INSTITUTO POLITECNICO NACIONAL

UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA

“ANÁLISIS DE LA INSTALACIÓN DE UN EQUIPO DE TOMOGRAFÍA AXIAL COMPUTARIZADA”

INFORME TEÓRICO DE LA OPCIÓN CURRICULAR EN LA MODALIDAD DE:
ESTANCIA INDUSTRIAL

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO BIOMÉDICO

PRESENTA:
TOPACIO ANGULO MORENO

DIRECTOR INTERNO: ING. LUCIA MONCADA PASOS
DIRECTOR EXTERNO: ING. ADRIANA VALDIVIESO IBARRA

México, D. F. Junio de 2009
Piensa que cada día es el más importante y entrégale tu fuerza y tus deseos.
Lo que hoy no conseguiste, con ánimo y cariño podrás lograr mañana.
No bajes la mirada, y habrá siempre una estrella, un sueño que seguir, una esperanza.
Si alguna vez tu sueño se derrumba busca un poco de luz en tu ventana, prométete a ti mismo un arco iris y vuelve a comenzar.
No te detengas, construye nuevos sueños.
Piensa siempre que en tu camino
NADA ES IMPOSIBLE.

Paulo Coelho
ANÁLISIS DE LA INSTALACIÓN DE UN EQUIPO DE TOMOGRAFÍA AXIAL COMPUTARIZADA

Topacio Angulo Moreno, Adriana Valdiviezo Ibarra *, Lucía Moncada Pazos.

Vasco de Quiroga 15, Colonia Sección XVI, Delegación Tlalpan, C.P.14000 México D.F. Teléfono 54870900 Ext. 2135, vaia090382@hotmail.com.

Introducción. La estancia industrial fue realizada en el Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, en el área de Ingeniería Clínica del Departamento de Ingeniería Biomédica de dicho instituto. El presente trabajo pretende explicar de forma general el análisis de una instalación de un equipo de Tomografía Axial Computarizada en el área de Radiología del Instituto, la cual debe de cumplir ciertos criterios para brindar seguridad al personal que labora, así como público en general, considerando como primer punto el funcionamiento del equipo y en segundo los parámetros que rigen para la instalación de un equipo que utiliza radiaciones ionizantes.

Desarrollo. El presente trabajo puede dividirse en los siguientes grupos:

Rayos X y Tomografía Axial Computarizada. Como primer paso se describirá el fundamento teórico como lo es el antecedente, generación y características de los rayos X. Después describiremos lo referente a la teoría de la Tomografía Axial Computarizada, en la cual se profundizará en lo que es la definición, componentes que lo constituyen, los tipos de geometrías o generaciones existentes, principios de funcionamiento y así como las aplicaciones de este.

Especificaciones del equipo y características de la instalación. Se describirá la marca, modelo y datos específicos del equipo. Para lo referente a la instalación se presentarán diagramas en donde se observara la dimensión, así como especificaciones eléctricas, componentes, accesorios de la sala y del equipo.

Análisis de la instalación. En esta sección se realizara un análisis comparativo de la instalación con la NOM-229, NOM-012 y NOM-026, las cuales están relacionadas con los criterios que debe de cumplir una instalación donde se manejen radiaciones ionizantes, y con esto se propondrá una solución de los puntos que no se llegaran a cumplir por las normas antes establecidas en la instalación.

Conclusiones y perspectivas.

Agradecimientos. Agradezco a mis asesores por el apoyo para el desarrollo y elaboración del presente informe técnico: Adriana Valdiviezo Ibarra y Lucía Moncada Pazos.

Referencias.

Fig. 1 Equipo de Tomografía Axial Computarizada LightSpeed VCT XT. General Electric.
INDICE

OBJETIVO GENERAL ... 9

OBJETIVOS ESPECÍFICOS ... 9

JUSTIFICACIÓN ... 10

INTRODUCCIÓN .. 11

Historia Del Instituto ... 11

Ubicación .. 13

Misión ... 14

Plan Estratégico Del Instituto .. 14

LOS RAYOS X .. 16

Tubo de rayos X .. 18

Constitución y funcionamiento ... 18

TOMOGRAFÍA AXIAL COMPUTARIZADA .. 20

Principios Teóricos Y De Funcionamiento De La Tomografía Axial Computarizada. 20

Comparación Con La Radiografía Convencional ... 21

Tomografía Geométrica ... 22

Funcionamiento Básico Del Tomógrafo ... 22

Componentes Básicos De Una Tomografía .. 23

Mesa .. 23

Gantry ... 24

Sistema De Generación De Radiación .. 25

Sistema De Detección Y Procesamiento ... 26

Sistema de adquisición de datos. .. 28
Sistema de exhibición de imágenes y diagnóstico.. 28
Detectores .. ¡Error! Marcador no definido.
Nuevos Detectores. ... ¡Error! Marcador no definido.
Métodos De Barrido (Geometrías)... 29
Primera Generación (Traslación/Rotación)... 30
Segunda Generación (Traslación/Rotación)... 31
Tercera Generación (Rotación/Rotación)... 32
Cuarta Generación (Rotación/Estacionario)... 32
Quinta Generación.. 33
Técnicas Matemáticas... ¡Error! Marcador no definido.
Aplicaciones De La Tomografía Axial Computarizada... 35
Planos del cuerpo... 35
Direcciones... ¡Error! Marcador no definido.
Referencias anatómicas. .. 36
Estudios comunes con la TAC.. 36
Ventajas E Inconvenientes... 37
DATOS Y CARACTERISTICAS DEL EQUIPO DE TOMOGRAFÍA Y DE LA INSTALACIÓN... 38
Descripción Del Área De Rayos X.. 38
Datos Técnicos Del Equipo De Tomografía Axial Computarizada............................. 40
Clasificación de acuerdo al riesgo de un CT.. 42
Descripción De La Instalación.. 43
Estudio y Análisis de la instalación. .. 51
Blindajes .. 51
Correlación De La Instalación Y Equipo Con La Norma Oficial Mexicana NOM-229-SSA1-2002... 57
Resultados.. 63
CONCLUSIONES... 69
REFERENCIAS.. 71
GLOSARIO.. 72
ANEXO DE FOTOS... 78

INDICE DE ILUSTRACIONES

Figura. 1 Vista principal del INCMyNSZ.. 11
Figura. 2 Mapa del INCMyNSZ.. 13
Figura. 3 Vista del INCMyN.. 15
Figura. 4 Tubo de rayos X .. 18
Figura. 5 Comparación de un estudio de pulmón en rayos X y TAC... 21
Figura. 6 Funcionamiento básico de un CT ... 23
Figura. 7 Mesa para un equipo de CT... 24
Figura. 8 Gantry de un equipo de CT ... 25
Figura. 9 Conjunto de detectores... 27
Figura. 10 CPU .. 27
Figura. 11 Sistema de exhibición de imágenes ... 29
Figura. 12 Planos del cuerpo .. 35
Figura. 13 Diagrama de la planta baja del hospital... 38
Figura. 14 Diagrama del área de radiología... 39
Figura. 15 Tomógrafo LightSpeed VCT XT .. 40
Figura. 16 Equipo de CT que fue instalado el INN, en el área de Radiología.. 41
Figura. 17 Clasificación de acuerdo al riesgo de un CT ... 42
Figura. 18. Cuarto del equipo de CT .. 43
Figura. 19. Diagrama con simbología. ... 44
Figura. 20 Switch de seguridad. ... 45
Figura. 21. Cuarto de control. ... 46
Figura. 22. Vista frontal del cuarto de control... 46
Figura. 23. Vista frontal del cuarto de control... 47
Figura. 24. Centro focal del equipo. ... 47
Figura. 25. Perfiles de isoexposición... 48
Figura. 26. Perfiles de isoexposición... 48

INDICE DE TABLAS

Tabla 1. Cuadro comparativo ... 34
Tabla 2. Datos técnicos del equipo de CT ... 41
Tabla 3. Significado de las iniciales ... 44
Tabla 4. Significado de A. ... 45
Tabla 5. Significado de B... 45
Tabla 6. Significado de C ... 46
Tabla 7. Significado de D ... 46
Tabla 8. Límites de dosis semanal en POE, paciente y público en general........... 51
Tabla 9. Ecuaciones para cálculo de blindajes ... 52
Tabla 10. Parámetros de cálculo ... 52
Tabla 11. Resultado del cálculo de blindajes hechos por la empresa 53
Tabla 12 Resultados de cálculo de Blindajes por el método gráfico 54
Tabla 13 Comparación de los espesores de Blindaje de Pb ... 54
Tabla 14. Normas de referencia en el trabajo ... 56
Tabla 15 Resultados Parciales... 64
Tabla 16 Resultados totales... 65

ANEXOS.

0-1 Desempaque del equipo al llegar al INN... 78
0-2 Vista anterior del Gantry... 79
0-3 Mampara del cuarto de control... 79
0-4 Guías mecánicas en el piso para la colocación del equipo...................... 80
0-5 Instalación de la mesa del equipo... 80
0-6 Guía mecánica de la mesa del equipo de CT en el piso.......................... 81
0-7 Llegada del equipo a la sala... 81
0-8 Localización del equipo en donde se instaló el equipo......................... 82
0-9 Puerta de la sala de Tomografía, con el símbolo de radiación ionizante......... 82
0-10 Mampara del cuarto de control después de la instalación del equipo........ 83
0-11 Cuarto de control del equipo de tomografía.................................... 83
0-12 Interruptor de desconexión del equipo... 84
0-13 Equipo después del instalación... 84
0-14 Suministro general del equipo... 85
0-15 Accesorio del equipo: monitor de signos vitales.................................. 85
0-16 Switch general del equipo... 86
0-17 Display del sensor de temperatura.. 86
0-18 Gráfica para cálculo de espesores de plomo del reporte No.49 del National Council for Radiological Protection.. 87
OBJETIVO GENERAL

Hacer un análisis completo de la instalación de un equipo de Tomografía Axial Computarizada en el área de radiología del Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”

OBJETIVOS ESPECÍFICOS

- Analizar la instalación por medio de las guías mecánicas elaboradas por la empresa que instaló el equipo de tomografía axial computarizada
- Identificar los puntos de no cumplimiento que pueda tener la instalación basándose con la Norma Oficial Mexicana NOM-229-SSA1-2002 que está relacionada con las especificaciones y requerimientos de una instalación y equipo de rayos X.
- Proponer solución a las posibles anomalías que pueda presentar la instalación apegándose a las Normas Oficiales Mexicanas.
JUSTIFICACIÓN

Una de mis justificaciones por la que decidí realizar el presente trabajo parte de que elegí la Modalidad de Estancias Industriales como forma de titulación, debido a que me interesó conocer el ámbito laboral del Ingeniero Biomédico dentro de un hospital, la segunda el conocer la aplicación de la Ingeniería Clínica dentro de un hospital, debido a que en la escuela solo nos enseñan la parte teórica y muy poco de práctica. La tercera justificación parte de que tuve la oportunidad de estar en el área de Radiología del hospital y de presenciar la instalación de un equipo de tomografía computarizada, por lo que me intereso conocer el funcionamiento básico del equipo, pues en la escuela no enseñan tópicos de equipos de imagen y rayos X, y así como la parte administrativa de los equipos médicos que va muy relacionada con el conocimiento y aplicación de las Normas Oficiales Mexicanas (NOM-229-SSA1-2002) en este caso los requerimientos básicos para la instalación de un equipo de tomografía computarizada, como lo establece la NOM y la Secretaría de Salud.
INTRODUCCIÓN

Historia Del Instituto Nacional de Ciencias Médicas y Nutrición.

El Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ, INNSZ) es uno de los Institutos Nacionales de Salud dependientes de la Secretaría de Salud. Es una de las instituciones médicas de mayor prestigio asistencial y científico de México.

Se inauguró el 12 de octubre de 1946 con el nombre de Hospital de Enfermedades de la Nutrición. Al extenderse sus funciones hacia otros campos, en 1978 se le cambió el nombre por el de Instituto Nacional de la Nutrición Salvador Zubirán que se utilizó hasta junio de 2000, fecha en que se le dió el nombre actual. Su fundador y primer Director fue el Dr. Salvador Zubirán quien dirigió la institución hasta 1980. El Director actual es el Dr. Fernando Gabilondo Navarro.

Figura. 1 Vista principal del INCMyNSZ

Desde sus inicios, el Instituto se planeó como una institución médica modelo en que las actividades asistenciales sirvieran como sustento de las educativas y de investigación, pensando que sólo se puede dar buena asistencia en un ambiente académico que propicie la enseñanza e investigación científica.

Los objetivos iniciales fueron cumplidos con amplitud y en sus más de 50 años de existencia el número de departamentos médicos creció de 3 a más de 40 abarcando casi todas las especialidades de la medicina.
Desde el punto de vista asistencial, se dispone de 167 camas para internación de enfermos y una amplia consulta externa que da servicio a 135,000 pacientes al año con un promedio de 215,000 consultas anuales. Se atienden pacientes con una gran gama de padecimientos y se dispone del equipo de laboratorio y gabinete más moderno como auxiliares diagnósticos.

Su personal médico es de 176 especialistas, todos con varios años de entrenamiento en el país o en el extranjero. Son la Dirección de Medicina y la Dirección de Cirugía quienes tienen a su cargo la actividad asistencial en la institución.

El Instituto, a través de su Dirección de Enseñanza, ofrece en la actualidad 20 cursos de posgrado avalados por la Universidad Nacional Autónoma de México, en que se forman especialistas en distintos campos de la medicina y cirugía. Los egresados del sistema docente están distribuidos por todo el país y son líderes de la medicina académica nacional, ocupando cargos directivos en universidades y hospitales de enseñanza.

Su desempeño frente a las sociedades científicas es también muy destacado. Es la institución médica con mayor número de investigadores y con mayor producción científica en el país, siendo también la de mayor índice de impacto. Esta actividad está coordinada por la Dirección de Investigación de la que dependen los departamentos de investigación básica y de investigación médica.

Como ejemplo de los éxitos en este campo, se puede mencionar que tres de sus miembros ingresaron al Colegio Nacional y siete han obtenido el Premio Nacional de Ciencias.
Ubicación

El Instituto está ubicado en la Delegación Tlalpan entre las calles de Vasco de Quiroga, San Fernando, Lateral de Viaducto Tlalpan y Martín de la Cruz. La entrada principal está ubicada en la calle Vasco de Quiroga. La entrada a la Toma de Muestras está sobre la calle Martín de la Cruz.

La dirección oficial del Instituto es la siguiente:

Vasco de Quiroga 15
Colonia Sección XVI
Tlalpan C.P.14000
México D.F., México

Figura. 2 Mapa del INCMyNSZ
Misión

Somos una institución nacional de salud que realiza investigación, docencia y asistencia de alta calidad, con honestidad, responsabilidad y compromiso social, en un marco de libertad y lealtad, al servicio del ser humano y su entorno.

Visión

Ser una institución de salud líder nacional e internacional por la excelencia en la asistencia, docencia e investigación con una red de centros afiliados que apliquen el mismo modelo integrador.

Plan Estratégico Del Instituto

- Proporcionar atención médica especializada de vanguardia a población adulta en sus áreas.

- Ampliar el ámbito y la repercusión de las acciones sustantivas.

- Formar recursos humanos del más alto nivel técnico, científico y ético, comprometidos con los ideales del instituto.

- Fortalecer la participación del instituto en la educación continua para profesionales de la salud y en la educación para la salud de la población.

- Fortalecer la investigación original y de vanguardia que repercuta en el avance del conocimiento científico e impulse el desarrollo tecnológico.

- Propiciar el desarrollo de un modelo organizacional innovador que permita fortalecer las actividades sustantivas.
Figura. 3 Vista del INCMyN
LOS RAYOS X

Son las radiaciones electromagnéticas cuyas longitudes de onda oscilan entre 100 y 0.1 Angstroms. La forma más simple de producirlos es mediante el bombardeo de un ánodo metálico con electrones de alta velocidad. De este modo, algunos electrones atómicos son elevados a un orbital superior y luego, al regresar a su orbita, emiten un fotón X.

Cuando Wilhelm C. Roentgen descubrió casi un siglo atrás los rayos X los bautizó con la letra X para representar la incognita que significaban.

Se puede iniciar este estudio diciendo que los rayos X son una forma de radiación u ondas electromagnéticas tal como las ondas de radio o la luz. Las ondas son variaciones de la amplitud de la energía en el tiempo, eso define el concepto de periodo, que no es otra cosa que el tiempo empleado por una onda en cumplir toda su secuencia, a medida que una onda oscila más rápidamente su periodo se hace más pequeño y su frecuencia aumenta. Los rayos X se encuentran por encima de la radiación ultravioleta, la luz visible y las ondas de radio y por debajo de la radiación cósmica.

Actualmente se sabe que la forma más adecuada para producir los rayos X es mediante la aceleración de electrones los cuales al impactar un blanco de sustancias especiales producen la radiación deseada.

Esto se realiza en el interior de un tubo al vacío en el que se encuentran básicamente dos electrodos a los que se les aplica un altísimo potencial eléctrico para acelerar los electrones y un elemento que produce las partículas mencionadas.
Características y propiedades de los rayos X.

- Los rayos x son eléctricamente neutros, es decir, no sufren desviación o deflexión cuando se encuentran en el interior de un campo eléctrico, magnético o combinado.
- Los rayos X viajan en línea recta y a la velocidad de la luz, lo cual se utiliza para dirigirlos y enfocarlos con el propósito de irradiar una determinada región en el organismo a estudiar.
- Producen efectos biológicos y químicos, es decir, al incidir sobre un organismo producen ionización y/o alteraciones celulares que pueden ser responsables de trastornos o mutaciones ulteriores.
- Los rayos X no son visibles al ojo humano ni animal, porque su detección solo es posible por medio de instrumentos y recursos fotográficos, eso tiene importancia con relación a las medidas de protección del organismo.
- Producen imágenes sobre películas fotográficas y fluoroscencia sobre ciertos tipos de cristales; ambos fenómenos se utilizan en medicina para obtener placas radiográficas y visualizar imágenes sobre pantallas especiales de fluoroscopía o sobre tubos de rayos catódicos.
- Los rayos X producen radiación secundaria y radiación dispersa lo que significa que un objeto biológico que recibe rayos X produce a su vez, nuevos rayos de diferentes características. Estos rayos son, generalmente, inconvenientes en la generación de imágenes para la seguridad de las personas que trabajan con rayos X.
Tubo de rayos X

El tubo de rayos X es la base para la producción de los mismos, mucho de lo que se logra en un sistema radiológico depende de las características del tubo. La nitidez de la imagen, la potencia disponible y otros parámetros son en gran medida determinados por la construcción y diseño de los elementos componentes del tubo.

![Figura 4 Tubo de rayos X](image)

Constitución y funcionamiento.

El tubo produce rayos X como resultado del impacto de electrones acelerados sobre un blanco llamado ánodo, la gran velocidad de los electrones les confiere la capacidad de producir los rayos siempre que el blanco posea algunas características especiales.

Los electrones se producen a partir de la emisión termoiónica, la cual ocurre cuando un filamento de alambre devanado en espiral y de una longitud determinada, se calienta por medio de las circulación de una elevada corriente a través del mismo, dicho filamento se encuentra alojado en una cavidad contenida en el cátodo o electrodo negativo. Cuando el filamento se caldea produce la liberación de electrones que salen del material y se concentran en la vecindad en forma de una nube suspendida; la cavidad que aloja el filamento se fabrica de níquel y tiene la función de enfocar el haz de electrones.
Cuando se aplica entre el ánodo y cátodo un alto voltaje, del orden de decenas de miles de voltios, los electrones se dirigen hacia el ánodo que los atrae impactando violentamente con él y produciendo calor intenso en el punto de colisión y los rayos X que salen en forma de haz hacia el exterior por una <ventana> en la ampolla de cristal que contiene a los electrodos y demás componentes del tubo.
TOMOGRAFÍA AXIAL COMPUTARIZADA

El vocablo “tomografía” deriva del griego, tomos: parte o sección y grafos: escritura representación.

La expresión Tomografía Axial computarizada (TAC) implica la construcción de una imagen de una sección cualquiera del cuerpo humano por medio de un algoritmo computarizado, a partir de datos obtenidos por rayos X.

Existen diferentes nombres para esta técnica radiológica de diagnostico médico. Algunos ejemplos son:

- Tomografía axial computarizada (TAC).
- Tomografía axial transversa computarizada (TACT).
- Tomografía ayudada por computadora (TAC).
- Tomografía reconstructiva (TR).
- Tomografía computarizada (TC).
- Tomografía computarizada (TC).

Principios Teóricos y De Funcionamiento De La Tomografía Axial Computarizada.

En 1971 la empresa discográfica EMI anunció el desarrollo del scanner, máquina que unía el cálculo electrónico a las técnicas de rayos X, constituyendo el mayor avance en radiodiagnóstico desde el descubrimiento de los rayos X. Su creador fue el Doctor Godfrey Hounsfield.

Hasta este momento la técnica de rayos X permitía la visualización en dos dimensiones, con el problema de que unas imágenes se superponían a otras, por lo que se perdía gran parte de la información.
El tomógrafo axial computado de rayos X, nombre completo del aparato, permite observar cortes del cuerpo humano transversales a su eje principal con una resolución de hasta 1 mm, con lo cual hay muy pocas estructuras que quedan fuera de observación utilizando esta técnica. Desde el primer tomógrafo hasta la fecha, la evolución tecnológica de estos equipos ha sido permanente, al punto de haberse convertido en la actualidad en una herramienta diagnóstica de uso tan cotidiano como los equipos de rayos X convencionales.

Comparación Con La Radiografía Convencional.

El resultado sobre la película es la impresión de un volumen en un solo plano, es decir, obtenemos una imagen bidimensional de un volumen

En la tomografía computarizada, también se tienen imágenes bidimensionales, pero con la importante diferencia de corresponder a valores de absorción de radiación de volúmenes, es decir a los llamados elementos de volumen, en los que se ha dividido arbitrariamente un estrato o capa axial del cuerpo explorado.

![Figura 5 Comparación de un estudio de pulmón en rayos X y TAC.](image-url)
Tomografía Geométrica.

La tomografía geométrica por rayos X, consiste en impresionar dos o más veces una misma placa radiográfica mediante sendos de haces de rayos X que se mantiene enfocados sobre el punto de interés. Los movimientos del tubo emisor de rayos X se sincronizan mecánicamente con los movimientos de la placa radiográfica.

Como consecuencia, la zona enfocada se verá con mayor contraste que las desenfocadas, las cuales se observarán muy difuminadas.

Permite medir con cierta precisión la profundidad de una lesión y aclarar su contorno, pero tiene ciertas limitaciones:

- Muy pobre resolución.
- Las estructuras que lo rodean a la zona enfocada no pueden ser anuladas.
- Las diversas inclinaciones del haz producen errores geométricos que deforman la estructura examinada.

Funcionamiento Básico Del Tomógrafo.

Básicamente, el tomógrafo está compuesto por un tubo generador de rayos X y un detector de radiaciones que mide la intensidad del estrecho haz emitido por el tubo de rayos X, luego que atravesa el objeto en estudio.

Conocida la intensidad emitida y la recibida, se puede calcular la atenuación o porción de energía absorbida, que será proporcional a la densidad atravesada. Dividiendo el plano a estudiar en una serie de celdas de igual altura que el haz y el resto de las dimensiones elegidas de forma adecuada para completar el plano, la atenuación del haz será la suma de la atenuación de cada celda. Si se consigue calcular la atenuación de cada celda se podrá conocer su densidad y, por tanto, reconstruir un mapa del plano de estudio, asignando a cada densidad un gris de una escala de negro a blanco. Cómo exploran el cuerpo los distintos tomógrafos para obtener las atenuaciones es lo que da lugar a las generaciones de tomógrafos, desarrolladas en la sección específica.
Componentes Básicos De Una Tomografía.

Todos los equipos de tomografía axial computada están compuestos básicamente por:

- Mesa de exploración y gantry.
- Sistema generador de radiación y su control.
- Sistema de detección y procesamiento por computadora.
- Sistema de exhibición de imágenes y diagnostico.
- Componentes de registro, archivo y documentación.

Mesa

Los niveles requeridos en los movimientos de la mesa deben estar entre los siguientes:

- Desplazamiento vertical entre 45 y 100 cm con relación al piso
- Desplazamiento horizontal motorizado de al menos 1000 mm con una exactitud de +0 a -1 mm por cada 2 mm de incremento.
- Al menos dos velocidades de desplazamiento horizontal.
- Control de mandos de la mesa gobernados por software. De forma que se combinen los movimientos de la mesa con el gantry.
Gantry

El gantry es el lugar físico donde es introducido el paciente para su examen. En él se encuentran el tubo de rayos X, el sistema de detección de rayos X y todo el conjunto mecánico necesario para realizar el movimiento asociado con la exploración.

Las principales exigencias son:

- La distancia entre el tubo y el detector debe ser de 1100 mm ±10%. Algunos fabricantes usan la distancia tubo-isocentro de 630 mm, y distacia de isocentro a detector 470 mm.

- La angulación del Gantry (inclinación), debe ser de un intervalo entre ±20 grados y ± 25 grados.

- La apertura del Gantry debe estar en el intervalo de 30 cm a 35 cm para equipos de exploración de cabeza y vértebras cervicales. El intervalo para equipos de cuerpo entero debe ser de 50 cm hasta 70 cm.

- La exactitud de la inclinación del Gantry debe ser de al menos ±0,5 grados, algunos equipos ofrecen una exactitud de 0,25 grados.
La rotación del tubo con el sistema detector debe ser de al menos de 360 grados para una exploración parcial.

Otras exigencias mecánicas para el Gantry son: el giro debe ser suave y sin vibraciones; tener varias velocidades de giro seleccionables, sistemas de bloqueo que eviten la activación de la mesa o la inclinación del propio Gantry cuando este en rotación, debe poseer luces de alineación lateral y vertical para el posicionado del paciente.

![Gantry de un equipo de CT](image)

Figura. 8 Gantry de un equipo de CT

Sistema De Generación De Radiación

El tubo de rayos X es básicamente un tubo de vacío rodeado de una cubierta de plomo con una pequeña ventana que deja salir las radiaciones al exterior. El espacio entre la funda aislante y el tubo está relleno de aceite, que actúa como disipador. El tubo de vacío (diodo) tiene un filamento en uno de los extremos (cátodo ~negativo~) y un blanco metálico que puede ser fijo o móvil en el otro extremo (ánodo ~positivo~). Por el filamento del cátodo se hace circular una corriente que pone al mismo incandescente, liberando de esta forma gran cantidad de electrones que serán impulsados a gran velocidad hacia el ánodo, mediante la aplicación de una tensión muy alta entre el ánodo y el cátodo de
alrededor de 120 KV. Los electrones acelerados, que poseen una gran energía cinética, chocan contra el blanco metálico del ánodo, cediéndole toda la energía. Esta energía es transformada en un 99% en calor y un 1% en radiación X que se transmite al exterior del tubo.

El cátodo está formado por un filament de tungsteno, arrollado en forma de espiral, similar al de una bombilla eléctrica común. Este filament se coloca en un alojamiento en forma de copa, llamado copa enfocadora, que tiene la misión de lograr un haz de electrones de forma y tamaño adecuados y cuya dirección sea la correcta para impactar en el blanco metálico del ánodo.

El ánodo está construido generalmente de cobre y posee en su cara exterior un recubrimiento de una aleación de tungsteno, renio y molibdeno (punto de fusión por encima de los 3300 °C) en donde impactan los electrones. Para que los rayos X emerjan por el sitio deseado, el ánodo tiene una disposición oblicua al haz incidente. Como se utiliza una alta densidad de radiación de electrones sobre el ánodo, con lo que su calentamiento sería excesivo, para prolongar su duración se utilizan ánodos circulares giratorios, con velocidades de giro entre 2500 y 3000 RPM.

Sistema De Detección Y Procesamiento.

El propósito principal de todo detector es convertir la energía de rayos X en energía eléctrica que pueda ser manipulada por el computador.

En el caso de los detectores de semiconductor, la interacción de los rayos X con la estructura cristalina del semiconductor produce la liberación de la energía en forma de fotón de luz visible, por lo cual los detectores de estado sólido requieren de un tubo fotomultiplicador para convertir esta señal de luz en salida eléctrica.

En el caso de los detectores de gas, tenemos como el más común, al detector de xenón bajo presión el cual permite la conversión de la energía de rayos X en ionización del gas, de manera que cuando hay incidencia de un haz de radiación con la estructura atómica de las moléculas del gas, liberan electrones que son colectados por un electrodo, disponiéndose así de un potencial proporcional a la cantidad de radiación recibida.
La computadora es un módulo que está compuesto en general por tres unidades, cuyas funciones están claramente diferenciadas. Éstas son:

- **Unidad de control del sistema (CPU)**, tiene a su cargo el funcionamiento total del equipo.
- **Unidad de reconstrucción rápida (FRU)**, es la encargada de realizar los procedimientos necesarios para la reconstrucción de la imagen a partir de los datos recolectados por el sistema de detección.
- **Unidad de almacenamiento de datos e imágenes**, está generalmente compuesto por uno o más discos magnéticos donde se realiza el almacenamiento no sólo de las imágenes reconstruidas y de los datos primarios, sino también del software de aplicación del tomógrafo.
Sistema de adquisición de datos.

Se define el sistema de adquisición de datos (DAS), como el conjunto de circuitos electrónicos destinados a tomar la señal eléctrica generada en los detectores, convertirla en señal digital a partir de valores análogos y entregarlos a la computadora que los maneja para convertirlos en imagen.

El sistema de adquisición de datos debe ser de alta fidelidad y sobre todo tener elevada precisión y exactitud en el manejo de la información procedente del detector.

Sistema de exhibición de imágenes y diagnóstico.

El sistema de exhibición consta generalmente de una consola, que contiene todos los controles para llevar a cabo las siguientes funciones:

- Dirigir la exploración, es decir, situar todos los valores del generador radiológico, velocidad de exploración, altura y angulación del gantry, ancho de los estratos, región anatómica a explorar, etc.
- Controlar la exhibición de las imágenes, es decir, el procesado de la información obtenida, su presentación en la pantalla, elección de los algoritmos de reconstrucción, y sobre todo la posibilidad de la manipulación de la imagen con indicaciones, mediciones, curvas, histogramas y otra función necesaria para obtener el máximo de información de las imágenes.
- Ordenar las funciones de memorización, archivo y documentación de la imagen, en memorias magnéticas, discos flexibles, impresores, película radiográfica, etc.
Métodos De Barrido (Geometrías)

Los métodos de barrido, también denominados “geometrías”, se relacionan fundamentalmente con el tipo de movimiento del conjunto fuente de Rayos X-sistema detector alrededor del paciente, con el número de detectores del sistema detector y con la forma de haz de Rayos X. A su vez, estos métodos se relacionan estrechamente con las generaciones de tomógrafos computados que han idos apareciendo.

1° GENERACIÓN: rotación/ traslación del conjunto tubo de Rx- detector único; haz estrecho y único de Rx.

2° GENERACIÓN: Rotación/ Traslación del conjunto Tubo de Rx- detectores; múltiples haces estrechos de Rx.

3°GENERACIÓN: movimiento rotatorio del conjunto tubo de Rx- sistema detector; haz de Rx en abanico.

4° GENERACIÓN: sistema detector circular estacionario; haz de Rx en abanico con un movimiento rotatorio.
5° GENERACIÓN: sistemas detectores circulares estacionarios en paralelo; varios tubos de Rx con movimiento rotatorio- haces de Rx en abanico.

Las geometrías hasta la 4° generación ofrecen una imagen bidimensional de una fina rebanada transversal de la región del paciente barrida con el haz de Rx.

El sistema de exploración es el conjunto formado por el tubo de rayos X y la unidad de detección con las partes mecánicas encargadas de proveer los movimientos. Hasta el momento, existen cuatro generaciones de tomógrafos, en otras bibliografías marcan una quinta generación. Sus características se detallan a continuación.

Primera Generación (Traslación/Rotación)

Para llevar a cabo la exploración, las máquinas de primera generación realizan una serie de operaciones:

- Estudiar la atenuación de 160 trayectorias paralelas mediante movimientos de traslación.

- Posteriormente girar todo el conjunto 1 grado.

- Realizar nuevamente la operación anterior, y así sucesivamente hasta que el conjunto gire 180°.

Es decir, se realizan 180 estudios de 160 muestras cada uno. Se tendrán pues 28800 atenuaciones para un total de 6400 celdas (resultado de dividir la imagen en una matriz de 80 x 80). Para hallar la atenuación producida por cada celda hay que resolver 6400 incógnitas con 28800 ecuaciones, que según el principio de Hounsfield se puede resolver, pues el número de ecuaciones es mayor que el número de incógnitas.

En estos tomógrafos se utilizó un haz estrecho de rayos X (único) y uno o dos detectores diametralmente opuestos. Este conjunto se movía solidariamente alrededor del paciente con la siguiente secuencia: un primer tiempo de traslación de 25 y 50 cm y un segundo de
rotación de 1°, esta secuencia se repetía 180 veces hasta completar 180° alrededor del paciente.

Como se colige, este método de barrido es dispensioso: requiere entre 4.5 y 5.5 minutos para completar las 180 secuencias. Este tiempo limita la utilidad prácticamente solo al examen de cráneo-cerebro ya que es la única estructura orgánica que puede mantenerse inmóvil tanto tiempo.

Segunda Generación (Traslación/Rotación)

Este sistema es similar al anterior en cuanto a los movimientos que realiza el conjunto, pero este modelo utiliza un haz de rayos X en forma de abanico con un ángulo de apertura de 5° aproximadamente y un conjunto de detectores cuyo número oscila entre 10 y 30. De esta manera, se logra reducir el tiempo de exploración a aproximadamente dos minutos.

Esta generación utiliza una serie de haces estrechos divergiendo en un pequeño ángulo uno y otro e incidiendo en uno o más estratos de detectores (12 detectores por estrato) espaciados regularmente en 1°.

El conjunto tubo de Rx-detectores se mueve solidariamente en una secuencia de traslación-rotación.

Las rotaciones son más amplias (12°) hasta completar los 180° alrededor del paciente, lo cual implica menor cantidad de secuencias. Durante cada traslación se toman 160 muestras de cada detector.

El tiempo de evolución y de adquisición de datos disminuye ahora hasta 20 segundos con un máximo de 3.5 minutos para lograr alta resolución.
Tercera Generación (Rotación/Rotación)

Esta es la generación de tomógrafos computados más utilizada en la actualidad. Aquí se utiliza un haz de rayos X ancho (entre 25º y 35º) que cubre toda el área de exploración y un arco de detectores que posee un gran número de elementos. Ambos elementos, tubo y banco de detectores realizan un movimiento de rotación de 360º. Este sistema ofrece dos ventajas importantes: 1) El tiempo de exploración se reduce notablemente al punto de llegar a sólo 2 o 3 segundos. 2) Se aprovecha en forma eficiente la radiación emanada del tubo.

Esta generación utiliza una técnica de rotación continua (360º) del conjunto de tubo de rayos X-sistema detector, siendo el haz de Rayos X emitido en forma de abanico y abarcando todo el sistema detector. Los Rayos x se emiten en pulsos lo cual permite:

a) operar con alta densidad fotónicas para obtener alta resolución.
b) disminuir los artefactos por movimientos.
c) disminuir la dosis al paciente.

La recolección de datos se obtiene en 5 a 10 segundos, lo cual permite obtener imágenes definidas aun del tórax y pulmones.

C cuarta Generación (Rotación/Estacionario)

En la cuarta generación de tomógrafos se distinguen dos modelos, el de Rotación / Estacionario propiamente dicho y el de Rotación / Nutación. El primero utiliza un anillo fijo de detectores dentro del cual gira el tubo de rayos X. Las ventajas que presenta este sistema son las siguientes:

- El tubo puede girar a velocidades altas, disminuyendo el tiempo de exploración.
- El sistema es poco sensible a las variaciones o diferencias de comportamiento entre los detectores.
Como desventaja se puede citar el hecho de que, constructivamente, el gantry resulta muy grande y costoso, debido al gran número de detectores. El segundo modelo mencionado (Rotación / Nutación) también utiliza un anillo de detectores, pero en este caso el tubo de rayos X gira por fuera del anillo y los detectores realizan un movimiento de nutación (oscilación de pequeña amplitud del eje de rotación) para permitir el paso del haz de rayos X.

Esta generación, a la cual pertenecen la mayoría de los tomógrafos hoy en uso, utilizan un sistema detector fijo en forma de anillo, rodeando al paciente, mientras un emisor de Rayos X se mueve en un ángulo de 360° en un tiempo de 2 y 10 segundos. La fuente de Rayos X emite en forma continua un haz de entre 60° y 120° de apertura, muy precisamente colimado hacia cada detector.

Quinta Generación

Son tomógrafos de uso muy específico, sofisticados y costosos, cuyos cortos periodos de exposición (menor a 2 segundos) permiten representar estructuras móviles en imágenes tridimensionales, tanto en forma estática como dinámica.

El tubo de Rayos X se halla bajo el control de la computadora, la cual ordena los disparos de Rayos X de 0.34 segundos de duración en sincronía con una posición rotacional ordenada por la misma computadora. La fuente de Rayos X permite no solo efectuar el tomograma transversal del tórax sino monitorear el tórax en un plano frontal como si fuera una radioscopia común; sobre la pantalla de un monitor radioscópico se marca mediante una línea la altura del tomograma. De la cámara de TV o computadora se extraen los datos de absorción correspondientes a la sección torácica examinada y se dirigen a la computadora para construir la imagen. Se toman 240 mediciones de absorción para cada posición rotatoria (aproximadamente 300 posiciones). La imagen no se obtiene en tiempo real sino diferido en unos 30 segundos, debido al ingente proceso computacional.
El paciente en este sistema, permanece estático mientras una estructura en anillo que contiene 28 tubos de Rayos X gira a alta velocidad (360 ° en 1.2 segundos) en torno del paciente.

Cada tubo está acoplado en forma diametralmente opuesta a una cadena de video compuesta de: pantalla fluorescente, intensificador de imágenes y cámara para T.V. o monitor.

<table>
<thead>
<tr>
<th>GENERACIÓN</th>
<th>FORMA DEL HAZ</th>
<th>RASTREO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera</td>
<td>Un solo haz</td>
<td>Traslación –Rotación.</td>
</tr>
<tr>
<td>Segunda</td>
<td>Varios Haces</td>
<td>Traslación – Rotación</td>
</tr>
<tr>
<td>Tercera</td>
<td>Abanico</td>
<td>Rotación simultanea de tubo y detectores</td>
</tr>
<tr>
<td>Cuarta</td>
<td>Abanico</td>
<td>Rotación de tubo y los detectores fijos</td>
</tr>
<tr>
<td>Quinta</td>
<td>Múltiples Abanicos</td>
<td>Sin partes mecánicas</td>
</tr>
</tbody>
</table>

Como resumen tenemos este cuadro comparativo de las geometrías de las TAC.

Tabla 1. Cuadro comparativo.
Aplicaciones De La Tomografía Axial Computarizada

Planos del cuerpo

Se tienen los tres planos fundamentales en los que se divide el cuerpo de acuerdo a la anatomía, los cuales son:

- Plano sagital.
- Plano coronal.
- Plano axial o transversal.

El plano sagital pasa verticalmente por el cuerpo, separándolo en parte izquierda y derecha.

El plano coronal también pasa verticalmente por todo el cuerpo separándolo en parte delantera y trasera, o anterior y posterior.

El plano transverso o axial divide al cuerpo en dos partes, la superior y la inferior, y se sitúa perpendicular a los planos sagital y coronal. Este plano es el de mayor interés ya que las imágenes que se obtienen en TAC son axiales.

Figura. 12 Planos del cuerpo
Referencias anatómicas.

La mayoría de los estudios de TAC se realizan sobre la cabeza y tronco del cuerpo, se requiere del conocimiento de las referencias anatómicas para el estudio, dichas referencias son marcas externas que se relacionan con los órganos internos contenidos fundamentalmente en las cavidades craneana, torácica, abdominal y pélvica.

Las referencias anatómicas son las siguientes:

- La muesca esternal.
- Xifoides esternal.
- Ombligo.
- Cresta iliaca.
- Costillas flotantes.

Con el propósito de ayudar a realizar los estudios, los equipos de TAC cuentan con protocolos ubican automáticamente al paciente con relación a las referencias: con solo pulsar una tecla se desplaza el tablero con el paciente para ser ubicado en la posición, la cual permite hacer varias exploraciones (scan) o el estudio de varios estratos dentro de una región definida por las referencias.

Estudios comunes con la TAC

- Estudio de cabeza: infarto cerebral, tumores cerebrales, trauma craneal, atrofia cerebral, cambios inflamatorios, etc.
- Estudio de cuello: tumores, linfoma y abscesos.
- Estudios del tórax: tumores, metástasis, linfoma, ganglios linfáticos, malformaciones vasculares y cambios intersticiales en los pulmones
- Estudios abdominales: anormalidades en el hígado, el páncreas y los riñones
• Estudios de pelvis: anormalidades de la próstata, vejiga urinaria, recto, masas y traumas.
• Estudios de columna vertebral: cambios degenerativos, traumas y tumores
• Estudios de extremidades superiores e inferiores: traumas, problemas de la articulación e indicaciones ortopédicas
• Estudios vasculares: malformaciones vasculares, estenosis, ateromas, aneurismas, etc.

Ventajas E Inconvenientes

Cualquier método, por bueno que sea, presenta algunos inconvenientes. En este caso, el mayor de ellos es que cuantos más cortes se realicen, mayor cantidad de radiación recibe el sujeto. Hay que tener en cuenta que, por ejemplo, para un estudio de la cabeza hace falta un mínimo de 12-14 cortes tomográficos. En estudios de abdomen o tórax el número es mayor.

Presenta asimismo el inconveniente de ser una exploración bastante larga, si exceptuamos la tomografía realizada por los equipos de tercera y cuarta generación.

Frente a esto presenta una serie de ventajas, como es el que no se escapa prácticamente ningún detalle superior a 1-2 mm, lo cual es fundamental para la localización de procesos expansivos de forma precoz. Permite asimismo determinar tamaños y sobre todo, lo que es más importante, dependiendo de su densidad nos da una aproximación al tipo de tejido que se está estudiando. Para aumentar la definición de por sí alta, se pueden utilizar de la misma forma que en radiología, distintos medios de contraste, con lo que se obtendrá una imagen mucho más nítida.
DATOS Y CARACTERÍSTICAS DEL EQUIPO DE TOMOGRAFÍA Y DE LA INSTALACIÓN

Descripción Del Área De Rayos X

El área de rayos X se encuentra localizada en la planta baja de la torre de hospitalización, teniendo diferentes áreas colindantes a esta, como se muestra en la figura.

Figura. 13 diagrama de la planta baja del hospital.
Por otra parte el área de Rayos X, está constituida por diferentes técnicas de rayos X y de imagen de las cuales podemos destacar: Rayos X convencional, Fluoroscopia, Angiografía, Ultrasonido, Mamografía, Tomografía Computarizada, así como Resonancia Magnética Nuclear. En la siguiente figura se muestra como está conformada el área.

Figura. 14 Diagrama del área de radiología

Los hospitales diseñados antes del año 1950 solían tener el departamento de radiología en la planta baja. Las razones eran muchas, pero una de las más citadas se refería al peso de la instalación, debido sobre todo a la necesidad de blindaje protector para las radiaciones. Por lo general, los departamentos de rayos X o de imagenología siguen ubicándose en las plantas bajas, pero no por la misma razón, puesto que la tecnología de los equipos ha ido cambiando, lo cual hace que los dispositivos vayan reduciendo su dimensión, así como su peso. Hoy se acepta que el departamento de rayos X, deben estar cerca de las consultas de pacientes ambulatorios, del área de urgencias y del departamento de Cirugía. Para conveniencia de los pacientes, también es útil localizar el departamento de rayos X cerca de los laboratorios.
Datos Técnicos Del Equipo De Tomografía Axial Computarizada

Los datos del equipo que se instalaron en la sala en la que se realizará el análisis son:

Nombre del equipo: Tomógrafo
Modelo: LightSpeed VCT XT
Marca: General Electric

LightSpeed VCT XT se trata de un escáner integral con una avanzada e innovadora adquisición de imágenes cardiacas y neuronales.

El sistema de escáner CT LightSpeed 7.X puede mejorar la productividad del cliente y abrir la puerta a nuevas aplicaciones y a velocidades de exploración sin igual, gracias al revolucionario sistema de adquisición de datos de 64 filas (sistema de 64 cortes) o de 32 filas (sistema de 32 cortes).

Figura. 15 Tomógrafo LightSpeed VCT XT.
PRINCIPALES ESPECIFICACIONES TÉCNICAS DEL EQUIPO

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>VALOR</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectores</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Mesa</td>
<td>227</td>
<td>Kg</td>
</tr>
<tr>
<td>inclinación del gantry (estativo)</td>
<td>+30/-30</td>
<td>Grados</td>
</tr>
<tr>
<td>diámetro de apertura del Gantry</td>
<td>700</td>
<td>mm</td>
</tr>
<tr>
<td>distancia del isocentro al tubo</td>
<td>541</td>
<td>mm</td>
</tr>
<tr>
<td>distancia del foco al detector</td>
<td>949</td>
<td>mm</td>
</tr>
<tr>
<td>velocidades de rotación (360°)</td>
<td>0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5, 0.6, 0.7, 0.8, 0.9, 1 y 2</td>
<td>segundos</td>
</tr>
<tr>
<td>voltaje de línea</td>
<td>380 y 480</td>
<td>volts</td>
</tr>
<tr>
<td>frecuencia trifásica</td>
<td>50/60</td>
<td>Hertz</td>
</tr>
<tr>
<td>demanda máxima de energía trifásica</td>
<td>150</td>
<td>KVA</td>
</tr>
<tr>
<td>factor de potencia</td>
<td>85</td>
<td>%</td>
</tr>
<tr>
<td>energía máxima de salida</td>
<td>100.2</td>
<td>KW</td>
</tr>
<tr>
<td>opciones de KV</td>
<td>80, 100, 120, 140</td>
<td>KV</td>
</tr>
</tbody>
</table>

Tabla 2. Datos técnicos del equipo de CT

![Imagen del equipo de CT](image_url)

Figura. 16 Equipo de CT que fue instalado el INN, en el área de Radiología.
Clasificación de acuerdo al riesgo de un CT.

Un equipo de Tomografía, al estar en contacto con el paciente tiene una clasificación de acuerdo al riesgo que este pueda presentar al personal que son los pacientes en primera instancia y los operadores.

<table>
<thead>
<tr>
<th>Instancia</th>
<th>Tipo de riesgo.</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>COFEPRIS¹</td>
<td>Clase II</td>
<td>Para aquellos insumos conocidos en la práctica médica y que pueden tener variaciones en el material con el que estén elaborados o en su concentración y generalmente, se introducen al organismo permaneciendo menos de 30 días</td>
</tr>
<tr>
<td>GHTF²</td>
<td>C: riesgo alto u moderado</td>
<td>Porque son previstos para suministrar energía en forma de radiación ionizante.</td>
</tr>
<tr>
<td>ECRI³</td>
<td>Categoría 4 y 5</td>
<td>Dado que el mal funcionamiento del sistema de tomografía puede causar lesiones o la muerte del paciente, así como lesiones al operador.</td>
</tr>
</tbody>
</table>

¹ Comisión Federal para la Protección de Riesgos Sanitarios, Secretaría de Salud.
² Global Harmonization Task Force
³ Emergency Care Research Institute

Figura. 17 Clasificación de acuerdo al riesgo de un CT
Descripción De La Instalación

El cuarto donde se instalo el equipo tiene las siguientes dimensiones: 5935 mm de largo y 4520 mm de ancho, lo que no se deja establecido es la dimensión del cuarto de control, así como la longitud de las puertas de entrada a la sala, todo esto lo podemos observar en la figura 18.

![Figura 18. Cuarto del equipo de CT.](image)

En la figura 19 se presenta de forma más detallada los accesorios que se encuentran dentro de la instalación y que corresponden al equipo de Tomografía y en la tabla 3 se describen a que corresponden las siglas de la figura.
Figura. 19. Diagrama con simbología.

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Descripción.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Switch general del equipo. En donde se encuentra el suministro interno de energía eléctrica.</td>
</tr>
<tr>
<td>SEO</td>
<td>Interruptor de apagado de emergencia del equipo. Este interruptor ayuda a apagar el equipo de forma inmediata cuando este se encuentra trabajando.</td>
</tr>
<tr>
<td>OC</td>
<td>Consola de operación. Aquí se encuentran dos monitores, un teclado y el CPU del equipo, en donde el operador establece parámetros para la técnica, además de manipular el equipo.</td>
</tr>
<tr>
<td>PM</td>
<td>Distribución de poder. Aquí se encuentra el transformador, los fusibles y la electrónica que suministrara la energía eléctrica requerida por el equipo.</td>
</tr>
<tr>
<td>CTT</td>
<td>Equipo de Tomografía Computarizada (CT). Constituido por dos partes principales: Gantry o Estativo y la mesa.</td>
</tr>
<tr>
<td>WLC</td>
<td>Control de luz de advertencia.</td>
</tr>
<tr>
<td>WL</td>
<td>Luz de emergencia. Esta luz es un indicador de que el equipo se encuentra funcionando y por lo tanto ninguna persona debe de ingresar a la sala, pues se están generando radiaciones ionizantes.</td>
</tr>
</tbody>
</table>

Tabla 3. Significado de las iniciales.
Las letras A, B, C y D que están dentro de la figura, tienen sus respectivos diagrama, en las que se muestran con mayor visualización la vista frontal que se señala con la flecha, de lo cual podemos destacar.

<table>
<thead>
<tr>
<th>A</th>
<th>Vista frontal del switch general de la instalación, se presentan las dimensiones del mismo y muestra que la línea de distribución de energía vienen arriba del techo, como se muestra en la figura 20</th>
</tr>
</thead>
</table>

Tabla 4. Significado de A.

Figura. 20 Switch de seguridad.

<table>
<thead>
<tr>
<th>B</th>
<th>Vista frontal que abarca una parte del cuarto de control, en donde se aprecia a que altura del piso se encuentra el interruptor de apagado de emergencia. Ver figura 21</th>
</tr>
</thead>
</table>

Tabla 5. Significado de B
Figura. 21. Cuarto de control.

C Vista frontal del cuarto de control, en donde se aprecia la consola de control así como la localización del ducto de la trinchera, con su dimensión específica. Ver figura 22.

Tabla 6. Significado de C.

Figura. 22. Vista frontal del cuarto de control.

D Vista frontal de la entrada a la sala, aquí se muestra la localización de las lámparas de luz de advertencia. Ver figura 23.

Tabla 7. Significado de D.
Figura 23. Vista frontal del cuarto de control.

En la figura 24 se muestra las dimensiones para establecer el centro focal del equipo, partiendo de las paredes que se encuentran adyacentes al gantry del equipo.

Figura 24. Centro focal del equipo.

Los perfiles de isoexposición, representan el grado de exposición en diferentes posiciones, con la misma cantidad de radiación en la sala, en la figuras siguientes se muestran los perfiles de isoexposición en los planos vertical y horizontal para el funcionamiento normal del equipo de TC a lo largo del fantoma, en donde se arrojan diferentes valores de absorción dado en unidades Gray (Gy), en cuatro puntos distintos, ver figura 25.
Además se muestran perfiles de isoexposición para el funcionamiento normal del equipo de TC en la cabeza del fantoma, en los cuales se arrojaron diferentes valores a los obtenidos anteriormente, ver figura 26.
En el plano D1, se muestra detalladamente las dimensiones de:

- Unidad de distribución de poder (vista superior, frontal y lateral).
- Consola del operador (vista superior, frontal y lateral).
- Contactor de línea principal (vista superior, frontal y lateral).
- Embarque del gantry para TC (vista superior).
- Gantry y mesa (vista lateral).
- Gantry de TC (vista frontal y lateral).
- Mesa de TC (vista lateral y superior).

En el plano S2, se muestra, las dimensiones que conforman el anclaje o soporte para el Gantry y la mesa, estos se encuentran localizados en el piso, el cual debe de ser sólido.

La localización del equipo debe estar lo menos alejado posible de fuentes de vibración, cabe recalcarn también que aquí se especifica que el equipo de CT o TAC puede ser sensible a vibraciones en un rango de frecuencias de 0.5-20 Hz, dependiendo de la amplitud de la vibración. Además se muestra las dimensiones del anclaje del piso artificial con el piso real.

En el plano E2, se muestran las especificaciones eléctricas del equipo de tomografía, especificando el voltaje nominal de 380-480 volts, con tres fases y una frecuencia de trabajo de 60 Hz.

En la tabla A, se muestra la máxima variación de voltaje con los rangos de voltaje nominales que son 380, 400, 420, 440, 460 y 480 volts, así como la máxima corriente que demanda el equipo con respecto a cada voltaje nominal, el valor estándar de protección contra sobrecorriente, (ya sea fusible o interruptor termomagnético) igual para cada voltaje nominal.

También se establece la demanda de potencia del equipo, la cual es de 25 KVA, con un máximo de demanda de 150 KVA con un factor de potencia de 0.85, además de un transformador de distribución para la instalación es de 225 KVA.
En el diagrama de interconexión se muestra como están enlazados cada uno de los componentes de la instalación: equipo, consola de operación, distribución de energía, luz de advertencia, botón de apagado de emergencia, así como el largo del cable (en unidades de pulgadas o metros).

En el plano E3, se muestran los detalles eléctricos de:

a) Luz de advertencia: sin medidas.
b) Botón de apagado de emergencia:(vista superior, frontal y lateral) sin medidas.
c) Cara protectora: sin medidas
d) Ductos del piso: sin medidas, lugar en donde los cables se localizan.
e) Conexión en sitio: se muestra que hay tres líneas: una para internet privado y dos para teléfono, además de que estos vienen el techo 8sin medidas).
f) Caja de conexión de cable3 para red de internet: sin medidas.
g) Conexión de red local del hospital: solo tiene una línea y debe estar entre el sistema y la estación de trabajo. Esta también desciende del techo.
h) Panel principal de desconexión: se muestran en vista superior, lateral derecha, lateral izquierda, trasera; del accesorio.
i) Tierra física: muestra el diagrama a bloques del secundario del secundario de la fuente de alimentación del equipo del tablero de potencia en la subestación, tablero principal del equipo de imagen, equipo de imagen, mostrando las fases de cada uno de los bloques, los cuales están unidos entre sí; al igual que los neutros también están interconectados entre sí, así como las tierras físicas y tierras electrónicas, teniendo dos tierras en el sistema.
Estudio y Análisis de la instalación.

Blindajes

En la memoria se detalla el camino para el cálculo de los blindajes, que deben de llevar los muros de la sala, para evitar daños por radiación al Personal Ocupacionalmente Expuesto (POE) y público en general, tomando como criterio la NOM-229-SSA1-2002 Salud Ambiental. *Requisitos técnicos para las instalaciones, responsabilidades sanitarias, especificaciones técnicas para los equipos y protección radiológica en establecimientos de diagnóstico médico con rayos X*, en la cual se indican los siguientes parámetros:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Límite (dosis semanal)</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal controlado</td>
<td>0.04</td>
<td>cGy (0.4 mSv)</td>
</tr>
<tr>
<td>Personal no controlado y público en general</td>
<td>0.002</td>
<td>cGy (0.02 mSv/semana)</td>
</tr>
</tbody>
</table>

Tabla 8. Límites de dosis semanal en POE, paciente y público en general.

Las ecuaciones que se utilizan para el cálculo de los siguientes parámetros se establecieron en la NOM-156-SSA1, así como en la bibliografía las principales son:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Ecuación</th>
<th>Donde:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga de trabajo</td>
<td>[W = \frac{N_r \times I \times (mA/min/seg)}{60}]</td>
<td>[N_r = \text{número de radiografías sem./seg.}] [I = \text{corriente (mA)}] [t = \text{tiempo (seg.)}]</td>
</tr>
<tr>
<td>Radiación directa</td>
<td>[B = \frac{H_m \times d_{prim}}{W \times U \times T}]</td>
<td>[H_m = \text{dosis límite (cGy/seg)}] [d_{prim} = \text{distancia desde la fuente al punto de la barrera primaria}] [U = \text{factor de uso}] [T = \text{factor de ocupación}]</td>
</tr>
<tr>
<td>Radiación dispersa</td>
<td>[B_f = \frac{400 \times H_m \times d_{sec} \times d_{dis}}{a \times W \times T \times A}]</td>
<td>[d_{sec} = \text{distancia desde la fuente, al punto de interés}] [d_{dis} = \text{distancia de la fuente al dispersor}] [a = \text{razón de la exposición incidente a dispersa}] [A = \text{área del campo de dispersión}]</td>
</tr>
</tbody>
</table>
Análisis de la Instalación de un Equipo de Tomografía Axial Computarizada

<table>
<thead>
<tr>
<th>Radiación de fuga</th>
<th>(Bf = \frac{Hm \times d^2 \times \text{sec} \times 600 \times I}{W \times T})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>radiación máximo. (dp)=distancia del foco al paciente. (a)=factor de dispersión (s)=superficie del haz sobre el paciente</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Espesor de los blindajes para radiación de fuga</th>
<th>(s = CDR \times \log \left(\frac{B}{B'} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDR=0.88 mm</td>
</tr>
</tbody>
</table>

Tabla 9. Ecuaciones para cálculo de blindajes.

Los parámetros de cálculo son los que especifica la norma (dosis límite), información del funcionamiento del equipo, así como datos proporcionados por el usuario, los cuales se describen a continuación:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje del tubo</td>
<td>120</td>
<td>KV (Kilo-Volts)</td>
</tr>
<tr>
<td>Corriente del tubo</td>
<td>100</td>
<td>mA (mili-amperes)</td>
</tr>
<tr>
<td>Dosis límite</td>
<td>0.04 (personal controlado)</td>
<td>CGy</td>
</tr>
<tr>
<td></td>
<td>0.002 (para público)</td>
<td></td>
</tr>
<tr>
<td>Factor de uso (U)</td>
<td>0.00086</td>
<td>s/n</td>
</tr>
<tr>
<td>Carga de trabajo (W)</td>
<td>20000</td>
<td>mA min/sem</td>
</tr>
</tbody>
</table>

Tabla 10. Parámetros de cálculo.

Los factores que afectan el grosor de la barrera para el cálculo de blindajes, se consideran los siguientes:

- Distancia: el grosor de la barrera depende obviamente de la distancia entre la fuente de radiación y la barrera.
- Factor de tiempo de ocupación (T): se refiere al uso que se le destina a la zona que se quiere proteger.
- Carga de trabajo (W): el blindaje requerido en una sala de examen de rayos X depende del nivel de actividad del mismo. Cuanto mayor sea el número de exámenes, mayor será el grosor del blindaje requerido.
- Factor de uso (U): el factor de uso para una barrera secundaria siempre es de 1, debido a que la radiación dispersa y de fugas existe en el 100% del tiempo que el tubo de rayos X está conectado.

Para el cálculo de las barreras, utilizamos la información y ecuaciones que se describieron con anterioridad.

<table>
<thead>
<tr>
<th>Barrera</th>
<th>Parámetros a utilizar</th>
<th>Radiación directa</th>
<th>Espesor plomo (Pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrera 1 (Se incluye puerta de control)</td>
<td>Colindancia=control d=4.40 m T=1 Hm=0.04 cGy/sem</td>
<td>B=0.045</td>
<td>S=0.53 mm</td>
</tr>
<tr>
<td>Barrera 2</td>
<td>Colindancia= interpretación d=4.4 m T=1 Hm=0.002 cGy/sem</td>
<td>B=0.00083</td>
<td>S=1.90 mm</td>
</tr>
<tr>
<td>Barrera 3</td>
<td>Colindancia=pasillo d=2.40 m T=1 Hm=0.002 cGy/sem</td>
<td>B=0.00068</td>
<td>S=1.98 mm</td>
</tr>
<tr>
<td>Barrera 4</td>
<td>Colindancia=cubo de luz d=2.75 m</td>
<td>B=0.00089</td>
<td>S=1.88 mm</td>
</tr>
<tr>
<td>Techo</td>
<td>Colindancia=recuperación d=3.0 m T=1 Hm=0.002cGy/sem</td>
<td>B=0.0010</td>
<td>S=1.81 mm (No es necesario el cálculo).</td>
</tr>
</tbody>
</table>

Tabla 11. Resultado del cálculo de blindajes hechos por la empresa.
Considerando los datos establecidos anteriormente, se verifica el cálculo de blindajes, por lo que se considera el CDR de 0.88 mm de Plomo a 100KV, como lo establece la memoria.

<table>
<thead>
<tr>
<th>Barrera</th>
<th>Parámetros a utilizar</th>
<th>Radiación directa</th>
<th>Espesor plomo (Pb)</th>
<th>del</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrera 1 (Se incluye puerta de control)</td>
<td>Colindancia=control d=4.40 m T=1 Hm=0.04 cGy/sem</td>
<td>B=0.045</td>
<td>S=1.18 mm</td>
<td></td>
</tr>
<tr>
<td>Barrera 2</td>
<td>Colindancia= interpretación d=4.4 m T=1 Hm=0.002 cGy/sem</td>
<td>B=0.00083</td>
<td>S=2.71 mm</td>
<td></td>
</tr>
<tr>
<td>Barrera 3</td>
<td>Colindancia=pasillo d= 2.40 m T=1 Hm=0.002 cGy/sem</td>
<td>B=0.00068</td>
<td>S=2.78 mm</td>
<td></td>
</tr>
<tr>
<td>Barrera 4</td>
<td>Colindancia=cubo de luz d=2.75 m</td>
<td>B=0.00089</td>
<td>S=2.68 mm</td>
<td></td>
</tr>
<tr>
<td>Techo</td>
<td>Colindancia=recuperación d=3.0 m T=1 Hm=0.002 cGy/sem</td>
<td>B=0.0010</td>
<td>S=2.64 mm</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 12 Resultados de la comprobación cálculo de Blindajes por el método analítico

<table>
<thead>
<tr>
<th>Valores de los espesores de Plomo en las barreras</th>
<th>Barrera</th>
<th>Método analítico (Empresa)</th>
<th>Comprobación del Método analítico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.53 mm</td>
<td>1.18 mm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.90 mm</td>
<td>2.71 mm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.98 mm</td>
<td>2.78 mm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.88 mm</td>
<td>2.69 mm</td>
</tr>
</tbody>
</table>

Tabla 13 Comparación de los espesores de Blindaje de Pb.
La tabla anterior nos muestra que hay una diferencia entre los cálculos que hizo la empresa y la comprobación que hice de los mismos, considerando los parámetros que se estipularon anteriormente; por lo que podemos decir que los cálculos no fueron los correctos debido a que no hubo una repetitividad, ya que no se llegaron a los mismos resultados, debido a que la NOM-229-SSA1-2002, omite parámetros para realizar los cálculos, lo cual la norma NOM-156-SSA1-1996, si las establece, por ejemplo:

- Ecuación de factor de radiación primaria.
- Método para el cálculo de blindajes en radiación primaria, utilizando el método gráfico.
- Entre otras.
Para fines de estudio de la instalación para el equipo de tomografía, y como ya se había mencionado en los objetivos nos apegaremos con las Normas Oficiales Mexicanas, en este caso por la NOM-229-SSA1-2002, la cual fusionó las NOM-146,156,157 y 158, como se muestran en el siguiente cuadro:

<table>
<thead>
<tr>
<th>Normas Oficial Mexicana</th>
<th>Referencia a:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM-229-SSA1-2002</td>
<td>Salud ambiental. Requisitos técnicos para las instalaciones, responsabilidades sanitarias, especificaciones técnicas para los equipos y protección radiológica en establecimientos de diagnostico médico con rayos X.</td>
</tr>
<tr>
<td>NOM-146-SSA1-1996</td>
<td>Salud ambiental. Responsabilidades sanitarias en establecimientos de diagnostico médico con rayos X.</td>
</tr>
<tr>
<td>NOM-156-SSA1-1996</td>
<td>Salud ambiental. Requisitos técnicos para las instalaciones en establecimientos de diagnostico médico con rayos X.</td>
</tr>
<tr>
<td>NOM-157-SSA1-1996</td>
<td>Salud ambiental. Especificaciones técnicas para equipos de diagnostico médico con rayos X.</td>
</tr>
<tr>
<td>NOM-158-SSA1-1996</td>
<td>Salud ambiental. Especificaciones técnicas para equipos de diagnostico médico con rayos X.</td>
</tr>
<tr>
<td>NOM-012-STPS-1999</td>
<td>Condiciones de seguridad e higiene en los centros de trabajo donde se produzcan, usen, manejen, almacenen o transporten fuentes de radiaciones ionizantes.</td>
</tr>
<tr>
<td>NOM-026-STPS-1998</td>
<td>Colores y señales de seguridad e higiene e identificación de riesgos por fluidos conducidos en tuberías.</td>
</tr>
</tbody>
</table>

Tabla 14. Normas de referencia en el trabajo
Correlación de la Instalación y Equipo con la Norma Oficial Mexicana NOM-229-SSA1-2002

NOM-229-SSA1-2002: Salud ambiental. Requisitos técnicos para las instalaciones, responsabilidades sanitarias, especificaciones técnicas para los equipos y protección radiológica en establecimientos de diagnostico médico con rayos X.

Blindajes para la instalación.

<table>
<thead>
<tr>
<th>NOM-229-SSA1-2002</th>
<th>CUMPLIMIENTO</th>
<th>OBSERVACIONES</th>
<th>SOLUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5.6.1 Los blindajes para la construcción, adaptación o remodelación deben determinarse con base en una memoria analítica, elaborada de acuerdo con el punto 5.7 de esta Norma, misma que debe ser realizada por un asesor especializado en seguridad radiológica.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.3 En instalaciones fijas, es indispensable que la protección del operador durante la exposición consista en una mampara fija si la consola de control está dentro de la sala de rayos X.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.4 Los blindajes para una instalación deben construirse de manera que exista continuidad entre los diferentes elementos constructivos donde sean instalados: muros, marcos, hojas de puertas, ventanillas de control, pasapalacas, entre otros, de tal manera que dicho blindaje no se vea interrumpido en ningún punto de la superficie a proteger.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6.6 Los tableros de control, cajas de instalaciones u otros materiales, que interrumpen la continuidad de la protección, deben cubrirse por su interior y si esto no es posible por el lado opuesto del muro, con el blindaje suficiente.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Los tableros de control están protegidos por la mampara blindada.</th>
</tr>
</thead>
</table>

5.6.8 Los blindajes deben ser homogéneos y cumplir con la composición y densidad exigidas.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

5.6.9 Toda instalación debe contar con una verificación de blindaje realizada y documentada por un asesor especializado en seguridad radiológica, que garantice que la dosis que reciben público y POE se encuentre por debajo de los límites de dosis establecidos en esta norma. Dicha verificación se hará de acuerdo con los criterios establecidos en el punto 5.8.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

5.7.1 La memoria analítica de cálculo de blindaje debe constar de la siguiente información:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

5.7.1.1 Indicación del uso de las áreas adyacentes.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

5.7.1.2 Plano o diagrama de la sala de rayos X, que incluyan la ubicación de los equipos, consola de control, mamparas, procesadores de imagen, pasapla y colindancias.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

5.7.1.3 Características de los equipos indicando.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

5.7.1.3.1 Marca;
<table>
<thead>
<tr>
<th>5.7.1.3.2 Modelo;</th>
<th>X</th>
</tr>
</thead>
</table>
| 5.7.1.3.3 Tipo de estudios a realizar; | X | Solicitar a la empresa que incluya los tipos de estudios que realiza el equipo e incluirlo en la memoria analítica.
| 5.7.1.3.4 Tensión máxima que permite el tubo; | X | Se está considerando en el Memoria un valor de 120KV, sin embargo en la hoja de datos específicos del equipo, la tensión máxima que maneja el equipo es 140Kv. Solicitar a la empresa que realice el cálculo a 140KV.
| 5.7.1.3.5 Corriente máxima de operación continua del tubo de rayos X, permitida para la tensión máxima; | X | El equipo trabaja a una corriente máxima de 100mA.
| 5.7.1.3.6 Número de tubos. | X | No se especifica el número de tubos, del equipo, sin embargo por especificaciones del equipo, este trabaja con un solo tubo. Solicitar a la empresa que ponga el numero de tubos y que especifique la consideración de este para los cálculos de blindajes.
| 5.7.1.4 Carga de trabajo semanal estimada para cada tubo. | X | La W es de 20000 mA/min/sem
| 5.7.1.5 Identificación de las diferentes zonas (controlada y supervisada). | X | Se especifica con texto que la zona controlada es el cuarto de control y el resto es tomada como área no controlada.
| 5.7.1.6 Indicación de los factores utilizados en el cálculo de los blindajes (carga de trabajo, factor de uso, factor de ocupación). | X | Se específica: T=1, U=1.41x10³.
| 5.7.2 Los puntos de interés para los cálculos de blindaje deben tomarse a 30 cm más allá de la barrera de protección. | X | Solicitar que se describa los puntos de interés para el cálculo de blindajes, así como la distancia más allá de la barrera de protección.
| 5.7.3 Los espesores de las barreras de blindaje para proteger las áreas circundantes a la zona controlada, incluyendo las puertas de acceso a | X | Se especifica la dosis límite para POE, así como para público.

59
la misma y las ventanas al exterior, deben estar calculados para la protección del público.

<table>
<thead>
<tr>
<th>5.7.4 Los espesores de las barreras de blindaje del área de ubicación de la consola de control, área de interpretación, pasapalas, incluyendo mamparas, puertas, ventanas o mirillas, deben estar calculados de acuerdo al numeral 5.7.8.</th>
<th>X</th>
<th>No se especifica los espesores en este caso para la mampara y la ventana del cuarto de control. Solicitar que se elaboren los cálculos pertinentes para obtener los valores de espesor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.7 El blindaje puede elegirse de diversos materiales, como lámina de plomo, concreto normal, concreto baritado, tabique u otros, siempre y cuando se garantice debidamente documentado, que el espesor equivalente de plomo del material utilizado corresponde al indicado en los cálculos.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.8.1 La verificación del blindaje debe hacerse con un detector de radiaciones tipo cámara de ionización.</td>
<td>X</td>
<td>No se especifica ningún método de verificación de blindaje en la memoria analítica. Solicitar un método de verificación de blindajes y mostrar los resultados.</td>
</tr>
</tbody>
</table>

Total de puntos: 22 puntos

Tabla 15 Estudio de los blindajes con la NOM-229-SSa1-2002
Instalación.

<table>
<thead>
<tr>
<th>NOM-229-SSA1-2002</th>
<th>CUMPLIMIENTO</th>
<th>OBSERVACIONES</th>
<th>SOLUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.7 La sala de rayos X debe estar diseñada de tal forma que exista comunicación directa o electrónica, desde la consola de control con el paciente.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.8 Se requiere que en el exterior de las puertas principales de acceso a las salas de rayos X exista un indicador de luz roja que indique que el generador está encendido y por consiguiente puede haber exposición. Dicho dispositivo debe colocarse en lugar y tamaño visible, junto a un letrero con la leyenda: “CUANDO LA LUZ ESTE ENCENDIDA SOLO PUEDE INGRESAR PERSONAL AUTORIZADO”.</td>
<td>X</td>
<td>Las puertas principales a las sala tiene un indicador, como se describió en la sección de “descripción de la instalación” (Fig. 19 y Tabla 3)</td>
<td></td>
</tr>
<tr>
<td>5.2.9 Se requiere que en el exterior de las puertas de las salas de rayos X exista un letrero con el símbolo internacional de radiación ionizante de acuerdo con la NOM-026-STPS-1998 con la leyenda siguiente: “RADIACIONES - ZONA CONTROLADA”.</td>
<td>X</td>
<td>Cuenta con el letrero y símbolo de Radiación ionizante, en una de las puertas de acceso a la sala.</td>
<td></td>
</tr>
<tr>
<td>5.2.10 En el interior de la sala de rayos X, debe colocarse en lugar y tamaño visible para el paciente, un cartel con la siguiente leyenda: “EN ESTA SALA SOLAMENTE PUEDE PERMANECER UN PACIENTE A LA VEZ”</td>
<td>X</td>
<td>Colocar el letrero de forma visible en el interior de la sala, en la cual podría ser en la pared paralela a la entrada.</td>
<td></td>
</tr>
</tbody>
</table>

61
<table>
<thead>
<tr>
<th>Cláusula</th>
<th>Descripción</th>
<th>Requisito Cumplido</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3</td>
<td>Las dimensiones y accesos de una sala de rayos X estarán de acuerdo a la guía mecánica del fabricante del equipo de rayos X y suficientes para manejar con seguridad a pacientes en camilla o en silla de ruedas, siempre y cuando se consideren estos casos en el programa de servicios.</td>
<td>X</td>
<td>La forma en que esta acomodado el equipo no permite el espacio suficiente para que una camilla entre en su totalidad, sin embargo una silla de ruedas si puede accesar. Especificar en el plano si la sala tiene la capacidad para que una camilla tenga acceso a la sala.</td>
</tr>
<tr>
<td>5.2.4</td>
<td>El diseño se debe efectuar de forma que en la medida de lo posible no se dirija el haz directo de radiación hacia la consola de control, puertas de acceso o ventanas. Análogamente se recomienda no dirigirla hacia el cuarto oscuro, de lo contrario se debe contar con el blindaje adecuado.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.2.6</td>
<td>El paciente debe ser observable en todo momento desde la consola de control por contacto visual directo a través de una ventana blindada, o mediante otros sistemas, por ejemplo, con espejos o por medio de sistemas de circuito cerrado de televisión.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.2.11</td>
<td>Para POE y para pacientes la instalación debe contar con dispositivos de protección tales como mamparas, mandiles, collarines, protectores de tiroides, protectores de gónadas y todo aquel implemento que sea necesario de acuerdo con lo establecido en esta norma.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.2.12</td>
<td>En la sala de rayos X deben estar solamente los equipos y accesorios indispensables para los estudios programados.</td>
<td>X</td>
<td>En la salase encuentra como accesorios, un monitor de signos vitales, inyector de contraste y una toma mural de gases (Oxígeno y aire)</td>
</tr>
</tbody>
</table>
6.2.1.4 Planos o diagramas de la instalación incluyendo sus colindancias. | X | En los planos hechos por el fabricante se muestra la ubicación del equipo de CT así como del procesador de imagen.

6.2.1.5 Planos o diagramas de ubicación de los equipos de rayos X y procesadores de imagen. | X | Se presenta la memoria analítica para el cálculo de los blindajes.

6.2.1.6 En instalaciones nuevas deberán presentar memoria analítica de cálculo de los blindajes en las salas de rayos X avalada por un asesor especializado en seguridad radiológica de acuerdo con lo establecido en los numerales 5.6.1 y 5.7. | X | La instalación cuenta con una ventana de vidrio plomado para poder observar al paciente durante el estudio.

18.9 El paciente debe ser observable en todo momento desde la consola de control por contacto visual directo a través de una mirilla o mediante dos sistemas que sean redundantes entre sí, por ejemplo, con espejos y por medio de un sistema de circuito cerrado de televisión. Debe existir comunicación oral. | X |

Total de puntos: 13 puntos.

Tabla 16 Estudio de la instalación con la NOM-229-SSA1-2002
Resultados.

Se consideraron 35 puntos de la norma NOM-229-SSA1-2002 de la instalación y la memoria analítica de blindajes para la misma, de los cuales tenemos los siguientes resultados:

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Total de puntos</th>
<th>Total de puntos de cumplimiento</th>
<th>Total de puntos de incumplimiento</th>
<th>% de cumplimiento</th>
<th>% de incumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blindaje</td>
<td>22</td>
<td>15</td>
<td>7</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>Instalación</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>85%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Tabla 17 Resultados Parciales

Los puntos que no se cumplieron en lo referente a blindajes de la instalación son:

- Toda instalación debe contar con una verificación de blindaje realizada y documentada por un asesor especializado en seguridad radiológica, que garantice que la dosis que reciben público y POE se encuentre por debajo de los límites de dosis establecidos en esta norma.
- Indicación del uso de las áreas adyacentes.
- Tipo de estudios a realizar;
- Tensión máxima que permite el tubo;
- Número de tubos.
- Los puntos de interés para los cálculos de blindaje deben tomarse a 30 cm más allá de la barrera de protección.
• La verificación del blindaje debe hacerse con un detector de radiaciones tipo cámara de ionización.

• Los espesores de las barreras de blindaje del área de ubicación de la consola de control, área de interpretación, pasa placas, incluyendo mamparas, puertas, ventanas o mirillas, deben estar calculados.

Los puntos que no se cumplieron en lo referente a la instalación son:

• Cartel con la siguiente leyenda: “EN ESTA SALA SOLAMENTE PUEDE PERMANECER UN PACIENTE A LA VEZ”

• Las dimensiones y accesos de una sala de rayos X estarán de acuerdo a la guía mecánica del fabricante del equipo de rayos X y suficientes para manejar con seguridad a pacientes en camilla o en silla de ruedas, siempre y cuando se consideren estos casos en el programa de servicios.

Los resultados en totales del cumplimiento con la NOM-229-SSA1-2002 para el análisis de la instalación son:

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Total de puntos</th>
<th>Total de puntos de cumplimiento</th>
<th>Total de puntos de incumplimiento</th>
<th>% de cumplimiento</th>
<th>% de incumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blindaje e instalación</td>
<td>35</td>
<td>26</td>
<td>9</td>
<td>74%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Tabla 18 Resultados totales.
Cabe destacar en que la memoria analítica para los blindajes de la instalación tiene las siguientes observaciones como:

- No hicieron el cálculo para radiación primaria considerando la figura 1 de la NCRP 49, la cual está representada en la figura de los anexos (se realizó el cálculo para calcular la barrera primaria, utilizando esta gráfica).
- No se considero el kilovoltaje máximo del tubo que es 140 KV.
- No consideran los valores de CDR para otros valores de potencia del tubo (para el caso de 140 KV se debe tomar el valor superior que es de 150KV).
- No hay correcto uso de las unidades en las ecuaciones.
- No existe un cálculo de parámetros para la barrera primaria.
- No se realiza un cálculo para conocer el grosor de la ventana de vidrio plomado.
- No muestran los datos pertinentes para cálculos de: la carga de trabajo, factor de uso y de ocupación.

La correcta elaboración de una memoria analítica para los blindajes, es de suma importancia para la instalación pues de ello depende la protección del POE y público en general; pues dentro de la sala se instaló un equipo que utiliza dosis altas de radiación en los diferentes estudios que realiza, como se describió anteriormente en la sección de teoría.

Otro punto que cabe recalcar en la parte de la memoria analítica, en la sección se omitió el cálculo de blindajes para radiación directa, pudo ser que anteriormente había un equipo de tomografía de segunda generación equipo, que tenía características similares como amperaje y kilovoltaje del punto del equipo nuevo y que en su momento se hizo un cálculo de blindajes para la misma y pudo que la empresa haya considerado los mismos parámetros y omitir esta barrera, y solo realizar para el blindaje de fuga, sin embargo, si este fuese el caso, se debió de estipular en la memoria analítica.

Para la parte de la instalación, cabe mencionar que con la información recabada (guías mecánicas), podemos decir que la forma en que se instaló el equipo dentro de la instalación, no es la más adecuada, debido a que la posición en que se instalo el equipo hace que la radiación se concentre principalmente en donde están las puertas de acceso.
a la sala (esto lo podemos ver en los perfiles de isoexposición del equipo: ver figuras 25 y 26, así como en la figura 24), la cual es un área vulnerable en donde circula el personal del área; así como parte del cuarto de control, donde se encuentra laborando el POE el cual está protegido por una mampara. Si quisiéramos acomodar el equipo de otra manera, no sería los más viable debido a que en la pared 1 y 2, colindan con salas de interpretación, en las cuales permanecen personal durante la mayor parte del tiempo, esto lo podemos ver en la siguiente figura:

![Diagrama de la instalación](image)

Figura. 27 Paredes y colindancias de la instalación.

Otro punto importante es que en las guías mecánicas no se deja estipulado la dimensión del cuarto de control, en el cual solo cabe una persona sentada y una parada.

La instalación eléctrica del equipo, así como de comunicación, están resguardadas en la trinchera como se observa en la figura 19.
Una manera de comprobar efectivamente la existencia y verificación de blindajes sería mediante levantamiento de niveles, para ver la posible radiación existente en los exteriores de cada una de las paredes utilizando una cámara de gas ionizante como lo estipula la NOM-229-SSA1-2002.

Otro punto que cabe recalcar es que la sala no tiene la capacidad para que una camilla entre completamente a la sala y se pueda hacer el cambio del paciente de la camilla a la mesa del equipo, en caso de pacientes que se encuentren en cama como los que se encuentran en áreas críticas (terapia intensiva, urgencias, etc), sin embargo una persona en sillas de ruedas si puede ingresar a esta, debido a la dimensión de la sala, el tamaño del equipo y posición del equipo.
RECOMENDACIONES PARA TRABAJOS FUTUROS.

El cuadro elaborado nos sirve para llevar un control a la hora de estudiar, analizar e instalar un equipo de rayos X, lo cual nos puede asegurar que:

- La instalación cumple con la NOM, esto asegura protección al POE y al personal no controlado que labora dentro del área de radiología.

- La instalación cumple con los puntos solicitados por la NOM-229-SSA1-2002 vigente, en lo referente a blindajes, para brindar protección al POE y al personal no controlado que labora dentro del área de radiología.

- El conocimiento y aplicación de normas, permitirá estandarizar el proceso de adquisición de cualquier equipo de imagen, así como puesta en marcha del mismo a la hora de que surja un proyecto.

Un punto importante para realizar un análisis de la instalación de cualquier equipo donde se manejen radiación ionizante es que el Ingeniero Biomédico encargado del área de imagen o de radiología cuente con un curso de protección y seguridad radiológica para lo mencionado anteriormente. En caso de que el hospital, no cuente con los recursos necesarios para capacitar al personal, una manera de subsanar sería el realizar una capacitación a un integrante del departamento de Ingeniería Biomédica, por una persona que haya tomado el curso y esta a su vez capacite a los demás.
CONCLUSIONES.

Los parámetros totales cumplidos por la NOM-229-SSA1-2002 fue del 74% de la instalación total, siendo este un porcentaje bajo para las expectativas deseadas, ya que se esperaba un cumplimiento del 90%, para asegurar la protección del POE, del público general y áreas colindantes.

Con lo anterior expuesto, da un panorama de que el Ingeniero Biomédico debe y tiene la capacidad de estudiar la propuesta para la instalación de cualquier equipo y ser partícipe dentro de las decisiones en el diseño, instalación de cualquier área en donde se involucre equipo médico, así como en los comités de seguridad radiológica del hospital.

El ingeniero biomédico debe interrelacionarse en el área de normatividad enfocado a los equipos e instalaciones de un hospital, además de que es un excelente intermediario entre los usuarios (médicos, enfermeras, etc.) y los proveedores, por su formación interdisciplinaria a la hora de adquirir equipo y poner en marcha el área.

Un Ingeniero Biomédico dentro del área de Ingeniería Clínica: adapta, mantiene y mejora el uso de las instalaciones y los equipos dentro del hospital, mediante la aplicación de normas nacionales e internacionales.

A grandes rasgos se analizó, identificó y propuso solución a los puntos que no se cumplieron en la instalación por la NOM-229-SSA1-2002, al realizar el análisis de las guías mecánicas de la instalación de un equipo de CT y la memoria analítica de la misma, siendo esta última la que más punto de incumplimiento tuvo.

Se puede decir que se han cumplido los objetivos establecidos por el trabajo, pues se analizó e identificó los puntos de cumplimiento e incumplimiento de la instalación tomando en cuenta lo establecido por la NOM-229-SSA1-2002 en tiempo y forma.

Se hizo conocimiento y aplicación de la NOM-229-SSA1-2002 en el área de radiología, para la instalación de un equipo, tema que en la escuela no se enseña y es de suma importancia para el conocimiento del Ingeniero Biomédico en el área hospitalaria.
REFERENCIAS

(3) Avendaño, Guillermo E; "Fundamentos Técnicos de Radiología y Tomografía Axial Computarizada". Editorial Diana; 1ª Edición,1993

(5) NOM-229-SSA1-2002: Salud ambiental. Requisitos técnicos para las instalaciones, responsabilidades sanitarias, especificaciones técnicas para los equipos y protección radiológica en establecimientos de diagnostico médico con rayos X.

(7) http://www.ifmbe.org/, visitada el 15 de enero a las 15:43.

(8) http://www.cenetc.org.mx , visitada el 28 de enero de 2009, a las 18:00.

(9) http://www.ate.uniovi.es/8695/documentos/TRABAJOS%202008/SEG/21NOV/830/g1-21-830-RayosX.pdf, Visitada el 30 de marzo a las 16:42.
GLOSARIO.

Área controlada.
Aquella zona de trabajo en donde los trabajadores bajo condiciones normales de operación es improbable que superen los 3/10 del límite de dosis equivalente efectiva anual para irradiación uniforme del cuerpo entero.

Barrera primaria.
Blindaje de la instalación sobre el cual incide, el haz de radiación útil producido por el equipo de rayos X durante el tiempo de exposición.

Blindaje.
Material empleado para atenuar la intensidad de las radiaciones ionizantes al interponerse en su trayectoria.

Campo de visión
Se define como campo de visión (field of view), a la magnitud del área valorada: el área completa del plano bidimensional del estrato.

Capa decirreductora (CDR).
Espesor de un material que al interponerse en un haz útil de rayos X, atenúa la intensidad de la radiación al 10% de su valor inicial. El valor de la capa decirreductora es característico para cada material y cada tensión aplicada al tubo de rayos X. En esta definición se excluye la contribución de toda la radiación dispersa, que no sea la que se encuentra presente desde el inicio, en el haz bajo estudio.
Capa hemirreductora (CDH).
Espesor de un material que al interponerse en un haz útil de rayos X, atenúa la intensidad de la radiación al 50 % de su valor inicial. El valor de la capa hemirreductora es característico para cada material y cada tensión aplicada al tubo de rayos X. En esta definición se excluye la contribución de toda la radiación dispersa, que no sea la que se encuentra presente desde el inicio, en el haz bajo estudio.

Carga de trabajo (W).
Producto de factores que determinan la cantidad de radiación emitida por el tubo de rayos X, en función de su grado de utilización, para una tensión y corriente dadas, durante un tiempo específico. Para equipos de rayos X de diagnóstico médico usualmente se expresa en:

Colimación.
La colimación del haz de rayos X es esencial para otorgar definición de la imagen y para reducir adicionalmente la dosis radiante aplicada al paciente. El colimador debe colocarse en el punto exacto del haz que abandona el tubo a fin de aprovechar la zona de mayor intensidad fotónica relativa.

Consola de control.
Parte del equipo de rayos X que contiene los mandos e indicadores, desde donde se puede seleccionar el conjunto de parámetros para realizar los estudios radiológicos, así como activar e interrumpir la generación de rayos X.

Dosis absorbida.
Energía depositada por la radiación ionizante en la unidad de masa de un determinado material, medida en un punto específico.
La unidad de dosis es el gray (Gy) y corresponde a 1 J kg-1.

Elemento de imagen o pixel.
El valor bidimensional de cada cuadrícula en que dividimos el campo de visión es conocido como pixel.
Elemento de volumen o voxel.
El volumen formado por el pixel como superficie bidimensional y el ancho de estrato como tercer dimensión se define como elemento de volumen o voxel.

Escala de números CT o escala Hounsfield.
Para representar los valores numéricos de cada pixel, se requiere usar una escala numérica que valores cuantitativamente el coeficiente de atenuación de cada voxel, esta escala fue arbitrariamente definida en los inicios de dicha técnica con un intervalo de +500 y -500.

En la actualidad todos los equipos modernos utilizan una escala extendida de -1000 hasta +1000, lo que permite a muchos equipos exhibir una imagen con una escala incrementada por el uso desde +1000 hasta +3000, permitiendo un estudio más profundo de las patologías óseas.

Exposición.
Acción y efecto de someter a un individuo a los rayos X.

Exposición ocupacional.
La recibida por el personal ocupacionalmente expuesto durante su trabajo y con motivo del mismo.

Factor de ocupación (T).
Fracción de tiempo que las personas (ocupacionalmente expuestas o del público) permanecen en las áreas que deben protegerse de la radiación, respecto al tiempo total de uso del equipo, en el contexto del cálculo de blindajes.

Factor de uso (U).
Fracción del tiempo total de operación del equipo de rayos X durante la cual el haz útil de radiación está dirigido hacia una barrera en particular.
Filtración.
La discriminación energética de una fuente de rayos X-objeto-detector.

Haz útil.
Radiación ionizante proveniente del tubo de rayos X, que sale por la ventana de la coraza, atraviesa la filtración y es colimado por los dispositivos pertinentes, para obtener la imagen de interés clínico.

Instalación.
Cada sala de rayos X con su respectiva área de ubicación de la consola de control y el cuarto oscuro y área de interpretación que dan servicio a esta sala.

Límite anual de dosis.- Valor de la dosis individual, en equivalente de dosis efectiva, debida a prácticas controladas y que no se debe rebasar en un año.

Matriz.
Es un arreglo matricial de filas y columnas en que se divide el campo de visión: tenemos una matriz de números en la que cada número representa el valor de la imagen en esa ubicación. Cuanto más pequeñas sean las cuadriculas por una división matricial en una cantidad mayor de filas y columnas se tendrá una imagen mucho más detallada y con mayor información para el diagnostico.

Memoria analítica.
Documento que certifica los requerimientos de blindaje de la instalación de rayos X para diagnóstico médico, realizado por un asesor especializado en seguridad radiológica.

Mesa.
Dispositivo que sirve para soportar al paciente.

Número CT.
El valor numérico, dentro de una escala limitada, que se asigna previo calculo a cada pixel y que representa la capacidad de absorción de radiación X de cada voxel del estado estudiando se le define como número CT.
Operador.
Persona autorizada para operar el equipo de rayos X.

Paciente.
Individuo en turno que está siendo objeto del estudio de diagnóstico médico con rayos X.

Personal ocupacionalmente expuesto (POE).
Persona que en el ejercicio y con motivo de su ocupación está expuesta a la radiación ionizante. Quedan excluidos los trabajadores que ocasionalmente en el curso de su trabajo puedan estar expuestos a este tipo de radiación.

Precisión.
Es el efecto óptico por el cual el ojo tiende a ver las estructuras de la imagen sin soluciones de continuidad y los distintos tejidos bien delimitados.

Público.
Toda persona que puede estar expuesta a las radiaciones de equipos de diagnóstico médico con rayos X por encontrarse en las inmediaciones de las instalaciones.

Radiación ionizante.
Radiación electromagnética o corpuscular capaz de producir iones, en forma directa o indirecta, al interaccionar con la materia.

Resolución.
Es la propiedad por la cual cada pequeño elemento de la imagen reproduce fielmente el elemento tisular original.
Tensión en el tubo.
Valor máximo de la diferencia de potencial que se establece a través del tubo de rayos X durante una exposición

Tomografía.
Representación de la atenuación de los rayos X producida por una sección del cuerpo.

Tomografía computarizada.
Es la producción de una tomografía mediante la adquisición y procesamiento por computadora de los datos obtenidos a partir de la transmisión de rayos X.

Tubo de rayos X.
Tubo electrónico diseñado para producir rayos X.
ANEXOS.

0-1 Desempaque del equipo al llegar al INN
0-2 Vista anterior del Gantry.

0-3 Mampara del cuarto de control.
0-4 Guías mecánicas en el piso para la colocación del equipo.

0-5 Instalación de la mesa del equipo.
0-6 Guía mecánica de la mesa del equipo de CT en el piso.

0-7 Llegada del equipo a la sala.
0-8 Localización del equipo en donde se instaló el equipo.

0-9 Puerta de la sala de Tomografía, con el símbolo de radiación ionizante.
0-10 Mampara del cuarto de control después de la instalación del equipo

0-11 Cuarto de control del equipo de tomografía.
0-12 Interruptor de desconexión del equipo.

0-13 Equipo después del instalación.
0-14 Suministro general del equipo.

0-15 Accesorio del equipo: monitor de signos vitales.
0-16 Switch general del equipo.

0-17 Display del sensor de temperatura.
0-18 Gráfica para cálculo de espesores de plomo del reporte No.49 del National Council for Radiological Protection.