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Resumen

En este trabajo se propone una estrategia evolutiva dirigida por simulación y soportada
por conocimiento previo del dominio para la automatización del diseño conceptual de una
aeronave, junto con un marco de trabajo para modelar y definir el proceso de diseño y la
aeronave vista como un sistema de ingeniería.

La solución propuesta se desarrolla a través de la realización del diseño conceptual de una ae-
ronave de ala fija que desempeña una misión de planeo (al interior de un simulador de vuelo)
y es implementada a través de cuatro variantes de la estrategia diseñada.

Este trabajo esencialmente incorpora piezas de conocimiento del dominio en el proceso auto-
mático de diseño conceptual de una aeronave para mejorar la búsqueda de un diseño óptimo
y para ajustarse de mejor manera a la naturaleza basada en toma de decisiones a través de
selección de alternativas y a la relevancia que la experiencia y el conocimiento del campo de
aplicación tienen en la fase de diseño conceptual. Esta sinergia es lograda a través de la combi-
nación de operadores basados en conocimiento previo del dominio del sistema (dos operadores
son propuestos: operador de variación preconfigurada y operador de variación correctiva) con
operadores evolutivos clásicos (recombinación y mutación) para producir diseños conceptuales
(soluciones).

Aunque diseñar una aeronave es usualmente un problema de optimización de diseño multi-
objetivo y multidisciplinario, el aspecto multidisciplinario es puesto fuera del alcance de este
trabajo, pospuesto para trabajo futuro, sin embargo, la naturaleza multiobjetivo es atendida a
través de técnicas de escalarización por lo que una sola solución es obtenida como salida.

Palabras clave: Algoritmo evolutivo, diseño conceptual de aeronaves, conocimiento del
dominio, estrategia evolutiva



Abstract

This thesis introduces a simulation-driven evolutionary strategy, supported by domain
knowledge, for aircraft conceptual design automation along with a framework to model and
define the design process and the aircraft as an engineering system.

The proposed solution is developed through the realization of a conceptual design of a fixed-
wing aircraft to perform a gliding mission (inside a flight simulator), and it is implemented
through four variants of the designed strategy.

This work essentially incorporates pieces of domain knowledge into the automatic conceptual
design process of an aircraft to improve the search for an optimal design, and to better match
the —selection decision-making nature— and —experience and field knowledge relevance—
in the conceptual design phase. This synergy is achieved by combining operators based on
prior knowledge of the system domain (two operators are proposed: preconfigured variation
operator and corrective variation operator), with classical evolutionary algorithms operators
(recombination and mutation) to produce design concepts (solutions).

Although designing an aircraft is usually a multi-objective, multi-disciplinary design optimiza-
tion problem, the multi-disciplinary aspect is taken out of the scope in this work, postponed
for future work; however, multi-objective nature is tackled through scalarization techniques,
therefore, a single solution is obtained as output.

Keywords: Evolutionary algorithm, aircraft conceptual design, domain knowledge,
evolutionary strategy
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Glossary

k-means A clustering method that aims to partition n observations into k clusters in which
each observation belongs to the cluster with the nearest mean, serving as a prototype of
the cluster[79]

aft Towards the stern (Fig. B.2)

bow Front part of an ship

chord length The length of the straight line connecting the leading edge and trailing edge of
a wing section (cross section)

cruise Level flight after an aircraft climbs to a set altitude and before it begins to descend[78]

cumulus A type of tall, white cloud with a wide, flat base and rounded shape[12]

drag A force acting opposite to the oncoming flow

fore Towards the bow (Fig. B.2)

framework A conceptual structure intended to serve as a support or guide for the building of
something that expands the structure into something useful[66]

glide Unpowered flight distance

gust A sudden strong wind[12]

heading Aircraft orientation about its vertical axis (Fig. B.1)

leading edge The wing front border

moment The force or torque that makes an airfoil tends to pitch down or up

momentum The force that keeps an object moving or keeps an event developing after it has
started[12]

outboard Right side of an aircraft (from a top view, nose at top, tail at bottom) (Fig. B.2)

parametric simulation model A simulation model not defined by mathematical equations
but by a set of parameters
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Glossary XII

payload The amount of passengers and/or cargo that an aircraft can carry[12]

pitch Aircraft orientation about its lateral axis (Fig. B.1)

port Left side of an aircraft (from a top view, nose at top, tail at bottom) (Fig. B.2)

reynolds number The ratio of inertial forces to viscous forces within a fluid which is subjected
to relative internal movement due to different fluid velocities[80]

roll Aircraft orientation about its longitudinal axis (Fig. B.1)

shear A change in wind direction

span The length of a wing (pair of wings) from tip to tip

stern Rear part of a ship

systems engineering A theoretical model that lies between pure mathematics and theories
of specialized disciplines that has the goal of designing an engineering system[70]

thermal A raising flow of warmer air

trailing edge The wing rear border

true airspeed The speed of the aircraft relative to the airmass in which it is flying[81]

wind tunnel A closed passage or room through which currents of air are forced in order to
study the effects of moving air on aircraft[12]

yaw Aircraft movement around its vertical axis (Fig. B.1)



Abbreviations

2D two dimensional

3D three dimensional

AI artificial intelligence

CAD computer-aided design

CDE* custom differential evolution algorithm (adjusted to µ “ 3 with differential arithmetic
recombination)

CEO classical evolutionary only strategy variant

DE differential evolution

DE* differential evolution algorithm (adjusted to µ“ 3)

EA evolutionary algorithm

EC evolutionary computing

EP evolutionary programming

ES evolution strategy

FAA Federal Aviation Administration

FPS fitness proportional selection

fwd forward

GA genetic algorithm

JSON JavaScript Object Notation

KB knowledge base

KBO knowledge based only strategy variant

KBS knowledge based system

mid middle

XIII



Abbreviations XIV

NACA National Advisory Comittee for Aeronautics

NASA National Aeronautics and Space Administration

PDF probability density function

PSO particle swarm optimization

RBS rule based system

SBO surrogate-based optimization

SDK software development kit

STAGN Stagnation

SUS stochastic universal sampling

TAS true airspeed

XML Extensible markup language



Units of measurement

Unit Name Description

deg2 square degree Unit of measure of solid angle equal to
`

π
180

˘2

ft foot Unit of length equivalent to 0.3048 meters exactly

kt knot Unit of speed equal to 1 NM per hour

lb pound-mass Unit of mass legally defined as exactly 0.45359237 kilograms

NM nautical mile Unit of distance equivalent to 1852 meters exactly

XV



Nomenclature

Symbol Name

1 cumulative

m sampling frequency

cP f constant value for differential mutation probability

P f mutation probability for custom differential mutation/arithmetic recombination
operator

O set of design objectives

ge operator application frequency across generations

g0 operator application starting generation number

dX method of combination of domains in recombination and differential mutation

dM type of scope of domain used in mutation

RC earth mid radius

Λ f⃗ set of parameters of fitness function

Λι set of parameters of initialization function

ΛI set of parameters of injection operator

Λς set of parameters of selection function

Λσ set of parameters of target selection function

ΛΥ set of parameters of variation operators

η failover variation operator

h f final altitude

g generation

Q aircraft glide end point

Ğ glide

dgc great-circle distance

ψ heading

h0 initial altitude

ι initialization function (i.e., top-down initializer)

TAS0 initial TAS

t0 initial time

XVI



Nomenclature XVII

I injection operator

τI injection operator threshold

κ number of members in x

9φ latitude
9λ longitude

gMAX maximum number of generations termination criterion

µ population mean

t nth simulation measurement

rc median

f⃗M IN minimum fitness evaluation value termination criterion

M p differential mutation probability

k number of design objectives
9k number of performance objectives

w design objective weight

ϱ variation operator ranking function (i.e., variation operator ranker)

9r recombination and differential mutation parent selection function (i.e., parent
selector)

9r recombination and differential mutation parent index

9O set of performance objectives

θ pitch

µ population size

X population

r radius

α low probability/factor value for a random probability/factor function

β high probability/factor value for a random probability/factor function

ρ ranking function (i.e., ranker)

P aircraft release point

φ roll

c arithmetic sample mean (average)

κ differential recombination scale factor

F differential mutation scale factor

ς selection function (i.e., selector)

τS stagnation threshold

σ target selection function (i.e., target selector)

C set of termination criterion

T total number of simulation measurements

C r uniform recombination probability

σ2 population variance



Nomenclature XVIII

Υ set of variation operators

C E classical evolutionary

E evaluated

f⃗ scalarized fitness function of a design concept

KB knowledge based

l nth parameter

ΛC set of parameters of termination criteria

m number of x in x⃗

N set of natural numbers

o nth design objective

Ω feasible design space

p Minkowski distance order

R ranked

R set of real numbers

u⃗ utopian design variables vector (i.e., utopian design concept)

x design variable

x⃗ design variables vector (i.e., design concept)

X C E classical evolutionary local offspring

X KB knowledge based local offspring

Z set of integer numbers

Z` set of positive integers

Z´ set of negative integers



Aircraft design nomenclature

Symbol Name

ǎ superellipse width parameter

a f lT wing airfoil thickness level

a f l t wing airfoil type

a f l th horizontal stabilizer airfoil type

A aspect ratio: the ratio of the wing span to the chord length

Ah horizontal stabilizer aspect ratio

Al aspect ratio level

Alh horizontal stabilizer aspect ratio level

Av vertical stabilizer aspect ratio: the ratio of the height of the vertical stabilizer to
the chord length

Avh vertical/horizontal stabilizer aspect ratio

b̌ superellipse height parameter

c airfoil chord
δhmax

c horizontal stabilizer airfoil max camber
δhmax

c x horizontal stabilizer airfoil max camber location
xδmax

c x airfoil max camber location
δmax

c airfoil max camber
δvhmax

c vertical/horizontal stabilizer airfoil max camber
δvhmax

c x vertical/horizontal stabilizer airfoil max camber location
δvmax

c vertical stabilizer airfoil max camber
δvmax

c x vertical stabilizer airfoil max camber location
δy
c airfoil thickness ordinate

ε twist: The absolute difference between the incidence angle at the root and the
incidence angle at the tip. Twist is negative if the leading edge of the tip is below
the root leading edge, and positive otherwise

εh horizontal stabilizer twist

εt wing twist type

εth horizontal stabilizer twist type
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Aircraft design nomenclature XX

εt vh vertical/horizontal stabilizer twist type

εv vertical stabilizer twist

εvh vertical/horizontal stabilizer twist

fCd fuselage drag coefficient

fh fuselage height

fm̌ mid fuselage cross section superellipse m̌ parameter

fň mid fuselage cross section superellipse ň parameter

fw fuselage width

Γ dihedral angle: the angle between the wing and the aircraft lateral axis, when
viewed from the front

Γ h horizontal stabilizer dihedral angle

Γ t wing dihedral angle type

Γ th horizontal stabilizer dihedral angle type

Γ t vh vertical/horizontal stabilizer dihedral angle type

Γ v vertical stabilizer dihedral angle

Γ vh vertical/horizontal stabilizer dihedral angle

hposh horizontal stabilizer horizontal position

hposw wing plane horizontal position

ı incidence: the angle between the the chord line of thewing at root and the aircraft
longitudinal axis, when viewed from the side

ıh horizontal stabilizer incidence

ıt wing incidence angle type

ıth horizontal stabilizer incidence angle type

ıt vh vertical/horizontal stabilizer incidence angle type

ıv vertical stabilizer incidence

ıvh vertical/horizontal stabilizer incidence

Λ sweep angle: the angle between the lateral axis of the aircraft and a chord-line
going from a chordwise point at the wing root to the same chordwise point at the
tip

λ taper ratio: the ratio of the wing chord length at root to the chord length at tip

Λd sweep direction

Λdh horizontal stabilizer sweep direction

Λd vh vertical/horizontal stabilizer sweep direction

Λh horizontal stabilizer sweep angle

λh horizontal stabilizer taper ratio

ΛL sweep level

Λl sweep location: a location expressed as a percentage of the wing chord length
(starting at leading edge) where a sweep angle is measured

λl wing taper ratio level
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ΛLh horizontal stabilizer sweep level

Λlh horizontal stabilizer sweep location

λlh horizontal stabilizer taper ratio level

ΛLv vertical stabilizer sweep level

Λl v vertical stabilizer sweep location

λl v vertical stabilizer taper ratio level

ΛLvh vertical/horizontal stabilizer sweep level

Λl vh vertical/horizontal stabilizer sweep location

λl vh vertical/horizontal stabilizer taper ratio level

lm fuselage mid section length

ln{d fuselage nose section (fwd) length to diameter ratio

λt wing taper ratio type

l t{d fuselage tail section (aft) length to diameter ratio

λth horizontal stabilizer taper ratio level

λt v vertical stabilizer taper ratio level

λt vh vertical/horizontal stabilizer taper ratio level

Λv vertical stabilizer sweep angle

λv vertical stabilizer taper ratio

Λvh vertical/horizontal stabilizer sweep angle

λvh vertical/horizontal stabilizer taper ratio

m 2nd position digit in NACA 4-digit-series airfoil short-code corresponding to δmax
c

m̌ superellipse vertical curvature parameter

M LW maximum landing weight in lb

ň superellipse horizontal curvature parameter

Nh number of horizontal stabilizers

N v number of vertical stabilizers

N vh number of vertical/horizontal stabilizers

Nw number of wing planes

ny fuselage nose tip vertical location

p 1st position digit in NACA 4-digit-series airfoil short-code corresponding to xδmax
c x

pmx x NACA 4-digit-series airfoil short-code

S planform surface: the wing shape projected surface, when viewed from above in
ft2

S f shape family

S f h horizontal stabilizer shape family

S f v vertical stabilizer shape family

S f vh vertical/horizontal stabilizer shape family

Sh horizontal tail planform surface
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Sh
Svh

vertical/horizontal stabilizer - horizontal tail ratio

Sv vertical tail planform surface
Sv
Svh

vertical/horizontal stabilizer - vertical tail ratio

Swvh vertical/horizontal stabilizer planform surface
thmax

c x horizontal stabilizer airfoil max thickness location
thmax

c horizontal stabilizer airfoil max thickness
tmax

c x airfoil max thickness location
tmax

c airfoil max thickness
t vhmax

c x vertical/horizontal stabilizer airfoil max thickness location
t vhmax

c vertical/horizontal stabilizer airfoil max thickness
t vmax

c x vertical stabilizer airfoil max thickness location
t vmax

c vertical stabilizer airfoil max thickness

t y fuselage tail tip vertical location
t y
c airfoil thickness ordinate

vposh horizontal stabilizer vertical position

vposw wing plane vertical position
x
c chordwise abscissa

xL airfoil lower surface abscissa

xU airfoil upper surface abscissa

xvh vertical/horizontal stabilizer relative lateral arm

x x 3rd and 4th position digits in NACA 4-digit-series airfoil short-code corresponding
to tmax

c

yh horizontal stabilizer relative vertical arm

yL airfoil lower surface ordinate

yU airfoil upper surface ordinate

yvh vertical/horizontal stabilizer relative vertical arm

yw wing plane relative vertical arm

zh horizontal stabilizer relative longitudinal arm

zv vertical stabilizer relative longitudinal arm

zvh vertical/horizontal stabilizer relative longitudinal arm

zw wing plane relative longitudinal arm
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1
Introduction

1.1 Background

Based on the definition of National Aeronautics and Space Administration (NASA), an aircraft
is a contrivance designed to be supported by a mass of air, either by the dynamic action of the
air upon the aircraft surfaces (aerodynamic lift), or by its own buoyancy (aerostatic lift).

A fixed-wing aircraft is a class of aircraft that become airborne by aerodynamic lift (a force that
is perpendicular to the oncoming flow direction and in opposition to weight) produced by its
wings and air. The wings are static planes extending either side of the aircraft, when the aircraft
travels forwards, air flows over and under the wings which are shaped to create lift.

Formally speaking, an aircraft is indeed a concrete instance of an engineering system, defined in
[55] as a set of mutually related elements artificially built and assembled together in some spe-
cific order to perform an intended function (a flight mission) that can influence or be influenced
by natural systems (e.g., flight environment, control systems, etc).

Most of those kinds of systems (including an aircraft) are considered as complex systems in
relation to the intrinsic “complexity” of its structure (number of components, number of rela-
tionships between them, etc), and the number of functions the system performs[55] (an aircraft
is a system capable of generating aerodynamic lift, carrying on payload, take-off, climb, navi-
gate, descend, land, taxing, accelerate, glide, etc).

From system engineering perspective, an engineering system such as an aircraft is organized in
top-down system hierarchy approach. This hierarchy goes from the system level, where the
purpose of the system is achieved, through other functional units that are aggregates of lower
level elements (e.g., subsystems, assemblies, components, sub components, etc), down to parts
at the lowest level of the hierarchy, which are functional units assumed indivisible in the context
of the system being considered[55].
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1.1.1 Aircraft design

Aircraft design is a separate discipline of aeronautical engineering, different from the analyti-
cal disciplines such as aerodynamics, structures, controls and propulsion (an aircraft designer
spends little time performing such analysis)[63].

From the process exhaustively described in [67], designing an aircraft is a multidisciplinary and
iterative process that involves performing two types of engineering design activities: problem
solving through mathematical calculations, and logical selection of a preferred one among al-
ternatives (configuration selection), within cycles of three major design operations (Fig. 1.1):
analysis (prediction of the performance or behavior of a design candidate), synthesis (the cre-
ative process of putting known things together into new and more useful combinations —new
values, features, characteristics, or parameters are determined—) and evaluation (the process of
performance calculation and comparing the predicted performance of each feasible design can-
didate, candidate designs that fail to satisfy the requirements are retired) across aircraft main
components and the aircraft as a whole itself.

Synthesis

Analysis

Evaluation

Figure 1.1: Design operations
Source: Based on [67]

The aircraft design process is the means through which an aircraft design is synthesized, starting
from the requirements and finalizing to a state prior to manufacturing, and consists according to
the system engineering discipline in four major design phases: conceptual design, preliminary
design, detail design and test and evaluation.

Conceptual design

According to [67], it is the first and most important phase of the design process. It com-
mences with the identification of the requirements in specific qualitative and quantitative
terms.

Aircraft conceptual design is a high-level activity with potential to establish, commit, and
otherwise predetermine high-level qualities, including the shape of the desired aircraft[67].

Its primary objective is the selection of a preferred aircraft configuration that meet the re-
quirements. The outcome of this phase is a design concept or configuration which does not
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necessarily accompany any details[67].

During conceptual design only components that are directly responsible for the conceptual
design requirements (dominant components) are usually considered (the other kind of com-
ponents are servant components that “serve” dominant components, yet those components
are part of the scope of the detail design phase)[67].

Answers to questions like: Will it work?, What does it look like?, What requirements drive
the design?, etc, represent a way to visualize the purpose of the aircraft conceptual design
phase[63].

Preliminary design

The essential purpose of this phase is to determine features of the basic components and sub-
systems.

Common output for this phase includes: major technical data, some mathematical models, ma-
terials specifications, performance technical measures at subsystem level, functional analysis
at subsystem level, detail design requirements, trade-off studies at subsystem level, full sys-
tem mock-up and model, operational studies, interface specifications, plans for verification and
verification tests, among others[67].

Detail design

This phase establishes detailed design decisions at component and parts level, mathematical
models for evaluation, low level design requirements, extensive design operations (e.g., tech-
nical/mathematical calculations), detailed trade-off analysis, integration of system, subsystems
and components, physical prototype model, detailed design data, planing and conducting of
tests and evaluations, among others[67].

Test and evaluation

During this phase different tests at a system integrated level are performed on a physical proto-
type of the aircraft (i.e., aircraft aerodynamic testing in a wind tunnel, aircraft dynamic testing,
structural and propulsion test)[67].

1.2 Motivation

Engineering design is creative work. It requires ingenuity, intuition and good
judgment, all talents that are typically human and not easily implemented in a com-
puter program... [73].

According to the aircraft design process, conceptual design phase is a key step fromwhere subse-
quent phases will depend on to further develop the design of the aircraft. It has the potential to
determine high-level features (or at least strongly influence) including the shape of the aircraft
and a complete high-level configuration are expected to be obtained from it.

Conceptual design phase is also not so firmly dependent on mathematical analysis nor mathe-
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matical problem solving but with high-level selection of alternatives (i.e., configuration build-
ing).

On the other hand, selection from alternatives would mean that prior domain knowledge and
experience became key factors for making decisions effectively —is reported from interviews
with designers in the US aircraft industry that 56 % of product development delays were due
to lack of documented design knowledge. This underlines the importance of reuse of ideas and
engineering knowledge that is established and form part of a company’s corporate knowledge—
[73].

A concept is an ‘on the way’ solution (that results from a conceptualization process, consisting
in manipulation and combination of ideas), and thus, partial and intermediate in its nature,
is a design proposal that is detailed enough to justify if it is a good answer to the task and
intention[4].

An aircraft, including the concrete case of a fixed-wing aircraft is a very complex engineering
system, butwhen placed at a conceptual level (i.e., aircraft configuration), most of its complexity
is “postponed” to subsequent phases, that is, some levels of the system hierarchy are completely
discarded, and the number of subsystems, components and their relationships are considerably
reduced.

The fundamental objective of the aircraft design process is to synthesize an aircraft design that
better meet the requirements stated at the beginning of the process, and in the special case of
conceptual design, a design concept that mean to be a promising starting point for further design
phases.

This process shares the characteristics of an optimization problem and particularly a design op-
timization problem (also called engineering optimization problem), where a design should be
found that optimally, or near optimally meet an objective or design requirements.

From amathematical perspective, a design optimization problem regards to find—a set of values
(discrete, continuous or mixed) for a corresponding set of design variables that represent a
design— that minimizes or maximizes a function that represents a measure of quality of the
design with respect of the objectives to be met.

A common approach in engineering for design optimization is throughmathematicalmethods of
optimization, where an equation or equations (engineering performance) have to be minimized
or maximized in order to find specific values for parameters or variables. Design optimization
by mathematical methods is generally utilized in the detail phase of engineering design, where
specific values (sizing) are determined for each part and component of the system.

Considering that conceptual design is about building a configuration, mainly through selection
of alternatives, it becomes difficult to express the system at that level by using onlymathematical
expressions[59].

A particular motivation emerges to build a solution as means for conceptual design automation
of an aircraft. Since conceptual design phase does not regard to any physical model of any kind
of the aircraft being designed, a type of digital aircraft prototype must be the outcome from the
automatic process, that is, the synthesis of the design concept.

According to systems engineering discipline, and the previously presented iterative aircraft de-
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sign process, a synthesized design must be evaluated in order to discard non compliant designs,
and move the process towards the optimal design. This evaluation can be driven by using ex-
isting simulation tools and particularly a flight simulation tool, given that a simulator of this
type expects an integrated version of an aircraft (i.e., no separated components, subsystems or
parts).

Generating a digital conceptual design of an aircraft that is flyable (to some extent) inside a flight
simulator, requires some level of completeness of the design, a task that might be achievable at
a conceptual level considering that, as stated by [55], the sum of the functioning of the parts is
quite often not equal to the functioning of the whole, therefore the synthetic mode of thinking
of the systems approach, seeks to overcome the often-observed predisposition to perfect details
and ignore the system outcomes from the analytical mode thinking.

Furthermore, considering that conceptual design relies mainly on making selection decisions,
an approach based on evolutionary algorithms sounds promising to enable automatic concep-
tual design. An evolutionary algorithm is a kind of bioinspired metaheuristic method to solve
general complex optimization problems that do not have to fulfill any assumptions or limit-
ing properties, that is, the problem is considered as a black box[44] (just like the problem of
designing an aircraft, at least from the computational perspective).

Based on the concept of evolutionary design[23], a solution based on the evolutionary comput-
ing principles could provide access to a considerably bigger set of alternatives to choose from,
without requiring going too deep into the mathematical characteristics of the design problem
itself. Moreover, given the importance that prior domain knowledge, experience and human
creativity play in conceptual design, rather than mathematical problem solving; incorporating
pieces of domain knowledge into the automatic design process to improve the search of an
optimal design seems convenient, besides that integration could also enable designers and the
automatic conceptual design process itself, to deliberately incorporate new design ideas (either
human-made or synthetic) or existing configurations.

1.3 Objectives

The general objective of this work is to synthesize a flight simulator flyable fixed-wing aircraft
that fulfill specific needs and performs favorably, through an evolutionary strategy supported
by domain knowledge.

The specific objectives are:

• To define and model a specific aircraft design as a test scenario, and its corresponding set
of design objectives, design variables, fixed parameters and evaluation mechanisms.

• To build a knowledge base containing pieces of domain knowledge that support the evo-
lutionary strategy and the test scenario modeling.

• To craft a custom evolutionary strategy for the aircraft conceptual design automation.

• To synthesize a flight-simulator-flyable fixed-wing aircraft as a possible solution for a spe-
cific scenario.
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1.4 Disclaimer

Since this work pretends to follow a direct simulation-driven approach, it is taken for granted the
computational expensiveness factor it might mean. For this reason, and besides —the purpose
of incorporating pieces of domain knowledge within the evolutionary process—, a decision is
made from the beginning to follow an evolutionary design optimization approach of crafting a
custom evolutionary strategy for the aircraft conceptual design automation problem, instead of
going through a process of —selecting, tuning and discarding— a set of existing evolutionary
algorithm implementations.

Part of this thesis is the crafting of an evolutionary strategy, it should not be confused with
the term “evolution strategy” nor its acronym “ES” which is a mainstream type of evolutionary
algorithm. The evolutionary strategy of this work is not considered a type of “evolution strategy”
nor inspired by it, but a custom strategy based on evolutionary computing principles.

1.5 Document outline

Subsequent content of this work is organized as follows:

Chapter 2

Within this chapter, a theoretical framework for the development of the proposed solution
is presented. Starting from the most essential application field of this work: “design”, that,
although is a very common term used in many fields of science, engineering, arts, and daily
life; a specific definition must be selected to avoid ambiguities.

From that starting point, the theoretical framework is elaborated from broader concepts into a
specific body of knowledge adapted to the particular needs of the problem being studied and
the objectives set for this research work.

Evolutionary computing and knowledge based systems theoretical review is not performed in
a survey style but from a generalization and conceptual perspective, an approach conducive to
crafting a custom solution based on those fields of knowledge principles, therefore, evolutionary
components and mechanisms are explored with —the mixed nature of an aircraft conceptual
design solution, a mix of continuous and discrete values at the optimization solution represen-
tation level and augmented to categorical values at the initialization and system representation
level— in mind.

Chapter 3

A literature review is presented with a summary at the end of that section, as well as a short
description of the software tools used during the development of the solution (that were not
built as part of this work).

Chapter 4

Through this chapter, the solution proposed is fully elaborated. Starting with an overall view of
the followedmethodology andmain components involved, continuingwith the definition of the
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requirements of the design problem, the problem definition itself, including the rendering of the
design objectives and their respective objective functions (domain specific methods are provided
to construct those functions), followed by the modeling of the aircraft as an engineering system
(structurally) and the knowledge regarding that system.

The design representation model is analyzed and implemented to be used by the evolutionary
strategy and simulation tool. A domain model, including geometric aspects and domain specific
features of the system is built to serve as a bridge between the underline design representation
and the models required by the simulator and complementary views of the system (like visual
or human readable format models) in terms of the application domain.

In the second part of this chapter, the evolutionary strategy is described in detail, providing
a nomenclature, algorithms and diagrams, including selection operators (both target selection
and offspring selection operators), mechanisms to improve population diversity, mechanisms
to provide flexible alternatives for performance tuning and mechanisms to help increase prob-
ability of success.

The proposed knowledge based variation operators are defined, fully described and imple-
mented (including the knowledge representation for their functioning) and custom evolution-
ary operators are presented.

At the end of the chapter four implementations of the strategy are defined and illustrated.

Since the aircraft ormore specifically the fixed-wing aircraft is a particular case of an engineering
system, the terms: aircraft, fixed-wing aircraft, “system” and “engineering system” are used
interchangeably (for contextual purposes) to refer to the fixed-wing aircraft being designed as
the implementation of the solution proposed.

Chapter 5

In this chapter, an experiment (namely main experiment) and its corresponding results are pre-
sented to test the modeling and definition of the design problem, and the evolutionary strategy
proposed in this work.

The proposed strategy is tested through the execution of a battery of conceptual design pro-
cesses, implemented in four variants of the strategy. The strategy is compared with a custom
differential evolution algorithm and three additional special algorithmic implementations of the
strategy designed to isolate both, the knowledge based variation behavior and the pure stochas-
tic behavior of the evolutionary classical variation operators.

An additional “short or mini” experiment is included in order to test a dynamic flight envi-
ronment scenario. Weather is enabled to produce dynamic perturbations on the simulation
model.

Chapter 6

General and specific conclusions and considerations derived from this research work and the
results obtained are exposed and explained, as well as ideas postponed to future work.
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2
Theoretical framework

In the process of building a theoretical framework for this research work, some reference con-
cepts need to be set in order to avoid ambiguity during the development of the research.

Domain, type and characteristics of the problem being studied are also required to be defined in
the interest of establishing a starting point and concepts path towards a solution approach and
specific methodology.

2.1 Problem domain

This work deals with aircraft conceptual design; however, design is a term that “design” has
several meanings depending on the context it is used, and its grammatical role.

Given that an aircraft is a type of engineering system, a proper definition for design to be adopted
in this work, could be one based on the engineering design practice, where design is considered
both, the action of determining (a verb) —and the determined (noun)— parameters that en-
able the construction of an optimal engineering system[58] (with respect of requirements and
constraints), by applying scientific and engineering knowledge.

The type of design may be characterized by its scope: a novelty, adaptive design or variant
design[58].

2.2 Problem type

Aircraft conceptual design automation is a problem that perfectly fits in the definition of a design
optimization problem, in the sense that the aircraft conceptual design process aims to obtain an
aircraft design concept that meet the requirements (e.g., flight mission) stated at the beginning
of the process.
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2.2.1 Optimization

Broadly speaking, optimizationmeans to find, within a given search space, a solution (for an op-
timization problem) represented by a value or a set of values for their corresponding parameters
or variables that cause an objective function value to be optimal (minimal or maximal).

An objective function is a numerical mathematical expression for the objective that needs to be
achieved by a problem solving method[18].

An objective function measures the “goodness” or quality of a feasible solution, understood as a
parameter or set of parameters (or variables) whose values satisfy all the imposed side conditions
(constraints), if any[18].

An objective function is called by different names depending on the context of use and whether
the objective is a minimal or maximal, in order to provide a more meaningful sense when
used in a specific problem (e.g., cost function —the least value the better performance—, profit
function, quality function, fitness function, gain function, distance function, etc).

2.2.1.1 Optimization problem characterization

Based on [64], [32], an optimization problem can be classified depending on the characteristics
of its objective function and its search space:

Number of optimals An optimization problem is mono-modal if the objective function
only has one optimal value, or multi-modal if has more than one.
That means that in a multi-modal problem there could be several
local optimal values.

Number of objectives If the objective function has a scalar value the problem is con-
sidered a mono-objective problem, or multi-objective if the ob-
jective function value is a vector. This classification can also be
observed from the number of objectives of the problem definition
itself.

Constraints If there are constraints that partition the search space, the prob-
lem becomes a constrained problem, otherwise unconstrained
problem.

Search space domain An optimization problem, depending on the search space nature,
could be continuous (for continuous search space), combinatorial
(for discrete search spaces), or mixed.

Optimization purpose An optimization problem is a parametric or static optimization
problemwhen the purpose of the optimization is to find values of
a set of parameters (i.e., design variables), and control or dynamic
optimization problem when the purpose is to find actions to be
taken depending on the changes in the state of the problem.

Since actions could still be considered ormodeled like variables or
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parameters, therefore a more determining element to distinguish
between parametric and dynamic optimization problems regards
with the role of time in the objective function evaluation and
problem behavior.

Objective function nature Per the mathematical characteristics of the objective function,
an optimization problem might be linear or non-linear, differ-
entiable (objective function gradient exists) or not differentiable,
and, if differentiable, it can differentially computable or not com-
putable, depending on whether its derivative can be calculated or
not.

2.2.2 Design optimization

A design optimization problem is an optimization problem that has the purpose of finding,
within a design space, a design of the system that meet some performance or design objec-
tives. In a design optimization problem, the design fitness or quality (determined by fitness
and objective functions) is the measure that tells how close or far a given design is from
achieving the objective or objectives.

A design of the system from the design optimization perspective, is a set of design variables
values. Once the design variables are given values, they represent a design of the system (a
candidate design solution for the optimization problem). Different values for the design vari-
ables produce different designs, and the number of those variables gives the design degrees of
freedom for the problem[5].

A design can be defined by different sets of design variables [5]. This characteristic allow defining
different models (views or abstraction layers) of the system, that is, representations that capture
or emphasize only certain properties of interest in the modeled system, while the fidelity of the
model to the actual system is intentionally reduced or limited in other ways[51].

2.2.2.1 Design optimization problem formulation

The first step in the solution of a design optimization problem, is to formally formulate it (success
in solving the problem is not guaranteed by properly formulating the problem; however, failure
is almost guaranteed if the problem is poorly or mistakenly formulated), a common approach
is the one described by [5]:

Design problem description
Translating a textual statement that describes the overall objectives and requirements of the
problem into a well-defined mathematical definition.

Data/information/tools collection
Identify and collect analysis procedures and tools that will support the evaluation of candidate
designs (e.g., domain specific knowledge procedures, equations, applicable theory, simulation
tools, etc).
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Design variables identification
An optimization problem should depend only on a single selected set of design variables, those
variables should be selected according to the following considerations:

• Design variables should be independent of each other, or if dependency exists, that must
be controlled by constraints.

• The minimum number of design variables to represent the design should be identified.

• Fixed values should be incorporated as potential design variables (at least at initial formu-
lation) with assigned fixed values (equality constraints).

• A design variable should be identifiable.

Optimization criterion
Selecting a proper objective function or a set of them, to enable ranking among candidate de-
signs based on a value of merit assigned to each of them.

An objective function to be valid, must be influenced directly or indirectly by the set of de-
sign variables, in some problems however, it is not obvious what the objective function should
be, or how it should relate to the design variables, in that case, some domain knowledge and
experience may be needed.

Formulation of constraints
Restrictions of any kind and performance requirements (not related to the objective function),
need to be identified and mathematical expressions should be developed for them as bounds of
a feasible design space (i.e., a set of designs that are acceptable, feasible or workable).

If a design does not meet at least one constraint it is considered an unfeasible or unacceptable
design. These constraints must depend on the design variables (i.e., must be functions of at least
one design variable). It must be considered that, if constrains are too restrictive, there may not
be any feasible solution for a given problem.

2.3 Solution approach

2.3.1 Simulation-driven design

According to [44], in practice, many optimization problems behave as “black box” problems,
with many knowledge gaps regarding the problem internal details (e.g., whether the objective
function is linear or not, the problem is mono or multi-modal, etc). In “black box” type design
optimization problems, the value of objective functions usually cannot be obtained by simply
solving an equation, but with data provided by external computer-based simulation tools or
solvers.

Computer simulations allow observing a system behavior and characteristics in a digital proto-
type before the physical system is actually built, this mechanism may enable an economically
efficient computed-based design optimization process of the prototype or its components[44].
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According to [43], the use of computer simulations in engineering to assist design optimiza-
tion, besides been used for verification purposes, has being more commonly adopted as they
have become more reliable tools, specially where traditional theoretical models might be no
longer adequate to fully assist the design, or with the necessity of more accurate simulations of
increasingly more complex systems.

In the direct simulation-driven design optimization approach, the candidate solutions gener-
ated by the optimization algorithm are evaluated through high fidelity simulation tools for ver-
ification purposes, and to provide the optimizer with useful information to search for better
designs[43].

Simulation times may vary from seconds, to minutes, hours, days and even weeks, depend-
ing on the complexity of the system being simulated and the fidelity level. This could make
their usage prohibitive for some applications, when using optimization algorithms that require
numerous evaluations during their searching process.

A possible approach to tackle the computational expensiveness problem of high fidelity sim-
ulations, is the application of surrogate-based optimization (SBO), consisting in replacing the
expensive high fidelity simulation model with one or more lower fidelity representations called
surrogate models. The surrogate model is then used in an optimization process to identify
promising areas of the design space that eventually might drive to generate high fidelity models
and verify them in the computationally expensive high fidelity simulation tools[43].

At a conceptual level, the usage of direct simulation-driven design optimization might be still
practical and useful. A digital aircraft conceptual design could be indeed, considered as a lower
fidelity level model of the full system design model. Only a small subset of the design variables
and components, and only one or a very small number of disciplines are partially covered.

From the SBO perspective, a direct simulation-driven conceptual design optimization might
become in some degree the surrogate model of subsequent optimization design phases (e.g.,
conceptual multi-disciplinary, preliminary and detailed design) of the aircraft, or just being the
high fidelity model at a conceptual level, in which case the simulation tool would be the high
fidelity simulation tool at that level as well.

2.3.2 Hybrid metaheuristic approach

A metaheuristic is a method for solving general types of problems. A metaheuristic guides the
process of finding high quality solutions by coordinating the application of search operators (i.e.,
mechanisms and procedures that perform movements within the search space) within a large
solution space. A metaheuristic uses mechanisms to avoid falling into local optima to perform a
robust search without requiring hypotheses on the optimization problem nor any kind of prior
knowledge on the objective function, that is, the objective function is treated as a black box[30],
[24], [10].

No guarantee can be provided about the quality of the solution obtained (i.e., finding the global
optimum is not guaranteed), but a well-designed heuristic method usually can provide a solu-
tion that is at least, nearly optimal[41].

Metaheuristic optimization methods are generally inspired by analogies and have stochastic
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nature, a feature that allow them to manage the combinatorial explosion nature of a conceptual
design problem. They also have the advantage to be extensible to muti-objective, multi-modal,
dynamic and parallel optimization implementations[69].

There are several types of metaheuristic algorithms and one could think of picking one to enable
aircraft automatic conceptual design as design optimization method; however, according to the
no-free-lunch theorem of optimization, a general “best” optimization method cannot exist to
solve all kind of problems (i.e., a method that outperforms the rest of methods in a specific
application), and the only way a method can outperform another (in a specific problem), is if
it is specialized to the structure of the specific problem[36].

This situation leads to define a hybrid metaheuristic that, according to [62], is an algorithm that
do not strictly follows a traditional metaheuristic established algorithm, but combine various
algorithmic ideas in order to improve performance and capabilities of solving specific problems
by synergy of concepts.

In other words, “exploiting problem-specific knowledge in the best possible ways, picking the
right algorithmic components, and combining them in the most appropriate way, may lead to
build the most appropriate algorithm to solve a specific optimization problem[62], [36]”.

2.3.3 Optimization problem scalarization

Scalarization is a common approach to deal with the usually, multi-objective nature of a de-
sign optimization problem without requiring extending the base optimization framework avail-
able, by virtually lower the n-dimensionality of the objective or fitness function into a single-
objective, that is, replacing a multi-objective optimization problem by a suitable mono-objective
optimization problem (replacement of a vector by a scalar[39]).

This approach is a type of “Preference based method”[22] of resolving multi-objective opti-
mization problems, where assumptions are made about the importance of objectives prior the
optimization process.

This approach is supported by the principle in vector optimization that optimal elements of a
subset of a partially ordered linear space can be characterized as optimal solutions of certain
scalar optimization problems[39].

Weighted sum method

The weighted sum method is a linear aggregating function used to compute the scalar fitness of
a solution[14] using:

f pxq “
k
ÿ

i“1

wi fi pxq

where wi ě 0 and i “ 1 . . . k are the weighting coefficients representing the relative importance
of the k objective functions of the multi-objective problem. It is usually assumed for normal-
ization that:

k
ÿ

i“1

wi pxq “ 1
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Solving the new formulated single objective optimization problem for a certain number of dif-
ferent weight combinations yields a set of solutions[86].

Weighted metric method

The weighted metric method[22], [54], is another approach of combining multiples objectives
into a single objective through a weighted metric such as the Lp (Minkowski) distance metric.
The weighted Lp distance measure of any solution from a utopian solution u˚ (a non-existing
solution in terms of the values of its individual objective functions) is the norm Lp of their
difference:

f pxq “

˜

k
ÿ

i“1

wi| fi pxq ´ fi pu
˚q|

p

¸1{p

The parameter p can take any valueě 1. As of the weighted method, different executions using
different sets of weights produce a set of solutions. Any optimal solution obtained by Lp depends
on the parameter p, which works as a kind of resolution parameter. It has been observed that,
as p parameter starts increasing from p “ 1, the number of optimal solutions reachable with this
weighted metric also increases[22], as well as the diversity of the solutions (when comparing
with the weighted sum method starting at p “ 2). It is also observed that, as p increases, the
problem becomes non-differentiable, making this method useless for gradient-based methods,
yet promising with evolutionary approaches.

2.3.4 Evolutionary design

Evolutionary design and particularly evolutionary engineering design, is an approach to coming
up with optimal or innovative design solutions by using evolutionary computing (EC) principles
through which different design concepts (in the particular context of conceptual design) can be
evolved by formulating the design task as an evolutionary optimization procedure[23].

2.3.4.1 Evolutionary approach suitability

Evolutionary algorithms are becoming increasingly popular in engineering design due to the
flexibility, self-adaptive properties and search capabilities, making them a suitable approach to
tackle engineering design tasks, usually presenting the following characteristics:

• Objective functions are usually non-linear, non-convex, discrete, and non-differentiable.

• There can be more than one optimal solution, requiring a global optimization method.

• There can be many objectives, often conflicting with each other.

• Objective functions can be noisy, causing classical methods to get stuck in the details.

• Objective functions usually are computationally daunting to evaluate (as well as the pro-
cedures used to assist evaluation).
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• Design variables are usually mixed: real-valued, discrete integers, categorical, encoded
chain of events, permutations, etc.

• Number of design variables, objectives and constraints may be large, causing “curse of
dimensionality” problems (as dimensionality increases, the volume of the space increases
so fast that the available data become sparse).

2.3.4.2 Evolutionary approach implementation

According to [23], the advantages of the evolutionary design approach do not come free; its
applicationmust use appropriate and customized evolutionary operators specific to the problem,
and develop a methodology based on customization and hybridization.

When designing the specific algorithm, as much customization as possible must be utilized in
creating the initial population, and developing evolutionary operators[23].

Possible generic strategies would be[23]:

• Developing seed solutions in terms of building blocks.

• Considering some operators as a primary creation operators and others to repair existing
solutions.

• Taking advantage of knowledge of one or more existing solutions, and use them as seed
solutions.

2.3.5 Domain knowledge incorporation

According to [47], there are some options to incorporate domain knowledge into an evolution-
ary algorithm (EA), either to speedup convergence, or to reduce the computational cost of the
algorithm. Prior domain knowledge may be used to build a set of references for conducting a
more efficient search, to seed good solutions in the initial population, or to add knowledge to
variation operators in order to facilitate the generation of good solutions.

A rule based system (RBS) is a relatively simple type of knowledge based system (KBS) (from
implementation perspective). A RBS is suitable for applications of diagnosis (classification),
advisory systems (let the user make the final decision), dictatorial systems (make decisions
without consulting a user), systems based on experience, among others; however, a RBS can
be adapted to almost any number of problems as long as the knowledge in the problem area
can be modeled in the form of if-then rules or premises.[33].

2.3.5.1 Knowledge

Human knowledge is the result of cultural development and is composed of scientific discover-
ies, industrial advances and innovations, but also human ingenuity and experience[4].

Based on [42] analysis, knowledge is the result after understanding and internalizing collected
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Data

Information

KnowledgeValue

Concepts

Facts

It is cold
- put on a warm coat

It is cold outside

Outside temperature is 5℃

Figure 2.1: Data, information and knowledge
Source: Based on [42]

information about an area of concern (i.e., domain) for its later application, usage to support
taking decisions, solving problems, and further develop new knowledge.

Information as a source of knowledge, is data processed or transformed into a form or structure
suitable for its usage. Data are streams of raw facts or recorded symbols representing events.
The perceived value of data increases as it is transferred into knowledge through information
(Fig. 2.1).

From a computational perspective, and in the context of a KBS, knowledge is anything that
can be expressed through a rule[42], and in general by any knowledge representation mecha-
nism such as semantic nets, ontologies, custom Extensible markup language (XML), procedures
(direct programming), etc.

2.3.5.2 Knowledge based system

A KBS is a computational system that reasons on continuously subject to change knowledge,
to solve complex problems. It requires two types of knowledge to be functional and useful,
the domain knowledge and the knowledge of how to manipulate the domain knowledge and
reason on it[52].

A KBS comprises two essential components[52], [33]:

Knowledge base A computational system that captures the domain knowledge through a spe-
cific knowledge representation, that is, symbols and structures used to represent knowl-
edge.

Inference engine A set of algorithms that enables reasoning (generate conclusions by apply-
ing logic) on the knowledge, that is, manipulation of knowledge representations to pro-
duce representations of new knowledge.

Developing a KBS requires translating the domain knowledge coming from an expert source
(e.g., a human expert, a book, etc) into a set of computational representations of that knowl-
edge.
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2.3.5.3 Rule based system

A RBS (also known as production systems) is a type of KBS that uses rules as knowledge repre-
sentation mechanism, a RBS is a very simple model that can be adapted and applied for a large
set of types of problems if and only if, the domain knowledge can be expressed in the form of
IF-THEN rules[33].

An IF-THEN rule is a statement that relates an antecedent or premise in the IF part to a conse-
quent or conclusion in the THEN part:

IF antecedent THEN consequent

For example: IF aircraft main wing dihedral angle < 0 THEN aircraft has anhedral main wing
configuration

Premises are facts (data and information) subject to conditions expressed by logical operators
( conjuntion ^, disjunction _,and negation ␣), whereas conclusions are new fact assertions
(and some times triggered actions). The rule tests the logical expression in the premise and,
if the expression evaluates to true, it then asserts that a fact about a thing or a class of things is
true[33].

In the example, if the premise evaluates to true, new knowledge is generated that tells that
the aircraft main wing configuration is of the type anhedral (a negative angle of the wing with
respect to the lateral axis of an aircraft).

In compliance with the components of a KBS, a RBS consists of a knowledge base and an
inference engine. In particular, the knowledge base in this kind of systems is composed by
one or more fact bases (set of data and information assertions) and one or more rule bases
(knowledge encoded as a set of rules).

An inference engine in the context of a RBS, reasons on the knowledge in two modes:

Forward chaining or data-driven approach Starts from facts entered by the user (i.e.,
working memory facts) and searches through the rule base to assert new facts or gen-
erate conclusions.

Actions embedded into rules and other chained rules are fired, and new facts are entered
into the working fact base whenever a condition in a visited rule is true within the search-
ing path.

The engine pass through the rule set as many times as required until no more rules can
be fired (i.e. no more rules conditions are true).

Backwards chaining or goal-driven approach Starts from a hypothesis and proceeds back-
wards by matching provided hypothesis against existing conclusions, formulating new
hypotheses from found conclusions resolved by knowledge represented as facts, either in
fact bases or residing in working memory, until the original hypothesis gets confirmed or
disproved.

Backwards chaining can also serve as questioning mechanism, through which a user may
formulate a factual query, and the engine would determine the facts that must be asserted
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to resolve the query[34].

2.4 Evolutionary computing framework

The word evolution has several meanings, however, when used in the context of an EA, it refers
to the biological evolutionary process, where a population of individuals evolve (change) over
time by consequence of variation and selection behavior.

Previous conceptualization only corresponds to the analogy the type of algorithm is inspired
by (a metaheuristic feature), the real evolutionary behavior of an EA has to do with taking
advantage of its own adaptive capability to solve difficult computational problems in a large
solution space. In other words an EA is inspired by the features of biological evolution but is
not constrained by them[21].

An EA is a general purpose metaheuristic population based problem solver, part of EC, an
artificial intelligence (AI) family of computational models[72] inspired by biological evolu-
tion to progressively find high quality solutions for complex problems within a large search
space.

2.4.1 General evolutionary algorithm model

Based on [21], [8], an EA (Fig. 2.2) solves complex problems based on the following components
and properties:

Individuals A representation (or encoding) of a possible or candidate
solution of the problem, modified as necessary for a par-
ticular EA instance[14].

An individual is usually in the form of vectors[14] com-
posed by design variables values, whose dimensionality
either fixed or variable[48] is problem specific.

Many other representations are possible (e.g., strings —
binary, integer, and real-valued—, trees, direct represen-
tations[65], and any other custom representation specific
to a problem).

Population The algorithm maintains a population (set) of individuals
(population based nature).

Population is initialized typically at random, but it is possi-
ble to initialize a population with known starting individ-
uals, and even by using domain-specific knowledge[72]
to bias the search of a solution.

Individual fitness Individuals have “fitness”, used by the algorithm to influ-
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ence the population evolutionary cycle (i.e., generation
of new solutions, retaining and discarding existing solu-
tions).

Fitness of an individual is determined by a fitness func-
tion, a type of objective function that maps an individual
to a real value called “fitness” that tells how close that in-
dividual is from achieving the problem objective.

Variational reproduction notion [10]New solutions (offspring) are generated from others
(parents). Offspring or descendant solutions are gener-
ated by the application of variation operators, usually mu-
tation or recombination.

Selection Individuals are selected to survive, or to die (i.e., some
solutions are retained and some are discarded from the
population) at the end of a generation.

Individuals are selected also to be parents of other indi-
viduals.

Selection favors better individuals to survive and repro-
duce more often than those that are relatively worse.

Progressive evolution EA cycle is repeated for several generations until a termi-
nation criterion is met.

By the EA biased selective nature, a steady improvement
in the fitness of the population is produced (i.e., quality is
optimized).

Termination criteria A set of conditions that determine whether the algorithm
should stop[26] (e.g., minimum fitness achieved, maxi-
mum number of evaluations reached, maximum number
of generations, fitness improvement stagnation, etc[40]).

Initial population

Initialization

Population

Evaluation
Variations

Parents

Parent selection

Offspring

Evaluation

Survival selection

Solution(s)

Figure 2.2: EAs general schema
Source: Based on [27]
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2.4.2 Evolutionary algorithm components and properties

A general framework of an EA based on [8], is defined as:

• A I set of individuals a � I .

• Parent population size µ, and the representation of a population at generation g as P pgq “
␣

a1 pgq , . . . , aµ pgq
(

� Iµ.

• An initializer or initialization procedure ζ that generates population P p1q.

• Fitness function F : I Ñ R.

• An evaluator or evaluation procedure ε that determines (or helps the process of deter-
mining) the fitness values of the individuals.

Fitness evaluation may be as simple as computing a mathematical function or as complex
as running an elaborate simulation[72].

• Recombination offspring size µ1, and the representation of recombination offspring pop-
ulation at generation g as P 1 pgq “

␣

a1 pgq , . . . , aµ pgq
(

� Iµ
1

.

• Mutation offspring size µ2, and the representation of mutation offspring population at
generation g as P2 pgq “

␣

a1 pgq , . . . , aµ pgq
(

� Iµ
2

.

• Since EAs are frequently used on problems with unknown fitness landscapes, the size of
population and offspring are generally chosen via some preliminary experimentation[21].

• By keeping separated parent and offspring population sizes either, recombination or mu-
tation might be absent in the evolutionary loop if the particular EA requires it (e.g., µ“ µ1

would mean absence of recombination whether µ1 “ µ2 would mean absence of muta-
tion).

• Recombination (recombinator), mutation (mutator) and selection (selector) are described
as operators r, m, and s, defined as population transformations r : IµÑ Iµ

1

, m: Iµ
1

Ñ Iµ
2

,
and s : Iµ

2

Ñ Iµ.

The generalized approach of presenting these operators allow covering different instances
of EA.

• Recombination or mutation operator (variation operators in general), and also a selec-
tion operator can be generalized further by defining r, m and s as multiple application of
operators r 1, m1 and s1.

They can also be reduced to the level of single individuals for even more flexibility.

• A termination criteria C described as a termination criterion tc Ñ ttrue, falseuu set.

• Sets Ξζ, Ξε, Ξs, Ξr , Ξm and ΞC represent additional parameter sets, often required by ini-
tializers, evaluators, selectors, variation operators, and termination criteria; that are char-
acteristic for the function or operator, the particular instance of EA and the representation
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of individuals.

2.4.3 Evolutionary algorithm generalized algorithm

From the general model, components and properties, a generalized evolutionary algorithm
based on [8], can be defined as follows:

Algorithm 2.1: Generalized Evolutionary algorithm (EA) based on [8]

Input: µ, µ1, µ2, ζ, C , ε, r, m, s, Ξζ, Ξε, Ξs, Ξr , Ξm, ΞC
Output: a˚, the fittest individual found, or P˚, the best population found.
begin

g Ð 1 // First generation
P pgq Ð ζ

`

µ,Ξζ
˘

// Initialization
F pgq Ð ε pP pgq ,µ,Ξεq // Evaluation of initial population
// while termination criteria not met
while c pP pgq ,ΞCq ‰ true @ c � C do

P 1 pgq Ð r pP pgq ,µ1,Ξrq // Recombination
P2 pgq Ð m pP 1 pgq ,µ2,Ξmq // Mutation
F pgq Ð ε pP2 pgq ,µ2,Ξεq // Evaluation
P 1 pg ` 1q Ð s pP2 pgq , F pgq ,µ,Ξsq // Selection
g Ð g ` 1 // Generation incremental

end
end

2.4.4 Evolutionary algorithm instantiation

Mainstream instances of EAs use previously presented model and framework in different com-
binations and approaches, as well as any other hybrid or custom EA[8].

When instantiating a particular EA for a particular class of problems, some decisions have to be
taken[21]:

Solution representation
How are the individuals represented in the population?

Population size
How big should the population be?

Initialization method
How should the initial population be generated?

Evaluation method
How are the individuals evaluated?

Target selection method
How are target individuals (parents) selected?
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Variation operators
How are offspring produced from parents?, and, how many descendants should be generated?

Selection method
How are the survivors chosen?

Termination criteria
Under which conditions the algorithm should stop the evolutionary cycle?

2.4.5 Mainstream evolutionary algorithms instances

• Genetic algorithms (GAs) Introduced by John Henry Holland in 1975, rely heavily on
recombination and keep mutation as a background operator, they use a binary represen-
tation of individuals (genes) mostly influenced by genetics analogy.

• Evolution strategies (ESs) Proposed by Rechenberg in 1973, rely on both mutation and
recombination as essential operators for searching. Strategy parameters are usually part
of the individual representation, parent and offspring population sizes are usually not the
same and utilize deterministic selection.

• Evolutionary programming (EP) Developed by Fogel in 1962, emphasizes mutation and
does not use recombination at all, selection is probabilistic and also extends optimization
of parameters as ESs do.

2.4.6 Evolutionary operators

Evolutionary operators are the means used by an EA to bias the evolutionary cycle[21]. From
a generic optimization perspective, they are a type of search operators acting within the search
space (shaping the topological structure of the search space[26]) towards a solution to a prob-
lem.

From the EC perspective they are the mechanisms to achieve both, population diversity and
survival-of-the-fittest biological evolution analogies.

Evolutionary operators are responsible of the exploratory and exploitatory behaviors of an EA.
Exploration is the process of visiting entirely new regions of a search space, whereas exploitation
is the process of visiting those regions of a search space within the neighborhood of previously
visited individuals[15].

Those types of behavior should be kept in balance in EAs. It is generally accepted that selection
operators are the source of pure exploitation; and variation operators, specifically mutation and
recombination account for pure exploration effects. However, it still persists a debate whether
a variation operator may be the source of exploitation[25].

There are hypotheses proposing that a variation operator might be considered to display ex-
ploitation behavior when using information to variate individuals, either to exploit promising
regions of the search space or to avoid unpromising areas[25].
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Another possibility of recognizing some exploitation behavior in a variation operator could be
in the case of individuals generation by the action of a variation operator without disrupting
the parents building-blocks[25].

2.4.6.1 Variation operators

Variation operators create new individuals from existing ones by modifying one or more vari-
ables values.

Variation operators in EAs are divided in two types: mutation (mutator) and recombination
(recombinator) variation operators (although some particular EAs instances present variation
operators that combine both recombination and mutation characteristics into a single opera-
tor[61]).

The difference between the two basic types of variation operators lies in the way both types of
operators perform those changes, their arity[26] (the number of “target” individuals used by a
particular operator to generate a new individual), their exploratory power, and their survival/-
construction effects due to disruption[72].

Disruption can be observed by comparing building blocks[31] (also originally referred as
schemata or hyperplanes[37]), before and after applying a variation operator.

A building block is disrupted if the offspring generated after the application of a variation oper-
ator does not belong to that building block. If, after the building block is disrupted it still exists,
it is said to be a survival of the operator application. Another possibility would be that, after
disruption, a new building block of higher order is created, in which case the disruption is said
to display a constructive effect[72].

A building block within the evolutionary algorithm search space or within a generational
population, is a conceptual structure that might be more easily visualized like a multi-level
overlapping clustering of individuals within that space or population, that is, given a search
space or population, one could build overlapped clusters of individuals as follows: a cluster
might group individuals with the same value at variable x1, another cluster might be con-
formed by individuals with the same value at variables x2, another one, sharing values at
variables x1 and x2 simultaneously, and so on.

One could build clusters by exhausting almost all possibilities the search space provides to a
point just before building a cluster that would cover the entire search space.

The important concept regarding those building blocks is that they actually represent build-
ing blocks of solutions for a particular problem and, depending on the dimensionality of
the building block, there could be low-order building blocks (low dimensionality) and high-
order building blocks (high dimensionality)[77].

2.4.6.1.1 Recombination variation operator (recombinator)

EA recombination is an n-ary variation operator (usually binary)[26] that generates a new
individual also called child or recombinant, by exchanging information between two or more
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target existing individuals (usually called parents).

It is of stochastic nature in the sense that the decisions of what parts of each parent are combined
and how they are combined depend on randomness[26].

Recombination is sometimes called “crossover”, particularly in GAs, derived from the analogy
inspired on genetic crossover, but also because there is a slightly difference in meaning. Strictly
speaking, recombination is the mixing of variables and crossover is the mixing of the values of
variables; however, from a mathematical point of view that distinction is unnecessary[57].

The main principle of a recombinator (that comes from biological evolution inspiration), is that
a new individual created by combining features of other individuals having desirable features,
will likely result in an also desirable combination of those features; however, despite the fact
this is often true in nature, it does not work that way often in EC; recombination does not
guarantee not generating unimproved or even worse individuals (indeed most of recombinants
result in those cases), although some improved ones are still expected[26].

Uniform recombination Uniform recombination[74], also called uniform crossover or dis-
crete recombination, is a binary recombination operator that generates a recombinant by ex-
changing information between two parents.

This method of recombination can be applied to any form of individual representation (making
it suitable as a custom algorithm starting point) and its mechanism of operation consists in
stochastically decide, for each variable j of a pair of individuals A and B, whether a variable of
A or B pass down to the recombinant C :

C j “

#

A j if rand pr0,1sq ď Rp

B j otherwise
@ j

Every choice is performed by a generated uniform (usually) random number r � r0,1s, and a
given Rp mutation probability parameter also within the interval r0,1s. If r ď Rp, the child
inherits A variable value, or otherwise, from B.

If Rp “ 1 the resulting new individual will be an A clone, or a B clone on the opposite case
M p “ 0. Rp “ 1{2 may have the most disruptive and constructive effect (when consistently
applied within a population)[72], that is, the parameter Rp actually works as a recombination
rate by setting the number of variables that, in average, are inherited from one or the other
parent.

Uniform recombination in general has a stronger effect in both, disruption and construction
that the effect observed in the n-point recombination operator used in GAs. Its construction
effect does not appear to change as the population homogeneity changes, but is only affected
by the Rp value[72].

Uniform recombination also shows higher exploratory power than n-point recombination[72].
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Differential arithmetic recombination Differential arithmetic recombination is a 3-ary
variation operator derived from the “either-or”[60] variant of differential evolution (DE) algo-
rithm (developed to enhance recombination characteristics of the DE combined mutation/re-
combination operator), where a recombinant is generated as the result of an arithmetic linear
combination of three parents:

u“ xr1` K pxr2` x r3´ 2xr1q

where K is a scale factor for the arithmetic recombination, usually calculated fixed at K “ 0.5pF`
1q, where F � r0,1s is a positive real number scale factor (coming from the original combined
mutation/recombination operator in DE, to avoid increasing the number of parameters of classic
DE), and x r1 ‰ xr2 ‰ xr3 are randomly selected population member indices.

2.4.6.1.2 Mutation variation operator (mutator)

EA mutation is a usually unary variation operator[26] that generates a new individual or “mu-
tant” by making perturbations in one or more variables from the base of a target existing indi-
vidual (also called parent).

It is always of an stochastic unbiased nature in the sense that the changes the operator performs
rely only and exclusively on random choices[26].

Uniform mutation Uniform mutation[26] is a mutation operator that creates a mutant M
from a target A by considering each j variable separately, that is, it replaces each variable value
with a uniform distributed random value within that variable lower L j and upper U j bounds.
Each replacement is usually performed with positionwise mutation probability M p:

M j “

#

rand
`“

L j , U j
‰˘

if rand pr0,1sq ď M p

A j otherwise
@ j

Uniform mutation can be used with any type of representation as long as a suitable random
values generation function is available for that representation.

Differentialmutation Differential mutation is a 3-ary variation operator originally proposed
by the DE algorithm. The operator creates amutant v from a base target individual xr1 by adding
to each j variable of x r1 a scaled mutation step, calculated as the difference between xr2 and
xr3 additional selected individuals:

v “ xr1` F ¨ px r2´ xr3q

where the scale factor F � r0,1s is a positive real number that controls the mutation step size
and as a consequence influences the convergence speed[60], and xr1 ‰ xr2 ‰ xr3 are randomly
selected population member indices.

Differential mutation is originally designed to be used with real-valued representations, al-
though it can also be used with discrete integer-valued representations through rounding tech-
niques such as uniform quantization, a function that transforms a continuous range of values
into a set of evenly spaced values, like integers[61]:

Q pyq “
f loor pk ¨ yq

k
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where the f loor function returns the integer part of its argument, when k “ 1, the function
returns the integer part of y.

2.4.6.1.3 Combined variation operators

A variation operator might combine both, recombination and mutation behaviors into a single
operator definition, for example, there is the particular case of the differential mutation/recom-
bination operator defined in classical DE algorithm and some of its derived variations.

Behaviors can be combined by simply algorithmic implementation convenience, but also to
randomize the behavior of a variation operator, that is, either a variation operator may be gen-
erating a mutant or a recombinant, depending on parameters.

Differential mutation/recombination Although differential mutation and recombination
operators are described separately, they are usually combined into a single differential muta-
tion/recombination operator as follows[61]:

x 1
i, j “

#

xr1, j ` F ¨
`

x r2, j ´ xr3, j
˘

if
`

rand j p0,1q ď C r _ j “ jrand
˘

x i, j otherwise

where F is the scale parameter, j is the variable index, the recombination probability C r � r0,1s
is a user defined value that controls the fraction of parameter values that are copied from the
mutant, rand j p0,1q is the output of a uniform random number generator that if less than or
equal to C r, the candidate solution parameter is inherited from the mutant or, otherwise, from
the original population member; and jrand is a randomly chosen parameter index that is taken
from the mutant to ensure that the candidate solution does not duplicate x i.

“Either-or” differential mutation/recombination In the same way, a combined opera-
tor (differential mutation/differential arithmetic recombination) defined in the “either-or”[60]
variant of DE works as follows:

ui “ xr1`

#

F ¨
`

xr2, j ´ x r3, j
˘

if randi p0,1q ď P f

K pxr2` xr3´ 2xr1q otherwise

where P f is the probability of the algorithm of deciding whether a given solution will compete
against its mutant or its recombinant when generational selection comes.

2.4.6.1.4 Mutation and recombination effects

Mutation effects As intuitively suggested, the survival effect of mutation operators is high in
general whenmutation level is low, and low (more disruption) whenmutation level is high[72].

Although more disruptive recombination operators achieve higher levels of construction, this
is not observed in mutation operators, despite the fact that high levels of mutation are the most
disruptive, they also achieve the worst levels of construction, making a significant difference
between mutation and recombination operators[72].
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Recombination effects Disruptive effect of any recombination operator is dramatically af-
fected by the homogeneity of the population, disruptive effect is higher on high-order building
blocks and become less disruptive as the population converges[72].

Although survival effect is desirable in a recombination operator to some extent, constructive
capability to build higher-order building blocks seems more valuable and, in fact it has been
showed that the more disrupted nature of a recombination operator more likely its constructive
effect[74].

Interestingly, statistical studies have proved the applicability of the no-free-lunch theorem with
respect to the survival and constructive effects of disruption in recombination operators. When
averaged, all recombination operators are equivalent, any loss in disruption (gain in survival)
is offset by a loss in construction [72].

Mutation vs recombination Exhaustive theoretical and experimental analysis of disruption
effect in [72] indicates that, in general, mutation is able to cause any level of disruption as low as
the lowest levels of recombination and up to the highest levels, even higher than recombination,
yet with the poorest effect in construction, that is, mutation can be in general, more powerful
than recombination from a survival point of view.

On the other hand, in general, recombination is more capable than mutation to produce con-
structive effects, a feature that can be translated into performance advantage of an EA, when
the constructed higher-order building block is of higher quality than the parents lower-order
building blocks[72].

In a case where using uniform recombination and uniform mutation with probabilities Pr and
Pm respectively, it is observed that starting from an absence of disruption scenario Pr “ 0 and
Pm “ 0, that is, mutation and recombination are turned off, if recombination is turned on and
Pr starts increasing, disruption will start increasing also, as well as construction effect until a
maximum point at Pr “ 1{2, then, if mutation is turned on and starts to increase, construction
will start to decrease until a point Pm“ 1, where construction will be absent[72].

An even more interesting result from [72] analysis is that both, uniform recombination and
uniformmutation are identical from both, survival and constructive aspects when binary strings
are used as representation mechanism and the population diversity is maximum (i.e., every
variable of every member in a population is different from each other), an unlikely situation in
an EA.

From exploratory power perspective, mutation operators have much higher power than recom-
bination, specially when population starts to converge[72].

2.4.6.2 Selection operators (selectors)

A selection operator is used whether a set of parents or target individuals must be selected
to generate offspring or to apply a variation operator; or when selecting the next generation
(survivors) members at the end of a generation cycle (also called replacement operator).

Selection plays a major role in evolutionary algorithms since it determines the direction of
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search. The term selection pressure is used to denote the strength of selection to influence
the directedness of the search. High selection pressure emphasizes exploitation of information
gained so far and leads to high convergence speed, on the contrary, low selection pressure allows
diversity and exploratory search behavior, leading to good convergence reliability[85].

Fitness proportional selection

Fitness proportional selection (FPS)[37] is a type of selection operator that sets the probability
that an individual x i is selected among a set of n individuals, proportionally to its fitness (quality)
with respect of the accumulated fitness values of the rest of the n´ 1 individuals:

Ps px iq “
f px iq

n
ř

j“1
f
`

x j
˘

where f is the fitness or objective cost type function; n probabilities are arranged into the se-
quence:

@

Ps pxkq : k � Z`, 1ď k ď n, Ps pxkq ď Ps
`

xk`1

˘

@ k ă n
D

Selection occurs (Fig. 2.3) by generating a uniform distributed random number r within the
interval r0,1s, a particular individual is finally selected by the function:

s prq “

$

’

’

’

’

’

&

’

’

’

’

’

%

xk if x ď Ps pxkq

xk`1 if x ď Ps pxkq ` Ps
`

xk`1

˘

. . .

xk`pn´1q if x ď
n´1
ř

l“k
Ps px lq

FPS method requires repeating the procedure as many times as required to generate a desired
subset of m designs.

Ps(xk) Ps(xk+1) Ps(xk+2) …

f(xk+(n-1))

0

r=0.6

0.5

…

1

s(r)=xk+1

Figure 2.3: Fitness proportional selection (FPS)

Stochastic universal sampling

Stochastic universal sampling (SUS)[9] is a selection operator that reduces the spread (the range
of possible actual values, given a probability)[56] observed in FPS, by calculating m´ 1 evenly
spaced intervals to select m designs at once.

Individual probabilities are calculated and arranged by using the same procedure than FPS, next,
a uniform distributed random number r is generated within the interval r0, ds, where d “ 1

m is
the allocation distance. A sequence of m pointers po is generated:

@

po : po “ r ` po´ 1q d,@ o � Z`, 0ď o ď pm´ 1q
D
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Finally, selection (Fig. 2.4) of m individuals is performed by using the function s ppoq for each
pointer.

Ps(xk) Ps(xk+1) Ps(xk+2) …

f(xk+(n-1))

0

d=1/m

0.5

…

1

s(p2)=xk+1

0 ≤ r ≤ d
s(p1)=xk

s(pm-1)=xk+2 s(pm)=xk+4

p1 p2 pm-1 pm

Figure 2.4: Stochastic universal sampling (SUS)

2.4.7 Extension points

There are some techniques out there that permit customizing an EA by modifying the default
behavior of its operators.

2.4.7.1 Parameters as functions

Most EA parameters are initially defined to be constant, that is, the parameters are chosen and
then fixed for an evolution execution.

It is observed (although none formal definition has been found) that many of these parameters
could be defined as functions instead of fixed parameters, for example, it is common to find
references where researchers propose randomizing some parameters[84] (specially rate, prob-
abilities, velocity and scale parameters), or whenever an algorithm is said to be “adaptive” or
“variable” in some aspect it could mean that some parameters behave as functions instead of
fixed values.

Converting a fixed parameter definition into a function requires the definition of new param-
eters, for example, as pointed out in [61], randomizing a parameter involves selecting a proba-
bility density function (PDF) and defining an interval for that parameter.

It could be sound disadvantageous to increase the number of parameters of an algorithm but it
could also provide gains in performance in particular problems or situations.

2.4.7.2 Variation rates sampling frequency

Most mutation and recombination operators provide rate, probability or scale parameters, used
to control the magnitude of the effect of the variation operator within a given population in the
EA cycle.
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Although particular EA instances usually dictates the precise moment where a random number
is generated (sampling), either to be compared against the rate or probability parameter to de-
cide if a given operation should be applied or not (e.g., probability of mutation or probability of
recombination), or to compute an actual scale factor (e.g., scale factor in differential arithmetic
recombinaition or differential mutation); it is possible to modify default behaviors by param-
eterizing the sampling frequency (The idea was proposed by [61] as PDF sampling frequency
and inspired by [84] in the context of DE tuning).

This parameter would offer two behavioral options:

Dither or dithering when sampling anew value for each individual.

Jitter or jitternig[84] as the practice of sampling for every variable of an individual.

2.4.7.3 Selection auxiliary mechanisms

The following are selection mechanisms rather that proper selection operators and may be in-
corporated to any selection operator to modify the selection pressure behavior, or as the case
of the solution proposed in this work, as part of custom variation operators design and imple-
mentation.

Ranking

Is a mechanism that literally arrange a set of n individuals x i from best to worst (or backwards)
according to the sequence:

@

xo : o � Z`, 1ď o ď n, f pxoq ď f
`

xo`1

˘

@ o ă n
D

where f is a cost type objective function.

Once the ranking is available, a direct selection based on the ranking could be performed.

Furthermore, a proportional selection method like FPS or SUS might be used to select individu-
als by using the ranking order o´1 for each individual as its “fitness” value instead of the actual
fitness. This approach is known as ranking selection method[56].

Elitism

Any selection method implementation may use a mechanism of elitism, a condition first intro-
duced in[20] that forces a selection operator to directly select specific individuals.

This mechanism is useful mainly to retain the fittest individual (or n fittest individuals).
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3
Related work

3.1 Literature review

Evolutionary aircraft design optimization

Evolutionary computing is known to be first applied as approach to tackle aircraft conceptual
design optimization problems since (Crispin, 1994 [16]). In that work the author proposed
applying simulated evolution (i.e., genetic algorithm (GA)) to optimize the design of an aircraft
at a conceptual level.

The optimization problem consisted in minimizing total weight of an aircraft considering 8 de-
sign variables, 6 for main wing and 2 for fuselage (other components remained fixed), 4 con-
straints, and initial population of 25 members. The objective function, that is, the weight of the
aircraft, was calculated by accumulating the estimated weight of the wing, fuselage, engines,
fuel and payload for each mission segment.

(Singh, Sharma, and Vaibhav, 2016 [71]) retakes the problem of minimizing total weight of an
aircraft with a GA, an approach very similar to the first known work, now considering 9 design
variables and 15 constants, optimizing a population of 100 individuals after 200 generations.

More recently (Iemma, Vitagliano, and Centracchio, 2017 [38]), took a financial approach for
aircraft conceptual design by incorporating financial models of commercial aircraft extended to
the long-term investments of a group of stakeholders.

Optimization per se was performed by a multi-objective genetic algorithm and a particle swarm
optimization (PSO), another nature inspired metaheuristic.

Their model consisted in 5 design variables of themainwing (other components remained fixed)
and two experiments, one experiment considering two minimization objectives: aircraft price
and negative cashflow, and other experiment to minimize fuel consumption and noise level.
They optimize the design after 1000 generations/iterations with a population/swarm size of 50
(for each experiment).
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Domain knowledge incorporation

(Liu, Sun, Bai, et al., 2007 [50]) incorporated domain knowledge into the optimization process
of a military conceptual aircraft design through a simulated annealing algorithm (a kind of
metaheuristic).

The authors implemented a single design principle that establishes guidelines to optimize edges
present in the aircraft external structure that would affect the aircraft “invisibility” capabilities,
a critical feature for a military aircraft survivability.

(Alonso, LeGresley, and Pereyra, 2009 [3]) proposed a method to optimize a supersonic air-
craft design while maximizing its range and minimizing its sonic boom, by the use of surrogate
models.

They executed a multi-objective GA for 1000 generations with initial population size of 64. The
particular characteristics of this work reside in themethod used to generate the initial population
for the optimizer.

They built each individual through different processes and tools. First, they generated 300
candidate solutions evaluated by an aerodynamic solver and processed by a geometry builder
tool, both external tools, resulting in designs represented by 8 variables. After that, 10 neural
networks with one hidden layer were used to generate corresponding sonic boom effect models
(1 variable per neural network).

At the end, the candidate solutions were composed by the full set of design variables plus other
fixed parameters from which 64 randomly distributed candidate solutions were selected as ini-
tial population for the optimization process.

(Yang, Liu, Wang, et al., 2013 [83]) conducted a very interesting research that, although it is
not related with aircraft design, nor design optimization, it is about reusing design knowledge
to promote innovative design.

The authors of this research developed a knowledge based system containing an ontological
model of product design knowledge (custom furniture design) with implicit and explicit knowl-
edge for some specific design cases.

They attached a user interface with the intention to test it with a group of designers. The
interface and the model behind included features that would help the designers to reconstruct
design cases and to propose new design alternatives.

An experiment was conducted with 4 groups of designers, 2 groups were allowed to use the
system while the others were not. The designers who used the system produced in average
about 40 of 60 effective designs that were classified as derivative work from the existing design
cases, and about 20 effective designs resulted with no correlation with the base designs but high
degree of innovation.

Another finding was that in cases where specific designers produced less effective, non corre-
lated designs, were younger designers with less experience, and the designers who were not
assisted by the knowledge based system produced fewer designs than the ones assisted.

Finally, another key finding was the fact that some expert designers complained about the sys-
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tem only provided good examples as base cases; they claimed that bad examples are also a good
way to learn and get experience.

This work results suggest that domain knowledge and experience might improve the design
process and increase the level of innovation to some extent, something that could be extrap-
olated to an artificial design agent towards achieving exploration advantages and increasing
probability of success.

(Li, Zhang, Tang, et al., 2014 [49]) presented a reuse knowledge system for conceptual design
as means to enable rapid evolutionary conceptual design.

They proposed a structure composed by three components of knowledge: mechanism knowl-
edge (general formula, procedures, empirical knowledge, professional knowledge, etc), case
library (design parameters, design templates, etc) and evaluation knowledge (government stan-
dards, economic conditions, technology conditions, etc).

They claimed that knowledge is not static but dynamic, and new knowledge is created by evo-
lution.

Although this work comes out with a software to be used by designers (conceptual designers),
the concepts behind seem promising as a way to enhance automatic design by incorporating
some knowledge based guidance.

(Byrne, Cardiff, Brabazon, et al., 2014 [11]) introduced the usage of a multi-objective GA algo-
rithm as means to explore possible better aircraft designs based on existing designs.

Their strategy was to generate a parametric model from the genetic bit string representation of
the solutions to build a geometric model of an aircraft and then evaluate its aerodynamic lift
and drag measurements though an external solver.

Their solution was able to find possible improvements to existing aircraft by optimizing initial
populations of 50 members through 50 generations, eachmember composed by a set of 7 design
variables, 2 for airfoil selection and 5 for the main wing.

(De Gaspari and Ricci, 2015 [19]) presented amethod to optimize thewing of a reference aircraft
(existing aircraft) by incorporating domain knowledge into a GA loop.

Specialized knowledge rules determine re-shaping of the wing (introduced as parametric rep-
resentations) that is generated in three dimensional (3D) space by a coupled computer-aided
design (CAD) module, to output an aerodynamic and geometric model that subsequently is
evaluated with the help of a solver.

Direct simulation-driven design

(Agte, Borer, and Weck, 2010 [2]) was found to be the first and only work until now (and to
the knowledge of this research) making use of the flight simulator approach as an engineering
analysis tool.

The purpose of that work was to analyze the behavior of an aircraft when facing failures with
respect to some design variables being perturbed within some intervals.
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The decision to use a flight simulator in that work was, according to its authors to facilitate a
global approach for concurrent analysis of the aircraft performance and availability.

Summary

There is diversity among research works regarding evolutionary aircraft conceptual design op-
timization: most of them (including some works not included in this chapter) focus on mini-
mizing the total weight of the aircraft by using weight decomposition estimation procedures.

Most of the works concentrate in main wing variables, then some fuselage variables, and almost
none consider stabilizers into account, although some of them include propulsion and fuel con-
sumption, also computed by estimation procedures and, at a conceptual level (propulsion as a
component rather than an aggregate of parts and subsystems).

Different sets of design variables are selected, indeed in some cases there are sets of variables of
higher level than most common low level design variables, for example, one approach might
consider taper ratio, wing planform area and sweep angle to determine the basic geometry of a
wing, while other may describe wings by other variables such as chord at root, chord at tip and
span of the wing; a situation explained perhaps by the existing coupling between the variables
and the estimation procedures used to compute objective functions.

No work has been found maintaining a very small population of design concepts (3 to 5) within
the evolutionary process.

This review includes some works displaying novelty in either their methods of construction of
their representations, domain knowledge assistance, model surrogate strategies, etc; a possible
indicator of the pertinence of the custom approach adopted for this work, suggesting that it
hardly exists a method of solution, even a solution approach applicable to any kind of problems
without requiring customization and hybridization of methods and composition of related tools.

3.2 Software tools and frameworks

The following software tools are used within the development of the solution proposed in this
thesis:

Flight simulator

X-Plane flight simulator is used as a black-box simulation tool to support the evaluation of
generated design concepts.

X-Plane is a multi-platform desktop flight simulator being developed by the company Laminar
Research since the second half of the nineties. This software is currently available in its last ver-
sion 11 (although consumer version 10.50r3 is used in this work) in both, a consumer desktop
version and a Federal Aviation Administration (FAA) certifiable professional version.

According to [82] this simulator differentiates itself from others of its kind by implementing a
flight physics model called “blade-element theory”.

Traditionally, flight simulators emulate the real-world performance of an aircraft by using em-
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pirical data in predefined lookup tables to determine aerodynamic forces such as lift and drag,
which vary with different flight conditions.

Although by this approach the flight characteristics of an aircraft are sufficiently simulated for
those with known aerodynamic data (known aircrafts), this become useless in designwork since
do not predict the performance of an aircraft when the actual figures are not available.

With blade-element theory, a surface (e.g., wing) may be made up of many sections (1 to 4 is
typical), and each section is further divided into as many as 10 separate subsections. After that,
the lift and drag of each section are calculated, and the resulting effect is applied to the whole
aircraft. When this process is applied to each component, the simulated aircraft will fly similar
to its real-life counterpart.

This approach allows users to design aircraft quickly and easily, as the simulator engine imme-
diately illustrates how an aircraft with a given design might perform in the real world. X-Plane
canmodel fairly complex aircraft designs, including helicopters, rockets, rotorcraft, and tilt-rotor
craft.

The simulator also provides a plugin interface that can be used to extend the simulator with
external modules, flight model modifications or new features. X-Plane also ships with other
software companion tools to build and customize aircrafts (PlaneMaker), airfoils(AirfoilMaker)
and sceneries.

According to the development company, X-Plane is used by world-leading defense contractors,
air forces, aircraft manufacturers, and even space agencies for applications ranging from flight
training to concept design and flight testing. X-Plane has received certification from the FAA
for use in logging hours towards flight experience and ratings[46].

Airfoil analysis

JAVAFOIL is used in this work to build parametric simulation models of various airfoils. It is
an airfoil analysis tool developed in 2001 (last version 2.22, updated in 2014) by Dr. Martin
Hepperle, a German researcher specialized in airfoil and propeller design and analysis[35].

JAVAFOILwas derived fromCalcFoil (also from his authorship) and has the purpose of determining
lift, drag and moment characteristics of airfoils for each angle of attack and specific Reynolds
number[35].

The tool supports NACA 4-digit, modified 4-digit, 5-digit, 16-type, 6 and 6-A airfoil-series, as
well as other 15 non-standard types of airfoils[35].

JAVAFOIL provides a scripting interface that allow automating the execution of simulations in
batch and several file formats for exporting, including the .afl airfoil parametric simulation
model format used by X-Plane flight simulator[35].

Details regarding the scientific and engineering knowledge behind this tool are available in the
reference source[35].
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PyKE

Rule bases and fact bases used in this work are implemented in Pyke [28], [29], a framework that
provides a knowledge engine that can do both forward-chaining (data driven) and backward-
chaining (goal directed) inferencing.

The knowledge base (KB) engine supports: multiple fact bases, each with its own list of facts,
both forward-chaining rules and backward-chaining rules, multiple rule bases, each with its
own list of forward-chaining and/or backward-chaining rules[28].

Potential Pyke applications are: complicated decision-making applications, diagnosis systems,
back-end (code generation and optimization) of compilers, etc[29].
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4
Methodology and solution
development

This thesis proposes a solution composed by a knowledge based evolutionary strategy and a
system definition and modeling framework that may enable a support tool for automatic con-
ceptual design of an aircraft. (Fig. 4.1).

Within this work, an aircraft is considered a particular instance of an engineering system, there-
fore the definition and modeling aspects of the solution aim to support the characteristic com-
plexity that an engineering system may entails, and to work as a mechanism to drive the design
process aligned with design requirements (i.e., requirements-driven design).

Definition and modeling aspects are indeed highly inspired by system engineering practices (the
reference aircraft design process is actually systems engineering oriented), however, they are
not a full or strict system engineering implementation.

Conceptual design automation per se is performed by a custom evolutionary strategy supported
by domain knowledge related to the system being designed (the aircraft).

This combination is key aspect of the work developed in this thesis as means to increase proba-
bility of success, but also to tackle the trade-off between having simulation tools available that
may test complex systems defined at conceptual levels and the simulation computational cost
associated.

This synergy also provides collateral benefits as a conceptual design support tool, enabling hu-
man designers and researchers for studying impact on design of both, particular design ideas
and possible design failure solutions.

A RBS is used as a mechanism to manage every aspect related to knowledge as either facts or
rules and the reasoning on them.
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Figure 4.1: Overall solution activity diagram
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4.1. Design requirements

4.1 Design requirements

An aircraft conceptual design process always starts with some kind of requirements (e.g., aircraft
description, mission statement, features list, requirements list, etc), that describe the purpose
of the aircraft to be designed and constraints that bound the feasible design space Ω, that is, a
space composed by all x⃗ design concepts that fulfill those constraints.

Requirements Implementation details 1

The implementation objective of this work is to automatically generate a design concept
of a fixed-wing aircraft that performs a simple gliding mission.

For the sake of this implementation a hypothetical mission statement is provided to de-
scribe the purpose of the aircraft:

The fixed-wing aircraft to be designed has to be able to glide as far as possible after
being released (unpowered) in the air.

Just before the instant t0 when the aircraft is released, the aircraft flies heading east
ψ “ 90° (e.g., secured to another aircraft, by its own propulsion, towed by another
aircraft, etc) straight and level (pitch θ “ 0°, roll φ “ 0°) (Fig. B.1) at h0 “ 21250 ft
and TAS0 “ 180kt (Fig. 4.2).

In order to glide, the aircraft should make the most of its aerodynamic capabilities,
descent phase should be steady and safe with minimum or no disturbances in roll and
heading, and should be stable enough by its own without any control input.

Although pitch oscillations during gliding are expected, the aircraft should maintain
safe pitch and roll angles (safe for crew or payload).

The aircraft weight, when released is 42000 lb and is expected to be constant until
landing.

h0

t0 tf

hf≈0

E

Ğ

Figure 4.2: Gliding mission
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Figure 4.3: Design problem definition procedure

Remark. Besides the mission statement, some conditions are considered for the
implementation:

• Maximum cruise altitude and speed, aircraft weight, fuselage overall dimen-
sions and planform areas of wing and stabilizers are taken from specifications
of the real aircraft DHC-7 (i.e., . Dash 7) introduced by de Havilland Canada
in 1978.

• Propulsion, landing gear and control surfaces systems are not considered in
the design process. This decision is not based on a framework limitation itself
but to focus design automation in aerodynamic capabilities and to reduce the
overall complexity of the system.

• Landing quality is not being analyzed.

• A more complex mission (i.e., take-off, climbing, cruise, descent, landing) is
not implemented mainly because the lack of a smart auto-pilot plug-in that
works as a test-pilot agent for the generated design concepts.

• No control input is received by the aircraft, the aircraft is on its own (as if
inside a wind tunnel).

Implementation details 1

4.2 Design problem definition

Starting from the requirements, some analytical actions are performed in order to properly
define the design problem before the execution of the actual automatic design strategy (Fig. 4.3).

Performance objectives extraction

The system description is broken down into a set of 9k performance objectives 9O “
␣

9O1, . . . , 9O 9k

(

(the design of a complex system could hardly be set in terms of a single objective, there are
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usually more than one objective to met).

Performance objectives Implementation details 2

The mission statement is broken down into 3 performance objectives:

Mission statement Performance objective

“glide as far as possible” 9O1 “Maximize glide

“minimum or no disturbances in roll” 9O2 “Minimize roll disturbances

“... and heading” 9O3 “Maintain aircraft heading

Table 4.1: Aircraft performance objectives

Implementation details 2

Design objectives definition

Performance objectives are decomposed into a set of k minimization or maximization of spe-
cific qualities design objectives O “ tO1, . . . , Oku (there might be or not a one-to-one mapping
relationship between performance objectives and design objectives).

Design objectives Implementation details 3

Performance objectives are analyzed to define specific design objectives:

Maximize glide
Glide can be maximized by simply maximizing the total horizontal displacement
from the point the aircraft is released to the landing location.

Minimize roll disturbances
Two combined strategies are applied to minimize roll disturbances: to minimize the
changes the aircraft perform in its lateral inclination during rolling, and to minimize
that inclination magnitude (an aircraft can roll from a few degrees up to 180°, that
is, flying inverted).

Maintain aircraft heading
Maintaining the aircraft heading during flight is equivalent tominimize or eliminate
(unlikely) heading variations.

From performance objectives, a set of 4 design objectives are defined (Table 4.2):
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Performance objective Design objective

9O1 “Maximize glide O1 “Maximize glide

9O2 “Minimize roll disturbances
O2 “Minimize roll variation

O3 “Minimize lateral inclination

9O3 “Maintain aircraft heading O4 “Minimize heading variation

Table 4.2: Aircraft design objectives

Implementation details 3

Objective/fitness functions formulation

From an optimization problem perspective, design objectives are formulated as minimization
(exclusively) of a set of k individual objective or fitness functions t f1 p x⃗q , . . . , fk p x⃗qu.

Objective functions 1/4 Implementation details 4

Maximize glide Glide distance Ğ or simply glide is the horizontal displacement in NM
from the point P where the aircraft is released at h0, to the landing point Q at h f « 0.0 ft.

During gliding, the aircraft follows a trajectory through the horizontal plane, it can be
a straight or almost straight path in the case of zero or minimal heading variations, a
random curved path if heading variations are more significant, and even a path in spiral
if heading variance is high.

This path is known as traveled distance, that is, the length of this path if it were stretched
to a straight line; however, this length can’t be considered as the glide distance since it
does not represent the true displacement over the ground (i.e., the aircraft could have
flown several miles in closed circles describing an almost null displacement) (Fig. 4.4).

Displacement

Traveled distance

P
 
point

Q
 
point

Figure 4.4: Aircraft horizontal flight paths

The aircraft moves inside a nearly spherical three-dimensional space (earth). Its instan-
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taneous position along the earth surface is given in geographical coordinates latitude 9φ

and longitude 9λ, therefore the distance between P and Q points if calculated as a straight
distance (euclidean distance) might be not precise enough to determine the horizontal
displacement.

A much better approximation to the true displacement (spherical) would be to calculate
the great-circle distance (Fig. 4.5), which is the shortest distance between two points on
a spherical surface.

P
Q

Figure 4.5: Great-circle distance
Source: “A diagram illustrating great-circle distance” by Wikimedia Commons user
CheCheDaWaff, used under c BY-SA-4.0 / Antipodal points removed from original[13]

Among some methods in the literature to calculate the great-circle distance, there is a
formula derived from the haversine formula [68] that provides a good approximation to
compute the aircraft true glide distance as a function of the P and Q latitudes and longi-
tudes:

dgc “ 2r arcsin
b

hav∆ 9φ` cos 9φP cos 9φQ hav∆ 9λ (4.1)

where dgc is the great-circle distance between P and Q, r is the radius of the sphere

(earth), 9φP and 9φQ are latitudes and 9λP and 9λQ longitudes of points P and Q respectively,

∆ 9φ “ p 9φQ ´ 9φPq and ∆ 9λ“ p 9λQ ´
9λPq are the differences in latitudes and longitudes, and

hav is the harversin a function, an archaic trigonometric function defined as:

havθ “
1´ cosθ

2
“ sin2 θ

2
(4.2)

The O1 “ “Maximize glide” design objective is then re-formulated as:

O1 “min
x⃗ �Ω

f1 p x⃗q (4.3)

where Ω is the feasible design space, and f1 p x⃗q is the glide distance function defined as:
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Ğ p x⃗ q “ 2RC arcsin

c

hav
`

9φQ p x⃗ q ´ 9φP p x⃗ q
˘

` cos 9φP p x⃗ q cos 9φQ p x⃗ qhav
´

9λQ p x⃗ q ´ 9λP p x⃗ q
¯

(4.4)

where 9φP p x⃗ q is the aircraft latitude at point P, 9φQ p x⃗ q its latitude at point Q, 9λP p x⃗ q its
longitude at point P, 9λQ p x⃗ q its longitude at point Q and RC is the earth mid radius which
is 3440 NM.

Implementation details 4

aharversin stands for “half versed sine”, “versed” is the short for “reversed” [68], [76]

Objective functions 2/4 Implementation details 5

Minimize roll variation The roll variation can be determined by computing the sta-
tistical population variance σ2 of all φ p x⃗ , tq roll measurements of the aircraft.

This measure indicates how much the aircraft variate its rolling attitude during flight,
that is, the instantaneous magnitude of the aircraft roll angle changes combined with the
frequency of those changes.

A zero variance would mean that the aircraft did not change its initial roll angle at all
during the whole gliding (an utopian scenario), a small variance would mean that the
aircraft rolling changes by a few degrees, and a big variance would tell that the aircraft
flight is all but steady and free of disturbances.

The O2 “ “Minimize roll variation” design objective is formulated as:

O2 “min
x⃗ �Ω

f2 p x⃗q (4.5)

where f2 p x⃗q is the statistical population variance of all roll angle measurements of the
aircraft:

σ2
φp x⃗ ,tq
1 ď t ď T

“

T
ř

t“1

ˆ

φ p x⃗ , tq ´µφp x⃗ ,tq
1ďtďT

˙

T
(4.6)

where T is the total number of roll measurements, φ p x⃗ , tq is the aircraft roll angle at t
measurement, and µφp x⃗ ,tq

1ďtďT

is the roll angle measurements mean:

µφp x⃗ ,tq
1ďtďT

“

T
ř

t“1
φ p x⃗ , tq

T
(4.7)

Implementation details 5
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4.2. Design problem definition

Objective functions 3/4 Implementation details 6

Minimize lateral inclination The roll angle tells howmuch the aircraft is rotated with
respect of its longitudinal axis (i.e., how much it is left or right inclined) and the sign of
the angle indicates the rolling direction (left or right).

In order to minimize the aircraft lateral inclination, it is only relevant the magnitude
(absolute value) of the roll angle, ignoring its direction.

From this, the O3 “ “Minimize lateral inclination” design objective is re-formulated as:

O3 “min
x⃗ �Ω

f3 p x⃗q (4.8)

where f3 p x⃗q is defined as:

f3 p x⃗q “ max
1 ď t ď T

|φ p x⃗ , tq| (4.9)

where T is the total number of roll measurements and |φ p x⃗ , tq| is the absolute value of
the aircraft roll angle at t measurement.

Implementation details 6

Objective functions 4/4 Implementation details 7

Minimize heading variation The heading variation (Fig. 4.4) is determined by com-
puting the statistical population variance σ2 of all ψ p x⃗ , tq heading measurements to indi-
cate how much the aircraft changes its heading during flight either from changes in yaw,
roll or a combination of both.

The O4 “ “Minimize heading variance” design objective is then re-stated as:

O4 “min
x⃗ �Ω

f4 p x⃗q (4.10)

where f4 p x⃗q is the statistical population variance of headingmeasurements of the aircraft:

σ2
ψp x⃗ ,tq
1 ď t ď T

“

T
ř

t“1

ˆ

ψ p x⃗ , tq ´µψp x⃗ ,tq
1 ď t ď T

˙

T
(4.11)

where ψ p x⃗ , tq is the aircraft heading at t measurement, and µψp x⃗ ,tq
1 ď t ď T

is the heading angle

measurements mean.

Implementation details 7
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4.3. System and knowledge representation

4.3 System and knowledge representation

Subsequent strategy execution initializes and manipulates candidate design concepts to even-
tually obtain an optimal design.

For this to be accomplished it is required that target system and the domain knowledge are
computationally represented as data structures useful for the strategy and even further analysis
of the system design.

The system representation fully relies on creation of models or views of the system, thesemodels
are defined depending on the aircraft complexity, design objectives and constraints.

This thesis proposes a hierarchical/multi-layer structural model, and a set of design variables as
mechanisms to represent the system being designed.

4.3.1 Hierarchical/multi-layer structural model

Structural model

The system is modeled as a collection of hierarchically connected elements, a structure captured
through generic “whole – part” aggregation relationships (Fig. 4.6), no matter the role the el-
ement plays in real life system (i.e., System, sub-system, assembly, sub-assembly, component,
sub-component, section, sub-section, part, sub-part, etc).

This model, by removing details that are not relevant for the strategy execution, can be flexible
enough to support different hierarchies, and establishes the base infrastructure to construct
other models of the system and the generated design concepts themselves.

Element

+parts
0..*

System

Figure 4.6: System representation - structure

Structural model Implementation details 8

The fixed-wing aircraft is modeled as follows (Fig. 4.7):

• A fuselage assembly composed by three sections:
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4.3. System and knowledge representation

– Fwd fuselage section.

– Mid fuselage section.

– Aft fuselage section.

• A wing element modeled as a collection of 1 to 3 wing plane parts.

• A tail assembly composed by:

– An optional horizontal stabilizer part.

– An optional vertical stabilizer part.

– An optional vertical/horizontal stabilizer part.

«part»
Wing plane

«part»
Wing plane

«system»
Fixed wing 

aircraft

«assembly»
Fuselage

«section»
Aft

«section»
Mid

«section»
Fwd

«collection»
Wing

«part»
Wing plane

«part»
Horizontal
stabilizer

«assembly»
Tail

1..3 0, 1

«part»
Vertical-horizontal 

stabilizer

«part»
Vertical 
stabilizer

0, 1 0, 1

Figure 4.7: Fixed wing aircraft structural model

Implementation details 8

The structural model is defined declaratively through knowledge facts, being the first pieces of
knowledge introduced into the knowledge base.

A system(systemElement) fact is required to define the system itself and several
part_of(partElement, wholeElement) facts are used to break down the full structure.

Structural model facts Implementation details 9

system(Aircraft)
…
part_of(Wing, Aircraft)
part_of(Wing Plane, Wing)
…
part_of(Tail, Aircraft)
…
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4.3. System and knowledge representation

Most abstract level 
model

Most concrete level 
model

Intermediate 
abstraction level 

models

(a) Abstraction layers

Element

+parts
0..*

Model

+abstraction of

0..1

1..*

System

(b) Extended model

Figure 4.8: System representation - structure + abstraction layers

part_of(Horizontal Stabilizer, Tail)
…

Implementation details 9

Abstraction layers

Several models or abstraction layers can be defined for the aircraft being designed (the strat-
egy requires at least one model). Each model configures a different view of the same system
(Fig. 4.8).

Bymodeling the system frommore abstract models down tomore concrete models makes possi-
ble in the first place to obtain the structure required by the initialization method proposed in the
evolutionary strategy, but it also provides a mechanism to capture classification hierarchies of
the system and means to generate design concepts at the corresponding abstraction layer (e.g.,
if more than one simulation tool are available to test models at different abstraction levels).

Abstraction layers Implementation details 10

Three abstraction layers are defined for the aircraft, the wing as a key component of the
system is chosen as a reference to break the layers down to the most concrete level.

Main wing is the component of a fixed-wing aircraft with the highest impact in flight
physics of the aircraft (the airfoil or wing cross-section, in many respects, is the heart of
the aircraft and affects overall aerodynamic efficiency during all phases of flight[63]), so
it might be an ideal base to develop the design process.

Family (the most abstract)
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4.3. System and knowledge representation

This layer captures a classification of aircraft based on three distinct wing basic shapes:

• Constant chord (parallelogram shape excluding rhombus).

• Trapezoidal.

• Triangular.

This layer allows to partition the set of possible design concepts that could be generated
based on three highly distinguishable clusters or high-order building blocks.

Configuration (intermediate)

The purpose of this layer is to model other classification hierarchies (building-blocks)
based on different wing configurations (e.g., Airfoil type, wing vertical position, etc).

The aircraft as defined in the structural model has at least one and up to three wing
planes, it may include a vertical stabilizer, a horizontal stabilizer and a vertical/horizontal
stabilizer, these elements share several characteristics and can be considered as specific
types of wings, making sense to use this layer to generate more or less evenly diverse
design concepts at an intermediate level.

Prototype (the most concrete)

This is the model that is used directly by the strategy to build design concepts, the pur-
pose of this layer is not clustering but full detailed characterization of an aircraft (at a
conceptual design level).

Implementation details 10

A model_of(model, system) fact is required to define each abstraction layer, then the hierarchy is
built top-down with abstraction_of(highLevelAbstractionModel, lowLevelAbstractionModel) facts.

Abstraction layers definition facts Implementation details 11

model_of(Family, Aircraft)
model_of(Configuration, Aircraft)
model_of(Prototype, Aircraft)
…
abstraction_of(Family, Configuration)
abstraction_of(Configuration, Prototype)

Implementation details 11

4.3.2 Design variables

Every element of the system structure and the system itself can be described by a set of design
variables.
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4.3. System and knowledge representation

Element

+parts
0..*

Design Variable

0..*

Domain

Model

+abstraction of
0..1

1..* 1..*

only design variables
defined for the same
system structure

System

Figure 4.9: Full system representation model

A design variable represent a characteristic or group of characteristics of the associated element,
it can take numerical or categorical values and is defined within a specific domain (Fig. 4.9).

Design variables are the key pieces that actually define a system abstraction layer or model
in the sense that an abstraction layer is outlined by a subset of the set of all design variables
defined for the same system structure the model is representing, or even by different sets of
design variables.

Design variables are associated directly to system structure elements, the system itself or ab-
straction layers, and are implemented declaratively as variable_of(variable, context) facts, where
context can be a part element, system element or model already defined in the knowledge base.

Different effects on system modeling and the design process may be achieved depending on
how the variables are defined:

Early design decisions
Some system characteristics might be required to be propagated from higher level models
during initialization.

In this case, the variables are configured to be inherited from the level they are initially
defined, down to the most concrete models that utilize those variables.

This inheritance is implemented by defining the same variable within each layer where
the variable is propagated (i.e., via variable_of(variable, model) facts).

Design constraints
Most design constrains can be introduced into the design process by simply defining the
domain of the variables accordingly.

Fixed parameters and some equality constraints can be modeled by setting the domain of
a variable to a specific single constant value (e.g., 4, 759.50, categorical value).
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4.3. System and knowledge representation

Most inequality constraints can be defined by setting the domain of the variables as inter-
vals or extensional categorical sets.

In fact, every variable must have an associated domain but the domain may be as broad
or specific as required (e.g., t1u, t10.34u, tcategorical valueu, N, R, Z, Z`, Z´, etc).

Domains and their associationwith variables are implemented declaratively in a single step
with domain_of(domainSpecification, variable) facts, or by setting each value of the domain
with domain_value_of(value, variable) facts. The latter actually builds a domain as a union
of all single values.

Remark. Whenever a numerical value is assigned to a design variable having as
domain an interval (or union of intervals) either real or discrete, the supplied value
is normalized to the design variable current interval domain. This is done with a
technique based on modular arithmetic.

This feature is also useful when combining design variables values through arith-
metic operations.

Classification
A domain can be associated to a variable in the context of another categorical variable
specific domain value, this is indeed, the mechanism through clustering is implemented
and it is defined with domain_of(domainSpecification, variable, contextVariableValue) or do-
main_value_of(value, variable, contextVariableValue) facts.

Abstraction layer specific characterization
A variable may be defined only in specific abstraction layers, indicating that the associ-
ated characteristic is only applicable to that level (e.g., a categorical variable defined for
clustering purposes).

Collections of elements
A structural element may have zero or more instances of the same part element, for this
reason a design variable can be set as a collection size controller and is implemented declar-
atively with counter_of(variable, element) facts.

Aircraft system full representation Implementation details 12

The fixed-wing aircraft system is fully modeled at design variable level from the most ab-
stract layer (family) down to the most concrete (prototype), some examples are provided
next in (Figs. 4.10 and 4.11).

Actual design variables values are not assigned declaratively but initialized or computed
during the evolutionary strategy execution.
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4.3. System and knowledge representation

λ ∈ (0, 1) λ = 1λ = 0
Triangular Trapezoidal Constant chord

Figure 4.10: Aircraft family layer - wing shape family classifi-
cation

λ ∈ (0, 1) λ = 1λ = 0

λ ∈ (0, 1) λ = 1λ = 0

Λ = 0º

Λ ∈ [-60, 0]

Λ ∈ (0, 60]

Fwd swept

No swept

Swept back

Figure 4.11: Aircraft configuration layer - swept type classifi-
cation

Implementation details 12

52



4.3. System and knowledge representation

Aircraft full modeling facts Implementation details 13

The full fixed-wing aircraft system model consists of: 1 system, 2 assemblies, 1 part col-
lection, 3 sections, 1 to 6 parts, 3 abstraction layers, 4 to 9 design variables for the family
layer, 14 to 56 design variables for the configuration layer and 32 to 103 variables for the
prototype layer (some design variables are configured as fixed parameters):

system(Aircraft)
…
part_of(Wing, Aircraft)
part_of(Wing Plane, Wing)
…
part_of(Tail, Aircraft)
…
part_of(Horizontal Stabilizer, Tail)
…
model_of(Family, Aircraft)
model_of(Configuration, Aircraft)
model_of(Prototype, Aircraft)
…
abstraction_of(Family, Configuration)
abstraction_of(Configuration, Prototype)
…
variable_of(S, Aircraft) // Aircraft total planform surface in ft2

domain_of(860.00, S) // Fixed parameter, S “ 860.00 ft2

…
variable_of(Nw, Wing) // Number of wing planes
domain_of(t1..3u, Nw) // Nw �

␣

x � Z` | x ď 3
(

counter_of(Nw, Wing plane) // Wing plane collection size controller
…
variable_of(S f , Wing Plane) // Wing plane shape family
domain_of({Constant chord, Trapezoidal, Pointed}, S f )
…
variable_of(λl, Wing Plane) // Wing plane taper level
// λl domain depends on S f value context
domain_value_of(Pointed, λl, Pointed)
domain_value_of(Low, λl, Trapezoidal)
domain_value_of(Intermediate, λl, Trapezoidal)
domain_value_of(High, λl, Trapezoidal)
domain_value_of(Constant chord, λl, Constant chord)
…
variable_of(λ, Wing Plane) // Wing plane taper ratio
// λ domain depends on λl value context
domain_of(0.0, λl, Pointed)
domain_of(p0.0,0.3q, λ, Low)
domain_of(r0.3,0.6q, λ, Intermediate)
domain_of(r0.6,1.0q, λ, High)
domain_of(1.0, λ, Untapered)
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4.3. System and knowledge representation

…
variable_of(Nw, Family)
variable_of(S f , Family)
…
variable_of(Nw, Configuration) // Inherited from family
variable_of(λl, Configuration)
…
variable_of(S, Prototype)
variable_of(Nw, Prototype) // Inherited from configuration
variable_of(λ, Prototype)
…
There are 24 constraints implemented as fixed parameters:
…
variable_of(S, Aircraft) // Aircraft total planform surface in ft2

domain_of(860.00, S)
variable_of(M LW , Aircraft) // Aircraft maximum landing weight in lb
domain_of(42000.00, M LW)
…
// Horizontal stabilizer planform surface in ft2

variable_of(Sh, Horizontal stabilizer)
domain_of(217.00, Sh)
…
// Vertical stabilizer planform surface in ft2

variable_of(Sv , Vertical stabilizer)
domain_of(170.00, Sv)
…
// Wing plane airfoil maximum thickness location (%), and homologous
variables for horizontal, vertical and vertical-horizontal stabilizers
variable_of( tmax

c x , Wing plane)
domain_of(30, tmax

c x)
…
// Vertical stabilizer airfoil camber (%)
variable_of(δvmax

c , Vertical stabilizer)
domain_of(0, δvmax

c )
// Vertical stabilizer airfoil maximum camber location (%), and homologous
design variables for vertical-horizontal stabilizer
variable_of(δvmax

c x , Vertical stabilizer)
domain_of(0, δvmax

c x) // Vertical stabilizer kept symmetrical
…
// Vertical stabilizer dihedral angle in degrees
variable_of(Γv , Vertical stabilizer)
domain_of(90, Γv) // Vertical wing
// Vertical stabilizer incidence angle in degrees
variable_of(ıv , Vertical stabilizer)
domain_of(0.0, ıv) // Vertical stabilizer kept directionally straight
variable_of(εv , Vertical stabilizer) // Vertical stabilizer twist in degrees
domain_of(0.0, εv) // Vertical stabilizer kept directionally straight
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4.3. System and knowledge representation

…
// Fuselage drag coefficient
variable_of(fCd , Fuselage)
domain_of(0.075, fCd)
// The ratio of fuselage length of forward (fwd) (nose) section to diameter
ratio
variable_of(ln{d, Fwd fuselage)
domain_of(1.61, ln{d)
// The ratio of fuselage length of aft (tail) section to diameter ratio
variable_of(l t{d, Aft fuselage)
domain_of(4.26, l t{d)
variable_of(lm, Mid fuselage) // Fuselage length of mid section in ft
domain_of(24.33, lm)
variable_of(fh, Mid fuselage) // Fuselage maximum height in ft
domain_of(8.83, fh)
variable_of(fw, Mid fuselage) // Fuselage maximum width in ft
domain_of(9.74, fw)
// Fuselage mid section shape superellipse m̌ parameter
variable_of(fm̌, Mid fuselage)
domain_of(1.98, fm̌)
// Fuselage mid section shape superellipse ň parameter
variable_of(fň, Mid fuselage)
domain_of(1.98, fň)
// Fuselage nose tip y location from fuselage center in ft
variable_of(ny , Fwd fuselage)
domain_of(´1.16, ny)
// Fuselage tail tip y location from fuselage center in ft
variable_of(t y , Aft fuselage)
domain_of(4.41, t y)

See (Table A.1 and ??) for full aircraft conceptual design variables reference.

Implementation details 13

Design variables vector

The strategy makes use of a specific model (from the abstraction layers) to collect all relevant
m design variables x and build up a minimal representation of the system or design variables

vector x⃗ “
”

x1 x2 . . . xm

ı⊺
that, when containing actual values, fully characterizes a design

concept of the system.

Each design variable x i is in fact an κ tuple px i1, . . . , x iκq containing at least 3 members:

• The variable name.

• The variable assigned value.

• The variable current domain (specific domain built through abstraction layers concretiza-
tion).
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, plus optional members like:

• Variable full domain (the union of all specific domains).

• Inheritance relationship.

• Collection relationship.

• Other required custom members depending on the application.

The vector size m can be fixed or variable, depending on the system structure (i.e., system
structures having optional elements and/or collections of elements).

Actions to manipulate a design during the strategy execution (i.e., variation operators) always
operate on the design variables vector.

Design variables vector Implementation details 14

The evolutionary strategy uses an aircraft design variables vector built from the prototype
abstraction layer, that is, the most concrete model of the aircraft system.

The design variables vector is a variable size vector going from 32 up to 103 positions (the
vector of tuples is represented as a matrix):

Variable S … Nw λ1 … λ2 …

Value 860.00 … 2 0.43 … 0.76 …

Domain 860.00 … t1..3u r0.3,0.6q … r0.6,1.0q …

… … … … … … …

Full domain 860.00 … t1..3u r0.0,1.0s … r0.0,1.0s …

… … … … … … …

Table 4.3: Design variables vector example, a design concept
with 2 wing planes, a taper ratio λ1 of 0.43 for the first wing
plane, and a taper ratio λ2 of 0.76 for the second wing plane

Implementation details 14

4.3.3 Domain model

This work proposes a domain model of the system being built from the design variables vector.

It might and usually expands the number of features that describe the full system being designed
in terms of the application domain.

This model provides the designers with a specific application domain perspective of the system,
and can be used as a bridge between the design concepts generated by the strategy (as design
variables vectors) and parametric simulation models or other analysis models.
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System Part

Cross SectionGeometry Loft

+cross sections

+parts

+sub parts0..*

Sizable

+size

System Element

+location
+orientation

2d Shape

Parametric Curve

Superellipse

+center
+m
+n

+shape

Other Geometry Type

Other 2d Shape Type

Other Parametric Curve Type

Taggable

+Tag

a and b
extracted from
size attribute

Figure 4.12: Generic domain model (extension point elements in
blue)

Domain knowledge can be introduced in the knowledge base to assist building the domain
model (e.g., equations from physics) or can be embedded in the domain model logic directly.

An abstract object graph is proposed as extension points to implement application specific do-
main models (Fig. 4.12 and Table 4.4).

This hierarchy captures the structural model, and contains extensions to implement the geom-
etry of the system and its parts, and a mechanism for fine grain identification of systems and
parts through the design process.

Lofting geometry

A lofting technique (Fig. 4.13) mechanism is provided to define the geometry in 3D space of
the system part elements.

Lofting is a common technique used by the aircraft industry when defining the external geom-
etry of the aircraft[63].

A loft or lofting is the creation of a 3D solid by specifying a series of cross sections that define
the shape of the resulting solid, at least two cross sections are required to build a loft[7].

Cross sections of the loft structure might be any planar 2D shape, although parametric superel-
lipse shaped cross sections are provided (Fig. 4.14).

Superellipse curves allow to define a broad range of cross sections, from astroids (four-armed
stars with concave sides) to rounded rectangles including rhombus like shapes, circles, ellipses
and squircles (most of aerodynamic bodies are not axisymmetric and fuselage cross sections are
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Class Type Purpose / Description

Taggable Interface Makes an object identifiable by a unique tag, the tag may keep
a hierarchical chained composite tag (e.g., for identification and
tracking purposes)

Sizable Interface Makes an object sizable, that is, an object having either two di-
mensional (2D) size (height, length) or 3D size (width, hight,
length)

System Element Abstract The generic structural element of the system, contains location
px , y, zq and orientation pθ ,ψ,ϕq in 3D space

System Abstract The generic structural root element (i.e., . system) as aggregation
of parts

Part Abstract The generic structural part element (i.e., . part), may be an aggre-
gation of sub parts and has an associated geometry

Geometry Abstract The method a part element is shaped in 3D space

Loft Concrete A 3D shape formed by a collection of joined cross sections (similar
to an extrusion)

Cross Section Concrete A slice of a loft defined by a 2D shape

2D Shape Abstract A shape in 2D space

Parametric curve Abstract A shape constructed by a parametric function in 2D space

Superellipse Concrete A closed parametric curve that is a generalization for circles, el-
lipses, squircles, astroids, etc

Table 4.4: Domain model generic classes

Figure 4.13: Lofting geometry example
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ǎ “ b̌ “ 1, m̌ “ 1, ň “ 1 Rhombus

ǎ “ b̌ “ 1, m̌ “ 2, ň “ 2 Circle

ǎ “ 1, b̌ “ 1.2, m̌ “ 2, ň “ 2 Ellipse like

ǎ “ b̌ “ 1, m̌ “ 4, ň “ 4 Squircle

ǎ “ b̌ “ 1, m̌ “ 1{2, ň “ 1{2 Astroid

ǎ “ b̌ “ 1, m̌ “ 3{2, ň “ 3{2 Rhombus with convex sides

ǎ “ 1.2, b̌ “ 1, m̌ “ 21{2, ň “ 21{2 Sergel’s Square in Stockholm, Sweden

Figure 4.14: Some superellipse based cross sections

not round[17]).

Superellipse cross-section shapes can be used to develop more aerodynamic models and they
have been used to study geometric shaping effects on forebody aerodynamic characteristics[17].

Superellipse curves are parametric functions in the form:

x pθq “ |cosθ |
2
m̌ ǎ sig pcosθq

y pθq “ |sinθ |
2
ň b̌ sig psinθq

(4.12)

where θ is the parameter of the function with domain r0,360s degrees, ǎ is the shape width, b̌
is the shape height, ň is the horizontal curvature parameter ą 0, and m̌ is the vertical curvature
parameter ą 0.

Remark. Lofting geometry can be extended to work with other types of parametric closed
curves and other 2D shapes in general. Even other geometry techniques different from
lofting can be adapted as far as they provide size and 3D shape of the parts.

Aircraft domain model Implementation details 15

The domain model of the fixed-wing aircraft is an extension of the domain model base
hierarchy.

There are few domain specific new attributes that are derived from the design variables
vector but there is no direct one-to-one mapping between the structural model and the
domain model.

This is explained by the fact that the domain model is coupled to the application do-
main (i.e., aircraft conceptual design, aeronautics, etc), and the structural model focus
on capturing structure only from the systems engineering perspective.
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Fuselage sections are generalized into “No-lift bodies” to distinguish parts that does not
produce lift (in the simulator) from the “Wing” type parts that produce lift.

A wing plane is actually modeled as a pair of twin wings: port and outboard wings.

The fixed-wing aircraft domainmodel is implemented through an object graph (Fig. 4.15)
that is an extension from the generic domain model.

From this model, human readable text representations in JavaScript Object Notation
(JSON) format are generated during the execution of the strategy.

Fixed Wing Aircraft

+planform area
+maximum landing weight
+center of gravity

System Part

No-lift Body

+drag coefficient
+diameter
+max radius
+radius

Fuselage

+ln_d
+lt_d

Wing Plane

+semi span
+semi aspect ratio
+semi planform area

Wing

+incidence
+sweep
+sweep location
+twist
+dihedral
+taper ratio
+planform area
+aspect ratio
+root chord
+tip chord
+span

Horizontal Stabilizer

Vertical Stabilizer

+height

Vertical Horizontal Stabilizer

Main Wing Plane

+parts

+sub parts0..*

+fwd section

+mid section

+aft section

+port

+starboard

+wing planes

1..3

0..1

0..1

0..1

2d Shape

Airfoil

Parametric Curve

Superellipse

NACA 4 Airfoil

+max thickness
+max camber
+max camber location

used in
wing
geometry

used in no-lift
body geometry

Other Airfoil Shape

Figure 4.15: Fixed wing aircraft domain model (extension
point elements in blue and green)

Geometries of the aircraft parts are implemented through the lofting technique.

Superellipse based geometries Superellipse cross sections are used for the fuselage
sections.

The fuselage fwd (fore) section loft consists of two cross sections: a tip point, and a rear
cross section.

The fuselage mid section contains two identical cross sections (Fig. 4.16), forming a kind
of cylinder.

The aft section is composed by a front cross section and a tail tip point.

In order to join the three sections, the rear cross section of the fwd
fuselage section, the front cross section of the aft fuselage section must
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be equal in shape and dimensions to the mid section cross sections.

Figure 4.16: Fuselage mid section cross section generated by
a superellipse with parameters ǎ “ 1.1b̌, m̌ “ 1.98, ň “ 1.98

Airfoil shape based geometries Specialized airfoil shapes (wing profile or wing sec-
tion) are used for the wing type parts cross sections.

Every wing type part is composed by 6 evenly distributed cross sections. Their size and
orientation are determined by the corresponding design variables (Fig. B.7).

The airfoil shapes in this work are limited to the 4-digit series of the NACA airfoils stan-
dard, however, the domain model can be extended to other airfoil shape types.

A 4-digit series NACA airfoil is designated by a short-hand code representing the essential
elements controlling the shape of the generated cross section.

The short-hand code is a 4-digit code of the form pmx x , where p is the location of the
maximum camber as a percentage of the chord line xδmax

c x multiplied by 10, m is the

maximum camber as a percentage of the chord length δmax
c multiplied by 100, and x x is

the thickness-chord ratio tmax
c multiplied by 100, that is, “pm12” designates a 12-percent-

thick 4-digit airfoil[45].

Symmetrical airfoils in the 4-digit-series family are designated by a 4-digit number of
the form NACA 00x x . The first two digits indicate a symmetric airfoil (no camber); the
second two, the thickness-chord ratio[45].

Geometry of the wing sections are computed by the following procedure described and
explained in [1], [45]:

Ordinates in the form of ordinate-chord ratio percentages for the NACA symmetric 4-digit
airfoil family are described by the following equation:

˘
t y

c
“ 5

tmax

c

„

a0

´ x
c

¯1{2
` a1

´ x
c

¯

` a2

´ x
c

¯2
` a3

´ x
c

¯3
` a4

´ x
c

¯4
ȷ

(4.13)

where
t y
c is the thickness ordinate-chord ratio for every point within the upper and lower

surfaces of the airfoil, c is the chord length, x is the position along the chord from 0 to c,
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tmax
c is the maximum thickness-chord ratio percentage and ai are constants with values

a0 “ 0.2969, a1 “´0.1260, a2 “´0.3516, a3 “ 0.2843 and a4 “´0.1015.

Actual coordinates pxU , yUq (relative to the wing section chord) of the upper airfoil sur-

face, and pxL , yLq of the lower surface are xU “ xL “
x
c , yU “`

t y
c , and yL “´

t y
c .

For asymmetrical 4-digit airfoil family of wing sections the mean camber line (Fig. B.7)
needs to be computed by the equation:

δy
c “

$

’

’

’

&

’

’

’

%

δmax
c

´

xδmax
c x

¯2

”

2 xδmax
c x

` x
c

˘

´
` x

c

˘2
ı

, 0ď x ď xδmax
c xc (forward of maximum ordinate)

δmax
c

´

1´
xδmax

c x
¯2

”´

1´ 2 xδmax
c x

¯

` 2 xδmax
c x

` x
c

˘

´
` x

c

˘2
ı

, xδmax
c xc ď x ď c (aft of maximum ordinate)

(4.14)

where
δy
c is the camber line ordinate-chord ratio, δmax

c is the maximum camber as a per-

centage of the chord c, that is themaximum ordinate of themean camber line, and xδmax
c x

is chordwise position of the maximum camber.

The coordinates pxU , yUq and pxL , yLq of the cambered airfoil are xU “
x
c ´

δy
c sinθ , yU “

δy
c `

δy
c cosθ , xL “ x `

δy
c sinθ and yL “

δy
c ´

δy
c cosθ , where θ “ arctan

ˆ

d
δy
c

d x
c

˙

,

d
δy
c

d x
c
“

$

’

’

’

&

’

’

’

%

2 δmax
c

´

xδmax
c x

¯2

´

xδmax
c x ´ x

c

¯

, 0ď x ď xδmax
c xc

2 δmax
c

´

1´
xδmax

c x
¯2

´

xδmax
c x ´ x

c

¯

, xδmax
c xc ď x ď c
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4.4 Simulation-driven design preparation

Design concepts are evaluated through objective or fitness functions specifically defined for each
design objective.

The mapping between the design concept and the value of those functions is determined with
the support of data obtained from computer simulations.

Simulation data usually do not provide a direct objective function value for a given design but
further analytical procedures are implemented in those functions to transform data into an
output value.
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4.4. Simulation-driven design preparation

4.4.1 Scalarization

The solution proposed in this work deals with multiple objectives through scalarization tech-
niques that virtually convert a multi-objective design problem into a single-objective problem
by combining all minimization of k objective or fitness functions f⃗ p x⃗q objectives into a single
minimization of a scalarized fitness function objective:

min
x⃗ �Ω

f⃗ p x⃗q (4.15)

where Ω is the feasible design space, and f⃗ p x⃗q is the scalarized fitness function:

f⃗ p x⃗q “
”

f1 p x⃗q f2 p x⃗q . . . fk p x⃗q
ı⊺

(4.16)

Scalarized fitness function Implementation details 16

The weighted metric method is used to implement the scalarized fitness function f⃗ p x⃗q of
the fixed-wing aircraft as:

f⃗ p x⃗q “ p

g

f

f

e

k
ÿ

o “ 1

wo

ˇ

ˇ

ˇ f⃗o pu⃗q ´ fo p x⃗q
ˇ

ˇ

ˇ

p
(4.17)

where k is the number of objectves wo is the weight of objective o (Table 4.5), f⃗o pu⃗q is the
individual objective function of an utopian design concept u⃗ for objective o, and fo p x⃗q is
the individual objective function of aircraft design concept x⃗ for objective o. The p “ 4
parameter is empirically determined, as the parameter gets bigger the fitness distance
between aircraft concepts gets smaller (from an aircraft fitter than other), that is, the
fitness resolution increases.

The utopian aircraft design concept u⃗ is defined as an aircraft with a performance (Ta-
ble 4.6), such that when evaluated, its fitness function f⃗ pu⃗q “ 0.0.

Design objective Oo Objective weight wo

O1 – Maximize glide 4
10.5

O2 – Minimize roll variation 3.5
10.5

O3 – Minimize lateral inclination 2
10.5

O4 – Minimize heading variation 1
10.5

Table 4.5: Utopian aircraft design concept objectives weights
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Design objective Oo Objective function f⃗o pu⃗q Value

O1 – Maximize glide Ğ pu⃗q 160.00 NM

O2 – Minimize roll variation σ2
φpu⃗,tq
1 ď t ď T

0.0 deg2

O3 – Minimize lateral inclination max
1 ď t ď T

|φ pu⃗, tq| 0°

O4 – Minimize heading variation σ2
ψpu⃗,tq
1 ď t ď T

0.0 deg2

Table 4.6: Utopian aircraft design concept performance

Implementation details 16

4.4.2 Simulation model

Simulation tools define their own technical specifications that input models are required to met,
they just cannot take a generated design concept as is and run a simulation.

A conversion has to be done to pass from a design concept generated by the strategy to the
parametric simulation model which structure and attributes are fully coupled to the simulation
tool.

The domain model proposed by this work may highly simplify the simulation model construc-
tion by using it as a bridge between the design variables vector and the parametric simulation
model. An advantage of this method is that researchers are able to implement simulation mod-
els for more than one simulator and swap them for different design results or to simulate other
aspects of the system.

Parametric simulation models Implementation details 17

Aircraft

In this solution the parametric simulation model is built directly from the domain model,
the specific parametric simulation model is a .acf proprietary text based format file for
the X-Plane simulator and its aircraft modeling companion utility called Plane-Maker.

The parametric simulation model defines the lofting geometry composed by superellipse
based non-regular hexadecagon cross sections, weight, theoretical optimal center of grav-
ity of the aircraft and no-lift bodies drag, besides some domain specific attributes of the
aircraft derived from the basic design variables vector (e.g., wing type part chord at root,
chord at tip, span, semi-length, etc) that are required by the simulator to reproduce the
flight physics.
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4.4. Simulation-driven design preparation

Airfoils

Regarding airfoils (wing cross sections), the lofting geometry is composed by 14 vertex
2D wing shape cross sections, 7 vertex for the upper surface of the airfoil and 7 for the
lower surface.

Geometry of wing type parts and their cross sections are entered into the .acf parametric
simulation model; however, aerodynamic performance parameters specific to an airfoil
type are not included but referenced to a separated airfoil parametric simulation model in
an .afl proprietary text based format file for the X-Plane simulator and its airfoil modeling
utility called Airfoil-Maker.

Airfoil parametric simulation models contain a low resolution base cross section geom-
etry of a given airfoil and aerodynamic performance parameters (i.e., lift and drag for a
given angle of attack) that the simulator uses (in addition to the other aircraft parameters
specified in the .acf file and black box simulation mathematical model) to fully simulate
the flight physics of the aircraft inside a synthetic environment.

For the sake of this work, a set of 832 NACA 4-digit-series airfoil parametric simulation
models are generated (Fig. 4.17) in batch prior the strategy execution.

Performance data is obtained by other simulation tool specialized in airfoil aerodynamic
analysis called JAVAFOIL .

This set of airfoil models works as a pool of airfoils available for the generated aircraft
design concepts, whatever combination of airfoil related design variables values are gen-
erated by the strategy there will be an airfoil model that matches them. Specifically, 9
groups of 26 airfoils each are generated: 0006 - 0018, 1006 - 1018, 2006 - 2018, 3006
- 3018, 4006 - 4018, 5006 - 5018, 6006 - 6018, 7006 - 7018, 8006 - 8018, and 9006 -
9018.

Airfoil NACA 4-digit-series pmx x parametric simulation models are determined based
on the procedure described previously, by using the design variables and their domains:
where m is the camber percentage air f oilmaxcamber � t0..9u, p is the maximum camber

location percentage xδmax
c x � t0,10, 20,30, 40,50, 60u divided by 10, and x x is the airfoil
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maximum thickness percentage tmax
c � t6..18u padded with 2 leading zeros.

NACA 0012

NACA 2412

NACA 3418

NACA 6415

NACA 0006

NACA 5617

NACA 7308

NACA 8510

NACA 9316

NACA 9406

NACA 4313

Figure 4.17: NACA Airfoil examples

Implementation details 17

4.4.2.1 Computer simulation

Before executing the strategy and start generating design concepts, the simulation tool needs
to be prepared in order to fix reproducible conditions and set the testing scenario.

This may include configuring the simulator itself, setting parameters, defining a simulation
script, implementing simulation controllers (if required), etc.

Flight simulator Implementation details 18

A flight simulator (X-Plane) is used to re-create the mission statement defined in the
requirements and to produce the data required to evaluate generated aircraft concepts.

Some configuration and customization is required in order to set reproducible conditions
and enable evaluation fluency and simulation data retrieval.

Flat synthetic scenery
The simulator provides a geographical scenery that reproduces the actual earth ter-
rain, oceans, etc.

A custom scenery is built for an enclosed region (from 10°001002N, 30°001002W to
30°001002N, 20°001002W as a flat terrain at sea level, free of mountains or any other
obstacle.

The scenario is flattened to improve the simulator resource consumption (the sim-
ulator has the drawback of being unable to simulate an aircraft without disabling
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4.4. Simulation-driven design preparation

the graphical user interface).

Simulation controller
A software component is developed by using the simulator plug-in interface soft-
ware development kit (SDK).

The controller is required to launch the simulation with the same synthetic envi-
ronment conditions and simulation settings (Tables 4.7 and 4.8) during the strategy
execution and to collect and persists simulation data for subsequent evaluation.

Implementation details 18

Simulation script Implementation details 19

As part of aircraft design evaluation, each generated parametric simulationmodel is tested
in the simulator according to a predefined and reproducible scenario:

Simulation starts with the aircraft positioned in the synthetic world, flying at cruise
altitude and speed towards east.

The aircraft does not have any propulsion system but its initial momentum and should
start gliding to ground.

As soon as airspeed decreases, lift will drop (if any) and should get a pitch down
attitude (Fig. 4.2).

The aircraft should glide down to ground, fall as if in free fall or even float depending
on its configuration governed by the design variables.

Simulation ends when the aircraft reaches the ground or whether simulation-time or
real-time timeout expires.

Several fine-grained data coming from simulation and aircraft performance itself are
collected during the simulation execution.

Implementation details 19
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Simulation configuration Implementation details 20

Setting/parameter Value

h0 21250 ft

TAS0 180 kt

θ 0°

φ 0°

ψ 90° (East)

Initial location P 19°521482N, 29°591242W

t0 00:00 Z

Weather no rain, clear sky, calm wind

Table 4.7: Artificial environment conditions

Setting/parameter Value

Simulation-time timeout 3 h

Simulation-time compression up to 32x

Real-time timeout 15 min

Table 4.8: Simulation settings

Implementation details 20

4.5 Knowledge based evolutionary strategy

The knowledge based evolutionary strategy proposed in this work is inspired by the generalized
model of an EA presented in the theoretical framework chapter.

It provides specific procedures, mechanisms and operators defined with —enabling automatic
conceptual design not limited by mathematical models or equations— in mind.

Although the strategy defines a common implementation approach, specific algorithms can be
tailored based on the same strategy depending on the testing scenario, design objectives and
research needs.

In order to deal with the —complex, multi-objective— nature of an aircraft design concept, to
maintain a very small population size (to tackle simulation computational expensiveness), and
to increase probability of success (i.e., achieve better fitness), the strategy relies on the following
key aspects and components:
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• Top-down initialization.

• Cumulative candidate offspring.

• Knowledge based / classical evolutionary variation operators combination.

• Highly configurable variation and selection operators.

• Population diversity maintaining mechanisms.

• Simulation-driven design integration.

The overall flow of the strategy (Fig. 4.18) starts at generation g “ 1 by initializing
a population X 1 of µ top-down generated designs concepts. Initial population quality
!

f⃗
´

#     «
X 1,1

¯

, . . . , f⃗
´

#     «
X 1,µ

¯)

is assessed by simulation-driven evaluation.

While termination criteria are not met (e.g., desired fitness accomplished, maximum number
of generations reached, maximum number of generations with no-improvement exceeded —
stagnation—, terminated by user request, etc.) a series of variation operators, both knowledge
based and classical evolutionary operators are selectively applied to generate new designs that
are variants of initial designs and/or their descendants.

Once variation operators have been applied, a selection operator determines next generation
X g`1 members.
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Knowledge based evolutionary strategy

«top-down»
Initialize population

«simulation-driven»
Evaluate initial population

population[g]

«evaluated»
population[g]

Verify termination
criteria

Select
fittest

[terminate]

population[g]

fittest

Initialize candidate
offspring offspring[g] = population[g]

[continue]

«evaluated»
offspring[g]

«cumulative evaluated»
offspring[g]

Select offspring«evaluated»
population[g+1]

g = g + 1

g = 1

C

«termination
criteria»

ρ«ranker»

ς«selector»

«iterative»
Apply knowledge based

variation operator

«iterative»
Apply classical

evolutionary operator

«cumulative evaluated»
offspring[g]

knowledge based ϒKB
«variation operators»

classical evolutionary ϒCE
«variation operators»

population[g]

f«evaluator»

fitttest

µ design concepts

µ, f, C, ρ, ϒ, ς, ι, Λ

ι«initializer»

Figure 4.18: Knowledge based evolutionary strategy - overall activity
diagram
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Algorithm 4.1: Knowledge base evolutionary strategy - overall
Parameters: µ“ population size,

f⃗ “ fitness function, Λ f⃗ “

!

Λ
f⃗
l : Λ f⃗

l is a parameter of f⃗
)

,

C “ tC i : C i is a termination criterionu,

ΛC “

!!

Λ
C i
l : ΛC i

l is a parameter of C i

)

@ C i � C
)

,

Υ “
@

Υ i : Υ i is a variation operator
D

,

ΛΥ “
!!

Λ
Υ i
l : Λ

Υ i
l is a parameter of Υ i

)

@ Υ i � Υ
)

,

ς“ selection function, Λς “
␣

Λ
ς
l : Λςl is a parameter of ς

(

,
ι “ initializing function, Λι “

␣

Λιl : Λιl is a parameter of ι
(

,
ρ “ ranking function

begin
X Ð∅ // population
g Ð 1 // first generation
X g Ð ι pµ,Λιq // population initialization

X E
g Ð

A´

#    «
X g,i , f⃗

´

#    «
X g,i ,Λ

f⃗
¯¯

: 1ď i ď µ
E

// evaluated population
// while termination criteria not met
while C i

´

X E
g ,ΛC i � ΛC

¯

‰ t rue @ tC i : C i � Cu do

X 1E
g Ð X E

g // evaluated candidate offspring
forall

@

Υ KB
i : Υ KB Ă Υ , 1ď i ď

ˇ

ˇΥ KB
ˇ

ˇ

D

do // knowledge based
X KB Ð Υ KB

i

´

X 1E
g ,ΛΥ

KB
i � ΛΥ

¯

X 1E
g Ð X 1E

g ∥
A´

#     «

X KB
j , f⃗

´

#     «

X KB
j ,Λ f⃗

¯¯

: 1ď j ď
ˇ

ˇX KB
ˇ

ˇ

E

end
// classical evolutionary
forall

@

Υ C E
i : Υ C E Ă Υ , 1ď i ď

ˇ

ˇΥ C E
ˇ

ˇ

D

do

X C E Ð Υ C E
i

´

X 1E
g ,ΛΥ

C E
i � ΛΥ

¯

X 1E
g Ð X 1E

g ∥
A´

#     «

X C E
j , f⃗

´

#     «

X C E
j ,Λ f⃗

¯¯

: 1ď j ď
ˇ

ˇX C E
ˇ

ˇ

E

end

X E
g`1 Ð ς

´

µ, X 1E
g ,Λς

¯

// next generation
g Ð g ` 1

end

X R
g “ ρ

´

X E
g

¯

// ranked population
return X R

g,1 // fittest
end

4.5.1 Top-down initialization

Population X 1 is initialized by generating µ design concepts through an initializer function ι
based on the hierarchical/multi-layer structure of the system previously defined.

Each new design is created by initializing every design variable to a randomly generated value
within its corresponding domain at a high level of abstraction layer (commonly the highest
level).

Afterwards, for each generated design a new one is created (with the same method) for the
next lower abstraction layer, this time, the domains used to generate the values of the design

71



4.5. Knowledge based evolutionary strategy

variables are restricted to the context of the parent level of abstraction.

This method is repeated for each abstraction layer down to the most concrete, where the gen-
erated designs become the actual initial population of the strategy.

Initialization parameters Λι allow achieving one or a combination of the following effects:

Representative population
Generation of designs at one or more abstraction layers might be restricted to generate
unique designs for a cluster or class implicitly defined in the system structure, that is, if an
abstraction layer contains a categorical design variable specifically defined for classifica-
tion purposes, the initialization process will generate designs without allowing duplicate
values for that variable, hence the resulting designs will be representatives of a class (rep-
resentative building block).

Usually, only the most abstract layer needs to be restricted to obtain a representative pop-
ulation.

This mechanism allows to generate a kind of evenly distinct designs (representatives) that
might compensate some drawbacks of having very small populations.

Bounded initial design space region
The initialization process can be configured to assign preset values to specific design vari-
ables at any abstraction level.

This feature allows to bound the initial design space to a specific region (base designs)
where the strategy will start to search from.

This parametrization can also be useful to test different initialization variants specific to the
application domain without requiring changing the variables domains in the knowledge
base.

Remark. The initialization procedure describes the method proposed by this work; how-
ever, it is up to the designer or researcher to pick the upper abstraction layer, the lowest
and even the intermediate layers from the system structure defined.

This could be useful if one needs to work at some specific abstraction layer of the system.

The initialization procedure can even be reduced to a classical random population initial-
ization if only one layer is selected and no representative population nor preset values
parameters are provided.
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Top down initialization

µ, Λι = {s, r, F, ...}

«kb interaction»
Get representative

variable domain

r
«representative var»

Build
representatives

representative
variable domain

«kb interaction»
Get abstraction layers

s
«system»

representatives «abstraction layers»
M

«iterative»
Generate design concepts per m abstraction layer

M
«abstraction layers»

s design
ceoncepts

«iterative»
Generate ith design concept for m abstraction layer

«representatives»
F

«preset variables»

i from 1 to µ

«iterative»
Initialize jth design variable from V definition

V

«variables
definitions»

Initialize variable
with preset value

[preset value][random value]

[has an abstract model]

«kb interaction»
Determine contextual

domain

[no parent model]

design
variables

Get definition domain

Determine source of
variable domain

domain
Initialize with
random value
within domain

design variable

Determine source
of variable value

parent model

parent
model

Could be none

F

«preset
variables»

F’

F’

«kb interaction»
Get variables definitions

V

«variables
definitions»

design
concepts

«variables definitions»
V

Build individual
preset values

Append Ri to F

«individual preset values»
F'

design variables

design
variables

Concretize design
concept

Build design concept

design
concept

R

Figure 4.19: Top-down initialization activity diagram
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Algorithm 4.2: Top-down initialization
Parameters: µ“ population size,

Λι “ tsystem s, representative var r, fixed values F, . . . ,Λιnu
Preconditions: |r Ñ domain| ě µ
begin

Y Ð∅ // design concepts
RÐ domain_of?(s, r) // representatives
RÐ random_samplepR,µq // what if |R| ą µ
forall m � models_of?(s) do // abstraction layers

V Ð variables_of?(s, m) // design variable definitions sets
for i Ð 1 to µ do

Y 1 Ð∅
F 1 Ð F ∥ Ri
forall v � V do

if v � F 1 then
Y 1

v Ð F 1
v

else
if m‰ highest then

// context = higher abstraction levels concepts
d Ð domain_of?(s, m, Yi);

else
d Ð vrdomains

end
Y 1

v Ð random_withinpdq
end

end
Yi Ð X 1

end
end
return Y

end

Aircraft conceptual design initialization Implementation details 21

«level 0»
Family

«level 1»
Configuration

«level 2»
Prototype

... ...

... ...

...

Tapered
wing

Pointed 
wing

Constant 
chord wing

No swept Fwd sweptSwept Low Moderate High

Low Mid High

Aspect ratio levelSwept direction Vertical position

Wing shape familiy

.........

λ = 1.0 λ = 0.0 λ ∈(1,1)

Λ ∈(0,60]

Λ ∈[-60,60]

Λ = 0

Λ ∈[-60,0)

🜇∈(7,12]🜇∈(3,7]🜇∈(1,3]
🜇∈(0,40]

λ ∈[0,1]

y ∈[0,1]

y ∈[0,¼] y ∈(¼,¾] y ∈(¾,1]

🜇 = 2.89 (low)

y = 0.07 (low)

Λ = – 36º (fwd)

λ = 0.45 (trapezoidal)

Design variableAbstraction layer

Figure 4.20: Aircraft conceptual design initialization (partial)
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«iterative»
Apply ith variation operator
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Λϒi
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Figure 4.21: Variation operator overall activity diagram

4.5.2 Design variation

Design variation is performed by the application of a set of variation operators Υ (Fig. 4.21).

This work proposes as a design variation mechanism a combination of knowledge based Υ KB

variation operators and classical evolutionary Υ C E variation operators (i.e., mutation and re-
combination) that are applied on a cumulative candidate offspring X 1E

g at each g generation.

When comparing the strategy proposed with a pure stochastic approach where domain knowl-
edge is absent, the effectiveness might be affected when the number of design variables gets
increased (increasing dimensionality). As the design space gets more spread the less high-order
building blocks might be constructed that lead to a good solution.

On the other hand, discarding classical evolutionary variation operators may reduce the search
space to a space constructed only by the potential building blocks the knowledge based variation
operators may generate.

The proposed strategy provides somemechanisms (i.e., failover variation, population injection),
that may help to maintain population diversity and try to keep a good balance between explo-
ration and exploitation capabilities of actual algorithms.
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Remark. In general, the strategy weighs domain knowledge slightly more than pure ran-
domnessa.

The intuition supporting this is that knowledge based variation operators may provide a
set of high level building blocks (specialization) and classical evolutionary variation ones
and specially mutation usually may provide low level (or not as high) building blocks
(generalization).

High level building blocks may be more effective when dealing with higher number of
variables or complex systems (a high level building block is actually composed by several
low level building blocks) and low level build blocksmay increase the strategy exploration
capabilities.

aAlthough a specific balance can be set when crafting concrete algorithms

4.5.2.1 Cumulative candidate offspring

This work proposes a method to manage the overall offspring generation called cumulative
candidate offspring.

The basic idea is to maintain a pool of design concepts X 1E
g generated within a generation.

The cumulative candidate offspring is initialized at the beginning of each generation by cloning
(or referencing) the current evaluated population members X 1E

g Ð X E
g (Fig. 4.18 and Algo-

rithm 4.1).

Subsequent designs generated by each variation operator (i.e., local variation operators off-
spring) are appended to the candidate offspring.

Any variation operator is able to work on any subset of the candidate offspring (i.e., target
selection).

The strategy triggers evaluation of the non evaluated candidate offspring members (i.e., last
designs generated) after the application of each operator (and after initialization), that way, the
candidate offspring may be exploited by subsequent operators (Fig. 4.21 and Algorithm 4.1).

4.5.2.2 Target selection

Variation operators specify a selection function σ
´

X 1E
g ,Λσ

¯

to selectively work on candidate

offspring members (target designs) by a combination of the following methods:

By order
An operator selects its target designs based on their order in which they are originally
introduced into the candidate offspring no matter the quality the designs have (e.g., the
last generated design, the first three generated designs, exactly the second generated one,
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etc).

σ
´

X 1E
g , ta..bu

¯

“

A

X 1E
g,i : a, b � Z`, 1ď a ď i ď b ď

ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

E

(4.18)

By ranking
The selection of the target designs is quality based either by using a ranking function

provided to the strategy
!

f⃗ p x⃗q : x⃗ � t x⃗1, x⃗2, . . . , x⃗nu

)

ϱ
Ñ Z`, or a custom ϱΥ � ΛΥ ranking

function specific to the variation operator.

An order range is also specified, not with respect to the generation order but to a ranking
sort order.

σ
´

ϱ
´

X 1E
g

¯

, ta..bu
¯

“

A

ϱ
´

X 1E
g

¯

i
: a, b � Z`, 1ď a ď i ď b ď

ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

E

(4.19)

By custom selector
The operator may provide a custom selector method, choosing designs by a combination
of order, ranking or other criteria.

In addition, variation operators may specify an elitism (based on order or ranking) parameter
in order to force selection of specific targets.

4.5.2.3 Operators order

In general, the strategy suggests applying the knowledge based operators first followed by the
classical evolutionary operators.

The way the strategy may take advantage of the domain knowledge is to favor knowledge based
operators over the classical ones (build a larger percentage of the candidate offspring based on
knowledge than on pure randomness).

Classical operators, however, provide the strategy with powerful exploration effects that may
help to redirect the search to regions of the design space not covered by the knowledge based
generated variations, or to try improving a design concept through recombination.

Operation execution order is set by the order implicit in the variation operators list that is passed
to the strategy xΥ i : 1ď i ď |Υ |y.

4.5.2.4 Operators distribution

The common approach proposed in this strategy is to apply the full set of variation operators
within each generation.

The strategy, however, allow distribution of variation operators across generations, that is, an
operator Υ i may be configured to be applied only every ge � ΛΥ i generations, starting at a specific
g0 � ΛΥ i generation (e.g., apply an operator every 3 generations starting at g “ 1).

This mechanism allow reducing the overall number of evaluations within a generation but
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may introduce a stronger selection pressure in the strategy because the cumulative candidate
offspring size is reduced in comparison with the “apply all” default approach.

4.5.2.5 Variation operator failover

Knowledge based variation operators proposed in this thesis have the drawback of being limited
to the number of pieces of knowledge introduced into the knowledge base and its applicability
for a given specific candidate design.

This situation may lead to design evaluation inefficiency. A failover mechanism is proposed to
supersede this inconvenient, children designs are checked for actual variations, if no changes
are detected in the design variables vector the child is discarded without being evaluated and an
optional failover variation operator η � ΛΥ i for a given variation operator Υ i is used to generate
the definitive child design.

The strategy uses a uniform mutation operator as default failover operator.

Remark. Although this situation is much less likely to happen with classical evolutionary
operators (due to their pure randomness nature) it may happen that a child design re-
sulted from a recombination displays no changes in its variables values, specially when
changes are done on fixed parameter design variables and population is really small.

For this reason, failover variation operators usage is not restricted for knowledge based
operators and actually it is a recommended feature specially for recombination operators.

4.5.2.6 Population injection

A side effect of keeping population small is the degradation of its diversity, exploitation behavior
of selection makes population members resemble each other more and more across generations
and, even when exploration operators may balance that effect, the explored regions might not
have better designs than current population.

In order to tackle this issue an injection operator[53] I � Υ is used to try to reintroduce diversity
to the population.

Injection operator generates a new set of µ design concepts either by top-down initialization
or any other initialization method. New designs are appended to the cumulative candidate
offspring set.

The injection operator is treated by the strategy as any other variation operator. An injection
threshold parameter τI � ΛI sets the number of generations without improvement (fittest design
is not improved) before the injection is applied.

When the operator is triggered by the strategy, it first checks for an injection threshold counter
(initialized to 0 when the strategy starts), if the counter value is greater or equal to the injection
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threshold, then injection is performed and the counter reset back to zero.

Remark. Injection operator is the first variation operator in the sequence of variation
operators to allow the injected designs being modified across the rest of operators just
like the ones coming from initialization.

If injection would be applied at the end of the sequence, chances of having an enough
“good” design could be marginal, wasting resources with null benefits to the population
diversity.

4.5.2.7 Knowledge based variation operators

In classical stochastic evolutionary approach, a candidate design is modified by applying vari-
ation operators that heavily rely on randomness, a desired behavior indeed that usually set a
trade-off between population size and number of generations, that is, small populations may
require several generations to converge (on average) and few generations would necessitate
larger populations.

Any of these situations have a strong computational cost impact in the direct simulation-driven
approach.

This is, among others, a key motivation to propose domain knowledge exploitation through the
evolutionary process.

Definition 4.1. A knowledge based variation operator modifies a design concept by al-
tering its design variables according to knowledge facts and/or inferred decisions, and
considering the current design configuration or performance.

Unlike classical evolutionary operators, randomness is not a core aspect but might be
present in some degree.

This work proposes two types of knowledge based variation operators: preconfigured and cor-
rective variation operators, they both require domain knowledge in some degree and provide
different effects and application opportunities.

4.5.2.7.1 Preconfigured variation operator

Definition 4.2. A preconfigured variation operator is a knowledge based variation op-
erator that modifies a candidate design by applying a structured change in one or more
specific design variables in order to shape the system in a predictable form or appearance.

Values assigned to the variables when crafting a preconfigured variation are either fixed, calcu-
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Preconfigured variation operator application on target designs

«iterative»
Preconfigured variation operator application on i target design

Verify global
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Build local
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[pool empty]
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[no variation]

Add new design to
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target
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variation
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target
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local pool
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«kb interaction»
Retrieve global variations

pool
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previous common steps subsequent common
steps
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[changes]
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Figure 4.22: Preconfigured variation operator application activity di-
agram

lated or random in some degree.

Other preconfigured variations can be used as building blocks of more complex variations.

Remark. There might be an approximate foreseeable effect in performance if the variation
configuration is well-known in the domain field but it is not its primary purpose.

The (Fig. 4.21) diagram depicts operation procedure of this operator:

A set of preconfigured variations is introduced into the knowledge base either by facts, rules or
a combination of both (or their equivalent knowledge representation mechanisms).

Every time the operator is applied to a set of target designs, the set of preconfigured variations
is retrieved from the knowledge base as the preconfigured variations global pool.

For each target design the global pool, if not empty, is cloned into a local pool and a new design
is created by applying a randomly selected preconfigured variation.

Actual changes are supplied by domain knowledge based on current design and the knowledge
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encapsulated in the variation.

If the knowledge base is unable to generate changes from current configuration or if when
supplied, their application do not generate a new design that is different from the original one,
the new design is discarded, the failed variation is removed from the local pool and a new
preconfigured variation is picked randomly from the local pool until changes are detected in
the child design or the pool gets exhausted.

When a new design is different from its ancestor it is appended to the operator local offspring
and the applied variation is removed from the global pool, preventing the variation from being
applied to another target design within the same generation.

Whether the local pool or generation pool gets exhausted, a failover variation operator (e.g.,
a classical discrete mutation) is applied to generate a child and it is added to the generation
offspring.

This operator is a pure exploratory mechanism (although it cannot be named mutation[26]),
that basically relies on randomness but at higher levels of abstraction that may speed conver-
gence dramatically compared to full variable by variable randomness, with the drawback of
having an exploration space delimited by the quantity and type of the variations pool.

During the development of this strategy and its implementation, some patterns are identified:

Direct type
A variation that involves direct changes to variables without any inference performed by
rules.

The impact in structure and performance of this type of variation depends on the number
of variables affected.

There could be a variation of just one variable and variations involving several variables
(one could even change all of them).

Planned type
A variation that make changes to variables in a more analytical manner, that is, some
variable changes are planed based on the current configuration of the system.

Swap type
A variation that swaps over preconfigured variations of the same type, that is, variations
that modify the same system structure aspect.

This variation is applied by determining the actual configuration of the system and then
picking a variation that makes the design taking the next configuration of a given aspect.

This kind of variation may induce high level of abstraction step changes in specific aspects
of the system.

On/off type
A variation that may induce dramatic variations in performance by installing or removing
a component or a feature.
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Resulting effects depend on the level the affected element occupy in the system structure
hierarchy.

Remark. As already mentioned, the main purpose of the preconfigured variation opera-
tor is to provide knowledge based exploration capabilities to the strategy; however, this
operator can provide to human designers or researchers a mechanism to:

• Implement their own design ideas.

• Introduce existing configurations.

• Test synthetic configurations probably generated by an intelligent agent.

• Evaluate existing configurations identified by automatic clustering.

• Obtain possible optimal designs by considering all these alternatives.
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Algorithm 4.3: Preconfigured variation operator

Parameters: X 1E
g “ cumulative evaluated candidate offspring,

ΛΥ
KB
i “ t system s, target selection function σ,

failover operator η, . . . , custom parameter Λ
Υ KB

i
n u

begin
Y Ð∅ // local offspring
G Ð variations_for?(s) // global variations pool
Z Ð σ

´

X 1E
g

¯

// target design concepts
for i Ð 1 to |Z | do

if |G| ą 0 then // global pool not exhausted
L Ð G // local variations pool
Yi Ð Zi // new design concept
repeat

l Ð randompLq // variation
configured_variation_for(l, s, X i)
forall v � Yi do variable_value_of(v, s, Yi)
V Ð new_variables_values_for?(s, Yi) // changes
if |V | ą 0 then forall v � V do Yi,v Ð v

if Yi “ Zi then L Ñ removepV q
until Yi ‰ Zi _ L “H// new design different of target design and

local pool not exhausted

if Yi “ Zi then
Yi Ð η ptZiuq

else
G Ñ removepV q // prevents using same variation

end
else

Yi Ð η ptZiuq

end
end
return Y

end

Preconfigured variations Implementation details 22

For the fixed-wing aircraft conceptual design 34 preconfigured variations are imple-
mented, the following are some representative examples:

Monoplane variation (direct type)
A preconfigured variation that simply sets the number of wing planes to 1
(Fig. 4.23), that is, if the aircraft had 2 or 3 main wing planes the second and third
ones are removed from the design. The single remaining wing plane maintains its
current configuration.
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Rule 1
// Set to 1 the number of wing planes
If: configured_variation_for?(x) “ monoplane Then:

new_value_of(1, Nw)

Biplane

X-wing

Monoplane

Figure 4.23: Monoplane preconfigured variation ex-
ample

Uninstall vertical stabilizer (direct, on/off type)
A preconfigured variation that removes the vertical stabilizer (if any) from the air-
craft (Fig. 4.24).

Rule 1
// Set to 0 the number of vertical stabilizers
If: configured_variation_for?(x) “ uninstall vertical stabilizer Then:

new_value_of(0, N v)

Verticall stabilizer

On Off

Figure 4.24: Vertical stabilizer on/off preconfigured
variation example

Swap swept direction (swap type)
A swap type preconfigured variation that change the swept direction of 0 or more
wing planes of the aircraft (Fig. 4.25).

It starts by defining the number of wings being potentially affected by generating
a random integer n between 1 and the current number of wing planes installed on
the aircraft. Then it traverses the n wings and randomly (50%, 50%) decides if
swept direction of that particular wing plane should be reversed or stays as is. If
swap should be performed and the wing plane already has a sweep angle (it is not
straight) the direction is simply reversed.
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Rule 1
// Defines the number of wing planes being visited
If: configured_variation_for?(x) “ swap swept direction and value_of?(done)
‰ t rue Then:

value_of(randompt1..value_of?(Nw)uq, n)
value_of(1, w) // visit 1st wing

Rule 2
// swap swept direction in a wing if no sweep angle or forward swept
If: configured_variation_for?(x) “ swap swept direction and value_of?(n) ą 0
and randompr0, 1sq ď 0.5 and value_of?(Λr value_of?(w) s) ‰ 0.0 and
value_of?(done) ‰ t rue Then:

value_of(´value_of?(Λr value_of?(w) s), Λr value_of?(w) s)
value_of(value_of?(n) ´1, n)
value_of(value_of?(w) `1, w) // visit next wing

Rule 3
// Stop swaping swept direction
If: configured_variation_for?(x) “ swap swept direction and value_of?(n) “ 0
and value_of?(done) ‰ t rue Then:

value_of(t rue, done)

Swept direction

Forward Backward

Figure 4.25: Swap swept direction preconfigured vari-
ation example

X-wing variation (planned type)
A planned preconfigured variation that arrange 2 main wing planes in a way they
resemble a letter X if observed from the front (Fig. 4.26).

It starts by setting the number of wing planes to 2 (if the aircraft happens to have
1 wing the second one is randomly generated by setting values within allowed do-
mains, if the aircraft had 3 wings, the third one is discarded), then, a reference wing
is randomly chosen between the already existing 2 wing planes (the reference could
then be a priors wing plane or the just generated one.a).

The next step is to make the 2 wings appear as twins wings by replicating the ref-
erence wing plane configuration into the other wing.

Finally, the X pattern is assembled by making one of the wings point down and the
other point up and centering the intersection of both wings at the middle of the
fuselage.
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Longitudinally, the wings are located wherever the reference wing is already posi-
tioned.

Rule 1
// Set to 2 the number of wing planes
If: configured_variation_for?(x) “ x-wing Then:

new_value_of(2, Nw)
Rule 2
// Randomnly determines a wing plane reference a
If: configured_variation_for?(x) “ x-wing Then:

value_of(randompt1..2uq, a)
value_of(2´ value_of?(a) `1, b)

Rule 3
// Build twin wing planes based on reference a wing plane
If: configured_variation_for?(x) “ x-wing Then:

value_of(value_of?(Z posr value_of?(a) s), Z posr value_of?(b) s)
// relative longitudinal position

value_of(value_of?(Ar value_of?(a) s),Ar value_of?(b) s) // aspect
ratio

value_of(value_of?(Λr value_of?(a) s), Λr value_of?(b) s) // sweep
angle

// sweep angle location
value_of(value_of?(Λlr value_of?(a) s), Λlr value_of?(b) s)
value_of(value_of?(λr value_of?(a) s), λr value_of?(b) s) // taper
ratio

value_of(value_of?(ır value_of?(a) s), ır value_of?(b) s) // incidence
value_of(value_of?(εr value_of?(a) s), εr value_of?(b) s) // twist
// airfoil camber
value_of(value_of?(δmax

c r value_of?(a) s), δmax
c r value_of?(b) s)

// airfoil camber location
value_of(value_of?( xδmax

c xr value_of?(a) s), xδmax
c xr value_of?(b) s)

// airfoil thickness
value_of(value_of?( tmax

c r value_of?(a) s), tmax
c r value_of?(b) s)

Rule 4
// Arrange wing planes in the particular X pattern
If: configured_variation_for?(x) “ x-wing Then:

// anhedral (wing pointing down
value_of(randompt´30..´ 18uq, Γ r value_of?(a) s)
// dihedral (wing pointing up in the same magnitude)
value_of(´value_of?(Γ r value_of?(a) s), Γ r value_of?(b) s)

Rule 5
// Align center of X to the middle of the fuselage
If: configured_variation_for?(x) “ x-wing Then:

value_of(0.5, ywr value_of?(a) s) // relative vertical position
value_of(value_of?(ywr value_of?(a) s), ywr value_of?(b) s)

aNote that despite the structured variation it displays some randomness in some of its components

Figure 4.26: X-wing preconfigured variation example
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Corrective variation operator application on target designs

Previous common steps Subsequent common steps

local offspring

«iterative»
Corrective variation operator application on i target design

target design concepts

Knowledge base

Build target design
performance facts performance facts

Infer possible
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new design

[no diagnostics]

target

target diagnostic

target

Figure 4.27: Corrective variation operator application activity diagram

Implementation details 22

4.5.2.7.2 Corrective variation operator

Definition 4.3. A corrective variation operator is a knowledge based variation operator
that, based on inferred diagnostic, modifies a candidate design by applying a calculated
change in one or more specific design variables, providing an approximate, not guaran-
teed predictable effect in performance.

The (Fig. 4.27) diagram depicts operation procedure of this operator:

A set of corrective variations is introduced into the knowledge base by defining two types of
rules: diagnostic and fix rules.

Diagnostic rules contain the knowledge required to analyze a system configuration and its de-
tailed fitness (per objective), and propose a possible diagnostic.
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Several rules may lead to the same designation of possible causes of a design failure (i.e., diag-
nostic) and more than one diagnostic might be inferred for a design.

In order to help the strategy decide which diagnostic work on, a priority is set when entering
the rules into the knowledge base.

On the other hand, fix rules encapsulate domain knowledge based solution alternatives required
to “heal” the system with a given diagnostic.

These rules also analyze the actual system configuration to properly derive required changes.

During the strategy execution, diagnostic rules are resolved for each target design to get a list
of applicable diagnostics. The strategy selects the priority diagnostic and retrieves from the
knowledge base a set of changes generated by relevant fix rules.

The set of changes is used to generate a child design that, hopefully would be an improved
version of its parent.

A failover variation operator, commonly a uniform mutation operator is used to generate the
child in the case of “no diagnosics” are found in the system or if any, there would not be any
fix rule applicable.

The primary purpose of this operator is to try to improve a design by “fixing failures”, be-
ing a special type of variation operator displaying a kind of exploitation effect[25]; however,
if changes do not provide expected results in performance the new design may still help the
evolutionary process by introducing diversity.

The effectiveness of this operator directly depends on the size of the set of diagnostic/fix rules,
or pieces of knowledge introduced into the design process, and the variety of aspects covered
by the set of rules.

Regardless the main application of this type of operator is to improve candidate designs; it can
be a useful tool in the design process and help designers and researches to validate hypothe-
ses (in some degree and depending on the simulation tool capabilities) or to induce specific
performance in the designs.
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Algorithm 4.4: Corrective variation operator

Parameters: X 1E
g “ cumulative evaluated candidate offspring,

ΛΥ
KB
i “ t system s, target selection function σ,

objectives O, . . . , custom parameter Λ
Υ KB

i
n u

begin
Y Ð∅ // local offspring
Z Ð σ

´

X 1E
g

¯

// target design concepts
for i Ð 1 to |Z | do

Yi Ð Zi // new design concept
forall o � O do fitness_of(Yi Ñ fitnesso, s, o, Yi)
forall v � Yi do variable_value_of(v, s, Yi)
DÐdiganostics_of?(s, Yi) // possible prioritized diagnostics
if |D| ą 0 then

d ÐD di � D : di Ñ priori t y “max1 ď i ď |D| d1 Ñ priori t y // diagnostic to
work on

diagnostic_for(d, s, Yi)
V Ð new_variables_values_for?(s, Yi)
forall v � V do Yi,v Ð v

end
end
return Y

end

Corrective variations Implementation details 23

For the experimental implementation of the strategy, 2 diagnostic types are defined: lat-
eral instability (Fig. 4.28) and directional instability.

For the lateral instability diagnosic, 7 possible solutions are modeled and 2 for the direc-
tional instability diagnostic.

The following are some representative examples:

Diagnostic rules

Rule 1
If: fitness_of?(roll variance, x) ě 0.05 Then:

diagnostic_for(lateral instability, 1, x)
Rule 2
If: fitness_of?(heading variance, x) ě 0.05 Then:

diagnostic_for(directional instability, 2, x)
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Fix rules

Rule 1
If: diagnostic_for?(x) “ lateral instability Then:

strategy_for(increase dihedral effect, lateral instability)
Rule 2
If: strategy_for?(x) “ increase dihedral effect and not has positive dihedral Then:

action_for(set dihedral angle, increase dihedral effect)

Rule 3
If: strategy_for?(x) “ increase dihedral effect and has positive dihedral ă 15 Then:

action_for(increase dihedral angle, increase dihedral effect)

Rule 4
If: strategy_for?(x) “ increase dihedral effect and has positive dihedral and has low wing Then:

action_for(set no dihedral angle and set mid wing, increase dihedral effect)

Rule 5
If: strategy_for?(x) “ increase dihedral effect and has positive dihedral and has mid wing Then:

action_for(set no dihedral angle and set high wing, increase dihedral effect)

Rule 6
If: strategy_for?(x) “ increase dihedral effect and has positive dihedral and has high wing Then:

strategy_for(swept back, increase dihedral effect)

Rule 7
If: strategy_for?(x) “ swept back and not wing has sweep Then:

action_for(set sweep back angle, swept back)

Rule 8
If: strategy_for?(x) “ swept back and has forward sweep Then:

action_for(invert sweep angle, swept back)

Rule 9
If: strategy_for?(x) “ swept back and has swept back ă 25 Then:

action_for(increase sweep angle, swept back)

Rule 10
If: action_for?(x) “ set dihedral angle Then:

new_value_of (1, Γ r0s)

Rule 11
If: action_for?(x) “ increase dihedral angle Then:

new_value_of(value_of?(Γ r0s)`1, Γ r0s)

Rule 12
If: action_for?(x) “ set sweep back angle Then:

new_value_of(randompt7..25uq, Λlr0s) and new_value_of(0.25, Λlr0s)

Aircraft lateral axis

Horizon

Dihedral wing (positive diherdal angle)

Laterally unstable Laterally stable

Diagnostic Fix

Figure 4.28: Corrective variation example

Implementation details 23

90



4.5. Knowledge based evolutionary strategy

4.5.2.8 Classical evolutionary variation operators

The strong evolutionary stochastic nature to modify design concepts in the strategy relies on
the application of two types of operators: recombination and mutation.

As reviewed in the theoretical framework chapter, it has been demonstrated that recombina-
tion and mutation operators tend to display different survival and constructive effects as a result
of the level of disruption they introduce to the evolutionary process and the level of their ex-
ploratory power.

Regarding mutation and recombination, the strategy key interest is on the overall effect those
operators may introduce to the design process, the operator capabilities to work with the par-
ticular solution representation used in this problem and the arity of the operators, considering
the very small population size.

Recombination operator
The strategy builds a cumulative candidate offspring within a generation. For this reason,
the recombination operator is applied once after all knowledge based operators, since a
recombination operator may be more efficient and effective when having more parent
candidates available to choose from.

Mutation operator
Mutation operator is applied only once within a generation, specifically taking as a target
the resulting recombinant design; so basically this is the last operator to be applied within
a generation.

The strong exploratory capabilities of this operator makes it also ideal to be used as a
failover variation operator for either knowledge based operators or the recombination
operator.

Recombination operator Implementation details 24

A custom —differential mutation/arithmetical recombination/uniform recombination—
operator is used as recombination operator.

The operator may generates either a mutant or a recombinant (although for simplicity it
is called recombinant).

Recombination is favored over mutation, a resulting design could be a fully arithmetical
recombination of three existing designs (might include the target itself), or a uniform
binary recombination between the original design and a mutant resulted of a mutation
step calculated by the difference between two designs.

The operator is inspired by both, classical differential mutation/recombination operator
and “either-or” variant of DE algorithm, taking advantage of the 3 arity of the original
operators in order to combine or mutate up to three designs.

The following parameters ΛΥ
C E
i are passed to the recombination operator, most of them

are implemented as functions rather than fixed value parameters in order to enable cus-
tomization:
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Parent selection function 9r
Selects the 9r1, 9r2 and 9r3 position indexes of the recombination parents (as defined
by the classical differential mutation operator) in the target design concepts set.

As other selection functions used in the strategy this function is able to select parents
by order, ranking or a custom method.

Differential mutation scale factor generator function F

F pαF ,β F q “ random prαF ,β F sq (4.20)

where αF ,β F � r0,1s and αF ă β F

Uniform recombination probability generator function C r

C r pαC r ,βC rq “ random prαC r ,βC rsq (4.21)

where αC r ,βC r � r0,1s and αC r ă βC r

Differential mutation probability generator function P f

P f
`

cP f
˘

“ cP f (4.22)

where cP f � r0,1s

Scale factor sampling frequency flag mF
Where mF � ttrue, falseu. If true, the scale factor is computed for each target design
concept (dither method) being modified by the operator, if false (jitter method), the
scale factor is computed for each design variable of a target design concept.

Reconmbination probability sampling frequency flag mC r
Where mC r � ttrue, falseu.

Domain combination method flag dX
Where dX � ttrue, falseu. If true (union), when combining design variables their
resulting domains are calculated as the union Y of the domains of the donor design
concepts, if false (full), the resulting domain takes the value of the full domain for
that variable in the domain knowledge.

The custom recombination operator being applied on a set of target design concepts is
specified as follows:
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4.5. Knowledge based evolutionary strategy

Algorithm 4.5: Custom recombination operator

Parameters: X 1E
g “ cumulative evaluated candidate offspring,

ΛΥ
C E
i “ t differential mutation scale factor function F pαF ,β F q,

uniform recombination probability generator function C r pαC r ,βC rq,
parent selection function 9r,
target selection function σ,
differential mutation probability function P f

`

cP f
˘

,
differential mutation scale factor sampling frequency mF ,
uniform recombination probability sampling frequency flag mC r ,
domain combination method flag dX ,

. . . , custom parameter Λ
Υ C E

i
n u

begin
Y Ð∅ // local offspring
Z Ð σ

´

X 1E
g

¯

// target design concepts
for i Ð 1 to |Z | do

Yi Ð Zi // new design concept (clone)
mutate “ t rue
if randompr0,1sq ą P f

`

cP f
˘

then mutate “ f alse
if mC r “ t rue then C r 1 “ C r pαC r ,βC rq // dither
if mF “ t rue then F 1 “ F pαF ,β F q // dither
for j Ð 1 to |Yi| do

if mC r “ f alse then C r 1 “ C r pαC r ,βC rq // jitter
if mF “ f alse then F 1 “ F pαF ,β F q // jitter
if randompr0,1sq ď C r 1_ j “ randompt1..|Yi|uq then

9r1, 9r2, 9r3“ 9r
`

Yi, j
˘

// selection of parents order
if dF “ t rue then // union

Yi, jrdomains Ð Y9r1, jrdomains Y Y9r2, jrdomains Y Y9r3, jrdomains
else // full domain

Yi, jrdomains Ð Yi, jrmetasr f ul ldomains
end
if mutate “ t rue then // differential mutation

Yi, j Ð Y9r1, j ` F 1 ˚ pY9r2, j ´ X 9r3, jq

else // differential arithmetical recombination
Yi, j Ð Y9r1, j ` pκ ˚ pY9r2, j ` Y9r3, j ´ p2 ˚ Y9r1, jqq

end
end

end
end
return Y

end

Implementation details 24

Mutation operator Implementation details 25

Uniform randommutation operator is implemented for the particular aircraft design case.

In addition to the common parameters passed to variation operators through this strategy
(i.e., target selection function σ and its parameters and cumulative candidate offspring
X 1E

g ), the following parameters are defined:
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4.5. Knowledge based evolutionary strategy

Mutation probability generator function M p

M p
`

αM p,βM p
˘

“ random
`

rαM p,βM ps
˘

(4.23)

where αM p,βM p � r0,1s and αM p ă βM p

Mutation probability sampling frequency flag mM p
Where mM p � ttrue, falseu. If true, dither method is applied to compute the muta-
tion probability, if false jitter method is used instead.

Domain scope flag dM
Where dM � ttrue, falseu. If true, the new random value of a design variable is
generated within the current variable domain, if false the full variable domain is
taken to generate the random value.

The mutation operator being applied on a set of target design concepts is specified as
follows:

Algorithm 4.6: Mutation operator

Parameters: X 1E
g “ cumulative evaluated candidate offspring,

ΛΥ
C E
i “ t mutation probability generation function M p

`

αM p,βM p
˘

,
mutation probability sampling frequency flag mM p,
target selection function σ,
domain scope flag dM ,

. . . , custom parameter Λ
Υ C E

i
n u

begin
Y Ð∅ // local offspring
Z Ð σ

´

X 1E
g

¯

// target design concepts
for i Ð 1 to |Z | do

Yi Ð Zi // new design concept (clone)
if mM p “ t rue then M p1 “ M p

`

αM p,βM p
˘

// dither
for j Ð 1 to |Yi| do

if mM p “ f alse then M p1 “ M p
`

αM p,βM p
˘

// jitter
if randompr0,1sq ď M p1 then

// full domain
if dM “ f alse then Yi, jrdomains Ð Yi, jrmetasr f ul ldomains
Yi, j “ randompYi, jrdomainsq

end
end

end
return Y

end

Implementation details 25
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4.5. Knowledge based evolutionary strategy

4.5.3 Generation selection

After the set of variation operators is applied on the current population and cumulative candi-
date offspring, a selection operator (provided to the strategy as a parameter) selects from the
full candidate offspring µ, designs concepts according to criteria enclosed in the selector.

Selected µ designs become the actual g generation offspring and pass to the next generation as
the g ` 1 generation population.

In the same way as variation operators, the selection operator is able to select design concepts
by ordinal order, ranking sort order and elitism to support its specific selection algorithmic logic.

Generation selection operators Implementation details 26

Two types of selection operators are used in the aircraft conceptual design process:

Elitist ranking
Thismethod of selection simply returns a subset with cardinality µ of the cumulative
candidate offspring by using the ranker function ρ that, as explained before, sorts
the design concepts by their fitness (quality).

Remark. This method is used as selection method in one of the four imple-
mentations provided in this work (Fig. 4.30).

In that implementation the variation operators are distributed across gen-
erations, that is, the cumulative candidate offspring size is kept at minimal,
therefore, by using this method the selection pressure may be increased in
order to compensate the absence of other variation operators in a given gen-
eration.

Stochastic universal sampling (SUS)
Thismethod of selection, as previously described in the theoretical framework chap-
ter tends to select the best design concepts more evenly than the fitness proportional
selection method.

This method when applied in the strategy is useful since it may help to maintain
diversity within population by passing, from time to time, some “not as good” design
concepts to the next generation, reducing the selection pressure.

This method is used as selection method in all but one implementation introduced
in this work.

Unlike implementation II, the rest of them do not distribute variation operators
within generations (Figs. 4.29, 4.31 and 4.32) resulting in larger cumulative candi-
date offspring that may provide to this method a broader range of selection.

Additionally, elitism with ranker ρ is used to ensure passing the fittest design con-
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4.5. Knowledge based evolutionary strategy

cept to the next generation.

Implementation details 26

4.5.4 Simulation-driven design integration

Generation of the domain model is triggered through a listener attached to the evolutionary
strategy.

Every time the strategy generates a design concept either by initialization or variation opera-
tors, the subscribed listener is notified about the creation action and the domain model is gener-
ated from the design variables vector of the newly design concept, following by the parametric
simulation model, generated from the domain model (additional models and human readable
representation text files are also generated in chain).

There is a similar mechanism for evaluation that notifies the simulation controller whenever
an evaluation is required by the strategy.

The simulation controller prepares the simulation tools (e.g., load the simulation model, set
simulation conditions, etc), launches the simulation and persists simulation data.

4.5.5 Specific implementations

Four different implementations of the strategy are crafted and tested, and their corresponding
results are provided in the next chapter.

Different implementations allow achieving contrasting goals in terms of performance, probabil-
ity of success, computational costs and research specific goals.

All implementations have in common the variation operator order of application (either dis-
tributed or not), that is, knowledge based ones are followed by classical evolutionary ones,
specifically: corrective variation operator ¹¹Ë preconfigured variation operator ¹¹Ë recombina-
tion ¹¹Ë mutation.

A population injection operator is also applied when required at the very beginning of the
variation operators sequence.

Target selection for recombination and mutation are also common to all implementations. Re-
combination target selection is an elitist selection of the fittest design within the candidate off-
spring and corresponding 9r1, 9r2 and 9r3 recombination parents are selected by FPS method (i.e.,
9r “ F PS).

Target selection for mutation is always the recombinant design resulted from recombination
(i.e., last design concept generated in the cumulative candidate offspring).

Another common behavior is having the mutation operator as failover operator for corrective
variation operator and recombination.
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Figure 4.29: Evolutionary strategy implementation I

SUS selection method with elitism for the fittest is used as generation selection operator for all
but the II implementation.

4.5.5.1 I: Minimal evaluations per generation

The first implementation of the strategy considers generating and evaluating the minimal
amount of design concepts by generation.

Local offspring for every variation operator is composed by only 1 new design.

Corrective variation operator selects the second design concept of the ranked candidate offspring
(composed at the time this operator is applied by population of the current generation).

Preconfigured variation operator selects the third design concept of the ranked candidate off-
spring, that is, the third fittest design of all current population designs and corrective variation
operator generated ones combined.

Selecting the fittest for those operators is avoided with the idea of using them as a possible way
to improve the next fittest designs since the fittest is selected by recombination anyway.

4.5.5.2 II: Distributed variation operators

The second implementation sets a variation operator distribution across generations.

Corrective variation operator is applied on the whole candidate offspring on the first generation
and every 3 generations afterwards.

Preconfigured variation operator is applied on thewhole candidate offspring every 3 generations
starting at generation 2.

Recombination followed by mutation are both applied every 3 generations after the generation
where preconfigured variation is applied.
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Figure 4.30: Evolutionary strategy implementation II

Population injection operator is configured to be executed if required at the beginning of every
generation.

This implementation may help analyze particular behavior and effects induced by specific op-
erators and their components. Selection operator for this particular implementation is changed
from SUS to selection of the fittest by ranking to try to increase selection pressure given that
the cumulative candidate offspring is kept minimal.

4.5.5.3 III: Maximum probability of success

The third implementation is the one that displays the maximum probability of success by gen-
erally achieving the fittest designs with the drawback of being the one with the largest number
of evaluations per generation.

It basically applies the knowledge based variation operators on the full cumulative candidate
offspring.

4.5.5.4 IV: Medium number of evaluations per generation

The fourth implementation introduces a small variant to the third one that reduce the number
of evaluations by bounding the target selection of the preconfigured variation operator (the
second operator being applied on the sequence) to the local offspring of the previous operator
instead of the full candidate offspring.

4.6 Complementary system representation

Other models can be built from the design variables vector or the domain model of the system.
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Figure 4.31: Evolutionary strategy implementation III

1 2

4

12 3

12 3 31 2

1 23 56 12 3

36 5487 9

1 247 6598 10 3

2 358 76109 11 4 1

1

1

CreationsCumulative candidate offspring Evaluations Population

Top-down 
intialization

Corrective variation

Preconfigured 
variation

Recombination

Mutation

Selection

Corrective variation

t = 1

t = 2

12 3

12 3
31 2

31 2

4 Ranking sort order
(evaluated)

Target selection by ranking

Elitism

Target selection by order

Cumulative candidate offspring member

Created non-evaluated

Generation shift

Population

Figure 4.32: Evolutionary strategy implementation IV
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4.6. Complementary system representation

These models might be indeed, required by human designers or researches in order to analyze
the system from other perspectives.

Visual model

Allows the designers to have a visual perspective of the system.

Visual model Implementation details 27

For practical purposes, a rendered visual model is not generated from the geometry de-
fined in the domainmodel, but the simulator companion application for aircraft modeling
is used through a custom script to generate visual representations of generated aircrafts
in batch.

For each aircraft design concept, 4 views are generated: front, top, side and isometric
with 2 versions of each view: wireframe and solid.

The images are post-processed (also in batch) in order to enhance look and contrast.

Figure 4.33: Fixed wing aircraft visual model - front wire-
frame

Figure 4.34: Fixed wing aircraft visual model - front solid
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Figure 4.35: Fixed wing aircraft visual model - top wireframe

Figure 4.36: Fixed wing aircraft visual model - top solid
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Figure 4.37: Fixed wing aircraft visual model - side wireframe

Figure 4.38: Fixed wing aircraft visual model - side solid

Figure 4.39: Fixed wing aircraft visual model - isometric solid
view solid

Implementation details 27
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5
Experiments and results

5.1 Experiment description

The experimental objective of this work is to synthesize an optimal (from the objectives perspec-
tive) fixed-wing aircraft design concept flyable inside the simulator according to the simulation
script, scalarized fitness function, domain constraints and scenario defined and constructed in
the previous chapter through the instrumentation of the strategy also previously developed and
implemented as 4 algorithmic variants, namely I, II, III and IV (Figs. 4.29 to 4.32).

In addition, two more variants are derived from base III: classical evolutionary only strategy
variant (CEO) and knowledge based only strategy variant (KBO) by removing recombination
and mutation from the former and corrective and preconfigured variation operators from the
latter.

Injection and consequently injection threshold are also removed from these variants with the
purpose of isolating particular full randomness and knowledge based behaviors of the strategy,
to provide an intuition of the effectiveness of their combination and the separated capabilities
to provide a good solution for a common design problem.

For comparison purposes and in the absence of existing known works using the same approach
of proposed strategy applied to aircraft conceptual design, and since the recombination operator
used by the strategy is based on the differential recombination/mutation operator, 2 versions of
Differential evolution (DE) are implemented.

The first algorithm differential evolution algorithm (adjusted to µ “ 3) (DE*) reproduces the
classical Differential evolution (DE) except for allowing a population size µ “ 3 instead of the
minimal recommended 4, that is, the differential recombination operator is adjusted to enable
degenerated combinations of target and parent design concepts, very similar to the custom
operator introduced in the strategy.

The second variant of the differential evolution algorithm custom differential evolution algo-
rithm (adjusted to µ “ 3 with differential arithmetic recombination) (CDE*), includes the re-
combination operator designed for the strategy as is, that is, it enables differential mutation,
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5.1. Experiment description

differential arithmetical recombination and uniform recombination from original design and
differential mutant. This variant is implemented to comparatively test the behavior of classical
differential operator and the custom operator of the strategy on the same problem.

The experiment consists in executing a battery of 30 design automation processes per algorithm,
sharing a common fixed initial population of 3 randomly generated aircraft design concepts (3
wing shape family representatives) by using the top-down method introduced in this strategy
and simulation settings and conditions described in previous chapter (Tables 4.7 and 4.8).

Each algorithm is configured according to (Tables 5.1 to 5.4)1 including parameters
!

τS , f⃗M IN , gMAX

)

� ΛC that enable stopping an algorithm execution when no further improve-

ment is detected after τS generations, when fitness evaluation goes less than or equal to f⃗M IN
or when number of generations exceed gMAX [40].

Algorithm µ gMAX Executions
Population injection operator I

τS f⃗M IN
Next generation selection ς

g0 I ge I τI Method Elitism

I

3

50

30

1 5 τI ` 2

0.0

SUS ς
´

ρ
´

X 1E
g

¯

, t1..1u
¯

III 20

IV 30

II 90 ς
´

ρ
´

X 1E
g

¯

, t1..µu
¯

KBO 20

N/A 5

SUS ς
´

ρ
´

X 1E
g

¯

, t1..1u
¯

CEO

90
DE*

ς
´

ρ
´

X 1E
g

¯

, t1..µu
¯

CDE*

Table 5.1: Experiment general parameters and settings

Algorithm
Distribution

Target selection σ Failover η

g0 ge

I

1

1

σ
´

ϱ
´

X 1E
g

¯

, t2..2u
¯

Mutation
IV σ

´

X 1E
g ,

!ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ´ 2..
ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

)¯

III

σ
´

X 1E
g ,

!

1..
ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

)¯

II 3

KBO 1 Preconfigured

DE*

N/ACDE*

CEO

(a) Corrective variation

Algorithm
Distribution

Target selection Failover

g0 ge

II 2 3

σ
´

X 1E
g ,

!

1..
ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

)¯

None
III

1
KBO

I σ
´

ϱ
´

X 1E
g

¯

, t3..3u
¯

IV σ
´

X 1E
g ,

!ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ´ 2..
ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

)¯

DE*

N/ACDE*

CEO

(b) Preconfigured variation

Table 5.2: Knowldege based variation operators parameters and set-
tings

1Maximum number of generations allowed per algorithm is set in relation with the expected number of evalua-
tions in a particular algorithm
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Algorithm
Distribution

Target selection σ Parent selection 9r Failover η
F C r P f

g0 ge αF β F mF dX αC r αC r mC r cP f κ

I

1

σ
´

ϱ
´

X 1E
g

¯

, t1..1u
¯

FPS

Preconfigured

0.4 2.0 jitter full 0.2 0.5 ditter
0.45 F`1

2

III

IV

II 3

CEO

1

None

CDE*
σ
´

X 1E
g ,

!

1..
ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

)¯

N/A

DE* N/A

KBO N/A

Table 5.3: Recombination parameters and settings

During evolution, variation operators execution order is consistently the same in all algorithms
(except on those where some operators are removed or are not applicable):

1. Knowledge based variation operator

(a) Corrective variation

(b) Preconfigured variation

2. Classical evolutionary operators

(a) Recombination

(b) Mutation

Algorithm
Distribution

Target selection σ Failover η
M p

g0 ge αM p βM p mM p dM

I

1

σ
´

X 1E
g ,

!ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ ..
ˇ

ˇ

ˇX 1E
g

ˇ

ˇ

ˇ

)¯

None 0.1 0.45 dither full

III

IV

II 3

CEO 1

CDE*

N/ADE*

KBO

Table 5.4: Mutation parameters and settings
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5.2 Results

5.2.1 Results analysis

The experiment battery accounts for a total of 240 aircraft conceptual design process executions,
half of them belonging to the proposed strategy, 60 for isolated variation operator types analysis
and 60 for comparison with differential evolution purposes.

After the execution of the experiment, 33421 design concepts x⃗ were generated and evaluated
(i.e., 33421 simulations performed) accumulating slightly more than 300 simulation hours.

Initial population X 1 shared by all algorithms executions achieved fitness evaluations f⃗ p x⃗q of
5960.17, 5860.75 and 4953.98 (Figs. 5.6 to 5.8), that is, considerably non-optimal designs to
fulfill the design objectives.

The strategy reached a global optimal fitness (limited to experiment maximum number of gen-
erations and other termination criteria) of 18.74, a global optimal mean fitness of 74.41 and a
global optimal median fitness of 70.24 for a maximum relative efficacy of 99.66%.

CEO, CDE* and DE* algorithms fall in stagnation before reaching 30 iterations (Fig. 5.1), that is,
they all were unable to further induce improvements in their populations within the stagnation
threshold.

The other algorithms completed in overall their configured maximum generations displaying
continuous improvement until stopping demonstrating the effectiveness of the strategy pro-
posed key aspects.
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Figure 5.1: Global convergence curve

In general, all strategy variants achieve similar optimal fitness evaluations (Table 5.5), dif-
ferences become evident when analyzing their average and maximum relative efficacy (im-
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provement achieved percentage), relative efficiency (evaluations : efficacy) and relative quality
(global optimal fitness : algorithm optimal fitness) metrics.

Algorithm
min f⃗ p x⃗q |X 1E

g | Initial fitness Improvement Relative efficacy Relative efficiency Relative quality

c rc min c rc min max c c max c

I 95.04 97.34 23.37 148 140 66 218

5591.63

5496.59 98.30% 99.58% 0.66 78.29%

II 76.43 70.24 23.04 267 286 73 316 5515.20 98.63% 99.59% 0.37 97.36%

III 74.41 71.35 28.59 222 223 180 247 5517.22 98.67% 99.49% 0.44 100.00%

IV 80.08 78.28 18.78 217 238 118 244 5511.55 98.57% 99.66% 0.45 92.92%

KBO 98.60 99.17 46.08 156 183 66 183 5493.03 98.24% 99.18% 0.63 75.47%

CEO 525.82 123.05 71.56 28 27 15 47 5065.81 90.60% 98.72% 3.24 14.15%

DE* 208.11 122.90 112.39 53 54 24 81 5383.52 96.28% 97.99% 1.82 35.76%

CDE* 307.59 123.54 119.48 47 45 27 81 5333.78 94.50% 97.86% 2.05 24.19%

Table 5.5: Global results

I (Àefficiency, Ãaverage efficacy, Âmax efficacy, Ãquality)
Variant I is the most efficient variant but has the lowest efficacy and quality in average.

II (Ãefficiency, Áaverage efficacy, Ámax efficacy, Áquality)
Variant II is the least efficient variant but has the second best efficacy and quality.

III (Âefficiency, Àaverage efficacy, Ãmax efficacy, Àquality)
Variant III is the second least efficient variant but has the highest average efficacy and
quality, although achieve the least maximum relative efficacy.

IV (Áefficiency, Âaverage efficacy, Àmax efficacy, Àquality)
Variant IV is the second most efficient variant but has the second lowest average efficacy
and quality. It has also the highest maximum relative efficacy.

Relative efficiency of DE*, CDE* and CEO are considerably better than the knowledge based
counterparts including KBO, however, as previously mentioned, they fall in stagnation and
have the poorest relative quality metrics (bellow 40%). Even the best fitness evaluation of
them is 2 + ½ times worst the less optimal evaluation of the proposed strategy based algorithms
and, although they are not equipped with the injection operator, the differences do not seem
to be strongly related to that situation given that KBO did not fall into stagnation even when it
does not have injection operator as well.

When comparing DE* and CDE* it is shown that classical differential evolution method for
arithmetical recombination slightly outperforms (in this particular case) the custom operator
that combines randomly two different methods of arithmetical recombination. This might be
intuitively explained because the classical operator is designed to behave like a recombination/-
mutation operator and, when crafting the custom operator based on the differential one the
desired behavior was more related to recombination effect than mutation effect.

5.2.1.1 Individual objectives

KBO algorithm (designed to analyze the isolated knowledge based operators) results help to
demonstrate the effectiveness of the knowledge based variation operators in this implementa-
tion case, and specially the preconfigured variation operator (due to the small corrective rules
set implemented in this work).
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During final generations of its executions the algorithm keeps continuously improving, outper-
formed by III variant and slightly outperformed by the IV one (Fig. 5.1) but, on the other hand,
outperforming variants I and II at least until stopping (explained by the slow convergence speed
of I and II variants).

This behavior suggests that, as planned, the domain knowledge and the high level building
blocks provided by the preconfigured variation operator heavily accounts for probability of suc-
cess, but also shows that both, knowledge based and classical evolutionary operators comple-
ment each other to achieve the best fitness evaluations (neither CEO nor KBO were able to
reach most optimal evaluations although knowledge based by its own reached better fitness
evaluations).

The real differences arise when analyzing results by individual objective (Figs. 5.2 and 5.3
and Table 5.6), where clearly the maximization of glide distance objective followed by mini-
mization of the maximum absolute roll are the objectives that make evident the contributions
of the application of domain knowledge in the design evolutionary process.

In general all algorithms including differential evolution heavily improves the other objectives
but the strategy based algorithms (even the KBO by its own) allow constructing building blocks
containing design concepts that fulfill the whole set of objectives.

Algorithm
max Ğ p x⃗ q minσ2

φp x⃗ ,tq
1 ď t ď T

min max
1 ď t ď T

|φ p x⃗ , tq| minσ2
ψp x⃗ ,tq
1 ď t ď T

c rc max c rc min c rc min c rc min

I 39.90 36.11 130.25 0.16 0.013 0.0011 1.04 0.73 0.29 0.27 0.036 0.0016

II 63.24 72.09 130.68 0.50 0.014 0.0007 1.70 0.95 0.26 0.13 0.029 0.0030

III 65.62 69.19 123.60 0.14 0.009 0.0003 1.04 0.70 0.22 0.07 0.037 0.0005

IV 58.47 60.56 136.09 0.10 0.005 0.0002 1.04 0.79 0.22 0.12 0.027 0.0005

KBO 35.12 33.77 101.35 2.94 0.045 0.0010 3.05 1.63 0.17 2.78 0.041 0.0012

CEO 11.60 7.38 71.31 52.65 2.756 0.0055 15.07 5.18 0.56 658.24 0.788 0.0533

DE* 8.61 6.07 27.96 21.13 6.810 0.0176 10.85 7.64 0.32 144.93 0.946 0.0240

CDE* 8.26 6.55 20.01 61.33 5.082 0.0160 19.59 7.44 0.79 335.91 0.878 0.0306

Table 5.6: Global results by objective

5.2.1.2 Multivariate analysis

Despite the fact that this strategy and the solution proposed was not designed as a “fully” multi-
objective optimization solution (a scalarization technique was used to transform the multi-
objective nature into amono-objective nature), it is interesting to analyze the experiment results
by individual objectives.

This analysis actually helped to distinguish the real differences in terms of fitness evaluation
achievement between the strategy based algorithms and the ones not supported by domain
knowledge.

Part of this analysis consisted in preparing parallels coordinates plots for each algorithm (Figs. 5.4
and 5.5).
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Figure 5.2: Global results by objective I

This kind of plot allows displaying multivariate data in 2 dimensions. The data being plotted are
the actual objective functions values for each objective and for each design concept evaluated
during all executions of each algorithm.

Each objective is represented with a vertical axis line, a design concept is a straight line plotted
from a point in the first objective axis line to a point in the second objective axis line to the third
and to the fourth objective.

The intersection point in each objective axis corresponds with the actual objective function
value for that objective normalized from the interval rA, Bs to the interval r0,1s where A is the
global best (the best of all executions of all algorithms) objective function value and B is the
global worst objective function value.

As a result, the plot allows identifying (by objective) better solutions at the bottom and worse
solutions at the top, as well as the coverage of the solutions, that is whether a solution is a good
or bad solution for 1, 2, 3 or 4 objectives and in what precise amount.

This last visualization advantage was enhanced by grouping the data into 4 clusters through a
k-means clustering algorithm, passing the 4 objective functions values as features to build the
clusters.
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Figure 5.3: Global results by objective II

Heading variance Roll variance Maximum absolute roll Glide

0.0

0.2

0.4

0.6

0.8

1.0

(a) DE*

Min heading 
variance

Min roll 
variance

Min max 
abs roll

Max glide

(b) CDE*

Heading variance Roll variance Maximum absolute roll Glide

0.0

0.2

0.4

0.6

0.8

1.0

(c) CEO

Heading variance Roll variance Maximum absolute roll Glide

0.0

0.2

0.4

0.6

0.8

1.0

(d) KBO

Figure 5.4: Multivariate parallel coordinates plot I
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Figure 5.5: Multivariate parallel coordinates plot II

5.2.2 Initial shared population

5.2.2.1 Design variables

Table 5.7: Initial population design concepts design variables

Design variable Pointed Constant chord Trapezoidal

Fixed values

M LW 42000 lb

S 860 ft2

Sh 217 ft2

Sv 170 ft2

t y 4.41 ft

ny ´1.16 ft

fň 1.98

fm̌ 1.98

fw 9.74 ft

fh 8.83 ft

Continue on next page
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5.2. Results

Table 5.7 – continued from previous page

Design variable Pointed Constant chord Trapezoidal

lm 24.33 ft
l t{d 4.26
ln{d 1.61
tmax

c x 30%
thmax

c x 30%
δhmax

c x 0%
δhmax

c 0%
δvmax

c x 0%
δvmax

c 0%
t vmax

c x 30%

εv 0°

ıv 0°

Γv 90°
δvhmax

c x 0%
δvhmax

c 0%
t vhmax

c x 30%

Non-fixed values
thmax

c r1s 7% 8% 6%

εh r1s 3.83° 0.65° 0.99°

ıh r1s 4.87° 3.19° 3.78°

Γh r1s ´3° 20° 12°

Λlh r1s 1.00 0.25 0.00

Λh r1s 29° 0° 1°

λh r1s 0.00 1.00 0.00

Ah r1s 3.22 5.18 1.63

zh r1s 0.71 0.39 0.71

yh r1s 0.40 0.03 0.08

hposh r1s 2 0 0

Nh 1 1 1

N vh 0 0 0

N v 1 1 1
xδmax

c x r1s 0% 40% 0%
δmax

c r1s 0% 8% 0%
tmax

c r1s 7% 9% 13%

ε r1s ´1.13° ´2.79° ´3.22°

ı r1s 0.00° 5.63° 0.89°

Γ r1s 0° 6° ´4°

Λl r1s 0.5 0 0.5

Λ r1s ´19° 0° ´58°

λ r1s 0.00 1.00 0.23

A r1s 10.49 0.33 15.00

zw r1s 0.49 0.35 0.34

Continue on next page
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5.2. Results

Table 5.7 – continued from previous page

Design variable Pointed Constant chord Trapezoidal

yw r1s 0.82 0.88 0.18

hposw r1s 0 1 2

Nw 1 1 1
t vmax

c r1s 7% 8% 10%

Λl v r1s 1.00 0.25 0.25

Λv r1s 40° 11° 24°

λv r1s 0.00 1.00 0.06

Av r1s 1.61 2.03 2.25

zv r1s 0.53 0.88 0.51
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5.2. Results

5.2.2.2 Visual models

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.6: Initial shared population aircraft design concept - pointed
wing shape family representative
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.7: Initial shared population aircraft design concept - constant
chord wing shape family representative
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.8: Initial shared population aircraft design concept - trape-
zoidal wing shape family representative
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5.2. Results

5.2.3 Fittest design concepts

5.2.3.1 Design variables

Table 5.8: Global fittest design concepts design variables

Design variable I II III IV KBO CEO DE CDE

Fixed values

M LW 42000 lb

S 860 ft2

Sh 217 ft2

Sv 170 ft2

t y 4.41 ft

ny ´1.16 ft

fň 1.98

fm̌ 1.98

fw 9.74 ft

fh 8.83 ft

lm 24.33 ft
l t{d 4.26
ln{d 1.61
tmax

c x 30%
thmax

c x 30%
δhmax

c x 0%
δhmax

c 0%
δvmax

c x 0%
δvmax

c 0%
t vmax

c x 30%

εv 0°

ıv 0°

Γv 90°
δvhmax

c x 0%
δvhmax

c 0%
t vhmax

c x 30%

Non-fixed values
thmax

c r1s 7% 7% 9% 6% 8% 7% 6% 6%

εh r1s 0.15° ´2.55° ´0.56° ´1.92° 0.65° 0.99° 3.30° 2.01°

ıh r1s 3.03° 0.49° 3.57° 2.36° 3.19° 4.54° 3.78° 3.78°

Γh r1s ´20° ´10° ´13° ´10° 20° 11° 15° 2°

Λlh r1s 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Λh r1s 52° 24° 0° 48° 0° 1° ´55° 6°

λh r1s 0.54 0.87 0.27 1.00 1.00 0.00 0.00 0.00

Ah r1s 2.22 6.14 3.59 3.08 5.18 6.75 3.22 2.17

zh r1s 0.65 0.79 0.93 0.39 0.95 0.48 0.72 0.93

Continue on next page
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5.2. Results

Table 5.8 – continued from previous page

Design variable I II III IV KBO CEO DE CDE

yh r1s 0.40 0.93 0.05 0.44 0.98 0.08 0.70 0.35

hposh r1s 2 2 2 2 2 2 2 2

Nh 1 1 1 1 1 1 1 1

N vh 0 0 0 0 0 0 0 0

N v 0 0 0 0 0 0 1 1
xδmax

c x r1s 10% 10% 10% 10% 10% 0% 10% 10%
δmax

c r1s 5% 8% 9% 3% 9% 0% 7% 4%
tmax

c r1s 7% 9% 10% 9% 9% 16% 13% 13%

ε r1s ´3.10° ´0.79° 3.38° ´2.79° 3.41° ´3.22° ´2.18° 3.76°

ı r1s 5.88° 1.87° 2.71° 5.63° 3.69° 4.02° 0.89° 0.97°

Γ r1s 7° 17° 14° 4° 16° 6° ´4° 0°

Λl r1s 0.25 0.25 0.25 0 0 0.25 0.25 0.25

Λ r1s 19° ´5° 0° 26° 0° 11° 30° 17°

λ r1s 0.45 0.31 0.43 0.83 0.46 0.33 0.65 0.89

A r1s 31.99 30.80 39.09 39.90 25.07 15.00 25.76 15.00

zw r1s 0.53 0.08 0.15 0.41 0.09 0.31 0.49 0.83

yw r1s 0.93 1.00 0.04 0.93 0.49 0.18 0.16 0.19

hposw r1s 1 1 0 0 1 1 1 0

Nw 1 1 1 1 1 1 1 1
t vmax

c r1s ´´ ´´ ´´ ´´ ´´ ´´ 7% 10%

Λl v r1s ´´ ´´ ´´ ´´ ´´ ´´ 0.25 0.25

Λv r1s ´´ ´´ ´´ ´´ ´´ ´´ 14° 24°

λv r1s ´´ ´´ ´´ ´´ ´´ ´´ 0.06 0.83

Av r1s ´´ ´´ ´´ ´´ ´´ ´´ 2.96 2.25

zv r1s ´´ ´´ ´´ ´´ ´´ ´´ 0.84 0.51
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5.2. Results

5.2.3.2 Visual models

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.9: Global fittest aircraft design concept generated by algo-
rithm IV
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.10: Fittest aircraft design concept generated by algorithm II
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.11: Fittest aircraft design concept generated by algorithm I
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.12: Fittest aircraft design concept generated by algorithm III
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.13: Fittest aircraft design concept generated by algorithmic
variant KBO
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.14: Fittest aircraft design concept generated by algorithmic
variant CEO
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.15: Fittest aircraft design concept generated by algorithmDE*
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5.2. Results

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.16: Fittest aircraft design concept generated by algorithmic
variant CDE*
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5.3. Additional experiment: weather enabled

5.3 Additional experiment: weather enabled

Besides the main experiment, an additional “short” one is conducted by performing 30 execu-
tions of the III algorithm, sharing the same initial population of the main experiment as well
as simulation settings, objectives and simulation script but introducing different synthetic envi-
ronment conditions.

Instead of having a constant weather condition consisting of calm wind, no rain and clear sky
behavior set on the main experiment, the simulator weather option is enabled in order to in-
troduce variable wind magnitudes, rain, cloud and temperature conditions.

Climatological conditions are randomly generated once (Table 5.9) and then shared across all
simulations, the conditions are not, however, completely constant since weather components
although they are seeded from the same initial configuration, their actual specific locations and
magnitudes are randomly determined at simulation time (within constant ranges).

Clouds

Lower layer Middle (mid) layer Upper layer

Base 11.222 ft 11.222 ft 16.334 ft

Top 14.334 ft 16.334 ft ¨ ¨ ¨

Type Scattered cumulus Cumulus Clear

Winds

Lower layer Mid layer Upper layer

Base 2.000 ft 8.000 ft 18.000 ft

Direction 25° 24° 31°

Speed 4 kt 14 kt 11 kt

Gust increase 8 kt 9 kt 7 kt

Shear direction 2° 2° 3°

Precipitation intensity Severe

Thermals

Tops 10.253 ft

Climb rate 760 ft{min

Table 5.9: Additional experiment weather conditions

The reason of conducting this additional experiment is to provide additional test data of the
strategy performance under semi-uncontrolled simulation conditions, deciding to let weather
changes since that environmental aspect may affects drastically the aerodynamic performance
of an aircraft, worst if that aircraft has no manual nor automatic control input.
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5.3. Additional experiment: weather enabled

5.3.1 Results

After the execution of the experiment, 6777 design concepts were generated and evaluated
Table 5.11 and Fig. 5.19 accounting for almost 93 simulation hours2.

Initial population shared by all executions (same population shared by executions of the main
experiment) achieved average fitness evaluations of 6429.96, about 15% worse than the main
experiment initial fitness evaluations.

The strategy reached an optimal fitness of 96.28, an optimalmean of 117.39 and optimal median
of 119.89 (Fig. 5.17 and Table 5.10) for a maximum relative efficacy of 98.50%.

The relative quality with respect of the highest quality achieved in the first experiment was
placed at a value of 63.39%, that is, about 30.00% below the average relative quality of the
strategy for the first experiment but still considerably higher than the algorithms not based on
the strategy.

1 2 3 4 5 7 10 15 20

117

160

300

550

1,000

1,800

5,720

Generations

min f⃗ p x⃗q

c rc

Figure 5.17: Weather enabled experiment convergence curve

min f⃗ p x⃗q |X 1E
g | Initial fitness Improvement Relative efficacy Relative efficiency Relative quality

c rc min c rc min max c c max c

117.39 119.89 96.28 226 235 158 247 6429.96 6312.57 98.17% 98.50% 0.43 63.39%3

Table 5.10: Weather enabled experiment global results

When considering individual objectives Fig. 5.18, even the maximum glide was longer than
the average maximum glide achieved by DE* and CDE* algorithms, despite the fact that those

2Simulations take longer in average with respect the main experiment, weather conditions and specially the
thermals keep the aircraft longer in air

3With respect of main experiment results
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5.3. Additional experiment: weather enabled

algorithms were conducted under controlled minimal weather conditions. Nevertheless, the

Max glide

Min roll var

Min max abs roll

Min heading var

37.82

7.53

12.02

1.29

15.34

25.29

20.27

9.12

12.45

23.41

19.98

5.05

Optimum c rc

Figure 5.18: Weather enabled experiment objectives

algorithm could hardly produce maximum glides comparable to the first experiment due to the
fact that it is virtually impossible that an aircraft without any control input (either manual or
automatic) and without propulsion is not perturbed by changing conditions in wind, thermals
and rain.

Table 5.11: Additional experiment fittest design concept design vari-
ables

Design variable Value

Fixed values

M LW 42000 lb

S 860 ft2

Sh 217 ft2

Sv 170 ft2

t y 4.41 ft

ny ´1.16 ft

fň 1.98

fm̌ 1.98

fw 9.74 ft

fh 8.83 ft

lm 24.33 ft
l t{d 4.26
ln{d 1.61
tmax

c x 30%
thmax

c x 30%
δhmax

c x 0%
δhmax

c 0%
δvmax

c x 0%

Continue on next page
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5.3. Additional experiment: weather enabled

Table 5.11 – continued from previous page

Design variable Value

δvmax
c 0%

t vmax
c x 30%

εv 0°

ıv 0°

Γv 90°
δvhmax

c x 0%
δvhmax

c 0%
t vhmax

c x 30%

Non-fixed values
thmax

c r1s 7

εh r1s ´3.07°

ıh r1s 4.87°

Γh r1s 5°

Λlh r1s 0.25

Λh r1s ´24°

λh r1s 0.48

Ah r1s 3.22

zh r1s 0.75

yh r1s 0.86

hposh r1s 2

Nh 1
t vhmax

c r1s 6%

εvh r1s ´3.00°

ıvh r1s 4.47°

Γvh r1s 62°

Λl vh r1s 0.00

Λvh r1s 70°

λvh r1s 0.87

Avh r1s 1.74

zvh r1s 0.42

yvh r1s 0.17

xvh r1s 0.61

Swvh r1s 0.70
Sv
Svh

r1s 0.34
Sh
Svh

r1s 0.35

N vh 1

N v 0
xδmax

c x r1s 0%
δmax

c r1s 0%
tmax

c r1s 15%

ε r1s ´1.13°

ı r1s 0.00°

Continue on next page
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5.3. Additional experiment: weather enabled

Table 5.11 – continued from previous page

Design variable Value

Γ r1s 12°

Λl r1s 0.25

Λ r1s 47°

λ r1s 0.22

A r1s 7.33

zw r1s 0.06

yw r1s 0.82

hposw r1s 1

Nw 1
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5.3. Additional experiment: weather enabled

(a) Wireframe top view (b) Solid top view

(c) Wireframe front view (d) Solid front view

(e) Wireframe side view (f) Solid side view

(g) Wireframe isometric view (h) Solid isometric view

Figure 5.19: Fittest aircraft design concept generated by algorithm III
with weather enabled
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6
Conclusions

After developing the solution proposed in this research work, it was possible to achieve the
general and specific objectives stated at the beginning of the research.

A digital prototype of a fixed-wing aircraft was generated as an optimal solution (with respect of
all generated solutions) for a gliding scenario inside a flight simulator. Moreover, an additional
short experiment was able to come up with a possible solution inside a less-controlled scenario
(weather enabled), again, inside the flight simulator.

The results obtained suggest that domain knowledge can improve the evolutionary design pro-
cess, probably by the introduction of some kind of exploitation behavior through corrective
variations, a behavior generally accepted to be present only on selection operators; yet spe-
cially by the introduction of high-level building blocks through preconfigured variations into
the design space.

The results also indicate that the mechanisms introduced to deal with the very small population
size were effective, preventing the strategy falling in stagnation.

When reviewing the resulting structure of the fittest designs (for each algorithm) in the main
experiment, it is clear that none of them retained the vertical stabilizer (installed initially in the
shared initial population), except those generated by the differential evolution algorithm based
variants.

It is also highlighting that, in almost all cases, the main wing plane was longitudinally placed in
the front section of the fuselage and that all design concepts generated by algorithms based on
the proposed strategy presented dihedral in both main wing plane and horizontal stabilizer, ex-
cept those generated by algorithms based on differential evolution, which displayed an anhedral
(negative dihedral) and a no-dihedral configurations, an indicator that the dihedral configura-
tion was favored during evaluation possibly by the influence of the corrective variation operator
that indeed, contained rules to heal lateral instability by setting or increasing the dihedral effect
in wings.

It was an interesting observing through additional experiments how the two types of variation
operators, when isolated, did not achieve the best results by their own, neither only evolution-
ary operators nor knowledge based operators, demonstrating the benefits of their synergy in
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this implementation case.

Although desired, it was not possible to define a more elaborated testing scenario, that is, a
scenario including flight mission stages like take-off, climbing, cruising, descent and landing;
however, the computational model and evolutionary strategy were not precisely the cause to
not achieving those scenarios (since additional variables could be kept constants if needed), but
the lack of a crucial software component, neither existing nor custom-built, artificial “test pilot”
or auto-pilot, that could fly a generated design concept, a component that, for its characteristics
could be a full research topic by itself.

During the development of this work, some early decisions had to be made in front of a broad
range of possible solutionmethods and approaches that potentially would cover the stated prob-
lem. Starting from accurately placing the problem of aircraft conceptual design automation as
an instance of an engineering design optimization problem allowed selecting (by tracing current
applicable body of knowledge) a viable and suitable method of solving, as well as the approaches
to tackle the problem.

There were some considerations from the beginning that also influenced the path followed, such
the idea of using a flight simulator to support evaluation. Even though this work is focused
on a specific application case (conceptual aircraft design), it is still a computer science work,
therefore, relying on a specialized tool regarding much of domain knowledge specific issues
sounded advisable. This first early decision lead the research to take the next important decision
supported by existing theory: adopting the evolutionary computing approach and specifically
the evolutionary design approach.

This work essentially proposed incorporating pieces of domain knowledge into the evolutionary
process. By taking this approach it was expected that the required knowledge to implement the
solution would be doubled (the evolutionary computing part of knowledge and the knowledge
engineering part of knowledge), presenting a risk regarding the time frame for this research.

For this reason, the focus was set in crafting the evolutionary strategy and the means to repre-
sent the solutions, and assume a more practical approach regarding the knowledge engineering
part, a decision that resulted in taking an existing rule based framework and integrating it into
the solution being developed.

This approach was adequate since that allowed this work to show the effect of incorporating
domain knowledge into the evolutionary design process without pretending to build a kind of
expert system or being distracted with specific knowledge management algorithms.

Although using the simulator to assist the evaluation of generated design concepts was ex-
tremely useful and appropriate to achieve the objectives, it was unavoidable to keep this work
too separated (decoupled) from the application case specific domain knowledge to some extent.

Nevertheless, it was a situation that just confirmed what the evolutionary design and meta-
heuristic hybridization theory already recommended: to customize and hybridize as much as
possible, and to consider specific application domain aspects as part of main principles to apply
the evolutionary computing approach into engineering design applications.

It is clear, at least from the perspective of this work experience, that going from the canonical
definition of algorithms, methods and approaches into specific applications is far away from
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trivial. It requires some understanding of the conceptual and principles of the body of knowl-
edge being applied, mixing and proposing new ideas and mechanisms, avoiding being restricted
by original formulations and definitions. This is, in fact an advantage of computer science and
computer engineering, and particularly an advantage of artificial intelligence discipline, as they
can be (and usually are) inspired by nature, engineering, psychology, science, arts, etc., but are
not restricted to that inspiration, nor by available mathematical methods of solution.

Despite the concrete application scenario of this work, there was an interest during the develop-
ment of the solution in providing as many points for extension as possible (e.g., inheritance for
the case of object graphs, rule based system allowing separation between knowledge and infer-
ence, generalized evolutionary framework to allow implementing different behaviors, variation
operators and algorithms, etc.) that hopefully might help to implement similar solutions into
similar problems.

Some ideas had to be postponed to future work such as:

• Incorporating a learning mechanism to the evolutionary process to obtain characteriza-
tions of “good” designs.

• A clustering feature that would extract knowledge from the evolutionary process in the
form of promising preconfigured variations (synthetically proposed).

• Introducing more variations, perhaps synthetically generated by clustering (from a large
set of existing aircraft configurations).

• To append more sophisticated and complete diagnosis and repair rules as corrective vari-
ations.

• To implement a non-scalarized multi-objective evolutionary strategy.

• Incorporating constraints other than design variables domain constraints.

• To introduce design variable sensitivity analysis.

• To use aerodynamic coefficients instead of roll and heading variances as method to mea-
sure lateral and directional stability.

• ...

From the aircraft conceptual design perspective, some interesting features for further work
could be: extending the model to basic aerodynamic analysis for the non-wing type parts of
the aircraft (i.e., fuselage), incorporating control surfaces, landing gear and propulsion systems
(still from a conceptual perspective), to implement more sophisticated test scenarios assisted by
artificial “test pilots”, etc.
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A
Design variables reference

See (Appendix B.3) for visual guidance.

Table A.1: Aircraft design variables reference

Design variable Context Domain

Family level

Nw, Number of wing planes t1..3u

S f , Shape family {’Constant chord’, ’Triangular’,
’Trapezoidal’}

Nh, Number of horizontal stabilizers t0..1u

S f h, Horizontal stabilizer shape family {’Constant chord’, ’Triangular’,
’Trapezoidal’}

N v, Number of vertical stabilizers t0..1u

S f v , Vertical stabilizer shape family {’Constant chord’, ’Triangular’,
’Trapezoidal’}

N vh, Number of vertical/horizontal stabilizers t0..1u

S f vh, Vertical/horizontal stabilizer shape family {’Constant chord’, ’Triangular’,
’Trapezoidal’}

Configuration level

Nw, Number of wing planes Inherited

λt, Wing taper ratio type

S f “ Constant chord {’Untapered’}

S f “ Triangular {’Pointed’}

S f “ Trapezoidal {’Tapered’}

vposw, Wing plane vertical position {’Low’, ’Mid’, ’High’}

Al, Aspect ratio level {’Very low’, ’Low’, ’Moderate’,
’High’, ’Very high’, ’Extremely
high’}

Continue on next page
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Table A.1 – continued from previous page

Design variable Context Domain

λl, Wing taper ratio level {’Low’, ’Moderate’, ’High’}

Λd, Sweep direction {’None’, ’Forward’, ’Back’}

ΛL, Sweep level {’Slightly’, ’Moderately’,
’Highly’}

Γ t, Wing dihedral angle type {’No dihedral’, ’Dihedral’,
’Anhedral’}

ıt, Wing incidence angle type {’No incidence’, ’Low’, ’High’}

εt, Wing twist type {’No twist’, ’Wash in’, ’Wash
out’}

a f l t, Wing airfoil type {’Symmetrical’, ’Cambered’}

a f lT , Wing airfoil thickness level {’Thin’, ’Medium’, ’Thick’}

Nh, Number of horizontal stabilizers Inherited

λth, Horizontal stabilizer taper ratio level

S f h “

Constant chord
{’Untapered’}

S f h “ Triangular {’Pointed’}

S f h “ Trapezoidal {’Tapered’}

vposh, Horizontal stabilizer vertical position {’Low’, ’Mid’, ’High’}

Alh, Horizontal stabilizer aspect ratio level {’Very low’, ’Low’, ’Moderate’,
’High’, ’Very high’, ’Extremely
high’}

λlh, Horizontal stabilizer taper ratio level {’Low’, ’Moderate’, ’High’}

Λdh, Horizontal stabilizer sweep direction {’None’, ’Forward’, ’Back’}

ΛLh, Horizontal stabilizer sweep level {’Slightly’, ’Moderately’,
’Highly’}

Γ th, Horizontal stabilizer dihedral angle type {’No dihedral’, ’Dihedral’,
’Anhedral’}

ıth, Horizontal stabilizer incidence angle type {’No incidence’, ’Low’, ’High’}

εth, Horizontal stabilizer twist type {’No twist’, ’Wash in’, ’Wash
out’}

a f l th, Horizontal stabilizer airfoil type {’Symmetrical’, ’Cambered’}

N v, Number of vertical stabilizers Inherited

λt v , Vertical stabilizer taper ratio level

S f v “

Constant chord
{’Untapered’}

S f v “ Triangular {’Pointed’}

S f v “ Trapezoidal {’Tapered’}

λl v , Vertical stabilizer taper ratio level {’Low’, ’Moderate’, ’High’}

ΛLv , Vertical stabilizer sweep level {’Slightly’, ’Moderately’,
’Highly’}

Continue on next page
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Table A.1 – continued from previous page

Design variable Context Domain

N vh, Number of vertical/horizontal stabilizers Inherited

λt vh, Vertical/horizontal stabilizer taper ratio level

S f vh “

Constant chord
{’Untapered’}

S f vh “ Triangular {’Pointed’}

S f vh “ Trapezoidal {’Tapered’}

λl vh, Vertical/horizontal stabilizer taper ratio level {’Low’, ’Moderate’, ’High’}

Λd vh, Vertical/horizontal stabilizer sweep direction {’None’, ’Forward’, ’Back’}

ΛLvh, Vertical/horizontal stabilizer sweep level {’Slightly’, ’Moderately’,
’Highly’}

Γ t vh, Vertical/horizontal stabilizer dihedral angle type {’Dihedral’, ’Anhedral’}

ıt vh, Vertical/horizontal stabilizer incidence angle type {’No incidence’, ’Low’, ’High’}

εt vh, Vertical/horizontal stabilizer twist type {’No twist’, ’Wash in’, ’Wash
out’}

Prototype level

M LW , Maximum landing weight in lb t42000.00u

S, Planform surface: the wing shape projected surface,
when viewed from above in ft2

t860.00u

Nw, Number of wing planes Inherited

hposw, Wing plane horizontal position {’Nose’, ’Center’, ’Tail’}

zw, Wing plane relative longitudinal arm r0.0, 1.0s

yw, Wing plane relative vertical arm

vposw “ Low r0.0, 0.25s

vposw “ Mid p0.25, 0.75q

vposw “ High r0.75, 1.0s

A, Aspect ratio: the ratio of the wing span to the
chord length

Al “ Very low r0.3, 1.0s

Al “ Low p1.0, 3.0s

Al “ Moderate p3.0, 7.0s

Al “ High p7.0, 12.0s

Al “ Very high p12.0, 20.0s

Al “ Extremely high p20.0, 40.00s

λ, Taper ratio: the ratio of the wing chord length
at root to the chord length at tip

λt “ Pointed r0.0, 0.0s

λt “ Tapered p0.0, 1.0q

λt “ Untapered r1.0, 1.0s

λl “ Low p0.0, 0.3q

λl “ Moderate r0.3, 0.6q

λl “ High r0.6, 1.0q

Λ, Sweep angle: the angle between the lateral
axis of the aircraft and a chord-line going from a
chordwise point at the wing root to the same
chordwise point at the tip

Λd “ None t0u

Λd “ Back t1..65u

Continue on next page
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Table A.1 – continued from previous page

Design variable Context Domain

Λd “ Forward t´65.. ´ 1u

ΛL “ Slightly t1..10u Y t´10.. ´ 1u

ΛL “ Moderately t11..29u Y t´29.. ´ 11u

ΛL “ Highly t30..65u Y t´65.. ´ 30u

Λl, Sweep location: a location expressed as a
percentage of the wing chord length (starting at
leading edge) where a sweep angle is measured

r0.0, 0.0s Y r0.25, 0.25s Y

r0.50, 0.50s Y r1.0, 1.0s

Γ , Dihedral angle: the angle between the wing
and the aircraft lateral axis, when viewed from
the front

Γ t “ No dihedral t0u

Γ t “ Dihedral t1..20u

Γ t “ Anhedral t´20.. ´ 1u

ı, Incidence: the angle between the the chord line
of the wing at root and the aircraft longitudinal
axis, when viewed from the side

ıt “ No incidence r0.0, 0.0s

ıt “ Low p0.0, 4.0q

ıt “ High r4.0, 6.0s

ε, Twist: The absolute difference between the
incidence angle at the root and the incidence
angle at the tip. Twist is negative if the leading
edge of the tip is below the root leading edge, and
positive otherwise

εt “ No twist r0.0, 0.0s

εt “ Wash in p0.0, 4.0s

εt “ Wash out r´4.0, 0.0q

tmax
c , Airfoil max thickness

a f lT “ Thin t6..8u

a f lT “ Medium t9..12u

a f lT “ Thick t13..18u

tmax
c x , Airfoil max thickness location t30u

δmax
c , Airfoil max camber

a f l t “ Symmetrical t0u

a f l t “ Cambered t1..9u

xδmax
c x , Airfoil max camber location

a f l t “ Symmetrical t0u

a f l t “ Cambered t10, 20, 30, 40, 50, 60u

ln{d, Fuselage nose section (fwd) length to diameter
ratio

1.61

l t{d, Fuselage tail section (aft) length to diameter ratio 4.26

lm, Fuselage mid section length 24.33

fh, Fuselage height 8.83

fw, Fuselage width 9.74

fm̌, Mid fuselage cross section superellipse m̌ parameter 1.98

fň, Mid fuselage cross section superellipse ň parameter 1.98

fCd , Fuselage drag coefficient 0.075

ny , Fuselage nose tip vertical location ´1.16

Continue on next page
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Table A.1 – continued from previous page

Design variable Context Domain

t y , Fuselage tail tip vertical location 4.41

Sh, Horizontal tail planform surface t217.00u

Nh, Number of horizontal stabilizers Inherited

hposh, Horizontal stabilizer horizontal position {’Canard’, ’Aft’}

zh, Horizontal stabilizer relative longitudinal arm r0.0, 1.0s

yh, Horizontal stabilizer relative vertical arm

vposh “ Low r0.0, 0.25s

vposh “ Mid p0.25, 0.75q

vposh “ High r0.75, 1.0s

Ah, Horizontal stabilizer aspect ratio

Alh “ Very low r0.3, 1.0s

Alh “ Low p1.0, 3.0s

Alh “ Moderate p3.0, 7.0s

Alh “ High p7.0, 12.0s

Alh “ Very high p12.0, 20.0s

Alh “

Extremely high
p20.0, 40.00s

λh, Horizontal stabilizer taper ratio

λth “ Pointed r0.0, 0.0s

λth “ Tapered p0.0, 1.0q

λth “ Untapered r1.0, 1.0s

λlh “ Low p0.0, 0.3q

λlh “ Moderate r0.3, 0.6q

λlh “ High r0.6, 1.0q

Λh, Horizontal stabilizer sweep angle

Λdh “ None t0u

Λdh “ Back t1..65u

Λdh “ Forward t´65.. ´ 1u

ΛLh “ Slightly t1..10u Y t´10.. ´ 1u

ΛLh “ Moderately t11..29u Y t´29.. ´ 11u

ΛLh “ Highly t30..65u Y t´65.. ´ 30u

Λlh, Horizontal stabilizer sweep location r0.0, 0.0s Y r0.25, 0.25s Y

r0.50, 0.50s Y r1.0, 1.0s

Γh, Horizontal stabilizer dihedral angle

Γ th “ No dihedral t0u

Γ th “ Dihedral t1..20u

Γ th “ Anhedral t´20.. ´ 1u

ı, Incidence: the angle between the the chord line
of the wing at root and the aircraft longitudinal
axis, when viewed from the side

ıth “ No incidence r0.0, 0.0s

ıth “ Low p0.0, 4.0q

ıth “ High r4.0, 6.0s

εh, Horizontal stabilizer twist

εth “ No twist r0.0, 0.0s

εth “ Wash in p0.0, 4.0s

εth “ Wash out r´4.0, 0.0q

Continue on next page
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Table A.1 – continued from previous page

Design variable Context Domain

thmax
c , Horizontal stabilizer airfoil max thickness t6..9u

thmax
c x , Horizontal stabilizer airfoil max thickness

location
t30u

δhmax
c , Horizontal stabilizer airfoil max camber

a f l th “ Symmetrical t0u

a f l th “ Cambered t1..9u

δhmax
c x , Horizontal stabilizer airfoil max camber

location

a f l th “ Symmetrical t0u

a f l th “ Cambered t10, 20, 30, 40, 50, 60u

Sv , Vertical tail planform surface t170.00u

N v, Number of vertical stabilizers Inherited

zv , Vertical stabilizer relative longitudinal arm r0.0, 1.0s

Av , Vertical stabilizer aspect ratio: the ratio of the
height of the vertical stabilizer to the chord length

p1.0, 3.0s

λv , Vertical stabilizer taper ratio

λt v “ Pointed r0.0, 0.0s

λt v “ Tapered p0.0, 1.0q

λt v “ Untapered r1.0, 1.0s

λl v “ Low p0.0, 0.3q

λl v “ Moderate r0.3, 0.6q

λl v “ High r0.6, 1.0q

Λv , Vertical stabilizer sweep angle

t0..60u

ΛLv “ Slightly t1..10u

ΛLv “ Moderately t11..29u

ΛLv “ Highly t30..60u

Λl v , Vertical stabilizer sweep location r0.0, 0.0s Y r0.25, 0.25s Y

r0.50, 0.50s Y r1.0, 1.0s

Γv , Vertical stabilizer dihedral angle t90u

ı, Incidence: the angle between the the chord line of
the wing at root and the aircraft longitudinal axis,
when viewed from the side

r0.0, 0.0s

εv , Vertical stabilizer twist r0.0, 0.0s

t vmax
c , Vertical stabilizer airfoil max thickness t6..12u

t vmax
c x , Vertical stabilizer airfoil max thickness location t30u

δvmax
c , Vertical stabilizer airfoil max camber t0u

δvmax
c x , Vertical stabilizer airfoil max camber location t0u

N vh, Number of vertical/horizontal stabilizers Inherited

zvh, Vertical/horizontal stabilizer relative longitudinal
arm

r0.0, 1.0s

xvh, Vertical/horizontal stabilizer relative lateral arm r0.0, 1.0s

Continue on next page
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Table A.1 – continued from previous page

Design variable Context Domain

yvh, Vertical/horizontal stabilizer relative vertical arm r0.0, 1.0s

Avh, Vertical/horizontal stabilizer aspect ratio p1.0, 3.0s

λvh, Vertical/horizontal stabilizer taper ratio

λt vh “ Pointed r0.0, 0.0s

λt vh “ Tapered p0.0, 1.0q

λt vh “ Untapered r1.0, 1.0s

λl vh “ Low p0.0, 0.3q

λl vh “ Moderate r0.3, 0.6q

λl vh “ High r0.6, 1.0q

Λvh, Vertical/horizontal stabilizer sweep angle

Λd vh “ None t0u

Λd vh “ Back t1..80u

Λd vh “ Forward t´80.. ´ 1u

ΛLvh “ Slightly t1..10u Y t´10.. ´ 1u

ΛLvh “ Moderately t11..29u Y t´29.. ´ 11u

ΛLvh “ Highly t30..80u Y t´80.. ´ 30u

Λl vh, Vertical/horizontal stabilizer sweep location r0.0, 0.0s Y r0.25, 0.25s Y

r0.50, 0.50s Y r1.0, 1.0s

Γvh, Vertical/horizontal stabilizer dihedral angle
Γ t vh “ Dihedral t25..90u

Γ t vh “ Anhedral t´90.. ´ 25u

ı, Incidence: the angle between the the chord line
of the wing at root and the aircraft longitudinal
axis, when viewed from the side

ıt vh “ No incidence r0.0, 0.0s

ıt vh “ Low p0.0, 4.0q

ıt vh “ High r4.0, 6.0s

εvh, Vertical/horizontal stabilizer twist

εt vh “ No twist r0.0, 0.0s

εt vh “ Wash in p0.0, 4.0s

εt vh “ Wash out r´4.0, 0.0q

t vhmax
c , Vertical/horizontal stabilizer airfoil max

thickness
t6..12u

t vhmax
c x , Vertical/horizontal stabilizer airfoil max

thickness location
t30u

δvhmax
c , Vertical/horizontal stabilizer airfoil max camber t0u

δvhmax
c x , Vertical/horizontal stabilizer airfoil max

camber location
t0u

Sh
Svh

, Vertical/horizontal stabilizer - horizontal tail ratio r0.33, 0.45s

Sv
Svh

, Vertical/horizontal stabilizer - vertical tail ratio r0.33, 0.45s

Swvh, Vertical/horizontal stabilizer planform surface r0.65, 0.75s
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B
Aircraft various reference views

B.1 Aircraft axes

Yaw Axis ψ (Heading)
Roll Axis φ

Pitch Axis θ 
Lateral (x)

Longitudinal (z)
Vertical (y)

Figure B.1: Aircraft axes
Source: “An image showing all three axises” by Wikimedia Commons user Auawise, modified byWikime-
dia Commons user Jrvz, used underc BY-SA-3.0 / Correct sense of “roll” axis rotation, adjust proportions
from original / Labeling and color modifications from derivative[6]
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https://en.wikipedia.org/wiki/File:Yaw_Axis_Corrected.svg
https://commons.wikimedia.org/wiki/User:Auawise
https://creativecommons.org/licenses/by-sa/3.0/deed.en


B.2. Aircraft directions

B.2 Aircraft directions

Fwd / Fore / Front

Back / Aft / Rear

Outboard / RightPort / Left

Figure B.2: Aircraft directions
Source: “Giant planes comparison” by Wikimedia Commons user Clem Tillier, used under c BY-SA-2.5 /
Extracted jet silhouette from original[75]
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B.3. Aircraft design variables

B.3 Aircraft design variables
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Figure B.3: Wing type part design variables I
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B.3. Aircraft design variables

Aircraft longitudinal axis

Aircraft longitudinal axisIncidence angle
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chord length at tip
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twist = |incidence angle at root − incidence angle at tip|
(−) if tip leading edge below root leading edge
(+) if tip leading edge over root leading edge

taper ratio = chord length at tip / chord length at root
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aircraf tail

wing tip

wing root

Figure B.4: Wing type part design variables II
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Figure B.5: Wing type part design variables III
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B.3. Aircraft design variables

Planform surface

Figure B.6: Wing type part design variables IV
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Figure B.7: Wing type part profile design variables
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B.3. Aircraft design variables
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Figure B.8: Horizontal stabilizer design variables (partial)
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Figure B.9: Vertical stabilizer design variables (partial)

xiii



B.3. Aircraft design variables
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Figure B.10: Vertical/horizontal stabilizer design variables (partial)
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B.3. Aircraft design variables
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Figure B.11: Fuselage design variables
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