topology is given in each case of study.

As it was aforementioned in Chapter 1, we can classify the modeling approaches of the
STEP problem as convex relaxed and continuous relaxed, and when a continuous relaxed
modeling approach is performed, an heuristic to obtain the integer solutions are used in
general [7, 17, 18, 19, 20, 21, 22].

The algorithm for the solution of the STEP problem used in this work is the Garver’s
constructive heuristic algorithm. A Constructive Heuristic Algorithm (CHA) is an iterative
solution process designed to solve a specific complex problem with an acceptable quality
by deciding the addition of one component of the solution at the time. The algorithm
works using heuristic rules –represented by a sensitivity index–, searching for a good
or acceptable solution in each iteration. The algorithm finishes when a reasonable and
practical solution is found.

In the case of the STEP problem, the decision in each step of the process is circuit
addition and is determined by the sensitivity index predefined; in fact, the major concern
of a CHA is based on this index [21]. The literature shows that a CHA in STEP is robust
and reach good quality solution with fast convergence, although this solution may be
far from optimal [22]. However, when the problem is too large, the CHA could present
problems with convergence [21].

76
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5.1 Garver’s Constructive Heuristic Algorithm

In the 70’s, Garver was the first researcher who suggested the use of convex and
continuous relaxation modeling of the STEP [40]. In his work, Garver presented the
transportation model as a convex relaxation for the problem, and he dropped the integer
constraints to obtain finally a continuous LP.

The Garver’s CHA is based on the solution of the relaxed problem. Once the LP is
solved, a set of values {nik |nik ≥ 0 ∀ (i, k) ∈ O}1 (non-integer in general) will be obtained
indicating the need of addition (circuit construction) in at least one element of the set.

For example, if we relax the integer constraints, the solution of the LP formulation
(4.26) for the circuit addition variables is:

{n12 = 0, n14 = 0, n15 = 0.13, n23 = 0, n24 = 0, n35 = 0.27, n26 = 3.13, n46 = 2.32}

What would be the best integer solution in this case? It is well known that in general,
the rounding procedure to the nearest integer could fail [95]. Thus, which is the most
attractive option for addition between all of this elements of the set? In other words,
where should a circuit be added? Looking for a measure of the ROW’s overload, the
answer of Garver was: the circuit which is transporting the largest amount of power flow
i.e., the circuit with the biggest value of nikf ik.

Therefore, the Garver’s CHA sensitivity index is given by:

SI = max{nikf ik} (5.1)

The addition will produce a reconfiguration of the topology in every step, and this
should be repeated till no circuit addition is necessary, i.e., until nik = 0, or equivalently
until the cost of construction given by the objective function of the problem (4.20) is
zero (v = 0); we set a stopping parameter ε for this in the implementation (cost of
construction stopping criterion).

Thus, considering the notation given in Chapter 4, the Garver’s CHA for STEP is
showed in Algorithm 4.

Note in the Algorithm 4 that in step three and nine, it is necessary to solve a LP.
These LP will be solved by the IPM described in Chapter 3.

Observation 5.1 It should be clear that since decision criterion is based on local perfor-
mance –the largest amount of power flow in lines–, the optimal solution will lose the global
context.

1Here, O represents the set of all ROW’s in the system. For instance, in the Garver test system
O = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (3, 5), (2, 6), (4, 6)}
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Algorithm 4: Garver’s Constructive Heuristic Algorithm

Data: n0, c, S, g, d, f , g and ε
Result: The optimal final topology of the transmission system n∗

1 begin
2 Take the initial topology n0;
3 Consider a continuous relaxation and solve (4.25) as a continuous LP using the

Algorithm 3 gave in section 3.7;
4 Compute the cost of construction v (the value of the objective function of

(4.25));
5 while v > ε do
6 Identify the most attractive ROW (i− k) using the sensitivity index (5.1);
7 Add a circuit in the corresponding ROW: n0 = [. . . , n0

ik + 1, . . .];
8 Update the network topology;
9 Solve (4.25) as a continuous LP using the algorithm 3;

10 Compute v;

end
11 n∗ ← n0;

end

5.2 Results

We show the optimal solution for the transmission expansion of the two test systems
studied in this work. In both cases, the optimal answer to the questions where to build?
and how many circuits? is given and was obtained by the CHA with the infeasible IPM
inside to it; all the cases were coded and simulated in a MATLAB R2013a environment,
running in an HP Compaq 8710w Mobile Workstation2 with the following considerations
in every situation:

• Starting solution w0 = [1, 1, . . . , 1]

• Non-symmetric form of the search direction expression given by the equation (3.17)

• For the step length (3.20), we use α0 = 0.95

• The reduction of the barrier parameter was calculated by equation (3.26) with a
centering parameter of σ = 0.1

• For the cost of construction stopping criterion we use ε = 10−4 for the Garver test
system and ε = 10−3 for the 24-Bus IEEE test system

2http://h18000.www1.hp.com/products/quickspecs/archives Canada/12731 ca v4/12731 ca.HTML
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5.2.1 6-bus Garver’s test system - WOR

In Table 5.1, and following the Algorithm 4, we show the computation of the SI for the
6-bus Garver’s test system without redispatch. The processing time required to achieve
the optimal expansion was 2.016 seconds.

Observation 5.2 Some comments on the table 5.1:

1. The bolded numbers indicate the SI for every iteration and establish the circuit ad-
dition in the corresponding ROW.

2. The value of v = 171.5 (iteration 0) corresponds to the cost of construction of the
STEP continuous LP for the initial topology, i.e., the solution of (4.26) (given in
section 5.1).

3. After the sixth iteration we get v = 9.8882× 10−11, showing that an addition is not
longer required.

Table 5.1: Sensitivity Index for the Garver’s system WOR
n0
ikf ik

Iteration 0 1 2 3 4 5 6
PPPPPPROW

v
171.5 141.5 111.5 81.5 51.5 21.5 13.5

1− 2 0 0 0 0 0 0 0
1− 4 0 0 0 0 0 0 0
1− 5 13.2601 13.0996 12.5767 12.4502 12.3589 10.9815 0
2− 3 0 0 0 0 0 0 0
2− 4 0 0 0 0 0 0 0
3− 5 26.7399 26.9004 27.4233 27.5498 27.6411 29.0185 0
2− 6 313.0008 218.0750 206.7492 117.8274 89.9419 22.0357 23.1591
4− 6 231.9992 226.9250 138.2508 127.1726 55.0581 22.9643 21.8409

Thus, the Garver’s test system –when the STEP problem is formulated WOR– needs
the construction of 7 new transmission lines according to the following list (see also Figure
5.1):

• 1 in a current ROW 3− 5;

• 4 in the new ROW 2− 6; and

• 2 in the new ROW 4− 6.

giving an optimal construction cost of 200× 103 USD.

Therefore, according to the ROW data (table 4.2), n0 = [1 1 1 1 1 1 0 0]. After the
expansion process, n = [1 1 1 1 1 2 4 2].
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The optimal solution vector –with 80 components– for the last iteration of the CHA is
given in table 5.2, where we can see:

• the null values for the eight variables representing circuits addition (x1 to x8 → n12

to n46), indicating that a growth is not longer required;

• the eight values corresponding to the power flows in ROW’s (x9 to x16 → f12 to f46);

• the two variables which stand for the generation buses (x17 → g3 and x18 → g6);

• the twenty eight unknowns corresponding to the slack variables for each inequality
constraint (in this case we have used the command format LONG in order to have
more accuracy);

• the six Lagrange multipliers for the equality constraints (λ1 to λ6); and

• the twenty eight Lagrange multipliers for the inequality constraints (π1 to π28).

Table 5.2: Optimal vector solution for the last iteration of the CHA for the Garver’s tests
system WOR

i xi si λi πi
1 0 0.4056 4.3580 0
2 0 1.5944 4.3580 0
3 0 0.4158 4.3580 0
4 0 1.1842 4.3580 0
5 0 1.6786 4.3580 0
6 0 0.3214 4.3580 0
7 0 1.4714 – 0
8 0 0.5286 – 0
9 -0.5944 1.2343 – 0
10 -0.3842 0.7657 – 0
11 0.6786 3.7214 – 0
12 0.4714 0.2786 – 0
13 0.2343 0.2999 – 0
14 1.7214 7.7001 – 0
15 -3.7001 0.2501 – 0
16 -1.7499 3.7499 – 0
17 1.25 2.169×10−12 – 4.3580
18 5.45 2.066×10−12 – 4.3580
19 – 1.25000 – 0
20 – 5.4500 – 0
21 – 3.09×10−13 – 40
22 – 2.06×10−13 – 60
23 – 6.17×10−13 – 20
24 – 6.18×10−13 – 20
25 – 3.09×10−13 – 40
26 – 6.17×10−13 – 20
27 – 4.13×10−13 – 30
28 – 4.12×10−13 – 30

Finally, in Figure 5.2 we show the behavior of the barrier parameter µ vs. iterations,
for the final LP which solves the last iteration of the expansion process.
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Figure 5.1: Final topology of Garver’s test system WOR.
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Figure 5.2: Behavior of the barrier parameter for the final iteration of the Garver’s system
WOR.

5.2.2 6-bus Garver’s test system - WR

Similarly, in table 5.3 we show the computation of the SI for the 6-bus Garver’s test
system but with redispatch. The processing time required to achieve the optimal expansion
was 1.856 seconds.

Table 5.3: Sensitivity Index for the Garver’s system WR
n0
ikf ik

Iteration 0 1 2 3 4
PPPPPPROW

v
99.0 69.0 39.0 19.0 5.2738× 10−12

1− 2 0 0 0 0 –
1− 4 0 0 0 0 –
1− 5 0 0 0 0 –
2− 3 32.8736 35.7575 36.1930 9.5005 –
2− 4 0 0 0 0 –
3− 5 87.1264 84.2425 83.8070 10.4995 –
2− 6 113.2743 93.6740 23.3715 23.9503 –
4− 6 136.7257 56.3260 26.6285 26.0497 –

The Garver’s test system –when the STEP problem is formulated WR– needs the
construction of 4 new transmission lines according to the following list (see also Figure
5.3):

• 1 in a current ROW 3− 5;

• 1 in the new ROW 2− 6; and

• 2 in the new ROW 4− 6.

giving an optimal construction cost of 110× 103 USD.
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Again, according to the ROW data for this problem, n0 = [1 1 1 1 1 1 0 0]. After the
expansion process, n = [1 1 1 1 1 2 1 2].

Under this configuration considering redispatch, the optimal solution vector –with 85
elements– for the last iteration of the CHA is given in table 5.4

Table 5.4: Optimal vector solution for the last iteration of the CHA for the Garver’s tests
system WR

i xi si λi πi
1 0 1.2444 0 0
2 0 0.7556 0 0
3 0 0.7549 0 0
4 0 0.8451 0 0
5 0 1.4659 0 0
6 0 0.5341 0 0
7 0 0.0668 – 0
8 0 1.9332 – 0
9 0.2444 0.7122 – 0
10 -0.0451 1.2878 – 0
11 0.4659 3.9341 – 0
12 -0.9332 0.0659 – 0
13 -0.2878 0.0654 – 0
14 1.9341 1.9346 – 0
15 -0.9346 0.0671 – 0
16 -1.9329 3.9329 – 0
17 0.6652 0.0348 – 0
18 2.8673 0.3327 – 0
19 2.8675 3.1325 – 0
20 – 0.6652 – 0
21 – 2.8673 – 0
22 – 2.8675 – 0
23 – 1.6×10−14 – 40
24 – 1.1×10−14 – 60
25 – 3.3×10−14 – 20
26 – 3.2×10−14 – 20
27 – 1.6×10−14 – 40
28 – 3.4×10−14 – 20
29 – 2.2×10−14 – 30
30 – 2.2×10−14 – 30

Finally, in Figure 5.4 we show the behavior of the barrier parameter µ vs. iterations,
for the final LP which solves the last iteration of the expansion process.
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Figure 5.3: Final topology of Garver’s test system WR.
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Figure 5.4: Behavior of the barrier parameter for the final iteration of the Garver’s system
WR.

5.2.3 24-bus IEEE test system - WR

In Table 5.5, and following the Algorithm 4, we show the computation of the SI for
the 24-bus IEEE test system with redispatch. The processing time required to achieve the
optimal expansion was 23.499 seconds.

The 24-bus IEEE test system –when the STEP problem is formulated WR– needs the
construction of 4 new transmission lines according to the following list (see also Figure
5.5):

• 1 in the current ROW 6− 10;

• 2 in the current ROW 7− 8; and

• 1 in a new ROW 14− 16.

giving an optimal construction cost of 102× 106 USD.

Again, according to the ROW data for this problem

n0 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 0 0 0 0 0 0 0]

After the expansion process,

n = [1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 2 1 0 0 0 0 0 0 0]

.
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Finally, under this configuration considering redispatch, the optimal solution vector
–with 397 elements– for the last iteration of the CHA is given in Table 5.6.

Table 5.5: Sensitivity Index for the 24-bus IEEE test system WR
n0
ikf ik

Iteration 0 1 2 3 4
PPPPPPROW

v
72.5112 56.5111 16.1831 5.3031 2.0855× 10−4

1− 2 0.0003 0.0003 0.0002 0.0002 –
1− 3 0 0 0 0 –
1− 5 0 0 0 0 –
2− 4 0 0 0 0 –
2− 6 0 0 0 0 –
3− 9 0 0 0 0 –
3− 24 0.0003 0.0003 0.0001 0 –
4− 9 0 0 0 0 –
5− 10 0 0 0 0 –
6− 10 58.0 58.0 58.0 58.0 –
7− 8 349.9997 174.9997 118.9998 0 –
8− 9 0 0 0 0 –
8− 10 0 0 0 0 –
9− 11 0 0 0.0001 0 –
9− 12 0.0003 0.0001 0 0 –
10− 11 0 0 0.0001 0 –
10− 12 0.0003 0 0.0001 0 –
11− 13 0.0002 0 0 0 –
11− 14 0 0 0 0 –
12− 13 0 0 0 0 –
12− 23 0 0 0 0 –
13− 23 0 0 0 0 –
14− 16 325.9991 325.9991 0 0 –
15− 16 0.0001 0.0001 0.0001 0.0001 –
15− 21 0 0 0 0 –
15− 24 0 0 0 0 –
16− 17 0.0001 0.0001 0.0001 0.0001 –
16− 19 0.0001 0.0001 0.0001 0.0001 –
17− 18 0.0001 0.0001 0.0001 0.0001 –
17− 22 0 0 0 0 –
18− 21 0.0001 0.0001 0.0001 0.0001 –
19− 20 0 0 0 0 –
20− 23 0.0001 0.0001 0.0001 0.0001 –
21− 22 0 0 0 0 –
1− 8 0.0001 0.0001 0.0001 0.0001 –
2− 8 0.0001 0.0001 0.0001 0.0001 –
6− 7 0.0001 0.0001 0.0001 0 –

13− 14 0.0006 0.0006 0.0001 0.0001 –
14− 23 0.0002 0.0002 0.0001 0.0001 –
16− 23 0.0001 0.0001 0.0001 0 –
19− 23 0.0001 0.0001 0.0001 0.0001 –
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Figure 5.5: Final topology for the 24-bus IEEE test system WR.
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Table 5.6: Optimal vector solution for the last iteration of the CHA for the 24-bus IEEE
test system WR

i xi si λi πi i xi si λi πi

1 0 1.9609 0 0 72 -0.0511 5.9563×10−7 – 8.1825

2 0 1.5391 0 0 73 -5.7202 3.8333×10−7 – 12.7926

3 0 2.4173 0 0 74 -9.5602 3.8295×10−7 – 12.7925

4 0 1.0827 0 0 75 -2.0130 8.1819×10−7 – 5.8188

5 0 3.3283 0 0 76 0 8.2007×10−7 – 5.8188

6 0 0.1717 0 0 77 0 5.7028×10−7 – 8.1775

7 0 3.1747 0 0 78 0 5.6949×10−7 – 8.1775

8 0 0.3253 0 0 79 0 4.1719×10−7 – 10.9346

9 0 3.3220 0 0 80 0 4.1705×10−7 – 10.9346

10 0 0.1780 0 0 81 0 5.8587×10−7 – 7.9695

11 0 0.9438 0 0 82 0 5.8540×10−7 – 7.9695
12 0 2.5562 0 0 83 2.4565 0.0635 – 0
13 0 0.0735 0 0.0001 84 2.7858 0.0642 – 0
14 0 7.9265 0 0 85 5.1519 0.0981 – 0
15 0 0.9547 0 0 86 7.5841 2.1959 – 0
16 0 2.5453 0 0 87 1.4843 0.1657 – 0
17 0 1.1983 0 0.0001 88 0.9822 1.0278 – 0
18 0 2.3017 0 0 89 7.5657 4.4343 – 0
19 0 0.9920 0 0 90 5.5818 3.4182 – 0
20 0 6.0080 0 0 91 14.6177 5.1823 – 0
21 0 10.4019 0 0 92 – 2.4565 – 0
22 0 0.0981 0 0 93 – 2.7858 – 0
23 0 0.7479 0 0 94 – 5.1519 – 0
24 0 2.7521 0 0 95 – 7.5841 – 0
25 0 2.7739 – 0 96 – 1.4843 – 0
26 0 0.7261 – 0 97 – 0.9822 – 0
27 0 0.0790 – 0 98 – 7.5657 – 0
28 0 7.9210 – 0 99 – 5.5818 – 0
29 0 0.0674 – 0 100 – 14.6177 – 0

30 0 7.9326 – 0 101 – 1.3047×10−6 – 3

31 0 0.0593 – 0 102 – 7.1022×10−8 – 55

32 0 7.9407 – 0 103 – 1.7753×10−7 – 22

33 0 0.0549 – 0 104 – 1.1841×10−7 – 33

34 0 7.9451 – 0 105 – 7.8129×10−8 – 50

35 0 0.2361 – 0 106 – 1.2602×10−7 – 31

36 0 9.7639 – 0 107 – 7.8090×10−8 – 50

37 0 1.9023 – 0 108 – 1.4468×10−7 – 27

38 0 8.0977 – 0 109 – 1.6989×10−7 – 23

39 0 1.1396 – 0 110 – 2.4415×10−7 – 16

40 0 8.8604 – 0 111 – 2.4404×10−7 – 16

41 0 0.9827 – 0 112 – 9.0842×10−8 – 43

42 0.2109 9.0173 – 0 113 – 9.0845×10−8 – 43

43 0.6673 3.9598 – 0.0001 114 – 7.8092×10−8 – 50

44 1.5783 6.0402 – 0 115 – 7.8085×10−8 – 50

45 1.4247 1.0823 – 0 116 – 7.8084×10−8 – 50

46 1.5720 18.9177 – 0 117 – 7.8077×10−8 – 50

47 -0.8062 7.5411 – 0.0001 118 – 5.9179×10−8 – 66

48 -3.9265 2.4589 – 0 119 – 6.7358×10−8 – 58

49 -0.7953 0.4724 – 0 120 – 5.9188×10−8 – 66

50 -0.5517 19.5276 – 0 121 – 2.9150×10−8 – 134

51 -2.5080 8.9265 – 0 122 – 3.2557×10−8 – 120

52 5.1519 1.0735 – 0 123 – 7.2344×10−8 – 54

53 -1.0021 0.3978 – 0 124 – 1.6285×10−7 – 24

54 1.0239 9.6022 – 0 125 – 5.7446×10−8 – 68

55 -3.9210 4.7098 – 0 126 – 5.4253×10−8 – 72

56 -3.9326 5.2902 – 0 127 – 1.0850×10−7 – 36

57 -3.9407 3.9667 – 0 128 – 1.2212×10−7 – 32

58 -3.9451 6.0333 – 0 129 – 1.9537×10−7 – 20

59 -4.7639 1.4311 – 0 130 – 2.6755×10−8 – 146

60 -3.0977 8.5689 – 0 131 – 1.0852×10−7 – 36

61 -3.8604 9.9489 – 0 132 – 7.1035×10−8 – 55

62 -4.0173 10.0511 – 0 133 – 1.3020×10−7 – 30

63 -1.0402 4.2798 – 0 134 – 4.1556×10−8 – 94

64 -8.9177 15.7202 – 0 135 – 3.2390×10−7 – 4.4560

65 2.5411 0.4398 – 0 136 – 3.4438×10−7 – 4.3614

66 -9.5276 19.5602 – 0 137 – 2.2293×10−7 – 5.2261

67 3.9265 2.9870 – 0 138 – 1.7128×10−7 – 3.8119

68 -4.6022 7.0130 – 0 139 – 1.2143×10−7 – 4.2253

69 -0.2902 5.5984×10−7 – 8.7269 140 – 9.0881×10−8 – 4.6543

70 -1.0333 5.5983×10−7 – 8.7269 141 – 1.2458×10−7 – 4.3052

71 -3.5689 5.9571×10−7 – 8.1825 x x x x x
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Figure 5.6: Behavior of the barrier parameter for the final iteration of the 24-bus IEEE
test system.



Chapter 6

Conclusions and Future Research

The conclusions and some suggestions of future research are exposed in this part of
the work.

6.1 Conclusions
We have studied the problem of STEP for two test systems, the 6-bus Garver’s test

system and the 24-bus IEEE test system. In both systems, satisfactory results which have
already been reported in the literature were obtained.

The model described in this research deals with minimizing investment costs of trans-
mission lines in the objective and with a transportation model for the network in the
constraints. The modeling approaches presented in this work for solving the problem are:
modeling with generation redispatch and without generation redispatch for the Garver’s
system, and modeling with generation redispatch for the 24-bus IEEE test system.

From the analysis of the results obtained for the two problems with and without re-
dispatch of the Garver’s system and considering the cost obtained for each study, it is clear
that the redispatch model allows an expansion plan with a lower cost; this difference in
costs (in many times a remarkable difference) has been continuously reported. The benefits
of this scheme could not only be economic, because the generation capacity available to
cover the demand allows better management of generation resources, resulting in efficient
configurations of power flows on transmission lines. In addition to this, the results of
the PSAT show that with redispatch scheme we obtain better profile of voltages in both
magnitude and angle.

An important result in the estimation and distribution of flows in the system is ob-
served, since in both schemes the estimations by the transportation model are very accept-
able when compared with those obtained with the PSAT; even when the transportation
model is a DC network modeling relaxation. This shows that the formulation is reliable
for expansion stages at least in the long term, where the level of detail required is not very
high.
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It is important to add that the difference in the distribution of flows for the scheme
without redispatch is due to the way in which the slack bus is chosen. For example, in
the case of the Garver’s system without redispatch, we choose the bus 6 as the slack bus
(Table C.3), and if we take from the bus 6 generation (PG6 = 6.2214 p.u.) the system
losses (PL = 0.7714 p.u.), we would obtain a generation of PG6 = 5.45 p.u., which is
reported for the transportation model and is shown in Figure 5.1.

Furthermore, since we deal with a mixed problem, a solution was proposed from the
relaxation of the integer part in the model and the application of a CHA for the “rounding”.
Using this methodology, it is necessary to have a powerful solver able to solve in a quickly
and reliable manner the linear (or nonlinear) program resulting from the relaxation. In
this thesis we use an infeasible primal-dual interior point method, which is known in the
literature as the most efficient of these methods. Talking about this, it is noteworthy that
the behavior of the barrier parameter was almost the same for all iterations as it is shown
in Figures 5.2, 5.4 and 5.6.

6.1.1 Contributions

The author strongly believed that the main contribution of this thesis is the explana-
tion and exposure in detail of the transmission expansion planning problem, its related
mathematics and its solution process using a CHA. As it can be seen along the work, all
the topics were developed in a very comprehensive manner and in such a way that a future
extension for more complicated models can be straightforward.

Added to this, another important contributions are:

• A clear classification of the STEP problem according to the mathematical modeling
approaches (Chapter 1, section 1.1);

• Showing the connection between optimality conditions from the duality theory (2.6)
and from the Karush-Kuhn-Tucker (2.8) points of view (Chapter 2, Observation 2.1);

• The full development of an Infeasible IPM and the detailed description of the algo-
rithm (Chapter 3, Algorithm 3);

• In Chapter 4, obtaining the energy conservation equation (4.14) –which is part of
the DC network model– from the AC transmission line power flow equations (4.3)
and (4.4);

• Also in Chapter 4, obtaining the transportation model of the STEP problem (4.25)
from the relaxation of the DC model (4.19) and a full description of its objective
function and every constraint contained in the model;
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• A detailed example of modeling of the STEP problem with and without redispatch
(Chapter 4, subsection 4.5.1);

• The use of an IPM within the STEP problem as a solver in a Constructive Heuristic
Algorithm and its detailed description (Chapter 5, Algorithm 4);

• Introducing a novel Power System Analysis Toolbox for the test systems operation
condition verification (Appendix C).

The following two small contributions are results of this work as well:

1. International Poster

• Becerril, C., Mota, R. and Badaoui, M. Interior point algorithm as applied to
the transmission network expansion planning problem. SIAM Conference on
optimization, San Diego, California, USA. May 19-22, 2014.

2. Conference paper

• Becerril, C., Mota, R. and Badaoui, M. Solution to the static transmission
expansion planning by a primal-dual interior point method. 7◦ Congreso Inter-
nacional de Ingenieŕıa Electromecánica y de Sistemas, CIIES 2014.

6.2 Future Work

Since the model worked in this thesis meets minimizing the costs of construction and
the requirement of satisfying the demand flows, possible aspects of operation and markets
are not considered. That is why we suggest as a first step to add generation cost curves
on the objective, and as second step to search strategies on which the market aspects such
as congestion or market power can be taken into account.

On the other hand, the increasing loads and the large inter-utility power transfers
are forcing systems to operate near their loadability limits, yielding many risk operating
conditions. Thus, it would be very useful an improvement in the model in such a way that
contingencies can be considered.

The last modification can lead to a more complete study where some problems as power
flows unsolvability and voltage stability based on the expansion plan can be treated.

From the same philosophy of using the CHA for the STEP problem, it would be
interesting to propose a non-linear formulation, where we can test the full development of
the Vanderbei and Shanno’s algorithm for nonlinear nonconvex programming problems.
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In order to be able to face other temporal situation as the short term transmission
expansion planning –where the necessity of a more detailed model is mandatory– we also
suggest to work on the AC model.

Talking about the formulation and way of solving used in this work, it would be very
interesting to propose and test some starting points techniques for the STEP problem.

Finally, an immediate work could be program the algorithm in other language in order
to reduce the computation time obtained in this work.
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Appendix A

Fundamental Theorem of Linear
Programming

A LP is a constrained optimization problem in which the objective function and each
of the constrains are linear in the unknowns. Of course the set of constraints can include
equality and/or inequality functions which defines the feasible solutions set (feasible re-
gion). However, for easy manipulation –which means adding or subtracting (nonnegative)
slack variables in the inequality constraints– any LP can be transformed into the so-called
standard form:

min cTx
subject to Ax = b

x ≥ 0
(A.1)

where x, cT ∈ Rn, A ∈ Rm×n, m < n, rank A = m and b ∈ Rm. The feasible region is:

Ω = {x ∈ Rn |Ax = b, x ≥ 0} (A.2)

The main issue in this appendix is to show the Fundamental Theorem of Linear Pro-
gramming. This important theorem is related to the next idea. As the feasible region (Ω)
is a convex subset of Rn (which will be proven), we can minimize the objective function
of (A.1) by following a descent direction which could be given by the negative gradient
of cTx, i.e, we could move in the direction of −c. It should be clear that the furthest
feasible point in this direction would be lying on the boundary of the polyhedron formed
by Ω. The Fundamental Theorem establishes not only this fact but also that the optimal
solution will be in a vertex of the polyhedron.

A.1 Geometry of a LP

Let’s begin the study of the geometry of LP with the definition of convex set and two
theorems related to the feasible region. Then, we will give some useful definitions and
assumptions for the Fundamental Theorem.
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A.1.1 Convexity of the feasible region

Definition A.1 (Convex set.) A set Q ⊂ Rn is called convex if for any x, y ∈ Q

L = {z | z = αx+ (1− α)y, α ∈ [0, 1]} ⊆ Q.

The feasible region Ω in (A.2) is defined by a set of equations in the form Ax = b.
Each of them is a hyper-plane which forms a convex set and we will prove this now.

Theorem A.1 A hyper-plane is a convex set.

Proof. Consider a hyper-plane in Rn defined by

aTx = b (A.3)

Let x, y be a couple of points that satisfies (A.3). We most show that z = αx + (1− α)y
forms a subset of the hyper-plane for all α ∈ [0, 1], i.e. that aT z = b.

We have:
aT z = aT [αx+ (1− α)y] = αaTx+ aTy − αaTy

but x, y are two points in the hyper-plane, hence:

aT z = αb+ b− αb

therefore:
aT z = b

2

Note that Ω is formed by the intersection of m hyper-planes. We will show that Ω is
also a convex set.

Theorem A.2 The finite intersection of convex sets is a convex set.

Proof. Let C1, C2, . . . , Cm be convex sets, and

D =
m⋂
i=1

Ci

Lets take x, y ∈ D, this implies that x, y ∈ C1, C2, . . . , Cm. From hypothesis, every Ci,
i = 1, . . . ,m is convex. This means that

αx+ (1− α)y ∈ C1, C2, . . . , Cm ∀α ∈ [0, 1]

as a consequence

αx+ (1− α)y ∈
m⋂
i=1

Ci ∀α ∈ [0, 1]

2
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A.1.2 Basic solutions

A vector x satisfying Ax = b in (A.1) is called a solution to the LP. In addition, if
x ≥ 0, the vector is said to be a feasible solution. We will refer to a feasible solution that
achieves the minimum value of the objective function as an optimal feasible solution.

In order to set the basis for the Fundamental Theorem, some necessary assumptions
and definitions are given now.

Assumption A. The number of constraints are less than the number of vari-
ables. It is assumed that m < n, since if m > n, at least m − n equations must be
redundant, and m = n results in a trivial situation in which Ax = b has a unique solution
point if the system is consistent.

Assumption B. Full rank assumption. The rank of A is m, this means that there
are m linearly independent columns and rows of A. Particularly, the m equations on the
constraints are linearly independent. A linear dependency among the rows of A would lead
either to contradictory constraints and hence no solutions of (A.1), or to a redundancy
that could be eliminated.

Lets consider a partition of the matrix A in such a way that A = [B, N ], where
B ∈ Rm×m is a nonsingular matrix formed by the first m linearly independent columns of
A; in this case, B form a basis. Also, let x = (xB, xN). Then Ax = b can be written as

[B, N ]

[
xB
xN

]
= b (A.4)

Since B is nonsingular, we can solve (A.4) for xB to obtain:

xB = B−1 (b−NxN)

Definition A.2 (Basic Solution.) The particular solution to (A.4), xB = B−1 b, where
xN = 0, is called a basic solution. The elements of xB are the basic variables.

Definition A.3 (Basic Feasible Solution.) If xB is a basic solution and xB ≥ 0, we
refer to it as a basic feasible solution.

Observation A.1 (Geometrical equivalence of a basic feasible solution) Geome-
trically, a basic feasible solution defines an extreme point (a vertex) of the solution space
given by Ω; a proof of this is given in [59] and in [66].

Observation A.2 (Degenerate basic solution) In general, an extreme point is unique-
ly defined by a basic solution except when in an n− dimensional problem, there are more
that n hyperplanes passing through the same vertex. In this case, the same extreme point
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is identified by more than one basic solution and the solution is said to be degenerate;
however, it is impossible to identify more than one extreme point with the same basic
solution.

Finally, if the optimal feasible solution is basic, it is an optimal basic feasible solution.

A.2 Fundamental Theorem

We are ready to state the main theorem of this appendix.

Theorem A.3 (Fundamental Theorem of Linear Programming.) Given a LP in
standard form (A.1) where A ∈ Rm×n of rank m:

i. if there is a feasible solution, there is a basic feasible solution;

ii. if there is an optimal feasible solution, there is an optimal basic feasible solution

Proof. See [74], section 2.4, pp. 20. 2

Observation A.3 The Fundamental Theorem gives an strategy to “reduce” the search
of the optimal solution from the whole feasible space (infinite points) to the search of
“only” the basic solutions (finite points). Therefore, applying a “brute-force approach” we
can solve a LP by comparing all basic solutions (perhaps choosing first the basic feasible
solutions) and then the one that minimizes the objective function. This approach depends
on the number of basic solutions which, however, is a finite number, is bounded by:

Cn
m =

(
n
m

)
=

n!

m!(n−m)!

which is in general a very large number.

For instance, we have:

• C46
34 = 3.8910× 1010 basic solutions for the Garver’s formulation WOR, and

• C49
36 = 2.6259× 1011 basic solutions for the Garver’s formulation WR.

Of course this approach is not practical and a more efficient method for solving this
problems is needed. Just for example, supposing that we try to use this method and
we have a computer that takes 1 µsec (10−6 seconds) to test every basic solution. The
computer would need 10.8 hours to solve every LP resulting in the formulation WOR for
the Garver’s system in the worst case; considering the 7 iterations of the CHA process this
means 75.6 hours for solving completely the STEP problem). For the WR formulation it
would take 72.9 hours for every LP and 291.6 hours for the complete STEP problem.



Appendix B

The Infeasible IPM for LP: A two
variables example

We will consider in this appendix the following general LP problem

min cTx
subject to Ax = b

B x ≥ d
(B.1)

where c, x ∈ Rn, A ∈Mp×q, b ∈ Rp, B ∈Mq×n and d ∈ Rq.

In the form of (3.3) we have:

min cTx
subject to Ax− b = 0

B x− d ≥ 0
(B.2)

and it is clear that, in this case f(x) = cTx, g(x) = Ax− b and h(x) = B x− d.

Working as in section 3.2 we can write the Lagrangian as follows:

Lµ(w;µk) = cT x− µk
q∑
i=1

log(si)− λT [Ax− b]− πT [B x− d− s] (B.3)

Here, gT (x) = (Ax − b)T = (Ax)T − bT = xTAT − bT . Thus, for the perturbed
primal-dual system ∇xg

T (x) = ∇x(x
TAT − bT ) = AT .

By proceeding analogously, the perturbed primal-dual system is:

∇xL = c− AT λ−BT π = 0
∇sL = −µke+ S Π e = 0
∇λL = −Ax+ b = 0
∇πL = −B x+ d+ s = 0

(B.4)
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The Hessian for the Lagrangian (B.3) is:

∇2Lµ(w) =


0 0 −AT −BT

0 Π 0 S
−A 0 0 0
−B I 0 0

 (B.5)

Thus we can write
0 0 −AT −BT

0 Π 0 S
−A 0 0 0
−B I 0 0




∆x
∆s
∆λ
∆π

 =


−c+ AT λ+BT π

µke− S Π e
Ax− b

B x− d− s

 (B.6)

which will be used to compute the search direction.

As an example, we will develop one iteration of the IPM process of a two variables
linear program with a solution x1 = 5.0 and x2 = 7.5, and with an objective function
value of 165.0.

Example B.1 Consider the following LP:

min z = 15x1 + 12x2
subject to x1 + 2x2 ≥ 20

3x1 + 2x2 ≥ 30
x1 ≥ 0
x2 ≥ 0

(B.7)

In this example, w ∈ R10, more specific:

wT = [x s π] = [x1 x2 s1 s2 s3 s4 π1 π2 π3 π4]

There are not λ multipliers because the problem does not have any equality constraint.

Taking advantage of the geometry visualization of the feasible region (Figure B.1), we
will take as the initial point, the vector:

(w0)T =
[
x0 s0 π0

]
= [10 10 1 1 1 1 1 1 1 1]

where s0 and π0 are strictly positive.

Using these vectors, the complementarity gap (3.24) is: ρ0 = (s0)T π0 = 4. Considering
the equation (3.26) and a centering parameter σ = 0.1, the initial barrier parameter is
µ0 = 0.1.
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Figure B.1: Feasible region of the two variables example.

Including the non-negativity conditions on the inequality constraints, the formulation
will have the following vectors and matrices:

cT =
[
15 12

]
x =

[
x1
x2

]

B =


1 2
3 2
1 0
0 1

 d =


20
30
0
0


According to the Chapter 3, subsection 3.2.1, we have:

S =


s1 0 0 0
0 s2 0 0
0 0 s3 0
0 0 0 s4

 ⇒ S0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Analogously

Π =


π1 0 0 0
0 π2 0 0
0 0 π3 0
0 0 0 π4

 ⇒ Π0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Thus, the Hessian (B.5) for the iteration zero is:

0 0 0 0 0 0 −1 −3 −1 0
0 0 0 0 0 0 −2 −2 0 −1

0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1

−1 −2 1 0 0 0 0 0 0 0
−3 −2 0 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0



The rows of the right-hand side of (B.6) are:

−c+BT π0 = −
[
15
12

]
+

[
1 3 1 0
2 2 0 1

]
1
1
1
1

 =

[
−10
−7

]

µ0e− S Π e = 0.1


1
1
1
1

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1
1
1
1

 =


−0.9
−0.9
−0.9
−0.9



B x0 − d− s0 =


1 2
3 2
1 0
0 1

[10
10

]
−


20
30
0
0

−


1
1
1
1

 =


9
19
9
9
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Thus, the equation (B.6) for the search directions can be written now as follows:

0 0 0 0 0 0 −1 −3 −1 0
0 0 0 0 0 0 −2 −2 0 −1

0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1

−1 −2 1 0 0 0 0 0 0 0
−3 −2 0 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0





∆x1
∆x2

∆s1
∆s2
∆s3
∆s4

∆π1
∆π2
∆π3
∆π4


=



−10
−7

−0.9
−0.9
−0.9
−0.9

9
19
9
9


Solving the last expression we have:

∆x1
∆x2

∆s1
∆s2
∆s3
∆s4

∆π1
∆π2
∆π3
∆π4


=



−5.53
−3.59

−3.70
−4.76

3.47
5.41

2.80
3.86
−4.37
−6.31


Using these values, we can compute:

max

{
− ∆s0i

s0i

}
= max{3.70 4.76 − 3.47 − 5.41} = 4.76

max

{
− ∆π0

i

π0
i

}
= max{−2.80 − 3.86 4.37 6.31} = 6.31

Now, using (3.20) and α0 = 0.95, the primal and dual step lengths are:

α0
p = 0.1996

α0
d = 0.1506
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The variable updating (3.21) and (3.22) are:

x11 = x01 + α0
p∆x

0
1 = 8.90

x12 = x02 + α0
p∆x

0
2 = 9.28

s11 = s01 + α0
p∆s

0
1 = 0.26

s12 = s02 + α0
p∆s

0
2 = 0.05

s13 = s03 + α0
p∆s

0
3 = 1.69

s14 = s04 + α0
p∆s

0
4 = 2.08

π1
1 = π0

1 + α0
d∆π

0
1 = 1.42

π1
2 = π0

2 + α0
d∆π

0
2 = 1.58

π1
3 = π0

3 + α0
d∆π

0
3 = 0.34

π1
4 = π0

4 + α0
d∆π

0
4 = 0.05

This and the following iterations are shown in table B.1. The tolerances used for this
example are: ε1 = 10−2, ε2 = 10−3 and εµ = 10−6.

Table B.1: Results for the numerical example
k µk xk sk πk z

x1 x2 s1 s2 s3 s4 π1 π2 π3 π4
1 0.1 8.8959 9.2839 0.2611 0.0500 1.6932 2.0812 1.4213 1.5803 0.3423 0.0500 244.8464
2 0.0283 7.4875 8.6699 0.1853 0.0025 2.8455 4.0279 1.3783 2.4881 0.0649 0.0025 216.3513
3 0.0114 5.1897 7.5836 0.0093 0.0025 4.8421 7.2360 1.4335 3.6273 0.0032 0.0015 168.8489
4 0.0012 5.0267 7.5122 0.0017 0.0001 4.9772 7.4627 1.4997 4.4957 0.0002 0.0001 165.5475
5 1.2×10−4 5.0000 7.5001 0.0001 0.0000 4.9999 7.5000 1.5000 4.5004 0.0000 0.0000 165.0017
6 8.7×10−6 5.0000 7.5000 0.0000 0.0000 5.0000 7.5000 1.5000 4.5000 0.0000 0.0000 165.0000



Appendix C

Power Flow Results for the Garver’s
Test System

The PSAT (Power System Analysis Toolbox) is an open source Matlab toolbox for
electric power system analysis and simulation capable of solving studies as power flow,
continuation power flow and/or voltage stability analysis, the optimal power flow, the
small-signal stability analysis and the time-domain simulation [58]. As a free power system
software, its use with educational and research purposes has been extended to several
universities as it is reported in [96] and the references therein.

In this work, we use the PSAT in order to check the steady state conditions before and
after the expansion of the Garver’s test system. The output of the PSAT for the power
flow analysis can be displayed in graphical form (2D or 3D) or in a static report. The
color bar in the right of the graphical output shows the values of the parameter studied
(power flows, voltages, etc.) in p.u.

C.1 Initial condition

The Garver’s system begins with a power network working within its normal operating
parameters, giving excellent power flow measures as it can be seen in Figure C.1 and in
the 3D perspective shown in Figure C.2.

In Table C.1 we show a summary of the static report given by the PSAT, where the
bus voltages profiles and the real power losses are considered.
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Figure C.1: 2D Power flow scenario for the initial configuration.

Figure C.2: 3D Power flow scenario for the initial configuration.
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Table C.1: PSAT Power flow report for the initial condition
Power Flow Results Line Flows

Bus V phase PG PD ROW P Flow ROW P Flow
[p.u.] [deg] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 0 0.7472 0.2 1-2 0.1645 2-1 -0.1616
2 0.9665 -3.6219 0 0.6 1-4 0.2328 4-1 -0.2244
3 1 3.8182 1.2 0.1 1-5 0.1499 5-1 -0.1486
4 0.9491 -8.0746 0 0.4 2-3 -0.6175 3-2 0.6380
5 0.9824 -1.5957 0 0.6 2-4 0.1791 4-2 -0.1756

Total 1.9472 1.9 3-5 0.4621 5-3 -0.4514
Real power losses 0.04717

It is clear that the system operates properly under these initial conditions. However,
as it was aforementioned in subsection 4.5.1, a future condition for the Garver’s system
is expected and it will be necessary to know how the system will operate. This is shown
below.

C.2 Future condition

Under the new conditions given in subsection 4.5.1, the power flow study gives the
results showed in Figures C.3 and C.4, and in Table C.2.

Figure C.3: 2D Power flow scenario for the future condition.
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Figure C.4: 3D Power flow scenario for the future condition.

Table C.2: PSAT Power flow report for the future condition
Power Flow Results Line Flows

Bus V phase PG PD ROW P Flow ROW P Flow
[p.u.] [deg] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 -45.9055 1.5 0.8 1-2 0.1145 2-1 -0.0557
2 0.6859 -43.3971 0 1.7643 1-4 0.6068 4-1 -0.5011
3 1 0 6.1887 0.4 1-5 -0.0213 5-1 0.0747
4 0.6256 -72.1935 0 0.9784 2-3 -2.2505 3-2 2.8078
5 0.7965 -41.8802 0 2.3788 2-4 0.5419 4-2 -0.4773
6 0 0 0 0 3-5 2.9809 5-3 -2.4534

Total 7.6887 6.3215
Real power losses 1.3672

Considering the PSAT power flow report (Table C.2), one could think about a rein-
forcement (another) on generation in bus 3, where the maximum capacity was exceeded,
in order to avoid the generation expansion in bus 6 and the transmission expansion to
connect that bus, hooping to save their related costs. However, the problem is not only
connected to the power balance in the system but other complications arising from the
new configuration. For example, there is no way to transport all the power generated in
such bus to another buses where is needed, the ROWs 2-3 and 3-5 are overloaded (the
maximum limit power flow in each of those corridors is 100MW and the results show that
there is a transfer of almost 300MW ); the forced load shedding in bus 2, 3 and 5, and
the very low voltages profiles and the critical phase angles values are of interest as well.
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C.3 Study WOR

The first proposal of expansion for the Garver’s system was obtained according to the
subsection 5.2.1 using a without redispatch modeling (where 7 new circuits in the system
are needed). Figures C.5 and C.6 give the power flow behavior for this new configuration.
The Table C.3 shows the power flow report.

Figure C.5: 2D Power flow scenario for the WOR solution.
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Figure C.6: 3D Power flow scenario for the WOR solution.

Table C.3: PSAT Power flow report expansion plan WOR
Power Flow Results Line Flows

Bus V phase PG PD ROW P Flow ROW P Flow
[p.u.] [deg] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 -34.9669 0.5 0.8 1-2 -0.5347 2-1 0.5815
2 0.9196 -18.7733 0 2.4 1-4 -0.3244 4-1 0.3544
3 1 -29.6937 1.65 0.4 1-5 0.5591 5-1 -0.5419
4 0.8966 -19.3833 0 1.6 2-3 0.7525 3-2 -0.7057
5 0.9422 -41.2391 0 2.4 2-4 0.0332 4-2 -0.0328
6 1 0 6.2214 0 3-5 0.9779 × 2 5-3 -0.9291 × 2

Total 8.3714 7.6 2-6 -0.9418 × 4 6-2 1.028 × 4
Real power losses 0.7714 4-6 -0.9608 × 2 6-4 1.054 × 2

In Table C.3 we can see that even when the expansion proposal without redispatch
could be enough for a lossless study, some overloads could be observed when losses are
considered (P Flow 6-2 and 6-4).

C.4 Study WR

The other proposal for the Garver’s system expansion is through a modeling with
redispatch where the optimal expansion given in subsection 5.2.2 indicates the necessity
of 4 new circuits. The power flow study for this configuration is given in Figures C.7 and
C.8 and in Table C.4.
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Figure C.7: 2D Power flow scenario for the WR solution.

Figure C.8: 3D Power flow scenario for the WR solution.
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Table C.4: PSAT Power flow report expansion plan WR
Power Flow Results Line Flows

Bus V phase PG PD ROW P Flow ROW P Flow
[p.u.] [deg] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 -15.8507 1.5 0.8 1-2 0.2340 2-1 -0.2251
2 0.9054 -20.6033 0 2.4 1-4 0.0538 4-1 -0.0505
3 1 -7.7217 3.6 0.4 1-5 0.4122 1-5 0.4122
4 0.9088 -16.5749 0 1.6 2-3 -1.0238 3-2 1.0880
5 0.9407 -20.2454 0 2.4 2-4 -0.1366 4-2 0.1390
6 1 0 2.9457 0 3-5 1.056 × 2 5-3 -0.9992 × 2

Total 8.0457 7.6 2-6 -1.0145 6-2 1.1181
Real power losses 0.4457 4-6 -0.8442 × 2 6-4 0.9138 × 2



Appendix D

Data of the Test Systems

In this appendix, we summarize the data for the generation-demand and for the right
of ways of the test systems studied in this work. The initial topology configuration of each
system is included as well.

D.1 6-bus Garver Test System [40]

Table D.1: Generation and load data for Garver’s system
Bus gi di
No. [MW ] [MW ]

1 150 80
2 — 240
3 360 40
4 — 160
5 — 240
6 600 —

Total 1110 760

Table D.2: Right of way data for Garver’s system
Circuit n0

ik Cost, ×103 f ik
[USD] [MW ]

1-2 1 40 100
1-4 1 60 80
1-5 1 20 100
2-3 1 20 100
2-4 1 40 100
3-5 1 20 100
2-6 0 30 100
4-6 0 30 100

120
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Figure D.1: Future condition –initial topology for the STEP modeling– of Garver’s system.
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D.2 24-bus IEEE Test System [94]

Table D.3: Generation and load data for the 24-bus IEEE test system

Bus gi di
No. [MW ] [MW ]

1 576 324
2 576 291
3 — 540
4 — 222
5 — 213
6 — 408
7 900 375
8 — 513
9 — 525
10 — 585
11 — —
12 — —
13 1773 795
14 — 582
15 645 951
16 465 300
17 — —
18 1200 999
19 — 543
20 — 384
21 1200 —
22 900 —
23 1980 —
24 — —

Total 10215 8550
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Table D.4: Right of way data for the 24-bus IEEE test system

Right n0
ik Cost, 104 f ik

of way [USD] [MW ]

1-2 1 3 175
1-3 1 55 175
1-5 1 22 175
2-4 1 33 175
2-6 1 50 175
3-9 1 31 175
3-24 1 50 400
4-9 1 27 175
5-10 1 23 175
6-10 1 16 175
7-8 1 16 175
8-9 1 43 175
8-10 1 43 175
9-11 1 50 400
9-12 1 50 400
10-11 1 50 400
10-12 1 50 400
11-13 1 66 500
11-14 1 58 500
12-13 1 66 500
12-23 1 134 500
13-23 1 120 500
14-16 1 54 500
15-16 1 24 500
15-21 2 68 500
15-24 1 72 500
16-17 1 36 500
16-19 1 32 500
17-18 1 20 500
17-22 1 146 500
18-21 2 36 500
19-20 2 55 500
20-23 2 30 500
21-22 1 94 500
1-8 0 35 500
2-8 0 33 500
6-7 0 50 500

13-14 0 62 500
14-23 0 86 500
16-23 0 114 500
19-23 0 84 500
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Figure D.2: Future condition –initial topology for the STEP modeling– of the 24-bus IEEE
test system.




