INSTITUTO POLÍTÉCNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA
UNIDAD CULHUACAN

TESIS INDIVIDUAL

Que como prueba escrita de su Examen Profesional para obtener el Titulo de Ingeniero Mecánico, deberá desarrollar el C.:

IVAN VAZQUEZ CENIL

“APLICACIÓN DE LEAN MANUFACTURING CON UN DISEÑO DE MEJORA TECNOLÓGICA EN UNA MICROEMPRESA”

Kaizen es una filosofía de mejora continua que, aunada de herramientas Lean Manufacturing, aumenta la eficiencia y productividad en las empresas, donde un ejemplo de mejora son las innovaciones tecnológicas, por lo que para ayudar a una microempresa de dulces típicos mexicanos, se propone la implementación de Lean Manufacturing y Kaizen con el diseño una innovación tecnológica, lo cual permite el aumento de producción en ese tipo de empresas, reduciendo el desperdicio de materia prima, facilitando el trabajo de los empleados, evitando errores y esfuerzos físicos.

Y, por último, pero no menos importante, los dulces típicos mexicanos son parte de la gastronomía tradicional mexicana, la cual es patrimonio inmaterial de la humanidad; por esta razón el implementar tecnología que ayude al desarrollo de este tipo de empresas es de suma importancia ya que se conserva una parte de la cultura y tradición mexicana.

CAPÍTULO

Capítulo I Marco Conceptual
Capítulo II Lean Manufacturing en la mejora tecnológica
Capítulo III Ejemplo de aplicación de Lean Manufacturing
Capítulo IV Diseño de la mejora tecnológica

Ciudad de México, a 04 de Mayo de 2017

PRIMER ASESOR

SEGUNDO ASESOR

M. EN P. FERNANDO ELÍ ORTÍZ HERNANDEZ ING. JUAN FRANCISCO FORTIS ROA

Vo. Bo.

APROBADO

ING. MIGUEL ANGEL LÓPEZ VEGA
JEFE DE LA CARRERA DE I.M.

ING. CARLOS AQUINO RUIZ
SUBDIRECTOR ACADÉMICO
“APLICACIÓN DE LEAN MANUFACTURING CON UN DISEÑO DE MEJORA TECNOLÓGICA EN UNA MICROEMPRESA”

TESIS
QUE PARA OBTENER EL TÍTULO DE INGENIERO MECÁNICO

PRESENTA
Iván Vázquez Cenil

Directores de tesis:
MPGCT. Fernando Elí Ortiz Hernández
Ing. Juan Francisco Fortis Roa
Agradecimientos

En primer lugar, agradezco a todo aquello que me permitió estar en este momento en el que concluyó mi carrera como Ingeniero Mecánico.

Agradezco a mi familia que siempre me ha apoyado, a mis padres por inculcarme valores de responsabilidad, respeto, gratitud, humildad y compromiso, y de quienes aprendí que el trabajo duro con constancia e inteligencia es el camino al éxito.

A mi hermano que ha sido mi ejemplo a seguir, del cual aprendí a tener una actitud positiva ante la vida y quien siempre me ha motivado.

A mi hermana de quien admiro su madurez, a la que amo mucho y es lo más importante en mi existencia.

Un agradecimiento a mis abuelos que son ejemplo de lucha y sacrificio, aunque ya no están con nosotros siempre los recuerdo con cariño.

Al ingeniero Fernando Elí Ortiz Hdez. de quien admiro sus cualidades y habilidades ante la vida, las cuales me esfuerzo por aprender para construir una vida exitosa día a día.

Gracias a Hugo e Hilario, quienes me enseñaron lo que significa la amistad y con los que viví tantas experiencias.

A todos los profesores de los que he aprendido a lo largo de mi formación académica.

A las personas que me han enseñado cosas valiosas que solo se aprenden con la experiencia.

Y, por último, pero no menos importante, agradezco a la persona que cambio mi vida, a la que recuerdo todos los días y a quien le deseo lo mejor.
Índice

RESUMEN... 5
ABSTRACT .. 6
PLANTEAMIENTO DEL PROBLEMA ... 7
OBJETIVO GENERAL .. 7
INTRODUCCIÓN .. 8
CAPÍTULO I MARCO CONCEPTUAL ... 9
1.1. ¿MODELO DE PRODUCCIÓN TOYOTA, KAIZEN O LEAN MANUFACTURING? 9
1.1.1. Inicio de la filosofía Kaizen y desarrollo del TPS ... 11
1.2. INNOVACIÓN .. 16
1.2.1. Ciclo de vida de la innovación. .. 16
1.2.2. Clasificación. ... 17
1.2.3. Innovación incremental. .. 19
1.3. DISEÑO. ... 20
1.3.1. Proceso de diseño. ... 20
1.3.2. Normas y códigos. ... 23
1.3.3. Formulación del problema y cálculos. ... 23
1.3.4. Conceptos de diseño. ... 25
CAPÍTULO II LEAN MANUFACTURING EN LA MEJORA TECNOLÓGICA ... 35
2.1. LEAN MANUFACTURING. ... 35
2.1.1. Kaizen ... 37
2.1.1.1. Metodología .. 37
2.1.1.2. Implementación del Kaizen en la industria ... 38
2.1.1.3. Factores que contribuyen a la implementación exitosa del Kaizen .. 40
2.1.1.4. Retos en la implementación de Kaizen ... 41
2.1.1.5. Responsabilidad social ... 42
2.1.2. Herramientas lean. ... 43
2.1.2.1. Eventos Kaizen ... 43
2.1.2.2. 5's (orden y limpieza). .. 44
2.1.2.3. Control visual ... 45
2.1.2.4. Mantenimiento productivo total .. 46
2.1.2.5. Manufactura celular .. 47
2.1.2.6. Cambios rápidos de productos ... 48
2.1.2.7. Poka yoke ... 48
2.1.3. Productividad y eficiencia.. 51
CAPÍTULO III EJEMPLO DE APLICACIÓN DEL LEAN MANUFACTURING .. 52
3.1. ¿PORQUE UNA EMPRESA DE DULCES TÍPICOS MEXICANOS? .. 52
3.2. APLICACIÓN DEL LEAN MANUFACTURING .. 53
3.2.1. Mapeo de procesos .. 53
3.2.2. Eventos kaizen .. 54
3.2.3. Aplicación de las Herramientas de mejora. .. 59
3.2.3.1. Las 5’S.. 59
3.2.3.2. Control visual ... 61
3.2.3.3. Mantenimiento productivo total .. 62
3.2.3.4. Aplicación de la manufactura celular .. 62
3.2.3.5. Cambios rápidos de productos ... 62
CAPÍTULO IV DISEÑO DE LA MEJORA TECNOLÓGICA. ...66

4.1. PROCESO DE DISEÑO. ...67
4.1.1. Elección de la idea ...67
4.1.2. Solución elegida. ...72
4.1.3. Memoria de cálculo de la propuesta ..74
4.1.4. Teorías de falla. ...89
4.1.5. Selección de materiales. ..97
4.1.6. Prototipo. ..99

RESULTADOS. ..101

PRODUCIVIDAD. ...101
EFICIENCIA. ..102

CONCLUSIONES ..103

BIBLIOGRAFÍA ..104

ANEXO: PLANOS ..106
Resumen

Lean Manufacturing es una técnica de mejora empresarial con origen en el modelo de producción desarrollado por Toyota, a unida a la filosofía Kaizen de mejora continua que cambia paradigmas en las personas, permite crear un sistema que estimula la participación de empleados de cada nivel de la organización y cuyo resultado es el aumento de la productividad y eficiencia de la empresa.

Para implementar el Lean manufacturing en una microempresa de dulces típicos mexicanos, primero, se emplearon eventos Kaizen para encontrar puntos de mejora en los procesos de producción, después se eligió el proceso de elaboración de obleas para hacerlo más eficiente y productivo utilizando las herramientas Lean, lo cual creó un proceso que elimina actividades que no agregan valor al producto.

A partir del proceso mejorado, empleando principios lean y conocimientos de mecánica, electricidad, termodinámica, electrónica y programación, se diseña una innovación tecnológica, una máquina semiautomática que elabora obleas y reduce en gran proporción el desperdicio, esfuerzo y tiempo del proceso de elaboración, aumentando la productividad, eficacia y competitividad de la microempresa.

El desarrollo de dicha innovación pretende tener un impacto tecnológico en las microempresas de dulces típicos mexicanos, a su vez, la difusión de la filosofía kaizen incita a las personas a buscar la excelencia en el día a día, en ellos mismos y en las empresas a través de las herramientas del Lean Manufacturing.

Palabras clave: Lean manufacturing, Kaizen, innovación, microempresa, competitividad.
ABSTRACT

Lean Manufacturing is a business improvement technique whose origin is the process management developed by Toyota and combined with Kaizen, a continuous improvement philosophy that changes people’s paradigm, allow to create a system that stimulates the employee’s participation of each organization level and by doing this not only the productivity increase but also the efficiency does.

In order to apply Lean Manufacturing in a typical Mexican sweets microenterprise, first, Kaizen events were employed to find points to improve the production process, subsequently the “obleas” production process was chosen to increment, through Lean tools, its efficient and productive, and by doing this, a process which eliminate non-value-added activities to the product was created.

Based on the improved process, employing Lean principles and knowledge about mechanical, electricity, electronics and programing, a technology innovation was designed, a semiautomatic machine that produce “obleas” reducing in a significant proportion waste, effort and time in the process, thus the microenterprise increase its productivity, efficiency and competitiveness.

Such innovation development seeks a technology impact in typical Mexican sweets enterprises, in other hand, Kaizen philosophy diffusion encourage to people the pursuit of excellence from day to day, not only on themselves, but also on the company by means of the Lean tools.

Key words: Lean manufacturing, Kaizen, innovation, microenterprise, competitiveness.
Planteamiento del problema

Problema.
Baja productividad y eficiencia en una microempresa de dulces típicos mexicanos.

Necesidad.
Aumentar la eficiencia y productividad de sus procesos de producción.

Justificación.
Kaizen es una filosofía de mejora continua que aunada a herramientas Lean aumenta la eficiencia y productividad en las empresas, donde un ejemplo de mejora son las innovaciones tecnológicas, por lo que, para ayudar a una microempresa de dulces típicos mexicanos, se propone la implementación del Lean Manufacturing y Kaizen con innovación tecnológica para aumentar la producción de la microempresa de dulces típicos, reduciendo el desperdicio de materia prima, facilitando el trabajo de los empleados, evitando errores y esfuerzos físicos.

Y, por último, pero no menos importante, los dulces típicos mexicanos son parte de la gastronomía tradicional mexicana, la cual es patrimonio inmaterial de la humanidad; por esta razón el implementar tecnología que ayude al desarrollo de este tipo de empresas es de suma importancia ya que se conserva una parte de la cultura y tradición mexicana.

Objetivo general

• Diseñar una innovación tecnológica para un proceso de una microempresa de dulces típicos mexicanos.

Objetivos específicos

• Implementar eventos Kaizen en una microempresa de dulces típicos mexicanos.
• Elegir un proceso de producción para mejorararlo.
• Aplicar el Lean Manufacturing en el proceso elegido.
• Definir las operaciones que agregan valor al producto.
• Crear un proceso más eficiente, productivo y eficaz.
• Diseñar una mejora tecnológica.
• Presentar un modelo demostrativo de la mejora tecnológica.
Introducción

En México el 95.4% de los establecimientos son categoría micro y solo aportan el 9.8 % de la producción bruta (INEGI. Censos económicos, 2014), en consecuencia, se observa la necesidad de ayudar a las microempresas para beneficiar a la economía del país, lamentablemente invertir en innovación, programas de mejora o contratar a algún experto en crecimiento empresarial resulta inasequible o las microempresas lo consideran innecesario.

Por lo anterior se propone crear conocimiento organizacional en una empresa de dulces típicos, concepto que debe entenderse “como la capacidad de una compañía para crear nuevo conocimiento, diseminándolo en toda la organización e incorporarlo en productos, servicios y sistemas” (Jordy, Medellin, Hidalgo, & Jasso, 2008, pág. 60), todo esto mediante la implementación del Kaizen y Lean Manufacturing.

Dicha implementación tiene el objetivo final de incrementar la productividad y eficiencia sustituyendo antiguos paradigmas por el de mejora continua que busca formas de innovar los procesos, mediante un sistema de producción que se enfoca en la reducción de desperdicio y en el valor del cliente (Intra & Zahn, 2014).

El Kaizen y Lean Manufacturing aun confundidos como uno solo a pesar de la extensa literatura sobre ellos, motivo por el cual en la primera parte del capítulo I se describe su relación mostrando sus conceptos, origen y desarrollo, mientras que en la segunda se presenta la teoría de diseño e innovación que permitió el desarrollo de la mejora tecnológica propuesta en este trabajo.

Previo a su aplicación en el caso de estudio, en el capítulo II se explica el concepto, propósito y modo de empleo de cada una de las herramientas Lean, las cuales acorde a (Ortiz, 2010, pág. 50) mejoran procesos mediante la eliminación o reducción de actividades que no agregan valor al producto, además se analiza el papel que juega la filosofía kaizen en el proceso Lean.

El capítulo III inicia con la exposición de la importancia de promover empresas de dulces típicos mexicanos, productos con historia y tradición (Castro & González, 2011, pág. 2), posteriormente se analiza el proceso de elaboración de obleas implementar herramientas lean siguiendo la metodología Kaizen y cuyo resultado fue un proceso más eficiente y productivo.

En base a este proceso mejorado, en el último capítulo se desarrolla el diseño de una máquina semiautomática que permite la elaboración de obleas reduciendo en gran proporción el esfuerzo, actividades y tiempo del proceso, aumentando la productividad, eficacia y competitividad de la microempresa.

Por todo lo anterior, el presente trabajo es una guía útil para aquellos que inician el aprendizaje del kaizen y el Lean Manufacturing, mostrando ejemplos de su implementación en un caso real, además de una innovación tecnológica que representa la aplicación de la ingeniería mecánica en la mejora empresarial.
Capítulo I
Marco conceptual

La historia del Kaizen y lean manufacturing, así como la forma en que se relacionan es mostrada en este apartado con el fin de evitar confusiones en el desarrollo de los siguientes capítulos, a su vez se presenta el papel de la innovación en la mejora empresarial y su importancia de aplicarla en las microempresas, terminado con la teoría de diseño que fundamenta a la mejora tecnológica propuesta en esta tesis.

¿Modelo de Producción Toyota, Kaizen o Lean Manufacturing?

Como menciona (Mourtzis, Papathanasiou, & Fotia, 2016, pág. 198) a pesar de la amplia investigación sobre el lean manufacturing y el Kaizen, aún existe confusión entre ambos términos, y más aún, al agregar el concepto de modelo de producción Toyota. Por ejemplo (Cherrafi, Elfezazi, Chiarini, Mokhlis, & Benhida, 2016) opinó que la falta de una definición coherente del lean manufacturing se debe a que el concepto aún está en desarrollo.

Sin embargo, en muchas investigaciones se muestran el concepto de Lean Manufacturing como una práctica de producción que intenta minimizing el desperdicio a lo largo de toda la corriente de valor y así crear más valor para los consumidores (Mourtzis, Papathanasiou, & Fotia, 2016, pág. 199).

Acorde con Lean, cualquier utilización de recursos, que no atribuyen valor al producto, es candidato al cambio o eliminación, cuyo proceso conlleva una lucha que nunca termina.
Enfocándose continuamente en reducción de desperdicio, una compañía puede reaccionar mejor a las necesidades de sus clientes y ser capaces de operar en un nivel de desempeño más eficiente (Ortiz, 2010, pág. 50).

Ahora bien, (K. Linker, 2011, pág. 30) expone que el TPS o modelo de producción Toyota “es la base de gran parte del movimiento Lean Production que ha dominado las tendencias de producción (...) durante los últimos diez años”, este mismo autor muestra al TPS como “un conjunto de herramientas y técnicas que permiten a una compañía producir y entregar productos en cantidades pequeñas, con tiempos de producción cortos, para ajustarse a las necesidades específicas de los clientes”.

Por otra parte, Kaizen es una palabra que acorde a (Ortiz, 2010, pág. 50), traducida del japonés al español significa “mejora continua” o y es reconocida como uno de los principios más importantes de la manufactura japonesa desarrollados por Toyota Motor Company (J.Glover, A.Farris, M.VanAken, & L.Doolen, 2011, pág. 189), la filosofía Kaizen es lo que sustenta al Lean Manufacturing con un enfoque que ve a las personas como sus propios expertos que solo necesitan un guía para resolver sus problemas (Cemrenur & Arasan, 2013, pág. 1357).

El sistema de producción Toyota o TPS se puede representar como una casa, la cual se muestra en la Figura 1.1

![Figura 1.1. Sistema de producción Toyota: La casa TPS](image)

Fuente: Modificado de (Shook, 2008)

A continuación, se presenta la historia del Kaizen, ya que para entender el fenómeno Lean, debemos entender los principios, el origen de la filosofía y ver como se entrelaza con las herramientas Lean (Ortiz, 2010, pág. 50).
Inicio de la filosofía Kaizen y desarrollo del TPS

El TPS sentó sus bases con Sakichi Toyoda quien, descrito por (K. Linker, 2011), fue un artesano e inventor, en una época donde la industria textil era la más importante, aplicó sus conocimientos en el diseño y construcción de hiladoras de madera para fabricar, en 1804, telares manuales más baratos y que trabajaban mejor que los existentes en ese momento.

Con su esfuerzo y dedicación a los telares textiles, Sakichi logró crear sofisticados modelos automáticos para después fundar Toyoda Automatic Loom Works, firma madre y pilar del conglomerado Toyota. Entre los inventos de Sakichi se encuentra un mecanismo que para “automáticamente un telar cuando un hilo se rompe -un invento que evolucionó hacia un sistema más amplio que se convirtió en uno de los dos pilares del sistema de producción Toyota llamado jidoka (automatización con un toque humano)” (K. Linker, 2011).

La filosofía de Sakichi y su manera de entender el trabajo fue la mayor contribución al desarrollo de Toyota, ambas basadas en una obsesión por la mejora continua, la cual fue fuertemente influenciada por “un libro publicado en Inglaterra en 1860 por Samuel Smiles y titulado Autoayuda (Self-Help, Smiles, 2002)” (K. Linker, 2011, pág. 43), en él se ensalzaban virtudes de la industria como el ahorro.

Dicho libro tuvo una importancia significativa para Sakichi Toyoda por dos principales razones, la primera es que fue un libro puramente filantrópico que buscó ayudar a jóvenes en dificultades económicas y cambiar su situación, la segunda es porque el libro explicaba como grandes inventores desarrollaron invenciones de manera natural e intuitiva.

Un ejemplo muy importante en el libro es el caso de James Watt cuyo éxito no procedía de ningún talento natural, si no era el resultado de trabajo duro, perseverancia y disciplina, mismas cualidades que mostraba Sakichi Toyoda, también cuenta con ejemplos como “gestión mediante hechos y la importancia de contar con gente que preste atención de manera activa, dos sellos distintivos de la resolución de problemas en Toyota.

Sakichi observaba el mundo cambiante de ese entonces e intuía que los telares automáticos se volverían tecnología obsoleta, mientras que los automóviles representaban la tecnología del futuro y le tocaba a su hijo Kiichiro Toyoda dejar su huella en el mundo, tal como él lo hizo con sus telares.

En 1929, “Kiichiro viajo a Inglaterra para negociar la venta de las patentes de su invento “a prueba de errores” a los hermanos Platt, quienes pagaron 100,000 libras esterlinas por el invento. Con este capital, Kiichiro inicio Toyota Motor Company (Fujimoto, 1999)” (Socconini, 2013).
Después de la segunda guerra mundial, la industria japonesa estaba en una situación muy difícil, un país diezmado y destruido por las bombas atómicas lanzadas en Hiroshima y Nagasaki.

La situación adversa y desventajas de Toyota frente a sus competidores de otros países, junto a su baja producción, y su rezago tecnológico, que en un principio hizo a sus automóviles precarios y de baja calidad “implementando tecnología primitiva (por ejemplo, dando forma a la carrocería sobre troncos)” (K. Linker, 2011), hacía muy difícil que Toyota pudiera posicionarse como una marca importante en el sector automotriz.

Afortunadamente los estadounidenses, en la ocupación de la post guerra, entendieron la importancia de los camiones para la reconstrucción de Japón y dieron facilidades a Toyota para comenzar de nuevo con la fabricación.

Al revitalizarse la economía, Toyota no tuvo problemas de mercado, pero la inflación disparada hacía que el dinero perdiera valor y no permitía cobrar a sus clientes, la falta de liquidez era tan terrible que “en un momento de 1948 la deuda de Toyota era 8 veces más el valor de su capital (Reingold, 1989)” (K. Linker, 2011, pág. 45), por lo que para evitar una bancarrota los directivos redujeron sus salarios voluntariamente y los empleados hicieron lo mismo al recortar el 10 % del suyo.

Pero, aun con estas medidas se tuvo que pedir a 1600 trabajadores que se retiraran “voluntariamente”, lo cual provocó huelgas y manifestaciones de los trabajadores, que eran muy común en el Japón de ese entonces, muchos de los presidentes de las empresas que quebraban solo veían por sí mismos salvando sus paquetes de acciones o las vendían para obtener alguna ganancia, pero Kiichiro optó por realizar un sacrificio personal y dimitió como presidente.

Esto ayudó a sofocar el malestar de los trabajadores, se retiraron “voluntariamente” de la empresa y se restauró la paz laboral, esto es un claro ejemplo de la filosofía Toyota donde se antepone el bien de la empresa a los problemas personales y se asume la responsabilidad en el trabajo.

Después de Kiichiro, el siguiente en liderar la empresa fue Eiji Toyoda, quien empezó su camino en Toyota cuando su primo Kiichiro le encomendó la tarea de construir un laboratorio de investigación. al inicio trabajó solo, pero al cabo de un tiempo ya contaba con 10 personas.

Su primer trabajo fue investigar máquinas-herramienta, tema del cual no sabía nada, pero se puso a investigar inmediatamente, también revisaba vehículos con alguna anomalía y cuando no estaba en el taller se dedicaba a buscar proveedores fiables de piezas en el área de Tokio, también examinaba empresas que pudieran producir piezas de automoción para la empresa.

Eiji fue director y después presidente de Toyota, donde presidió la compañía en su etapa de crecimiento, después de la segunda guerra mundial hasta su globalización,
jugando un papel muy importante en la selección de líderes que estructuraron las ventas, la producción, innovación y desarrollo de productos.

La transformación de Toyota empezó en un viaje realizado por Eiji Toyoda a Estados Unidos en 1950, con el fin de encontrar solución a su retraso tecnológico visitaron el complejo Ford en River Rouge, en el cual contaba con un defectivo sistema de producción y un inventario excesivo, que era el respaldo de Ford cuando había escases de material o alguna falla mecánica que paraba la producción.

Por lo que no tenían ninguna necesidad de reparar las máquinas rápidamente, el inventario era más que suficiente para las entregas pendientes. Pero esto no se podía aplicar en Toyota ya que su mercado era más pequeño y con diferentes necesidades a las de Estados Unidos, en Japón cada modelo debía ajustarse a las necesidades del usuario, por lo que un sistema de producción en masa que Ford Motor Company manejaba no era viable para Toyota.

De regreso de su viaje, Eiji encomendó al gerente de planta de Toyota, Taiichi Ohno, mejorar el sistema de producción de Toyota hasta igualarlo en productividad con Ford, para ello, además de las visitas realizadas en Estados Unidos, también estudiaron el libro hoy y mañana de Henry Ford, en el cual se predicaban principios como; “crear un flujo continuo de material a través de todo el proceso de producción, estandarizar procesos y eliminar desperdicios, pero mientras lo predicaba su empresa nunca lo puso en práctica” (K. Linker, 2011).

Ford ya trabajaba en los estudios de los tiempos, en la alta especialización de los trabajadores en tareas, la separación entre la planificación hecha por los ingenieros y el trabajo llevado a cabo por los trabajadores per el hecho de no aplicar estos principios y tener un sistema de producción que generaba desperdicios y grandes almacenes que mantenían a los fallos escondidos.

Esto le hizo ver a Toyota la oportunidad de alcanzar e incluso superar a Ford por medio de la mejora en ellos mismos, por lo que tomaron la idea de flujo continuo “para desarrollar un sistema de flujo pieza a pieza que podía ser cambiado de manera flexible según la demanda del cliente y que fuera eficiente al mismo tiempo” (K. Linker, 2011).

El sistema halado “pull” es otro principio del sistema de producción Toyota que fue tomado de los mercados de Estados Unidos, este sistema repone el producto cuando este empieza a escasear en la estantería, lo mismo se puede aplicar a nivel empresarial donde:

La etapa 1 de un proceso no debería reponer sus piezas hasta que el siguiente proceso (etapa 2) utilice las piezas ya aprovisionadas anteriormente desde la etapa 1 (hasta llegar a una pequeña cantidad de “inventario de seguridad”). En el TPS cuando la etapa 2 agota la pequeña
cantidad de inventario de seguridad, dispara una señal a la etapa 1, que pide más piezas (K. Linker, 2011).

Toyota agregó el núcleo de enseñanzas del pionero americano de la calidad W. Edward Deming, quien expandió la definición de cliente al incluir tanto clientes internos como externos, ya que “toda persona o etapa de una línea de producción debía ser tratada como cliente, y ser proveído con exactamente lo que era necesario, en el momento que fuera necesario” (K. Linker, 2011).

Deming también incitó a los japoneses a adoptar una aproximación sistemática, a la resolución de problemas, lo que más tarde se convirtió en ciclo de Deming o ciclo Planificar-Hacer-verificar-Actuar (PDCA por sus siglas en inglés), ciclo que es puntual en el Kaizen, término japonés designado para la mejora continua, y que significa cambio a mejor, no importa si son cambios grandes o pequeños, su objetivo es la gestión lean y eliminar todo el desperdicio que añade costo.

El TPS, en los años 70, era una potente filosofía que cualquier tipo de proceso o negocio podía adoptar en cierto tiempo dependiendo de la forma de pensar del personal y gerentes.

Onho y su equipo crearon un nuevo sistema de producción que creó “un nuevo paradigma para entregar la producción o un servicio: una nueva manera de ver, entender e interpretar lo que sucede en el proceso de producción y que podía lanzarlo más allá del sistema de producción en masa” (K. Linker, 2011, pág. 53)

Pero el TPS solo era conocido por la empresa Toyota y su red de proveedores que ya habían sido formados en los principios del mismo, y no fue sino hasta 1973, durante la primera crisis de petróleo que llevo al mundo a una recesión y que hizo a la industria de Japón caer en picada, cuando el gobierno japonés volteó la mirada hacia la empresa Toyota.

La cual fue capaz de reaccionar a la crisis de una manera rápida, volviendo a los beneficios rápidamente, por lo que decidieron impartir seminarios del TPS, aunque no habían entendido por completo lo que había hecho Toyota para estar bien preparada ante una situación tan drástica como una crisis.

Deaming, Joseph Juran, Kaoru Ishikawa, entre otros, aprendieron que, enfocándose en la calidad, se reducía más en el costo que solo centrándose en el costo en sí, el paradigma se formalizo con el libro la máquina que cambio al mundo (Womack, Jones y Ros, 1991), el cual introdujo el termino producción lean, dándolo a conocer a la comunidad industrial, sistema que Toyota llevaba desarrollando décadas atrás.

Como resultado de dicho desarrollo, se unieron otros principios al TPS; Heijunka, el cual deja el tipo y la cantidad de producción para un periodo de tiempo establecido, Jidoka, que significa proveer a las máquinas y operadores la habilidad para detectar cuando una situación anormal ha ocurrido para detener inmediatamente el trabajo y tomar medidas. Todo a un ritmo o “Tack- time”, que quiere decir que tan seguido
debés producir una parte o un producto para conocer los requerimientos del cliente basado en el índice de ventas (Shook, 2008).

Toyota desarrollo un sistema, que perfecciono conforme a la práctica y cuya historia de desarrollo se muestra en la Figura 1.2.

Figura 1.2. Historia del Kaizen

1776
- James Watt. Máquina de vapor.

1798
- Frederick Taylor. Industria del trabajo y estandarización.
- Adam Smith. División del trabajo.
- Sakichi Toyoda. Jidhoka.

1878

1890

1908
- Taiichi Ohno y Shigeo Shingo
- Deming y Juaran. Conceptos TQM.
- Kiichiro Y Eiji Toyoda. JIT.

1935

1940-1950
- Crisis petrolera mundial.

1980
- Just In time en EU. Toyota Nummi.

Fuente: (Socconini, 2013)
El modelo de producción Toyota innovó en todos los aspectos, desde sus procesos hasta en la forma de pesar, difundiendo valores como la responsabilidad y compromiso por la empresa.

Innovación

La innovación es parte importante del Lean Manufacturing, el cual se enfoca en la realización de acciones que por lo general no requieren inversión, pero tampoco descarta proyectos que si la necesitan.

De acuerdo a la RAE Innovar significa “mudar o alterar algo, introduciendo novedades”, (Borghino, 2008, pág. 37) la define como “competir consigo mismo, con sus propias ideas” es sinónimo de cambio y punto clave de la competitividad que se atreve a diseñar nuevos productos y procesos de fabricación que sean aceptados por el mercado, “la innovación es arriesgada, pero no innovar es más arriesgado (Escorsa, y otros, 2001)” (Ortiz H., Ortiz H., & Ortiz H., 2012), cuyo propósito final es que las personas disfruten la mejor calidad de vida posible, en consecuencia, debe buscar soluciones inteligentes (M. Lee & Trimi, 2016, pág. 1).

“La innovación industrial se ve fuertemente estimulada por la disponibilidad de información con la que cuenten los agentes productivos (Freeman, 1992)” (Méndez, Merrit, & Gómez, 2011, pág. 82) donde un pequeño grupo especializado es el encargado de buscarla, es un enfoque que apuesta por un cambio y cuyo inicio marca un nuevo estándar.

Ciclo de vida de la innovación.

El ciclo de vida de la innovación asimila la curva-S de tecnología, como se muestra en la Figura 1. 3, “la curva S es un gráfico de dos dimensiones que describe el cambio que experimenta el rendimiento o las características de coste de un cambio tecnológico con el tiempo y con las inversiones” (Ortiz H., Ortiz H., & Ortiz H., 2012, pág. 52). El inicio de la curva representa el momento en que una nueva innovación es planteada y los recursos necesarios se solicitan. Es importante observar que muchas ideas innovadoras inventos, patentes, o modelos de negocio no pueden superar la fase de realización y son descartadas (M. Lee & Trimi, 2016).
Clasificación.

La clasificación que se muestra en la Figura 1. 4 es sugerida por (M. Lee & Trimi, 2016, pág. 3) y se explica a continuación:

1) Incremental (explotadora).

Abarca a la mejora continua de lo que ya es conocido, donde Japón ha expandido su presencia en el mercado global al enfatizar el Kaizen, ejemplos de empresas que lo aplican son Toyota, Kawasaki, Sony, entre otras. Este tipo de innovación usualmente toma periodos de tiempo relativamente cortos.

2) Radical (de exploración).

Se enfoca en lo desconocido, los que representan este tipo de innovación son inventos nuevos, patentes o modelos de negocios (por ejemplo, sistemas de procesamiento paralelo, cámaras digitales, tecnología 3-D, secuenciado de ADN, e-negocios, economía compartida, y similares). Este tipo de innovación usualmente toma un periodo largo de tiempo, experimentos, aprobaciones regulatorias o aceptación de mercado.
Puede ser iniciada para el mercado existente. Sin embargo, su propósito final es convertirse en el primero en un recién creado océano azul de mercado que provee nuevos valores para los clientes y genera nuevos beneficios.

3) Innovación ambidestra.

Se esfuerza para desarrollar capacidades dinámicas en que las estrategias son congruentes con las situaciones en el mercado que cambian rápidamente, como lo son las condiciones globales, avances tecnológicos, cambios demográficos, tendencias de urbanización global, Esfuerzos de sustentabilidad ambiental, y otros similares, mientras mejoran continuamente su ventaja competitiva existente.

4) Innovación disruptiva

Es un concepto complejo. Sin embargo, la noción básica es que las firmas tienden a sobrepasar sus mercados con nuevos avances tecnológicos para la corriente principal de clientes, de esta forma se crea un mercado para recién llegados que pueden eliminar incluso a los principales líderes, un ejemplo son las marcas de celulares en China que han desbancando a las compañías móviles más importantes de ese país.

Fuente: Basado en (M. Lee & Trimi, 2016)
El Kaizen es un enfoque gradual o incremental que por lo general no necesita una tecnología sofisticada o una gran inversión para aplicarlo, solo basta aplicar las herramientas y una buena organización, pero también trabaja en conjunto a la innovación tecnológica, está última es implementada cuando se encuentran severas limitaciones del proceso o “cuando existe un programa o proyecto destinado a conquistar nuevos mercados o cumplir de mejor manera los requerimientos del cliente” (Suárez B., 2010, pág. 170).

El comportamiento de cualquier tipo de innovación proyecta una curva-S, la fase inicial de implantación es donde la taza marginal de retorno empieza a incrementar rápidamente a una taza crecimiento hasta que alcanza el punto de inflexión, donde la fase de recolección inicia y la taza marginal de retorno empieza a disminuir pudiendo llegar a decaer, momento en el cual una empresa puede descontinuar sus esfuerzos para sacar provecho de la innovación o tal como dice (M. Lee & Trimi, 2016), hacer lo que una firma creativa y empezar una nueva curva S antes de que la curva previa alcance su punto más alto, que es a lo que se le llama innovación incremental, véase Figura 1.5.

Figura 1.5. Curvas S de innovación incremental.

El Kaizen en combinación con la innovación tecnológica “brindan fuerza y flexibilidad suficiente para mantarse en este nuevo orbe mundial” (Suárez B., 2010, pág. 174), la innovación que no está acompañada por mejoras Kaizen o cuando el éxito se da por hecho y los estándares no son revisados, es imposible tener capacidad de respuesta a los mercados y la supervivencia será muy difícil.
Diseño.

El diseño es “formular un plan para satisfacer una necesidad específica o resolver un problema particular. Si el plan resulta en el algo físicamente real, entonces el producto debe ser funcional, seguro, confiable, competitivo, útil, que pueda fabricarse y comercializarse” (G. Budynas & Nisbett, 2012, pág. 4).

Diseño en ingeniería es el proceso de aplicar varias técnicas y principios científicos con el propósito de definir un dispositivo, un proceso o un sistema con el detalle suficiente que permita su realización (Norton, 2006, pág. 3).

El proceso de diseño es innovador e interactivo que requiere de muchas habilidades, entre las cuales destacan la creatividad, habilidad para comunicarse, trabajar en equipo, además de destreza para resolver problemas apoyándose en la amplia literatura existente y en herramientas de diseño por computadora, sin perder de vista el sentido de responsabilidad y ética de trabajo profesional, ya que en ocasiones el ingeniero tendrá que tomar decisiones con información que podría ser insuficiente o en exceso y contradictoria.

Expuesto por (G. Budynas & Nisbett, 2012, pág. 5) a pesar de existir términos como diseño de máquinas, diseño de motores de combustión interna, diseño de calefacción, etc., todos ellos son parte del diseño mecánico.

Dicho lo anterior, la rama llamada diseño de máquinas es en esencia, descrito por (Norton, 2006, pág. 4), el determinar tamaños, formas y materiales que se necesitan para las partes de una máquina, la cual se define como una serie de elementos interconectados que realizan un trabajo útil, por medio del movimiento y las fuerzas desarrolladas en ellos. Las primeras etapas del proceso de diseño normalmente abarcan la síntesis de configuraciones de mecanismos adecuados para realizar los movimientos necesarios. La síntesis conlleva la elección de un tipo de mecanismo que mejor se acomoda al problema.

A su vez, el diseño de máquinas es definido, acorde a (G. Budynas & Nisbett, 2012, pág. 3), como la creación de maquinaria que trabaja de forma correcta, segura.

Proceso de diseño.

Las fases presentadas por (G. Budynas & Nisbett, 2012), son:

1) Identificación de una necesidad.
 La necesidad puede ser una inconformidad, una inquietud o solo una sensación que algo no está bien, es una situación que, al cambiar mejora la calidad de vida en una persona o empresa.
2) Definición del problema.
En esta etapa se incluyen las especificaciones, siendo estas; las características, y dimensiones del espacio que el objeto debe ocupar y todas las limitaciones sobre estas cantidades. Esto es lo que define el costo, la cantidad a manufacturar, tiempo de vida, rango y temperatura de operación y la confiabilidad. También se aplicará criterio para adaptar el diseño a las circunstancias de la empresa, al lugar de operación y otras especificaciones que restrinjan aún más el diseño.

3) Síntesis.
Algunas veces, a la síntesis de un esquema que conecta elementos posibles del sistema se le llama invención del concepto o diseño conceptual. Éste es el primer y más importante paso en la tarea de la síntesis. Varios esquemas de solución deben proponerse, investigarse y cuantificarse en términos de medidas establecidas. (G. Budynas & Nisbett, 2012, pág. 6)

4) Análisis y optimización.
A medida que el desarrollo del esquema progresa se deben realizar análisis para evaluar si el desempeño del sistema es satisfactorio, y si lo es, cuán bien se desempeñara. Los esquemas de solución del sistema que no sobreviven al análisis se revisan, se mejoran o se desechan. Los que cuentan con el mayor potencial se optimizan para determinar el mejor desempeño. Los esquemas en competencia se comparan de manera que se pueda elegir el camino que conduzca al producto más competitivo.

Tanto el análisis como la optimización requieren que se construyan o desarrollen modelos abstractos del sistema que admitirá alguna forma de análisis matemático. A estos modelos se les llama modelos matemáticos. Cuando se desarrollan se espera que sea posible encontrar uno que simule muy bien al sistema físico real (G. Budynas & Nisbett, 2012, págs. 6-7)

5) Evaluación.
Es la “prueba final de un diseño exitoso y, por lo general, implica la prueba del prototipo en el laboratorio. Aquí se desea descubrir si el diseño en verdad satisface las necesidades” (G. Budynas & Nisbett, 2012, pág. 7)

6) Presentación.
La presentación es el paso más importante del proceso, ya que de fallar en esta etapa todo el tiempo y esfuerzo invertido habrá sido en vano, “la presentación es un trabajo de venta. El ingeniero cuando presenta una nueva solución al personal administrativo, gerencial o de supervisión está tratando de vender o de probarles que la solución que el propone es la mejor” (G. Budynas & Nisbett, 2012, pág. 7), tener éxito al vender la idea, proyecto o solución implica el éxito del propio ingeniero.
Fases expuestas en (Norton, 2006):

1) Identificación de la necesidad.
 Es un enunciado problema no definido claramente

2) Investigación a fondo.
 Necesaria para entender y comprender completamente el problema. Después de esto se puede exponer la meta.

3) Meta.
 Es más razonable y realista que el problema planteado originalmente

4) Especificaciones del problema.
 Amarran al problema y delimita su alcance.

5) Síntesis.
 Es una etapa que permite considerar muchas alternativas que se aproximen al diseño más solicitado.

6) Análisis.
 Las posibles soluciones generadas en el paso anterior son analizadas y también aceptadas, rechazadas o modificadas.

7) Selección.
 La solución más prometedora es seleccionada.

8) Detallado del diseño.
 Todos los cabos sueltos son atados, se hacen dibujos de ingeniería, se identifican proveedores, especificaciones de manufactura son definidas etc.

9) Prototipo.
 El diseño real se hace primero como prototipo antes de pasar a la etapa final.

10) Producción del diseño final.

El proceso de diseño, mostrado en la Figura 1. 6, se retroalimenta de una etapa a otra, permitiendo la iteración e incluso puede regresar a la redefinición del problema si es necesario. No se puede diseñar linealmente, es tres pasos hacia adelante y dos (o más) hacia atrás, hasta que finalmente emerge una solución funcional (Norton, 2006, pág. 6).
Normas y códigos.

Una norma es un conjunto de especificaciones para partes, materiales o procesos establecidos a fin de lograr uniformidad, eficiencia y cantidad especificadas. Uno de los propósitos importantes de una norma es poner un límite al número de variaciones que puedan surgir al crear arbitrariamente una pieza, material o proceso.

Un código es un conjunto de especificaciones para analizar, diseñar, manufacturar y construir algo. El propósito de un código consiste en lograr un grado de seguridad, eficiencia y desempeño o calidad adecuados. (G. Budynas & Nisbett, 2012, pág. 12)

Formulación del problema y cálculos.

Es extremadamente importante para cada ingeniero desarrollar buenos y cuidadosos hábitos computacionales. Resolución de complicados problemas que requieren un enfoque organizado. Diseñar problemas también requiere buenos hábitos de registro y documentación para mantener todas las suposiciones y decisiones de diseño hechas a lo largo del camino para que el proceso de pensamiento del diseñador pueda ser reconstruido si el rediseño es necesario. (Norton, 2006, pág. 8).

(Norton, 2006) propone 9 pasos divididos en cuatro etapas para la formulación de problemas y cálculos del diseño:
1) Definición.

a) Definir el problema.
 Una vez analizado el problema se escribe en una sentencia clara y consistente.

b) Establecer la información dada.
 La información que delimita el problema se escribe claramente en forma de lista.

c) Hacer suposiciones apropiadas.
 Se registran de las suposiciones del problema hechas por el diseñador. Por ejemplo, si la fricción entre los componentes es despreciable.

2) Diseño preliminar.

a) Decisiones de diseño preliminares.
 Las razones y justificaciones de las decisiones deben ser documentadas, por ejemplo, el tipo de geometría de los componentes, tipo de material, tipos de carga, uso que tendrá, etc. Estas decisiones juegan un papel importante en los resultados, y a menudo “tendremos que cambiarlos o abandonarlos mientras interactuamos a través del proceso de diseño. Se ha notado que 90 % de las características del diseño debieron ser determinadas en el primer 10% del total del tiempo del proyecto”. Por lo que malas decisiones pueden conllevar a un mal diseño, que, para modificarlo, tendría que ser rediseñado.

b) Borradores del diseño.
 Se documentan los borradores del diseño en dibujo y etiquetados apropiadamente para que lo pueda entender otro ingeniero o nosotros mismos en el futuro.

3) Diseño detallado.

a) Modelos matemáticos.
 Una vez establecida una dirección de diseño tentativa se procede a crear uno o dos modelos matemáticos de los elementos o del sistema a analizar. Estos modelos incluyen un modelo de cargas que consiste en diagramas de cuerpo libre que muestran las fuerzas, momentos, y torques presentes en el elemento o sistema y las ecuaciones apropiadas para su cálculo. Modelos de los estados de esfuerzo esperados y deflexión anticipada en puntos de fallas son definidos con ecuaciones apropiadas (Norton, 2006, pág. 9)
b) Análisis del diseño.
Se usan los modelos establecidos para determinar qué tan seguro es el diseño.

c) Evaluación.
Los resultados son evaluados en conjunción con las propiedades de los materiales ingenieriles elegidos y una decisión hecha si se procede con este diseño o iterar a una mejor solución retornando a un paso atrás en el proceso (Norton, 2006, pág. 9).

4) Etapa de documentación.

a) Documento de resultados.
Con resultados satisfactorios, la documentación del diseño de los elementos o sistemas debe ser completado en la forma de dibujos ingenieriles detallados, así como materiales y especificaciones de procesos de manufactura, etc., lo cual resulta fácil si se ha mantenido un registro claro y calidad a través de todos los pasos.

Conceptos de diseño.

Figura 1. 7. Fundamentos de diseño

Fuente: Elaboración propia.
Resistencia y esfuerzo.

La resistencia es una propiedad de un material o de una pieza mecánica que depende de la selección, el tratamiento y el procesamiento del material, es una propiedad inherente de una pieza (G. Budynas & Nisbett, 2012, pág. 15).

Mientras que el esfuerzo es una propiedad de estado que ocurre en un punto específico dentro de un cuerpo, la cual es en función de la carga, la geometría, la temperatura y el proceso de manufactura” (G. Budynas & Nisbett, 2012, pág. 15), y “es definida como carga por unidad de área” (Norton, 2006, pág. 31) y cuyas principales formas de determinarlos son:

Esfuerzo cortante.

\[\tau_{xy} = \frac{Q_y \ast V_y}{I_z \ast b} \]

(1. 1)

Esfuerzo normal en flexión pura.

\[\sigma_x = \frac{M_z \ast y}{I_z} \]

(1. 2)

Esfuerzo en carga axial.

\[\sigma_x = \frac{P}{A} \]

(1. 3)

Límite elástico.

(Norton, 2006) lo define como el punto más allá del cual el material tomará una forma permanente, o deformación plástica. El límite elástico marca la frontera entre las regiones del material del comportamiento elástico y el comportamiento plástico

Resistencia a la fluencia.

En el punto ligeramente arriba del límite elástico, el material empieza a ceder más fácilmente al esfuerzo aplicado y su índice de deformación incrementa (note la pendiente más baja) esto es llamado el punto de fluencia, y el valor del esfuerzo en ese punto define la resistencia a la fluencia \(S_y \) del material. (Norton, 2006, pág. 32).

Esfuerzo último a tensión.

El esfuerzo en la pieza llega a un punto máximo o a un valor último de esfuerzo a tensión \(S_{ult} \). Esto es considerado como el esfuerzo a tensión más alto que el material puede soportar antes de llegar a la fractura (Norton, 2006, pág. 32).
Ultimo esfuerzo cortante.

La fuerza de ruptura es llamada el último esfuerzo cortante o módulo de ruptura S_{us}, y se calcula con:

$$S_{us} = \frac{T r}{J} \quad (1.4)$$

Donde T es el torque necesario para romper la pieza, r es el radio de la pieza y J es el segundo momento polar de área de la sección transversal. (Norton, 2006, pág. 36).

Esfuerzos principales.

Para cualquier combinación en particular de esfuerzos aplicados, ahí habrá una distribución continua de los campos de esfuerzo alrededor de cualquier punto analizado. Los esfuerzos normal y cortante en el punto variarán con dirección de cualquier sistema elegido. Ahí siempre habrá planos en donde los componentes del esfuerzo cortante son cero. Los planos en los cuales estos esfuerzos principales actúan son llamados planos principales. Las direcciones de las normales de la superficie a los planos principales son llamados ejes principales, y los esfuerzos normales actuando en estas direcciones son los esfuerzos normales principales (Norton, 2006, pág. 141)

$$ \sigma^3 - C_2 \sigma^2 + C_1 \sigma - C_0 = 0 \quad (1.5)$$
Donde

\[C_2 = \sigma_x + \sigma_y + \sigma_z \]

\[C_1 = \tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2 - \sigma_x \sigma_y - \sigma_z \sigma_y - \sigma_x \sigma_z \]

\[C_0 = \sigma_x \sigma_y \sigma_z + 2(\tau_{xy})(\tau_{yz})(\tau_{zx}) - \sigma_x (\tau_{yz})^2 - \sigma_y (\tau_{zx})^2 - \sigma_z (\tau_{xy})^2 \]

Mientras que los esfuerzos cortantes principales se expresan:

\[\tau_{13} = \frac{|\sigma_1 - \sigma_3|}{2} \]

\[\tau_{21} = \frac{|\sigma_2 - \sigma_1|}{2} \] (1. 6)

\[\tau_{32} = \frac{|\sigma_3 - \sigma_2|}{2} \]

Para el caso especial de un estado de esfuerzo en dos dimensiones, la ecuación de los esfuerzos principales se reduce a.

\[\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \] (1. 7a)

Así el esfuerzo cortante máximo en dos dimensiones se expresa.

\[\tau_{12} = \frac{|\sigma_1 - \sigma_2|}{2} \] (1. 7b)

Concentración de esfuerzos.

Las irregularidades presentes en los elementos se les conoce como intensificadores de esfuerzo ya que cambian los estados de esfuerzo intensificándolos en regiones conocidas como área de concentración de esfuerzos.

\[k_t = \frac{\sigma_{\text{máx}}}{\sigma_0} \quad k_{ts} = \frac{\tau_{\text{máx}}}{\tau_0} \] (1. 8)
Factor de seguridad.

El factor de seguridad es expresado como la ratio de dos cantidades que tienen las mismas unidades, como resistencia/esfuerzo, carga crítica/carga aplicada, carga última a la fractura/sobrecarga de servicio esperada, ciclos máximos/ciclos aplicados, o máxima velocidad segura/velocidad de operación. Un factor de seguridad siempre es sin unidades.

El factor de seguridad es una medida de incertidumbre del diseñador en el modelo analítico, teoría de fallas, y los datos de los materiales usados, y debe ser elegido apropiadamente (Norton, 2006, pág. 18). Cuando N =1, el esfuerzo en él elemento es igual a la resistencia del material (o la carga aplicada es igual a la carga que falla, etc.).

Si hemos realizado pruebas exhaustivas de en prototipos físicos de nuestro diseño con el fin de probar la validación de nuestro modelo ingenieril y del diseño, y habiendo generado datos de prueba en la resistencia particular del material, es entonces cuando podemos permitir el uso de un factor seguridad más pequeño. Si nuestro modelo es probado en menor nivel o la información de las propiedades del material son menos conocidas, un valor más grande de N es aplicado en consecuencia (Norton, 2006, pág. 18).

Falla por carga.

La falla puede significar cualquier opción, “que una parte se haya separado en dos o más piezas; se ha distorsionado permanentemente, arruinado de esta manera su geometría; se ha degradado su confiabilidad, o se ha comprometido su función por cualquier razón” (G. Budynas & Nisbett, 2012, pág. 206).

Dado que debe haber más de un modo potencial de falla para cualquier elemento de máquina, puede haber más de un valor de factor de seguridad N. el valor más pequeño de N para cualquier parte es el de mayor preocupación, ya que es el que predice con mayor probabilidad el modo de falla (Norton, 2006, pág. 19).

Teorías de falla por (G. Budynas & Nisbett, 2012, pág. 210):

Materiales Dúctiles (criterios de fluencia).

- Esfuerzo cortante máximo (ECM).
- Energía de distorsión (ECM).
- Mohr-Coulomb para materiales dúctiles (CDM).

Materiales Frágiles.

- Esfuerzo normal máximo (ENM).
- Mohr-Coulomb para materiales frágiles (CMF).
Mohr modificada (MM).

Un elemento falla cuando este cede o se distorsiona lo suficiente para no funcionar apropiadamente. También, una parte puede fallar por fractura o ruptura (Norton, 2006, pág. 240).

Un factor importante es el tipo de carga, si esta es estática o dinámica. Cargas estáticas son lentamente aplicadas y se mantienen esencialmente contantes con el tiempo. Cargas dinámicas son aplicadas de repente (cargas de impacto) o varían con el tiempo (cargas de fatiga), o ambas (Norton, 2006).

Falla por carga estática.

Mientras que los materiales dúctiles se fracturan si es esforzado estáticamente sobre su último esfuerzo a tensión, su falla en las partes de máquina es considerada que ocurre generalmente cuando ceden sobre una carga estática. La resistencia a la fluencia de un material dúctil es apreciablemente menos que su resistencia última. (Norton, 2006, pág. 241).

Teoría von Mises-Hencky o Energía de distorsión.

El microscópico mecanismo de fluencia es ahora entendido que es debido a la fricción relativa de los átomos de los materiales dentro de su red de estructura. Esta fricción es causada por el esfuerzo cortante y es acompañada por distorsión de la forma de la parte. La energía almacenada en la parte en esta distorsión es un indicador de la magnitud del esfuerzo cortante presente (Norton, 2006, pág. 242).

Energía total de deformación.

Como expone (Norton, 2006, pág. 242) la energía de deformación U en una unidad de volumen (densidad de energía de deformación) asociada con cualquier esfuerzo es el área baja la curva de esfuerzo-deformación hasta el punto del esfuerzo aplicado para un estado de esfuerzo unidireccional, como se muestra en la Figura 1.9.

\[U = \frac{1}{2} \sigma \varepsilon \]
\[(1.9a) \]

La energía total de distorsión en un elemento sometido a una carga tiene dos componentes, uno debido a carga hidrostática, la cual cambia su volumen, y otro debido a distorsión, la cual cambia su forma. Si separamos los dos componentes, la porción de energía de distorsión dará una medida del esfuerzo cortante presente siendo \(U_d \) el componente de energía de distorsión y \(U_h \) el componente de carga hidrostática, (Norton, 2006, pág. 243).

\[U = U_h + U_d \]
\[(1.9b) \]

\[U_h = \frac{1 - 2v}{6E} \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + 2(\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3) \right] \]
\[(1.10) \]

Así también deduce la siguiente fórmula para el componente de energía de distorsión.

\[U_d = \frac{1 - v}{3E} \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3 \right] \]
\[(1.11) \]

Para obtener el criterio de falla se compara la energía de distorsión por unidad de volumen con la energía de distorsión por unidad de volumen presente en el ensayo.
de tensión para la falla de un elemento, ya que el ensayo de tensión es nuestra principal fuente de información de la resistencia del material. Aquí el esfuerzo de falla que interesa es el esfuerzo de fluencia S_y. El ensayo de tensión es un estado de esfuerzo en un eje, donde, en fluencia, $\sigma_1 = S_y$ y $\sigma_2 = \sigma_3 = 0$ (Norton, 2006, pág. 244).

Sustituyendo estos valores en la ecuación (1. 11), se obtiene, como lo deduce Norton, 2014:

$$U_d = \frac{1 - v}{3E} S_y^2$$

(1.12)

Igualando ambas ecuaciones, Ecu. 4 y Ecu. 5, resolviendo se obtiene:

$$S_y = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3}$$

(1.13a)

Para dos dimensiones $\sigma_2 = 0$, se obtiene la ecuación (1.13a)(1.15) mostrada en (Norton, 2006)

$$S_y = \sqrt{\sigma_1^2 - \sigma_1 \sigma_3 + \sigma_3^2}$$

(1.13b)

La ecuación de energía de distorsión en dos dimensiones (1.13a) describe una elipse, que cuando es trazada en los ejes σ_1, σ_3, véase Figura 1. 10. El interior de esta elipse define la región de los esfuerzos de seguridad combinados en dos ejes contra la fluencia bajo carga estática (Norton, 2006, pág. 244).

Figura 1. 10. Elipse de energía de distorsión normalizada para la resistencia a la cedencia del material.

Fuente: Modificado de (Norton, 2006)
Factor de seguridad.

(Norton, 2006, pág. 246) sugiere que, para propósitos de diseño, es conveniente elegir un factor de seguridad cuyo valor esté dentro de la elipse falla-esfuerzo.

\[N = \frac{S_y}{\sigma} \] \hspace{1cm} (1.14)

Teoría del esfuerzo normal máximo.

La teoría del esfuerzo normal máximo establece que la falla ocurrirá cuando el esfuerzo normal en el espécimen alcance algún límite como la resistencia a la fluencia a tensión o la última resistencia a la tensión. Para materiales dúctiles, la resistencia a la fluencia es el criterio deseado (Norton, 2006, pág. 250).

Se debe observar que la teoría del esfuerzo normal máximo no es recomendable para materiales dúctiles, aunque con modificaciones a esta teoría es válida y sirven para estos materiales cuyas últimas resistencias a la tensión son menores que su resistencia cortante y a compresión (Norton, 2006, pág. 250).

Teoría del esfuerzo cortante máximo.

Algunas veces llamada Tresca-Guest, esta teoría establece que la falla ocurre cuando el esfuerzo cortante máximo en una parte excede el esfuerzo cortante en un espécimen tensado a la fluencia un medio del límite de elasticidad (Norton, 2006, pág. 248), por lo que el criterio de falla se define como.

\[S_{ys} = \frac{S_y}{2} \] \hspace{1cm} (1.15)

Donde \(S_{ys} \) es la fracción de la resistencia de fluencia del material y su grafica se muestra en La Figura 1.11.

La falla hexagonal envuelta para la teoría del esfuerzo cortante máximo en dos dimensiones superpuesta en la elipse de la energía de distorsión, esta es inscrita dentro de la elipse contactándola en seis puntos. La falla se considera que ocurre cuando el estado de combinación de esfuerzo alcanza el límite hexagonal (Norton, 2006, pág. 248).
El factor de seguridad se encuentra con, como lo expresa (Norton, 2006)

\[
N = \frac{S_{ys}}{\tau_{max}} = \frac{S_y/2}{(\sigma_1-\sigma_2)/2} = \frac{S_y}{(\sigma_1-\sigma_2)} \quad (1.16)
\]

Donde \(\tau_{max}\) en tres dimensiones es el valor más grande de la ecuación (1.6), mientras que para el caso de dos dimensiones es el resultado de la ecuación (1.7a).
Capítulo II
Lean Manufacturing en la mejora tecnológica

Este capítulo explica la metodología, factores de éxito, los retos y la responsabilidad social de implementar el Lean Manufacturing, además se exponen las herramientas lean, su concepto, propósito y forma de aplicación, todo esto para entender a lo que nos enfrentamos en la implementación de esta técnica de mejora en el caso de estudio que se muestra en el capítulo III.

Lean Manufacturing.

En su excelente libro Lean thinking, James Womack y Daniel Jones definen el lean manufacturing como un proceso de cinco pasos: definir el valor del cliente, definir el flujo de valor, hacerlo <<fluir>>, halarlo (pull) desde el final (cliente) y perseguir la excelencia. Para una producción lean se requiere una mentalidad que enfoque la realización del flujo de producto a través de procesos de valor agregado, sin interrupción (flujo pieza a pieza), con un sistema pull que avanza desde el final a partir de la demanda del cliente, completando solo lo que la siguiente operación necesita o se ha llevado. (K. Linker, 2011)

(Socconinì, 2013) sostiene que el poder del Lean Manufacturing radica en descubrir las oportunidades de mejora, ya que siempre existirá algo que mejorar. Es una forma de vida que reconoce la existencia de desperdicios, los cuales son actividades que no agregan valor, pero si costo y trabajo, enfrentando el reto que conlleva el encontrarlos y eliminarlos.
De acuerdo a (Omogbai & Konstantinos, 2016, pág. 608) el Lean Manufacturing es una serie de prácticas que buscan la perfección mediante la eliminación de desperdicio, lo cual se logra a través de la mejora continua del flujo del producto conforme el cliente lo demanda, estas prácticas abarcan un amplio rango de técnicas y herramientas, las cuales se sintetizan en la Figura 2. 1Figura 2. 2.

![Figura 2.1. Herramientas Lean Manufacturing.](image)

<table>
<thead>
<tr>
<th>Herramientas Lean</th>
<th>Implementación Básica</th>
<th>Efectividad en los equipos</th>
<th>Tiempo de entrega y capacidad</th>
<th>Calidad</th>
<th>Control de materiales y producción</th>
<th>Trabajo</th>
<th>Reducción de energía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eventos Kaizen</td>
<td>5’s</td>
<td>Mantenimiento Productivo Total</td>
<td>Manufactura Celular.</td>
<td>Cambios Rápidos de productos.</td>
<td>AMEF</td>
<td>Poka Joke</td>
<td>8 D’s</td>
</tr>
<tr>
<td>Control visual.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kanban</td>
<td>Heijunka</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Basado en (Socconini, 2013)

Algunas organizaciones agonizan por su falta de entendimiento del cambio de mentalidad y las prácticas de compra del cliente, por lo que, para superar esta situación y convertirse más reditubles, muchas empresas cambian a “Lean Manufacturing”, ya que su meta es, de acuerdo a (Hartini & Ciptomulyono, 2015),
hacer a una empresa altamente reactiva a la demanda del cliente mediante la reducción de desperdicio.

Esta eliminación sistemática se lleva a cabo mediante trabajo con equipos de personas bien organizadas y capacitados. Debemos entender que Lean Manufacturing es el esfuerzo incansable y continuo que crea empresas más efectivas, innovadoras y eficientes (Bodek). Una empresa Lean, esbelta o ágil, que quiera obtener el mejor beneficio dadas las condiciones cambiantes de un mundo globalizado, debe ser capaz de adaptarse rápidamente a los cambios. Para ello debe recurrir a las herramientas idóneas de mejora, prevención, solución de problemas y administración disponibles, tener hábitos que influyan en la cultura y disponer de una administración congruente con liderazgo que motive el cambio y el auto crecimiento. (Socconini, 2013, pág. 11).

Kaizen.

El Kaizen es una filosofía de origen japonés que promueve las pequeñas acciones para mejorar como un resultado de esfuerzo continuo, estas pequeñas acciones de mejora conllevan la participación de todos en la organización desde el nivel más alto de gerencia hasta los niveles más bajos en los trabajadores (Ghazali Maarof & Mahmud, 2015, pág. 1)

“Kaizen significa mejoramiento progresivo que involucra a todos, incluyendo tanto a gerentes como a trabajadores” (Masaaki, 1994, pág. 39), el mismo autor resalta que está más interesado en el proceso que en el resultado. “La fuerza de la administración japonesa se encuentra en el desarrollo exitoso y en la ejecución de un sistema que reconoce los fines en tanto que enfatiza los medios” (Masaaki, 1994, pág. 63)

Esta primera pieza del viaje Lean y son comúnmente confundidos uno con el otro; Lean es remover desperdicio mientras que el Kaizen son mejoras continuas, no son lo mismo, sin embargo, Kaizen es parte del Lean (Ortiz, 2010, pág. 50).

Metodología.

Muestra habilidades individuales para trabajar de manera efectiva en pequeños grupos, resolviendo problemas, documentando y mejorando procesos, recolectando y analizando datos y auto dirigiéndose en un grupo de trabajo, esto empuja a la toma de decisiones (o la propuesta de tomarlas) hacia los trabajadores, que requieren de discusiones abiertas y de consensos antes de implantar alguna decisión (K. Linker, 2011).
En la implementación de Kaizen, las compañías hacen un fuerte énfasis en abordar a los trabajadores de la planta proporcionándoles algún nivel de fortalecimiento para identificar y resolver problemas relacionados al lugar de trabajo. Kaizen, si se implementa correctamente, puede animar a los trabajadores a pensar diferente acerca de su trabajo e impulsan la moral y el sentido de responsabilidad entre los empleados mirando hacia su área de trabajo. Esto es porque a través del fortalecimiento dado por niveles altos en la gerencia, los empleados empezarán a sentir que son parte del proceso de toma de decisiones y de mejora (Ghazali Maarof & Mahmud, 2015, pág. 4) adquiriendo las características mostradas en la Figura 2.

![Figura 2. Características del implementador Kaizen.](image)

Las pequeñas y medianas empresas o Pymes necesitan tener la confianza de sus clientes y proyectar cualidades como la calidad y rapidez del servicio para mantenerse en un nivel competitivo, esto es de suma importancia ante el panorama de la globalización, y aunque aparentemente este mercado está fuera del alcance para las pymes, el avance en las tecnologías de la información permite el libre
mercado donde cualquiera que ofrezca un producto o servicio pueda competir en él.

Algunos países hacen un esfuerzo en integrar a sus pymes a un mercado más grande, por ejemplo (Ghazali Maarof & Mahmud, 2015) expone que la comunidad económica ASEAN en Malasia a integrado a las Pymes en un mercado global, y aunque esto representa más retos, también representa una oportunidad para elevar la calidad y desarrollar empresas más competitivas.

También dice que una forma para impulsar la competitividad de las pymes es la implementación de Kaizen con herramientas como el Control Total de Calidad (“Total Quality Control” TQC), Mantenimiento productivo total (“Total Productive Maintenance” TPM), Mejoramiento de la Calidad (“Quality Improvement”, Automation, Cero Defectos (“Zero Defect” ZD), Kanban, Justo a tiempo (“Just-in-time” JIT), Círculo de control de calidad (“Quality Control Circle” QCC) y el sistema de propuestas.

Es crucial para el éxito de la implementación; un entendimiento de la filosofía kaizen aunado a cualidades en los empleados como una actitud dispuesta a afrontar cualquier reto.

Son los empleados los que se encargan de ejecutar las actividades de mejora continua en los eventos que ellos propongan tenga una oportunidad de mejora, es por eso que fortalecerlos en confianza y conocimientos de la filosofía Kaizen es muy importante, impulsarles la moral y el sentido de responsabilidad de su trabajo, para que durante la implementación se sientan parte del proceso de toma de decisiones y de mejora.

Para implementar el Kaizen (Ghazali Maarof & Mahmud, 2015) sugiere a las compañías adoptar el ciclo Planear-Hacer-Chequear-Acción para resolver problemas. En la etapa de planeación, los empleados tratarán de identificar áreas que necesitan mejorarse, una vez que han identificado dichas áreas, el siguiente paso es implementar Kaizen.

El mapeo del flujo de valor, implica hacer diagramas de flujo de los pasos, procesos o actividades realizadas. A través de este camino, los empleados pueden identificar las actividades de no valor (desperdicio) que ocurren en el proceso y tratar de eliminarlos o reducirlos. Muchas compañías les pedirán a sus empleados que participen en un equipo multifuncional para trabajar juntos en un proyecto. Una vez que los equipos hayan recolectado suficiente información, analizado y evaluado el siguiente paso es determinar una meta realista para ser alcanzada.

Áreas que pueden mejorarse serán la base de las áreas problema, identificando, por ejemplo; el nivel de la calidad del producto, índice de desperdicio, distancia total de traslado para elaboración del producto, cantidad de espacio usado, cantidad de trabajo en proceso o el número de personal usado para cada tarea específica,
después de pequeñas sesiones de lluvia de ideas, el equipo tratará de identificar cuáles serán las opciones o las ideas para mejorar la situación actual o el problema. El equipo elegirá las mejores opciones y las implementará en el piso de manufactura.

La tercera etapa en el ciclo Planear-Hacer-Checar-Acción realizar un seguimiento de las actividades Kaizen para ver si la mejora ha tenido algún efecto positivo o negativo en la situación problema. El equipo registrará su progreso en la tabla de resultado y los presentará a la gerencia, esto será evaluado para todos los empleados. El cuarto paso es revisar todas las mejoras y ver si la acción puede proceder para estandarizar las actividades Kaizen para procesos similares en la compañía.

Factores que contribuyen a la implementación exitosa del Kaizen.

Para poder generar una idea o sugerencia constructiva e implementarla en la compañía, se necesita de un buen entendimiento entre la gerencia y sus empleados. Lo cual se logra con un buen sistema de propuesta de mejoras que estimule una efectiva comunicación.

Esto es porque el sistema de sugerencia incita a los empleados a contribuir con sus ideas de mejora basadas en la experiencia que han ganado a través de su vida diaria en el trabajo para poder realizarlo eficientemente. Chen and Tjosvold (2006) mostrado en (Ghazali Maarof & Mahmud, 2015) descubrieron que el éxito del sistema de propuesta japonés ha permitido a las industrias japonesas mejorar en; la satisfacción del cliente, el índice de productividad, el estándar mundial, incrementar la satisfacción de los empleados y los ingresos de la empresa.

Otro factor que puede ayudar al éxito del Kaizen es el compromiso en los niveles altos de la gerencia al tener una clara estrategia corporativa, políticas y metas que estimulen la cultura Kaizen en la organización. Una clara estrategia Kaizen y políticas pueden proveer un buen soporte y dirección hacia la implementación Kaizen, como lo es, una mejor asignación de los recursos.

En un estudio mostrado en (Ghazali Maarof & Mahmud, 2015) hecho por Bateman (2003) en 21 industrias manufactureras inglesas de componentes automotrices encontraron que, la disponibilidad de los recursos, así como la facilidad de desplegar a los recursos humanos para que realicen actividades de mejora, fue definido como uno de los principales factores que contribuyen en gran proporción el proceso de mejora continua.

La presencia de un líder Kaizen en la organización es un factor determinante hacia la implementación exitosa. Este experto tiene un buen entendimiento personal de la conducta Kaizen y un gran deseo y compromiso personal para liderar las actividades
de mejora continua, convirtiéndose en un agente de cambio para la organización. De esta forma, los gerentes de operación que poseen estas habilidades son más propensos a ser líderes Kaizen, y dirigir los cambios en el nivel de piso de ventas.

Esto se debe a que el rol del líder Kaizen es servir de puente entre la gerencia y los empleados, especialmente durante la intervención del cambio y es en las pequeñas empresas donde tiene más impacto.

Un estudio hecho por Chapman et al (1999) encontró que los factores de éxito en la implementación kaizen son casi los mismos para las Pymes y grandes empresas, por lo que se puede concluir que si estos factores son identificados y analizados se puede llegar a un entendimiento del porqué del éxito o fracaso de la implementación del kaizen a un nivel general, anque como todo, tendrían diferencias como las encontradas en un estudio donde se muestra que el sistema de las Pymes se basa en recompensas para los participantes de mejora continua, mientras que las grandes empresas centran su atención en la capacitación del personal y prepararlos para la aplicación de Kaizen sin ninguna recompensa.

Retos en la implementación de Kaizen.

A pesar de que muchas organizaciones entienden la necesidad de implementar Kaizen en su trabajo, no todas las compañías tienen éxito en su implementación, ya que el manejar las actividades Kaizen no es una tarea sencilla.

De acuerdo a (Ghazali Maarof & Mahmud, 2015) en un estudio hecho por García-Sabater y otros en 2011 se identificó que la resistencia al cambio, especialmente entre trabajadores maduros, y confusión en los conceptos de mejora continua también son retos en la implementación Kaizen.

Otro estudio mostrado en (Ghazali Maarof & Mahmud, 2015) fue conducido entre las manufactureras de Estados Unidos e indico que solo el 11% de las compañías que realizan mejora continua, sus iniciativas han sido consideradas con proyección de éxito.

Algunas organizaciones han fallado en motivar a sus empleados para participar en las actividades Kaizen, debido a la ausencia de comprensión o no ver la recompensa, falta de un entrenamiento apropiado para los empleados y largas esperas para obtener el proceso de propuesta. Los niveles altos de la gerencia deben desarrollar un sistema de recompensa que reconozca el esfuerzo hecho por los empleados y gerentes para asegurar el éxito Kaizen.

Sin embargo, compañías que quieren introducir Kaizen en sus organizaciones deben ser muy precavidos antes de empezar Kaizen. Ya que las compañías tienden a desarrollar un camino estratégico sin un buen entendimiento entre el nivel más alto de gerencia y el nivel más bajo operacional.
Un aspecto importante, observado por (Kiernan, 1996; Pullin, 2005) y mostrado en (Ghazali Maarof & Mahmud, 2015), son los retos afrontados por la gerencia de operación al implementar Kaizen en sus organizaciones, siendo estos el manejar la mejora continua en sí, además de la falta de recursos para activar las actividades, falta de concentración debido a la presión del trabajo y falta de entendimiento de la necesidad de cambio.

Así también (Ghazali Maarof & Mahmud, 2015) concuerda con lo expuesto por (Bateman et al., 2003), el cual dice que los gerentes, por ejemplo, no saben qué hacer para cambiar sus culturas o cómo lidiar con la naturaleza retadora y demandante del Kaizen y por lo que fallan para convencer a los empleados del piso de ventas que necesitan hacer cambios.

En conclusión, implementar lean manufacturing no es un proceso lineal. Desafortunadamente, como dice (Salonitis & Tsinopoulos, 2016, pág. 190), no hay una receta que garantice una implementación exitosa, y en caso de no tener éxito, los empleados y su confianza en la filosofía Lean se ve afectada.

Responsabilidad social.

No pueden existir personas sin economía y las personas no pueden vivir en otro lugar que no sea este mundo, que no es otra cosa, dicho por (Ortiz H., Ortiz H., & Ortiz H., 2012), que el resultado de las decisiones tomadas en el pasado.

Lo anterior muestra a la sociedad como responsable de esa inconsciencia por parte de las corporaciones del impacto que pudiera ocasionar su crecimiento económico en el desarrollo social y ambiental, provocando anomalías, tales como: Pobreza, contaminación, desastres naturales, hambre, extinción de especies animales y vegetales, efecto invernadero y el apresurado crecimiento de la población.

La responsabilidad social de las empresas se basa en la teoría de la responsabilidad de las corporaciones (RC), que es considerada como la contribución de parte de los negocios (empresas) hacia el desarrollo sostenible, razón de esto es que las industrias son parte de la sociedad y por ello sus actividades deben promover el desarrollo sostenible de la misma (CEC, 2002). (Ortiz H., Ortiz H., & Ortiz H., 2012, pág. 23)

El desarrollo sostenible se entiende como aquel “que satisfaga las necesidades del presente sin deteriorar la capacidad de las futuras generaciones de satisfacer sus propias necesidades” (Ortiz H., Ortiz H., & Ortiz H., 2012, pág. 23)

A su vez (Ortiz H., Ortiz H., & Ortiz H., 2012, pág. 23) muestra la siguiente definición que da el Consejo Mundial de Negocios para el Desarrollo Sostenible para la responsabilidad social:
La responsabilidad de la corporación es el compromiso de las empresas de contribuir al desarrollo sostenible, trabajando con sus empleados, las familias, la comunidad local y la sociedad en general para mejorar su calidad de vida.

Esta forma de pensar se debe transmitir a las microempresas para asegurar un estándar de calidad para el cliente, así también procesos que no dañen al medio ambiente proporcionando al trabajador la mejor calidad de vida posible.

Herramientas lean.

Son el medio por el cual el lean manufacturing y el kaizen reducen desperdicio y mejoran los procesos, véase Tabla 2.1.

Eventos Kaizen.

Un evento Kaizen es “una cadena de acciones realizadas por equipos de trabajo cuyo objetivo es mejorar los resultados de los procesos existentes” (Socconini, 2013, pág. 130), se realizan mejoras en los procesos, eliminando las actividades que no generan valor en el producto, y al sumar los beneficios de cada proceso de como resultado una mejora en productividad, eficiencia y calidad.

Similar al Kaizen, Los eventos Kaizen usan herramientas y técnicas de procesos de mejora enfocados a cambios de bajo costo con el propósito de producir una cultura de organización de mejora continua, su principal característica es el empoderamiento del empleado a través de entrenamiento y proveyendo oportunidades para mejorar el sistema de trabajo, y con énfasis en la realización de cambios relativamente incrementales para mejorar el desempeño. (J.Glover, A.Farris, M.VanAken, & L.Doolen, 2011, pág. 189).

Tal como dice (Brunet and New, 2003) en (J.Glover, A.Farris, M.VanAken, & L.Doolen, 2011, pág. 189) los eventos Kaizen están relacionados con, pero pueden ser claramente distinguidos del extenso concepto Kaizen, y que a su vez, de acuerdo a (Socconini, 2013), son la estructura en la cual las herramientas Lean son aplicadas para lograr cambios significativos como:

- Mejoras rápidas en el desempeño de procesos específicos de producción o celdas de manufactura.
- Tiempos muy cortos de cambio de productos.
- Mejor distribución de planta.
- Mejor desempeño de la maquinaria.
• Mejora en el orden y limpieza.
• Mejor calidad en el producto.
• Mejor comunicación entre operadores.
• Mayor capacidad de producción.
• Condiciones de trabajo más seguras y ergonómicas.

De esta forma, los eventos Kaizen pueden ser usados como vehículo para la implementación del Kaizen en una organización, creando sistemáticamente cambios y manejo del desempeño de mejora (J.Glover, A.Farris, M.VanAken, & L.Doolen, 2011, pág. 189)

Así también, Socconi dice que las reglas para los eventos Kaizen son:

• Mantener la mente abierta.
• Mantener una actitud positiva, incluso ante la adversidad.
• No conservar los desacuerdos ni las dudas para sí mismo.
• Ayudar en la creación de un ambiente de cooperación.
• Mantener un respeto mutuo.
• Ser empático hacia los demás.
• No existen jerarquías en el grupo de mejora.

5's (orden y limpieza).

Las 5’s es un sistema desarrollado en Japón por Hiroyuki Hirano y “se le conoce con este nombre porque cada una de las palabras originales (en japonés) de la metodología inicia con la letra s” (Socconini, 2013, pág. 147):

Las 5’s se definen como “una disciplina para lograr mejoras en la productividad del lugar mediante la estandarización de hábitos de orden y limpieza. Esto se logra implementando cambios en los procesos en cinco etapas” (Socconini, 2013, pág. 147), sin poder pasar a otra etapa hasta que se culmine la anterior, como se muestra en la Figura 2. 3.Las 5’S.Figura 2. 3.

“Se dice que, si en una empresa no ha funcionado la implementación de las 5’s, cualquier otro sistema de mejoramiento de los procesos está destinado a fracasar” (Socconini, 2013, pág. 148).
Control visual.

Sistema en el que el “trabajo se relaciona con simples señales visuales y de audio que se identifican y entienden con facilidad (...) para identificar, instruir o indicar que existe una condición normal o anormal y que se puede requerir alguna acción” (Socconini, 2013, pág. 164).

Tipos de control visual.

1) Alarmas.

Dan una señal de alerta en situaciones urgentes, con un sonido en particular para cada situación y/o aplicación.
2) Lámparas y torretas.
Permiten conocer el estado de los equipos o de las diferentes áreas, utilizando torretas o banderas iluminadas con diferentes colores, cada uno de ellos, como Socconini escribe en su libro, indica los siguientes conceptos:

- Azul: Problemas relacionados con los materiales (surtimiento o falta de material).
- Verde: Línea o célula corriendo satisfactoriamente.
- Amarillo: Línea o célula parada por falta de mantenimiento, o a punto de hacer algún cambio.
- Rojo: Parada por problemas de calidad o accidente.

3) Kanban.
Es un sistema “de información visual que indica a los operadores cuando iniciar una actividad de producción, también indica que se requiere reponer material (...), con lo cual previene el desabasto” (Socconini, 2013, pág. 166)

4) Tableros de información.
De gran utilidad para dar seguimiento continuo y automático al plan de producción, se programa el ritmo al que se debe producir, es decir, lo que el cliente compra.

5) Lista de verificación.
Sirve para asegurar que las tareas a realizar se lleven a cabo.

6) Marcas en el piso.
Indican el lugar designado para una herramienta, maquinaria o equipo.

- Colores
 ✓ Verde: Indica producto bueno.
 ✓ Amarillo: Delimita pasillos.
 ✓ Azul: Indica materia prima y producto en proceso.
 ✓ Rojo: Indica producto no conforme.
 ✓ Rojo y Blanco: Delimitan áreas de seguridad.
 ✓ Negro y Blanco: Delimitan las áreas de mantenimiento.
 ✓ Negro y Amarillo: Delimitan áreas de precaución.

Mantenimiento productivo total.

El mantenimiento productivo total o TPM (por sus siglas en inglés de Total Productive Maintenance), “es una metodología de mejora que permite la continuidad
de la operación, en los equipos y plantas” (Socconini, 2013, pág. 175) introduciendo conceptos de:

- Prevención
- Cero defectos ocasionados por máquinas.
- Cero accidentes.
- Cero defectos.
- Participación total de las personas.

El mantenimiento de las máquinas es de suma importancia ya que de él depende que no se detenga la producción, no generar desperdicios y gastos en reparaciones, resultando en un factor crítico para empresas con alta automatización en sus procesos. “El TPM se utiliza cuando se quiere tener plantas, máquinas y equipos de todo tipo en óptimas condiciones, incluyendo instalaciones y equipos de transporte y manejo de materiales” (Socconini, 2013, pág. 177).

Socconini en su libro Lean manufacturing comenta que el 50% del gasto total del mantenimiento es ocasionado por el desgaste forzado del equipo debido a la mala operación de los usuarios, dicho desgaste se agrega al desgaste normal de operación, lo que aumenta la probabilidad de requerir mantenimiento correctivo y por ende un gasto que se puede prevenir. Dicho lo anterior se demuestra la importancia que tiene el TPM en los insumos al evitar el desgaste forzado de los equipos y al dar al operador la responsabilidad de cuidar su equipo para mantenerlo en óptimas condiciones.

Manufactura celular.

La manufactura celular es un concepto de fabricación en el que la distribución de la planta mejora de manera significativa haciendo fluir la producción ininterrumpidamente entre cada operación, reduciendo drásticamente el tiempo de respuesta, maximizando las habilidades del personal y haciendo que cada empleado realice varias operaciones.

Consiste en agrupar máquinas y operaciones secuenciales, en las que se pueda fabricar un producto completo de principio a fin sin recurrir tanto al uso de transportes, eliminando inventarios en proceso y haciendo fluir la producción continuamente (Socconini, 2013, pág. 194).

Todos los procesos son una unidad, y aunque cada uno puede ser independiente y diferente a los demás, no se verán entre sí como procesos separados o en departamentos, es un concepto que no busca el bien propio, sino el bien común.

Una de las formas de lograr la manufactura celular es mediante la reducción de los tiempos empleados en los procesos de fabricación.
Cambios rápidos de productos.

Históricamente este sistema tiene su origen en la empresa Toyota, cuando Taiichi Ohno director en jefe de producción, contrató a Shigeo Shingo como consultor, el cual tendría el reto de reducir el tiempo estándar de cambio de moldes en las prensas, que era de aproximadamente 24 hrs, y así permitir la producción de diversos modelos sin detener la producción, logrando, en 1970, cambiar moldes en prensas de más 1000 toneladas en casi tres minutos.

Este sistema se le conoce por sus siglas en inglés SMED (Single Minute Exchange of Die), que "significa cambios de herramentales en un solo digito de minuto, es decir, menos de 10 minutos" (Socconini, 2013, pág. 211).

Si se requiere hacer un cambio de herramienta, ajuste o algo que necesite detener a la producción en un equipo o máquina, se debe realizar lo más rápido posible, de tal forma que la producción no se detenga más de lo necesario. Un claro ejemplo son los pits en las carreras de autos, donde dicha escala se debe realizar lo más rápido posible, ya que se corre el riesgo de perder la carrera con cada segundo que el automóvil está en los pits, lo mismo pasa en las empresas, que entre mayor sea el tiempo en que se realiza algún cambio en la maquinaria, se pierde tiempo que agregaría valor al producto fabricado.

Poka yoke.

Está definido como “métodos que evitan los errores humanos en los procesos antes que se conviertan en defectos, y permite que los operadores se concentren en sus actividades” (Socconini, 2013, pág. 239). Estos métodos permiten la acción inmediata en cuanto se detecten fallas, evitando mandar productos defectuosos a la siguiente etapa, sin interrumpir el flujo continuo.

Se utiliza en diversos casos como cuando; las máquinas o equipos continuamente generan defectos, la incidencia de defectos, fallas o accidentes es muy alta, controles de prevención de errores en los procesos no funcionan de la forma correcta, etc.

Niveles poka yoke.

Nivel 1
Detecta el defecto cuando ya ha ocurrido, evitando que pase a la siguiente estación.

Nivel 2
Detecta el error en el instante que ocurre, antes de convertirse en un defecto.
Nivel 3.
Evita la generación de errores antes de que ocurran y se conviertan en defectos.

Socconini expone 4 tipos básicos de Poka yoke que Richard Chase y Douglas Stewart definieron.

Tipos de Poka yoke:

1) Físicos.
 Dispositivos que identifican errores o anomalías físicas, con el fin de prevenir errores en productos y procesos.

2) Secuenciales.
 Son formas que buscan restringir la secuencia de tal manera que solo se siga un orden predeterminado, ya que en algunos casos un cambio u omisión en el orden puede ocasionar errores.

3) De agrupamiento.
 Dispositivos que permite tener todo listo y no falte algún elemento para realizar una operación, por lo general se utilizan kits en los que se preparan los elementos necesarios para la tarea a realizar.

4) De información.
 Sistema que retroalimenta al empleado con información sencilla, clara y concisa de lo que es necesario para evitar errores.

Ejemplos Poka yoke:
- Perno guía.
- Contador.
- Switch limite.
- Método de sobrantes/excedente.
- Restricción de secuencia.
- Compuerta.
- Sensor.
- Código de colores.
<table>
<thead>
<tr>
<th>Implementación Básica.</th>
<th>Eventos Kaizen</th>
<th>Mejora los resultados de los procesos existentes mediante acciones ejecutadas por un equipo de mejora interdisciplinario.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5’ s</td>
<td>Disciplina de hábitos de orden y limpieza, que logra mejoras en la productividad en el lugar de trabajo.</td>
</tr>
<tr>
<td></td>
<td>Control visual</td>
<td>El trabajo se relaciona con señales audiovisuales que proporcionan información en tiempo real sobre el estado de un proceso.</td>
</tr>
<tr>
<td>Efectividad en los equipos.</td>
<td>Mantenimiento Productivo Total</td>
<td>Metodología que mantiene a las máquinas, equipos, e instalaciones en óptimas condiciones para un flujo continuo de operación.</td>
</tr>
<tr>
<td>Tiempo de entrega y capacidad.</td>
<td>Manufactura Celular</td>
<td>Concepto que hace fluir a la producción ininterrumpidamente entre cada operación, reduciendo drásticamente el tiempo de respuesta, maximizando las habilidades del personal y haciendo que cada empleado realice varias operaciones.</td>
</tr>
<tr>
<td></td>
<td>Cambios Rápidos de productos</td>
<td>SMDE (Single Minute Exchange of Die) que se entiende como cambio de herramentales en menos de 10 minutos para maximizar el tiempo de producción.</td>
</tr>
<tr>
<td>Calidad</td>
<td>AMEF</td>
<td>Identifica fallas en productos y procesos, evalúa sus efectos, causas y elementos de detección para evitar su ocurrencia y tener un método documentado de prevención.</td>
</tr>
<tr>
<td></td>
<td>Poka Joke</td>
<td>Métodos que evitan los errores humanos en los procesos antes de que se conviertan en defectos.</td>
</tr>
<tr>
<td></td>
<td>8 D’s</td>
<td>Metodología que resuelve problemas sistemáticamente mediante la documentación de acciones realizadas en 8 pasos mediante un equipo interdisciplinario.</td>
</tr>
<tr>
<td></td>
<td>Seis Sigma</td>
<td>Metodología de mejora que sirve para disminuir drásticamente la variación de la calidad entre un mismo producto, incumpliendo las expectativas del cliente.</td>
</tr>
<tr>
<td>Control de materiales y producción</td>
<td>Kanban</td>
<td>Tarjeta que apoya a la programación de la producción, con un sistema de comunicación que permite sincronizar los procesos de manufactura con los requerimientos del cliente.</td>
</tr>
<tr>
<td></td>
<td>Heijunka</td>
<td>Sistema de control que sirve para nivelar la producción al ritmo de la demanda del cliente final, variando la carga de trabajo de los procesos de manufactura.</td>
</tr>
<tr>
<td>Trabajo</td>
<td>Estandarización</td>
<td>Permite la elaboración de productos con la misma calidad.</td>
</tr>
<tr>
<td>Reducción de energía.</td>
<td>Ahorro de energía</td>
<td>Reduce el consumo y aprovecha la energía en equipos y maquinaria.</td>
</tr>
</tbody>
</table>

Fuente: Basado en (Socconini, 2013)
Productividad y eficiencia.

Los beneficios de la aplicación de las herramientas lean se observan mediante el cálculo de la productividad y eficiencia, ecuaciones (2.1) y (2.2) respectivamente, antes y después de la aplicación de las herramientas lean. Para ello se registra el tiempo reloj y cronómetro.

Tiempo Reloj.

Es el tiempo total de todo un proceso desde el inicio hasta el final.

- Si un proceso tiene 4 etapas, se puede tomar el tiempo de inicio y final de cada etapa y sumar el total, pero se mejora la productividad en menor proporción que un tiempo total sin interrupción del inicio hasta el final del proceso.

Tiempo cronometro.

Es el tiempo que se tarda uno o más operarios en hacer una actividad sin interrupción.

- Si la actividad es continua se puede tomar el tiempo hasta que interrumpla su actividad y al final dividir ese tiempo entre piezas producidas, de lo contrario se toma el tiempo que tarda en producir una pieza.

\[
\text{productividad} = \frac{\text{Materia prima de entrada}}{t_{\text{Cronómetro}} \times \text{No. de operarios}} \quad (2.1)
\]

\[
\text{Eficiencia} = \frac{t_{\text{Reloj}}}{t_{\text{Cronómetro}}} \quad (2.2)
\]
Capítulo III
Ejemplo de aplicación del Lean Manufacturing

Este capítulo inicia con la importancia de promover empresas que elaboren dulces típicos de México, posteriormente, muestra cómo es que se eligió el proceso de elaboración de obleas para la aplicación del lean Manufacturing y la forma en que se aplicaron sus herramientas, lo cual resultó en la propuesta de un nuevo proceso que mantiene actividades que no agregan valor al producto y del cual se deriva el diseño de una mejora tecnológica, la cual se desarrolla en el capítulo IV.

¿Porque una empresa de dulces típicos mexicanos?

Expuesto por (Castro & González, 2011) la cocina mexicana fue nombrada durante el 2010 como Patrimonio Inmaterial de la Humanidad. Este reconocimiento otorgado por la UNESCO, coloca a México en una excelente situación para potencializar su oferta turística y detonar a la gastronomía mexicana tradicional y contemporánea como un atractivo único. Este reconocimiento debe ser una motivación para promover a empresas de dulces típicos ya que además de ser una fuente de empleo también mantienen viva la gastronomía tradicional mexicana.
Nuestros dulces típicos orgullosamente mexicanos son una de las expresiones del arte popular más ricas que podemos degustar. El arte de la “dulcería” es una antigua tradición mexicana con raíces prehispánicas a las cuales se le suman las coloniales.

Figura 3. 1. Dulces típicos mexicanos

Fuente: Recuperado de (Castro & González, 2011)

Aplicación del Lean Manufacturing

En visitas a la microempresa se recaba información de los procesos, y se realiza un mapeo de primer nivel, véase Figura 3. 2, y después se procede con el mapeo de segundo nivel, véase Figura 3. 3, para elegir el producto en el que se implementaran las herramientas lean.

Mapeo de procesos.

Figura 3. 2. Mapeo de procesos de primer nivel en microempresa.

Fuente: Elaboración propia.
De los tres productos mostrados en la Figura 3. 3, se elige el proceso de elaboración de obleas para aplicar las herramientas Lean y crear un nuevo proceso.

Descripción del producto elegido: obleas.

Las obleas son un alimento tradicional y artesanal con más de tres siglos de historia, es ligero y hoy en día su consumo es habitual en ferias y mercados, acompañadas con miel, queso suave o mermelada, también sirven para elaborar postres.

Por lo tanto, a diferencia de otros productos que han ido abandonando el mercado, éste sigue contando con gran demanda por lo que, lejos de extinguirse, su fabricación y comercialización aumenta a pesar de la desaparición de muchos artesanos.

Eventos kaizen.

Se realizan más visitas en la microempresa y se procede con la documentación del proceso, el cual se muestra en la Figura 3. 4, así también se observan puntos de mejora, se describen los hechos que la ocasionan y se da su posible solución.
Figura 3.4. Proceso de elaboración de obleas actual.

1.- Preparación de masa
2.- Traslado a las planchas
3.- Vertido de masa en la plancha
4.- Prensado de planchas
5.- Moverse a la sig. plancha
6.- Calentado de obleas
7.- Revisar cocción de la oblea
8.- Retirar la oblea
9.- Moverse a la sig. plancha
10.- Llevar las obleas a la zona de corte
11.- Colocar las obleas en prensa
12.- Cortar las obleas en forma redonda
13.- Inspección de forma
14.- Empaquetar
15.- Almacenamiento

Fuente: Elaboración propia

A continuación, se describen las principales actividades del proceso actual de la elaboración de obleas (Figura 3.4).
1.- Para preparar la masa para obleas, se agrega agua, harina, huevo y azúcar en un recipiente y con una batidora eléctrica (Figura 3.5) se mezclan los ingredientes hasta que quede una masa con buena consistencia.

![Figura 3.5 Mezclador de masa para obleas.](image)

Fuente: Microempresa

3.- Se pone aproximadamente una cucharada de masa en el centro de una de las planchas (Figura 3.6), esta etapa es realizada por una persona la cual debe saber la medida exacta de masa para evitar algún desperdicio de esta.

![Figura 3.6. Colocación de masa para oblea](image)

Fuente: Microempresa

4.- Una vez puesta la medida de masa en una de las planchas, la otra plancha prensa la masa y la aplana.

![Figura 3.7 Prensado de la oblea.](image)

Fuente: Microempresa
6.- Se calienta la plancha para que se cueza a cierta temperatura y a cierto tiempo, por lo que el trabajador debe poner mucha atención a no sobrepasar la temperatura y el tiempo de cocción.

8.- Una vez que el trabajador se asegura que ya se cumplió el tiempo de cocción de la oblea, esta es retirada de la plancha.

12.- Cortar el sobrante de la oblea (Figura 3. 9), para darle una forma redonda.

15.- Se empaquetan las obleas con plástico y se etiquetan (Figura 3. 10).
Observaciones al proceso actual.

Descripción de hechos.

1. Al no aplicar la cantidad exacta de masa la oblea no es de forma redonda.
2. La mayoría de las veces la masa de obleas se desborda y se desperdicia.
3. El operario tiene que abrir la plancha y depositar la masa al mismo tiempo.
4. El operario coloca el mango de la plancha en el hombro para depositar la masa.
5. Las planchas están sujetas con hilo.
6. El mango de la plancha no permite libre movilidad.
7. La masa para obleas se prepara en una sección aparte a las planchas, cuya distancia de recorrido es de 3 m.
8. La distancia de recorrido de las planchas a la zona de corte es de aprox. 4 m.
9. La operación de corte dura 2.48 minutos.
10. El calentado de obleas tiene una duración de 4 minutos.
11. La preparación de la masa para obleas tiene una duración de 10 minutos.

Propuesta de solución.

1. A la plancha se le pondrá un borde para que la masa abarque un área redonda.
2. Usar una cuchara que tenga la medida exacta para que no se desborde en la plancha.
3. Adecuar un mecanismo que abra y cierre la plancha.
4. Dejar un gancho colgando para que ahí se sujete la plancha y no se tenga que poner en el hombro
5. El mecanismo permitirá el control del ángulo de apertura de las planchas.
6. El mecanismo permitirá prescindir de los mangos de las planchas
7. Preparar la masa para obleas a un costado de las planchas.
8. La operación de corte se elimina mediante el borde en la plancha y el vertido de la masa en una cantidad exacta.
9. Se elige un nuevo material y se hace un análisis termodinámico para determinar si se hace un cambio de planchas.
10. La operación de preparación de la masa de obleas se reduce si se usan herramientas adecuadas.

Aplicación de las Herramientas de mejora.
En esta sección se muestra cómo se aplicaron algunas de las herramientas de mejora.

Las 5’S

1. **Seiri (Seleccionar).**
 a) En el área de elaboración de la masa no deben faltar estos elementos.
 - **Ingredientes.**
 1) Harina
 2) Huevo
 3) Agua
 4) Azúcar
 - **Utensilios.**
 1) Recipiente de 3 lt.
 2) Batidor
 3) Cuchara para verter en las planchas
 b) **Área de cocción de obleas**
 1) Planchas
 2) Resistencia eléctrica
 c) **Área de corte**
 1) Prensa
 2) Depósito de basura
 3) Navaja
2. Seiton (Organizar).

a) En el área de elaboración de la masa.
 - Los ingredientes serán colocados en un lugar específico de un cajón, y serán delimitados con cinta.
 - Cada utensilio será colgado en la pared en su respectivo gancho, los cuales están situados enfrente de la mesa donde se elabora la masa para ser alcanzados fácilmente y en la pared se pinta la forma del utensilio para saber si falta alguno.

b) Área de cocción de obleas
 - Las planchas están fijadas en un lugar específico.
 - La resistencia eléctrica está fija a cada plancha.

c) Área de corte
 - La prensa está fija en un solo lugar.
 - El depósito de basura está debajo de la prensa.
 - La navaja se sitúa en una funda que está a un costado de la prensa.

3. Seiso (Limpiar)

 - Cada vez que una tarea finalice se procede a la limpieza del material.
 - Limpieza y sanitización de utensilios y del personal antes de cada ciclo de elaboración de obleas.

4. Seiketsu (Estandarizar).

Consideraciones.
 - Se hace una receta para preparación de la masa para obleas siguiéndola en cada proceso.
 - Se establece un tiempo de cocción.
 - Se escribe el procedimiento a seguir en cada ciclo:

1) Agregar en el recipiente de 3l:
 a) 250 gramos de harina
 b) 250 mililitros de agua
 c) 1 huevo
d) 3 medidas de azúcar al ras con la cuchara especial

2) Batir los ingredientes
3) Enganchar las planchas al gancho que está frente a ellas para que quede suspendida
4) Verter al ras una medida de la cuchara color azul en el centro de la plancha creando una forma redonda
5) Cerrar la plancha
6) Abrir la plancha después de 3 minutos
7) Retirar oblea con la pala de plástico color negro
8) Repetir con todas las demás
9) Trasladar las obleas a la zona de corte.
10) Prensar una de las obleas.
11) Cortar la oblea con la navaja.
12) Repetir con las demás.
13) Empaquetarlas la zona de empaques.

5. Shitsuke (Seguimiento).

Realizar pláticas para mantener los cambios con el fin de crear hábitos de orden y limpieza.

Control visual.

1) Alarmas.
 • En caso que una resistencia no funcione.
 • En caso de corto en la instalación eléctrica.

2) Lámparas y torretas.

 Se coloca una torreta en la zona de cocción que cambia de color e indican lo siguiente.

 • Verde: Todo funciona correctamente.
 • Amarillo: Plancha fuera de operación.
 • Rojo: funcionamiento incorrecto de la plancha.

3) Tableros de información.

Se programa la producción por semana y se divide entre los días laborales con el fin de entregar en tiempo y forma.
4) Lista de verificación.
Sirve para asegurar que las tareas a realizar se lleven a cabo.

5) Marcas en el piso.
Indican el lugar designado para el área de preparación de la masa, de corte, de cocción y de empaquetado.

Mantenimiento productivo total.
Se hace un protocolo a seguir de las fallas para que se puedan resolver lo más pronto posible.

Aplicación de la manufactura celular.
Las distancias entre las diferentes zonas se reducen al mínimo para crear una célula autónoma.

Cambios rápidos de productos.
Crear planchas intercambiables con el fin de producir obleas de diferentes tamaños según la demanda lo requiera.

Poka yoke.
Entradas para las conexiones eléctricas no permiten conectar un cable incorrectamente.

En la Tabla 3. 1 se resume como fueron aplicadas las herramientas lean.
Estudio de métodos.

En esta parte se analiza al proceso actual y se propone uno mejorado mediante considera a todas las propuestas presentadas en el apartado anterior.

Tabla 3.1. Herramientas Lean implementadas en el proceso de elaboración de obleas.

<table>
<thead>
<tr>
<th>Implementación Básica.</th>
<th>Eventos Kaizen</th>
</tr>
</thead>
</table>
| 5’s | ✓ Documentación del proceso.
 ✓ Descripción de hechos que originan situaciones que impiden el crecimiento de la empresa.
 ✓ Soluciones propuestas. |
| Control visual. | ✓ Realización de un documento con los elementos necesarios para la elaboración de obleas
 ✓ Colocación los ingredientes y utensilios en un lugar específico.
 ✓ Limpieza cada vez que finalice una tarea.
 ✓ Redacción de una receta de obleas.
 ✓ Definición de un proceso estándar a seguir para la preparación de obleas. |
| Efectividad en los equipos. | Mantenimiento Productivo Total. | ✓ Se hace un protocolo de las posibles fallas para que se puedan resolver lo más pronto posible. |
| Tiempo de entrega y capacidad. | Manufactura Celular. | ✓ Las distancias se reducen al mínimo para ayudar a crear una célula autónoma. |
| Cambios Rápidos de productos. | | ✓ Crear planchas intercambiables con el fin de producir obleas de diferentes tamaños según la demanda lo requiera. |
| Calidad | Poka Joke | ✓ Métodos que evitan los errores humanos en los procesos antes de que se conviertan en defectos. |
| Control de materiales y producción | Heijunka | ✓ Variación de la carga de trabajo de los procesos de manufactura. |
| Trabajo | Estandarización | ✓ Elaboración de productos con la misma calidad. |
| Reducción de energía. | Ahorro de energía | ✓ Reducción del consumo y aprovecha la energía en equipos y maquinaria. |

Fuente: Basado en (Socconini, 2013)
Diagrama 3.1. Cursograma analítico de actividades

<table>
<thead>
<tr>
<th>Cursograma analítico</th>
<th>Operario/Material/Equipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagrama núm. 1</td>
<td></td>
</tr>
</tbody>
</table>

Objeto: S/N

Actividad: Elaboración de obleas.

Método: Actual/Propuesto.

Lugar: A. Obregón No. 8 Col. Las animas

Operario(s): S/N Ficha No. 1

Fecha: 13-02-2016

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad (obleas)</th>
<th>Distan cia (m)</th>
<th>Tiempo (min)</th>
<th>Símbolo</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método actual.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaboración de masa para obleas.</td>
<td>3 lt.</td>
<td>-</td>
<td>10</td>
<td>O</td>
<td>Es la operación de mayor duración</td>
</tr>
<tr>
<td>Llevar el recipiente con masa a las planchas</td>
<td>3 lt.</td>
<td>3</td>
<td>0.07</td>
<td></td>
<td>Se puede reducir la distancia.</td>
</tr>
<tr>
<td>Vertido de masa en la 1er plancha.</td>
<td>0.2 lt.</td>
<td>0.40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prensado de la masa en la 1er plancha.</td>
<td>1</td>
<td>-</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se mueve a la siguiente plancha</td>
<td>-</td>
<td>0.30</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertido de masa en la 2da plancha.</td>
<td>0.2 lt.</td>
<td>0.40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prensado de la masa en la 2da plancha.</td>
<td>1</td>
<td>-</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moverse a la siguiente plancha</td>
<td>-</td>
<td>0.30</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continua hasta vertir y vaciar en 5 planchas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continúa hasta retirar 5 obleas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calentado de obleas</td>
<td>5</td>
<td>-</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retirar la oblea de la plancha</td>
<td>1</td>
<td>-</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moverse a la siguiente plancha</td>
<td>-</td>
<td>0.30</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continúa hasta cortar 5 obleas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llevar las obleas a la zona de corte</td>
<td>5</td>
<td>4</td>
<td>0.07</td>
<td></td>
<td>La esta parte del proceso puede ser eliminada</td>
</tr>
<tr>
<td>Colocar en prensa.</td>
<td>1</td>
<td>0.30</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar la oblea en formarredonda</td>
<td>1</td>
<td>-</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocar en prensa.</td>
<td>1</td>
<td>0.30</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortar la oblea en formarredonda</td>
<td>1</td>
<td>-</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>5</td>
<td>12.9</td>
<td>23.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Método propuesto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaboración de masa para obleas</td>
<td>3 lt.</td>
<td>-</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llevar el recipiente con masa a las planchas</td>
<td>3 lt.</td>
<td>0.3</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaciar liquido al contenedor</td>
<td>3 lt.</td>
<td>-</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accionar la máquina</td>
<td>0.2 lt.</td>
<td>-</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertido de una cantidad exacta de masa para obleas en la 1er plancha.</td>
<td>1</td>
<td>-</td>
<td>0.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prensado de masa en la 1er plancha</td>
<td>1</td>
<td>-</td>
<td>0.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se mueve a la siguiente plancha</td>
<td>-</td>
<td>0.30</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertido de masa en la 2da plancha</td>
<td>0.2 lt.</td>
<td>-</td>
<td>0.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prensado de la masa en la 2da plancha</td>
<td>1</td>
<td>-</td>
<td>0.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se mueve a la siguiente plancha</td>
<td>-</td>
<td>0.30</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continua hasta vertir y vaciar en 4 planchas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(moviéndose a la sig. Plancha 3 veces)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calentado de obleas</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retirar la oblea de la plancha</td>
<td>4</td>
<td>-</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apilar las obleas con las demás</td>
<td>4</td>
<td>-</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>1.5</td>
<td>10.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
La innovación que no necesariamente se realiza en empresas de alta tecnología, es un elemento esencial en el crecimiento que favorece el aumento de la productividad y debe ser vista como una prioridad social y no como una preocupación elitista.

OCDE

Capítulo IV
Diseño de la mejora tecnológica.

En el capítulo anterior se propone un proceso mejorado de elaboración de obleas del cual se basa el diseño de la máquina semiautomática que elabora obleas que se presenta en este apartado, tomando características de las herramientas lean la máquina ejecuta operaciones que solo agregan valor al producto en el menor tiempo posible.

Figura 4.1. Isométrico del modelo 2 "Máquina de obleas"

Fuente: Elaboración propia.
Proceso de diseño.

Elección de la idea

Para la selección de la idea primero se definió lo siguiente:

a) Características del diseño.
 • La máquina debe contar un contenedor para la masa de elaboración de obleas.
 • Incluir con cuatro planchas para la cocción de las obleas.
 • Contar con un mecanismo que permita el paso de la masa hacia las planchas.
 • El cierre y apertura de la plancha debe ser automático.
 • Incorporar indicadores que muestren al operario en qué etapa del proceso se encuentra la máquina.
 • Las planchas deben tener un borde que evita el exceso de masa.
 • Las planchas se pueden intercambiar para hacer obleas de varios tamaños.

b) Elementos en la elaboración de obleas.

 1) Trabajador.
 Es el que se encarga de hacer el trabajo manual en las diferentes etapas del proceso, para lo cual necesita tener un conocimiento empírico de las máquinas, del tiempo y temperatura de cocción.

 2) Batidora para preparar la masa.
 Tiene un motor que ayuda a mezclar todos los ingredientes para crear la masa a utilizar.

 3) Recipiente.
 Es un mecanismo giratorio automatizado en el cual las planchas giran y cuando su centro está justo debajo de la boquilla dosificadora se vierte la masa, posteriormente se cierran las planchas y se calientan las obleas para dorarlas y después sacarlas.

 4) Planchas.
 Dos planchas calentadas para que la oblea se dore.
c) Componentes principales del diseño.

1) Plancha eléctrica para oblea.
 Es un dispositivo que consta de dos planchas, que aprisionan a la masa que se le coloque, creando la forma redonda y delgada que caracteriza a la oblea, después una plancha es calentada para que la masa de cocine y dore.

2) Dosificador automático.
 Es un contenedor en el cual estará la masa a verter en la plancha, este será accionado por medio de una llave que se abrirá para dosificar la medida exacta que se necesite para el tamaño que se desee.

3) Mecanismo automatizado para elaborar obleas.
 Es un mecanismo giratorio automatizado en el cual las planchas giran y cuando su centro está justo debajo de la boquilla dosificadora se vierte la masa, posteriormente se cierran las planchas y se calientan las obleas para dorarlas y después sacarlas.

Soluciones propuestas:

1) Los tres componentes son; una dosificadora controlada electrónicamente para verter la cantidad de masa deseada en varias planchas, estas cuecen la oblea y una base hace girar las planchas, las cuales se abren a 70° permitiendo a la dosificadora verter el líquido en el centro de la plancha para que esta se cierre y pueda calentar la oblea, y por medio de termopares se controla electrónicamente la temperatura de las planchas, véase Figura 4. 2.

Figura 4. 2. Boceto 1

Fuente: Elaboración propia.
Partes.

1.- Rotor: Es el que se encarga de posicionar la siguiente plancha a la boca del dosificador
2.- Plancha: es la encargada de prensar y calentar la oblea para su cocción.
3.- Control electrónico: a partir de la interfaz se puede programar el tiempo y la temperatura deseada para el proceso.
4.- Base: soporta todos los componentes.
5.- Motor: Es el que se encarga de abrir y cerrar la plancha.
6.- Contenedor: donde se coloca la masa para hacer las obleas.
7.- Boquilla: Es la que permite el paso de la masa.
8.- Corredera: hace que el dosificador se coloque en el centro de la plancha para verter la masa, y después retraerla para permitir el cierre.

Ventajas.

1) Aumenta la eficiencia del proceso.
2) Puede calentar varias obleas al mismo tiempo.
3) Mayor rapidez del proceso.
4) Proceso automatizado.
5) Se tiene control sobre las variables del proceso (temperatura, tiempo, etc.)
6) No ocupa mucho espacio para la cantidad de obleas que elabora.

Desventajas.

1) Espacio mayor en comparación a otros diseños.
2) La descompostura de algún elemento detiene todo el proceso.

2) Con tres componentes principales; una dosificadora controlada electrónicamente para verter la cantidad deseada de masa, planchas para calentar la oblea, las cuales están abiertas para que la dosificadora se acerque por medio de un mecanismo vertiendo el líquido en el centro de la plancha, después se retira para que la plancha se pueda cerrar y comenzar la cocción de la oblea. Además, se colocarán termopares para que se pueda controlar electrónicamente la temperatura de las planchas, véase Figura 4.
Partes.

1.- Rotor: Es el que se encarga de posicionar el dosificador en la plancha.
2.- Plancha: es la encargada de prensar y calentar la oblea para su cocción.
3.- Control electrónico: a partir de la interfaz se puede programar el tiempo y la temperatura deseada para el proceso.
4.- Base: soporta todos los componentes.
5.- Motor: Es el que se encarga de abrir y cerrar la plancha.
6.- Contenedor: donde se coloca la masa para hacer las obleas.
7.- Boquilla: Es la que permite el paso de la masa.

Ventajas.
1) Rapidez del proceso.
2) Proceso automatizado.
3) Se tiene control sobre las variables del proceso (temperatura, tiempo, etc.)
4) No ocupa mucho espacio.

Desventajas.
1) Solo calienta una oblea.
2) La descompostura de algún elemento detiene todo el proceso.
3) Eficiencia aumenta, pero no considerablemente.

3) La máquina cuenta con tres componentes principales, la dosificadora controlada electrónicamente para que vierta la cantidad de masa deseada,
planchas para calentar la oblea, moviéndose hacia la dosificadora, la masa se coloca en el centro de la plancha, para que esta se cierre y pueda calentar la oblea. Además, controla electrónicamente la temperatura de las planchas por medio de termopares, véase Figura 4.4.

Figura 4.4. Boceto 3

Fuente: Elaboración propia.

Partes.

1.- Plancha: es la encargada de prensar y calentar la oblea para su cocción.
2.- Control electrónico: a partir de la interfaz se puede programar el tiempo y la temperatura deseada para el proceso.
3.- Base: soporta todos los componentes.
4.- Motor: Es el que se encarga de abrir y cerrar la plancha.
5.- Contenedor: donde se coloca la masa para hacer las obleas.
6.- Corredera: hace que el dosificador se coloque en el centro de la plancha para verter la masa, y después retraerla para permitir el cierre.
7.- Boquilla: Es la que permite el paso de la masa.

Ventajas.

1) Rapidez del proceso.
2) Proceso automatizado.
3) Se tiene control sobre las variables del proceso (temperatura, tiempo, etc.)
4) No ocupa mucho espacio.
Desventajas.

4) Solo calienta una oblea.
5) La descompostura de algún elemento detiene todo el proceso.
6) Eficiencia aumenta, pero no considerablemente.

Solución elegida.

Se optó por la propuesta No. 2 como la más viable para controlar el tiempo y la temperatura de cocción, lo cual es imprescindible en este proceso, por lo que esta propuesta satisface con la necesidad planteada, véase Figura 4. 5 y Figura 4. 6.

Figura 4. 5. Modelo 1.

Fuente: Elaboración propia.

Figura 4. 6. Partes del diseño preliminar

Fuente: Elaboración propia.
Partes.

1. Contenedor: donde se coloca la masa para hacer las obleas.
2. Control electrónico: a partir de la interfaz se puede programar el tiempo y la temperatura deseada para el proceso.
3. Tubo-boquilla: Es la que permite el paso de la masa.
4. Plancha: es la encargada de prensar y calentar la oblea para su cocción.
5. Base: soporta todos los componentes.
6. Motor: Es el que se encarga de abrir y cerrar la plancha.
7. Rotor: Es el que se encarga de posicionar a la boquilla en el centro de la plancha.
8. Mecanismo que aplasta a la masa colocada en la plancha.
9. Perno usado para ajustar ambas planchas y estas puedan abrir y cerrar con facilidad.

Funcionamiento.

1) El tubo que al final tiene una boquilla que se abre y cierra por medio de un motor, vierte una cantidad de masa para oblea en el centro de la plancha.
2) El tubo y tolva se hace girar por medio de un motor para que se coloque a un lado de la plancha.
3) La plancha sin el obstáculo del tubo dosificador es cerrada por medio de un motor.
4) La plancha es calentada hasta la temperatura programada en el controlador.
5) La plancha de abre después de haber calentado un tiempo determinado.
6) Se saca la oblea circular de la plancha.

Modificaciones basada en la iteración para lograr la optimización.

Se consideraron modificaciones en la propuesta elegida, aunque la mayoría de los componentes se mantuvieron en el nuevo prototipo, hubo algunos que fueron reemplazados, dichos cambios se muestran en las Figura 4. 7 y Figura 4. 8.
A continuación se presenta el cálculo de los elementos que se consideran críticos, ya que por tener un mayor desgaste son más propensos a presentar fallas mecánicas.
Geometría del mecanismo de las planchas

Figura 4. 9. Mecanismo de apertura de plancha.

Fuente: Elaboración propia.

Figura 4. 10. Mecanismo de apertura de plancha: a) Dimensiones b) Lazo vectorial

Fuente: Elaboración propia.
Figura 4.11 Geometría de los nodos C y D

Fuente: Elaboración propia.

Figura 4.12 Diagrama unifilar del mecanismo de apertura de plancha

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Geometría del mecanismo de la Figura 4.12.

\[r_3 = \sqrt{y_1^2 + x_N^2} \] \hspace{1cm} (4.1)

\[x_N = \sqrt{r_3^2 - y_1^2} \] \hspace{1cm} (4.2)

\[\theta_8 = \text{sen}^{-1} \left(\frac{y_3 + y_4}{r_3} \right) \] \hspace{1cm} (4.3)

\[\frac{y_1}{r_3} = \text{sen} \left(\theta_7 + \theta_8 \right) \] \hspace{1cm} (4.4)

\[y_1 = (r_3) \text{sen}(\theta_7 + \theta_8) \] \hspace{1cm} (4.5)
Sustituyendo la ecuación (4. 5) en (4. 2).

\[x_N = \sqrt{r_3^2 - \left[(r_3 \, \text{sen}(\theta_7 + \theta_8))\right]^2} \]
\[x_N = \sqrt{r_3^2 \left(1 - \left[\text{sen}(\theta_7 + \theta_8)\right]^2\right)} \] (4. 6)

\[x_p = \left(\frac{l_1}{2}\right) \cos \theta_7 \] (4. 7)

\[r_3 = \sqrt{(y_3 + y_2)^2 + \frac{l_1^2}{4}} \] (4. 8)

\[\cos \theta_3 = \frac{x_3}{r_3} \] (4. 9)

\[x_3 = r_3 \cos \theta_3 \] (4. 10)

\[x_2 = r_4 + x_3 \] (4. 11)

\[x_1 = r_1 \cos \theta_1 \] (4. 12)

\[\theta_1 = \theta_5 + \gamma_2 \] (4. 13)

\[y_1 = r_3 \, \text{sen} \, \theta_3 \] (4. 14)

\[y_2 = r_1 \, \text{sen} \, \theta_1 \] (4. 15)

\[r_5 = \sqrt{x_2^2 + y_1^2} \] (4. 16)

\[\tan \theta_5 = \frac{y_1}{x_2} \] (4. 17a)

\[\theta_5 = \tan^{-1}\left(\frac{r_3 \, \text{sen} \, \theta_3}{r_4 + x_3}\right) \] (4. 17b)

\[\theta_5 = \tan^{-1}\left(\frac{r_3 \, \text{sen} \, \theta_3}{r_4 + r_3 \cos \theta_3}\right) \] (4. 18)
Ley de coseno (Figura 4. 13).

\[r_2^2 = r_1^2 + r_5^2 - 2r_1 r_5 \cos \gamma_2 \]
\[r_1^2 = r_2^2 + r_5^2 - 2r_2 r_5 \cos \gamma_1 \]
\[r_5^2 = r_1^2 + r_2^2 - 2r_1 r_2 \cos \gamma_5 \]
\[r_5^2 = r_1^2 + r_2^2 - 2r_1 r_2 \cos \gamma_5 \]

\[\gamma_1 = \cos^{-1} \left(\frac{r_2^2 + r_5^2 - r_1^2}{2r_2 r_5} \right) \]
\[\gamma_2 = \cos^{-1} \left(\frac{r_1^2 + r_5^2 - r_2^2}{2r_1 r_5} \right) \]
\[\theta_1 = \tan^{-1} \left(\frac{r_3 \sin \theta_3}{r_4 + r_3 \cos \theta_3} \right) + \cos^{-1} \left(\frac{r_2^2 + r_5^2 - r_2^2}{2r_1 r_5} \right) \]
\[\theta_6 = \gamma_1 - \theta_5 \]

Velocidad del motor motriz.

El elemento 1 será el eslabón motriz, por lo que su velocidad y aceleración deben permitir un movimiento constante en la apertura de la plancha. Si se requiere una velocidad angular de apertura igual a \(\frac{1}{4} \) de revolución en 10 segundos. Se necesita calcular el promedio de la velocidad angular del elemento 1 que permitirá dicha velocidad de apertura.

Una vez encontrada la velocidad promedio para el elemento 1, se procede a calcular de forma inversa para comprobar que el movimiento en el elemento 3 tiene una aceleración mínima.

Entonces si se desea que el elemento 3 realice \(\frac{1}{4} \) de revolución en 10 s, se obtiene:
\[\omega_3 = \frac{1/4 \text{rev}}{10 \text{s}} \]
\[\omega_3 = \frac{1 \text{rev}}{40 \text{s}} \]
\[\omega_3 = \left(\frac{1 \text{rev}}{40 \text{s}} \right) \left(\frac{2\pi \text{ radianes}}{1 \text{rev}} \right) \]
\[\omega_3 = \frac{\pi \text{ radianes}}{20 \text{s}} \]
\[\omega_3 = 0.15708 \frac{\text{radianes}}{\text{s}} \]

Tabla 4.1. Datos con \(\omega_3 = \text{cte.} \)

<table>
<thead>
<tr>
<th>Constantes</th>
<th>Valor</th>
<th>Incógnitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>14 cm</td>
<td>(\theta_1)</td>
</tr>
<tr>
<td>(r_2)</td>
<td>6 cm</td>
<td>(\theta_2)</td>
</tr>
<tr>
<td>(r_3)</td>
<td>11.3385 cm</td>
<td>(\theta_3)</td>
</tr>
<tr>
<td>(r_4)</td>
<td>5 cm</td>
<td>(\omega_1 = \dot{\theta}_1)</td>
</tr>
<tr>
<td>(\theta_4)</td>
<td>180 °</td>
<td>(\omega_2 = \dot{\theta}_2)</td>
</tr>
<tr>
<td>(\omega_3)</td>
<td>0.15708 rad/s</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Lazo vectorial (Figura 4.10b).
\[\overrightarrow{R}_1 + \overrightarrow{R}_4 = \overrightarrow{R}_3 + \overrightarrow{R}_2 \] \((4.25) \)

\[r_1 e^{i\theta_1} + r_4 e^{i\theta_4} = r_3 e^{i\theta_3} + r_2 e^{i\theta_2} \] \((4.26) \)

Donde.
\[e^{i\theta} = \cos \theta + i \sin \theta \]
\[i = \sqrt{-1} \]

Ecuaciones de posición.
\[i: r_1 \cos \theta_1 + r_4 \cos \theta_4 = r_3 \cos \theta_3 + r_2 \cos \theta_2 \] \((4.27) \)
\[\Re: r_1 \sin \theta_1 + r_4 \sin \theta_4 = r_3 \sin \theta_3 + r_2 \sin \theta_2 \] \((4.28) \)
Despejando θ_2 de la ecuación (4.27)

$$\theta_2 = \cos^{-1}\left(\frac{r_1 \cos \theta_1 + r_4 \cos \theta_4 - r_3 \cos \theta_3}{r_2}\right)$$ \hspace{1cm} (4.29)

Calcular velocidad angular

1ra derivada de las ecuaciones (4.27) y (4.28).

$$i\dot{\theta}_1 r_1 e^{i\theta_1} + 0 = i\dot{\theta}_3 r_3 e^{i\theta_3} + i\dot{\theta}_2 r_2 e^{i\theta_2}$$ \hspace{1cm} (4.30)

$$i\dot{\theta}_1 r_1 (\cos \theta_1 + i\sin \theta_1) + 0 = i\dot{\theta}_3 r_3 (\cos \theta_3 + i\sin \theta_3) + i\dot{\theta}_2 r_2 (\cos \theta_2 + i\sin \theta_2)$$ \hspace{1cm} (4.31)

$$i\dot{\theta}_1 r_1 \cos \theta_1 - \dot{\theta}_1 r_1 \sin \theta_1 = i\dot{\theta}_3 r_3 \cos \theta_3 - \dot{\theta}_3 r_3 \sin \theta_3 + i\dot{\theta}_2 r_2 \cos \theta_2 - \dot{\theta}_2 r_2 \sin \theta_2$$ \hspace{1cm} (4.32)

- Parte real \Re:

$$-\dot{\theta}_1 r_1 \sin \theta_1 - 0 = -\dot{\theta}_3 r_3 \sin \theta_3 - \dot{\theta}_2 r_2 \sin \theta_2$$ \hspace{1cm} (4.33a)

$${\dot{\theta}_1} = \frac{\dot{\theta}_3 r_3 \sin \theta_3 + \dot{\theta}_2 r_2 \sin \theta_2}{r_1 \sin \theta_1}$$ \hspace{1cm} (4.33b)

Parte imaginaria i:

$$\dot{\theta}_1 r_1 \cos \theta_1 + 0 = \dot{\theta}_3 r_3 \cos \theta_3 + \dot{\theta}_2 r_2 \cos \theta_2$$ \hspace{1cm} (4.34a)

$${\dot{\theta}_1} = \frac{\dot{\theta}_3 r_3 \cos \theta_3 + \dot{\theta}_2 r_2 \cos \theta_2}{r_1 \cos \theta_1}$$ \hspace{1cm} (4.34b)

Igualando (4.33a) con (4.34a).

$$\frac{\dot{\theta}_3 r_3 \cos \theta_3 + \dot{\theta}_2 r_2 \cos \theta_2}{r_1 \cos \theta_1} = \frac{\dot{\theta}_3 r_3 \sin \theta_3 + \dot{\theta}_2 r_2 \sin \theta_2}{r_1 \sin \theta_1}$$
\[
\left(\frac{\dot{\theta}_3 r_3 \cos \theta_3 + \dot{\theta}_2 r_2 \cos \theta_2}{r_1 \cos \theta_1} \right) r_1 \sin \theta_1 = \dot{\theta}_3 r_3 \sin \theta_3 + \dot{\theta}_2 r_2 \sin \theta_2
\]

\[
\dot{\theta}_3 r_3 \sin \theta_3 + \dot{\theta}_2 r_2 \sin \theta_2 = (\dot{\theta}_3 r_3 \cos \theta_3 + \dot{\theta}_2 r_2 \cos \theta_2) \tan \theta_1
\]

\[
\dot{\theta}_2 r_2 \sin \theta_2 - \dot{\theta}_2 r_2 \cos \theta_2 \tan \theta_1 = \dot{\theta}_3 r_3 \cos \theta_3 \tan \theta_1 - \dot{\theta}_3 r_3 \sin \theta_3
\]

\[
\dot{\theta}_2 r_2 (\sin \theta_2 - \cos \theta_2 \tan \theta_1) = \dot{\theta}_3 r_3 (\cos \theta_3 \tan \theta_1 - \sin \theta_3)
\]

\[
\dot{\theta}_2 = \frac{\dot{\theta}_3 r_3 (\cos \theta_3 \tan \theta_1 - \sin \theta_3)}{r_2 (\sin \theta_2 - \cos \theta_2 \tan \theta_1)} \quad (4.35)
\]

Sustituyendo se obtiene la Tabla 4.2

Tabla 4.2. Resultados del cálculo de posición y velocidad a diferentes ángulos de apertura de la plancha considerando a \(w_3 = \text{cte.} \)

<table>
<thead>
<tr>
<th>(\theta_7) °</th>
<th>(\theta_1) °</th>
<th>(\theta_2) °</th>
<th>(\omega_1) rad/s</th>
<th>(\omega_2) rad/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.03624347</td>
<td>31.03696973</td>
<td>131.8655936</td>
<td>0.114543951</td>
</tr>
<tr>
<td>4</td>
<td>18.03624347</td>
<td>33.97398162</td>
<td>134.0444104</td>
<td>0.116124002</td>
</tr>
<tr>
<td>8</td>
<td>22.03624347</td>
<td>36.95081457</td>
<td>136.0833424</td>
<td>0.11766855</td>
</tr>
<tr>
<td>12</td>
<td>26.03624347</td>
<td>39.96634993</td>
<td>137.9870431</td>
<td>0.119161138</td>
</tr>
<tr>
<td>16</td>
<td>30.03624347</td>
<td>43.01908036</td>
<td>139.7604867</td>
<td>0.120587697</td>
</tr>
<tr>
<td>20</td>
<td>34.03624347</td>
<td>46.10717021</td>
<td>141.4088402</td>
<td>0.121936492</td>
</tr>
<tr>
<td>24</td>
<td>38.03624347</td>
<td>49.228513</td>
<td>142.9373355</td>
<td>0.123197948</td>
</tr>
<tr>
<td>32</td>
<td>46.03624347</td>
<td>55.6148031</td>
<td>145.6552718</td>
<td>0.125429684</td>
</tr>
<tr>
<td>36</td>
<td>50.03624347</td>
<td>58.76796389</td>
<td>146.8544322</td>
<td>0.126388903</td>
</tr>
<tr>
<td>40</td>
<td>54.03624347</td>
<td>61.99747836</td>
<td>147.9529703</td>
<td>0.127237871</td>
</tr>
<tr>
<td>44</td>
<td>58.03624347</td>
<td>65.2471671</td>
<td>148.9547627</td>
<td>0.127972752</td>
</tr>
<tr>
<td>48</td>
<td>62.03624347</td>
<td>68.51407532</td>
<td>149.863134</td>
<td>0.128589593</td>
</tr>
<tr>
<td>56</td>
<td>70.03624347</td>
<td>75.08717337</td>
<td>151.4096366</td>
<td>0.129449838</td>
</tr>
<tr>
<td>60</td>
<td>74.03624347</td>
<td>78.38681635</td>
<td>152.0508568</td>
<td>0.129680172</td>
</tr>
<tr>
<td>64</td>
<td>78.03624347</td>
<td>81.69049605</td>
<td>152.6046061</td>
<td>0.129764989</td>
</tr>
<tr>
<td>68</td>
<td>82.03624347</td>
<td>84.99434667</td>
<td>153.0699444</td>
<td>0.129691048</td>
</tr>
<tr>
<td>72</td>
<td>86.03624347</td>
<td>88.29410947</td>
<td>153.4466076</td>
<td>0.129440491</td>
</tr>
<tr>
<td>76</td>
<td>90.03624347</td>
<td>91.58499474</td>
<td>153.7247294</td>
<td>0.128989134</td>
</tr>
<tr>
<td>80</td>
<td>94.03624347</td>
<td>94.86149138</td>
<td>153.9044455</td>
<td>0.128304017</td>
</tr>
<tr>
<td>84</td>
<td>98.03624347</td>
<td>98.11710011</td>
<td>153.9753394</td>
<td>0.127339743</td>
</tr>
<tr>
<td>88</td>
<td>102.0362435</td>
<td>101.3439505</td>
<td>153.9256332</td>
<td>0.12603285</td>
</tr>
<tr>
<td>90</td>
<td>104.0362435</td>
<td>102.943623</td>
<td>153.8506697</td>
<td>0.125224031</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Ahora se toma a la velocidad del elemento 1 como constante, cuyo valor es la velocidad promedio de la tabla 3, y se comprueba que la aceleración en el elemento 3 es mínima.

- Velocidad angular promedio del elemento 1.

\[\omega_1 = 0.125438 \text{rad/s} \]

Tabla 4.3. Dados \(\omega_1 = \text{cte} \)

<table>
<thead>
<tr>
<th>Constantes</th>
<th>Valor</th>
<th>Incógnitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>12 cm</td>
<td>(\theta_1)</td>
</tr>
<tr>
<td>(r_2)</td>
<td>5 cm</td>
<td>(\theta_2)</td>
</tr>
<tr>
<td>(r_3)</td>
<td>10 cm</td>
<td>(\theta_3)</td>
</tr>
<tr>
<td>(r_4)</td>
<td>5 cm</td>
<td>(\omega_1 = \dot{\theta}_1)</td>
</tr>
<tr>
<td>(\theta_4)</td>
<td>180°</td>
<td>(\omega_2 = \dot{\theta}_2)</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>0.125438 rad/s</td>
<td>(\alpha_2 = \ddot{\theta}_2)</td>
</tr>
<tr>
<td>(\alpha_1 = \dot{\theta}_1)</td>
<td>0 rad/s²</td>
<td>(\alpha_3 = \ddot{\theta}_3)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Tomando las ecuaciones 29 y 30 para calcular \(\dot{\theta}_2 \) y \(\dot{\theta}_3 \)

\[\dot{\theta}_3 = \frac{\dot{\theta}_1 r_1 \cos \theta_1 - \dot{\theta}_2 r_2 \cos \theta_2}{r_3 \cos \theta_3} \quad (4.36) \]

Igualando \(\dot{\theta}_3 = \dot{\theta}_3 \) y despejando \(\dot{\theta}_2 \)

\[\frac{\dot{\theta}_1 r_1 \sen \theta_1 - \dot{\theta}_2 r_2 \sen \theta_2}{r_3 \sen \theta_3} = \frac{\dot{\theta}_1 r_1 \cos \theta_1 - \dot{\theta}_2 r_2 \cos \theta_2}{r_3 \cos \theta_3} \]

\[\dot{\theta}_1 r_1 \sen \theta_1 - \dot{\theta}_2 r_2 \sen \theta_2 = (\dot{\theta}_1 r_1 \cos \theta_1 - \dot{\theta}_2 r_2 \cos \theta_2) \tan \theta_3 \]

\[\dot{\theta}_2 r_2 (\cos \theta_2 \tan \theta_3 - \sen \theta_2) = \dot{\theta}_1 r_1 (\cos \theta_1 \tan \theta_3 - \sen \theta_1) \]

\[\dot{\theta}_2 = \frac{\dot{\theta}_1 r_1 (\cos \theta_1 \tan \theta_3 - \sen \theta_1)}{r_2 (\cos \theta_2 \tan \theta_3 - \sen \theta_2)} \quad (4.37) \]
Aplicando la segunda derivada en ecuación 28, para calcular aceleración.

\[i\ddot{\theta}_1 r_1 e^{i\theta_1} + i^2 \dot{\theta}_1^2 r_1 e^{i\theta_1} = i\dddot{\theta}_3 r_3 e^{i\theta_3} + i^2 \ddot{\theta}_3^2 r_3 e^{i\theta_3} + i\dddot{\theta}_2 r_2 e^{i\theta_2} + i^2 \dot{\theta}_2^2 r_2 e^{i\theta_2} \]

Donde

\[\ddot{\theta}_1 = 0 \]

\[i = \sqrt{-1} \]

Resulta

\[i\ddot{\theta}_1 r_1 e^{i\theta_1} - \dot{\theta}_1^2 r_1 e^{i\theta_1} = i\dddot{\theta}_3 r_3 e^{i\theta_3} - \dot{\theta}_3^2 r_3 e^{i\theta_3} + i\dddot{\theta}_2 r_2 e^{i\theta_2} - \dot{\theta}_2^2 r_2 e^{i\theta_2} \]

\[-\dot{\theta}_1^2 r_1 (\cos \theta_1 + \imath \sen \theta_1) = i\dddot{\theta}_3 r_3 (\cos \theta_3 + \imath \sen \theta_3) - \dot{\theta}_3^2 r_3 (\cos \theta_3 + \imath \sen \theta_3) + i\dddot{\theta}_2 r_2 (\cos \theta_2 + \imath \sen \theta_2) - \dot{\theta}_2^2 r_2 (\cos \theta_2 + \imath \sen \theta_2) \]

- **Parte real \Re:**

\[-\dot{\theta}_1^2 r_1 \cos \theta_1 = -\dddot{\theta}_3 r_3 \sen \theta_3 - \dot{\theta}_3^2 r_3 \cos \theta_3 - \ddot{\theta}_2 r_2 \sen \theta_2 - \dot{\theta}_2^2 r_2 \cos \theta_2 \quad (4.38a) \]

- **Parte imaginaria \Im:**

\[-\dot{\theta}_1^2 r_1 \sen \theta_1 = \dddot{\theta}_3 r_3 \cos \theta_3 - \dot{\theta}_3^2 r_3 \sen \theta_3 + \ddot{\theta}_2 r_2 \cos \theta_2 - \dot{\theta}_2^2 r_2 \sen \theta_2 \quad (4.39a) \]

Despejando \dddot{\theta}_3 de ecuaciones (4.38a) y (4.39a).

\[\dddot{\theta}_3 = \frac{-\dot{\theta}_3^2 r_3 \cos \theta_3 - \ddot{\theta}_2 r_2 \sen \theta_2 - \dot{\theta}_2^2 r_2 \cos \theta_2 + \dot{\theta}_1^2 r_1 \cos \theta_1}{r_3 \sen \theta_3} \quad (4.38b) \]

\[\dddot{\theta}_3 = \frac{\dot{\theta}_3^2 r_3 \sen \theta_3 - \ddot{\theta}_2 r_2 \cos \theta_2 + \dot{\theta}_2^2 r_2 \sen \theta_2 - \dot{\theta}_1^2 r_1 \sen \theta_1}{r_3 \cos \theta_3} \quad (4.39b) \]

Igualando las ecuaciones (4.38a) y (4.39a)

\[\frac{-\dot{\theta}_3^2 r_3 \cos \theta_3 - \ddot{\theta}_2 r_2 \sen \theta_2 - \dot{\theta}_2^2 r_2 \cos \theta_2 + \dot{\theta}_1^2 r_1 \cos \theta_1}{r_3 \sen \theta_3} \]

\[= \frac{\dot{\theta}_3^2 r_3 \sen \theta_3 - \ddot{\theta}_2 r_2 \cos \theta_2 + \dot{\theta}_2^2 r_2 \sen \theta_2 - \dot{\theta}_1^2 r_1 \sen \theta_1}{r_3 \cos \theta_3} \]

84
Despejando $\dot{\theta}_2$

$$-\dot{\theta}_3^2 r_3 \cos \theta_3 - \dot{\theta}_2^2 r_2 \sin \theta_2 - \dot{\theta}_2^2 r_2 \cos \theta_2 + \dot{\theta}_1^2 r_1 \cos \theta_1
= \left(\dot{\theta}_3^2 r_3 \sin \theta_3 - \dot{\theta}_2^2 r_2 \cos \theta_2 + \dot{\theta}_1^2 r_1 \sin \theta_1 \right) \tan \theta_3$$

$$\ddot{\theta}_2 r_2 \left(\sin \theta_2 - \cos \theta_2 \tan \theta_3 \right)
= \left(-\dot{\theta}_3^2 r_3 \sin \theta_3 - \dot{\theta}_2^2 r_2 \sin \theta_2 + \dot{\theta}_1^2 r_1 \sin \theta_1 \right) \tan \theta_3 - \dot{\theta}_3^2 r_3 \cos \theta_3
- \dot{\theta}_2^2 r_2 \cos \theta_2 + \dot{\theta}_1^2 r_1 \cos \theta_1$$

$$\frac{\ddot{\theta}_2}{r_2 \left(\sin \theta_2 - \cos \theta_2 \tan \theta_3 \right)} = \frac{\left(-\dot{\theta}_3^2 r_3 \sin \theta_3 - \dot{\theta}_2^2 r_2 \sin \theta_2 + \dot{\theta}_1^2 r_1 \sin \theta_1 \right) \tan \theta_3 - \dot{\theta}_3^2 r_3 \cos \theta_3 - \dot{\theta}_2^2 r_2 \cos \theta_2 + \dot{\theta}_1^2 r_1 \cos \theta_1}{r_2 \left(\sin \theta_2 - \cos \theta_2 \tan \theta_3 \right)} \tag{4. 40}$$

Realizando una tabla de cálculo en Excel se obtiene la Tabla 4. 4, observando una aceleración mínima en el elemento 3, que inclusive en un punto es igual a cero. Por lo tanto, se comprueba que una velocidad angular igual 0.125438 rad/s en el elemento 1 mantiene una aceleración mínima.

Tabla 4. 4. Resultados del cálculo de posiciones, velocidad y aceleraciones a diferentes ángulos de apertura de la plancha considerando a w_1 = cte.

<table>
<thead>
<tr>
<th>θ_1</th>
<th>θ_2</th>
<th>θ_3</th>
<th>ω_2 rad/s</th>
<th>ω_3 rad/s</th>
<th>α_2 rad/s2</th>
<th>α_3 rad/s2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.0362</td>
<td>31.036969</td>
<td>131.86559</td>
<td>0.096769</td>
<td>0.1720195</td>
<td>-0.018587</td>
</tr>
<tr>
<td>4</td>
<td>18.0362</td>
<td>33.973981</td>
<td>134.04441</td>
<td>0.0894264</td>
<td>0.1696789</td>
<td>-0.017355</td>
</tr>
<tr>
<td>12</td>
<td>26.0362</td>
<td>39.966349</td>
<td>137.98704</td>
<td>0.0759686</td>
<td>0.1653542</td>
<td>-0.014962</td>
</tr>
<tr>
<td>16</td>
<td>30.0362</td>
<td>43.019080</td>
<td>139.76048</td>
<td>0.0698538</td>
<td>0.1633981</td>
<td>-0.013844</td>
</tr>
<tr>
<td>24</td>
<td>38.0362</td>
<td>49.228513</td>
<td>142.93733</td>
<td>0.0587885</td>
<td>0.1599361</td>
<td>-0.011832</td>
</tr>
<tr>
<td>32</td>
<td>46.0362</td>
<td>55.561480</td>
<td>145.65527</td>
<td>0.0491255</td>
<td>0.1570904</td>
<td>-0.010165</td>
</tr>
<tr>
<td>36</td>
<td>50.0362</td>
<td>58.767963</td>
<td>146.85443</td>
<td>0.0447490</td>
<td>0.1558981</td>
<td>-0.009469</td>
</tr>
<tr>
<td>44</td>
<td>58.0362</td>
<td>65.247167</td>
<td>148.95476</td>
<td>0.0367437</td>
<td>0.1539687</td>
<td>-0.008354</td>
</tr>
<tr>
<td>48</td>
<td>62.0362</td>
<td>68.514075</td>
<td>149.86313</td>
<td>0.0330446</td>
<td>0.1532301</td>
<td>-0.007937</td>
</tr>
<tr>
<td>54</td>
<td>68.0362</td>
<td>73.439991</td>
<td>151.05620</td>
<td>0.0277693</td>
<td>0.152407</td>
<td>-0.007493</td>
</tr>
<tr>
<td>58</td>
<td>72.0362</td>
<td>76.736261</td>
<td>151.74116</td>
<td>0.0243750</td>
<td>0.1520560</td>
<td>-0.007326</td>
</tr>
<tr>
<td>62</td>
<td>76.0362</td>
<td>80.038385</td>
<td>152.33869</td>
<td>0.0210258</td>
<td>0.1518696</td>
<td>-0.007272</td>
</tr>
<tr>
<td>66</td>
<td>80.0362</td>
<td>83.342655</td>
<td>152.84843</td>
<td>0.0176702</td>
<td>0.1518610</td>
<td>-0.007348</td>
</tr>
<tr>
<td>70</td>
<td>84.0362</td>
<td>86.645024</td>
<td>153.26881</td>
<td>0.0142477</td>
<td>0.1520481</td>
<td>-0.007576</td>
</tr>
<tr>
<td>78</td>
<td>92.0362</td>
<td>93.225420</td>
<td>153.82759</td>
<td>0.0068930</td>
<td>0.1531245</td>
<td>-0.008652</td>
</tr>
<tr>
<td>82</td>
<td>96.0362</td>
<td>96.492360</td>
<td>153.95414</td>
<td>0.0027499</td>
<td>0.1541042</td>
<td>-0.009641</td>
</tr>
<tr>
<td>90</td>
<td>104.0362</td>
<td>102.94362</td>
<td>153.85066</td>
<td>-0.007305</td>
<td>0.1573484</td>
<td>-0.013239</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Fuerzas y momentos aplicados en la plancha.

Elemento 3

Figura 4.14. Diagrama de fuerzas de la plancha eléctrica

Fuente: Elaboración propia

\[+\sum F_x = 0 \]
\[F_{3x} - F_N (\cos \theta_6) = 0 \]
\[F_{3x} = F_N (\cos \theta_6) \] \hspace{1cm} (4.41)

\[+\sum F_y = 0 \]
\[-F_{3y} - w + F_N \cdot \sin \theta_6 = 0 \]
\[F_{3y} = w - F_N \cdot \sin \theta_6 \] \hspace{1cm} (4.42)

\[\sum M_y = 0 \]
\[F_N (\cos \theta_7)(x_N) + F_N (\sin \theta_7)(y_1) - (w)(x_p) = 0 \]
\[F_N = \frac{(w)(x_p)}{(\cos \theta_7)(x_N) + (\sin \theta_7)(y_1)} \] \hspace{1cm} (4. 43)

Sustituyendo la ecuación (4. 43) en (4. 42).

\[F_{3y} = -w + \left(\frac{(w)(x_p)}{(\cos \theta_7)(x_N) + (\sin \theta_7)(y_1)} \right) \times \sin \theta_6 \] \hspace{1cm} (4. 44a)

\[F_{3y} = w(-1 + \left(\frac{(x_p)}{(\cos \theta_7)(x_N) + (\sin \theta_7)(y_1)} \right) \times \sin \theta_6) \] \hspace{1cm} (4. 42b)

Sustituyendo a ecuación (4. 43) en (4. 41).

\[F_{3x} = \left(\frac{(w)(x_p)}{(\cos \theta_7)(x_N) + (\sin \theta_7)(y_1)} \right) \times \cos \theta_6 \] \hspace{1cm} (4. 45)

Elemento 2

Figura 4.15. Fuerzas en el elemento 2

\[x_5 = (r_2) \times \cos(\theta_6) \] \hspace{1cm} (4. 46)

\[+ \sum F_x = 0 \hspace{1cm} F_N' = F_N \] \hspace{1cm} (4. 47)
Elemento 1.

Figura 4.16. Fuerzas y momento en el elemento 1

Fuente: Elaboración propia.

\[x_4 = (r_1) \cos \theta_1 \] \hspace{1cm} \text{(4.48)}

\[y_4 = (r_1) \sin \theta_1 \] \hspace{1cm} \text{(4.49)}

\[+ \sum F_x = 0 \]

\[-F_{1x} + F'_N \cos \theta_6 = 0 \]

\[F_{1x} = F'_N \cos \theta_6 \] \hspace{1cm} \text{(4.50)}

\[+ \sum F_y = 0 \]

\[-F'_N \sin \theta_6 + F_{1y} = 0 \]

\[F_{1y} = F'_N \sin \theta_6 \] \hspace{1cm} \text{(4.51)}

\[\sum M_A = 0 \]

\[M_1 - F'_N (y_4) \cos \theta_6 - F'_N (x_4) \sin \theta_6 = 0 \]

\[M_1 = F'_N ((y_4) \cos \theta_6 + (x_4) \sin \theta_6) \] \hspace{1cm} \text{(4.52)}
Realizando una tabla de cálculo en Excel para los 3 elementos se obtiene la Tabla 4. 5.

Tabla 4. 5. Resultados de las fuerzas y momentos presentes en el mecanismo a diferentes ángulos de apertura de la plancha.

<table>
<thead>
<tr>
<th>θ</th>
<th>F1y (N)</th>
<th>F1x (N)</th>
<th>F'N (N)</th>
<th>F2x (N)</th>
<th>F2y (N)</th>
<th>Vy (N)</th>
<th>M1 (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-7.51</td>
<td>19.64</td>
<td>29.43</td>
<td>19.64</td>
<td>15.17</td>
<td>3.69</td>
<td>4.05</td>
</tr>
<tr>
<td>5</td>
<td>-8.54</td>
<td>20.57</td>
<td>29.32</td>
<td>20.57</td>
<td>16.70</td>
<td>4.69</td>
<td>4.04</td>
</tr>
<tr>
<td>10</td>
<td>-9.68</td>
<td>21.21</td>
<td>28.98</td>
<td>21.21</td>
<td>18.02</td>
<td>5.61</td>
<td>4.01</td>
</tr>
<tr>
<td>15</td>
<td>-10.90</td>
<td>21.56</td>
<td>28.43</td>
<td>21.56</td>
<td>19.11</td>
<td>6.43</td>
<td>3.95</td>
</tr>
<tr>
<td>30</td>
<td>-14.82</td>
<td>20.88</td>
<td>25.49</td>
<td>20.88</td>
<td>20.61</td>
<td>8.17</td>
<td>3.57</td>
</tr>
<tr>
<td>35</td>
<td>-16.15</td>
<td>20.12</td>
<td>24.11</td>
<td>20.12</td>
<td>20.44</td>
<td>8.49</td>
<td>3.37</td>
</tr>
<tr>
<td>40</td>
<td>-17.47</td>
<td>19.11</td>
<td>22.54</td>
<td>19.11</td>
<td>19.91</td>
<td>8.67</td>
<td>3.15</td>
</tr>
<tr>
<td>45</td>
<td>-18.77</td>
<td>17.87</td>
<td>20.81</td>
<td>17.87</td>
<td>19.02</td>
<td>8.72</td>
<td>2.89</td>
</tr>
<tr>
<td>50</td>
<td>-20.05</td>
<td>16.43</td>
<td>18.92</td>
<td>16.43</td>
<td>17.79</td>
<td>8.65</td>
<td>2.61</td>
</tr>
<tr>
<td>60</td>
<td>-22.53</td>
<td>13.00</td>
<td>14.72</td>
<td>13.00</td>
<td>14.41</td>
<td>8.20</td>
<td>1.98</td>
</tr>
<tr>
<td>65</td>
<td>-23.73</td>
<td>11.06</td>
<td>12.44</td>
<td>11.06</td>
<td>12.33</td>
<td>7.87</td>
<td>1.64</td>
</tr>
<tr>
<td>70</td>
<td>-24.90</td>
<td>8.99</td>
<td>10.07</td>
<td>8.99</td>
<td>10.05</td>
<td>7.52</td>
<td>1.29</td>
</tr>
<tr>
<td>75</td>
<td>-26.05</td>
<td>6.83</td>
<td>7.62</td>
<td>6.83</td>
<td>7.62</td>
<td>7.17</td>
<td>0.95</td>
</tr>
<tr>
<td>80</td>
<td>-27.24</td>
<td>4.48</td>
<td>4.98</td>
<td>4.48</td>
<td>4.97</td>
<td>6.77</td>
<td>0.60</td>
</tr>
<tr>
<td>85</td>
<td>-28.34</td>
<td>2.24</td>
<td>2.49</td>
<td>2.24</td>
<td>2.46</td>
<td>6.61</td>
<td>0.29</td>
</tr>
<tr>
<td>90</td>
<td>-29.43</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.59</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Teorías de falla.

Tabla 4. 6. Datos para cálculo de esfuerzos.

<table>
<thead>
<tr>
<th>Constantes</th>
<th>Valor (cm)</th>
<th>Incognitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>b (Espesor)</td>
<td>0,0050</td>
<td>Q</td>
</tr>
<tr>
<td>h (altura)</td>
<td>0,0200</td>
<td>V_y</td>
</tr>
<tr>
<td>d (barreno)</td>
<td>0,0080</td>
<td>l_z, τ_{xy}</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

El elemento 1 tiene un momento y fuerzas aplicadas, véase Figura 4. 16, por lo que un análisis de este puede determinar qué características deben tener los eslabones del mecanismo de apertura y cierre de las planchas.
Para simplificar el cálculo se rotaron los ejes del elemento como se muestra en la Figura 4.17. Elemento 1 rotado a un valor de θ_1 Figura 4.17.

![Figura 4.17. Elemento 1 rotado a un valor de θ_1](image)

Fuente: Elaboración propia.

Diagrama 4.1. Cortante (V_y) y Momento (M_z) del elemento 1 rotado

![Diagrama 4.1. Cortante (V_y) y Momento (M_z) del elemento 1 rotado](image)

Fuente: Elaboración propia.

Donde, de la tabla Tabla 4.5 se toma el valor más alto de $M_1= 4.0468$ Nm para sustituirllo en M_z, de igual forma se elige el valor más alto para V_y.

En el Diagrama 4.1 se observa que en el punto A el esfuerzo es mayor, por lo que se analiza ese el nodo A del elemento 1, en los puntos C y D de la sección transversal, véase Figura 4.18.
Primer momento de inercia.

Donde,

\[dA = b \, dy \]

\[Q = \int y \, dA = \int_{y_1}^{h/2} y \, b \, dy = b \left(\frac{(h/2)^2}{2} - \frac{(y_1)^2}{2} \right) \]

\[Q = \frac{b}{2} \left(\frac{h}{2} \right)^2 - y_1^2 \]

Segundo Momento de inercia.

\[I_z = \int_{-h/2}^{h/2} y^2 \, dA \]

\[I_z = b \left(\frac{(h/2)^3}{3} - \frac{(-h/2)^3}{3} \right) = \frac{bh^3}{12} \]

\[I_z = 3.33333E^{-89} \]

Esfuerzo cortante.

\[\tau_{xy} = \frac{Q_y \cdot V_y}{I_z \cdot b} \]

\[V_y = -F_{2y} \]
\[\tau_{xy} = \frac{b}{2} \left(\frac{h}{2} \right)^2 - y_1^2 \right) \left(-F_{2y} \right) \]

\[\tau_{xy} = \frac{12 \left(\frac{h}{2} \right)^2 - y_1^2 \right) \left(-F_{2y} \right)}{2 \cdot h^3 \cdot b} \]

\[\tau_{xy} = \frac{6 \left(\frac{h}{2} \right)^2 - y_1^2 \right) \left(-F_{2y} \right)}{h^3 \cdot b} \]

Esfuerzo normal.

\[\sigma_x = \frac{M_z \cdot y}{l_z} \]

Donde

\[M_z = M_1 \]

\[\sigma_x = \frac{M_1 \cdot y_1}{bh^3} \]

\[\sigma_x = \frac{12 \cdot M_1 \cdot y_1}{bh^3} \]

Energía de deformación.

\[\sigma_{distorsión} = \sqrt{(\sigma_y)^2 + (\sigma_x)^2 - (\sigma_y)(\sigma_x) + 3(\tau_{xy})^2} \]

Esfuerzos principales.

\[\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + (\tau_{xy})^2} \]

Cortante máximo.

\[\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + (\tau_{xy})^2} \]

Realizando una tabla de cálculo con las formulas y en Excel se obtiene la

Tabla 4. 7.
Tabla 4.7. Aplicación de teorías de falla en los esfuerzos del nodo A del elemento 1.

<table>
<thead>
<tr>
<th>y_1 (m)</th>
<th>Q (m3)</th>
<th>τ_{xy} (Pa)</th>
<th>σ_x (Pa)</th>
<th>$\sigma_{distorción}$ (Pa)</th>
<th>$\sigma_{principales}$ (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E+00</td>
<td>2.50E-07</td>
<td>130795.2397</td>
<td>0</td>
<td>226544.0006</td>
<td>130795.2397</td>
</tr>
<tr>
<td>5.00E-03</td>
<td>1.88E-07</td>
<td>98096.42981</td>
<td>6073651.593</td>
<td>6076027.683</td>
<td>6075235.55</td>
</tr>
<tr>
<td>6.67E-03</td>
<td>1.39E-07</td>
<td>72664.02208</td>
<td>8098202.124</td>
<td>8099180.071</td>
<td>8098854.075</td>
</tr>
<tr>
<td>7.50E-03</td>
<td>1.09E-07</td>
<td>57222.91739</td>
<td>9110477.389</td>
<td>9111016.499</td>
<td>9110836.792</td>
</tr>
<tr>
<td>8.00E-03</td>
<td>9.00E-08</td>
<td>47086.28631</td>
<td>9717842.549</td>
<td>9718184.766</td>
<td>9718070.693</td>
</tr>
<tr>
<td>8.33E-03</td>
<td>7.64E-08</td>
<td>39965.21215</td>
<td>10122752.65</td>
<td>10122989.33</td>
<td>10122910.44</td>
</tr>
<tr>
<td>8.57E-03</td>
<td>6.63E-08</td>
<td>34700.77789</td>
<td>10411974.16</td>
<td>10412147.63</td>
<td>10412089.81</td>
</tr>
<tr>
<td>8.75E-03</td>
<td>5.86E-08</td>
<td>30655.13432</td>
<td>1062890.29</td>
<td>10629022.91</td>
<td>10628978.7</td>
</tr>
<tr>
<td>8.89E-03</td>
<td>5.25E-08</td>
<td>27450.85279</td>
<td>10797602.83</td>
<td>10797707.51</td>
<td>10797672.62</td>
</tr>
<tr>
<td>9.00E-03</td>
<td>4.75E-08</td>
<td>24851.09555</td>
<td>10932572.87</td>
<td>10932657.6</td>
<td>10932629.36</td>
</tr>
<tr>
<td>1.00E-02</td>
<td>0.00E+00</td>
<td>0</td>
<td>12147303.19</td>
<td>12147303.19</td>
<td>12147303.19</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Analizando el nodo B del elemento 1, en los puntos C y D de la sección transversal, véase Figura 4.19.

Figura 4.19. Sección transversal del nodo B

![Figura 4.19. Sección transversal del nodo B](image)

Fuente: Elaboración propia

Primer momento de inercia.

Donde.

$$A_{1,2} = b \left(\frac{h}{2} - \frac{d}{2} \right)$$

$$A_T = b(h - d)$$

Al evaluar la integral tomando solo el área de trabajo con límites de y_1 igual a $d/2 < y_1 < h/2$.
\[dA = b \, dy \]
\[Q = \int ydA = \int_{y_1}^{h} ybdy \]
\[Q = b \left(\frac{(h/2)^2}{2} - \frac{y_1^2}{2} \right) = \frac{b}{2}((h/2)^2 - y_1^2) \]

Para el segundo momento de inercia se toman solo a las dos áreas de trabajo, para lo cual se toman límites en \(y_1 \) igual a \(d/2 < y_1 < h/2 \).

\[I_z = 2 \int_{d/2}^{h/2} y^2 dA \]
\[I_z = b \left(\frac{(h/2)^3}{3} - \frac{(d/2)^3}{3} \right) = \frac{b(h^3 - d^3)}{24} \]

Esfuerzo cortante.

\[\tau_{xy} = \frac{Q_y \cdot V_y}{I_z \cdot b} \]
\[V_y = -F_{2y} \]
\[\tau_{xy} = \frac{b}{2} \left(\frac{(h/2)^2 - y_1^2}{2} \right) \frac{-F_{2y}}{b} \]
\[\tau_{xy} = \frac{24b}{2} \left(\frac{h^2}{2} - y_1^2 \right) \frac{-F_{2y}}{2b(h^3 - d^3) \cdot b} \]
\[\tau_{xy} = \frac{12}{2} \left(\frac{h^2}{2} - y_1^2 \right) \frac{-F_{2y}}{(h^3 - d^3) \cdot b} \]

Esfuerzo normal.

\[\sigma_x = \frac{M_z \cdot y}{I_z} \]
\[M_x = M_1 \]
\[\sigma_x = \frac{M_1 \cdot y_1}{b(h^3 - d^3)} \]
\[\sigma_x = \frac{24 \cdot M_1 \cdot y_1}{b(h^3 - d^3)} \]

Energía de deformación.

\[\sigma_{distorción} = \sqrt{(\sigma_y)^2 + (\sigma_x)^2 - (\sigma_y)(\sigma_x) + 3(\tau_{xy})^2} \]

Esfuerzos principales.

\[\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2} \]

Cortante máximo.

\[\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2} \]

Sustituyendo los valores resulta la Tabla 4.8

<table>
<thead>
<tr>
<th>(y_1) (m)</th>
<th>Q (m³)</th>
<th>(\tau_{xy}) (Pa)</th>
<th>(\sigma_x) (Pa)</th>
<th>(\sigma_{distorción}) (Pa)</th>
<th>(\sigma_{principales}) (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0040</td>
<td>0.00000021</td>
<td>554913.7279</td>
<td>10382310.42</td>
<td>10426704.05</td>
<td>-29574.78301</td>
</tr>
<tr>
<td>0,0070</td>
<td>1.275E-07</td>
<td>336911.9063</td>
<td>18169043.23</td>
<td>18178411.94</td>
<td>18175288.5</td>
</tr>
<tr>
<td>0,0080</td>
<td>0.00000009</td>
<td>237820.1691</td>
<td>20764620.83</td>
<td>20767344.26</td>
<td>-2723.431178</td>
</tr>
<tr>
<td>0,0085</td>
<td>6.9375E-08</td>
<td>183319.7137</td>
<td>22062409.63</td>
<td>22064954.36</td>
<td>-1523.12454</td>
</tr>
<tr>
<td>0,0088</td>
<td>5.64E-08</td>
<td>149033.9726</td>
<td>22841082.91</td>
<td>22842541.5</td>
<td>-972.3785675</td>
</tr>
<tr>
<td>0,0090</td>
<td>4.75E-08</td>
<td>125516.2004</td>
<td>23360198.43</td>
<td>23361210.03</td>
<td>-674.3890382</td>
</tr>
<tr>
<td>0,0091</td>
<td>4.10204E-08</td>
<td>108394.2267</td>
<td>23730995.23</td>
<td>23731737.88</td>
<td>-495.0935752</td>
</tr>
<tr>
<td>0,0093</td>
<td>3.60938E-08</td>
<td>95375.79699</td>
<td>24009092.84</td>
<td>24009661.15</td>
<td>-378.8730865</td>
</tr>
<tr>
<td>0,0093</td>
<td>3.22222E-08</td>
<td>85145.49265</td>
<td>24225390.97</td>
<td>24225839.86</td>
<td>-299.2589623</td>
</tr>
<tr>
<td>0,0094</td>
<td>2.91E-08</td>
<td>76895.18802</td>
<td>24398429.48</td>
<td>24398792.99</td>
<td>-242.3439269</td>
</tr>
<tr>
<td>0,0100</td>
<td>0</td>
<td>0</td>
<td>25955776.04</td>
<td>25955776.04</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Como se observa en la Figura 4. 15 el elemento 2 está sometido a tensión observando una concentración de esfuerzos en el nodo C y B. Por lo que para calcular el esfuerzo máximo se considera el factor k_t y la fuerza de tensión $P = F_N = 29.43 \, \text{N}$, que es el valor máximo mostrado en Tabla 4. 5.

Diagrama 4. 2. Esfuerzo a tensión.

$\sigma_x = \frac{P}{A}$

Fuente: Elaboración propia.

Figura 4. 20. Sección transversal en nodos B y C

$A = b(h - d)$

$\sigma_x = \frac{29.43 \, N}{(0.005\, \text{m})(0.02 \, \text{m} - 0.008 \, \text{m})}$

$\sigma_x = \frac{490500 \, N}{\text{m}^2}$

$\sigma_{max} = k_t \sigma_x$

$\frac{d}{w} = \frac{0.008}{0.02} = 0.4 \Rightarrow k_t = 2.26$

$\sigma_{max} = (2.26) \left(\frac{490500 \, N}{\text{m}^2} \right) = 1108530 \, \text{Pa} = 1.10853 \, \text{MPa}$
Energía de deformación.

\[\sigma_{distorción} = \sqrt{(\sigma_y)^2 + (\sigma_x)^2 - (\sigma_y)(\sigma_x) + 3(\tau_{xy})^2} \]

\[\sigma_{distorción} = \sqrt{(0)^2 + (1.10853 \text{ MPa})^2 - (0)(1.10853 \text{ MPa}) + 3(0)^2} \]

\[\sigma_{distorción} = 1.10853 \text{ MPa} \]

Esfuerzos principales.

\[\sigma_{1,2} = \frac{1.10853 \text{ MPa} + 0}{2} \pm \frac{\sqrt{(1.10853 \text{ MPa} - 0)^2 + (0)^2}}{2} \]

\[\sigma_1 = 0 \]

\[\sigma_{1,2} = 1.10853 \text{ MPa} \]

Cortante máximo.

\[\tau_{max} = \frac{\sqrt{(1.10853 \text{ MPa} - 0)^2 + (0)^2}}{2} \]

\[\tau_{max} = 0.55 \text{ MPa} \]

Selección de materiales.

Para el material de las planchas se optó por acero inoxidable A304, el cual es usado en el procesamiento de alimentos, resistente a la corrosión y al desgaste, idóneo para el proceso de elaboración de obleas.

Mientras que para los eslabones del mecanismo de apertura se optó por usar acero al carbono SAE 1020, el cual, de acuerdo a la tabla C-9 de (Norton, 2006), tiene las siguientes propiedades.

Resistencia a tensión: 379 MPa.
Resistencia a la fluencia: 207 MPa.
Porcentaje de elongación: 25 % en 2 pulgadas.
Para el elemento 1.
Comparando los valores de la tabla

Tabla 4. 7 con los valores de acero SAE 1020.

Energía de deformación.

\[\sigma_{distorsión} = 12.147 \text{ MPa} < 379 \text{ MPa} \]

Esfuerzos principales.

\[\sigma_2 = 12.147 \text{ MPa} < 379 \text{ MPa} \]

Por lo tanto, se concluye que el uso de este material es adecuado a los cálculos realizados.

De la misma forma comparando los valores de la Tabla 4. 8 con los valores de acero SAE 1020.

Energía de deformación.

\[\sigma_{distorsión} = 25.955 \text{ MPa} < 379 \text{ MPa} \]

Esfuerzos principales.

\[\sigma_2 = 25.955 \text{ MPa} < 379 \text{ MPa} \]

Por lo tanto, se concluye que el uso de este material es adecuado a los cálculos realizados.

Para el elemento 2.
Comparando los resultados de las ecuaciones de teorías de falla con las propiedades del acero SAE 1020.

Energía de deformación.

\[\sigma_{distorsión} = 12.147 \text{ MPa} < 1.108 \text{ MPa} \]

Esfuerzos principales.

\[\sigma_2 = 12.147 \text{ MPa} < 1.108 \text{ MPa} \]
Prototipo.

Figura 4. 21. Modelo 2 de la máquina de obleas

Fuente: Elaboración propia.

Figura 4. 22. Partes del modelo 2

Fuente: Elaboración propia.
En la Tabla 4.9 se muestran los costos de los componentes de la máquina.

Tabla 4.9. Tabla de costos de los componentes del prototipo "Máquina de obleas".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor de 1/4 hp 4 polos</td>
<td>2</td>
<td>Acero.</td>
<td>General Electric</td>
<td>20x30 cm</td>
<td>$1,420</td>
</tr>
<tr>
<td>Motor de 1 hp 2 polos</td>
<td>4</td>
<td>Acero.</td>
<td>Continente Ferretodo</td>
<td>25x30 cm</td>
<td>$1,276</td>
</tr>
<tr>
<td>Resistencia de plancha</td>
<td>4</td>
<td>Aleación.</td>
<td>Deposito.</td>
<td>20x30 cm</td>
<td>$800.00</td>
</tr>
<tr>
<td>Tubo.</td>
<td>3</td>
<td>Acero</td>
<td>Acero fortuna.</td>
<td>½ '-50 cm</td>
<td>$200.00</td>
</tr>
<tr>
<td>Mesa</td>
<td>5</td>
<td>Madera.</td>
<td>Maderería.</td>
<td>80x80 cm</td>
<td>$650.00</td>
</tr>
<tr>
<td>Control electrónico.</td>
<td>2</td>
<td>Electrónica.</td>
<td></td>
<td>20x20 cm</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>Servomotor</td>
<td>7</td>
<td>Electrónica.</td>
<td></td>
<td>10x10 cm</td>
<td>$1,400</td>
</tr>
<tr>
<td>Motor</td>
<td>9</td>
<td>Electrónica.</td>
<td></td>
<td>4x4 cm</td>
<td>$300</td>
</tr>
<tr>
<td>Eslabones</td>
<td>8</td>
<td>Acero</td>
<td>Deposito.</td>
<td>Solera (2m)</td>
<td>$200.00</td>
</tr>
<tr>
<td>Lamina</td>
<td></td>
<td>Acero inoxidable.</td>
<td>Metales Díaz</td>
<td>3.5x0.2m (3/4")</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$12,446.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Resultados.

Se aplicó la metodología kaizen en un caso real, donde se identificó la resistencia al cambio y la falta de un líder kaizen, como los principales factores que impiden el éxito en su implementación.

Se propuso una mejora tecnológica para el proceso de elaboración de obleas diseñando una máquina que reduce el desperdicio, tiempo y esfuerzo de dicho proceso.

Construcción de un prototipo, el cual muestra el funcionamiento del modelo real.

Se aumenta la productividad en un 22 % reutilizando el material con el que cuenta la microempresa, pero al sugerir un cambio de materiales para las planchas la productividad, teóricamente hablando, aumenta aprox. 60%.

Productividad.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Actual</th>
<th>Propuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Transporte</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Espera</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Almacenamiento</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mediciones</th>
<th>Actual</th>
<th>Propuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. reloj (min)</td>
<td>23.2</td>
<td>10.84</td>
</tr>
<tr>
<td>T. cronómetro (min)</td>
<td>16</td>
<td>10.33</td>
</tr>
<tr>
<td>Distancia (m)</td>
<td>12.9</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

\[
Productividad_{actual} = \frac{Piezas\ producidas}{t_{cronómetro} * No.\ de\ operarios} \times \frac{1}{5\ obleas}
\]

\[
Productividad_{actual} = \frac{(16\ min) * (1)}{16\ min * operario}
\]

✓ Cada 3.2 minutos un operario produce una oblea.
\[Productividad_{mejorada} = \frac{Piezas\ producidas}{t_{Cronómetro} \times No.\ de\ operarios} \]
\[Productividad_{mejorada} = \frac{4\ obleas}{(10.33\ min) \times (1)} \]
\[Productividad_{mejorada} = 0.3872\ obleas/min \times operario \]

✓ Cada 2.58 minutos un operario produce una oblea.

Eficiencia.

\[Eficiencia_{actual} = \frac{t_{Cronómetro}}{t_{Reloj}} \]
\[Eficiencia_{actual} = \frac{16\ min}{23.2\ min} \]
\[Eficiencia_{actual} = (0.68\ %)(100) = 68\ % \]

\[Eficiencia_{mejorada} = \frac{t_{Cronómetro}}{t_{Reloj}} \]
\[Eficiencia_{mejorada} = \frac{10.33\ min}{10.84\ min} \]
\[Eficiencia_{mejorada} = (0.95\ %)(100) = 95\ % \]
Conclusiones

El kaizen debe entenderse como una filosofía que busca el empoderamiento de las personas, ya que difunde valores como la responsabilidad, honestidad y humildad, y cada día busca la mejora continua mediante la realización de acciones pequeñas, lo cual aplicado de manera correcta resulta en un crecimiento excepcional tanto de la empresa como de los empleados.

 Uno de los principales retos del kaizen es la resistencia al cambio que presentan las personas que participan en el programa de mejora, esto se pudo observar en las visitas realizadas a la empresa de dulces típicos y también en las sesiones del diplomado kaizen donde se implementaron las herramientas lean, ya que pasar de la plática a la acción es un punto crítico en la implementación, donde lo mejor es explicar a aquellas personas que se resisten que un periodo de prueba es lo mejor para ambas partes y ver si el cambio trae consigo un beneficio.

 Además, otra dificultad al iniciar el programa Kaizen fue el cambiar la forma en la que percibían situaciones problemáticas, ya que por lo general solo se buscaban culpables y no se tomaba la responsabilidad de la situación. Por lo que en un inicio no fue posible describir los hechos que originan a las fallas, lo cual durante el desarrollo del programa de mejora.

 En cuanto al proceso de diseño, la idea se mejora continuamente y termina cuando se encuentra una idea funcional acorde a las metas establecidas, de lo contrario sería un ciclo interminable que no llegaría a la realidad.

 Además, en el modelo demostrativo se muestran los contratiempos que pueden llegar a presentarse en el modelo real, dando oportunidad de corrección antes de manufacturar el modelo final.

 El financiamiento es un punto crítico para poder realizar una máquina que se aplique en la realidad, y una vez que se haya fabricado un modelo funcional, este debe ser sometido a pruebas exhaustivas que aseguren que no falle.
Bibliografía

Anexo: Planos
Prototipo Máquina de obleas