
 

 

 Instituto Politécnico Nacional 
 

 

Centro de Investigación en Computación 

 
Laboratorio de Microtecnología y Sistemas Embebidos 

 

 

 

 

 

Diseño e implementación de una máquina de ejecución 

fuera de orden de operaciones aritméticas de punto flotante 

 

 

 

T E S I S 

Que para obtener el grado de: 

Maestría en Ciencias en Ingeniería de Cómputo  

con opción en Sistemas Digitales 
 

 

P R E S E N T A : 

Ing. Cristóbal Ramírez Lazo 

 

Directores de tesis: 

Dr. Luis Alfonso Villa Vargas 

Dr. Osman Sabri Unsal 

 

 

 

 

Enero 2016 

 
 





 

I 

 

 



 

II 

 

 



 

III 

 

 



 

IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V 

 

Resumen 

 

 

La unidad de punto flotante (FPU), también conocida como coprocesador matemático, es la 

parte del procesador que realiza operaciones con números de punto flotante. 

Hoy en día, casi todos los procesadores incluyen una unidad de punto flotante en el chip, esta 

es una unidad compleja y consume más área en el chip y por esta razón muchos procesadores 

comparten esta unidad entre un par de núcleos. 

Cuando un CPU está ejecutando un programa que llama a operaciones de punto flotante y es-

tas no son soportados por hardware, el CPU emula estas usando una serie de operaciones 

aritméticas de punto fijo que son ejecutadas en la unidad aritmética lógica de enteros, cau-

sando un bajo performance en este tipo de aplicaciones. 

 

El Centro de Investigación en Computación del Instituto Politécnico Nacional trabaja en un 

proyecto actualmente en desarrollo llamado Lagarto para crear propiedad intelectual en ar-

quitectura de procesadores embebidos de alto rendimiento y sistemas operativos para inves-

tigación y enseñanza. 

Lagarto II es un procesador superescalar el cual realiza búsqueda y extracción, decodifica-

ción y despacho de hasta dos instrucciones por ciclo de reloj, el cual soportará un conjunto 

de instrucciones de 32-bits que operan con datos de 64-bits, esta arquitectura es sintetizable 

en dispositivos FPGA. 

 

En esta tesis, el trabajo está enfocado hacia el diseño en lenguajes de descripción de hardwa-

re e implementación en FPGA de una máquina de ejecución fuera de orden de operaciones 

aritméticas de punto flotante. Una primera propuesta abarca el diseño de una cola de emisión 

de bajo consumo de energía para procesadores fuera de orden, el banco de registros, la red de 

adelantado de valores y las unidades funcionales para suma/resta, multiplicación, divi-

sión/reciproco y una unidad especial llamada FMAC la cual multiplica y acumula, tomando 

en cuenta el estándar IEEE-754. Los diseños soportaran el formato de precisión doble y nú-

meros desnormalizados; Una segunda propuesta está basada en un par de FMAC como uni-

dades funcionales las cuales realizan casi todas las operaciones de punto flotante, este diseño 

da beneficios en área, rendimiento y energía comparado con la primera versión. 
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Abstract 

 

 

A floating point unit (FPU), also known as a math coprocessor, is a part of a processor to 

perform operations on floating point numbers. 

Nowadays, almost all processors include a Floating point unit in the chip, this unit is more 

complex and consume more area in the chip and for this reason many processors share this 

unit between a pair of cores. 

When a CPU is executing a program that calls for floating point operations and this is not 

supported by the hardware, the CPU emulates it using a series of simpler fixed point arithme-

tic operations that run on the integer arithmetic logic unit, causing low performance in this 

kind of applications. 

 

The Centro de Investigación en Computación of the Instituto Politécnico Nacional work in a 

project currently in development called Lagarto to create intellectual property in embedded 

high performance processor architectures and operating systems to research and teach.  

Lagarto II is a superscalar processor which fetches, decodes and dispatches up to two in-

structions per clock cycle, which will support a complete instruction set of 32-bits that oper-

ate in 64-bits data, this architecture is synthesizable in FPGAs devices. 

 

In this thesis, work is undertaken towards the design in hardware description languages and 

implementation in FPGA of an out of order execution engine of floating point arithmetic op-

erations. A first proposal covers the design of a low power consumption issue queue for out 

of order processors, register bank, bypass network and the functional units for addi-

tion/subtraction, multiplication, division/reciprocal and Fused Multiply Accumulate (FMAC) 

confirming with the IEEE-754 standard. The design supports double precision format and 

denormalized numbers; A second proposal is based on a pair of FMAC as functional units 

which can perform almost all Floating-point operations, this design is more beneficial in ar-

ea, performance and energy efficiency compared with the first version.  
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Glossary 

 

Dynamic scheduling: Strategies and techniques applied to the superscalar processors in order to 

exploit the instructions level parallelism given by a program. 

 

IEEE 754 Standard:   Technical standard for floating-point computation established in 1985 by 

the Institute of Electrical and Electronics Engineers (IEEE) 

 

High performance techniques: Techniques applied to the superscalar processors in order to 

exploit the instructions level parallelism given by a program. 

 

In Order processors: Processors which processes the instructions in the order that they appear 

in the binary (according to the sequential semantics of the instructions). 

 

Issue Queue: Structure use in superscalar processors to allocate instructions that not comply 

with all conditions to be executed. 

 

Low power consumption techniques: Techniques applied to the superscalar processors in order 

to save energy. These techniques usually are applied to processors for mobile devices where de 

autonomy is important.  

 

Out of Order processors: Processors which processes the instructions in an order that can be 

different (and usually is) from the one in the binary. The purpose of executing instructions out 

of order is to increase the amount of ILP by providing more freedom to the hardware for choos-

ing which instructions to process in each cycle. 

 

Pipeline: Technique applied to the processors in order to increase the performance. Basically 

split the execution of each instruction into multiple phases and allow different instructions to be 

processed in different phases simultaneously. Pipelining increases instruction level parallelism 

(ILP), and due to its cost-effectiveness, it practically is used by all processors nowadays. 

 

Scalar processors: Processor that cannot execute more than 1 instruction in at least one of its 

pipeline stages. In other words, a scalar processor cannot achieve a throughput greater than 1 

instruction per cycle for any code. 

 

Superscalar processors: Superscalar processor can execute more than 1 instruction at the same 

time in all pipeline stages and therefore can achieve a throughput higher than 1 instruction per 

cycle for some codes. 
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Chapter 1   

1. Introduction 

1.1. Motivation 

The incessant search of methods and techniques to improve the performance in the processors, 

which are the basic elements for the functionality of all types of modern devices, from super 

computers to cellphones, has led to the development of a kind of microarchitecture called su-

perscalar, which has the capacity to perform fetch, decode and dispatch of two or more instruc-

tions per clock cycle. 

 

To obtain high performance, modern superscalar processors use many building blocks imple-

mented in hardware as register renaming, dynamic branch predictors and speculative instruction 

execution. These techniques have the objective to perform dynamic scheduling to expose the 

maximum amount of instruction level parallelism found in a program, keep busy at maximum 

the functional units of the processors and for that superscalar processors must be able to per-

form out of order execution.  

 

The Centro de Investigación en Computación of the Instituto Politécnico Nacional work in a 

project currently in development called Lagarto to create intellectual property in embedded 

high performance processors architectures and operating systems to research and teach. The 

first model (Lagarto I) is a scalar pipelined processor, which executes one instruction per clock 

cycle and is based in MIPS 32-bits architecture developed by PhD. John Hennesy with some 

modifications. A second version is a superscalar processors called Lagarto II, which fetches, 

decodes and dispatches up to two instructions per clock cycle, which supports a complete in-

struction set of 32-bits that operate on 64-bits data, both architectures are synthesizable in 

FPGAs devices. [1] 

 

Superescalar architectures include a large number of components to support out of order execu-

tion. Instructions are fetch, decoded, renamed, and if the instruction queue has free locations, 

are dispatch in order. These instructions waiting for their source operands are ready, and that 

the corresponding functional unit is found free; should comply with these conditions to be is-

sued to the execution units. Lagarto II can execute operations out of order; it will exploit in-

struction-level parallelism given by the superscalar architectures. 

 

Until today, Lagarto architecture can’t execute the instruction set of floating point operations 

because it lacks a hardware floating point unit, and for this reason it performs floating-point 
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operations by software, causing poor performance in applications that require computing with 

numbers in floating point format. 

1.2. Objectives 

General objective  
 

Design and implement an out of order execution engine of floating point arithmetic operations 

for the super scalar processor Lagarto II. 

 

Specific objectives 
  

Design and implement in hardware description languages of:  

• A Floating Point Instruction Queue with out of order Issue. 

• A Floating Point Register bank. 

• A set of FP Functional units for arithmetic operations: 

• Add/Subtract  

• Multiply 

• Divide 

All functional units should support double precision format (64 bits) and Sub-

normal numbers. 

• Forwarding unit (Bypass).  

Using techniques for high performance and low power consumption. 

1.3. Justification 

The design of the hardware structures that constitute the functional blocks of the processor 

architecture is not a trivial task. This task becomes even more complicated when the processor 

architecture is designed to be superscalar and dynamic scheduling with out of order execution. 

Because, while higher performance is achieved, the complexity of the structures that compose it 

increases. 

 

Initially the trend of superscalar processors was to obtain the best possible performance, regard-

less of the energy cost, but now that trend has changed and this because its use in mobile devic-

es is overwhelming nowadays, for that reason it is required to have high performance proces-

sors but with low power consumption. Therefore, in this thesis, we propose to design and im-

plement the out of order execution engine of floating point arithmetic operations, using tech-

niques of high performance and low power consumption. 

 

Although there are several companies of processors (AMD, Intel, Nvidia, Siemens, Texas, etc.) 

the design of their architectures is the intellectual property of companies and techniques imple-

mented to improve the performance are trade secrets. 
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According as a country is able to develop its own technology, will be able to eliminate not only 

economic dependence, also knowledge dependence on other countries and generate wealth that 

is reflected in its population. A clear example is Chinese, who for two decades established a 

state policy aimed at giving a strong impulse to the development of science and technology in 

that country. A particular effort made as part of that policy was the research and development of 

a microprocessor manufactured locally resulting in 2002 of a CPU which became known as 

Godson1, which is based on the architecture MIPS and is capable of running the Linux operat-

ing system. In 2008 it was announced market entry of a low-cost laptop called Yeelong with a 

Loongson 2F processor. With this project the Chinese government made the proposal that eve-

ryone with low purchasing power can have access to a personal computer. Thus China is able to 

use these processors as an engine of its growing electronics industry, to use them in all sorts of 

devices ranging from cars to mobile devices, which would allow China to obtain all the benefits 

that entails eliminating dependence on technology foreign [2]. 

 

Other similar project is called RISC-V, this project was originated in 2010 by researchers in the 

Computer Science Division of the EECS Department at the University of California, Berkley.  

RISC-V is a new instruction set architecture (ISA) that was originally designed to support com-

puter research and education and this group hope will become a standard open architecture for 

industry implementations. Also they provide a high performance, energy-efficient processor 

called Rocket, which is a 6-stage single-issue in-order pipeline that executes the 64-bit scalar 

RISC-V ISA. Furthermore, implements an MMU that supports page-based virtual memory and 

is able to boot modern operating systems such as Linux. Rocket also has an optional IEEE 754-

2008-compliant FPU, which implements both single- and double-precision floating-point opera-

tions, including fused multiply-add. Developing a CPU requires expertise in several specialties: 

Computer architecture, compiler design and operating system design [3]. 

 

México could follow this example and get the same benefits by doing a similar effort. However, 

research and development in the field of computer architecture design has not been exploited 

enough, which is why this thesis will be a great contribution to what will become the first su-

perscalar processor designed in Mexico, and further, as any modern processor, must have an 

execution engine of floating point arithmetic operations.  

1.4. Organization 

The rest of the thesis is composed of the following chapters. Chapter 2 provides a brief back-

ground about superscalar architectures and deepens in issue stage, read register stage and exe-

cution stage; also we introduce the Floating Point Arithmetic and IEEE 754 standard. Chapter 

3, describes the state of the art of the issue queues, register files, Floating-point functional units 

and a pair of examples of current microprocessors and its FP engine. Chapter 4 describes two 

designs of the out of order execution engine, second design is an improvement of the first de-

sign. In Chapter 5 are shown the implementation results. Chapter 6 presents the testing of the 

final design and finally Chapter 7 provides the conclusion of this thesis work, future work and 

research’s products. 
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Chapter 2 

2. Background 

In this chapter first we introduce the superscalar architecture in order to place this work in 

context with, making emphasis in the Issue stage, Read Register Stage and Execution Stage 

which are the goals of this thesis work. After that, we talk about IEEE-754 standard which is a 

technical standard for floating point computation, define the arithmetic formats, interchange 

formats, rounding rules, operations and exception handling, and finally, we talk about the in-

struction set architecture which will be supported by Lagarto II processors, which is for aca-

demic and research the MIPS 64 revision 6. 

2.1. Superscalar Architectures 

 

Nowadays, we can find embedded processors in many components, such as smartphones, 

game consoles, cars, etc. 

Superscalar architectures can be classified in in-order and out-of-order execution fashion. 

 

An in-order processor executes the instructions in the order that they appear in the binary, 

whereas an out-of-order processor executes the instructions in an order that can be different 

from the one in the binary. The purpose of executing instructions out of order is to exploit the 

ILP and increase the performance by the superscalar architectures [4]. 

 

Modern superscalar architectures include a large number of elements in order to support the out 

of order execution. Instructions are fetched in order from the instruction cache, are decoded to 

understand their semantics. After, most processors apply some type of renaming to the register 

operands to remove the false dependences introduced by the compiler in order to identify and 

exploit parallelism in the instruction stream [5]. Then, instructions are dispatched to various 

buffers, depending of the kind of instruction. Non-memory instructions are dispatched to the 

integer issue queue or FP issue queue, whereas memory instructions are dispatched to the 

load/store queue. These instructions waiting for their source operands are ready, and that the 

corresponding functional unit is found free; should comply with these conditions to be issued to 

the execution units. 
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Fig. 2.1 Lagarto II Microarchitecture 

 

An instruction remains in the reorder buffer until it commits. The goal of the reorder buffer 

is to preserve the order until the instruction finalizes and to store information about the instruc-

tion that is useful for its execution but also to recovery of some error if it is necessary. Finally, 

non-speculative instructions commit their results in program order. In Figure 2.1 is shown the 

microarchitecture of Lagarto II which is a superscalar processor. 

 

Basically the superscalar processors can be divided in the Frontend and Backend, where the 

first one always is in-order and include the Fetch, decode and rename stages, whereas the sec-

ond, could be in-order or out-of-order and include the issue, execute/writeback and finally the 

commit which is always in order.  In Figure 2.2 we show this division. 
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Fig. 2.2 Backend and Frontend in a superscalar processors 

The first part of the pipeline is responsible of the fetching instructions. The main components of 

this stage are the instruction cache memory, where the instructions are allocated, and a branch 

predictor, which one determines if the current instruction is a branch but it also takes the deci-

sion whether about take or not take this branch while the fetch stage determines the address of 

the next fetch cycle. 

 

The second stage is the instruction decode. The main components of this part are ROM decod-

ers and ad-hoc circuitry; the main objective is to identify the main attributes of the instruction 

such as type and resources that it will require for their execution. 

 

The third stage is Register renaming which goal is to change the names of the logical source 

registers by its corresponding physical register tags mapped in last cycles, also assign new 

physical register tags to the logical destination with the purpose of removing all false depend-

ences. This is done normally though a set of tables that contain information about the current 

mapping of logical names to physical ones and what names or tags are not being used, together 

with some logic to analyze dependences among the multiple instructions. 

 

The fourth stage is the instruction dispatch, is responsible of reserve different resources that the 

instruction will use, including entries in the reorder buffer, issue queue and load/store buffers. If 

resources are not available, the processor performs a stall until these resources become free. All 

the above steps are performed in order [4]. 
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From here on we will emphasize the backend part, deepening in the Issue Stage, read register 

and execution which are the goals of this work, also to understand the recovery in case of miss 

speculation we will talk a little about the commit stage. 

2.1.1. Issue Stage 

The Issue stage is in charge of sending instructions to the execution units. There are two 

types of issue schemes: In order and out of order. The first one scheme sends the instructions in 

the program order, whereas the second scheme sends the instruction out of the program order as 

soon as their source operands become available. Most of the latest processors implement out-of-

order schemes. There are many different ways of implementing an out-of-order issue. 

 

In-order issue logic 

 

In-order issue logic issues the instructions for execution in the same order they were fetched. 

Therefore, instructions wait until all previous instructions have been issued. Then, the instruc-

tion is issued as soon as its source operands are available and the resources it needs for execu-

tion are ready. This kind of issue logic is sometimes implemented at the decode stage of the 

processor due to its simplicity using scoreboarding. A typical scoreboard comprises two tables, 

a data dependence table and a resource table [4]. 

 

Out of order issue logic 

 

The issue logic is a key component that determines the amount of instruction level parallel-

ism that processors are able to exploit. It allows out-of-order execution by issuing instructions 

to the functional units as soon as its source operands become available. However, the hardware 

components involved in the issue process sit in the critical path of the processor pipeline [4]. 

Researches have used a variety of schemes to implement the issue queue; also several recent 

proposals have attempted to reduce the issue logic’s complexity and power. 

 

One of the most common ways to implement the issue logic is based on random access memory 

RAM and content-addressable memory (CAM) array structures called RAM-CAM Schemes as 

we can see in the Figure 2.3. These structures can store several instructions, but generally fewer 

than the total number of in-flight instructions. Each entry contains an instruction that has not 

been issued or has been issued speculatively but not yet validated and thus might need to be 

rescheduled. 
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Fig. 2.3 Issue Queue - RAM/CAM Scheme. 

 

After the issue logic selects an instruction for execution, it broadcast the instruction’s destina-

tion tag to all the instructions in the issue queue. The wakeup logic compares each source tag in 

the queue with the broadcast tag and, if there is a match, marks the operand as ready. This pro-

cess is known as wakeup. A superscalar processor can broadcast and compare multiple tags in 

parallel. Figure 2.4 shows a block diagram of the issue logic for one entry of the issue queue 

[6]. 

 

 

Fig. 2.4 Issue logic for an entry in a CAM/RAM array. 

The selection process identifies instructions whose source operands are ready and whose re-

quired resources are available, and then issues them for execution. When more than one instruc-

tion is ready and competes for the same resource, the selection logic chooses one of them ac-

cording to some heuristic like the oldest first or the longest latency first [6]. 

 

Overall, the issue logic’s main source of complexity and power dissipations the many tag com-

parisons it must perform every cycle. Researches have proposed several approaches to improve 

the issue logic’s power efficiency, these are described in the following chapter.  
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2.1.2. Read Register stage 

Once the instruction is issued, some bits (tag) go to read the source operands to the Floating 

point register file to send all needed information to the execution stage. The instruction set 

architecture of a CPU almost always defines a set of registers, which are used to exchange data 

between memory and the functional units on the chip. In simpler CPUs, these architectural 

registers correspond one-for-one to the entries in a physical register file within the CPU. Su-

perscalar CPUs use register renaming, so that the mapping of which physical entry stores a 

particular architectural register changes dynamically during execution, as is explained in section 

2.1.  

 

Processors in general have a small number of architectural registers (32 integers and 32 FP) 

and, as consequence, name dependences through registers are very common, and the benefits of 

getting rid of them in an out-of-order processor are huge. 

 

High performance processors use an out of order execution scheme in order to exploit the in-

struction level parallelism (ILP) existent in the program’s code. Processor examines a large 

window of in-flight instructions to find all possible ready instructions capable to execute every 

cycle. The size of the windows is some of the key determinants of the IPC achieved by the 

processor. However, if the processors support a large window of in-flight instructions, it re-

quires a large register file and issue queues, which can compromise the cycle time [7].  

Another important aspect to take account is that a large issue-width in the processors also re-

quires a large number of read/write ports in the register file. The access time of the register file 

basically depends on both the number of entries and the number of ports. The register file is a 

heavily ported RAM structure. A processor capable of issuing eight floating point instructions 

each cycle may need a floating point register file with sixteen read ports to read two source 

operands per instruction and eight write ports to write the result of each functional unit, also 

need other extra ports to interchange information with the integer Register file and one more 

port to write the new data from the load/store unit. 

 

Register files in dynamic superscalar processors have been a very modestly sized. The Alpha 

21264 processor has as many as 80 integer physical registers and 72 floating-point physical 

registers and use a clustered organization to reduce the number of ports and the access time [8]. 

Many researches were performed in order to improve the access time and the energy consump-

tion in the register file; some of those are described in the next chapter. 

2.1.3. Execution Stage 

In this stage the instructions results are calculated, the values of the source operands are send to 

the execution units with extra information like the kind of operation, also, in case of floating 

point operations send the precision, format and round method.  There are several types of opera-

tions that the processor can perform in the execution stage. The most common are the arithme-

https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Register_renaming
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tic operations like addition, multiplication, etc. Memory Instructions operate on data either by 

loading them from memory to registers or by storing them from registers to memory. Control-

flow instructions change the value of the Program Counter (PC) register. More infrequently, 

specialized instructions can change the machine state by operating on control registers (special 

registers that define how the processor behaves). 

 

Naturally, the different types of operations have different complexity and, as a consequence, 

different latency. For this reason, in contemporary microprocessors, the execution stage is not a 

single pipeline stage. Also, there are usually several different paths in the processor pipeline 

that an instruction can follow when it reaches the execute stage. The most obvious ones are the 

integer path, memory path, and the floating-point path.  

 

 

Another important aspect of the execution stage is the bypassing network. This is the network 

responsible for forward value results of the computation among the various functional units, the 

data cache and the register file. In high performance microprocessors, some form of bypass is 

necessary if we want to provide back-to-back execution of dependent instructions. Because of 

its importance to performance and its complexity, the bypass network is one of the critical 

components of the execution stage. 

 

Floating Point Unit 

 

This unit operates on two floating-point values coming from the floating-point register file or 

the memory across of bypass network and produces a floating-point result. A floating-point unit 

(FPU) performs arithmetic operations such as addition, subtraction and multiplication. Depend-

ing of the implementation, it can also perform division, square root and other complex opera-

tion as trigonometric functions, exponentials, etc. Normally, floating point and integer register 

file state is kept in separate structures. Depending on the architecture, there may be instructions 

that convert the floating point values to integers and vice versa. Conversion operations are also 

implemented in the floating-point unit. 

 

IEEE-754 standard is a technical standard for floating point computation, define the arithmetic 

formats, interchange formats, rounding rules, operations and exception handling, later we will 

deepen in this standard. The FPU is a very complex unit, and it is generally several times bigger 

than the integer units. 

 

Bypass Logic 

 

When executing instructions in a pipeline, the result of a computation does not update the ma-

chine state until the commit stage, which may be many cycles after the result was generated.  

The result of the computation becomes speculatively available after the write-back stage. The 

write-back stage is when the result of a functional unit is sent to the architectural register file, to 
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the merged register file, to the reorder buffer, the rename buffer and so on, depending on the 

machine design (in-order, out-of-order, etc.). 

 

Having bypasses improves the executed instructions per cycle metric (IPC), but it may affect 

the cycle time and/or power of the microprocessor. Most processors today implement some 

form of bypass. The notable exception is the IBM POWER5 [38] processor, where the design-

ers opted to not implement a bypass network in order to keep complexity low and in conse-

quence the frequency high. 

 

 
Fig. 2.5 Simple execution engine with two functional units, without (left) and with (right) 

value bypassing. 

 

If the processor does not implement a bypass, each input of a functional unit is connected di-

rectly to a read port of the register file to read the source value. Similarly, the result of the func-

tional unit is connected directly to a write port of the register file. If we want to implement 

value bypassing, the source value of a functional unit can come from three different places in 

the machine in this design: the register file (i.e., no bypass), the functional unit itself and other 

functional unit. Thus, we need a 3:1 multiplexor at the input of each functional unit. Also, the 

results of the functional units, instead of connecting directly to the register file, now form a bus 

that spans the width of the execution engine (called the result bus) and connect to all the func-

tional unit input multiplexors [4]. 

 

2.1.4. Commit Stage 

A processor operates with two separate states: the architectural state and the speculative state. 

The architectural state is updated at commit as if the processor would execute instructions in 

sequential order. By contrast, the speculative state implies the architectural state plus the modi-

fications performed by the instructions that are in-flight in the processor. This latter state is 

called speculative because it is not guaranteed that these modifications will become part of the 

architectural state. Note that conventional processors rely on speculative techniques like branch 

prediction or speculative memory disambiguation in order to keep executing instructions. Thus, 
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if some of these speculations fail or an exception occurs, the speculative state becomes invalid, 

and it never turns into architectural state. 

 

In out of order processors where the execute instructions is accomplished out of the original 

order, we need to emulate the sequential execution of instructions through the implementation 

of an additional stage called commit at the end of the pipeline. Instructions flow through this 

stage in the original program order. Then, any changes that instructions do on previous pipeline 

stages are considered speculative and do not become part of the architectural state until they 

reach commit. At this point, we say that the instruction finalizes. 

 

Finally, since the commit is the last stage on the execution path of an instruction, this is the 

place where hardware resources allocated by the decode stage, like reorder buffer (ROB) entries 

or physical registers are recycled. Note that an instruction should only reclaim those resources 

that are not used anymore. Therefore, for those configurations where the instructions write their 

outcome in a physical register, the reclamation of this physical register should be done by the 

time we know for sure that the content of the register would not be needed anymore. Thus, 

before reclaiming a register, we need to be sure that all instructions that may require the value 

of this register in the future have already read it or they will be able to read it from a different 

place. 

 

Processors that implement a merged register file like Intel Pentium 4 [9], Alpha 21264 [8] or 

MIPS R10000 [10] use the same register file for the values belonging to the architectural state 

and the speculative values. Basically, a physical register is allocated by an instruction to store 

the result’s value, and this register will hold this value until it is not needed anymore, even if 

the instruction commits. The compiler uses again this register when its value is not necessary 

for the program flow and it is recycled.   

 

Recovery in case of Misspeculation 

 

Instructions that are in flight have sometimes to be flushed due to multiple reasons (e.g., branch 

misprediction, exceptions). If these instructions have gone through the allocate stage, then the 

resources that they reserved must be released. Besides, the modifications that these instructions 

did in the register alias tables (RAT) must be undone so that RAT reflect the same state they 

would have if these instructions never would have been executed.  

 

In the event of a branch mispredition, the speculative state of the machine is incorrect because 

the processor has been fetching, renaming and executing instructions from wrong path. There-

fore, when we identify a branch misprediction, the speculative processor state and the program 

counter should be restored to the point where start the correct path.  

 

Recovery mechanism after a branch misprediction is typically split into two separate tasks: 

front-end recovery and back-end recovery. The front-end recovery is usually simpler than the 
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backend recovery. In general, recovering the front-end implies flushing all intermediate buffers 

where instructions fetched from the wrong path are waiting to be renamed, restoring the history 

of the branch predictor and updating the program counter to resume fetching instructions from 

the correct path. By contrast, recovering the back-end implies removing all instructions belong-

ing to the wrong path residing on any buffer like the Issue queue, Reorder buffer, etc. Moreo-

ver, RAT’s should be restored as well in order to properly rename instructions from the correct 

path. Finally, back-end resources like physical registers or issue queue entries allocated by 

wrong-path instructions should also be reclaimed. 

 

Therefore, processors like the MIPS R10000 or Alpha 21264 rely on a checkpoint mechanism 

in order to reduce the distance of the traversal between the current execution point to mispre-

dicted branch. These processors periodically take a snapshot of the content of the RAT so that 

the log does not have to be fully traversed, but the traversal begins on an instruction where a 

checkpoint was taken. 

 

For example, in case of MIPS R10000 processor, the first checkpoint younger than the branch is 

copied into the RAT, and the renaming log is traversed backwards until the mispredicted branch 

is found. Every entry on the log includes the previous mapping of the logical register that the 

renamed mechanism overwrote. Then, the RAT is restored based on this information in order to 

reflect the precise state of the processor at the moment when the branch was mispredicted. 

 

Besides the Rename scheme, other information like, for instance, the list of available physical 

register identifiers should be reclaimed to free those registers allocated by the instructions in the 

wrong path. Some processors like Alpha 21264 implement the list of free physical registers as 

part of the Rename Structures. Then, this list is restored starting the traversal from the check-

point in the same form that it is done for the renaming table [4]. 

 

2.2. Floating Point Numbers 

In many scientific and engineering computations, numbers in a wide range, from very small to 

extremely large, are processed. Fixed-point number representations can represent fractions but 

the fundamental problem is that this notation is severely limited, not have enough range for this 

application. For example, a fixed point decimal number system capable of representing both 

10−20 and 1020 would require at least 40 decimal digits and even then, would not offer much 

precision with numbers close to 10−20.  Most of the real values will have to be represented in 

an approximate manner; the scientific notation used to overcome this issue, and is called float-

ing-point representation. In general, floating point numbers are generally of the form 

 

(−1)𝑠𝑥𝐹𝑥2𝐸   

Where F represents the value in the fraction field, E represents the value in the exponent field 

and S is the sign and its codification is shown in Figure2.6. This chosen size of exponent and 
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fraction give an extraordinary range. Fractions almost as small as 2.0𝑡𝑒𝑛𝑥10−38 and number 

almost as large as 2.0𝑡𝑒𝑛𝑥1038 can be represented in a computer for a single precision format.  

 

 

Fig. 2.6 Codification of Floating Point Numbers 

 

An overflow interrupts can occur in floating point arithmetic as well as in integer arithmetic 

operations. One way to reduce chances of underflow or overflow is to offer another format that 

has a larger exponent. In C language this number is called double, and operations on doubles 

are called double precision floating point arithmetic; single precision floating point arithmetic is 

the name of the earlier format which in C is called float. They are part of the IEEE 754 floating 

point standard.  

2.2.1. IEEE 754 standard 

IEEE-754 standard which is a technical standard for floating point computation established in 

1985 by the Institute of Electrical and Electronics Engineers (IEEE) [11] in order to improve 

the portability of floating-point computations. The standard can be implemented in hardware, 

software or a combination of both.  

 

IEEE 754 standard defines much more than just the representation; the main aspects are list 

below: 

 Basic and extended floating-point formats 

 Operations  

 Rounding rules 

 Exception handling 

 

 

Floating Point Formats 

 

IEEE 754 standard define three floating point formats: 

- 32-bit single-precision floating point (Figure 2.7). 

- 64-bit double-precision floating point (Figure 2.8). 

- 80-bit Extended-precision floating point 

 

 

Fig. 2.7 . Single-Precision Floating Point Format (S) 
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Fig. 2.8 Double-Precision Floating Point Format (D) 

 

The floating point data types represent numeric values as well as other special entities, such as 

the following: 

- Two zero representations, -0 and +0. 

- Two infinities, +∞ and -∞. 

- Signaling non-numbers (SNaNs). 

- Quiet non-numbers (QNaNs). 

- Normal Numbers 

- Subnormal Numbers 

 

Fig. 2.9 Floating point representations. 

The set of finite floating-point numbers representable within a particular format is deter-

mined by the following parameters: 

𝑏: The radix 

𝑝: The number of digits in the significant (precision) 

𝑒𝑚𝑎𝑥: The maximum exponent 

𝑒𝑚𝑖𝑛: The minimum exponent, which is equal to 1- 𝑒𝑚𝑎𝑥 for all formats 

 

The smallest positive normal floating-point number is 𝑏𝑒𝑚𝑖𝑛 and the largest is 𝑏𝑒𝑚𝑎𝑥 ×

 (𝑏 − 𝑏1−𝑝). The non-zero floating point numbers for a format with magnitude less than 𝑏𝑒𝑚𝑖𝑛  

are called subnormal because their magnitudes lie between zero and the smallest normal magni-

tude.  

 

Table 2.1 defines the parameters of basic floating-point formats. 

Table 2.1 Parameters defining basic format floating point numbers 

Parameter Binary32 Binary64 

𝑝 24 53 

𝑒𝑚𝑎𝑥 +127 +1023 

 

 

Table 2.2 shows an example of representations of floating-point data types. 
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Table 2.2 Floating-point representations 

Data Type Representation for double precision format 

Sign Exponent Fraction 

-Zero 1 00000000000 00000000000000000000000000000000000000000000000000000 

+Zero 0 00000000000 00000000000000000000000000000000000000000000000000000 

-Infinity 1 11111111111 00000000000000000000000000000000000000000000000000000 

+Infinity 0 11111111111 00000000000000000000000000000000000000000000000000000 

QNaN x 11111111111 1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

SNaN x 11111111111 0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

-Subnormal  1 00000000000 00000100000000000000000010000000000000000000010000000 

+Subnormal  0 00000000000 00000000000000000000000000000000000000000000000000000 

-Normal 1 00100000100 10000000001000000000000000000001000000000000000000000 

+Normal 0 00100000100 10000000001000000000000000000001000000000000000000000 

 

Table 2.3 exhibits the span of each floating-point format. 

 

Table 2.3 Span of IEEE 754 Floating Point Formats 

Format Min Subnormal Min Normal Max Normal 

Single 1.4E-45 1.2E-38 5.96E38 

Double 4.9E-324 2.2E-308 1.8E308 

 

 

Floating Point Rounding 

 

Most arithmetic operations do not result in a number that can be represented exactly. In such 

cases the result need to be rounded to a number that can be represented in a given format.  

IEEE-754 standard define four rounding modes listed in Table 2.8. 

 

The most popular mode is round toward nearest, ties to even. This rounding mode generally 

introduces the smallest error, as the result of round toward nearest is the number closest to the 

exact value. However, certain applications such as interval arithmetic perform better on simpler 

rounding mode like round toward zero. For this reason, IEEE-754 includes directed rounding 

modes as well. 

 



Background 

Chapter 2                                                                                                                    18 

 

Table 2.4 Rounding Definitions 

Round Meaning 

Round to Nearest Rounds the result to the nearest representable value. When 

two representable values are equally near, the result is round-

ed to the value whose least significant bit is zero (that is, 

even) 

Round Toward Zero Rounds the result to the value closest to but not greater than in 

magnitude than the result. 

Round Towards Plus Infinity Rounds the result to the value closest to but not less than the 

result. 

Round Towards Minus Infinity Rounds the result to the value closest to but not greater than 

the result. 

 

 

Exceptions  

 

The following five exception conditions defined by the IEEE standard are described below: 

 

 Invalid Operation Exception: Some arithmetic operations are invalid, such a division 

by zero or square root of a negative number. The result of an invalid operation is a 

NaN. 

 Division by Zero Exception: The division of any number by zero gives infinity as a re-

sult.  

 Underflow Exception: Two evens cause this exception, smallness and loss of accuracy.  

 Overflow Exception: Is signaled whenever the result exceeds the maximum value that 

can be represented due to the restricted exponent range.  

 Inexact Exception: This exception should be signaled whenever the result of an arith-

metic operation is not exact due to the precision range. 
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Chapter 3   

3. State of the Art 

 

A typical superscalar processor fetches and decodes more than one instruction at a time. As part 

of the instruction fetch process, the conditional branch instructions are usually predicted to 

ensure an uninterrupted stream of the code. The incoming instruction stream is then analyzed 

for data dependences, and instructions are distributed to functional units, often according to 

instruction type. Next, instructions are initiated for execution in parallel, based primarily on the 

availability of operand data, regardless of the order of the original program. This important 

feature to exploit the instruction level parallelism (ILP), present in the code of applications, is 

referred in general as dynamic instruction scheduling [12]. 

 

In hardware terms, the processor needs hardware resources to execute multiple instructions in 

parallel, more precisely a superscalar processor with dynamic instruction scheduling imple-

ments: 

 

 Fetch strategies that simultaneously fetching multiple instructions. 

 Branch prediction strategies that predict the execution path of the instructions and 

fetching speculative code. 

 Methods for determining true dependences involving register values, and mechanism 

for communicating these values to where they are need during execution. 

 Methods for issue multiple instructions in parallel (Out of order execution). 

 Resources for parallel execution of many instructions. 

 Methods for committing the process state in correct order; these mechanisms maintain 

an outward appearance of sequential execution. 

 

Modern superscalar architectures include a large number of elements in order to support the out 

of order execution.  

 

Superscalar processors like Pentium 4 were processors which was designed to operate with very 

high clock frequency up to 10 GHZ [13], (with very good cooling system), the performance was 

the main point back then. However, with the entry of mobile devices in the market like 

smartphones, tablets, Laptops, etc., the trend of the design of superscalar processors has 

changed, the new trend was the low power consumption in order to have grater energy inde-

pendence in these devices. Nowadays, this trend continues, new Laptops as ASUS Ultrabook 

series, put a low power consumption processors AMD like A6, A8 or A10, which work in nor-

mal mode at 1.6 GHZ. If the operating system detects that the load work is little, the frequency 
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is scaled down to 1GHZ or less and have an autonomy proven of HDVT (720p) video playing 

for 7 hours [14]. Many researches have been performed in order to obtain a good performance 

but with low power consumption in superscalar processors.  

 

Following we shown the state of the art of the issue queue which in processors like Pentium 4 is 

one of the main consumers of energy responsible for approximately 25% of the total energy 

consumption [15], also we discus about the state of the art of the register banks and the floating 

point functional units. 

3.1. Issue Queue 

Researches have proposed several approaches to improve the issue logic’s power efficiency. 

This approach can be classified in two groups: Static approaches, which use fixed structures, 

and dynamic approaches, which dynamically adapt some structures according to the properties 

of the executed code. 

 

Buyoktusunoglu, Shuster, Brooks, Albonesi and Cook [16] proposed a circuit design to adap-

tively resize an instruction queue partitioned into fixed size blocks (32 entries and 4 blocks 

were studied). The resizing was based on IPC monitoring. The use of self-timed circuits al-

lowed delay reduction for smaller queue size. 

 

Moshnyaga Vasily [17] improved this design using voltage scaling. The supply voltage was 

scaled down when only a single queue block was enabled. 

 

Folegnani and Gonzáles [15] proposed a design, which divided the IQ into blocks (16 blocks of 

8 entries). Blocks which did not contribute to the IPC were dynamically disabled using a moni-

toring mechanism based on the IPC contribution of the last active bank in the queue. In addi-

tion, their design dynamically disabled the wake up function for empty entries and ready oper-

ands. 

 

The energy consumption of a dynamically scheduled superscalar processor like Pentium 4 is 

between 50 and 100 Watts. At the micro-architecture level, the issue logic is one of the main 

consumers of energy responsible for approximately 25% of the total energy consumption of the 

overall processor [15]. 

 

Ramírez, Cristal, Valero, Villa and Veidenbaum [18] proposed a design, which reduce the ener-

gy consumption in the wakeup logic by eliminating unnecessary comparisons. They proposed a 

new element called block mapping table mechanism, design uses a multi-block instruction 

queue. The blocks are inactive until the mechanism determines which blocks to access on 

wakeup using a simple successor tracking mechanism.  

Results presented are shown in Figure 3.1 for comparisons per committed instructions for float-

ing-point benchmarks for a 32- and 64-queue size. The averages are 12 and 17 comparisons per 
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committed instruction, there are unnecessary comparisons that can be avoided, and using a 

proposed design only require 1.5 comparisons per committed instruction achieve a reduction 

near of 73 % for SPEC2000 benchmarks. 

 

 

Fig. 3.1 Average number of comparisons per instruction for FP Benchmarks. 

 

New processors for mobiles devices such as Nvidia Tegra 4, based on ARM Cortex-A15 micro-

architecture (superscalar architecture), delivers high performance for mobile applications and 

improved battery life. Processors such as Tegra 4 uses techniques of high performance and low 

power consumption, Tegra 4 has an energy consumption close to 10 Watts. Specifically, the 

issue queue consumes approximately 18 % of the total energy consumption of the overall pro-

cessor as is shown in Figure 3.2 [19]. 

 

 

Fig. 3.2 Power consumption in Nvidia Tegra 4 processors. 
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3.2. Register File 

Register files in modern dynamic superscalar processors have been a very modestly sized. The 

Alpha 21264 processor has as many as 80 integer physical registers and 72 floating-point phys-

ical registers and use a clustered organization to reduce the number of ports and the access time 

[8]. 

 

Many researches were performs in order to improve the access time and the energy consump-

tion in the register file. 

 

Lorenzo, Gonzales and Valero [20] proposed a multiple banked register file that can achieve an 

IPC rate much higher than a multi-cycle file and close to a single-cycle file, but at the same 

time it requires a single level of bypass. Multiple-banked register file architecture consists of 

several banks of physical registers with a heterogeneous organization: each bank may have a 

different number of registers, a different number of ports and therefore, a different access time. 

Basically authors propose a run-time mechanism, which allocate the values in the registers, 

where the most critical values are in the fast bank, whereas the remaining values are in the 

slower bank. 

 

Balasubramonian, Dwarkadas and Albonesi [7] proposed a two level register file to reduce the 

register file size and a banked organization to reduce the port requirements. If the processor is 

capable of issue eight integer instructions and simultaneously write back eight integer instruc-

tions theoretically could use a register file with 24 ports, but the number of ports required on 

average is less for several reasons: 

 

 Many operands are read in the bypass network, not from the register file. 

 Many instructions have a single register operand. 

 Not all instructions write the result in the register file, instructions like branch that 

send the result to the branch predictor module do not need save the result in the regis-

ter file, stores instructions save the result in memory.  

 

Then they reduce from 24- ported structure to an 8-ported structure. Their two level register file 

uses an allocation policy that leaves values that have potential readers in the level one. When 

using the instructions per cycle metric, the two-level organization performs 17% better than the 

best single-level organization. Using a banked single-porter- bank register file organization 

reduces access times by a factor of more than two and energy consumption by a factor of more 

than 18 when compared to a conventional organization, also these improvements are obtained 

without a significant degradation in IPC. 

 

As we can see these previous proposals are interesting, but to implement a Multiport Register 

file in the configurable devices is not a trivial task. Altera Co. FPGA devices provide an Em-
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bedded Memory with Single and Dual port configurations (single port one read, single port one 

write, dual ports one read and one write, dual ports two reads or dual ports two writes) [21]. 

 

There are two ways to implement multiport memories in FPGA, using logic elements, or us-

ing memory embedded in the device. 

 

Implement Multiport Memories Using logic elements 

Implement a Multiport Memory using the logic elements of the FPGA have some inconvenient, 

the number of logic elements increases according to the number of read and write ports and the 

size of the memory. Figure 3.3 shows a 6R/6W 64-bits x 128-entries Memory block using logic 

elements of the FPGA cyclone IV; the advantage is the easy implementation.  

 

 

Fig. 3.3 Multiport Memory using Logic elements 

 

 

 

Implement Multiport Memories Using Embedded Memory 

  

Latest Altera FPGA devices as cyclone and Stratix series provide an Embedded Memory 

which are blocks of dedicated memory resources. Following table list and describes the 

memory operation modes that are supported for embedded memory blocks [22]. 
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Table 3.1 Supported Memory Operations Modes 

Memory Operation 

Mode 

Description 

Single-port RAM Single-port mode supports non-simultaneous read and write opera-

tions from a single address. 

Simple dual-port 

RAM 

Simultaneously perform one read and one write operations to differ-

ent locations where the write operation happens on port A and the 

read operation happens on port B. 

True dual-port RAM Perform any combination of two port operations: 

 Two reads, two writes, or, 

 One read and one write at two different clock frequencies 

Single-port ROM Only one address port is available for read operation. the memory 

blocks are used as a ROM. 

 Initialize the ROM contents of the memory blocks using a 

.mif or .hex file. 

Dual-port ROM The dual-port ROM has almost similar functional ports as single-port 

ROM. The difference is dual-port ROM has an additional address 

port for read operation. 

 

 

Because the above specifications, many techniques have been proposed to implement a mul-

tiport memory in the FPGA in [23]. Figure 3.4 show the conventional techniques for provide 

more ports; the first is replication, which can increase the number of read ports by maintaining a 

replica of the memory for each additional read port. However, this technique alone cannot sup-

port more than only one write port. 

 

The second approach splits the deep memory bank among multiple RAM blocks (sub-

banks), allowing each sub-bank to support an additional read and an additional write port. 

However, with this approach each read-port or write-port can only access locations of its corre-

sponding memory sub-bank. 

 

The third is called multipumping, where the core is an asynchronous memory block with 

single read port and single write port, to increase the ports number, a Mux (1:N) and Demux 

(N:1) are used to read and write all ports in one cycle (external frequency lower than internal 

frequency) providing the illusion of a multiple number of ports, also include a register per port 

to temporarily hold the addresses and data of pending reads and writes. This approach reduces 

the operative frequency of the multiport memory. 
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Fig. 3.4 Conventional Techniques for providing more ports given a 1W/1R memory. 

LaForest and Steffan [23] propose a design for true multi-ported memories that uses the FPGA 

block RAMs. They propose a structure called Live Value Table (LVT). Essentially, the LVT 

allows a banked design to behave like a true multi-ported design by directing reads to appropri-

ate banks based on which bank holds the most recent write value. LVT is purely implemented 

in logic elements. Figure 3.5 show the general design. 
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Fig. 3.5 A generalized mW/nR memory implemented using a Live Value Table (LVT). 

“Mn” Blocks uses replication technique in order to obtain a memory with 1 write port and n 

read ports, after they uses banking in order to increases the number of write ports, and finally 

with the LVT and multiplexors they can read the most recent write value. This design work a 

high frequency but operative frequency depends of the number of ports, the live value table 

could uses many logic elements (less than a complete memory with LE). 

 

Laforest, Ming, Rapati and Steffan [24] proposed a new design based on the properties of XOR 

operation. This design is based in that XOR is commutative, associative and has the following 

properties: 

𝐴 ⨁ 0 = 𝐴.  

𝐵 ⨁ 𝐵 = 0.  

𝐴 ⨁ 𝐵 ⨁ 𝐵 = 𝐴.  
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Fig. 3.6 A 2W/1R memory implemented using XOR 

 

Figure 3.6 shows a 2W/1R memory implemented using XOR design. In the example, it is re-

quired to save the value A using the W0 write port, thus we need read the value of the other 

write port and perform the XOR operation and save the result. In this case we save   

𝐴 ⨁ 𝑂𝐿𝐷1, if we want to read the same address we need read all banking blocks and perform 

the XOR operation between them, in this case result as 𝐴 ⨁ 𝑂𝐿𝐷1 ⨁ 𝑂𝐿𝐷1 = 𝐴, which is the 

most recent write value. Figure 3.7 shows a 2W/2R memory implemented using XOR design. 

This design requires m * (m-1+n) RAM Blocks to provide m writes ports and n reads ports as 

we can see in Figure 3.8. 

 

 

Fig. 3.7 A 2W/2R memory implemented using XOR 
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Fig. 3.8 A generalized mW/nR memory implemented using XOR. 

 

3.3. Execution Stage 

The performance and area of a functional unit depend upon circuit style, logic implementation, 

and choice of algorithms. The three primary parameters in FP functional unit design are latency, 

frequency, and area. The functional unit latency is the time required to complete a computation, 

typically measured in machine cycles. Designs can be either Fixed Latency (FL) or Variable 

Latency (VL).  Over the past two decades a lots of work has been dedicated to performance 

improvement of floating point computations, both at algorithmic level and implementation 

level. Several works also focused their implementation on FPGA platforms. In [25] we can 

found the basic algorithms for floating point operations like Adder/Subtractor, Multiplication, 

Division and Multiply-Accumulate with some improvements. Basically all current floating-

point implementations are based in the basics algorithms with little modifications. 

 

Following are described some proposals of Floating-point Adder/subtractor, Multiplication and 

Division. Furthermore, are presented the Floating Point LPM modules provided by Altera Cor-

poration in the software Quartus II. 
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3.3.1. Floating Point Adder/Subtractor 

 

Floating Point Adder/subtractor is one of the most frequent arithmetic operations in scientific 

computing. The design of FP adder/subtractor is relatively more complex than other FP arith-

metic operations. The operations consist of three major task, pre-normalization, addition and 

post-normalization.  

Pre-normalization consists of exponent difference and right shift. Post-normalization consists of 

a priority decoder to detect the leading zeros in a number after the addition and a left-shift oper-

ation.   

 

Post-normalization quickly becomes part of the critical path due we need know the number of 

zeros to the left in the shortest possible time to after perform the shift and deliver the result. 

Exist many ways to obtain the leading zeros, two of the main techniques are called Leading 

Zero Counter (or Leading One Detector) and Leading Zero Anticipation. 

 

Several works are available in the literature, for implementations of floating point ad-

der/subtractor unit on FPGA.  [26] Proposed a design of FP adder/subtractor that has optimized 

the individual complex component of the adder module like dynamic shifter and the leading one 

detector (LOD).  

 

In [27] is presented a study on floating-point adders in FPGAs. They analyze the standard float-

ing-point algorithm and the hardware modules designed as part of this algorithm.  They com-

pare algorithms that use a Leading One Detector (LOD) and Leading One predictor (LOP). 

Both Algorithms are shown in Figure 3.9. 

 

Fist algorithm performs the pre-normalization, addition and post-normalization where use the 

Leading One Detector in order to obtain the number of zeros to the left and subsequently per-

form shift left to normalize the result. Second use LOP instead of LOD. The main function of 

the module is to predict the leading number of zeros in the operation result and this block is 

working in parallel with the adder. Also this specific algorithm was proposed by Bruguera and 

T. Lang [28] which detects the error concurrently with the leading one detection.  Last one 

improves 6.5% in latency but with a cost of 38% more area expensive. 
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Fig. 3.9  FP Adder Microarchitecture using a) LOD algorithm b) LOP algorithm 
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Dimitrakopoulos, Galanopoulos, Mavrokefalidis and  Nikolos [29] proposed a new Low-Power 

Leading-Zero Counter for High-Speed Floating Point Units. Their computation is reduced using 

carry-lookahead techniques in a unified manner. They report that significant energy reductions 

are achieved by the proposed design compared to the most efficient previous implementations. 

Design is presented in Figure 3.10. 

 

 

 

Fig. 3.10 16-bit LZC using the shared carry-propagate approach 
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3.3.2. Floating Point Multiplier 

Floating Point multiplication is a core operation in many signal processing computations, and 

an efficient implementations of floating point multipliers is an important concern.  

Multiplying two numbers in floating point format is performed in three main steps: 

 

 Add the exponent of the two numbers and then subtracting the bias from their result. 

 Multiply the significant of the two numbers. 

 Calculate the sign by XOR operation of the two signs of the two numbers.  

 

To multiply 2 numbers in double precision format, require the implementation of 53-bits x 53-

bits multipliers in hardware, which is very expensive. This operation is relatively simple; pro-

posals are based in how multiply the mantissa as fast as possible. 

 

Manish Kumar and Chandrachoodan [30] propose an efficient implementation of IEEE double 

precision Floating-point Multiplier on FPGA; the proposed method is based on partial block 

multiplication. The main idea is divide the mantissa of the operands in small blocks and per-

form the multiplication using small size multipliers as is shown in Figure 3.11. 

 

 

 

Fig. 3.11 Block Multiplier for two and three blocks. 

 

For implementing the module, they chose block size of 17-bit because Xilinx FPGAs provides a 

signed 18x18 multipliers. Figure 3.12 shows the partial division blocks. Partial products are 

arranged (varied for different latency) in suitable manner and added to get the result. 
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Fig. 3.12 Partial Block multiplier for 53-bits 

 

The cost of the design is an error when compared to the IEEE standard, of up to 1 unit in the 

last place when used with partial nearest value rounding, or up to 2 units in last place without 

rounding. Design is restricted to only normalized numbers. 

3.3.3. Floating Point Divider 

Floating Point divider needs many cycles to perform the division operation using an algorithm 

based on subtract and shift operations as a core of the functional unit. Among the arithmetic 

operations, the division is the operation that consumes more time, because the number of cycles 

used to determine quotient is proportional to the number of bits of the dividend and it is diffi-

cult to implement with pipeline due to the dependencies between the iterations. 

 

Floating Point Divider/Reciprocal 

 

Division operation can be expressed as 𝑎 =
𝑏

𝑐
= 𝑏 𝑥

1

𝑐
. Techniques such as Newton- Raphson 

and series expansion algorithms are usually used to compute the reciprocal for high-

performance division. 

 

A basic implementation of Newton-Raphson reciprocal for double precision is presented in 

[31]. This proposal begin with an initial approximation through a look-up table 
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(210𝑥20 𝑏𝑖𝑡𝑠 𝑅𝑂𝑀) obtained using a Taylor series expansion. After that, uses two Newton-

Raphson iterations. Complete algorithm is described below. 

 

Obtaining the initial reciprocal approximation takes three clock cycles, which requires reading 

the look-up table to obtain the initial value to start, followed by multiplication and addition 

operations. In order to iterate the initial approximation, each Newton-Rapson iteration spend 

four clock cycles, which has two stages, and each stage consists of a multiplication and an addi-

tion. 

 

This Unit perform the floating point reciprocal operation in only eleven cycles. The disad-

vantage of usesing this kind of method is that it does not guarantee the accuracy of the least 

significant bit. The design is presented in Figure 3.13. 

 

 

 

Fig. 3.13 Reciprocal Unit implementation - first proposal 
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Other proposal is presented in [32] where an optimized design and its implementation of 

reciprocal unit is proposed, in which the initial approximation of the reciprocal is obtained 

using a look-up table and a multiplication. Also they describe in detail how to implement 

efficiently the look-up table. Their design utilizes a 27𝑥16 𝑏𝑖𝑡𝑠 𝑅𝑂𝑀 followed by two 

Newton-Raphson iterations. Furthermore, this design spends 10 clock cycles to achieve 

the 52-bit of accuracy for double precision floating-point number. Design is presented in 

Figure 3.14. 

 

 

Fig. 3.14 Reciprocal Unit implementation – second proposal 
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Altera IP Cores 

 

Altera provides many useful IP core functions for Floating point operations [33]. All Altera 

floating-point IP cores offer the following features: 

 

 Support for floating-point formats. 

 Input support for not-a-number (NaN), infinity, zero, and normal numbers. 

 Optional asynchronous input ports including asynchronous clear (aclr) and clock ena-

ble (clk_en). 

 Support for round-to-nearest-even rounding mode. 

 Compute results of any mathematical operations according to the IEEE-754 standard 

compliance with a maximum of 1 unit in the last place (u.l.p.) error.  

 

Altera floating-point IP cores do not support subnormal number inputs. If the input is a sub-

normal value, the IP core forces the value to zero and treats the value as a zero before going 

through any operation. 

 

Following we describe only 3 IP cores (Adder/Subtract, Multiplier and Divider) in order to 

compare with our designs in Chapter 6. 

 

ALTFP_ADD_SUB – Floating Point Adder/Subtract IP core 

 

The ALTFP_ADD_SUB IP core offers the following features: 

 Dynamically configurable adder and subtractor functions. 

 Optional exception handling output ports such as zero, overflow, underflow, and NaN. 

 Optimization of speed and area. 

 Output latency available are 7, 8, 9,11,12,13 and 14 clock cycles. 

 

Following table list the resource utilization and performance information for double precision 

floating point adder/subtractor for the Cyclone IV device family. 

 

Table 3.2 ALTFP_ADD_SUB Resource Utilization and Performance for the Cyclone Series 

Devices. 

Optimization Output 

Latency 

Total Logic 

Elements  

Total Memory 

Bits 

Embedded 

Multiplier 9-bit 

elements 

Fmax 

(MHZ) 

Speed  8 1804 45 0 116.36 

 14 2452 150 0 208.77 

Area 8 1684 45 0 105.61 

 14 2196 150 0 204.12 
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ALTFP_MUL – Floating Point Multiplier IP core 

 

The ALTFP_MUL IP core offers the following features: 

 Optional exception handling output ports such as zero, overflow, underflow, and NaN. 

 Optional dedicated multiplier circuitries in Cyclone and Stratix Series. 

 Output latency available are 5,6,10 and 11 clock cycles. 

 

Following table list the resource utilization and performance information for double precision 

floating point Multiplier for the Cyclone IV device family. 

 

Table 3.3 ALTFP_MUL  Resource Utilization and Performance for the Cyclone Series De-

vices with dedicated Multiplier circuitry. 

Optimization Output 

Latency 

Total Logic 

Elements  

Total Memory 

Bits 

Embedded 

Multiplier 9-bit 

elements 

Fmax 

(MHZ) 

- 6 832 0 18 119.0 

- 10 1041 110 18 132.59 

 

 

ALTFP_DIV – Floating Point Divider IP core 

 

The ALTFP_DIV IP core offers the following features: 

 Optional exception handling output ports such as zero, division_by_zero, overflow, 

underflow, and NaN. 

 Optimization of speed and area. 

 Low latency option. 

 Output latency available for double precision are 10, 24 and 61 clock cycles. 

 

Following table list the resource utilization and performance information for double precision 

floating point divider for the Cyclone IV device family. 

 

Table 3.4 ALTFP_DIV Resource Utilization and Performance for the  Cyclone Series De-

vices. 

Optimization Output 

Latency 

Total Logic 

Elements  

Total Memory 

Bits 

Embedded 

Multiplier 9-bit 

elements 

Fmax 

(MHZ) 

Speed 

 

24 1344 6441 44 117.91 

10 1325 4709 44 88.94 

Area 

 

24 1344 6441 44 117.91 

10 1325 4709 44 88.94 
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3.4. Intel Itanium Floating Point Architecture 

Focusing on parallelism, the Intel Itanium processor was launched in 2001, followed by the 

Itanium 2 processor in 2002 and produced until 2010. Itanium 2 boasts of a particularly power-

ful floating-point architecture. 

 

The Itanium floating-point architectures were designed to combine high performance and good 

accuracy. It has features such as floating point register set of 128 registers and the ability to 

execute multiple instructions per clock cycle. Furthermore, Itanium wanted to achieve the full 

IEEE-754 compliance. 

 

 

Fig. 3.15 Intel Itanium Architecture 

In most computer architectures, there are separate instructions for floating-point multiplication 

and floating point addition. Itanium include as a basic arithmetic operation the floating-point 

multiply-add, which allows higher accuracy and performance in many common algorithms. 

Addition and multiplication can easily be implemented as special cases of the fused multiply 

add (fma), for example 𝑥 + 𝑦 = 𝑥. 1 + 𝑦 and 𝑥. 𝑦 = 𝑥. 𝑦 + 0. 

 

Itanium processor support single, double and double-extended precision formats. All rounding 

modes have been implemented and all five exceptions in order to be fully compliant with the 

IEEE-754 standard. Also Intel define some specific exceptions for subnormal operands. [34] 
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3.5. AMD Bulldozer Architecture 

AMD Bulldozer microarchitecture is used in the AMD CPUs since 2011.  Bulldozer is the 

codename for the architecture, not for a specific processor.  

 

The 15th AMD Processors family is aggressive, out-of-order, four-way superscalar AMD64 

processors. They can theoretically fetch, decode and issue up to four AMD64 instructions per 

cycle. As shown in Figure 3.16, the two cores available in each Bulldozer module share the 

Fetch unit. The two cores also share the L1 instruction cache because it is an essential part of 

the fetch unit, but each CPU core has its own L1 data cache.  

The AMD instruction set is complex (CISC). 15th AMD Processors family does not execute 

these complex instructions directly. Decode unit is in charge of converting the instructions 

provided by the compiler (macro-operations) into simpler fixed-length instructions called mi-

cro-operations [35]. The Bulldozer architecture has four decoders. The decoding of complex 

instructions takes several clock cycles to be completed, because they are converted into several 

microinstructions. Simple instructions, however, are usually converted in only one clock cycle 

because they are translated into a single microinstruction. After the instructions are decoded, 

they are sent to the appropriate scheduler, integer or floating-point. The Bulldozer architecture 

has only one floating-point unit, which is shared by two “cores” available. On the other hand, it 

has two completely independent integer units, the so-called “cores.” 

 

 

Fig. 3.16 Bulldozer building block 

http://www.hardwaresecrets.com/wp-content/uploads/bulldozer_041.jpg
http://www.hardwaresecrets.com/wp-content/uploads/bulldozer_041.jpg
http://www.hardwaresecrets.com/wp-content/uploads/bulldozer_041.jpg
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The Bulldozer architecture uses an out-of-order execution engine, like AMD64 CPUs and Intel 

CPUs since the Pentium Pro (P6 architecture). After instructions are executed, perform commit 

in order as any out-of-order processor today. 

The optimization comes from the fact that on a typical multi-core CPU several units inside the 

CPU remain idle, and these units could be combined in the Bulldozer architecture. And since 

the CPU will have less units, it can save area, register ports, save energy and reduce cost ac-

cording AMD. 

 

Each integer engine has four Execution units; it also has a Load/Store unit (“LD/ST”), which is 

in charge of getting from the memory or storing in the memory a data requested by an instruc-

tion.  

 

Bulldozer architecture was designed to provide improved FADD and FMUL bandwidth over 

Opteron and Athlon 64 processors. It achieves this by means of two 128-bit fused multiply 

accumulate (FMAC) units which supports four single precision or two double precision opera-

tions. The FPU is a coprocessor model that is shared between the two cores. As such it contains 

its own scheduler, register files and rename units. In addition to the two FMACs, the FPU also 

contains two 128-bit integer units that perform arithmetic and logical operations on AVX, 

MMX and SSE packed integer data. Only one 256-bit operation can issue per cycle [35]. 

 

Users may notice differences in the results of program when using FMAC instead to perform a 

multiplication an addition. However, the combined result of the MUL and ADD is more pre-

cise, as is explained in chapter 4.3. 

 

Bulldozer architecture includes support for Intel's Advanced Vector Extensions (AVX) instruc-

tion set, which supports and extended set of 128-bit (XMM) and 256-Bit (YMM) media regis-

ters [36]. The physical registers internally are 128-bits in size, equal to an XMM or half of a 

YMM register (it takes two internal registers to represent a YMM 256-bit register). To represent 

the Instruction Set Architected (ISA) registers it takes: 16 registers (YMM0-YMM15), or 32 

(XMM0-XMM31) as shown in Figure 3.18. 
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Fig. 3.17 Inside Floating Point 128 FMAC 

 

Fig. 3.18 Execution of AVX instructions 
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Figure 3.19 shows the die of one bulldozer module in the AMD FX processors. The area 

consumed by the Floating-Point/SIMD Unit is bigger than each Integer datapath, also the bene-

fits to share the same hardware between both units is huge due to usually the current processors 

can issue 2x64-bits or 4x64-bits FP scalar instructions per cycle, bulldozer module shares the 

FP hardware, then using 2x128-bits FMAC units can perform 1x256-bits or 2x128-bits SIMD 

operations or 4x64-bits FP scalar operations. The area of this units separated is almost the same, 

therefore share this hardware bring a huge benefit in terms of die area. 

 

 

 

Fig. 3.19 AMD Bulldozer Die (Fx Processors) 
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Chapter 4   

4. Design and implementation 

Because exploiting instruction level parallelism (ILP), superscalar processors are capable of 

execute more than one instruction in a clock cycle. As we mention in Chapter 3, to do a dynam-

ic scheduling we need:  

 

 Fetch strategies that simultaneously fetching multiple instructions. 

 Branch prediction strategies that predict the execution path of the instructions and 

fetching speculative code. 

 Methods for determining true dependences involving register values, and mechanism 

for communicating these values to where they are need during execution. 

 Methods for issue multiple instructions in parallel (Out of order execution). 

 Resources for parallel execution of many instructions. 

 Methods for committing the process state in correct order; these mechanisms maintain 

an outward appearance of sequential execution. 

 

 

Lagarto II Processor has Instruction fetch strategies to fetch multiple instructions, while in same 

stage implement a 2 level branch predictor (GShare) in order to predict the branches. After-

ward, decode stage identifies the main attributes of the instruction such as type and resources 

that it will require for their execution. The following stage performs a rename to delete the 

name dependences. Also, will execute instructions out of the original program order, then it has 

implemented a Reorder Buffer to preserve the original program order, also will need an out of 

order issue queue to send all possible ready instructions in a cycle which is part of the presented 

design in this work. Furthermore, Lagarto will have resources for parallel execution of many 

instructions (integer and floating point). 

 

Processors that implement a dynamic scheduling exploit the instructions level parallelism but at 

the same time, these processors spend more energy than processors that implement a static 

scheduling.  This leads to a tradeoff between power consumption and high performance. To 

implement an efficient power-performance dynamic scheduling designer needs know about low 

power techniques as we said in last chapters, nowadays, power consumption is very important 

to obtain a large autonomy in mobile devices. 

 

In this chapter we describe our implementations of each component of the general out of order 

execution engine, which include the Issue queue, the register File, execution units and the by-

pass logic. Was proposed two designs which are compared in Chapter 5. 
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4.1. First Proposal 

4.1.1. Issue Queue 

 

As we can see in previous chapters, issue queue design is an important component to exploit 

the instruction level parallelism, but in processors like Pentium 4 the issue logic is one of the 

main consumers of energy responsible for approximately 25% of the total energy consumption 

[15], then we need considerate some low power consumption techniques in order to get a low 

power consumption processor. 

 

Also the width of fetch is an important parameter in the process design, a processor with large 

emission width it becomes more complex design and the complexity not produce performance 

necessarily, for example 2-wide processors has an average of 1.1 commit instructions per cycle, 

4-wide processors has an average of 1.52 commit instructions per cycle, 6-wide processors has 

an average of 1.79 commit instructions per cycle and 8-wide processors has an average of 2 

commit instructions per cycle, for integer benchmarks [37]. 

 

 

 

Fig. 4.1 IPC for n-wide for a baseline processor  

 

Lagarto II Architecture perform fetch, decode and dispatch up to 2 instructions per clock cycle 

to 3 different Buffers, Load/store Queue, Integer Queue and Floating Point Queue. Integer and 

Floating Point Queues can issue up to two instructions each one if instructions are ready, and 
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Load/Store Queue can issue 1 instruction per clock cycle, these parameters were taken in order 

to reduce the number of ports in register bank and reduce the general complexity of the design 

because performance-complexity trend. The idea is that the design of the Instruction Issue 

Queue used in Lagarto II be a low power consumption architecture, and we decide take account 

the element proposed in [18] and add this element to our design which is described below. 

  

Instruction Queue Design 

 

Once the instructions have been decoded and renamed, they are allocated in a structure called 

Mapper, in this structure we read the operation vector (OPVEC) associated with each instruc-

tions to determinate the instruction queue in which should stay until their source operands are 

ready and execution unit required for their execution is available. 

 

Lagarto II processor has 3 types of issue queues:  Integer Instruction (Integer Instruction Issue 

Queue), floating point instructions (Floating Point Issue Queue) and Memory Access Instruc-

tions (Load / Store Queue). The wakeup instruction mechanism (Wakeup Logic) and selection 

(Selection Logic) are closely associated in an IQ, they determine the behavior of the instruc-

tions are stored in it. 

 

Due to our design we will take account the Block Mapping Table presented in [18] the IQ de-

sign divide the queue in N blocks with M entries each one, then, according with the results 

presented in [18] where IQ is divided in 4 and 8 blocks with a similar performance (a little more 

in 8 blocks design), but later we will see that in the selection logic, the larger number of blocks 

becomes the selection logic a bit more complex. From this point 4 blocks are selected for this 

design. 

 

Allocation Logic 

 

Due to the CAM and RAM memories were divide in 4 blocks of 8 entries each one, an assigna-

tion algorithm was implemented which will define in which block the instruction should be 

allocate when one or two instructions arrive from the previous stage (MAPPER/DISPATCH) in 

the same clock cycle. 

 

Allocation Logic receive a pair of signals called Active Instructions from the previous stage 

(MAPPER). It then passes them through inter-stage latch DISPATCH/ISSUEQUEUE, which 

signalize how many instructions are incoming to the floating point queue in this clock cycle. If 

the FP-Queue is full, Allocation Logic will send a signal (Full) in order to the FETCH UNIT not 

perform more fetch cycles.  

 

An assignation algorithm was implemented based in the round-robin scheduler, in this scheme 

one instructions is allocated in each blocks. The algorithm can’t assign more than 1 instruction 

to the same block in the same clock cycle.  Thus storage starts at the block B0 and ends in block 
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B3 to after that restarting. Figure 4.1 show the design of the Allocation Logic, showing the 

blocks Round robin, Data Assignation, FIFO B0, CAM B0 and PlayLoad RAM, the last three 

should be repeated 4 times. 

 

 

 

Fig. 4.2 Block diagram of Allocation Logic  

 

Data Assignation block only is a 2 to 4 Demultiplexor which put in the correct way the incom-

ing instructions according to the signal write_block which is generated in the Round Robin 

block. 

Round Robin block is a finite state machine with Active instructions [1:0] as entries and 

write_block[3:0] as outputs, depending of value of Active instructions this are distributed one 

by one in each IQ Blocks.  

FIFO B0 is a little buffer of 8 locations of 3 bits each one, which contain the free locations in 

the IQ Block, which comprise both CAM and PAYLOAD RAM Blocks. When a new instruction 

arrives, FIFO Block select a free entry of each particular IQ Block appointed by the position of 

the rd_pointer. In the other hand when an instruction waiting in the IQ Block is issue to execu-

tion, the entry freely is recycled to FIFO block performing a write to entry appointed by 

wr_pointer. 

 

Low Power WakeUp Logic Mechanism 

 

As a part of dynamic scheduling, in the issue stage is required a wakeup mechanism for waking 

up instructions waiting in each IQ Block. The waking up are accomplished by associative com-

parisons of the destination register tag of the instructions computed each clock cycle with 

source register tags of instructions sleeping in the IQ Blocks while its operands become ready. 

One operand is ready when destination tag and source tag matched. This mechanism is power 

hungry because comparisons are always performed although it not produces operands ready.  
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One instruction is ready when all its operands become ready and the functional unit required for 

execution is free. Ready logic is responsible for signalize instruction ready to issue.  

 

 

Fig. 4.3 Ready Logic 

   

The destination tag of current execution is broadcasted to all instruction in the queue N-Cycles 

before its execution will be completed. N is the number of cycles required for schedule the 

wakeup, selection, issue and read registers of consumer instructions.  This Schedule must en-

sure that result’s value is present in the bypass network at same cycle when consumer instruc-

tion arrives to the functional unit. 

The destination tag in traditional CAM/RAM designs must be compare with all elements of the 

queue, 64 comparisons every clock cycle for a queue with 32-entries (two source operands for 

instruction). In the design also was added one source operand more in each location because 

Lagarto II Architecture execute instructions as Multiply Accumulate which uses three sources 

as shown in Figure 4.2, also in the design add an extra logic proposed in [18] called Block 

Mapping Table. In the following sequence illustrate the behavior of the design using the Block 

Mapping table.   
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Fig. 4.4 Behavior of the Wakeup using the Block Mapping 

Table 

 

Fig. 4.5 Behavior of the Wakeup using the Block Mapping 

Table 
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Fig. 4.6 Behavior of the Wakeup using the Block Mapping 

Table 

 

Fig. 4.7 Behavior of the Wakeup using the Block Mapping 

Table 
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Fig. 4.8 Behavior of the Wakeup using the Block Mapping 

Table 

     

Fig. 4.9 Behavior of the Wakeup using the Block Mapping 

Table 
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In-flight instructions have only one identifier through all the time of its execution, specifically 

the destination register tag, then the Block Mapping Table is a structure associated to the regis-

ter file to encoded IQ-blocks where instruction successor was allocated by the round robin log-

ic.  The length of the Block Mapping Table is same to the physical register file and the width is 

the number of blocks witch IQ was divided.  

 

Figure 4.3 shows the first part of our design, the queue is divided in 4 blocks as we mentioned 

above and also the Block Mapping Table is included in the design. 

 

Figure 4.4 show the first instruction (R5 <- R2+R3) arriving to the Queue, the Round Robin 

Block send the signal “0001” which means that only one instruction is arriving in this cycle and 

this instruction will be saved in the CAM-B0 block, FIFO-B0 block give the address in which 

the instruction will be allocated inside the CAM-B0, in this case, the address is “000”, at the 

same time the source operands read the Registers ready bit vector in order to know if its sources 

operands are ready or not, if one of the sources or both are ready, the ready flag are setting, 

otherwise the Block Mapping Table  is set, indexed by the source operand tag that is not ready, 

in this case, the  address two and three in the column B0 are set. 

 

In the next cycle (Figure 4.5), a new instruction (R6 <- R1 + R4) is arriving, now the Round 

Robin block assigns the next CAM block (CAM-B1) to allocate the current instruction, also the 

Block Mapping Table is updating by setting the addresses one and four, in column B1 indicat-

ing that this operands R1 and R4 are not available. 

 

In Figure 4.6 a new instruction is arriving (R7 <- R1 + R4), now CAM-B2 is selected by the 

Round Robin Block to allocate this new instruction, also the Block Mapping Table is updated in 

the column B2 indexed by R1 and R4 designating that this sources are not available. 

 

In Figure 4.7, functional units start the successor wakeup 3 cycles before that finalize the execu-

tion, sending the Tag destination register to read the Block Mapping Table.  The data read is 

useful to enable the CAM blocks for comparison. Comparisons are not performed in CAM 

Blocks without successors. In this example CAM-B1 and CAM-B2 blocks only are enabled for 

comparisons. 

 

At this moment any instruction can be issued to execute because still not comply with the con-

dition that both source operands must be ready. 

 

In the next cycle (Figure 4.8), Consider that R4 is at 3-Cycles to be computed, then the succes-

sors wakeup logic is started as was described above, reading the 4-entry of Block Mapping 

Table and enabling the blocks CAM-B1 and CAM-B2 for comparisons, resulting in two in-

structions ready for select and issue in the next cycle.  
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Adding the Block Mapping table to the design, wakeup logic can avoid perform comparisons in 

blocks without successors. 

 

Priority Arbiter  

 

To have more than one instruction ready to be issue in each one of the four CAM Blocks is 

possible, however only is possible perform the issue of two instructions per clock cycle to the 

execution units, it is important to minimize the number of ports in order to achieve a power-

efficient design. For this reason, is necessary define a selection criteria. 

 

Priority Arbiter is a structure implemented in two stages, which choose just 2 instructions to be 

issued to the execution. Both stages employ an aging policy for the selection of instructions, 

meaning, the instructions allocated first in the Payload-RAM will be the first to be issued.  

 

The first stage consists of 4 modules of selection, one for each block. In each selection module 

the ready instructions signals are received. The second stage is capable of receiving up to 4 

instructions lists, one for each block of the previous level and finally chooses only two instruc-

tions to be issued to execution. 

 

 

Fig. 4.10 Priority Logic 
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IQ Payload RAM 

 

IQ Payload RAM block is a set of 4 RAM blocks of 8-locations each one, where new instruc-

tions are allocated. Each instruction is composed for many fields:  

Format which encode the instruction format (Single, Double, Word or Long). 

Source_0 , Source_1 and Source_2 which encode the operand address of the instructions. Note 

that each Source is composed of 7 bits to address 128 possible locations in the register file. 

Destination which encode the physical register to save the result of the operation. 

Resource_Vector which encode functional unit (Branch, MovToFrom, MulA, ALU, SQRT, 

DIV, MUL and ADD) needed to execute. 

Function which encode what operation must be done. 

Dir_ROB which encode the place of the instruction in the Reorder-Buffer. 

 

 

Fig. 4.11 FP Instruction Format for the Issue Queue design 

 

Each IQ Payload RAM Blocks has only one read port and one write port and only can write and 

read one instruction per cycle, because the module Round Robin require this behavior, so if two 

instructions are received in the same clock they are saved in two different Blocks RAMs. Simi-

larly, when many instructions are ready can issue only two instructions per cycle and these 

instructions come strictly from different blocks. The design use a PAYLOAD RAMs splitting in 

blocks with 1 read and 1 write port each one. 
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Fig. 4.12 Payload RAMs 

When an instruction is issue, the entry address used by the instruction is sent to the Allocation 

Mechanism in order to recycle it as a free entry in the corresponding FIFO, for future incoming 

instructions. 

 

In Figure 4.13 the complete Low Power Issue Queue Design is show. 
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Fig. 4.13 Complete Low Power Issue Queue Design 

 

 

In following chapter, is detailed the results of this implementation. 
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4.1.2. Register Bank  

Design considerations   

 

The number of read and writes ports depend of the number of issue instructions and the number 

of functional units that have a dedicated write port. For this reason, was defined an issue width 

of only 2 instruction per clock cycle, in order to reduce the number of read ports in the register 

bank.  

 

The Register Bank need 6 read and 6 write ports. 

The six read ports are: 

 

-SourceI0_0: read the Source 0 of the instruction 0 

-SourceI0_1: read the Source 1 of the instruction 0 

-SourceI0_2: read the Source 2 of the instruction 0 

-SourceI1_0: read the Source 0 of the instruction 1 

-SourceI1_1: read the Source 1 of the instruction 1 

-Store          : read the data to store in memory 

 

Instruction 0 have 3 read ports, it is because Lagarto II processor can execute instructions as 

Fused Multiply Accumulate (FMAC) which need read 3 source operands, when one FMAC 

instruction is ready to be issue, is forced to leave for the port 0. 

 

The six write ports are: 

 

    -Read_1: to write the result from the Add/sub functional unit. 

    -Read_2: to write the result from the Mul functional unit. 

    -Read_3: to write the result from the Div functional unit. 

    -Read_4: to write the result from the ALU functional unit. 

    -Read_5: to write the result from the MulAdd functional unit. 

    -Read_6: to write the result from the load or Move instructions 

 

The implementation of the register file is based in the proposals [23] and [24]. 

 

LVT design 

 

Basically to implement the proposal presented in [23] , first the replication technique is used in 

order to obtain a 1W/6R memory as is shown in Figure 4.14. 
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Fig. 4.14 Replication technique to implement 1W/6R memory. 

 

 

After that, banking technique is used in order to increase the number of write ports, and us-

ing the LVT table which select in the multiplexors the more recent write value to be read. The 

LVT table will use pure logic elements, but instead of build a memory of 64x128, only build a 

memory of 3-bits x128 locations with 6W/6R ports; therefore, the total logic elements will be 

dramatically reduced. The 3-bits are because with 3-bits is possible represent 8 possible combi-

nations and although need 6 combinations.  
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Fig. 4.15 6W/6R Memory using LVT Design 

 

 

Implementing this proposal are used 36 memory blocks of 64-bit x128-locations, and the logic 

elements is reduced a lot, the exact numbers are presented in the following chapter. 
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XOR design 

 

Furthermore, proposal presented in [24] was implemented for resources evaluation, which is 

based on the XOR operations.  The design requires m * (m-1+n) RAM Blocks to provide m 

writes and n reads ports, for the requirements presented before, are needed 6W/6R ports, then 

are needed 66 memory blocks of 64-bit x 128-locations, almost double that with using the LVT 

design, but the LVT table and its logic is removed, instead of latter, XOR gates are used. Be-

cause one XOR logic is added every new port, the performance of this design depends of the 

ports number.  

 

 

Fig. 4.16 A generalized mW/nR memory implemented using XOR. 

 

In following chapter are compared both designs and both designs have a good result, depending 

of the needs of the final design requirements, but both designs reduce a lot of logic elements 

used compared with multiported registers array implementation.   

4.1.3. Execution Stage 

In this sections are presented several designs of FP functional units based on the fundamental 

algorithms with some modifications taken account the proposals of the state of the art, which 

were mentioned before. Designs for the basics operation as Add/subtract, multiply, and Di-

vide/Reciprocal are presented, also the Fused Multiply-Accumulate unit was implemented 
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which first multiply two operands, then accumulate the result and finally add to a third operand 

to produce the result; Furthermore, an ALU unit is built in order to execute comparisons, moves 

and others instructions, and finally a branch unit to compute the conditional branch instructions. 

Last units were performed in order to try to execute all possible instruction set of the MIPS 64 

R6 for evaluation purpose. 

 

FP Add/Subtract Unit  

 

In contrast to the integer arithmetic units, FP addition and subtraction are more complicated 

than multiplication and division. As mention in Chapter 3.3.1, three major task are presented in 

this operation, pre-normalization, addition and post-normalization. The integer adder is a cru-

cial part of the design, but, also is needed a quick Leading Zero Detection which becomes part 

of the critical path due to is needed known the number of zeros to the left in a word in the short-

est possible time and release the result; Furthermore it is possible predict the leading zeros in 

parallel with the integer addition operation, but this method may be erroneous by one position 

[27], if this is the case, then it can be fixed by shifting to the right one position. Also other tech-

niques exist to produce an exact result, however these techniques are very expensive in terms of 

area [28].  

 

The proposed design follows the basic algorithm but adding elements from other proposals [28] 

[29] and own proposals, also the design will support subnormal numbers which increases the 

complexity of the design compared with all presented in the state of the art including the IP 

Cores provided by Altera. This unit will execute two instructions that are shown in following 

table. 

Table 4.1 Add/subtract instructions 

Instruction Description 

ADD.fmt Floating-Point Add 

SUB.fmt  Floating-Point Subtract 

 

 

Figure 4.17 show adder/subtractor input signals where Enable (1 bit) which encodes a valid 

operation, Source 1(64 bits) and Source 2(64 bits) are the source operands and Operation (1 bit) 

encodes if the current operation is an addition or subtraction. In the other hand, the output sig-

nals are: Ready that indicates that current operation is complete, Result give the final result of 

the operation. 4 exceptions are contemplated according to the IEEE 754 standard, which are 

Invalid Operation, Overflow, Underflow and Inexact; Also MIPS 64 R6 specify Not Imple-

mented Operation exception which for this case not apply.   
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Fig. 4.17 FP Add/Subtract Inputs/Outputs. 

 

Figure 4.22 show the complete design of FP Add/Subtract Unit, which is divided in 8 stages. 

 

First Stage perform 5 main activities: 

 In block Initial Conditions is monitored if some source is Infinity, Zero, QNaN or 

SNaN, if someone of this condition is true, means that the operation can finalize be-

cause the result is known and the operation can skip the following steps. 

 Identify the bigger number (absolute value) to in following stage perform a prenormal-

ization. This is doing by obtain the exponents difference between both exponent, if the 

operation results negative minds that Source 2 is bigger and using the MUX block is 

possible change the path of this Sources. If result is positive, can be for 2 reasons, 

Source 1 is bigger than Source 2 or both have the same exponent and then is needed 

check which mantissa is bigger in order to obtain the bigger and smaller numbers. 

 Is necessary check if smallest number is subnormal in order to adjust the exponent dif-

ference, if smallest number is denormalized, subtract operation is performed to the 

previous difference calculated (previous difference calculated -1). 

 Is necessary build the complete format of the mantissas which is given by 55-bits in-

stead of the original 52-bits.  The format is presented in Figure 4.18, basically are 55-

bits vector where in the two less significant bits are added two zeros which help to 

save some digits after pre-normalization and to perform the rounding in future stages; 

next are concatenate the 52-bits of the mantissa and finally 1 bit for the signal normal-

ized which for normalized numbers is equal to 1, for subnormal numbers is equal to 0.  

 

 

Fig. 4.18 Complete 55-bits mantissa format 

 

 And finally, in block Sign is readjust the operation and the sign bits in order to always 

obtain a positive result, doing this step, 2-complement after addition is don’t needed 
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because ensure that result ever will be positive, also is performed in parallel with the 

other activities. Figure 4.19 shows the eight combinations, for “000” and “011” cases, 

don’t perform any change. Basically the final sign is the sign of the biggest number. 

 

 

Fig. 4.19 Readjustment of the Add/Subtract operation  

 

Second stage basically performs 2 activities, pre-normalize and 1-complement if it is neces-

sary: 

 Pre-normalize is done by Shift to the right the smaller mantissa using the difference 

obtained between the two exponents. 

 Complement a1 is performed if the final operation re-defined in the last stage is 

subtraction. Finally, in the following step in Carry_in signal is added “1” in order to 

complete the 2-complement. 

 

Third stage perform only the addition of modified mantissas, in this block a 55-bits KoggeStone 

Adder is used in order to perform the addition as faster as possible.  

Result is given in a 56-bits vector, where bit 56 indicates if some overflow occurs during the 

operation, in order to normalize the result in future cycles. 

 

Fourth stage is in charge of count the zeros to the left after addition.  Figure 4.20 show an ex-

ample where is necessary to obtain as faster as possible the number of zeros to the left after a 

subtraction or can be an addition of two subnormal numbers that need to be shift to the left one 

position. For this stage in the design the proposal presented in [29] is used, but adapted to 55-

bits. Bit 56 as mentioned before, only say that overflow has occurred, then is not taken account 

to the Leading Zero Counter. 
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Fig. 4.20 Example of result that needs shift to the left n number of bits. 

Taking into account the previous example and considering that both number have an exponent 

with the value “1010” binary (not shown in figure 4.20), the Leading Zero Count algorithm 

only give the number of zeros to the left in order to perform the Normalization (in this case 52 

position to the left). However, it can’t shift all this position because when 1 shift to the left is 

performed, the exponent field decrease by one, then if the current exponent is 10 decimal, only 

can perform shift to the left 10 positions and decrease the exponent to 0,  then the final result 

will be: 

 

“0.000000000000000000000000000000000000000001100000000000” 

 

With exponent “0”, then in this stage taking advantage that the Leading Zero Count (LZC) is so 

faster, one extra operation is performed, it consists of comparing the LZC result with the expo-

nent in order to send the shift final value, and if LZC is less than the Exponent the result is 

given by the Leading Zero Count in other case by the Exponent. 

 

Fifth stage performs the normalization, basically check next cases: if the operation is a subtrac-

tion, a shift to the left some positions is needed. If overflow occur a shift to the right one posi-

tion is perform. If both numbers are subnormal and a normalized number is obtained as result, 

then the exponent need increased by one.  

 

The normalized results often need to be rounded because most of them cannot be represented 

exactly in floating point representation. Next stage is in charge to round the result according to 

the rounding mode configured in FCRS (FP Control/Status register); In order to support all 

possible, the IEEE 754 Standard the Round module was designed to support the four rounding 

modes provided by the Standard which are Round to zero, Round to infinity, Round to minus 

infinity and Round to nearest. 

 

Basically with 3 bits all floating-point arithmetic can be rounded as if it was computed with 

infinite precision. These three bits are called Guard, Round and Sticky bits, Figure 4.21 show 

the position of this bits.  
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Fig. 4.21 Guard, Round and Sticky bits 

Sticky bit is required to guarantee correct rounding in the final stage of floating point arithme-

tic. The purpose of sticky bit is to indicate that the unrounded result is inexact. 

 

Round to Nearest 

Perhaps Round to nearest is the most common used in IEEE floating point arithmetic. In this 

rounding model all numbers are rounding to the nearest representation. Following is presented 

the algorithm implemented to Round to Nearest. 

 

Algorithm IEEE-754 round to nearest  

Input: G-guard bit, R-round bit, S-sticky bit 

 

Output: 

If G = 0 then 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅  

else if ( R = 1 or S=1) then 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 + 𝟏 

else 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 

 

 

Round Toward Zero 

This is the simplest rounding mode. Basically is a truncation regardless of the state of the guard, 

round and sticky-bit. Because this mode is so simple, does not require any additional hardware 

to implement. Some high-speed floating-point units choose to support only this rounding mode 

as the Cell Processor.  

 

Round Towards Plus Infinity 

This mode rounds the result to the value closest to but not less than the result. 

Algorithm IEEE-754 round towards plus infinity 

Input: G-guard bit, R-round bit, S-sticky bit, sign bit 

 

Output: 

If (G = 1 or R = 1 or S=1) and sign bit=0 then 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅  + 𝟏 

else 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 (𝒕𝒓𝒖𝒏𝒄𝒂𝒕𝒆) 

 

 

 

Round Towards Minus Infinity 
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This mode rounds the result to the value closest to but not greater than the result. 

 

 

Algorithm IEEE-754 round towards minus infinity 

Input: G-guard bit, R-round bit, S-sticky bit, sign_bit 

 

Output: 

If (G = 1 or R = 1 or S=1) and sign_bit=1 then 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅  + 𝟏 

else 

   𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 (𝒕𝒓𝒖𝒏𝒄𝒂𝒕𝒆) 

 

Seventh stage is in charge to identify if some exception occurs during execution. Floating Point 

adder/subtractor can produce four exceptions: Invalid Operation, Overflow, Underflow and 

Inexact Operation. 

Eighth stage is in charge to check if some overflow exception occurs in seventh stage, then 

taking account the current rounding mode put the correct representation as +infinity, -infinity, 

largest representable positive number or the largest representable negative number and finally 

use a MUX in order to select if the final result come from seventh stage or first stage. 
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Fig. 4.22 Design of FP Add/Subtract Unit 

FP Multiply unit 

 

Floating Point multiplication is a core operation in many kernels application, and efficient im-

plementation of floating point multipliers is important concern.  

 

Multiplying two numbers in floating point format is perform in three main steps: 

 Add the exponent of the two numbers and then subtracting the bias from their result. 

 Multiply the significant of the two numbers. 

 Calculate the sign by XOR operation of the two signs of the two numbers.  

 

To multiply 2 numbers in double precision format, require implementation of 53x53 multipliers 

in hardware, which is very area and power expensive.  

 

This unit will execute only one instruction, which is shown in following table. 

Table 4.2 Multiply instruction 

Instruction Description 

MUL.fmt Floating-Point Multiply 

 

Following image show Multiplier input signals where: Enable (1 bit) say that this is a valid 

operation, Source 1(64 bits) and Source 2(64 bits) are the operands. In the other hand, the out-

put signals are Ready that indicates that the operation is complete. Result give the final result of 

the multiply and can to expose 4 exceptions according to the IEEE 754 standard which are: 

Invalid Operation, Overflow, Underflow and Inexact; Also MIPS 64 R6 specify Not Imple-

mented Operation exception which for this case not apply.   

 

 

Fig. 4.23 FP Multiply Inputs/Outputs. 
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Figure 4.24 shows the complete design of 7 stages FP multiply and in following lines are de-

scribed each stage. 

 

First stage basically performs 4 main activities: 

 In block Initial Conditions is monitored if some source is Infinity, Zero, QNaN,  

SNaN, both subnormal or overflow (obtaining the final exponent), if someone of 

this condition is true means that the operation can finalize because the result is 

known and the following steps can be skip. This module accepts subnormal num-

bers, but if both are subnormal means that the result will be Zero. 

 Add the exponent of the two numbers and then subtracting the bias from their re-

sult. 

 Calculate the sign by XOR operation of the two signs of the two numbers.  

 And Start the Multiplication of the mantissas. 
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Fig. 4.24 Design of FP multiply unit 

Figure 4.24 shown the complete design, 53x53 Multiplier takes 3 cycles, the design of this 

multiplier is based in the proposal of Manish Kumar [30], where the proposal is perform the 

multiplication using small size multipliers, also in Cyclone IV Device Handbook [38] specify 

that for Altera FPGA Cyclone IV which is the FPGA on which the implementation took place, 

provide of dedicated 9x9 or 18x18 bits multipliers configurations and also propose the design 

presented in Figure 4.27 which is basically the same idea presented in [30]. 
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This idea is presented in Figure 4.25, where to multiply two numbers of 54 bits each one, the 

mantissa is divided in three small blocks of 18 bits each one, just the size of multipliers provid-

ed by Altera Cyclone IV FPGA. 

 

 

 

Fig. 4.25 Multiplication using small size multipliers 

 

Basically if in one stage are performed 9 18x18-bits multiplications in parallel and perform the 

addition in pairs of results, in a second stage the addition of the previous results in pairs is per-

formed, the 36x36-bits multiplier could be designed with two stages as is show in Figure 4.26. 
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Fig. 4.26 Two stage 36x36 bits multiplier 

Third stage performs the final addition to obtain a 108-bit result. Following stage perform a 

rounding to reduce the result to 53 bits check. Next stage checks for subnormal case, if the 

Leading Zero Count give a value bigger than the exponent, signalize to the next stage to start 

the normalization, to only perform a shift of the value of the exponent, obtaining a subnormal 

number. 
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Fig. 4.27 Three stages 54x54 bits multiplier 

 

 

Five stage is in charge to normalize the multiplier result, if someone of the operands was 

subnormal, then is needed perform a shift to the left according the result of Leading Zero 

counter of the previous step, if after rounding stage detect an overflow then perform one shift 

to the right and increase the exponent by 1. 
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Fig. 4.28 Normalization 

Exceptions are similar to the module presented in PF Adder/Subtractor. 

 

FP Divide unit 

 

Floating Point Divide was implemented using a Reciprocal unit presented in [32] and after that 

performing a multiplication using the previous FP Multiply design. 

 

This unit will execute two instructions, which are shown in following table. 

Table 4.3 Multiply instruction 

Instruction Description 

DIV.fmt Floating-Point Divide 

RECIP.fmt Floating-Point Reciprocal Approximation 

 

Following image show Divider/Reciprocal input signals where: Enable (1 bit) say that this is a 

valid operation, Source 1(64 bits) and Source 2(64 bits) are the operands. In the other hand, the 

output signals are: Ready that indicates that some operation is complete, Signal Result give the 

final result of the operation, and implements 5 exceptions according to the IEEE 754 standard 

which are Invalid Operation, Overflow, Underflow, Inexact and Division by Zero; Also MIPS 

64 R6 specified “Not Implemented Operation” exception which for this case is not apply.   

 

Fig. 4.29 FP Divide/Reciprocal Inputs/Outputs. 
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The first step performs the initial approximation of the reciprocal which is obtained reading a 

value of 16 bits from the look-up table using the 7 most significant bits of the mantissa without 

the leading 1, and after that a multiplication between the read value and the 15 most significant 

bits modified previously. Next, the design is described in detail, including the design of the 

look-up table. 

 

First approximation is based on Taylor series expansion taking until the first derivative term, as 

is presented in formula 1. 

 

𝑓(𝑥𝑖 + 1) =  𝑓(𝑥𝑖) +  𝑓′(𝑥𝑖)𝑓(𝑥𝑖+1 − 𝑥𝑖)   (1) 

 

And the 53-bits mantissa is represented as:  

 

𝑋𝑚𝑎𝑛𝑡𝑖𝑠𝑎 =   [1. 𝑥1𝑥2𝑥3 … 𝑥52]    (2) 

 

To represent 𝑋−1 by Taylor series expansion, operand 𝑋 can be split into two parts as in formu-

la 3 and 4. 

 

𝑋𝑚1 =   [1. 𝑥1𝑥2𝑥3 … 𝑥𝑚]     (3) 

𝑋𝑚2 =   [0. 𝑥𝑚+1𝑥𝑚+2𝑥𝑚+3 … 𝑥52]𝑥2−𝑚   (4) 

𝑋𝑚𝑎𝑛𝑡𝑖𝑠𝑎 =   𝑋𝑚1 +  𝑋𝑚2     (5) 

The initial reciprocal approximation 𝑋−1 is computed by following equation: 

 

𝑋−1 = (𝑋𝑚1 + 2−𝑚−1)−1 − (𝑋𝑚1 + 2−𝑚−1)−2(𝑋𝑚2 − 2−𝑚−1)  (6) 

 

And can be rewriting as: 

𝑋−1 = (𝑋𝑚1 + 2−𝑚−1)−2[(𝑋𝑚1 + 2−𝑚−1) − (𝑋𝑚2 − 2−𝑚−1)]  (7) 

 

Where the first term (𝑋𝑚1 + 2−𝑚−1)−2 is read from ROM and the remaining term (𝑋𝑚1 +

2−𝑚−1) − (𝑋𝑚2 − 2−𝑚−1) will be formed with the operand modifier module. Basically the 

operand modifier module performs an inversion of the bits from (𝑚 + 1)𝑡ℎ 𝑡𝑜 2𝑚𝑡ℎ  bits. 

 

In order to obtain a ROM with reasonable size, in [32] perform many test with different values 

of m, first they do a test with m=6 because theoretically 52-bit accuracy can be achieved with 

only 2 iterations, but in their simulations more than half of the result not achieve this accuracy, 

then performed more proves with m = 7, 8 and 9 and results presented shown that with this 

three values the results are very similar, and the accuracy was better. Finally m=7 then needs a 

ROM of 27𝑥16 𝑏𝑖𝑡𝑠. Table 4.3 shows some of the first and last locations of the ROM. 
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Table 4.4 Some calculated values for the ROM memory using the method above explained. 

Address bits 

(7bits) 

ROM values (16 bits) 

0000000 1111111000000010 

0000001 1111101000011010 

0000010 1111011001001001 

0000011 1111001010001101 

0000100 1110111011101000 

0000101 1110101101010111 

0000110 1110011111011010 

0000111 1110010001110001 

0001000 1110000100011100 

0001001 1101110111011000 

0001010 1101101010100111 

0001011 1101011110001000 

0001100 1101010001111001 

0001101 1101000101111011 

0001110 1100111010001101 

0001111 1100101110101111 
 

Address bits 

(7bits) 

ROM values (16 bits) 

0010000 1100100011011111 

0010001 1100011000011111 

0010010 1100001101101101 

… … 

1110100 0100000001000000 

1110101 0100010110010111 

1110110 0100010100000111 

1110111 0100010001111000 

1111000 0100001111101011 

1111001 0100001101100000 

1111010 0100001011010111 

1111011 0100001001001111 

1111100 0100000111001001 

1111101 0100000101000100 

1111110 0100000011000001 

1111111 0100011000101001 
 

 

 

Operand modifier will read 1. 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12𝑥13𝑥14 and perform the inver-

sion of the bits from 𝑥8 𝑡𝑜 𝑥14. 

 

In the second stage, the result of operand modifier and the value obtained from the ROM will 

be multiplied in order to obtain an initial approximation. The result is truncated to 16 bits and 

concatenated by 13 bits zeros. 

 

Following steps are in charge to perform two Newton-Raphson iterations. Newton-Raphson is a 

sophisticated method that needs less number of iterations to reach convergence than other itera-

tion methods as Gauss-Seidel, which is one of the common iterative methods. Newton-Raphson 

takes less computation time. 

 

Iterations will be given by: 

𝑥𝑖+1 =  𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
     (8) 

 

Where 𝑥0the initial approximation is calculated cycles before and  

    

𝑓(𝑥0) =  
1

𝑥
− 𝑋         (9) 

𝑓′(𝑥0) =  −
1

𝑥2      (10) 
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Substituting the equations (9) and (10) into equation (11) is obtained: 

 

 𝑥𝑖+1 =  𝑥𝑖(2 − 𝑋𝑥𝑖) = 2𝑥𝑖 − 𝑋𝑥𝑖
2     (11) 

 

Is possible to implement the first term 2𝑥𝑖  with only a left shifter of one position (one shift to 

the left is equal that multiply by two). Second 𝑋𝑥𝑖
2 term is implemented using a squarer to 

obtain 𝑥𝑖
2 and a 53x53 multiplier to obtain the product which must be rounded to 53 bits, and to 

finalize the iteration perform a subtraction of the two terms. This process will be doing 2 times 

(2 iterations to obtain a 52-bits of accuracy). Design is presented in Figure 4.30. 
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Fig. 4.30 Design of FP Divider/Reciprocal unit 

 

 



Design and implementation 

Chapter 4                                                                                                                    77 

 

FP Fused Multiply Accumulate Unit 

 

Many floating-point units can actually be thought of as collection of datapaths, one for each 

operation. In some modern microprocessors designs the FMAC unit entirely replaces all inde-

pendent execution units. Good examples are presented in Itanium Processors [34] and more 

recent in AMD bulldozer microarchitecture [35]. 

 

Table 4.5 Fused Multiply Accumulate Instructions and compatibles with this unit 

Instruction Description 

MADDF.fmt Fused Floating Point Multiply Add 

MSUBF.fmt Fused Floating Point Multiply Subtract 

ADD.fmt Floating Point Add 

SUB.fmt Floating Point Subtract 

MUL.fmt Floating Point Multiply 

 

Following image show the Fused Multiply Accumulate input signals where Enable (1 bit) 

which encode if it is a valid operation, Source 1(64 bits), Source 2(64 bits) and Source 3(64 

bits) are the operands and Operation (3 bits) encode the type of operation that will be execute 

for the functional unit. This unit can execute 5 instructions (Table4.5). In the other hand, the 

output signals are Ready that indicates that some operation is complete, Signal Result give the 

final result of the operation, and give 4 exceptions according to the IEEE 754 standard which 

are Invalid Operation, Overflow, Underflow and Inexact; Also MIPS 64 R6 specify Not Imple-

mented Operation exception which for this case is not apply.   

 

 

Fig. 4.31 FP Divide/Reciprocal Inputs/Outputs. 

 



Design and implementation 

Chapter 4                                                                                                                    78 

 

Fused Multiply Accumulate performs a Multiplication of A (Source1) and B (Source2) and the 

result if added to C (Source3) as is shown in Figure 4.32. Also not only offers improved per-

formance, the precision also increases due to the elimination of a rounding operation after the 

first operation (multiply).  

 

Fig. 4.32 Fused Floating Point Multiply-Add 

 

 

Figure 4.33 shown the complete design of the Fused Multiply Add unit, basically take the pre-

vious individual designs of ADD/SUB and MUL and join with some little modifications as the 

elimination of the round after multiplication, and sticky bit take an important role. The most 

significant 53 bits plus Round- bit and Sticky- bit are kept, also sticky bit perform a OR opera-

tion between the ten most significant reminder bits in order to give to the addition operation a 

more precise value, not only the 53 bits as in traditional operation. 

Fused Multiply Accumulate takes only 13 cycles to perform the operations instead of perform 

first the multiplication with latency of 7 cycles and after an addition with latency of 8 cycles 

with a latency total of 15 cycles in the best case, because when multiplication send the tag to the 

FP Queue to perform wakeup of the next operation (ADD), other instruction can take this cycle 

to be issue to execute delaying the accumulation. 

 

Furthermore, other important feature of this unit, is that was designed to perform individual 

operations as addition, subtraction or multiplication. 
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Fig. 4.33 Design of Fused Multiply Add Unit 
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FP Comparison unit 

 

In order to try to support all possible of the MIPS64 R6 instruction set for the execution of 

benchmarks for testing and verification, were implemented all FPU Comparison instructions, all 

FP Formatted Unconditional Operand Move Instructions and all FP Branch Instructions (40 

instructions). Basically the implementation of these instructions is simpler than arithmetic in-

structions and all instruction are executed in one cycle. 

Table 4.6 FP Comparison Instructions 

Mnemonic Instruction 

MAX.fmt Floating Point Maximum 

MAXA.fmt Floating Point Value with Maximum Absolute Value 

MIN.fmt Floating Point Minimum 

MINA.fmt Floating Point Value with Minimum Absolute Value 

CLASS.fmt Scalar Floating-Point Class Mask 

CMP.cond.fmt Floating Point Compare 

 

Table 4.7 FP CMP.cond.fmt instructions 

AF False Always False 

UN Unordered 

EQ Equal 

UEQ Unordered or Equal 

LT Ordered Less Than 

ULT Unordered or Less Than 

LE Ordered  Less than or Equal 

ULE Unordered or Less Than or Equal 

SAF Signalling always False 

SUN Signalling Unordered  

SEQ Ordered Signalling Equal 

SUEQ Signalling unordered orEqual 

SLT Ordered Signalling Less Than 

SULT Unordered or Less Than 

SLE Ordered Signalling Less Than or Equal 

SULE Signalling Unordered or Less Than or Equal 

AF False Always False 

UN Unordered 
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Table 4.8 FPU Formatted Unconditional Operand Move Instructions 

Mnemonic Instruction 

ABS.fmt Floating-Point Absolute Value 

NEG.fmt  Floating-Point Negate 

MOV.fmt Floating-Point Move 

 

Table 4.9 FP Branch Instructions 

Mnemonic Instruction 

BC1EQZ Branch on FP condition Equal to Zero 

BC1NEZ Branch on FP condition Not Equal to Zero 

 

 

 

 
 

EQ Equal 

UEQ Unordered or Equal 

LT Ordered Less Than 

ULT Unordered or Less Than 

LE Ordered  Less than or Equal 

ULE Unordered or Less Than or Equal 

SAF Signalling always False 

SUN Signalling Unordered  

SEQ Ordered Signalling Equal 

SUEQ Signalling unordered orEqual 

SLT Ordered Signalling Less Than 

SULT Unordered or Less Than 

SLE Ordered Signalling Less Than or Equal 

SULE Signalling Unordered or Less Than or Equal 
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4.1.4. Bypass design 

An important aspect to improve the IPC performance metric is to include the bypass network. 

Most processors today implement some form of bypass. A simple bypass network is used in our 

design to interconnect all output of our Floating Point Functional Units to all inputs in order to 

forward the values to improve the performance of the processor. 

 

Figure 4.34 shown the Bypass Network. Three cycles before each functional unit obtains its 

result, the tag address is broadcast to the tag bus in order to notify to the wakeup mechanism 

that this value will be ready in the next 3 cycles. Then, in the best case, instruction perform 

wakeup in 1 cycle, is selected to be issue in other cycle, after that instruction read the operands 

from the register file (maybe read an erroneous value), and finally in the following cycle the 

correct value is present in the bypass network and is selected with the multiplexors that have 

each input of each functional unit. This previous steps increase significantly the performance in 

the current processors. Is possible anticipate 3 cycles for the FP execution engine using the 

bypass network. 

 

 

Fig. 4.34 Bypass Network 
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4.1.5. Complete design 

Figure 4.35 shows the complete design of the “Out of Order FP Execution Engine” which 

was modeled in Verilog and the result are presented in Chapter 6. 

 

The FP Issue queue can perform issue up to two instructions per clock cycle, after needs read 

the source operand to the register file or obtain the value from the bypass network in order to 

compute the operation. The latencies of each operation are list in Table 4.10. 

Table 4.10 Latency of FP functional units 

Functional Unit Latency 

FP Adder/Subtractor unit 8 

FP Multiplier unit 7 

FP Multiply Add unit 13 

FP Divide/Reciprocal unit 14 

FP Compare unit 1 

FP Branch 1 

 

 

When an instruction is issue to Read register stage is sent to the Reorder Buffer the ROBEntry 

of this instruction in order to update the ROB structure. Same case when an instruction is exe-

cuted, the same ROBEntry is sent to notify the state of the instruction in the window.  

 

Recovery  

 

As was mentioned in the background chapter, a superscalar processor with dynamic scheduling 

can execute instructions speculatively. When a misprediction occur the speculative state of the 

machine is incorrect because the processor has been fetching, renaming and executing instruc-

tions from wrong path. Therefore, when a branch misprediction is identified, the speculative 

processor state and the program counter should be restored to the point where the correct path 

starts. 

 

In general, recovering the front-end (Fetch, Decode, Dispatch) implies flushing all intermediate 

buffers where instructions fetched from the wrong path are in-fly, restoring the history of the 

branch predictor and updating the program counter to resume fetching instructions from the 

correct path. By contrast, recovering the back-end implies removing all instructions belonging 

to the wrong path residing on any buffer like the Issue queue, Reorder buffer, etc. Moreover, 

RAT’s should be restored as well in order to properly rename instructions from the correct path. 

Finally, back-end resources like physical registers or issue queue entries allocated by wrong-

path instructions should also be reclaimed. 
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Lagarto II processor every cycle takes a snapshot of the current state, the number of snapshots 

that LagartoII can save is defined by the size of the Reorder Buffer which is 128 locations, 

means that can has 128 in fly instructions. Also Lagarto II can perform fetch decode and dis-

patch up to two instructions per clock cycle, that means that in 64 cycles the reorder buffer will 

be full. Then are needed 64 snapshots of the state of the processor to recovery if some recovery 

is necessary. 

 

In the execution engine the snapshot is taken every cycle of the next three structures: The Ready 

Bit Vector, the Fifo_Blocks and the valid bit of the CAM blocks in the issue queue. 

 

When new value is written in the Register File, the same location in the Ready Bit Vector is set, 

in order to notify to new instructions that needs this register as source operand that it is ready.  

The content of the Register File doesn’t matter because can be written some values that were 

written during a speculative execution, but this values can be discarded only with the Ready Bit, 

and this location not be valid until a new correct value is written. Same case occurs with the 

valid bit of the CAM blocks, when a new instructions arrives to the Queue the valid bit of this 

locations is set, and when a misprediction occur, the recover mechanism give the address of the 

snapshot to recovery the correct state at the time of the branch predictor perform a miss predic-

tion. Also are needed a snapshots of the Fifo_Blocks in order to recover the empty localities of 

each IQ block and the state of the pointers. 

 

 

Fifo_Blocks and   valid bit shares   a first shadow memory of 34-bits x 64-entries. The content 

of each entry is shown in Figure 4.35. 

 

 

Fig. 4.35 1 entry of the first recovery shadow memory (Fifo_Blocks and valid bit). 

A second memory   only save the 128 Ready-bit-Register, then is needed a 128-bits x 64 entries 

Memory. Both are dual-port memory.
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Fig. 4.36 Out of Order Floating Point Execution Engine Version 1
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4.2. Second Proposal 

 

Many floating-point units can actually be thought of as collection of datapaths, one for each 

operation. In some current microprocessors the FMA unit entirely replaces all independent 

execution units. Good examples are presented in Itanium Processors [34] and more recent in 

AMD bulldozer microarchitecture [35], last is present until today in many processors as FX 

series. For some applications several units inside the CPU remain idle for a lot time, and these 

units could be combined, it can save area, register ports, save energy and cut cost according 

AMD. 

 

Lagarto II processor only can issue two instructions, means that in the first design presented in 

Figure 4.35, five of the total seven units remain idle in the first stage, and in general in each 

same stage of all units. 

 

A new redesign taken account the Bulldozer Microarchitecture [35] is proposed, where basical-

ly hardware of the Scalar Floating Point execution units with the SIMD execution units is 

shared. These architectures use a 128-bit FMAC, which under this block finally put two 64-bit 

MAC as shown in Figures 4.37 and 4.38. This 64-bit FMAC perform all arithmetic and logical 

operations. 

FPU also contains two 128-bit integer units, which perform arithmetic and logical operations on 

AVX, MMX and SSE packed integer data. 

 

  

Fig. 4.37 Bulldozer Microarchitecture 
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Fig. 4.38 Floating-point Bulldozer Microarchitecture 

  

A similar idea is proposed, but for our architecture which at the moment can only execute scalar 

FP instructions, one 128-FMAC is implemented, that means that only are needed 2x64-bit 

FMAC to execute 2 instructions per clock cycle using the same issue scheme. General design is 

presented in Figure 4.40. 

 

With this design are obtained a various benefit in area, performance and energy efficiency 

which are described below: 

 In the Issue Queue the number of tag to compare in the CAM blocks are re-

duced, the first design performs 6 comparisons per source, with new proposal only per-

form 3 comparisons when the Block Mapping Table designate (2 from FMAC and 1 

from load/move). Also in the Block Mapping Table are deleted three read and three 

write ports. That implies reduction in area and improves in frequency the design. 

 In the Register File 1 read port is added and three write ports are deleted. The 

design of the Register File will occupy less area and the operative frequency increases. 

 The bypass logic becomes less complex. 

 Execution Engine has less idle stages of executions units.  

 The extra logic needed after the register file to send the data to corresponding 

functional unit is deleted. 

 Complete design works a higher frequency. 

 

Many improvements were obtained with these modifications, in fact the IPC is more or less the 

same, the maximum IPC for this design is two. 
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In order to perform all this changes, some modifications to the 64-bit FMAC are needed to 

execute all arithmetic and logical operations in the same unit. Basically is implemented an extra 

logic to compute comparisons and other instructions previously implemented in Comparison 

unit and put this in the penultimate stage. Design is presented in Figure 4.39. The new FMAC 

design can execute all instructions previously mentioned. Fused Multiply Accumulate instruc-

tions and Multiply have priority, addition/subtraction and compare instructions needs check if 

the two or eight stages are free in order to be issue to execute. 
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Fig. 4.39 New FMAC design 
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Fig. 4.40 Out of Order Floating Point Execution Engine Version 1 
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Chapter 5   

5. Implementation 

In this chapter is presented the implementation of proposed designs, each independent building 

blocks and the complete design. Both proposals were implemented in Hardware Description 

Languages (HDL-Verilog) and was used the Altera DE2-115 FPGA [39] as platform of proves. 

The main features of the Develop Platform Altera DE2-115 are listed below:  

 

 Altera Cyclone IV FPGA 

 50 MHZ oscillator for clock sources. 

 114 480 Logic elements. 

 432 M9K memory blocks 

 3888 Kbits embedded memory  

 128 MB (32Mx32-bit) SDRAM 

 2 MB (1Mx16) SRAM 

 8MB (4Mx16) Flash  

 

 

 

5.1. First Version  

5.1.1. Issue Queue 

In table 5.1 are shown the resource used in the implementation of the Out of Order Issue Queue. 

As was mentioned in chapter 3, the Issue Queue design is some of the elements of the processor 

which consumes more energy, even in new processor, for this reason the needed of choose a 

low power design is critical for Lagarto II. 

First is presented the BMT implementation version which includes the low power mechanism. 

This design is using 10864 Logic elements, which is less than the 10 % of logic elements of 

Cyclone IV device. Also the Frequency achieve up to 92.04 MHZ in the worst case (Slow 

1200mV 85C Model). Some of the objectives of this project is that the complete design (Lagar-

to II) reach a operating frequency between 80 and 90 MHz, but in the complete design the fre-

quency become down because long wires from functional units to the Issue Queue , this results 

will be show latter. 
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Table 5.1 Implementation results of FP Issue Queue 

Design Area 

 (Logic Elements) 

Embedded 

Memory bits 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C 

Model ) 

With BMT 10864 64512 92.04 

Without BMT 8056 0 110.61 

 

Furthermore, is presented use of resources of a design of the Issue Queue without the low pow-

er mechanism (BMT), the area is less than the first design because don’t needs the extra logic to 

perform comparisons in the BMT and in the Wakeup Logic, also not use embedded memory 

and the frequency is better than the low power consumption design. 

As shown in Chapter 3.1, comparisons per committed instructions for floating-point bench-

marks for a 32- and 64-queue size, the averages are 12 and 17 comparisons per committed in-

struction, there are unnecessary comparisons that can be avoided, and using a proposed design 

(with BMT) only require 1.5 comparisons per committed instruction achieve a reduction near of 

73 % for SPEC2000 benchmarks. The operative frequency is reduced by only 7%, but the ener-

gy saving is too much, which justifies the loss of performance, Lagarto II processor is a proces-

sor designed for mobile devices, so the power consumption is an important factor. 

If a low power consumption in processors is required, the performance inevitably declines, 

basically the designer must decide which is more important. Therefore, today the big companies 

of processors like AMD or Intel have several processor families, families focused to mobile 

devices such as laptops or tablets, these processors use low power consumption techniques and 

inevitably they have less performance than processor families targeted to desktop market which 

do not care about power consumption as they are always connected to a power outlet. 

5.1.2. Register Bank 

As mentioned in chapter 3.2, the implementation of Multiport Memory in FPGAs has some 

inconvenient, the number of logic elements (LE) increases according to the number of read and 

write ports and the size of the memory, for this reason is necessary to use techniques in order to 

reduce needed the LE. The register file is a 64-bits x 128-entries multiport memory with 6-read 

and 6-write ports. 

 

Table 5.2 show the comparison between the implementation of LVT and XOR designs versus 

the implementation using only Logic Elements. All designs have 6-read and 6-write ports. First 

one is the implementation using only Logic Elements, is clearly the abundant use of LE, near of 

the 33% of the total LE provided by the Altera DE2-115 FPGA, also de frequency is enough for 

the requirements. Second version was implemented using the LVT design, this proposal uses 

only 5,188 LE and 294, 912 embedded memory bits (7.4% of the total embedded memory bits), 

the reduction of needed LE is notable, also the operative frequency increase up to 221 MHZ.  

Third version was implemented using the XOR design, this proposal uses the small amount of 

1536 LE, but the embedded memory bits increase versus the LVT design up to 540, 672 em-
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bedded memory bits (14% of the total embedded memory bits, also the operative frequency 

obtained is 116.71 MHZ.  

 

 

Table 5.2 Implementation results of Register Bank   

Design Area 

 (Logic Elements) 

Embedded 

Memory bits 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C 

Model ) 

Logic Elements 37, 337 0 130.82 

LVT design 5, 188 294, 912 221 

XOR design 1, 536 540, 672 116.71 

 

Finally, the chosen design was de XOR design, because the needed of LE’s resources is small 

and the operative frequency full fit the requirements. 

5.1.3. Execution Stage 

 

FP Adder/Subtractor 

 

Table 5.3 show the implementation results of the FP Adder/subtractor proposal versus the IP 

Core provided by Altera. Both designs contemplate 8 stages of pipeline. 

 

 

Table 5.3 Implementation results of FP Adder/Subtractor 

Design Area 

 (Logic Ele-

ments) 

Embedded 

Memory bits 

Embedded 

Multiplier 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C 

Model ) 

Altera IP 

Core 

1804 0 0 116.36 

Proposal IP 

Core 

2537 0 0 124.83 
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Table 5.4 shows the comparisons between both designs (Proposal/Altera IP Core).  

 

Table 5.4 Comparisons between both FP adder/Subtractor 

Design Advantages Disadvantages 

Altera IP 

Core 

 Less area  Not support subnormal numbers 

 Only support one rounding 

mode 

 Slower 

Proposal IP 

Core 

 Support subnormal num-

bers 

 Early execution Logic 

 4 Rounding modes 

 Faster 

 More area  

 

Altera FP adder/subtractor IP Core consumes less area, but this is because is more simple, only 

implement one rounding mode and the most important, not support subnormal numbers which 

increase a lot the complexity of the design and of course the accuracy of the functional unit. 

The frequency obtained with the proposal is higher than the IP Core although the design is more 

complex due to be implemented some of the best high performance algorithms in the critical 

parts like Leading Zero Count and Kogge-Stone Adder. 

 

FP Multiplier 

 

Table 5.5 show the implementation results of the FP Multiplier proposal versus the IP Core 

provided by Altera. Proposal design contemplate 7 stages of pipeline, Altera IP Core contem-

plate 6 and 10 stages. 

 

Table 5.5 Implementation results of FP Multiplier 

Design Stages Area 

 (Logic 

Elements) 

Embedded 

Memory 

bits 

Embed-

ded 

Multipli-

er 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 

85C Model ) 

Altera IP 

Core  

6 stages 832 0 18 119 

Altera IP 

Core  

10 Stages 1041 110 18 132.59 

Proposal 

IP Core 

7 Stages 1932 0 30 118.89 
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Table 5.6 show the comparisons between both designs (Proposal/Altera IP Core).  

 

Table 5.6 Comparisons between both FP adder/Subtractor 

Design Advantages Disadvantages 

Altera IP 

Core 

 Less area 

 Faster 

 Not support subnormal numbers 

 Only support one rounding 

mode 

Proposal  Support subnormal num-

bers 

 Early execution Logic 

 4 Rounding modes 

 More area  

 Slower 

 

Altera FP Multiplier IP Core consumes less area, but this is because is more simple, only im-

plement one rounding mode and the most important, not support subnormal numbers which 

increase a lot the complexity of the design and of course the accuracy of the functional unit.  

The frequency obtained with the proposal is slightly less than the IP Core, it is because the 

design is more complex due to the support of subnormal numbers and all rounding modes de-

fined in the standard IEEE754. 

 

FP Divider 

 

Table 5.7 show the implementation results of the FP Divider proposal versus the IP Core pro-

vided by Altera. Proposal design contemplate 19 stages of pipeline, Altera IP Core contemplate 

24 and 10 stages. 

 

Table 5.7 Implementation results of FP Divider 

Design Stages Area 

 (Logic 

Elements) 

Embedded 

Memory 

bits 

Embedded 

Multiplier 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 

85C Model ) 

Altera IP 

Core  

24 stages 1, 344 6, 441 44 117.91 

Altera IP 

Core  

10 Stages 1, 325 4, 709 44 88.94 

Proposal 

IP Core 

19 Stages 3, 550 2, 048 62 118.55 

 

Table 5.8 shows the comparisons between both designs (Proposal IP Core /Altera IP Core).  
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Table 5.8 Comparisons between both FP adder/Subtractor 

Design Advantages Disadvantages 

Altera IP 

Core 

 Less area  Not support subnormal numbers 

 Only support one rounding 

mode 

Proposal IP 

Core 

 Support subnormal num-

bers 

 Early execution Logic 

 4 Rounding modes 

 Faster 

 More area  

 

Altera FP divider IP core implement a similar algorithm using a memory for initial approxima-

tion. The memory used is bigger than the implemented in the proposal IP core. Also the pro-

posal consumes more area than Altera IP core. Finally, the operative frequency is given by the 

lower stage which is the multiplier, the complete design of the proposal FP divider IP Core is 

faster than the Altera FP divider. 

 

 

 

FP Fused Multiply Accumulate  

 

Table 5.9 shows the implementation results of the FP Multiply Accumulate IP Core proposal. 

IP Core for FMAC is not provided by Altera. Proposal FMAC IP Core design contemplates 13 

stages of pipeline. 

 

Table 5.9 Implementation results of FP Multiply Accumulate 

Design Stages Area 

 (Logic 

Elements) 

Embedded 

Memory 

bits 

Embedded 

Multiplier 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 

85C Model ) 

Altera 

FMAC IP 

Core  

- - - - - 

Proposal 

FMAC IP 

Core 

13 Stages 3612 0 30 113.34 

 

 

 

FP Comparison Unit 
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Table 5.10 shows the implementation results of the FP Comparison. This module compute 40 

instructions like comparisons, mask, movements, absolute value and others. 

 

Table 5.10 Implementation results of FP ALU 

Design Stages Area 

 (Logic 

Elements) 

Embedded 

Memory 

bits 

Embedded 

Multiplier 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 

85C Model ) 

Altera FP 

Comparison 

IP Core  

- - - - - 

Proposal FP 

Comparison 

IP Core  

1 1068 0 0 166.06 

5.1.4. Recovery 

Recovery basically is a set of dual-port memories (1-read and 1-write). Table 5.11 shows the 

implementation results of the shadow memories needed for recovery from a speculative state. 

Table 5.11 Implementation results of recovery 

Design Memory size Embedded 

Memory bits 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C 

Model ) 

Ready bit 

vector  

128-bitsx64-entries 

Dual-port  

8192 311.33 

FIFO 

blocks and 

Valid bit  

4 x (34-bitsx64-entries) 

Dual-port 

8704 311.33 

 

This memory blocks basically each cycle save a vector which contain information about the 

current state of the processor. Each memory has 64 entries because are needed 64 snapshots. 

5.1.5. Complete design 

Table 5.12 show the resource utilization of the complete FP engine, are used 26, 893 LE, near 

of the 23% of the total LE of the FPGA and 574, 976 embedded memory bits which is the 14.7 

% of the total embedded memory. 
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Table 5.12 Implementation results of the complete design 

Design Area 

 (Logic Elements) 

Embedded 

Memory bits 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C Model ) 

FP Engine  26 893 574 976 88.1 

 

Also the operative frequency decreases up to 88.1 MHZ due to the interconnection (wires) 

between the outputs of the FP units and the Wakeup Logic in the issue queue and the intercon-

nection of the Bypass Network. This frequency full fit the requirements. 

 

Figure 6.1 shows the RTL viewer of the complete FP engine generated by Quartus II, which 

include the Issue Queue, the Read Register, the Ready Bit Vector, the functional units and the 

Bypass Network. 

 

Fig. 5.1 RTL viewer of the Complete FP Engine.  
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5.2. Second Version  

An enhancement of the first version is presented.  Improvements are shown in each sub-chapter. 

With this design are obtained a benefit in area, performance and energy efficiency. 

5.2.1. Issue Queue 

In Table 5.13 are presented the implementation results of the improvement of the Out of Order 

Issue Queue versus the first design. 

 

Table 5.13 Implementation results of FP Issue Queue 

Design Area 

 (Logic Elements) 

Embedded 

Memory bits 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C 

Model ) 

First design 10864 64 512 92.04 

Improvement  6628 24 576 111.17 

 

The area is reduced and the performance increased due to many causes as the number of tag to 

compare in the CAM blocks, with first design 6 comparisons per source are performed, with 

new proposal only 3 comparisons are performed. Also in the Block Mapping Table are deleted 

three read and three write ports. That implies reduction in area and improves the frequency of 

the design. 

5.2.2. Register Bank 

In Table 5.14 are shown the implementation results of the improvement of the Register File 

versus the first design. 

Table 5.14 Implementation results of Register Bank   

Design Area 

 (Logic Elements) 

Embedded 

Memory bits 

FMAX(MHZ) 

Worst case 

( Slow 1200mv 85C 

Model ) 

XOR design 1, 536 540, 672 116.71 

Improvement     576 196, 608 151.06 

 

The area is reduced because are added 1 read port and deleted three write ports. The frequency 

increases due to the number of XOR operation in writes and read operation decrease almost by 

2 times. Furthermore, the extra logic needed adjacent to the register file to send the data to 

corresponding functional unit is removed. 
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5.2.3. Fused Multiply Accumulate Unit (FMAC) 

 

New proposal is based in the use of only FMAC units which can compute almost all FP arith-

metic operations. Table 5.15 show the implementation results of the FP Multiply Accumulate 

proposal versus the first design proposed before. 

 

Table 5.15 Implementation results of FP Multiply Accumulate 

Design Stages Area 

 (Logic 

Elements) 

Embedded 

Memory 

bits 

Embed-

ded 

Multipli-

er 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 

85C Model ) 

First 

FMAC 

13 Stages 3612 0 30 113.34 

New 

FMAC 

13 Stages 4680 0 30 110.34 

 

In the new proposal are used 2 FMAC units, Lagarto II can perform issue up to 2 instructions 

per cycle, for these reason the new design can execute any combination of instructions unlike 

the first version which could only execute 2 different instructions in a given cycle.  FP divider 

is executed by software with the new design. 

5.2.4. Recovery 

Recovery basically is the same that the presented in first version.  

5.2.5. Complete design 

Table 5.16 show the resource utilization of the new complete FP engine versus the first version, 

are used 14, 635 LE, near of the 13% of the total LE of the FPGA and 245 760 embedded 

memory bits which is the 6 % of the total embedded memory. 

Table 5.16 Implementation results of FP Multiplier 

Design Area 

 (Logic Ele-

ments) 

Embedded 

Memory bits 

FMAX (MHZ) 

Worst case 

( Slow 1200mv 85C Model ) 

FP Engine 

First Version  

26, 893 574, 976 88.1 

FP Engine 

Second Version 

14, 635 245, 760 100.07 
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Compared with the first version, the area reduction is huge, and the performance increases no-

ticeably. This new proposal is obtained many benefits in area and energy consumption, which is 

one of the specific goals of this work due to Lagarto II processors is designed for mobile devic-

es and the energy efficiency is important aspect to obtain more autonomy in the mobile devices.  

 

Also the operative frequency increases up to 100.07 MHZ due to the bypass logic become less 

complex, and in general all blocks work at higher operative frequencies compared with the first 

version. 

 

Figure 5.2 shown the RTL viewer of the complete new FP engine generated by Quartus II, 

which include the Issue Queue, the Read Register, the Ready Bit Vector, the FMAC’s units and 

the Bypass Network. 

 

 

Fig. 5.2 RTL viewer of the Complete FP Engine.  
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Chapter 6   

6. Testing 

Each functional y unit was tested individually in order to check all exceptions, rounding modes 

and special cases, also complete design was testing with a set of programs in order to prove the 

correct functionality. Following is presented a little example in order to see easily the correct 

functionality of the complete design, checking the issue, read register, bypass logic and execu-

tion unit at detail. Furthermore, to prove the accuracy of the execution units is compared a little 

program in assembler language running in the current proposal versus the result provided by a 

program written in C language running in the Intel i5 processor. 

 

The following code was written in MIPS assembler language, basically perform 3 arithmetic 

operations, the load/store instructions are emulated because this instruction are executed in the 

Load/store unit. 

 

 

 

 

 

 

 

 

 

 

 

 

The following code was written in C language, basically perform the same arithmetic operation 

that the last example in assembler language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include<stdio.h>  

main()  

{  

double num1,num2,num3,num4.num5; 

double result0, result1, result2; // $f8,  $f9,  $t7 

num1 = 899.5612547825644; // $f10 

num2 = 8979.56546454515; // $f11 

num3 = 7895.1212121289; // $f12 

num4 = 124.2525465741;  // $f13 

num5 = 999.978569887878; // $f14 

 

result0= num1 * num2 + num3; 

result1= num3 * num4 - num5; 

result2= result0* result1+ num1; 

 

printf("\n Final Result:  %lf", result2);  

return 0;  

} 

//Example 

LDC1 $f10, 0x0080($0)   // Load Double Word 

LDC1 $f11, 0x0088($0)  // Load Double Word 

LDC1 $f12, 0x0090($0)  // Load Double Word 

MADDF$f8, $f10, $f11, $f12 // Fused Multiply Add 

LDC1 $f13, 0x0098($0)  // Load Double Word 

LDC1 $f14, 0x00A0($0)  // Load Double Word 

MSUBF$f9, $f12, $f13, $f14 // Fused Multiply Subtract 

MADDF$f15, $f8, $f9, $f10 // Fused Multiply Add 

SDC1 $f15 ,0x00A8($0)  // Store Double Word 
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With a bigger program follow the results is more complicated because the amount of data, for 

this reason only is show a little example, the main idea is check the back-end pipeline stages: 

Instruction Wakeup, Instruction Issue and the Read register. In this section of the instruction 

data path perhaps the values read from register file are erroneous but the bypass logic fix the 

correct value at input ports of the execution units.  

 

Still is not possible execute complete benchmarks due to the Lagarto II processors is not com-

plete, the back-end of the Lagarto II processor still is in development, but the current proves is 

possible observe the expected behavior.  

 

Table 6.1 shows the values of the corresponding variables used in the proposed program (C and 

assembler), both uses the same data in order to compare the final result to prove the accuracy of 

the functional units of the proposal. 

Table 6.1 Values of the load operations in decimal and Floating-point representation. 

Variable Decimal Floating Point Representation (Double Precision) 

num1,$f10 899.5612547825644 0 10000001000 1100000111000111110101110011001001011011111010110100 

num2,$f11 8979.56546454515 0 10000001100 0001100010011100100001100001001001000110100000111100 

num3,$f12 7895.1212121289 0 10000001011 1110110101110001111100000111110000100001000110000001 

num4,$f13 124.2525465741 0 10000000101 1111000100000010100110111001000110110001111001111100 

num5,$f14 999.978569887878 0 10000001000 1111001111111101010000011100011100110000101001001011 

 

Table 6.2 shows the logic registers used in the assembler program. 

Table 6.2 Logic Register used in the assembler program. 

Name Logic 

Register 

$f8 8 

$f9 9 

$f10 10 

$f11 11 

$f12 12 

$f13 13 

$f14 14 

$f15 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Testing 

Chapter 6                                                                                                                    105 

 

 

 

The following Figures show the simulation of the assembler program proposed before. This 

simulation was doing in Altera ModelSim Simulator. 

 

Figure 6.1 show up to 15ps, basically at 3 ps enter to the queue the first instruction which is a 

Fused Multiply Add, in the following cycle enter to the queue 2 instructions, Fused Multiply 

Subtract and Fused Multiply Add. In next cycles arrive data from the Load/Store unit, the phys-

ical registers $f10, $f11 and $f13, also its corresponding tags (Tag_LoadPF) is used to read the 

Block Mapping Table in order to enable the comparisons with the source operands in the CAM 

Blocks enabled with the EnableComparison bits. 

 

 

      Fist Instruction    Second & Third Instruction 

      Data from Data Cache L1 

 

 

Fig. 6.1 Simulation from 2ps to 15ps 

 

At 7 ps is shown the first comparisons with the EnableComparison bits in CAM-blocks 0 and 2, 

means that the data from the first load instruction is needed by Instruction 1 and instruction 3 to 

be issue. The next tags from load data enable comparisons for CAM-blocks 0 and 1. 

 

 

 

 

 

 

 

 

Signal Generated by Block Mapping Table 

to enable the comparisons in CAM-blocks 

Tag from Load Data 
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Data from Data Cache L1 

 

 

 

Fig. 6.2 Simulation from 15ps to 28ps 

 

Figure 6.2 shows the simulation from 15ps to 28ps; In the signals section named Load Data is 

shown the data arrive from the Load/Store unit, the physical registers $f14 and $f12, also its 

corresponding tags (Tag_LoadPF) is used to read the Block Mapping Table in order to enable 

the comparisons with the source operands in the CAM Blocks enabled with the EnableCompar-

ison bits, in this case, Blocks 0 and 1 are enable to comparisons.  

 

As described previously, the requirements to issue an instruction to execute are that it should 

have all sources ready, the needed functional unit free and be selected by the Priority Arbiter. 

All conditions were complying by first and second arithmetic instructions, in time 23ps both 

instruction are Issue, the Issue_valid bit is enable and its corresponding ROB_entry is used to 

notify the Reorder Buffer that the instructions was Issue. 

 

At 25ps are shows the final values that will arrive to the functional units ports, this values come 

from the Register File or the Bypass Network. In this case, this values come from the Register 

File due to all values were written in early cycles. 

 

 

 

 

 

 

 

Signal Generated by Block Mapping Table 

to enable the comparisons in CAM-blocks 

Sources values after the bypass multiplexors 

Issue of Instructions 

1 and 2 
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Figure 6.3 shows the simulation from 40ps to 53ps; At 43ps in the signal section named Tag to 

Wakeup are shown two values: Tag_FMAC1 and Tag_FMAC2 which were send by the func-

tional units to notify the Wakeup Logic that these instructions will be complete in the next three 

cycles and the Wakeup process can start. Third instruction comply with all condition and is 

Issue at 47ps. 

 

 

Fig. 6.3 Simulation from 40ps to 53ps 

Also at 49ps is shown the results of the first and second instruction, these values are needed to 

execute the instruction that was issue one cycle before, and then this values go through the 

Bypass Network to replace the old value read from the register file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FMAC tags (3 cycles 

before finalize the 

execution) 

Results of instructions 1 and 2 

Issue of Instruction 3 

Values chose by  

the bypass Network 
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Finally, in Figure 6.4 is show the final result of the third instruction. This data is read by a Store 

instruction in order to save this data in memory. 

 

 

Fig. 6.4 Simulation from 64ps to 78ps 

 

The final result shown in Figure 6.4 corresponding to 0x429CD39473615714 (Hexadecimal) 

which is the representation in the IEEE-754 double precision format. The conversion of this 

value to decimal representation correspond to 7923763566677.76953125d. 

 

Figure 6.5 show the final result of the previous example written in C language and executed in a 

Intel X86 architecture, this result is exactly the same obtained with the program written in As-

sembler language and running in the proposal FP Execution Engine design. 

 

 

 
Fig. 6.5 Result of the program written in C language. 

FMAC tag (3 cycles 

before finalize the 

execution) 

Final result 

Store Instruction 
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Chapter 7   

7. Conclusions, Results, Future works and 

Research’s Products 

Embedded processors oriented to mobile devices needs a high performance in order to support 

the new applications, furthermore, these architectures need to use of low power consumption 

techniques in order to provide the greatest possible energy autonomy. 

In superescalar processors with Out of Order execution the issue queue play an important role 

in the design because is one of the elements which consumes more power of the total power 

consumption in the processor. Lagarto II now has a high performance Issue Queue accompa-

nied with low power consumption techniques. With the current design is expected save near of 

the 70% in energy only in the Issue Queue unlike use a traditional design using RAM-CAM 

Schemes. 

 

In the complete design there are some other ways to save energy, in the register file design there 

are a large number of proposals in order to save energy, but this designs do not apply to imple-

mentation on FPGA, also implement multiport memory in the FPGA is not a trivial task, are 

needed a special techniques special for FPGA as the presented in this work. 

 

High performance FP functional units were designed and implemented, also still we can per-

form improvements on energy consumption in these units. Usually the floating-point units have 

a large latency and techniques like Clock gating are used in order to reduce the dynamic power 

dissipation in stages that not doing any work in a given cycle. 

 

The bypass network is an important element in the processor, in fact all processors today in-

clude a bypass network in order to increase the performance due to in combination with the 

wakeup logic, the back to back execution is supported. 

 

The current thesis work accomplishes with the all goals, also were designed and implemented 

extra FP units in order to support all possible the FP instruction set. 

 

Results 

 
High performance Floating-Point IP Cores for: 

 Addition/Subtraction 

 Multiplication 

 Division 
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 Fused Multiply Accumulate 

 

Multiport memories for FPGA. 

 

Issue Queue with two stages: 

 Low power consumption Wakeup Logic  

 

Synchronization for back-to-back execution. 

 

Testing of the complete design in order to prove the functionality and accuracy of the complete 

design. 

 

Future works 
Second proposal was designed in order to in a near future the FP Execution Engine can execute 

SIMD instructions with the adding of a little extra logic. Sharing the FPU unit with SIMD unit 

Lagarto II could save a lot of area due to FP scalar hardware occupy a big area comparable with 

the FP SIMD unit. Furthermore, the plan is not only execute 128-bits SIMD instructions, with 

the adding of 2 extra FMAC units (similar to the Bulldozer microarchitecture) can execute 4 

scalar floating-point instructions in the same cycle or 2x128-bit, 1x256-bit SIMD instruction or 

combine of these instructions, as is shown in Figure 7.1. Furthermore, integer SIMD instruc-

tions will be contained in the complete floating point unit. The Logic in the Issue queue will be 

simpler because the proposal was divided in four blocks, and performing Issue of 4 instructions 

the Priority Arbiter will be simpler due to can remove one level of priority. The register bank 

will be bigger due to it can read words of 128-bits for 128-bits SIMD instructions or 2-words of 

128-bits for 256-bits SIMD instructions. 
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Fig. 7.1 FP Scalar/SIMD units sharing hardware. 

 

Finally, the current design was not proven in conjunction with Lagarto II, due to the processor 

still is not complete, for this reason complete benchmarks was not proven in order to obtain data 

of the real performance. 

 

Research products  

 

 Prototype of the out-of-order floating-point execution engine. 

 4 High performance Floating-Point IP Cores 

 Currently working on writing a paper for publish in Microprocessors and Microsys-

tems: Embedded Hardware design (MICPRO) Journal 
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APPENDICES 

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754 

 

The following information was extracted from “MIPS Architecture For Program-

mers” Volume I-A [40] and Volume II-A [41]. 

 

In the MIPS architecture, the FPU is implemented via Coprocessor 1, an optional processor 

implementing IEEE 754 floating point operations. 

The FPU also provides a few additional operations not defined by the IEEE standard. 

 

FPU Data types 

 

The FPU provides both floating-point and fixed-point data types 

- The single and double precision floating-point data types are those specified by the 

IEEE standard. 

- The fixed-point types are signed integers provided by the CPU architecture. 

 

Floating Point Formats 

 

The following floating point formants are provided by the FPU: 

- 32-bit single-precision floating point. 

- 64-bit double-precision floating point. 

 

The floating point data types represent numeric values as well as other special entities, such as 

the following: 

- Two infinities, +∞ and -∞. 

- Signaling non-numbers(SNaNs). 

- Quiet non-numbers(QNaNs). 

- Numbers of the form: (−1)𝑠2𝐸  𝑏0. 𝑏1𝑏2 … 𝑏𝑝−1 where 

- s = 0 or 1 

- E = any integer between E_min and E_max, inclusive. 

- 𝑏𝑖= 0 or 1 (the high bit, 𝑏0, is to the left of the binary point) 

- p is the signed-magnitude precision 
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Table A. 1 Parameters of Floating Point Data Types 

Parameter Single Double 

Bits of mantissa 24 53 

Maximum exponent, E_max +127 +1023 

Minimum exponent, E_min -126 -1022 

Exponent bias +127 +1023 

Bits in exponent field, e 8 11 

Representation of 𝒃𝟎 integer bit hidden hidden 

Bits in fraction field, f 23 52 

Total format width in bits 32 64 

 

 

The single and double floating point data types are composed of three fields: sign, exponent and 

fraction as we can see in Figures A.1 and A.2. 

 

 

Fig A. 1 Single-Precision Floating Point Format (S) 

 

 

Fig A. 2 Double-Precision Floating Point Format (D) 

 

Values are encoded in the specified format by using unbiased exponent, fraction, and sign val-

ues listed in Table A.2 

 



APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754 

APPENDICES                                                                                                                    115 

 

Table A. 2 Value of Single or Double Floating Point Data Type Encoding 

 
 

Normalized and Denormalized Numbers 

 

For single and double data types, each representable nonzero numerical value has just one 

encoding; numbers are kept in normalized form. The high-order bit of the p-bit mantissa, which 

lies to the left of the binary point, is “hidden,” and not recorded in the Fraction field. The en-

coding rules permit the value of this bit to be determined by looking at the value of the expo-

nent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number is 

normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the 

exponent would be less than E_min, then the representation is denormalized and the encoded 

number has an exponent of E_min-1 and the hidden bit has the value 0. Plus and minus zero are 

special cases that are not regarded as denormalized values. 

 

Reserved Operand Values – Infinity and NaN 

 

A floating-point operation can signal IEEE exception conditions, such as those caused by unini-

tialized variables, violations of mathematical rules, or results that cannot be represented. If a 

program does not choose to trap IEEE exception conditions, a computation that encounters 

these conditions proceeds without trapping but generates a result indicating that an exceptional 

condition arose during the computation. To permit this, each floating-point format defines rep-

resentations, listed in Table A.2, for plus infinity (+∞), minus infinity (-∞), quiet non-numbers 

(QNaN), and signaling non-numbers (SNaN). 
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Infinity and Beyond 

 

Infinity represents a number with magnitude too large to be represented in the format and exists 

to represent a magnitude overflow during a computation. A correctly signed ∞ is generated as 

the default result in division by zero and some cases of overflow. 

Once created as a default result, ∞ can become an operand in a subsequent operation. The infin-

ities are interpreted such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting 

case of real arithmetic with operands of arbitrarily large magnitude, when such limits exist. In 

these cases, arithmetic on ∞ is regarded as exact and exception conditions do not arise. The out-

of-range indication represented by ∞ is propagated through subsequent computations. 

 

For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞, and 

these cases raise the Invalid Operation exception condition. 

 

Signaling Non-Number (SNaN) 

 

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are 

useful values to put in uninitialized variables. An SNaN is never produced as a result value. 

 

Quiet Non-Number (QNaN) 

 

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or 

unavailable data and results. Propagation of the diagnostic information requires information 

contained in a QNaN to be preserved through arithmetic operations and floating-point format 

conversions. 

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-

point result is to be delivered, a QNaN operand causes an arithmetic operation to supply a 

QNaN result. When possible, this QNaN result is one of the operand QNaN values. QNaNs do 

have effects similar to SNaNs on operations that do not deliver a floating-point result—

specifically, comparisons. 
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Table A. 3 Value supplied when a new Quiet NaN is created 

 
 

Fixed Point Formats 

 

The FPU provides two fixed-point data types: 

- 32 bit Word fixed-point (type W) 

- 64 bit Longword fixed-point (type L) 

 

The fixed-point values are held in the 2’s complement format used for signed integers in the 

CPU. Unsigned fixed-point data types are not provided by the architecture; application software 

may synthesize computations for unsigned integers from the existing instructions and data 

types. 

 

Fig A. 3 Word Fixed Point Format (W) 

 

 

Fig A. 4 LongWord Fixed Point Format (L) 
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Floating Point Registers 

 

This section describes the organization and use of the two types of FPU register sets: 

 

• Floating Point General Purpose Registers (FPRs) are 32 or 64 bits wide. These registers trans-

fer binary data between the FPU and the system, and are also used to hold formatted FPU oper-

and values. A 32-bit FPU contains 32, 32-bit FPRs, each of which is capable of storing a 32-bit 

data type. A 64-bit floating point unit contains 32, 64-bit FPRs, each of which is capable of 

storing any data type.  

 

• Floating Point Control Registers (FCRs) are 32 bits wide and are used to control and provide 

status for all floating-point operations. 

 

In Release 6 the 32-bit register model does not support 64-bit data types (stored in even-odd 

pairs of registers), and 64-bit operations are required to signal the Reserved Instruction ex-

ception. 

 

FPU Register Models 

 

The MIPS architecture supports two FPU register models: 

 

 32-bit FPU register model: 32 , 32-bit registers 

o 32-bit data types stored in any register 

o Pre-release 6 : 64-bit data types stored in even-odd pairs of registers 

 

In release 6 the 32-bit register model does not support 64-bit data types (Stored in 

even-odd pairs of registers), and 64-bit operation are required to signal the Re-

served Instruction exception. 

 

 64-bit FPU register model: 32 , 64-bit registers, with all formats supported in a regis-

ter. 

 

Release 6 supports both FPU register models. However, with a 64-bit FPU (FIRF64=1), Release 

6 requires the 64-bit FPU register model and does not support the 32-bit FPU register model, 

i.e., StatusFR=1 is required. With a 32-bit FPU (FIRF64=0, 32-bit FPRs), Release 6 does not 

support 64-bit data types and requires instructions manipulating such data types to signal a 

Reserved Instruction exception. In particular, Release 6 does not support even-odd register 

pairs. 

 

In Table A.4 we show the availability and compliance requirements of FPU register widths, 

register models, and data types. 
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Table A. 4 FPU Register Models Availability and Compliance 

 
 

Where “Required” means “required if an FPU of specified type is present”. “Available” means that the 

feature is available to implement, i.e., is optional. “Not available” means that the feature cannot be imple-

mented. 

 

 

Floating point control registers (FCRS) 

 

The MIPS64 Architecture supports the following Floating Point Control Registers (FCRs): 

 FIR: FP Implementation and Revision Register 

 FCSR: FP Control/Status register 

 FEXR: FP Exceptions Register 

 FENR: FP Enables register 

 

Access to the FCRs is not privileged; they can be accessed by any program that can execute 

floating point instructions.  
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Floating Point Implementation Register (FIR, CP1 Control Register 0) 

 

The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains 

information identifying the capabilities of the floating point unit, the floating point processor 

identification, and the revision level of the floating point unit. 

 

Figure A.5 shows the format of the FIR register and Table A.5 describes the FIR register fields. 

 

 

Fig A. 5 FIR Register Format 
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Table A. 5 FIR Register Field Descriptions 

Field Description 

Revision  Specifies the revision number of the floating point unit. This field allows software 

to distinguish between one revision and another of the same floating point proces-

sor type.  

Processor 

ID 

Identifies the floating point processor 

S  Indicates that the single precision (S) floating point data type and instructions are 

implemented. 

0 – not implemented 

1 - implemented 

D  Indicates that the double precision (D) floating point data type is implemented. 

0 – not implemented 

1 - implemented 

PS Indicates that the paired-single (PS) floating point data type and instructions are 

implemented: 

0 – not implemented 

1 – implemented 

Note: In release 6 PS data type is removed. 

3D Indicates that MIPS 3D is implemented: 

0 – not implemented 

1 – implemented 

W Indicates that the word fixed-point (W) data type and instructions are implemented: 

0 – not implemented 

1 – implemented 

L Indicates that the longword fixed-point (L) data type and instructions are imple-

mented: 

0 – not implemented 

1 – implemented 

F64 Indicates that the floating point unit has registers and data paths that are 64-bits 

wide.  

0 - FPU is 32 bits 

1 – FPU is 64 bits 

Has2008 Indicates that one or more IEEE-754-2008 features are implemented. If this bit is 

set, the ABS2008 and NAN2008 field within the FCSR register also exist. 

Impl These bits are implementation-dependent and are not defined by the architecture. 

UFRP Indicates user-mode FR switching is supported. 

FREP User mode access of FRE is supported. 

0 – Support for emulation of statusFR =0 handling on a 64-bit FPU with statusFR =0 

only is not available. 

1 – Support for emulation of statusFR =0 handling on a 64-bit FPU with statusFR =1 

only is available. 

0 Reserved 
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Floating Point Control and Status Register (FCSR, CP1 Control Register 31) 

 

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the 

operation of the floating point unit, and shows the following information: 

 Selects the default rounding mode for FPU arithmetic operations 

 Selectively enables traps of FPU exceptions conditions 

 Controls some denormalized number handling options 

 Reports any IEEE exceptions that arose, cumulatively, in complete instructions.  

 Release 6 removes the FP condition codes. 

The access to FCSR is no privileged; it can be read or written by any program that has access to 

the floating point unit. 

 

Figure A.6 shows the format of the FCSR register and Table A.6 describes the FCSR register 

fields. 

 

Fig A. 6 FCSR Register Format 

 

Table A. 6 FCSR Register Field Descriptions 

Fields Description 

RM Rounding Mode. This field indicates the rounding mode used for most floating 

point operation (some operations use a specific rounding mode). See the Table A.7 

for the meaning of the encodings of this field. 

Flags Flag bits. This field shoes any exception conditions that have occurred for com-

pleted instructions since the flag was last reset by software. 

When a FPU arithmetic operation raises an IEEE exception condition that does not 

result in a Floating point exception, the corresponding bits in the Flags field are 

set, while the others remain unchanged. Arithmetic operation that result in a Float-

ing point exception do not update the Flag bits. 

This field is never reset by hardware and must be explicitly reset by software.  

Refer to Table A.8 for the meaning of each bit. 

Enables Enable bits. These bits control whether or not a exception is taken when an IEEE 

exception condition occurs for any of the five conditions. The exception occurs 

when both an Enables bit and the corresponding Cause bit are set either during an 

FPU arithmetic operation  or by moving a value to FCSR or one of its alternative 

representations. Note that Cause bit E  has not corresponding Enables bit; the non-

IEEE Unimplemented Operation exception is defined by MIPS as always enabled. 

Refer to Table A.8 for the meaning of each bit. 
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Fields Description 

Cause Cause bits. These bits indicate the exception conditions that arise during execution 

of an instruction and is set to 0 otherwise. By reading the registers, the exception 

condition caused by the proceeding FPU arithmetic instruction can be determined.  

Refer to Table A.8 for the meaning of each bit. 

NAN2008 Quiet and Signaling NaN encodings recommended by the IEEE standard 754-

2008, i.e.,a quiet NaN is encoded with the first bit of the fraction field  being 0. 

MIPS legacy FPU encodes NaN values with the opposite polarity, i.e.,a quiet NaN 

is encoded with the first bit of the fraction being0 and signaling NaN is encoded 

with the first bit of the fraction field being 1. 

 

Refer to Table A.3 for the quiet NaN encoding values. 

This fields exist if FIRHAS2008 is set. 

 

0 – MIPS legacy NaN econding 

1 – IEEE 754-2008 NaN encoding 

ABS2008 ABS.fmt and NEG.fmt instructions compliant with IEEE Standard 754-2008. 

The IEEE 754-2008 standard requires that the ABS and NEG functions are non-

arithmetic and accept NAN inputs without trapping. 

This fields exist if FIRHAS2008 is set. 

 

0 – ABS and NEG intructions are arithmetic and trap for NAN inputs. MIPS 

legacy behavior 

1 – ABS and NEG intructions are non-arithmetic and accept NAN inputs without 

trapping. IEEE-754-2008 behavior. 

0 Reserved for future use; reads as zero. 

Impl Available to control implementation-dependent features of the floating point unit. 

If these bits are not implemented, they must be ignored on write and read as zero. 

FS Flush to Zero (Flush subnormals). 

0 – Input subnormal values and tiny non-zero result are not altered. Un-

implemented Operation exception may be signaled as needed. 

1 – When FS is one, subnormal results are flushed to zero. The unimple-

mented Operation exception is not signaled for this reason.  

FCC Floating point Condition Codes, removed in realease 6. 
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Table A. 7 Rounding Mode Definitions 

RM Field 

Encoding 

Meaning 

0 RN – Round to Nearest 

Rounds the result to the nearest representable value. When two representable 

values are equally near, the result is rounded to the value whose least significant 

bit is zero (that is, even) 

1 RZ - Round Toward Zero 

Rounds the result to the value closest to but not greater than in magnitude than 

the result. 

2 RP - Round Towards Plus Infinity 

Rounds the result to the value closest to but not less than the result. 

3 RM - Round Towards Minus Infinity 

Rounds the result to the value closest to but not greater than the result. 

 

Most arithmetic operations do not result in a number that can be represented exactly. In such 

cases the result need to be rounded to a number that can be represented in a given format.  

IEEE-754 standard define four rounding modes listed in Table A.7. 

 

The most popular mode is round toward nearest, ties to even. This rounding mode generally 

introduces the smallest error as the result of round toward nearest is the number closest to the 

exact value. However, certain applications such as interval arithmetic perform better on simpler 

rounding mode like round toward zero. For this reason, IEEE-754 includes directed rounding 

modes as well. 

 

Table A. 8 Cause, Enable, and Flag Bit definitions 

Bit Name Bit Meaning 

E Unimplemented Operation (this bit exist only in the cause field) 

V Invalid operation 

Z Divide by Zero 

O Overflow 

U Underflow 

I Inexact 

 

 

 

Floating Point Exception Register (FEXR, CP1 Control Register 26) 

 

The floating Point Exception Register (FEXR) is an alternative way to read and write the Cause 

and Flags fields that also appear in FCSR.  Figure A.7 shows the format of the FEXR register; 

Table A.9 describes the FEXR register fields. 
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Fig A. 7 FEXR Register Format 

 

Table A. 9 FENR Register Format 

Fields Description 

0 Must be written as zero; return zero on read 

Cause Cause bits. Refer to the description of this field in the FCSR Regis-

ter. 

Flags Flags bits. Refer to the description of this field in the FCSR register. 

 

Floating Point Enables Register (FENR, CP1 Control Register 28) 

 

The floating Point Enables Register (FENR) is an alternative way to read and write the Enables, 

FS and RM fields that also appear in FCSR. Figure A.8 shows the format of the FENR register; 

Table A.10 describes the FENR register fields. 

 

 

Fig A. 8 FENR Register 

 

Table A. 10 FENR Register Field Description 

Fields Description 

0 Must be written as zero; returns zero on read 

Enables Enable bits. Refer to the description of this field in the FCSR regis-

ter. 

FS Flush to zero bit. Refer to the description of this field in the FCSR 

register. 

RM Round mode. Refer to the description of this field in the FCSR 

register. 
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FPU Exceptions 

 

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enable and 

Flag fields of the Control/Status register. The Flag bits implement IEEE exception status flags, 

and the Cause and Enable bits control exception trapping. Each field has a bit for each of the 

five IEEE exception conditions and the Cause field has an additional exception bit, Unimple-

mented Operation, used to trap for software emulation assistance. 

 

A trap occurs before the instruction that causes the trap, or any following instruction, can com-

plete and write its results. If desired, the software trap handler can resume execution of the 

interrupted instruction stream after handling the exception. 

A floating point trap is generated any time both a Cause bit and its corresponding Enable bit are 

set. 

 

Exceptions Conditions 

 

The following five exception conditions defined by the IEEE standard are described below: 

 

 

 Invalid Operation Exception 

 Division by Zero Exception 

 Underflow Exception 

 Overflow Exception 

 Inexact Exception 

Also MIPS include a specific exception condition called Unimplemented Operation that is used 

to signal a need for software emulation of an instruction.  

 

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a 

trap. The IEEE standard specifies the result to be delivered in case the exception is not enabled 

and no trap is taken. The MIPS architecture supplies these results whenever the exception con-

dition does no result in precise trap. The default action taken depends on the type of exception 

condition, and in the case of the Overflow, the current rounding mode. The default results are 

summarized in Table A.11 

Table A. 11 Exceptions 

Bit Description Default Action 

V Invalid Operation Supplies a Quiet NaN 

Z Divide by zero Supplies a  signed infinity 

U Underflow Supplies a rounded result. 

I Inexact Supplies a rounded result. If caused by an overflow without the 

overflow trap enabled, supplies the overflowed result. 

O Overflow Depends on the rounding mode, as shown below. 

 0 (RN) Supplies an infinity with the sign of the intermediate result. 
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 1(RZ) Supplies an format’s largest finite number with the sign of the 

intermediate result. 

 2(RP) For positive overflow values, supplies positive infinity. For nega-

tive overflow values, supplies the format’s most negative finite 

number. 

 3(RM) For positive overflow values, supplies the format’s largest finite 

number. For negative overflow values, supplies minus infinity. 

 

 

Invalid Operation Exception 

 

The Invalid Operation exception is signaled if one or both of the operands are invalid for the 

operation to be performed. The result, when the exception condition occurs without a precise 

trap, is a quiet NaN. 

 

These are invalid operations: 

 

 One or both operands are a signaling NaN (except for non-arithmetic FPU instruc-

tions such as MOV.fmt). 

 Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (-∞) 

or (-∞) - (-∞). 

 Multiplication: 0 × ∞, with any signs. 

 Division: 0/0 or ∞/∞, with any signs. 

 Square root: An operand of less than 0 (-0 is a valid operand value). 

 Conversion of a floating point number to a fixed-point format when either an 

overflow or an operand value of infinity or NaN precludes a faithful representa-

tion in that format. 

 Some comparison operations in which one or both of the operands is a QNaN val-

ue. (The detailed definition of the compare instruction, C.cond.fmt, in Volume II 

has tables showing the comparisons that do and do not signal the exception.) 

 

Division By Zero Exception 

 

An implemented divide operation signals a Division By Zero exception if the divisor is zero and 

the dividend is a finite nonzero number.  

The result, when no precise trap occurs, is a correctly signed infinity.  

Divisions (0/0) and (∞/0) do not cause the Division By Zero exception. The result of (0/0) is an 

Invalid Operation exception.  

The result of (∞/0) is a correctly signed infinity. 

 

Underflow Exception 

 

Basically two events contribute to underflow: 
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 Tininess: the creation of a tiny nonzero result between ∓ 2𝐸_𝑚𝑖𝑛 which, because it is 

tiny, may cause some other exception later such as overflow on division. 

 Loss of accuracy: the extraordinary loss of accuracy during the approximation of such 

tiny numbers by denormalized numbers. 

 

The MIPS architecture specifies that tininess be detected after rounding. 

The MIPS architecture specifies that loss of accuracy is detected as inexact result. 

 

Alternative Flush to Zero Underflow 

When register FCSRFS=1 every tiny non-zero result is replaced with zero of the same sign.  

 

Overflow Exception 

 

An Overflow exception is signaled when the magnitude of a rounded floating point result, were 

the exponent range unbounded, is larger than the destination format’s largest finite number. 

When no precise trap occurs, the result is determined by the rounding mode and the sign of the 

intermediate result. 

 

Inexact Exception 

 

An Inexact exception is signaled if one of the following occurs: 

• The rounded result of an operation is not exact 

• The rounded result of an operation overflows without an overflow trap 

 

Unimplemented Operation Exception 

 

The Unimplemented Operation exception is a MIPS-defined exception that provides support for 

software emulation. 

This exception is not IEEE-compliant. 

 

Operations that are not fully supported in hardware cause an Unimplemented Operation excep-

tion so that software may perform the operation. 
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APPENDIXE B FPU Instruction Set (Release 6) 

 

 

The FPU instructions comprise the following functional groups: 

 

 Data Transfer Instructions 

 Arithmetic Instructions 

 Conversion Instructions 

 Formatted Operand-Value Move Instructions 

 FPU Conditional Branch Instructions 

 

Data Transfer Instructions 

 

Data is transferred between registers and the rest of the system with dedicated load, store, and 

move instructions. 

 

Data Transfer instructions are listed in Table B.1 and B.2. 

 

Table B. 1 FPU Loads and Stores 

Mnemonic Instruction Defined in MIPS ISA 

LDC1 Load Doubleword to Floating Point MIPS32 

LWC1 Load Word to Floating Point MIPS32 

SDC1 Store Doubleword to Floating Point MIPS32 

SWC1 Store Word to Floating Point MIPS32 

 

Load and Store Instructions are executed in the Load/Store Queue, therefore only we mention 

about that. 

Table B. 2 FPU Move To and From Instructions 

Mnemonic Instruction Defined in MIPS ISA 

CFC1 Move control Word From Floating Point MIPS32 

CTC1 Move control Word to Floating Point MIPS32 

DMFC1 Doubleword Move From Floating Point MIPS64 

DMTC1 Doubleword Move to Floating Point MIPS64 

MFC1 Move Word From Floating Point MIPS32 

MFHC1 Move Word from High Half of Floating Point Regis-

ter 

MIPS32 R2 

MTC1 Move Word To floating Point MIPS32 

MTHC1 Move Word to High Half of Floating Point Register MIPS32 R2 

 

Move To and From Instructions are not implement. 
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Arithmetic Instructions 

 

FPU IEEE-Approximate arithmetic operations 

FPU IEEE-Approximate arithmetic operations are listed in Table B.3. 

Table B. 3 FPU IEEE Arithmetic Operations 

Mnemonic Instruction Defined in MIPS ISA 

ADD Floating Point Add  MIPS32 

CMP.cond.fmt Floating Point Compare (setting FPR) Release 6 

DIV.fmt Floating Point Divide MIPS32 

MUL.fmt Floating Point Multiply MIPS32 

SQRT.fmt Floating Point Square Root MIPS32 

SUB.fmt Floating Point Subtrac MIPS32 

 

 

Instructions in green color was implemented. 

 

FPU Approximate arithmetic operations 

 

Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approxima-

tion (RSQRT), may be less accurate than the IEEE specification. 

FPU Approximate arithmetic operations are listed in Table B.4. 

 

Table B. 4 FPU-Approximate Arithmetic Operations 

Mnemonic Instruction Defined in MIPS ISA 

RECIP.fmt Floating Point Reciprocal Approximation MIPS64 

RSQRT.fmt Floating Point Reciprocal Square Root Approxima-

tion 

MIPS64 

 

 

FPU Fused Multiply-Accumulate Instructions (Release 6) 

 

Release 6 provides IEEE 2008 compliant fused multiply-accumulate add and subtract instruc-

tions. These instructions are listed in Table B.5. 

Table B. 5 FPU Fused Multiply-Accumulate Instructions 

Mnemonic Instruction Defined in MIPS ISA 

MADDF.fmt Fused Floating Point Multiply Add MIPS32 Release 6 

MSUBF.fmr Fused Floating Point Multiply Subtract MIPS32 Release 6 
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Floating Point Comparison Instructions 

 

Floating point comparison instructions are listed in Table B.6. 

Table B. 6 Floating Point Comparison Instructions 

Mnemonic Instruction Defined in MIPS ISA 

CLASS.fmt Scalar Floating Point Class Mask MIPS32 Release 6 

CMP.cond.fmt Floating Point Compare  MIPS32 Release 6 

MAX.fmt Floating Point Maximum MIPS32 Release 6 

MAXA.fmt Floating Point Value with Maximum Absolute Value MIPS32 Release 6 

MIN.fmt Floating Point Minimum MIPS32 Release 6 

MINA.fmt Floating Point Value with Minimum Absolute Value MIPS32 Release 6 

 

Conversion Instructions 

 

 

These instructions perform conversions between floating point and fixed point data types. Some 

conversion instructions use the rounding mode specified in the Floating Control/Status register 

(FCSR), while others specify the rounding mode directly. 

 

Table B. 7 FPU Conversion Operations Using the FCSR Rounding Mode 

Mnemonic Instruction Defined in MIPS ISA 

CVT.D.fmt Floating Point convert to Double Floating Point MIPS32 

CVT.L.fmt Floating Point convert to Long Fixed Point MIPS64 

CVT.S.fmt Floating Point convert to Single Floating Point MIPS32 

CVT.”.fmt Floating Point convert to Word Fixed Point MIPS64 

RINT.fmt Scalar Floating Point convert round to integer MIPS32 release 6 

 

Table B. 8 FPU Conversion Operations Using a Directed Rounding Mode 

Mnemonic Instruction Defined in MIPS ISA 

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point MIPS64 

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point MIPS32 

FLOOR.L.fmt Floating Point Floor to Long Fixed Point MIPS64 

FLOOR.W.fmt Floating Point Floor to Word Fixed Point MIPS32 

ROUND.L.fmt Floating Point Round to Long Fixed Point MIPS64 

ROUND.W.fmt Floating Point Round to Word Fixed Point MIPS32 

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point MIPS64 

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point MIPS32 
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Formatted Operand-Value Move Instructions 

 

These instructions move formatted operand values among FPU general registers. 

 

There are four kinds of move instructions: 

 Unconditional move 

 Instructions which modify the sign bit (ABS.fmt and NEG.fmt when 

FCSRABS2008=1) 

 FPU conditional select instructions, based on testing bit 0 of an FPT 

 

Table B. 9 FPU Formatted Unconditional Operand Move Instructions 

Mnemonic Instruction Defined in MIPS ISA 

ABS.fmt Floating Point Absolute Value MIPS32 

MOV.fmt Floating Point Move MIPS32 

NEG.fmt Floating Point Negate MIPS32 

 

Table B. 10 FPU Conditional Select Instructions 

Mnemonic Instruction Defined in MIPS ISA 

SEL.fmt Floating Point Select MIPS32 Release 6 

SELEQZ.fmt Floating Point Select if condition Equal to Zero MIPS32 Release 6 

SELNEZ.fmt Floating Point Select if condition is Not Equal to 

Zero 

MIPS32 Release 6 

 

 

 

The Floating-point instruction format can be check in “MIPS Architecture For Program-

mers”  Volume II-A [41]. 
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