

# INSTITUTO POLITÉCNICO NACIONAL

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

# TESIS

# "APORTACIONES A LA ESTIMACIÓN DEL PERÍMETRO DE CURVAS Y ÁREAS DE SUPERFICIES DIGITALES"

PARA OBTENER EL GRADO DE: DOCTORADO EN CIENCIAS DE LA COMPUTACIÓN

PRESENTA:

# M. en C. Mario Villafuerte Bante

DIRECTORES DE TESIS:

Dr. Juan Humberto Sossa Azuela

Dra. Petra Wiederhold Grauert



Ciudad de México, Mayo, 2022

SIP-13-BIS



## INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

ACTA DE REGISTRO DE TEMA DE TESIS Y DESIGNACIÓN DE DIRECTORES DE TESIS

|                                           |                                         | México | o, D.F. a | a <u>26</u> d | e S    | eptiembre | de   | 2012   |
|-------------------------------------------|-----------------------------------------|--------|-----------|---------------|--------|-----------|------|--------|
| El Colegio de Profesores de Estudios de   | Posgrado e Investigación                | del    | Centro    | de Inve       | stigad | ción en   |      |        |
| Computación en su sesión ordinaria        | No. 8 celebrada el                      | día    | 27 de     | l mes de      |        | Agosto    | de   | 2012.  |
| conocio la solicitud presentada por el(la | ) alumno(a):                            |        |           |               |        |           |      |        |
| VILLAFUERTE                               | BANTE                                   |        | MARIO     |               |        |           |      |        |
| Apellido paterno                          | materno                                 |        | nombre(s) |               |        |           |      |        |
|                                           | Con registro:                           | Α      | 1         | 2             | 0      | 4         | 3    | 9      |
| aspirante al grado de:                    | DOCTORADO EN CIENCIAS DE LA COMPUTACIÓN |        |           |               |        |           |      |        |
| 1 Se designa al aspirante el tema de t    | tesis titulado:                         |        |           |               |        |           |      |        |
| "APORTACIONES A LA ESTIMACIÓN             | DEL PERÍMETRO DE C                      | JRVA   | S Y ÁR    | EAS DE        | SUP    | ERFICIES  | DIGI | TALES" |

2.- De manera general el tema abarcará los siguientes aspectos

Capítulo 1 Introducción Capítulo 2 Estado del arte Capítulo 3 Estimadores DSS,MLP y el Algoritmo propuesto Capítulo 4 Calendario de actividades

2.- Se designan como Directores de Tesis a los Profesores:

### DR. JUAN HUMBERTO SOSSA AZUELA Y DRA. PETRA WIEDERHOLD GRAUERT

- 3.- El trabajo de investigación base para el desarrollo de la tesis será elaborado por el alumno en: El Centro de Investigación en Computación, que cuenta con los recursos e infraestructura necesarios.
- 4.- El interesado deberá asistir a los seminarios desarrollados en el área de adscripción del trabajo desde la fecha en que se suscribe la presente hasta la aceptación de la tesis por la Comisión Revisora correspondiente:

Directores de Tesis Dr. Juan Humberto Sossa Azuela Dra. Petra Wiederhold Grauert Presidente del Coleg Aspirante 2012 NOV NACIONAL C. Mario Villafuerte Bante Luis/Alfonso Villa Vargas COMPUTACIÓ EN DIRECCION



## INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

## ACTA DE REVISIÓN DE TESIS

En la Ciudad de México, D.F. siendo las 10:00 horas del día 14 del mes de diciembre de 2015 se reunieron los miembros de la Comisión Revisora de la Tesis, designada por el Colegio de Profesores de Estudios de Posgrado e Investigación del:

Centro de Investigación en Computación

para examinar la tesis titulada:

"Aportaciones a la estimación del perímetro de curvas y áreas de superficies digitales"

| VILLAFUERTE      | BANTE            | MARIO |   |   |   |   |   |   |
|------------------|------------------|-------|---|---|---|---|---|---|
| Apellido paterno | Apellido materno |       |   |   |   |   |   |   |
|                  | Con registro:    | A     | 1 | 2 | 0 | 4 | 3 | 9 |

aspirante de: DOCTORADO EN CIENCIAS DE LA COMPUTACION

Después de intercambiar opiniones los miembros de la Comisión manifestaron APROBAR LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

## LA COMISIÓN REVISORA

Directores de tesis

Dra. Petra Wiederhold Grauert

Dr. Herón Molina Lozano

Dr. Juan Humberto Sossa Azuela

Dr. Sergio Suárez Guerra

Dra. Elsa Rubio Espino

do Barrón Fernández

PRESIDENTE DEL COLEGIO DE PROF

INSTITUTO POLITÉCNICO NACIONAL ENTRO DE INVESTIGACIÓN EN COMPUTACIÓN Dr. Luis Alfonso Villa Vargas PN-CIC



## INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

## CARTA DE AUTORIZACIÓN DE USO DE OBRA PARA DIFUSIÓN

En la Ciudad de México el día 07 del mes de Julio del año 2022, el que suscribe Mario Villafuerte Bante, alumno del programa DOCTORADO EN CIENCIAS DE LA COMPUTACIÓN, con número de registro A120439, adscrito al Laboratorio de Robótica y Mecatrónica, manifiesta que es autor intelectual del presente trabajo de tesis bajo la dirección del Dr. Juan Humberto Sossa Azuela y la Dra. Petra Wiederhold Gruert y cede los derechos del trabajo intitulado "APORTACIONES A LA ESTIMACIÓN DEL PERÍMETRO DE CURVAS Y ÁREAS DE SUPERFICIES DIGITALES", al Instituto Politécnico Nacional, para su difusión con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expresado del autor y/o director(es). Este puede ser obtenido escribiendo a las siguiente(s) dirección(es) de correo. mvbante@gmail.com. Si el permiso se otorga, al usuario deberá dar agradecimiento correspondiente y citar la fuente de este.

Nombre completo y firma autografá del (de la) estudiante

## AGRADECIMIENTOS

Con toda mi gratitud:

- A mis sinodales: Dra. Elsa Rubio Espino, Dr. Ricardo Barrón Fernández, Dr. Víctor Hugo Ponce Ponce y Dr. Herón Molina Lozano; por su invaluable tiempo y apoyo en esta tesis.
- A mi asesora, la Dra. Petra Wiederhold Grauert, por todo su trabajo y apoyo, así como sus grandes aportaciones, visión y objetividad, todas invaluables y determinantes para la realización de esta tesis.
- A mi asesor Dr. Juan Humberto Sossa Azuela por su gran disposición y apoyo, así como sus aportaciones, recomendaciones, experiencia, visión y amistad incondicional.
- Al Departamento de Control Automático del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (DCA-CINVESTAV-IPN).
- Al Centro de Investigación en Computación del Instituto Politécnico Nacional (CIC-IPN).
- > Al Consejo Nacional de Ciencia y Tecnología (CONACyT).

## DEDICATORIAS.

> Con todo mi amor:

A mi esposa Thelma, a mis hijos Andrea y Mario Luis: POR TODA LA FELICIDAD.

> Con amor y respeto:

A mi madre Elvia, mi padre Jorge (QEPD) y mis abuelitos (QEPD).

> Con mucho afecto y admiración:

A "El Padrino" Don Luis (QEPD).

> Con gratitud y cariño:

A mi hermano César V.B.

# Índice de contenido

| Lista de figuras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Lista de tablas<br>Resumen<br>Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ix<br>xi<br>xiii                                   |
| Introducción<br>Introducción y trabajo relacionado<br>Motivación para el presente trabajo<br>Contenido del trabajo de tesis<br>Resumen de las aportaciones de la tesis<br>Organización de la tesis                                                                                                                                                                                                                                                                                                                                                                                                     | xv<br>xv<br>xvi<br>xvii<br>xvii<br>xvii            |
| <ul> <li>Capítulo 1. Preliminares</li> <li>1. Suposiciones generales</li> <li>2. Curvas and polígonos simples y débilmente simples</li> <li>3. 4-contornos y su determinación mediante el seguimiento de contornos</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          | $egin{array}{c} 1 \\ 1 \\ 1 \\ 3 \end{array}$      |
| <ul> <li>Capítulo 2. 4-contornos y sus caminos exteriores</li> <li>1. Camino exterior al 4-contorno</li> <li>2. El poliomino entre 4-contorno y su camino exterior</li> <li>3. Relaciones entre vértices cónvacos del 4-contorno y de su camino exterior</li> </ul>                                                                                                                                                                                                                                                                                                                                    | 7<br>7<br>9<br>10                                  |
| <ul> <li>Capítulo 3. Una propuesta de aproximación poligonal para 4-contornos</li> <li>1. Polígono de perímetro mínimo para 4-contornos</li> <li>2. Vértices especiales de la MLPC y candidatos</li> <li>3. Propuesta del polígono y estratégia para determinar sus vértices</li> <li>4. Determinación de vértices complementarios del polígono</li> <li>4.1. Tratamiento de sublistas de candidatos</li> <li>4.2. Vértices complementarios para tres candidatos</li> <li>4.3. Vértices complementarios para cuatro candidatos</li> <li>4.4. Vértices complementarios para cinco candidatos</li> </ul> | 11<br>11<br>12<br>16<br>18<br>18<br>19<br>21<br>22 |
| <ul> <li>Capítulo 4. Algoritmo para construir una aproximación poligonal para 4-contornos generales</li> <li>1. Algoritmo para determinar los vértices del polígono propuesto</li> <li>2. Propiedades del algoritmo</li> <li>2.1. Correctitud</li> <li>2.2. Requerimiento de espacio</li> <li>2.3. Complejidad de tiempo</li> <li>3. Ejemplos</li> </ul>                                                                                                                                                                                                                                               | 25<br>25<br>27<br>27<br>27<br>27<br>28<br>28<br>28 |
| <ul> <li>Capítulo 5. Experimentos de estimación del perímetro</li> <li>1. Planteación y preparación de experimentos</li> <li>2. Estimación de perímetro de objetos con 4-contornos simples</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | $35 \\ 35 \\ 35 \\ 35$                             |

| <ol> <li>Objetos con 4-contornos débilmente simples usados para la experimentación</li> <li>Resultados de experimentos de estimación de perímetro con 4-contornos débilmentes</li> </ol> |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| simples                                                                                                                                                                                  | 37       |
| Conclusiones                                                                                                                                                                             | 45       |
| Bibliografía                                                                                                                                                                             | 47       |
| Apéndice A. Lemas extendidas y demostraciones matemáticas                                                                                                                                | 49       |
| 1. Demostración de Lema 15                                                                                                                                                               | 49       |
| 2. Lema sobre la detección de vertices complementarios del poligono, para cuatro punto<br>candidatos, con su demostración                                                                | os<br>50 |
| 3. Lema sobre la detección de vértices complementarios del polígono, para cinco puntos candidatos, con su demostración                                                                   | ;<br>53  |
| Apéndice B. Tablas de resultados de experimentos de estimación del perímetro                                                                                                             | 61       |
|                                                                                                                                                                                          |          |

## Lista de figuras

- 1 Los dos primeros polígonos perteneces a una secuencia que converge al último polígono el cual sólo es débilmente simple. Durante este proceso de convergencia, pequeñas traslaciones de vétrices transforman a la secuencia original de vétrices  $(a, b, c, d, e, g_2, h, g_1, k, o, p, n, m, q)$  hacia la secuencia (a, b, c, d, e, g, h, g, k, o, p, n, m, q). En el límite, los puntos  $g_1$  y  $g_2$  resultan identificados al punto g, y los puntos c, e, n, m llegan a estar sobre un canto del último polígono, el cual tiene partes degeneradas y un agujero formado por los puntos o, p, n.
- 2 Código de Freeman para la 8-vecindad.
- 3 Un objecto es dibujado como subgráfica inducida por la 4-gráfica vecina, también su 4-contorno C que fue obtenido por seguimiento de contorno respetando el sentido de trazado del contorno seguún las manecillas del reloj. Este objecto coincide con su 4-frontera dada por el conjunto  $\{a, b, c, d, e, r, s, t, u, v, w, x, y, z\}$ . Obtenido por seguimiento de contorno con el punto inicial b, el 4-contorno resulta ser C =(b, a, b, c, d, t, u, w, x, w, v, z, y, z, v, t, s, r, e, r, s, c) que es una secuencia ordenada única pero cíclica de píxeles, no todos distintos. Cualquier otro punto inicial de contorno generaría la misma secuencia cíclica C que tiene el código de cadena de Freeman F(C) = (2, 0, 2, 0, 2, 0, 4, 4, 2, 4, 0, 6, 6, 4, 4, 4, 0, 0, 6, 6, 6, 2).
- 1 El 4-contorno C está dibujado en azul, Ext(C) en rosa. **a)** Obsérvese que durante el trazado de la parte (e, r, s, c, b, a) de C, cada punto lineal r, c, b proporciona un pixel al camino exterior Ext(C), igualmente como lo hacen los puntos lineales w, v, s más tarde, por ejemplo. Cada punto convexo d, u y z, contribuye tres puntos a Ext(C). **b)** Cada punto cóncavo de C, como s en la tripleta (r, s, c), c en (b, c, d), t en (d, t, u), y más tarde, t en la tripleta (v, t, s), genera un punto de Ext(C). **c)** Cada pico de C (a, e, x, y) proporciona cinco puntos exteriores. Los puntos cóncavos z y t con el punto lineal v entre ellos, genera el mismo punto de Ext(C) el cual resulta ser el pico p marcado en **d**). La secuencia Ext(C) puede contener elementos más de una vez, sin embargo, ningún elemento aparece repetido inmediatamente.
- 2 El poliomino entre C y Ext(C) según Lema 6 proporciona relaciones entre los vértices cóncavos de ambos 4-caminos, así como también una condición local en C para detectar picos en Ext(C).
- 1 Un 4-contorno simple C en azul, su camino exterior Ext(C) en rosa. Los vértices convexos de C, marcados en rojo, junto con los vértices cóncavos de Ext(C) (verde) que corresponden de manera única a vértices cóncavos de C, forman la lista de candidatos de los vértices del MPP, visualizados en la figura del lado derecho.
- 2 Un 4-contorno C (azul) y Ext(C) (rosa), solamente sus vértices son visualizados como píxeles gordos. La parte superior de C presenta dos picos y dos cantos extremos superiores horizontales con puntos finales convexes, que son todos colineales, incluiendo tres picos de Ext(C). En las partes inferiores de C y Ext(C), varios puntos convexos siendo puntos finales de cantos extremos de C y puntos finales cóncavos de cantos extremos de Ext(C)

 $\frac{2}{4}$ 

5

9

11

son todos colineales. Como resultado, todos estos puntos pertenecen a la MLPC de C, sólo algunos pocos, marcados en amarillo, son vértices de la MLPC.

- 3 Demostración de Lema 11. Píxeles de C son visualizados en azul, picos en café, flechas negras indican el orden en C. Cada pico proporciona cinco puntos de Ext(C) (rosa).
- 4 Demostración de Lema 11, primer caso de un pico de Ext(C). Píxeles de C are visualizados en azul, de Ext(C) en rosa.
- 5 Para el 4-contorno C de las Figuras 3, 1, 2, sus vértices convexos son marcados en rojo, sus picos en café. Cada vértice cóncavo de C corresponde a un vértice cóncavo (verde) o a un pico (rosa) de Ext(C). La figure izquierda muestra la secuencia ordenada de los candidatos, la derecha visualiza los vértices de la MLPC.
- 6 Las ocho situaciones para tres candidatos subsecuentes, donde el segundo punto puede ser necesario como vértice complementario. El 4-contorno C es dibujado en azul, Ext(C) en rosa, los cuadrados del poliomino son presentados en gris, puntitos indican que puede haber cualquier número de puntos lineales, por lo tanto también más cuadrados, entre  $c_1$  y  $c_2$ , y entre  $c_2$  y  $c_3$ .
- Representación por retícula: a) lista de candidatos (convexo rojo, cóncavo verde, pico convexo café, pico cóncavo salmón), b) vértices del polígono marcados por círculos amarillos, la frontera del polígono marcada en negra para m = 3, c) el polígono para m = 4, d) el polígono para m = 5. Comparación con Figura 5 revela que el polígono no coincide con el MLP, puesto que tiene un vértice adicional marcado como p.
- 2 Representación por cuadrado: a) C del objeto de Figura 1. b) candidatos. c) vértices del polígono para m = 5: cuatro picos convexos en café, un pico cóncavo en salmón, un vértice complementario convexo en azul cielo, un vértice complementario cóncavo en amarillo. Durante el trazado de *Cand* en sentido del reloj, el punto rojo en la línea inferior line de c) fue encontrado como punto inicial de un canto extremo horizontal, y su vecino izquierdo como punto final de este canto. Más tarde, este punto fue confirmado como pico convexo y por eso, fue marcado nuevo como café.
- 3 Representación por cuadrado: a) objeto, b) C, c) C pintado en azul sobre el objeto negro, luego, Ext(C) fue marcado sobre eso en rosa, d) candidatos marcados sobre el 4-contorno azul, d) el polígono construido para m = 5: cantos extremos (rojo y verde), otros vértices extremos (dos picos en café y salmón), dos vértices complementarios (azul cielo, amarillo), todos pintados sobre el 4-contorno negro.
- 4 Polígono (m = 5) del objeto de Figura 3a), vértices del polígono encerrados por círculos amarillos, la frontera del polígono marcada negra.
- 5 Representación por cuadrado: vértices del polígono (convexos complementarios) y cantos localmente extremos (con puntos finales convexos), para versiones rotadas de una elipse (ejes de 150 y de 50 píxeles).
- 6 Representación por cuadrado: a) objeto, b) C, c) candidatos sobrepuestos sobre C, d) vértices del polígono (m = 5) y cantos extremos sobrepuestos sobre el 4-contorno negro. Abajo, la representación por retícula del polígono para m = 5.
- $\begin{array}{ll} 7 & \mbox{Representación por cuadrado: parte superior de los círculos con radios de 10 a 100 píxeles, arriba son marcados los puntos candidatos, abajo son visualizados sus polígonos calculados con <math display="inline">m=5. \end{array}$
- 8 Representación por cuadrado: vértices del polígono y cantos localmente extremos, para cuatro versiones escaladas de un objeto con 4-contorno simple. 33
- 9 Representación por cuadrado: objeto Cx10, con su 4-contorno, y su polígono calculado para m = 5. En la segunda línea, el polígono para versiones rotadas del mismo objeto. 33

20

29

12

13

14

15

29

30

30

30

31

| 10 | Representación por cuadrado del polígono del objeto Cx5, para $m = 3, 4, 5$ . Para mejor apreciación, abajo se muestra la representación por retícula, de la región alrededor de uno de los picos.                                                                             | 34       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1  | Objeto Kx10 en representation por cuadrados. Primera línea: el objeto, una ilustración de su construcción, y su 4-contorno en azul. Segunda línea: su polígono para $m = 5$ , ta,bién para dos versiones rotadas del objeto.                                                   | 36       |
| 2  | Object Mx20, its polygon vertices and extremal edges.                                                                                                                                                                                                                          | 36       |
| 3  | Una espiral arquimediana, y el objeto Q1 con $a_1 = 25$ .                                                                                                                                                                                                                      | 38       |
| 4  | Objetos Q3 (izquierda) y Q1 (derecha) con $a_1 = 65$ , cada uno de estos objetos caben exactamente en una imagen de 1700x1700 píxeles.                                                                                                                                         | 38       |
| 5  | Números de puntos del 4-contorno, candidatos, y de vértices del polígono para $m = 5$ , de los objetos C y K bajo magnificación.                                                                                                                                               | 39       |
| 6  | Errores relativos del perímetro estimado (porcentaje) para los objetos C y K bajo magnificación (polígono para $m = 5$ ).                                                                                                                                                      | 39       |
| 7  | Razón de compresión para los objetos C and K bajo magnificación (polígono para $m = 5$ ).                                                                                                                                                                                      | 39       |
| 8  | Analysis of object M under magnification.                                                                                                                                                                                                                                      | 40       |
| 9  | Vértices complementarios del polígono para $m = 5$ (marcados en azul cielo y amarillo),<br>cantos extremos (en rojo y verde), y picos convexos (café) del objeto Q1 en la región<br>alrededor de pico central muy pronunciado, para diversas magnificaciones de este objeto.   | 40       |
| 10 | Analysis of objects Q1 and Q3 under magnification.                                                                                                                                                                                                                             | 41       |
| 11 | Análisis del perímetro para dos objetos bajo rotaciones.                                                                                                                                                                                                                       | 42       |
| 12 | Analysis of Object M under rotations.                                                                                                                                                                                                                                          | 43       |
| 1  | Demostración de Lema 15, situaciones de tipo a), $c_1$ convexo, $\overline{c_1c_3} \subset M$ .                                                                                                                                                                                | 49       |
| 2  | Demostración de Lema 20, caso a), $c_1$ convexo, $x_1 = x_2$ .                                                                                                                                                                                                                 | 51       |
| 3  | Demostración de Lema 20, caso a), $c_1$ convexo, $y_2 = y_3$ .                                                                                                                                                                                                                 | 52       |
| 4  | Demostración de Lema 20, caso a), $c_1$ convexo, $(x_1 + 1 = x_2 \land y_2 + 1 = y_3)$ .                                                                                                                                                                                       | 52       |
| 5  | Demostración de Lema 20, caso a), $c_1$ convexo, $(x_1 = x_2) \land (y_2 = y_3)$ .                                                                                                                                                                                             | 53       |
| 6  | Demostración de Lema 21, instancias de las tres posibles situaciones para el caso                                                                                                                                                                                              |          |
|    | $x_1 < x_2 \land y_2 = y_3 \land x_3 < x_4 \land y_4 \le y_5.$                                                                                                                                                                                                                 | 56       |
| 7  | Demostración de Lema 21, caso $x_1 < x_2 \land y_2 < y_3 \land x_3 < x_4 \land y_4 \le y_5$ .                                                                                                                                                                                  | 58       |
| 8  | Demostración de Lema 21, caso $x_1 = x_2 \land y_2 = y_3 \land x_3 < x_4 \land y_4 \leq y_5$ .                                                                                                                                                                                 | 58       |
| 9  | Demostración de Lema 21, caso $x_1 = x_2 \land y_2 < y_3 \land x_3 = x_4 \land y_4 \leq y_5$ . De la izquierda a la derecha, la figura muestra las situaciones $y_5 - y_4 = y_3 - y_2$ (ningún vértice), $y_5 - y_4 = y_3 - y_2 + 1$ (ningún vértice), $y_5 - y_4 < y_3 - y_2$ | -        |
| 10 | (vertice $c_3$ ), $y_5 - y_4 > y_3 - y_2 + 2$ (vertice $c_4$ ).                                                                                                                                                                                                                | 59<br>50 |
| 10 | Demostracion de Lema 21, caso $x_1 < x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 \le y_5$ .                                                                                                                                                                                  | 59<br>50 |
| 11 | Demostracion de Lema 21, caso $x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 \le y_5$ .                                                                                                                                                                                  | 59       |
| 12 | Ejemplo que ilustra la función que transforma cada situación local para $c_1$ convexo en la situación correspondiente para $c_1$ cóncavo.                                                                                                                                      | 60       |

## Lista de tablas

| 1 | Propiedades estadísticas de la estimación del perímetro para los objetos bado estudio, de                                          |    |
|---|------------------------------------------------------------------------------------------------------------------------------------|----|
|   | todas las magnificaciones, usando el poígono para $m = 5$ .                                                                        | 42 |
| 2 | Varianza del error del perímetro bajo rotaciones por todos los ángulos de 5, 10, 15, 20, $\cdots$ 90 grados, para algunos objetos. | 42 |
| 3 | Números específicos de puntos y errores del perímetro, usando el polígono para $m = 3, 4, 5$ para algunos objetos.                 | 44 |

.

x

#### Resumen

La presente tesis desarrolla una propuesta de aproximación poligonal para caminos en 4-gráficas vecinas, las cuales constituyen un modelo estándar en el procesamiento y análisis de imágenes digitales de dimensión dos. Estos 4-caminos, llamados 4-contornos, son obtenidos mediante métodos de seguimiento de contornos, ampliamente conocidos y empleados para procesar imágenes digitales.

Los 4-contornos, en general, no son curvas digitales de Jordan, sino generan curvas poligonales quasi-simples en el plano euclidiano. El poligono propuesto es fácil de calcular y resulta ser útil para representar la forma de objetos y para reducir la cantidad de datos.

La tesis presenta un algoritmo de complejidad de tiempo lineal, para determinar la lista ordenada de vertices del poligono, a partir de la lista ordenada de píxeles del 4-contorno dado. El algoritmo se basa en condiciones de extremidad local y de minimalidad semi-local de longitud para ciertos caminos, y utiliza solamente operaciones sencillas entre números enteros.

El resultante polígono se aproxima a lo que sería una generalización del polígono de perímetro mínimo.Este polígono es conocido de la literatura para 4-contornos solamente para el caso restringuido de curvas digitales simples (curvas digitales de Jordan), las cuales son relacionadas con retículas simples (simple grid continua), y con ciertos tipos de subconjuntos de mosaiqueados, donde han sido aplicados a la estimación del perímetro y para el análisis de convexidad y concavidad. El presente trabajo aplica el polígono propuesto en aproximar 4-contornos correspondientes a curvas débilmente simples de longitud conocida, con el fin de estimaciones del perímetro de figuras en el plano. Se reportan amplios experimentos en este contexto. .

#### Abstract

The present work proposes a polygonal approximation for closed 4-paths obtained from standard contour following under 4-connectivity. Those 4-contours generate weakly simple polygons in the Euclidean plane, in general, they are not digital Jordan curves. The proposed polygon is easy to calculate and useful for shape representation and data reduction. The paper presents a linear algorithm for determining the ordered list of polygon vertices which are pixels determined from the point list of the given 4-contour. The algorithm relies on local extremity and semi-local shortest path requirements, it uses only simple operations of integer calculus. The resulting polygon approximates what would be a generalization of the minimal perimeter polygon. The latter is known from the literature for 4-contours only for restricted cases such as digital Jordan curves related to simple grid continua, or certain types of subsets of rectangular mosaics, where it has been applied to perimeter estimation and for convexity and concavity analysis. We apply the polygon proposed to approximate 4-contours corresponding to weakly simple curves of known perimeter and report on experiments of perimeter estimation.

.

## Introducción

#### Introducción y trabajo relacionado

Aproximaciones poligonales de curvas digitales y contornos son ampliamente utilizadas en el procesamiento y análisis de imágenes digitales, con fines de la reducción de datos, y de la representación de formas, para facilitar la determinación de características de objetos que sirven para clasificarlos o reconocerlos [10]. Para propiedades geométricas numéricas como longitud, perímetro, curvatura, área o volumen, cuando un objeto digital M es considerado como discretización de un subconjunto S del plano euclidiano  $\mathbb{R}^2$ , aplicaciones prácicas requieren que un estimador calculado a partir de M, de la propiedad de S, mantenga los errores relativos bajo cierta cota. Otra exigencia es que el estimador sea convergente en la medida que la resolución de discretización crece (*multigrid convergent*), es decir, que entonces converge al valor verdadero de la característica de S. Adicionalmente, en la práctica es importante que los estimadores puedan ser calculados con mucha eficiencia.

Muchos libros de texto, como [10, 11], recomiendan estimadores de la longitud de curvas y del perímetro de objetos basados en el conteo de los píxeles que pertenecen a las curvas discretizadas. Algunos de estos métodos utilizan pesos para los cantos de la gráfica vecina, con el fin de simular la distancia euclidiana entre puntos vecinos, o aprovechan experiencia estadística. Sin embargo, todos los estimadores de este tipo, no son convergentes en la medida que la resolución de discretización crece [7, 13, 15, 16, 34].

Estimadores de la longitud de curvas con la citada propiedad de convergencia, o con comportamiento similar, se basan en aproximaciones poligonales de la curva discretizada. La longitud de curva entonces es estimada como la suma de las longitudes euclidianas de todos los segmentos de línea recta de la curva poligonal. Para ciertas curvas cerradas, la curva aproximativa poligonal corresponde es la frontera de un polígono que aproxima al objeto. Enfoques modernos consideran píxeles como puntos de una retícula rectangular, principalmente de la retícula cuadrática estándar  $(\mathbb{Z})^2$  o  $(c\mathbb{Z})^2$ . Estos píxeles son interpretados equivalentemente como cuadrados con longitud c de canto. Aproximaciones poligonales de una curva discretizada tratan de obtener los vertices del polígono como puntos centro, o como vertices, de tales cuadrados. Construcciones de estos polígonos son basadas principalmente en segmentos de línea recta (DSS, por su nombre en inglés: digital straight line segments) de longitud máxima [15], o en el polígono de perímetro mínimo (MPP, por su nombre en inglés: minimal perimeter polygon) [28, 29, 30, 31, 32, 15], o en conjuntos que rodean la curva por ambos lados, llamados "salchichas de aproximación" (approximation sausages) [3, 4]. También se han publicado propuestas basadas en polígonos ortogonales (con todos sus lados paralelos a los ejes de coordenadas) que aproximan las curvas dadas por dentro o por fuera [21, 5, 9, 2]. Naturalmente, aproximaciones poligonales basadas en DSS son apropiadas para describir fronteras de objetos o curvas que tienen partes largas que presentan muy baja variación de curvatura. Para estimadores de la longitud de curva basados en DSS, su convergencia en la medida que le resolución de discretización crece, ha sido demostrada para curvas de Jordan convexas [15, 17], sin embargo, numerosos experimentos lo han mostrado para curvas más generales [7]. De la literatura, se conocen varios algoritmos para determinar los vertices de los DSS [14, 18, 20].

El polígono de perímetro mínimo (MPP) fue definido por primera vez para ciertos subconjuntos de un mosaiqueado del plano, donde píxeles son identificados con azulejos (tiles) convexos [28,

**29, 30, 31**]. En este contexo, fueron propuestos varios algoritmos para encontrar los vertices del MPP, para conjuntos de azulejos dentro de un tipo de mosaiqueado rectangular canto-a-canto, llamado complejo regular [**30**], y para tal llamados complejos normales dentro de ciertos tipos de mosaiqueados [**31**]. En estos casos, el MPP es un polígono único cuya frontera se encuentra entre las fronteras exterior e interior del complejo. Estos algoritmos han sido adaptados al caso muy particular del 4-contorno en el plano digital estándar donde los píxeles son cuadrados de retícula, todos del mismo tamanño [**14, 16, 18**]. Uno de estos algoritmos más tarde fue reportado como erróneo en algunos casos [**8**], sin embargo, un pseudocódigo del algoritmo corregido apareció en el libro [**20**].

El enfoque de [14, 16, 18] fue generalizado en [32, 33] con el objetivo de la estimación del perímetro de figuras. Estos trabajos desarrollaron una nueva definicón del MPP, dado como un polígono contenido en un subconjunto del plano correspondiente a la discretización exterior de Jordan, y contenido en un conjunto correspondiente a la discretización interior de Jordan, de cualquier subconjunto de  $\mathbb{R}^2$  encerrado por una curva de Jordan. De esta manera, se consideran un "polígono interior" A y un "polígono exterior" B, ambos polígonos simples y ortogonales (cyos lados todos son paralelos a los ejes del sistema cartesiano de coordenadas) y con la propiedad que  $A \subset B$ . El MPP es el polígono único que tiene perímetro mínimo, entre todos los polígonos que contienen al conjunto A y están contenidos en B. El conjunto  $(B \setminus A)$  es una unión de cuadrados de retícula, y es llamado poliomino [40], o también continuo de retícula (grid continuum) [15]. Para el plano digital estándar, fue demostrado en [32, 33] que para curvas suaves (es decir, diferenciables) de Jordan que son discretizadas con una resolución de discretización suficientemente grande, el perímetro del MPP es un estimator convergente en la medida que la resolución crece, para la longitud de dichas curvas de Jordan. Es importante enfatizar que la mencionada definición del MPP, en relación a curvas digitales o contornos en  $(c\mathbb{Z})^2$  (donde c es la constante de retícula), ha sido propuesta y publicada hasta hoy, solamente para el caso de curvas digitales de Jordan, más precisamente, para 4-curvas simples (es decir, curvas bajo la 4-conexidad). Tales curvas se relacionan con continuos de retícula simples [32, 33]. En un contexto más general, el MPP resulta ser un caso muy especial de la cubierta convexa relativa para polígonos simples [42], también llamada cubierta convexa geodésica [35].

En los trabajos [25, 26, 27], con el objetivo de identificar y analizar las partes maximales convexas y cóncavas de 4-curvas simples, una "representación poligonal fiel" fue determinada a partir de la cubierta tangencial la cual es dada por la colección de todos los DSS de máxima longitud. El resultante polígono es estrictamente relacionado al MPP o MLP.

De manera muy similar, un "MLP aritmético" fue construido para 4-curvas simples, a partir de la cubierta tangencial, en [**19**, **24**]. Estos últimos autores demostraron que su MLP puede ser definido, equivalentemente, por conceptos combinatorios, lo cual lleva a un algoritmo muy eficiente para la determinación del MLP. Este algoritmo utiliza métodos sintácticos del análisis del código de cadena de Freeman de la 4-curve de entrada.

#### Motivación para el presente trabajo

Todos los algoritmos y métodos para determinar al MLP mencionados justo arriba, tienen complejidad de tiempo lineal, sin embargo, es una exigencia explícita que la 4-curva de entrada es simple. Hasta ahora, aparentemente, no se ha dado a conocer un algoritmo que para el caso de 4-contornos correspondientes a curvas no necesariamente simples, sino débilmente simples (*weakly simple curves*), nuestra propuesta publicada en **[36]** es la primera en este contexto.

Esta trabajo de tesis es motivada por el deseo de estimar el perímetro de cualquier subconjunto compacto del plano  $\mathbb{R}^2$  cuya discretización hacia un objeto en  $\mathbb{Z}^2$  es 4-conexo, y cuya frontera es una curva cerrada de longitud finita. Esta curva no es requerida de ser de Jordan, ni poligonal, ni suave. Es decir, por motivaciones prácticas, la curva es permitida de tener picos, de tocar a sí misma, o

de regresar sobre sí misma durante su transcurso. Sin embargo, se impone la hipótesis que la curva nunca cruza a sí misma transversalmente.

#### Contenido del trabajo de tesis

La tesis desarrolla una propuesta de aproximación poligonal para 4-contornos que pueden ser obtenidos mediante métodos estándar de seguimiento de contornos, a partir de cualquier objeto (es decir, subconjunto finito) 4-conexo, de al menos dos píxeles, de  $\mathbb{Z}^2$ , o del plano discreto  $(\mathbb{Z})^2$  con constante de retícula c. Estos métodos de seguimiento de contornos presentan técnicas estándar en la segmentación de imágenes digital. Tales 4-contornos pueden fallar de ser 4-curvas simples, es decir, de ser curvas digitales de Jordan. En general, tales 4-contornos generan curvas poligonales débilmente simples, las cuales encierran polígonos débilmente simples en el plano  $\mathbb{R}^2$ . El polígo propuesto en esta tesis, constitue una generalización del MPP. Cabe recordar, una vez más, que el MPP, en el contexto de 4-contornos o 4-curvas, es conocido de la literatura solamente para 4-curvas simples, es decir, curvas digitales de Jordan que son equivalentes a continuos de retícula simples [7, 14, 15, 24, 32, 33], y para 4-contornos sin puntos finales (es decir, sin picos) relacionados a ciertos tipos de conjuntos de "azulejos" [28, 29, 30, 31]. La presente tesis desarrolla un algoritmo de complejidad de tiempo lineal, junto con la fundamentación matemática necesaria, que determina la lista ordenada de vértices del polígono. Todos los vértices resultan ser píxeles y pueden ser calculados con facilidad a partir del 4-contorno dado. Nuestro algoritmo se basa en condiciones locales de extermidad geométrica, y en condiciones semi-locales de caminos de mínima longitud. El algoritmo utiliza cálculos sencillos a partir de coordenadas dadas como números enteros, los cálculos pueden ser efectuados completamente dentro del conjunto de números enteros.

El trabajo de tesis aplica la aproximación poligonal propuesta, a la estimación del perímetro de figuras del plano. Se reportan experimentos con diversos objetos cuyas fronteras son curvas débilmente simples de longitud conocidas, o calculables con exactidud. Estos objetos son discretizados bajo 4-conexidad, usando diversas resoluciones de discretización, con el resultado de subconjuntos 4-conexos en el plano digital. Se aprovecha que el aumento de la resolución de discretización para digitalizar un objeto de tamao fijo, es equivalente a la discretización con resolución fija, de una versión escalada, es decir, agrandada, del objeto original. Los 4-contornos de los objetos son obtenidos por técnicas estándar de seguimiento de contornos.

El estimador de perímetro, dado como la longitud de la curva poligonal propuesta en esta tesis, no se puede esperar de ser convergente a medida que la resolución de discretización crece. Eso se debe al método semi-local de la determinación de los vértices de nuestro polígono. Sin embargo, en amplios experimentos con objetos cuyas discretizaciones forman objetos digitales de tamaños en ciertos rangos, el estimador alcanza una exactitud de error relativo de menos de 0.16% con respecto al perímetro verdadero del objeto original del plano  $\mathbb{R}^2$ . En los experimentos reportados en esta tesis, los objetos digitales tienen tamaños tales que caben justamente en imágenes de hasta 4000x4000 píxeles, los 4-contornos tienen entre 3000 and 30200 píxeles como elementos. Los experimentos incluyen un aníisis de la variación del error bajo rotaciones del objeto original. Tales variaciones resultan con una desviación estándar de de menos de 0.08 para objetos pequeños, y menos de 0.04 para objetos de tamaños medianos.

#### Resumen de las aportaciones de la tesis

- Una definición del polígono de perímetro mínino (MPP minimal perimeter polygon), apropiada para el ambiente de polígonos débilmente simples, que aparecen en relación con 4-contornos generales obtenidos por métodos estándar del seguimiento de contornos en imágenes digitales binarias de dimensión dos.
- Un algoritmo para determinar la lista ordenada de los vértices del polígono propuesto, junto con la fundamentación matemática, la cual permite demostrar formalmente que el algoritmo es correcto y plenamente justificado, y que tiene complejidad de tiempo lineal.

• Una justificación de la utilidad del polígono propuesta, para estimar los perímetros de objetos cuya discretización genera objetos digitales de tamaño dentro de ciertos rangos.

El algoritmo desarrollado en esta tesis, junto con un reporte sobre su aplicación para estimar perímetros de objetos del plano, fue publicado en [36]:

Mario Villafuerte, Petra Wiederhold: A polygonal approximation for general 4-contours corresponding to weakly simple curves, Journal of Mathematical Imaging and Vision (Springer), 33 páginas, aceptado en diciembre de 2021, doi: 10.1007/s10851-021-01060-0.

#### Organización de la tesis

Sección 1proporciona preliminarios sobre curves, polígonos, y 4-contornos.

Sección 2 describe propiedades de 4-contornos y sus caminos exteriores, lo cual es necesario para definir al polígono propuesto en esta tesis.

Sección 3 contiene la fundación matemática para la construcción del polígono propuesto, culminando en una estrátegia para determinarlo para cualquier 4-contorno dado.

Sección 4 presenta el algoritmo para determinar la lista ordenada de los vértices del polígono, junto con la demostración formal de que el algoritmo es correcto y plenamente justificado, así como también su análisis de complejidad. Para que esta sección mantenga un formato fácilmente leible, versiones extensas de algunos lemas, y algunas demostraciones matemáticas, han sido puestas en Apéndices de la tesis.

Sección 5 reporta resultados de experimentos de estimación de perímetro, que ilustran la utilidad de polígono propuesto. Algunas tablas de resultados, que fundamentan las gráficas y resultados resumidos en esta sección, están organizadas como Apéndices de la tesis.

Conclusiones y comentarios sobre posibles continuaciones del trabajo completan al documento.

## CAPÍTULO 1

## Preliminares

#### 1. Suposiciones generales

En este trabajo de tesis,  $\mathbb{R}$  denota al conjunto de números reales,  $\mathbb{Z}$  al de los números enteros,  $\mathbb{R}^2$  al plano euclidiano con su topología estándar donde cl e *int* significan la cerradura y el interior topológico, respectivamente.

Para  $p, q \in \mathbb{R}^2$ ,  $\overline{pq}$  denota al segmento de línea recta que une los puntos  $p \neq q$ . Cuando  $p \neq q$ ,  $\overrightarrow{pq}$  denota al segmento de línea recta dirigido de p hacia el punto q.

El término de *puntos subsecuentes*, o *elementos subsecuentes*, se refiere a elementos de una secuencia ordenada que son sucesores inmediatos en esta lista.

Todas las fórmulas y definiciones usan el sistema cartesiano estándar del plano  $\mathbb{R}^2$ . Este sistema es orientado en sentido matemático positivo, es decir, donde el eje x apunta hacia la derecha, y el eje y está dirigido hacia arriba.

Píxeles son considerados como elementos de  $\mathbb{Z}^2$ . Sin embargo, todo que es presentado en este trabajo, puede ser fácilmente adaptado a un plano discreto  $(c\mathbb{Z})^2 = \{(cx, cy) : x, y \in \mathbb{Z}\}$ , con una constante de retícula  $c \in \mathbb{R}, c > 0$ .

#### 2. Curvas and polígonos simples y débilmente simples

Recordemos que una curva en  $\mathbb{R}^2$  es la imagen del intervalo cerrado [0,1] bajo una función continua  $f:[0,1] \to \mathbb{R}^2$ . La curva es llamada cerrada si f(0) = f(1). Una curva cerrada  $\gamma = f([0,1])$  es llamada simple o curva de Jordan si  $\gamma$  es inyectiva sobre [0,1).

Una curva  $\gamma = f([0,1])$  es *lineal por pedazos*, también llamada una *polilínea* si existen  $n \in \mathbb{N}$ y  $s_1, s_2, \dots, s_n$  con  $s_0 = 0 < s_1 < \dots < s_n = 1$  tales que para todo  $i = 1, 2, \dots, n, f([s_{i-1}, s_i])$ es un segmento de línea recta. Entonces  $\gamma$  tiene longitud finita. Un punto p de una polilínea  $\gamma$ ,  $p = f(s_i) \in \gamma$   $(1 \le i \le n - 1)$  se llama vértice de  $\gamma$  si  $f(s_i) \notin \overline{f(s_{i-1})f(s_{i+1})}$ . En caso que  $\gamma$  es cerrada, f(0) = f(1) es un vértice si  $f(0) \notin \overline{f(s_{n-1})f(s_1)}$ .

Bajo una *curva poligonal* entendemos cualquier curva cerrada y lineal por pedazos. Una curva poligonal es completamente determinada por la secuencia finita de sus vértices. Pero una tal curva puede ser representada por alguna otra secuencia de puntos, que contiene también puntos de la curva que no necesariamente son vértices.

Un *polígono* definimos en esta tesis, como cualquier subconjunto compacto (es decir, acotado y topológicamente cerrado) y conexo del plano euclidiano  $\mathbb{R}^2$ , el cual es encerrado por una curva poligonal. Eso es en concordancia con fuentes como [6, 12, 22, 35, 39]. En esta tesis consideramos solamente polígonos simples y polígono débilmente simples, para los cuales vamos a explicar qué significa que son encerrados por una curva. Todo vértice de una curva poligonal también es llamado vértice del polígono encerrado por dicha curva.

**Definición 1.** Un polígono simple es definido como cualquier subconjunto compacto y conexo del plano euclidiano  $\mathbb{R}^2$ , cuya frontera es una curva poligonal simple, es decir, de Jordan.

Un polígono simple P cuya frontera es una curva  $\gamma$ , tiene dimensión dos, por lo tanto tiene al menos tres vértices. El hecho que  $\gamma$  es una curva de Jordan, también implica que P no tiene agujeros.



FIGURA 1. Los dos primeros polígonos perteneces a una secuencia que converge al último polígono el cual sólo es débilmente simple. Durante este proceso de convergencia, pequeñas traslaciones de vétrices transforman a la secuencia original de vértices  $(a, b, c, d, e, g_2, h, g_1, k, o, p, n, m, q)$  hacia la secuencia (a, b, c, d, e, g, h, g, k, o, p, n, m, q). En el límite, los puntos  $g_1$  y  $g_2$  resultan identificados al punto g, y los puntos c, e, n, m llegan a estar sobre un canto del último polígono, el cual tiene partes degeneradas y un agujero formado por los puntos o, p, n.

Un polígono débilmente simple es encerrado por una curva poligonal la cual puede tocarse a sí misma, por regresar sobre su propio trazo, pero nunca se cruza a sí misma transversalmente. La región encerrada por una tal curva sigue siendo bien definida, aunque esta región puede tener partes "degeneradas" o "delgadas", puede tener una dimensión menor a 2, puede tener agujeros. Curvas poligonales débilmente simples han sido tratadas informalmente en textos como [**35**], y fueron formalizadas, por ejemplo, en [**6**]. Denotando por *d* la distancia euclidiana, la *distancia de vértices*  $d_V(\gamma, \delta)$  entre dos curvas poligonales  $\gamma$  y  $\delta$ , representadas por las secuencias de sus vértices  $(p_1, p_2, \dots, p_k)$  y  $(q_1, q_2, \dots, q_k)$ , es definida en [**6**] como el mínimo, sobre todos los *s* con  $0 \leq s \leq n-1$ , de los valores max $\{d(p_i, q_{(i+s \mod n)}) : 1 \leq i \leq k\}$ . Lo último mide máximos de distancias entre vértices correspondientes de ambas curvas, cuando una traslación de la secuencia cíclica de vértices de la curva  $\delta$  ha sido realizada.

**Definición 2.** Para toda curva poligonal  $\gamma$  con  $k \geq 3$  vértices,  $\gamma$  es llamada débilmente simple si para cualquier  $\epsilon > 0$ , existe una curva poligonal simple  $\delta$  con k vértices tal que la distancia de vértices entre  $\gamma$  y  $\delta$  is menor que  $\epsilon$ . En este caso, el polígono encerrado por la curva  $\gamma$  se llama un polígono débilmente simple.

En consecuencia, la curva  $\gamma$  es débilmente simple si puede ser transformada en una curva simple mediante traslaciones arbitrariamente pequeñas, aplicadas a sus vértices. Una curva débilmente simple  $\gamma$  puede ser considerada también como límite de una secuencia de curvas simples  $\gamma_j$ , donde cada vértice de  $\gamma$  es el límite de una secuencia de vértices correspondientes de las curvas  $\gamma_j$  [6]. Entonces, el polígono enerrado por  $\gamma$  es el límite de una secuencia de polígonos simples fronterizados por las curvas de Jordan  $\gamma_j$ , vea Figura 1.

Una curva de Jordan puede ser trazada en sentido según las manecillas del reloj, o en sentido contrario. Como cada curva poligonal débilmente simple  $\gamma$  es la imagen de una curva simple  $\delta$ , bajo una función g que realiza una traslación arbitrariamente pequeña a cada vértice de  $\delta$  para obtener el vértice correspondiente de  $\gamma$ , la orientación de trazado de  $\delta$  es heredado por la curva  $\gamma = g(\delta)$ . Eso justifica que en este documento, asumimos que tanto curvas de Jordan como también curvas débilmente simples son trazadas siempre en sentido según las manecillas del reloj.

Una vez fijada la orientación del trazado de la curva que fronteriza un polígono, este polígono, no importando si es simple o débilmente simple, puede ser representado de manera única por la secuencia cíclica de sus vértices  $(p_1, p_2, \dots, p_k)$ , donde para todo  $i \in \{1, \dots, k\}, p_i \notin \overline{p_{(i-1 \mod k)}p_{(i+1 \mod k)}}$ .

Para un polígono simple, eso significa que cada tres vértices subsecuentes (es decir, sucesores inmediatos) en esta secuencia, no están sobre la misma línea recta, además, son todos distintos. Estas propiedades no son garantizadas para polígonos débilmente simples, vea Figura 1.

Recordemos que el área de un triángulo formado por puntos  $p_1 = (x_1, y_1)$ ,  $p_2 = (x_2, y_2)$ ,  $p_3 = (x_3, y_3) \in \mathbb{R}^2$ , es dado como  $\frac{1}{2} \cdot |D(p_1, p_2, p_3)|$  donde el determinante calculado como

$$D(p_1, p_2, p_3) = x_1y_2 + y_1x_3 + x_2y_3 - (x_3y_2 + x_2y_1 + x_1y_3)$$

Además,  $D(p_1, p_2, p_3) < 0$  si y solo si  $p_3$  se encuentra al lado derecho de  $\overline{p_1p_2}$  (vuelta derecha).  $D(p_1, p_2, p_3) > 0$  es equivalente a que  $p_3$  se encuentra al lado izquierda de  $\overline{p_1p_2}$  (vuelta izquierda).  $D(p_1, p_2, p_3) = 0$  es equivalente a que los tres puntos son colineales:  $p_1, p_2, p_3$  están sobre la misma línea recta, la cual puede ser degenerada a ún sólo punto.

**Definición 3.** Sean  $(p_1, p_2, p_3)$  tres puntos subsecuentes de una secuencia finita cíclica de puntos de una curva poligonal débilmente simple  $\gamma$ , trazada en sentido según las manecillas del reloj. El punto de curva  $p_2$  es llamado **punto convexo** si  $D(p_1, p_2, p_3) < 0$  (vuelta derecha), **punto cóncavo** si  $D(p_1, p_2, p_3) > 0$  (vuelta izquierda), **punto lineal** si  $p_2 \in \overline{p_1 p_3}$ ,  $p_2$  se llama un **pico** si  $D(p_1, p_2, p_3) = 0$  pero  $p_2 \notin \overline{p_1 p_3}$ .

Una curva poligonal no puede tener vértices lineales. Puntos de curva que son convexos o cóncavos, son vértices. Una curva poligonal simple no puede tener picos.

Cuando  $p_2$  es un punto lineal o un pico entonces es colineal con  $p_1$  y  $p_3$ . Para un pico  $p_2$ , vale que  $p_1 \in \overline{p_2p_3}$ , eso significa que  $\overline{p_1p_2} \subseteq \overline{p_2p_3}$ , o,  $p_3 \in \overline{p_1p_2}$ , es decir,  $\overline{p_2p_3} \subseteq \overline{p_1p_2}$ . Entonces  $S = \overline{p_1p_2} \cap \overline{p_2p_3}$  es un segmento de línea, la curva regresa sobre sí misma. En este caso, es posible que S es una parte degenerada del polígono que completamente pertenece a su frontera. Eso es el caso del segmento  $\overline{bc}$  para el pico b en Figura 1. También puede ser que S penetra al interior del polígono, como pasa con los segmentos  $\overline{eg}, \overline{gh}, \overline{nm}$  en Figura 1.

#### 3. 4-contornos y su determinación mediante el seguimiento de contornos

En esta tesis usaremos las nociones, bien conocidas de la literatura, de k-vecino, k-camino, kconexidad, para  $k \in \{4, 8\}$ , en el conjunto  $(c\mathbb{Z})^2$  de *puntos de retícula*, también llamados *píxeles* donde  $c \in \mathbb{R}$ , c > 0, es la constante de retícula, vea por ejemplo [**15**]. Consideramos el plano digital estándar  $\mathbb{Z}^2$ , donde c = 1. Sin embargo, todo lo presentado en esta tesis puede ser adaptado al caso general  $(c\mathbb{Z})^2$ , con otra constante c.

Bajo un *objecto* entendemos cualquier subconjunto finito de  $\mathbb{Z}^2$  que es 4-conexo y que tiene al menos dos píxeles. Entonces, todo objeto también es 8-conexo.

Recordemos que para todo conjunto k-conexo M de píxeles, con  $k \in \{4, 8\}$ , la k-frontera de M es el conjunto de todos los píxeles  $p \in M$  tales que p tiene al menos un l-vecino  $q \in (\mathbb{Z}^2 \setminus M)$  donde l = 4 para k = 8, l = 8 para k = 4. La k-frontera es k-conexa y puede ser representada como un k-camino cerrado llamado k-contorno. El Seguimiento de contorno, también llamado trazado de contorno, es una de las técnicas básicas del procesamiento de imágenes digitales, para realizar la segmentación de imagen y la identificaión de objetos de interés, vea [10, 15, 11]. En la literatura, la mayoría de algoritmos para el seguimiento de contorno son propuestos para fronteras de conjuntos 8-conexos, por ejemplo en los libros de texto muy conocidos como: Capítulo 7 de [23], Capítulo 11 de [10] donde el algoritmo clásico de Moore es presentado, vea también [11] (Edición 3, la Edición 2 reporta la misma información sobre este tema).

En esta tesis, un **4**-contorno es asumido como generado a partir de cualquier objeto (vea definición arriba), por cualquier algoritmo estándar de seguimiento de contorno que trabaja en sentido de trazado del 4-contorno según las manecillas del reloj.

La técnica de seguimiento de contorno usa características del objeto que permiten decidir si un pixel  $p \in \mathbb{Z}^2$  pertenece al objeto M o no, eso facilita la segmentación de M del fondo  $(\mathbb{Z}^2 \setminus M)$  de



FIGURA 2. Código de Freeman para la 8-vecindad.

una imagen digital. Bajo la suposición estándar que el objeto es completamente rodeado de píxeles del fondo, un tal algoritmo inicia en el fondo de la imagen, y escanéa al conjunto de píxeles de la imagen en búsqueda de un primer pixel del objeto, llamado *punto inicial de contorno*. Este escanéo comunmente es realizado sobre renglones de la imagen, de la izquierda hacia la derecha. Una vez que un punto inicial de contorno fue encontrado, digamos  $p_1 \in M$ , el contorno es detectado, punto por punto, formando una secuencia ordenada cíclica de píxeles  $(p_1, p_2, p_3, \dots, p_k)$ . Si el algoritmo continuaría, los siguientes puntos de contorno detectados serían, nuevamente,  $p_{k+1} = p_1$ , luego  $p_{k+2} = p_2, \dots$ .

En la práctica del procesamiento de imágenes digitales, un contorno es descrito por el código de cadena de Freeman el cual no solo sirve como descripción compacta, sino también es una herramienta importante durante el seguimiento de contorno. Figura 2 recuerda el código de Freeman: para cualquier pixel p, el canto en la gráfica vecina de 8-conexidad que relaciona p con cualquiera de sus 8-vecinos q, es codificado por un número  $f(p,q) \in \{0,1,2,3,4,5,6,7\}$ . Los números pares 0,2,4,6 codifican los cantos hacia los 4-vecinos de p. Mientras que f(p,q) describe el canto dirigido de p hacia q, el canto revertido desde q hacia p resulta ser codificado por  $f(q,p) = (f(p,q) + 4) \mod 8$ .

Cualquier algoritmo de seguimiento de contorno que detecta al 4-contorno de un objecto M respetando el trazado del contorno según las manecillas del reloj (4-contour following due to clockwise oriented tracing), esencialmente realiza los siguientes tres pasos, para construir la lista C de puntos de contorno (por ejmplos, los algoritmos "Alg. 4.3" en [15], y "Alg. 2.2.-1" en [37]). Para lo siguiente, supongamos que el punto inicial de contorno  $p_1 = (x_1, y_1)$  fue encontrado de tal manera que su 4-vecino izquierdo q, es decir,  $q = (x_1 - 1, y_1)$  (in standard cartesian coordinates), no pertenece al objeto M.

**Paso 1:** Después de inicializar la lista  $C := (p_1) y d := 2$ , el algoritmo realiza iterativamente  $d := (d+2) \mod 8$ . Para cada tal d, es analizado si el pixel p' que satisface f(p,p') = d, pertenece a M. Mientras que eso sigue siendo falso, d es aumentado para continuar la búsqueda de un punto del objeto M. Cuando  $p' \in M$ ,  $p_2 := p'$  es agregado a la lista C, y el algoritmo procede al Paso 2.

**Paso 2:** Usando la lista actual  $C = (p_1, p_2, p_3, \dots, p_n)$  como dato de entrada, se calcula  $d := (4 - f(p_{n-1}, p_n)) \mod 8$ . Luego, el algoritmo realiza iterativamente  $d := (d+2) \mod 8$ . Para cada tal d, es analizado si el p' que satisface  $f(p_n, p') = d$ , pertenece a M. Mientras sigue valiendo p'  $\notin M$ , d es aumentado para continuar la búsqueda de un punto del objeto M. Cuando p'  $\in M$ , el algoritmo procede a la "Prueba de la condición para finalizar".

#### Prueba de la condición para finalizar:

Si  $p' \neq p_1$ ,  $p_{n+1} := p'$  es agregado a la lista C, entonces el algoritmo procede a repetir el Paso 2 con la lista actual C como dato de entrada.

Si  $p' = p_1$ ,  $p_{n+1} := p'$  es agregado a la lista C, después, el algoritmo performa una vez más al Paso 2, con la lista actual C como dato de entrada, pero solamente para obtener al siguiente punto  $p' \in M$  de contorno. Entonces:

(a) Si  $p' = p_2$ ,  $p_{n+1}$  es removido de la lista C, después el algoritmo para (stop). La lista actual final  $C = (p_1, p_2, \dots, p_n)$  representa al 4-contorno de resultado.

(b) Si  $p' \neq p_2$ ,  $p_{n+2} := p'$  es agregado a la lista C, después el algoritmo procede al Paso 2, normalmente, con la lista actual C como dato de entrada.



FIGURA 3. Un objecto es dibujado como subgráfica inducida por la 4-gráfica vecina, también su 4-contorno C que fue obtenido por seguimiento de contorno respetando el sentido de trazado del contorno seguún las manecillas del reloj. Este objecto coincide con su 4-frontera dada por el conjunto  $\{a, b, c, d, e, r, s, t, u, v, w, x, y, z\}$ . Obtenido por seguimiento de contorno con el punto inicial b, el 4-contorno resulta ser C = (b, a, b, c, d, t, u, w, x, w, v, z, y, z, v, t, s, r, e, r, s, c) que es una secuencia ordenada única pero cíclica de píxeles, no todos distintos. Cualquier otro punto inicial de contorno generaría la misma secuencia cíclica C que tiene el código de cadena de Freeman F(C) = (2, 0, 2, 0, 2, 0, 4, 4, 2, 4, 0, 6, 6, 4, 4, 4, 0, 0, 6, 6, 6, 2).

Este prototipo de algoritmo encuentra al 4-contorno de cualquier objeto M. En Paso 2, posiblemente  $p_{n+1} = p_{n-1}$  cuando el contorno traza de regreso sobre sí mismo, entonces  $p_n$  es un pico o punto final (con ún sólo 4-vecino en el contorno).

Paso 2 encontraá  $p_1$ , de nuevo, cuando el seguimiento de contorno es terminado, pero eso puede suceder también cuando el contorno se toca a sí mismo de casualidad en el punto  $p_1$ . La "Prueba de la condición para finalizar" distingue entre ambas situaciones.

Implementaciones convenientes guardan no solamente los puntos de contorno (con sus coordenadas), sino también los códigos de Freeman  $f_i = f(p_i, p_{i+1})$  para todos los  $i = 1, 2, \dots, n-1$ , y también  $f_n = f(p_n, p_1)$ . Todo 4-contorno corresponde una secuencia ordenada cíclica  $C = (p_1, p_2, p_3, \dots, p_n)$  de píxeles, y también puede ser descrita por la secuencia de los códigos de Freeman (llamada código de cadena de freeman)  $F(C) = (f_1, f_2, f_3, \dots, f_n)$ , Figura 3 muestra un ejemplo.

Todo 4-camino  $C = (p_1, p_2, \dots, p_n)$ , en particular, todo 4-contorno, genera una curva  $\gamma(C)$  en el plano euclidiano  $\mathbb{R}^2$ , simplemente por conectar todos los segmentos de línea recta correspondientes a los cantos  $(p_i, p_{i+1})$  en la gáfica, es decir, para  $i = 1, 2 \cdots r - 1$ , y el segmento  $(p_n, p_1)$ . Un punto  $p_j \in C$  es llamado **punto convexo, respectivamente, punto cóncavo, pico, punto lineal**, y un vértice del 4-contorno C siempre cuando  $p_j$  tiene esta misma prpoiedad como punto de curva de  $\gamma(C)$ .

En general, para un 4-contorno C,  $\gamma(C)$  no es una curva de Jordan, pero siempre es una curva poligonal débilmente simple, que consiste de segmentos de línea recta horizontales y verticales, cada uno teniendo la longitud 1 (o, c, la constante de retícula). Es claro que  $\gamma(C)$  rodea al objeto Men un trazado según las manecillas del reloj, y en este trazado, deja al objeto M siempre a su lado derecho.

Recordemos finalmente que un 4-camino cerrado D es llamado en la literatura una *curva digital* de Jordan, o k-curva simple si D es un ciclo en la k-gráfica vecina, es decir, si D es una subgráfica en la cual, cada pixel de D tiene exactamente dos k-vecinos en D [15, 41]. Bajo condiciones muy especiales, cuando el objeto "M no tiene picos, ni cuevas o partes delgadas", C resulta ser una curva digital de Jordan curve y  $\gamma(C)$  una curva Jordan en  $\mathbb{R}^2$ .

## CAPÍTULO 2

### 4-contornos y sus caminos exteriores

#### 1. Camino exterior al 4-contorno

Sea  $C = (p_1, p_2, \dots, p_n)$  un 4-contorno con códigos de Freeman  $f_i = f(p_i, p_{i+1}), i = 1, 2, \dots, r-1, f_n = f(p_n, p_1)$ , además, denotemos  $f_{j,back} = f(p_j, p_{j-1})$ . Entonces, para cualquier  $p_j \in C$ , todos los puntos  $q_1, q_2, \dots, q_s$  que satisfacen que  $f(p_j, q_i) \in \{f_{j,back} + 2, f_{j,back} + 3, \dots, f_i\}$ , son puntos del fondo, debido a que el contorno deja al objeto siempre a su lado derecho durante su trazado. Si  $p_j$  es un punto lineal o cóncavo entonces s = 1, s = 3 cuando  $p_j$  es convexo, y s = 5 para un pico, vea Figura 1. Estos píxeles del fondo son usados a continuación para construir un 4-camino exterior para C:

**Definición 4.** Para todo 4-contorno  $C = (p_1, p_2, \dots, p_n)$ , su camino exterior Ext(C) es definido por la secuencia ordenada cíclica construida como sigue (vea Figura 1):

Trazando la secuencia C (en sentido según las manecillas del reloj), para cada  $p_j$ ,  $j = 1, 2, \dots n$ ,

• Si  $p_j$  es un punto lineal entonces, el único punto q que satisface que  $f(p_j,q) = (f_{j+1}-2) \mod 8$ , es agredado a la lista Ext(C).

• Si  $p_j$  es un punto convexo entonces, los puntos  $q_1, q_2, q_3$  que satisfacen que  $f(p_j, q_1) = (f_{j+1} - 4) \mod 8$  y  $f(p_j, q_2) = (f_{j+1} - 3) \mod 8$  y  $f(p_j, q_3) = (f_{j+1} - 2) \mod 8$ , son agregados, en este mismo orden, a la lista Ext(C).

• Si  $p_j$  es un pico entonces, los puntos  $q_1, q_2, q_3, q_4, q_5$  que satisfacen que  $f(p_j, q_1) = (f_j - 2) \mod 8$ ,  $f(p_j, q_2) = (f_j - 1) \mod 8$ ,  $f(p_j, q_3) = (f_j) \mod 8$ ,  $f(p_j, q_2) = (f_j + 1) \mod 8$ ,  $f(p_j, q_2) = (f_j + 2) \mod 8$ , son agregados, en este mismo orden, a la lista Ext(C).

• Si  $p_j$  es cóncavo entonces, el único punto q que satisface que  $f(p_j,q) = (f_{j+1}-1) \mod 8$ , es agredado a la lista Ext(C).

En todo caso, los puntos de la lista Ext(C) nunca son inmediatamente duplicados. Es decir, un punto es agregado a la lista Ext(C) solamente cuando este punto no coincide con el último elemento de la lista actual. Para j = n, el último punto que pretende ser agregado a la lista, es realmente agregado a Ext(C) solamente si no coincide con el primer elemento de la lista actual.

La lista Ext(C) representa un 4-camino cerrado que rodea al objeto M realizando un trazado en sentido según las manecillas del reloj. Sin embargo, comentamos que este camino exterior corresponde a una curva poligonal  $\gamma(Ext(C))$  que no es garantizada de ser débilmente simple.

Los tipos de los píxeles de una curva pueden ser caracterizados mediante los códigos de Freeman:

Sea  $p_j$  un pixel dentro de una secuencia cíclica  $(p_1, p_2, \dots, p_n)$  la cual representa un 4-contorno C, o un camino exterior Ext(C), con sus códigos de Freeman  $f_i = f(p_i, p_{i+1})$ , con  $i = 1, 2, \dots, n-1$ ,  $f_n = f(p_n, p_1)$ . Entonces el punto  $p_j$  es convexo o un pico cuando  $f_{j+1}$  presenta un incremento con respecto a  $f_j$  por 2 o 4, respectivamente. En contraste,  $p_j$  es cóncavo cuando  $f_{j+1}$  presenta un decremento con respecta a  $f_j$  por 2. El punto  $p_j$  es lineal cuando  $f_{j+1} = f_j$ . Denotemos  $diff(i) = (f_i - f_{i-1}) \mod 8$  for  $i = 2, \dots, r$ , y  $diff(1) = (f_1 - f_n) \mod 8$ . Con eso, obtenemos lo siguiente:

**Lema 5.** Si  $(p_1, p_2, \dots, p_n)$  representa un 4-contorno, o su camino exterior, con sus códigos de Freeman  $f_i = f(p_i, p_{i+1})$  for  $i = 1, 2, \dots, n-1$ ,  $f_n = f(p_n, p_1)$ ,  $y p_j$   $(1 \le j \le n)$ ,



FIGURA 1. El 4-contorno C está dibujado en azul, Ext(C) en rosa. **a)** Obsérvese que durante el trazado de la parte (e, r, s, c, b, a) de C, cada punto lineal r, c, b proporciona un pixel al camino exterior Ext(C), igualmente como lo hacen los puntos lineales w, v, s más tarde, por ejemplo. Cada punto convexo d, u y z, contribuye tres puntos a Ext(C). **b)** Cada punto cóncavo de C, como s en la tripleta (r, s, c), c en (b, c, d), t en (d, t, u), y más tarde, t en la tripleta (v, t, s), genera un punto de Ext(C). **c)** Cada pico de C (a, e, x, y) proporciona cinco puntos exteriores. Los puntos cóncavos z y t con el punto lineal v entre ellos, genera el mismo punto de Ext(C) el cual resulta ser el pico p marcado en **d**). La secuencia Ext(C) puede contener elementos más de una vez, sin embargo, ningún elemento aparece repetido inmediatamente.

- $p_i$  es convexo si y solo si  $diff(j) = 2 \mod 8$ ,
- $p_i$  es cóncavo si y solo si diff $(j) = 6 \mod 8$ ,
- $p_j$  es un punto lineal si y solo si  $diff(j) = 0 \mod 8$ ,
- $p_j$  es un pico si y solo si  $diff(j) = 4 \mod 8$ .

Un 4-contorno C, igualmente su camino exterior Ext(C), puede tener picos, puntos lineales, puntos convexos y punto cóncavos. Sin embargo, los picos son de distinta naturaleza:

Todo pico p del 4-contorno C es un "pico convexo". Eso vale porque la curva  $\gamma(C)$ , trazada en sentido según las manecillas del reloj, deja al objeto M a su lado derecho. Por eso, la curva tiene un ángulo interior de 0° en el punto p, por ejemplo, en los puntos a, e, x, y de Figure 3. Eso se debe a que el seguimiento de contorno nunca "penetraría" al objecto. Por razones similares, la lista C no puede tener dos puntos subsecuentes cóncavos.

En cambio, por la construcción de Ext(C), todo pico del camino exterior es un "pico cóncavo" donde la curva  $\gamma(Ext(C))$  tiene un ángulo interior de 360°, así como por ejemplo el pixel p en Figura 1donde la curva penetra el interior del objecto. La única manera para obtener un pico de Ext(C), es a partir de dos puntos cóncavos  $p_j, p_{j+2} \in C$  para los cuales  $p_{j+1} \in C$  es un punto lineal.



FIGURA 2. El poliomino entre C y Ext(C) según Lema 6 proporciona relaciones entre los vértices cóncavos de ambos 4-caminos, así como también una condición local en C para detectar picos en Ext(C).

#### 2. El poliomino entre 4-contorno y su camino exterior

Todo pixel del 4-contorno C no solamente proporciona píxeles únicamente determinados al camino exterior Ext(C), según la Definición 4 sino también indica un cuadrado cuyos lados tienen longitud 1 (o, la constante de retícula c) y que se encuentra entre las curvas  $\gamma(C)$  y  $\gamma(Ext(C))$ . Eso genera una colección únicamente determinada de cuadrados, vea Figura 2, comunmente llamada un poliomino [40].

En esta tesis, definimos un **poliomino** como cualquier secuencia ordenada cíclica de cuadrados (cerrados, es decir, que contienen su frontera), todos del mismo tamaño y en posición paralela a los ejes de coordenadas en el plano euclidiano. Además requeremos que cada dos cuadrados distintos de esta se intersecan a lo más en sus fronteras, y que cada dos cuadrados subsecuentes en la secuencia, se intersecan en un lado común. Para un **poliomino simple**, exigimos que cada cuadrado comparte un lado con cada uno de exactamente dos otros cuadrados de la secuencia. Lo siguiente es claro por las definiciones:

**Lema 6.** Para todo 4-contorno C y su camino exterior Ext(C), la siguiente construcción genera una secuencia ordenada cíclica S de cuadrados que forma un poliomino. Según la Definición 4, trazando  $C = (p_1, p_2, \dots, p_n)$  una vez, para todo  $p_j$ ,  $j = 1, 2, \dots n$ ,

• Si  $p_j$  es un punto lineal entonces, los cuadrados que tienen las diagonales  $\overline{p_j q_1}$  y  $\overline{p_j q_2}$ , en este orden, son agregados a la lista S, donde  $q_1, q_2$  satisfacen que  $f(p_j, q_1) = (f_{j+1} - 3) \mod 8$  y  $f(p_j, q_2) = (f_{j+1} - 1) \mod 8$ .

• Si  $p_j$  es un punto convexo entonces, el cuadrado que tiene la diagonal  $\overline{p_jq}$ , es agregado a la lista S, donde q satisface que  $f(p_j,q) = (f_{j+1}-3) \mod 8$ .

• Si  $p_j$  es un pico entonces, los cuadrados que tienen las diagonales  $\overline{p_jq_1}$  y  $\overline{p_jq_2}$ , en este orden, son agregados a la lista S, donde  $q_1, q_2$  satisfacen que  $f(p_j, q_1) = (f_j - 5) \mod 8$ ,  $f(p_j, q_2) = (f_j - 3) \mod 8$ .

• Si  $p_j$  es un punto cóncavo entonces, el cuadrado que tiene la diagonal  $\overline{p_jq}$ , es agregado a la lista S, donde q satisface que  $f(p_j,q) = (f_{j+1}-1) \mod 8$ .

En todos los casos, se evita duplicar elementos subsecuentes en la lista S.

Si  $\gamma(Ext(C))$  es una curva poligonal débilmente simple, entrces la unión de todos los cuadrados de S coincide con el conjunto  $cl(B \setminus A)$  donde A y B son los polígonos débilmente simples encerrados por las curvas  $\gamma(C)$  y  $\gamma(Ext(C))$ , respectivamente.

#### 3. Relaciones entre vértices cónvacos del 4-contorno y de su camino exterior

Durante el trazado de  $C = (p_1, p_2, \dots, p_n)$ , mientras que la secuencia S de cuadrados es construida según Lema 6, relaciones útiles entre los vértices cóncavos de C y de Ext(C) pueden ser observadas (vea Figura 2):

• Para cada vértice cóncavo  $p_j \in C$ , existe un vértice cóncavo único q de Ext(C), dado como el punto final opositorio a  $p_j$ , de la diagonal del cuadrado que es agregado a S en este caso, q satisface que  $f(p_j, q) = (f_{j+1} - 1) \mod 8$ .

• La única manera de obtener un pico de Ext(C) es a partir de dos vértices cóncavos  $p_j$ ,  $p_{j+2}$  de *C* tales que  $p_{j+1}$  es lineal. Entonces  $p_j$  proporciona un cuadrado *M* a la lista *S* y el punto final opositorio  $p_M$  de la diagonal de *M*,  $p_{j+2}$  proporciona un cuadrado *N* a la lista *S* y el punto final opositorio  $p_N$  de la diagonal de *N*, y eso resulta en el pico  $p_M = p_N$ . El punto  $p_{j+1}$  proporciona estos mismos cuadrados *M*, *N* a la lista *S* (pero no son duplicados subsecuentemente en *S*), *M* y *N* comparten un lado que tiene  $p_M$  como punto final opositorio al punto  $p_{j+1}$ .

**Corolario 7.** Para todo 4-contorno  $C = (p_1, p_2, \dots, p_n)$  con códigos de Freeman  $(f_1, f_2, \dots, f_n)$ and  $p_j \in C$ ,

(i) si  $p_j$  es un punto cóncavo entonces el punto únicamente determinado q de Ext(C) que satisface que  $f(p_j, q) = (f_{j+1} - 1) \mod 8$ , es cóncavo, o es un pico.

(ii) Para cada situación de puntos subsecuentes  $p_j$ ,  $p_{j+1}$ ,  $p_{j+2}$  de C tales que  $p_j$  y  $p_{j+2}$  son cóncavos y  $p_{j+1}$  es un punto lineal, los dos puntos de Ext(C) obtenidos según (i) a partir de  $p_j$  y  $p_{j+2}$ , coinciden y representan un pico de Ext(C).

Ext(C) genera una curva poligonal  $\gamma(Ext(C))$  que puede fallar a ser débilmente simple cuando la frontera del objeto pasa muy cerca de sí misma, donde parejas de puntos que pertenecen a distintas partes de la frontera, llegan a ser 8-vecinos. Sin embargo, Lemas 6, 7, y el Corolario 7, son validos y pueden ser aplicados en general, porque cada paso de construcción del camino exterior, y del poliomino, como también las relaciones entre ciertos tipos de vértices de C y de Ext(C), se basan solamente en propiedades locales.

## CAPÍTULO 3

## Una propuesta de aproximación poligonal para 4-contornos

#### 1. Polígono de perímetro mínimo para 4-contornos

Cuando un 4-contorno  $C = (p_1, p_2, \cdots, p_n)$  es una 4-curva simple, es decir, una curva digital de Jordan, entonces el camino exterior Ext(C) tiene esta misma propiedad. Entonces ambos polígonos, B encerrado por la curva  $\gamma(Ext(C))$ , y A encerrado por  $\gamma(C)$ , son polígonos simples tales que  $A \subset int(B)$ . la secuencia cíclica de cuadrados obtenida por el Lema 6 forma el conjunto diferencia  $cl(B \setminus A)$  y un poliomino simple, también llamado continuo de retícula simple [**33**]. Bajo estas condiciones especiales, el Polígono de perímetro mínimo (MPP - minimal perimeter polygon) de C fue definido en [32, 33] como el polígono encerrado por la curva de Jordan de longitud mínima, entre todas las curvas de Jordan que están en  $cl(B \setminus A)$  y rodean a A. Fue demostrado que este MPP existe y es único, y que su frontera es una curva poligonal cuyos vértices pertenecen al conjunto de vértices convexos de A y vértices cóncavos de B. Además, existe entonces una relación biyectiva entre los vértices cóncavos de A y de B, también entre los vértices convexos de A y de B, vea Figura 1. Por eso, es fácil generar una lista ordenada de candidatos de vértices del MPP, durante un trazado completo de C. Eso fue utilizado en el algoritmo de [14, 16, 18]. El MPP es reportado de manera similar en [10] y [11] (igualmente en las ediciones 2 y 3 de este libro) donde los píxeles de Ext(C) son llamados elementos del "muro exterior", y los puntos de Ext(C) correspondientes a puntos cóncavos de C (el "muro interior") son llamados puntos "reflectados".

El 4-contorno que es el dato de entrada a todos los algoritmos conocidos de la literatura, es requerido como simple. Puntos finales (es decir, picos) de C y encajamientos como alrededor de un pico de Ext(C), como por ejemplo del punto p de Ext(C) en Figura 1, son explicitamente prohibidos en todas estas fuentes de literatura mencionadas.

Intuitivamente, el MPP de un 4-contorno general C es el polígono encerrado por una curva de longitud mínima, entre todas las curvas de cierto tipo que rodean a C pero son confinadas por Ext(C). Tales curves son contenidas en el conjunto formado por la unión de todos los cuadrados que pertenecen al poliomino generado por C pero deben visitar todos estos cuadrados en el orden "correcto". La siguiente definición formaliza esta idea.



FIGURA 1. Un 4-contorno simple C en azul, su camino exterior Ext(C) en rosa. Los vértices convexos de C, marcados en rojo, junto con los vértices cóncavos de Ext(C) (verde) que corresponden de manera única a vértices cóncavos de C, forman la lista de candidatos de los vértices del MPP, visualizados en la figura del lado derecho.



FIGURA 2. Un 4-contorno C (azul) y Ext(C) (rosa), solamente sus vértices son visualizados como píxeles gordos. La parte superior de C presenta dos picos y dos cantos extremos superiores horizontales con puntos finales convexes, que son todos colineales, incluiendo tres picos de Ext(C). En las partes inferiores de C y Ext(C), varios puntos convexos siendo puntos finales de cantos extremos de C y puntos finales cóncavos de cantos extremos de Ext(C) son todos colineales. Como resultado, todos estos puntos pertenecen a la MLPC de C, sólo algunos pocos, marcados en amarillo, son vértices de la MLPC.

**Definición 8.** Sea C un 4-contorno y  $S = \{s_1, s_2, \dots, s_k\}$  el poliomino construido según Lema 6. Se dice que una curva  $\alpha = f([0,1])$  de longitud finita **visita al poliomino** S si  $\alpha$ , durante un trazado completo, llega a intersecar a todos los cuadrados de S, en el mismo orden como parecen en la lista S. Es decir, existen  $t_1, t_2, \dots, t_{k-1} \in \mathbb{R}$  con  $0 = t_0 < t_1 < t_2 < \dots < t_{k-1} < t_k = 1$  tales que, para todo  $i \in \{1, \dots, k\}$ , la restricción de f al subintervalo  $[t_{i-1}, t_i]$  es una curve que pertenece al cuadrado  $s_i$ .

Con ayuda del concepto de una curva que visita al poliomino, es posible proponer la siguiente definición de un MPP simplificado pero generalizado:

**Definición 9.** Sea C un 4-contorno con camino exterior Ext(C) y su poliomino S construido segú Lema 6. La **curva poligonal de mínima longitud** de C (**MLPC** - minimal length polygonal curve) es definida como la curva de mínima longitud, entre todas las curvas poligonales débilmente simples que visitan al poliomino S, y que cumplen que cada una de sus vértices es un vértice de C o de Ext(C). El **polígono de perímetro mínimo** (**MPP** - minimal perimeter polygon) correspondiente a C es definido como el polígono encerrado por la MLPC de C.

La curva  $\gamma(C)$  pertenece al conjunto de curvas poligonales débilmente simples del cual la MLPC debe ser seleccionada. Por definición, este conjunto es finito porque C y Ext(C) tienen números finitos de vértices. Por eso, la existencia de la MLPC y del MPP es garantizada. Además, por nuestra definición, solamente vértices de C y de Ext(C) son candidatos a ser vértices de la MLPC.

#### 2. Vértices especiales de la MLPC y candidatos

El polígono propuesto en esta tesis, es construido a partir de vértices especiales de la MLPC que pueden ser encontrados fácilmente, y otros vértices determinados por condiciones semi-locales de caminos más cortos. Recordemos que todas las curvas son siempre trazadas en sentido según las manecillas del reloj, y puntos de  $\mathbb{Z}^2$  son considerados siempre en coordenadas cartesianas estándar.

**Definición 10.** Sea  $L = (p_1, p_2, \dots, p_n)$  un 4-contorno, o su camino exterior,  $p_i = (x_i, y_i) \in \mathbb{Z}^2$ ,  $i \in \{1, \dots, n\}$ . Un 4-camino dado por una sublista  $(p_j, p_{j+1}, p_{j+2}, \dots, p_{j+k})$  para  $k \ge 0$ , es llamado **canto (localmente) extremo** de L con puntos finales  $p_j$  y  $p_{j+k}$  si  $x_{j-1} < x_j = x_{j+1} = x_{j+2} = \dots = x_{j+k} > x_{j+k+1}$  (canto vertical derecho), o,  $x_{j-1} > x_j = x_{j+1} = x_{j+2} = \dots = x_{j+k} < x_{j+k+1}$  (canto vertical izquierdo), o,  $y_{j-1} < y_j = y_{j+1} = y_{j+2} = \dots = y_{j+k} > y_{j+k+1}$  (canto horizontal superior), o,  $y_{j-1} > y_j = y_{j+1} = y_{j+2} = \dots = y_{j+k} < y_{j+k+1}$  (canto horizontal inferior).



FIGURA 3. Demostración de Lema 11. Píxeles de C son visualizados en azul, picos en café, flechas negras indican el orden en C. Cada pico proporciona cinco puntos de Ext(C) (rosa).

En caso que k = 0, el canto extremo  $(p_j)$  es llamado un **punto (localmente) extremo**.

Un punto extremo es un canto extremo donde los dos puntos finales coinciden, claro que todo pico es un punto extremo. Figura 2 muestra que varios cantos extremos pueden ser colineales.

**Lema 11.** Sea C un 4-contorno con camino exterior Ext(C).

(i) Si  $E = (p_j, p_{j+1}, p_{j+2}, \dots, p_{j+k}), k \ge 1$ , es una secuencia de puntos subsecuentes de C, o de Ext(C), formando un segmento de línea recta vertical o horizontal, entonces E es un canto extremo si y sólo si  $p_j$  y  $p_{j+k}$  ambos son convexos, o, ambos son cóncavos.

(ii) Si  $p_j$  y  $p_{j+k}$  son puntos distinctos de C que ambos son convexos, o, ambos son cóncavos, y tal que todos los puntos de C entre ellos son puntos lineales, entonces  $(p_j, p_{j+1}, p_{j+2}, \dots, p_{j+k})$  es un canto extremo de C. La misma propiedad vale para Ext(C).

(iii) Todo pico de C, o de Ext(C), pertenece a la MLPC de C.

(iv) Todo canto localmente extremo de C con puntos finales convexos, y todo canto localmente extremo de Ext(C) con puntos finales cóncavos, pertenece a la MLPC de C.

Demostración: Sea  $C = \{p_1, \dots, p_n\}$ ,  $Ext(C) = \{q_1, \dots, q_m\}$ . Todos los cálculos con índices de puntos en las listas C and Ext(C), sean realizados módulo la longitud de la lista.

(i) es evidente. Nótese que, si  $p_j, p_{j+1}, \dots, p_{j+k}$  se encuentran todos sobre un segmento de línea recta vertical o horizontal, ninguno de los puntos finales  $p_j$  y  $p_{j+k}$  puede ser un pico.

(ii) es consecuencia de (i). Eso se debe a que cualesquiera dos puntos convexos, igualmente cualesquiera dos puntos cóncavos, que tienen entre ellos solamente puntos lineales (o ningún punto), necesariamente forman un segmento de línea recta vertical o horizontal.

(iii) Todo pico  $p = p_i = (x_i, y_i)$  de C es un pico convexo, es decir, entonces  $p_{i-1}, p_i, p_{i+1}$  son subsequentes en C y satisfacen que  $p_{i-1} = (x_i, y_i - 1) = p_{i+1}$ , o  $p_{i-1} = (x_i, y_i + 1) = p_{i+1}$ , o  $p_{i-1} = (x_i - 1, y_i) = p_{i+1}$ , o  $p_{i-1} = (x_i + 1, y_i) = p_{i+1}$ . Es suficiente analizar al primer caso, los otros pueden ser obtenidos por rotaciones por 90° del primero.

Según Definición 4 y Lema 6, p genera los puntos  $q_j$ ,  $q_{j+1}$ ,  $q_{j+2}$ ,  $q_{j+3}$ ,  $q_{j+4}$  de Ext(C) que son vértices de dos cuadrados  $s_n, s_{n+1}$  del poliomino S, vea Figura 3. Según Definición 9, la MLPC de C tiene longitud mínima, entre todas las curvas que, en particular, visitan los cuadrados  $s_{n-1}, s_n, s_{n+1}, s_{n+2}$ , en este orden. Pero eso es posible solemente si la MLPC tiene uno o varios vértices que pertenecen al conjunto  $\{p, q_j, q_{j+1}, q_{j+2}, q_{j+3}, q_{j+4}\}$ , todos estos seis puntos tienen su coordenada y en  $\{y_i, y_i + 1\}$ . Sea v el último vértice de la MLPC de C, antes de llegar al cuadrado  $s_n$ , y sea w el vértice de la MLPC que es el inmediatamente siguiente después de visitar  $s_{n+1}$ , ambos estos vértices tienen su coordenada y menor o igual a  $y_i$ . Entonces, la curva poligonal  $\overline{vp} \cup \overline{pw}$  es el camino más corto que une los puntos v y w y pasa a través de los cuadrados  $s_n$  y  $s_{n+1}$ . En consecuencia, p pertenece a la MLPC deC.

Ahora sea q un pico de Ext(C). Entonces q es un pico cóncavo. Según la Definición 4, q puede ser obtenido solamente a partir de puntos subsecuentes  $p_j$ ,  $p_{j+1}$ ,  $p_{j+2}$  de C tales que  $p_j$ ,  $p_{j+2}$  son



FIGURA 4. Demostración de Lema 11, primer caso de un pico de Ext(C). Píxeles de C are visualizados en azul, de Ext(C) en rosa.

cóncavos y  $p_{j+1}$  es lineal. Hay cuatro casos para eso, pero es suficiente estudiar uno de ellos, puesto que los otros son obtenidos del primero mediante rotaciones, vea Figura 4. Entonces  $p_j$ ,  $p_{j+1}$ ,  $p_{j+2}$  todos tienen la misma coordenada y, igual a  $y_j$ .

Debido a que  $p_j$  y  $p_{j+2}$  son cńcavos,  $p_{j-1}$  y  $p_{j+3}$  de C, tienen la misma coordenada y, igual a  $(y_j - 1)$ , igualmente como q. Sea  $s_n \in S$  el cuadrado que tiene la diagonal  $\overline{qp_j}$ , y  $s_{n+1} \in S$  el cuadrado que tiene la diagonal  $\overline{qp_{j+2}}$ . La MLPC de C tiene mínima longitud, entre todas las curvas que, en particular, visitan los cuadrados  $s_{n-1}, s_n, s_{n+1}, s_{n+2}$ . Eso es posible solemente si la MLPC tiene uno o varios vértices que pertenecen al conjunto  $\{q, p_{j-1}, p_j, p_{j+1}, p_{j+2}, p_{j+3}\}$ . Denotemos por v al vértice último de la MLPC, antes de que la curva llegue al cuadrado  $s_n$ , y sea w el vértice inmediatamente siguiente, después de haber visitado al cuadrado  $s_{n+1}$ . Entonces v y w ambos tienen su coordenada y menor o igual a  $(y_j - 1)$ . En consecuencia, la curva poligonal  $\overline{vq} \cup \overline{qw}$  es el camino más corto que une v con w y pasa por los cuadrados  $s_n$  y  $s_{n+1}$ , es decir, q pertenece a la MLPC de C.

(iv) Consideremos un canto localmente extremo E dado como sublista  $(p_j, p_{j+1}, \dots, p_{j+k})$  en C tal que  $p_j$  y  $p_{j+k}$  son convexos. El caso k = 0 corresponde a un pico, que ya fue analizado en (iii). Ahora asumimos que  $k \ge 1$ . Sin pérdida de generalidad, supongamos E como un canto superior horizontal. Los otros casos según la Definición 10 pueden ser obtenidos por rotación.

Entonces  $y_{j-1} + 1 = y_j = y_{j+1} = \cdots = y_{j+k} = y_{j+k+1} + 1$ . La MLPC es la curva poligonal más corta la cual, en particular, visita los cudrados  $s_1, s_2, \cdots, s_{k+3}, s_{k+4}$ . Además, todos los vértices de la MLPC de C son vértices de C y de Ext(C), por lo tanto también son vértices de los cuadrados de S. Por eso, si v es el último vértice de la MLPC antes de llegar al cuadrado  $s_2$ , y w es el vértice inmediatamente siguiente, después de visitar al cuadrado  $s_{k+3}$ , entonces v y w ambos tiene su coordenada y menor o igual a  $y_j$ . En consecuencia, la curva poligonal que pasa a través de  $p_j, p_{j+1}, p_{j+2}, \cdots, p_{j+k}$ , es el camino más corto que une v con w y pasa a través de los cuadrados  $s_2, s_3, \cdots, s_{k+3}$ . Es decir, E pertenece completamente a la MLPC de C.

Argumentos muy similares muestran que cualquier canto localmente extremo E de Ext(C) con puntos finales cóncavos, dado como sublista  $(q_j, q_{j+1}, q_{j+2}, \cdots, q_{j+l})$  en Ext(C),  $l \ge 1$ , pertenece completamente a la MLPC de C.

Similarmente como es conocido para 4-contornos simples [33], es intuitivamente claro que cada vértice de la MLPC, o es un vértice convexo o un pico de C, o es un vértice cóncavo o un pico de Ext(C). Eso da la idea de generar una lista ordenada de vértices de C y de Ext(C) que contiene todos los candidatos para vértices de la MLPC de C.

**Definición 12.** Para todo 4-contorno C con camino exterior Ext(C), una secuencia ordenada Cand(C) de vértices de C y Ext(C) llamada **lista de candidatos** es generada como sigue: Trazando la lista C una vez, para todo  $p \in C$ :

(i) Si p es un punto convexo o un pico, p es agregado a la lista Cand(C).

(ii) Si p es un punto cóncavo pero pertenece a una sitación especial según Corolario 7(ii) entonces, el pico correspondiente de Ext(C) es determinado y agregado a la lista Cand(C). Si durante la


FIGURA 5. Para el 4-contorno C de las Figuras 3, 1, 2, sus vértices convexos son marcados en rojo, sus picos en café. Cada vértice cóncavo de C corresponde a un vértice cóncavo (verde) o a un pico (rosa) de Ext(C). La figure izquierda muestra la secuencia ordenada de los candidatos, la derecha visualiza los vértices de la MLPC.

continuación del tracado de C, una tal situación es encontrada inmediatamente después, de nuevo, el mism pico de Ext(C) no es duplicado en la lista Cand(C).

(iii) Si p es un punto cóncavo y no pertenece a una sitación especial según Corolario 7(ii) entonces el vértice cóncavo correspondiente de Ext(C) es determinado y agregado a la lista Cand(C).

En todo caso, duplicación de elementos subsecuentes en la lista Cand(C) es evitada. Los elementos de Cand(C) son llamados **candidatos** o **puntos candidatos**.

La lista Cand(C) contiene vértices convexos y picos de C, y vértices cóncavos y picos de Ext(C), pero no tiene puntos lineales. La secuencia Cand(C) es cíclica y obedece al trazado en sentido según las manecillas del reloj, de la curva  $\gamma(Cand(C))$ . Lo siguiente constituye las primeras partes de nuestro algoritmo de construcción del polígono.

**Corolario 13.** Sea C un 4-contorno con camino exterior Ext(C) y lista de candidatos Cand(C). (i) Cada elemento de Cand(C) que es un pico de C o de Ext(C), pertenece a la MLPC de C.

(ii) Cada dos elementos subsecuentes de Cand(C) que ambos son convexos (vértices de C), o, ambos son cóncavos (vértices de Ext(C)), ambos pertenecen a la MLPC of C.

Demostración: Sea  $C = \{p_1, \dots, p_n\}$ ,  $Ext(C) = \{q_1, \dots, q_m\}$ ,  $Cand(C) = \{c_1, \dots, c_t\}$ , correspondiendo al trazado de la curva en sentido según las manecillas del reloj. La parte (i) era parte de Lema 11, sólo falta demostrar la parte (ii).

Cada dos elementos subsecuentes de Cand(C) que ambos son convexos, son puntos distinctos convexos  $p_j$ ,  $p_{j+k}$  de C con  $(k-1) \ge 0$  puntos lineales entre ellos. Es decir,  $p_j, p_{j+1}, \dots, p_{j+k}$  forman un canto extremo de C el cual, por Lema 11, pertenece completamente a la MLPC de C. Por lo tanto, la MLPC contiene los puntos  $p_j$  y  $p_{j+k}$ .

Análogamente, dos elementos subsecuentes de Cand(C) que ambos son cóncavos, son puntos distinctos cóncavos  $q_j$ ,  $q_{j+l}$  de Ext(C) con  $(l-1) \ge 0$  puntos lineales entre ellos. Entonces  $q_j, q_{j+1}, \dots, q_{j+l}$  forman un canto extremo de Ext(C) el cual, por Lema 11, pertenece completamente a la MLPC de C. Por lo tanto, la MLPC contiene los puntos  $q_j$  and  $q_{j+l}$ .

La lista de candidatos se vuelve una herramiento útil para detectar eficientemente a vértices especiales de la MLPC, si los puntos en Cand(C) son marcados como convexos (entonces siendo puntos de C), o como cóncavos (entonces siendo puntos de Ext(C)), o como picos. Eso facilita encontrar picos y puntos finales de cantos localmente extremos, aplicando el Corolario 13. Cada uno de estos puntos especiales es un vértice p de la MLPC, siempre cuando no es colineal entre otros de tales puntos especiales de la MLPC, que tal vez fueron detectados inmediatamente antes o después de p. En consecuencia, cuando el análisis de la lista Cand(C) es acompaão por pruebas de colinealidad, todos los vértices de la MLPC que son picos o puntos finales de cantos localm<br/>nte extremos, pueden ser encontrados.

#### 3. Propuesta del polígono y estratégia para determinar sus vértices

El polígono P que se propone en esta tesis para aproximar a todo 4-contorno dado  $C = \{p_1, \dots, p_n\}$ , es encerrado por una curva poligonal débilmente simple que visita al poliomino correspondiente a C. Esta curva es construida como una lista ordenada Polygon(C) de vértices seleccionados de la lista de candidatos Cand(C). La lista final Polygon(C) contiene a todos los vértices especiales de la MLPC que son puntos finales de cantos localmente extremos, incluyendo todos los picos de C y de Ext(C), y vértices complementarios determinados por condiciones semi-locales de caminos más cortos, y por el requerimiento que la curva a ser construida, queda confinada dentro del poliomino de C.

Entonces, de la lista C de entrada, de puntos del 4-contorno, primero la lista de candidatos Cand(C) es generada, luego la lista Polygon(C) de vértices del polígono es construida en varios pasos. Recordemos que cada candidato es un pixel que pertenece a C o a Ext(C). Todos los vértices del polígono final son seleccionados de la lista de candidatos.

Estratégia para determinar la lista Polygon(C) de vértices del polígono: para todo 4contorno  $C = \{p_1, \dots, p_n\},\$ 

- (1) Trazando la lista C, se genera la lista de candidatos  $Cand(C) = \{c_1, \dots, c_t\}$  según Definición 12, aplicando Corolario 7. Cada punto candidato es un punto convexo o pico de C, o, un punto cóncavo o pico del camino exterior Ext(C), sin embargo, todos los candidatos pueden ser determinados fácilmente sólo con trazar la lista C.
- (2) Trazando la lista Cand(C), se determinan todos los puntos especiales de la MLPC según Corolario 13, cada uno de estos puntos es copiado a la lista Polygon(C). Cada uno de estos puntos especiales de la MLPC es un punto final de una canto localmente extremo, eso incluye todos los picos. Como resultado, una versión preliminar de la lista Polygon(C)es obtenida.
- (3) Trazando la actual lista preliminar Polygon(C), cada dos elementos subsecuentes son analizados como sigue: estos elementos originalmente eran puntos c<sub>j</sub>, c<sub>j+k</sub> de la lista Cand(C). Para el caso k ≥ 2, se determina si el segmento de línea recta c<sub>j</sub>c<sub>j+k</sub> está completamente contenido en el poliomino de C. Si eso es verdad, se sigue trazando la lista Polygon(C). En cambio, si este segmento de línea sale del poliomino, la sublista de Cand(C) dada como (c<sub>j</sub>, c<sub>j+1</sub>, ..., c<sub>j+k</sub>), es sometida a un procedimiento de búsqueda de vértices complementarios para el polígono P. La determinación de tales vértices se basa en condiciones semi-locales de caminos más cortos. Los vértices complementarios son seleccionados de la lista Cand(C) de candidatos, más precisamente, de la sublista (c<sub>j+1</sub>, c<sub>j+2</sub>, ..., c<sub>j+k-1</sub>). Al final, estos vértices son insertados entre c<sub>j</sub> y c<sub>j+k</sub> en la lista Polygon(C).

La generación de la lista Polygon(C), y el procesamiento mencionado arriba de cada sublista, es acompañado del análisis de colinealidad. Cada vez que se pretenden agregar puntos a la lista Polygon(C), cuando colinealidad con los últimos puntos subsecuentes ya presentes en la lista, es detectada, elementos de la lista son borrados apropiadamente. Eso incluye la detección de cantos extremos o picos colineales. Es un reto del algoritmo que en la versión final de la lista ordenada cíclica Polygon(C), cada tres elementos subsecuentes no son colineales. Solo entonces, la lista Polygon(C)contiene los vértices del polígono deseado P.

Nótese que el primer paso no requiere determinar la lista completa del camino exterior de C, solamente vértices cóncavos y picos de Ext(C) son candidatos, y éstos pueden ser calculados completamente a partir de la lista C. Para la situación mucho más sencilla que C es una curva digital de Jordan, la lista de candidatos fue utilizada también en los algoritmos de [14, 20, 30, 11]. Todos los puntos de la MLPC que son determinadas en el segundo paso, son puntos finales

de cantos localmente extremos, incluyendo picos, de C y de Ext(C). Tales puntos no han sido usados, o considerados explícitamente, en algoritmos que determinan al MPP o MLP, conocidos de la literatura.

El tratamiento de la sublista en el tercer paso, es realizado de una manera semi-local: no involucra toda la sublista a la vez, sino utiliza una ventana de la lista de tres, cuatro, o cinco puntos subsecuentes, como será explicado en los siguientes secciones. El tratamiento emplea solamente comparaciones y cálculos básicos con números enteros. Lo que el algoritmo realiza con la sublista, puede ser interpretado como una técnica de amapeamiento de patrones, sin embargo, estos patrones son rígidos solamente con respecto al número de puntos involucrados, pero no con respecto a las distancias entre ellos. En consecuencia, nuestro método de determinación del polígono, según la Definición 8.7 en [15], no es un método local, pero tampoco es global.

Algorithm 1 Idea principal del Tratamiento de una sublista de *Cand* que determina vértices complementarios de *P*.

**Input:** Lista  $(c_j, c_{j+1}, \dots, c_{j+k}), k \ge 2$ , contiene alternamente candidatos convexos y cóncavos, ningún punto en  $(c_{j+1}, \dots, c_{j+k-1})$  es un pico. Detotemos por M la unión de todos los cuadrados del poliomino de C.

```
1: inicializar i = j, NumCand := 3, y la lista de puntos L como vacía.
 2: while i \le j + k - 2 do
 3:
       determinar un vértice complementario para (c_i, c_{i+1}, c_{i+2}) como sigue:
       if \overline{c_i c_{i+2}} se encuentra dentro de M, then
 4:
           NumCand := 4
 5:
 6:
       else
           c_{i+1} es agregado a L, i := i+1.
 7:
 8:
       end if
       if NumCand = 4 \text{ y } i \leq j + k - 3 then
 9:
           determinar un vértice complementario para (c_i, c_{i+1}, c_{i+2}, c_{i+3}) como sigue:
10:
           if \overline{c_i c_{i+3}} se encuentra dentro de M, then
11:
12:
               NumCand := 5
13:
           else
               un vértice complementario c_{i+r}, r \in \{1, 2\}, es determinado and agregado a L,
14:
               i := i + r, NumCand := 3.
15:
           end if
16:
       end if
17:
18:
       if NumCand = 5 \text{ y } i \leq j + k - 4 then
           determinar un vértice complementario para (c_i, c_{i+1}, c_{i+2}, c_{i+3}, c_{i+4}) como sigue:
19:
           if \overline{c_i c_{i+4}} se encuentra dentro de M, then
20:
               Reset NumCand := 3.
21:
22:
           else
               un vértice complementario c_{i+r}, r \in \{1, 2, 3\}, es determinado y agregado to L,
23:
24:
               i = i + r, NumCand := 3.
           end if
25:
       end if
26:
27: end while
28: La lista final L contiene todos los vértices complementarios del polígono, entre los puntos c_i
    y c_{i+k}, asumiendo que análisis apropiados de colinealidad son efectuados cada vez cuando un
   nuevo elemento está por ser agregado a la lista L.
```

**Output:** Lista L de vértices complementarios para el polígono P, que son seleccionados de la sublista  $(c_{j+1}, \dots, c_{j+k-1})$ ; L puede resultar como vacía.

#### 4. Determinación de vértices complementarios del polígono

#### 4.1. Tratamiento de sublistas de candidatos.

Para realizar el tercer paso de la estratégia para construir la lista de vértices Polygon(C), supóngase que Polygon(C) ya contiene todos los candidatos que fueron seleccionados de la lista Cand(C), manteniendo su orden que tenían allí, que son puntos finales de cantos extremos, incluyendo todos los picos. Ahora sean p, q dos elementos subsecuentes de esta lista Polygon(C). Estos puntos originalmente eran candidatos  $p = c_j, q = c_{j+k}$  con  $k \ge 1$  de la lista Cand(C).

Si k = 1, no hay un candidato, pero eventualmente hay cualquier úmero de puntos lineales de C o de Ext(C), entre los puntos  $p \ge q$ . Entonces, el segmento de línea recta  $\overline{pq}$  siempre se encuentra completamente dentro del policimino S de C, lo cual confirma que  $p \ge q$  son vértices subsecuentes del polígono a ser construido.

Ahora supongamos que  $k \ge 2$ , y consideramos una sublista  $(c_j, c_{j+1}, \dots, c_{j+k})$  de Cand(C). Mientras que  $p = c_j$  y  $q = c_{j+k}$  son puntos finales de cantos extremos de C o de Ext(C), por la suposición que p y q son subsecuentes en la lista Polygon(C), los puntos restantes  $c_{j+1}, \dots, c_{j+k-1}$  son candidatos que no son puntos finales de cantos extremos, en particular, ningún puntos de éstos es un pico. Además, si cualesquiera dos puntos subsecuentes de la sublista  $(c_j, c_{j+1}, \dots, c_{j+k})$  serían ambos convexos, o ambos cóncavos entonces, por Proposición 13(ii), ambos ya serían elementos de la lista Polygon(C) lo cual, contradice las suposiciones. Obtenemos la siguiente conclusión:

**Lema 14.** Después de haber efectuado los primeros dos pasos de la estratégia para construir la lista de vértices Polygon(C), para cualesquiera dos puntos subsecuentes  $p = c_j \ y \ q = c_{j+k}$  en Polygon(C) tales que existe una sublista  $(c_j, c_{j+1}, \dots, c_{j+k})$  de Cand(C) con  $k \ge 2$ , todos los candidatos  $c_j$ ,  $c_{j+1}, \dots, c_{j+k}$  son alternadamente convexos (puntos de C) y cóncavos (puntos de Ext(C)).

Los vértices faltantes de P que eventualmente son necesarios y entonces deben ser insertados en la lista Polygon(C) entre los puntos  $c_j$  y  $c_{j+k}$ , son determinados por una técnica de ventanas deslizantes que analiza maximalmente  $m \ge 3$  puntos a la vez. Iniciando con los primeros m puntos  $c_j$ ,  $c_{j+1}$ ,  $\cdots$ ,  $c_{j+m-1}$  de la sublista  $(c_j, c_{j+1}, \cdots, c_{j+k})$ , los nuevos vértices deben garantizar que la curva poligonal a ser construida entre  $c_j$  y  $c_{j+m-1}$ , se encuentra dentro del poliomino de C, y que dicha curva es la curva más corta posible con esta propiedad de estar dentro del poliomino. Si  $\overline{c_jc_{j+m-1}}$  no sale del poliomino, ningún vértice complementario es necesario entre estos dos puntos, entonces  $c_{j+m-1}$  es definido como el siguiente vértice de P y es agregado a la lista Polygon(C). El algoritmo entonces procede a trabajar con los siguientes m puntos  $c_{j+m}$ ,  $c_{j+m+1}$ ,  $\cdots$ ,  $c_{j+2m-1}$ . En otr caso, vértices complementarios son determininados, por ejemplo, digamos que el último de éstos es  $c_{j+i}$  para algún  $i \in \{1, \dots, j + m - 2\}$ . Entonces los siguientes m puntos a ser analizados son  $c_{j+i}$ ,  $c_{j+i+1}$ ,  $\cdots$ ,  $c_{j+i+m-1}$ .

Para efectuar eso de una manera eficiente, procesamos cada grupo de m puntos de la sublista  $(c_j, c_{j+1}, \dots, c_{j+k})$  tal que, primero, solamente los primeros tres puntos son analizados. Si para ellos, un vértice complementario es necesitado, el cual entonces sólo puede ser el segundo punto, la ventana deslizante inmediatamente es movida hacia este vértice complementario como siguiente punto inicial de ventana. Solamente en el caso que los primero tres puntos no proporcionan un vértice complementario, un cuarto punto es incorporado en el anális.

Entonces, de nuevo, si para estos cuatro puntos, un vértice complementario es necesitado, este vértice es determinado, y agregado a la lista Polygon(C). Después, la ventana deslizante es movida a este vértice como nuevo punto inicial de ventana. Solamente en el caso que los primero cuatro puntos no proporcionan un vértice complementario, un quinto punto es incorporado en el anális y posible determinación de vértices complementarios. Este procedimiento es continuado hasta que el número máximo m de puntos incorporados en el análisis es alcanzado. En el caso que m > k, solamente k puntos son procesados; en todo caso, el tratamiento de la sublista de Cand(C) llega a terminarse, o llega a ser truncado cuando incorpora al último punto de la lista Polygon(C).

En esta tesis solamente trabajamos con m = 5, pero mostramos algunos ejemplos para m = 3 y m = 4. El Algoritmo 1 presenta la idea principal del tratamiento de una sublista de Cand(C). Allí, la lista final L contiene todos los vértices complementarios del polígono que deben ser insertados en la lista Polygon(C) entre sus elementos  $c_j$  y  $c_{j+k}$ . El procedimiento para determinar vértices complementarios para tres, cuatro, y cinco candidatos, será descrito en los siguientes parágrafos.

En la práctica, la sublista  $(c_j, c_{j+1}, \dots, c_{j+k})$  puede ser larga. Nuestro método de detección de vértices complementarios es local debido al número restringuido de *m* puntos para la ventana deslizante. Sin embargo, entre dos candidatos subsecuentes puede haber cualquier número finito de puntos lineales, por lo tanto, las distancias entre los puntos de la ventana no son restringuidas por algún número prefijado.

#### 4.2. Vértices complementarios para tres candidatos. .

Consideremos una sublista  $(c_j, c_{j+1}, c_{j+2})$  de Cand(C) de puntos alternadamente convexos y cóncavos, donde  $c_{j+1}$  no es punto final de un canto extremo, en particular, no es un pico. Sea M la unión de los cuadrados del poliomino de C. Puesto que la curva poligonal a ser construida debe estar dentro del conjunto M,  $c_{j+1}$  es necesitado como vértice complementario para el polígono P si y sólo si  $\overline{c_j c_{j+2}}$  sale de M. Para simplificar la notación, denotemos la sublista a ser procesada por  $(c_1, c_2, c_3)$ . Existen ocho situaciones, presentadas en la Figura 6, puesto que el avance local del 4-contorno Csólo puede ser hacia cuatro direcciones: a) hacia el norte-este (NE - *north-east*), b) hacia el norteoccidente (NW - *north-west*), c) hacia el sur-este (SE - *south-east*), o, d) hacia el sur-occidente (SW - *south-west*).

**Lema 15.** Sean  $c_1, c_2, c_3$  puntos subsecuentes de la lista Cand(C) que son alternadamente convexos y cóncavos, donde  $c_2$  no es un pico. Sea M la unión de los cuadrados del poliomino de C,  $c_i = (x_i, y_i)$ ,  $i \in \{1, 2, 3\}$ . Según cada uno de los ocho tipos de situaciones locales de C, las siguientes condiciones son equivalentes al hecho que  $\overline{c_1c_3} \not\subset M$ , y por lo tanto, indican detectar  $c_2$  como vértice complementario para el polígono P.

Para el caso ( $c_1$  convexo,  $c_2$  cóncavo,  $c_3$  convexo):

a) Si C avanza en dirección NE, es decir,  $y_1 + 1 = y_2, x_2 + 1 = x_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (x_1 < x_2 \land y_2 < y_3 \land not(x_1 + 1 = x_2 \land y_2 + 1 = y_3)).$ 

b) Si C avanza en dirección SE, es decir,  $x_1 + 1 = x_2, y_2 - 1 = y_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (y_1 > y_2 \land x_2 < x_3 \land not(y_1 - 1 = y_2 \land x_2 + 1 = x_3))$ .

c) Si C avanza en dirección SW, es decir,  $y_1 - 1 = y_2, x_2 - 1 = x_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (x_1 > x_2 \land y_2 > y_3 \land not(x_1 - 1 = x_2 \land y_2 - 1 = y_3)).$ 

d) Si C avanza en dirección NW, es decir,  $x_1 - 1 = x_2, y_2 + 1 = y_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (y_1 < y_2) \land x_2 > x_3 \land not(y_1 + 1 = y_2 \land x_2 - 1 = x_3)).$ 

Para el caso ( $c_1$  cóncavo,  $c_2$  convexo,  $c_3$  cóncavo):

a) Si C avanza en dirección NE, es decir,  $x_1 + 1 = x_2, y_2 + 1 = y_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (y_1 < y_2 \land x_2 < x_3 \land not(y_1 + 1 = y_2 \land x_2 + 1 = x_3)).$ 

b) Si C avanza en dirección SE, es decir,  $y_1 - 1 = y_2, x_2 + 1 = x_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (x_1 < x_2 \land y_2 > y_3 \land not(x_1 + 1 = x_2 \land y_2 - 1 = y_3)).$ 

c) Si C avanza en dirección SW, es decir,  $x_1 - 1 = x_2, y_2 - 1 = y_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (x_2 > x_3 \land y_1 > y_2 \land not(y_1 - 1 = y_2 \land x_2 - 1 = x_3)).$ 

d) Si C avanza en dirección NW, es decir,  $y_1 + 1 = y_2, x_2 - 1 = x_3$ , entonces  $\overline{c_1c_3} \not\subset M \iff (x_1 > x_2 \land y_2 < y_3 \land not(x_1 - 1 = x_2 \land y_2 + 1 = y_3)).$ 

La demostración del lema es presentada en el Apéndice. Para cada caso, cuando la condición de Lema 15 se cumple, entonces  $c_2$  es detectado como vértice complementario, claramente entonces  $\overline{c_1c_2} \subset M$  y  $\overline{c_2c_3} \subset M$ . Las condiciones de Lema 15 presentan muchas similitudes, por eso, pueden ser unificadas y simplificadas, si son agrupadas apropiadamente.



FIGURA 6. Las ocho situaciones para tres candidatos subsecuentes, donde el segundo punto puede ser necesario como vértice complementario. El 4-contorno C es dibujado en azul, Ext(C) en rosa, los cuadrados del poliomino son presentados en gris, puntitos indican que puede haber cualquier número de puntos lineales, por lo tanto también más cuadrados, entre  $c_1 y c_2$ , y entre  $c_2 y c_3$ .

**Definición 16.** Sean  $c_1, c_2, c_3$  candidatos subsecuentes en la lista Cand(C) que son puntos alternadamente convexos y cóncavos, donde  $c_2$  no es un pico. Los ocho tipos de situaciones determinadas por la dirección del avance local del 4-contorno C y los tipos de candidatos, sean agrupados como sigue:

Grupo 1 contiene las siguientes situaciones:

- a)  $c_1$  convexo, C avanza hacia NE, es decir,  $y_1 + 1 = y_2, x_2 + 1 = x_3$ .
- b)  $c_1$  cóncavo, C avanza hacia SE, es decir,  $y_1 1 = y_2, x_2 + 1 = x_3$ .

c)  $c_1$  convexo, C avanza hacia SW, es decir,  $y_1 - 1 = y_2, x_2 - 1 = x_3$ .

d)  $c_1$  cóncavo, C avanza hacia NW, es decir,  $y_1 + 1 = y_2, x_2 - 1 = x_3$ .

Grupo 2 contiene las siguientes situaciones:

- a)  $c_1$  cóncavo, C avanza hacia NE, es decir,  $x_1 + 1 = x_2, y_2 + 1 = y_3$ .
- b)  $c_1$  convexo, C avanza hacia SE, es decir,  $x_1 + 1 = x_2, y_2 1 = y_3$ .
- c)  $c_1$  cóncavo, C avanza hacia SW, es decir,  $x_1 1 = x_2, y_2 1 = y_3$ .
- d)  $c_1$  convexo, C avanza hacia NW, es decir,  $x_1 1 = x_2, y_2 + 1 = y_3$ .

Para cada situación específica de tres candidatos subsecuentes  $(c_1, c_2, c_3)$ , es sencillo determinar a cál grupo pertenece. Eso puede ser todavía más facilitado si los candidatos en la lista *Cand* son marcados como convexos o cóncavos, lo cual es recomendado para implementaciones. Como corolario de Definición 16 y Lema 15, el Lema 17 reporta la condición única para cada grupo, que tiene que ser analizada para determinar si el segmento de límea  $\overline{c_1c_3}$  sale del conjunto M, en este caso,  $c_2$  tiene que ser definido como vértice complementario. Nótese que para píxeles distinctos  $c_i = (x_i, y_i) \in \mathbb{Z}^2$ ,  $i \in \{1, 2, 3\}, (|x_1 - x_2| = 1 \land |y_2 - y_3| = 1)$  es falso si y sólo si  $(|x_1 - x_2| \ge 2 \lor |y_2 - y_3| \ge 2)$ , y que  $not(|y_1 - y_2| = 1 \land |x_2 - x_3| = 1)$  es equivalente a  $(|y_1 - y_2| \ge 2 \lor |x_2 - x_3| \ge 2)$ .

#### Lema 17 (vértices complementarios para tres candidatos).

Sean  $c_1$ ,  $c_2$ ,  $c_3$  puntos subsecuentes en la lista Cand(C) que son alternadamente convexo y cóncavos, y donde  $c_2$  no es un pico. Sea M la unión de los cuadrados del poliomino de C,  $c_i = (x_i, y_i)$  para  $i \in \{1, 2, 3\}$ .

Si  $(c_1, c_2, c_3)$  pertenece al Grupo 1 según Definición 16 entonces  $\overline{c_1c_3} \not\subset M$  si y sólo si  $(x_1 \neq x_2 \land y_2 \neq y_3 \land (|x_1 - x_2| \ge 2 \lor |y_2 - y_3| \ge 2)).$ 

Si  $(c_1, c_2, c_3)$  pertenece al Grupo 2 según Definición 16 entonces  $\overline{c_1c_3} \not\subset M$  si y sólo si  $(y_1 \neq y_2 \land x_2 \neq x_3 \land (|y_1 - y_2| \ge 2 \lor |x_2 - x_3| \ge 2)).$ 

Si la condición se cumple,  $c_2$  es definido como vértice complementario para el polígono a ser construido, entonces  $c_2$  satisface que  $\overline{c_1c_2} \cup \overline{c_2c_3} \subset M$ .

#### 4.3. Vértices complementarios para cuatro candidatos.

Consideremos cualquier sublista  $(c_j, c_{j+1}, c_{j+2}, c_{j+3})$  de Cand(C) de puntos alternadamente convexos y cóncavos donde  $c_{j+1}$  y  $c_{j+2}$  no son picos, claro que entonces tampoco son otros puntos finales de cantos extremos. Sea M la unión del poliomino de C. Para simplificar la notación, denotemos la sublista a ser procesada como  $(c_1, c_2, c_3, c_4)$ . Según la estratégia propuesta, el objetivo ahora es detectar vértices complementarios para estos cuatro candidatos, ya sabiendo que para los primeros tres de ellos, ningún tal vértice fue encontrado. Es decir, necesitamos deducir condiciones para detectar cuando  $\overline{c_1c_4} \not\subset M$ , bajo la suposión que  $\overline{c_1c_3} \subset M$ . En tal caso, un vértice complementario  $p \in \{c_2, c_3\}$  tiene que ser determinado. El punto p debe asegurar que la curva  $\overline{c_1p} \cup \overline{pc_4}$  se encuentra dentro de M y es la curva más corta posible con esta propiedad, entre las dos opciones para p.

De nuevo hay ocho situaciones, considerando  $c_1$  como convexo, o como cóncave, y tomando en cuenta el avance local de C que sólo puede ser igualmente como descrito arriba para tres candidatos: a) NE, b) NW, c) SE, d) SW. Las condiciones detalladas y las indicaciones para definir los vértices complementarios para todos los casos, son reportadas en Lema 20 contenido, junto con su demostración completa formal, en el Apéndice. Utilizando los grupos según la Definición 16, similitudes y analogías entre las condiciones de Lema 20 llevan a la siguiente versión condensada para el tratamiento de cuatro candidatos.

#### Lema 18 (vértices complementarios para cuatro candidatos).

Sean  $c_1$ ,  $c_2$ ,  $c_3$ ,  $c_4$  puntos subsecuentes en la lista Cand(C) que son alternadamente convexos y cóncavos, y donde  $c_2$  y  $c_3$  no son picos. Sea M la unión de los cuadrados del poliomino de C, y  $c_i = (x_i, y_i)$  para  $i \in \{1, 2, 3, 4\}$ . Para cada grupo según la Definición 16, las siguientes condiciones garantizan que  $\overline{c_1c_4} \not\subset M$ . El punto  $p \in \{c_2, c_3\}$  indicado abajo para cada caso, satisface que la curva  $\overline{c_1p} \cup \overline{pc_4}$  se encuentra dentro de M y tiene longitud mínima entre las dos opciones para p. Es decir, entonces p es detectado como vértice complementario del polígono. Cuando ninguna condición se cumple, entonces  $\overline{c_1c_4} \subset M$ .

#### Si $(c_1, c_2, c_3)$ pertenece al Grupo 1 entonces:

(1) Si  $x_1 = x_2 \land y_2 \neq y_3 \land x_3 \neq x_4$  entonces  $p = c_3$ . (2a) Si  $x_1 \neq x_2 \land y_2 = y_3 \land |x_2 - x_4| < |x_1 - x_2|$  entonces  $p = c_2$ . (2b) Si  $x_1 \neq x_2 \land y_2 = y_3 \land |x_1 - x_3| < |x_3 - x_4|$  entonces  $p = c_3$ . (3) Si  $x_1 = x_2 \land y_2 = y_3 \land |x_3 - x_4| \ge 2$  entonces  $p = c_3$ . (4a) Si  $|x_1 - x_2| = |y_2 - y_3| = 1 \land x_3 = x_4$  entonces  $p = c_2$ . (4b) Si  $|x_1 - x_2| = |y_2 - y_3| = 1 \land |x_3 - x_4| \ge 2$  entonces  $p = c_3$ . Si  $(c_1, c_2, c_3)$  pertenece al Grupo 2 entonces: (1) Siy\_1 = y\_2 \land x\_2 \neq x\_3 \land y\_3 \neq y\_4 entonces  $p = c_3$ . (2a) Si  $x_1 \neq x_1 \land x_2 = x_1 \land |x_3 - x_4| \ge 2$ 

 $\begin{array}{l} (2a) \; Si \; y_1 \neq y_2 \wedge x_2 = x_3 \wedge |y_2 - y_4| > |y_1 - y_2| \; entonces \; p = c_2. \\ (2b) \; Si \; y_1 \neq y_2 \wedge x_2 = x_3 \wedge |y_1 - y_3| < |y_3 - y_4| \; entonces \; p = c_3. \\ (3) \; Si \; y_1 = y_2 \wedge x_2 = x_3 \wedge |y_3 - y_4| \geq 2 \; entonces \; p = c_3. \\ (4a) \; Si \; |y_1 - y_2| = |x_2 - x_3| = 1 \wedge y_3 = y_4 \; entonces \; p = c_2. \\ (4b) \; Si \; |y_1 - y_2| = |x_2 - x_3| = 1 \wedge |y_3 - y_4| \geq 2 \; entonces \; p = c_3. \end{array}$ 

Los grupos según Definición 16 son determinados por los primeros tres puntos. Según la estratégia propuesta para detectar vértices complementarios, antes de analizar a los cuatro candidatos, el grupo ya está conocido, puesto que los primeros tres puntos han sido tratados antes. Lema 18 proporciona un método de detección apropiado para la implementación: para dados  $(c_1, c_2, c_3, c_4)$ , basado en el grupo, en el peor caso, las seis condiciones (1), (2a), (2b), (3), (4a), (4b) tienen que ser probadas, eso involucra solamente operaciones sencillas entre números enteros.

#### 4.4. Vértices complementarios para cinco candidatos.

Consideremos cualquier sublista  $(c_j, c_{j+1}, c_{j+2}, c_{j+3}, c_{j+4})$  de Cand(C) de puntos alternadamente convexos y cóncavos donde  $c_{j+1}$ ,  $c_{j+2}$  y  $c_{j+3}$  no son pisos, entonces tampoco pueden ser otros puntos finales de cantos extremos. Sea M la unión de los cuadrados del poliomino de C. Para simplificar la notación, denotemos la sublista a ser procesada como  $(c_1, c_2, c_3, c_4, c_5)$ . El objetivo ahora es detectar vértices complementarios para estod cinco candidatos, cuando para los primeros tres y los primeros cuatro de ellos, ninguntal vértice fue encontrado. Es decir, necesitamos deducir condiciones que garantizan que  $\overline{c_1c_5} \not\subset M$ , bajo la suposiciones que  $\overline{c_1c_3} \subset M$  y  $\overline{c_1c_4} \subset M$ . En tal caso, un vértice complementario  $p \in \{c_2, c_3, c_4\}$  debe ser determinado. Este punto p debe garantizar que la curva  $\overline{c_1p} \cup \overline{pc_5}$  se encuentra dentro de M y es la curva más corta posible entre las tres opciones para p.

Como antes, el problema puede ser analizado para todas las situaciones posibles, donde por un lado, se consideran los casos que  $c_1$  es convexo o cóncavo, y por otro lado, se toman en cuenta las direcciones de avanze local posibles de C, siendo NE, NW, SE, or SW. Eso lleva a muchas situaciones y condiciones las cuales son reportadas en detalle y demostradas matemáticamente en Lema 21 que está contenido en el Apéndice. Utilizando los grupos de situaciones según la Definición 16, lo cuales son completamente determinados por los primeros tres candidatos  $c_1, c_2, c_3$ , las condiciones numerosas del Lema 21 pueden ser unificadas hacia la siguiente versión condensada que es apropiada para implementaciones.

#### Lema 19 (vértices complementarios para cinco candidatos).

Sean  $c_1, c_2, c_3, c_4, c_5$  puntos subsecuentes en la lista Cand(C) que son alternadamente convexos y cóncavos, y donde ningún punto es un pico. Sea M la unión de los cuadrados del poliomino de C, además  $c_i = (x_i, y_i)$  para  $i \in \{1, 2, 3, 4, 5\}$ . Para cada grupo seguín Definición 16, cada una de las siguientes condiciones garantiza que  $\overline{c_1c_5} \not\subset M$ . El punto  $p \in \{c_2, c_3, c_4\}$  indicado abajo para cada caso, satisface que  $\overline{c_1p} \cup \overline{pc_5}$  se encuentra dentro de M y tiene longitud mínima entre las tres opciones para p. Entonces p es detectado como vértice complementario para el polígono. Cuando ninguna condición se cumple, entonces  $\overline{c_1c_5} \subset M$ .

Si  $(c_1, c_2, c_3)$  pertenece al Grupo 1 entonces: (1) Si  $x_1 \neq x_2 \land y_2 = y_3 \land x_3 \neq x_4$ , y además, (1)  $x_1 \neq x_2 \land y_2 = y_3 \land x_3 \neq x_4$ , y además,

 $\begin{array}{l} (1a) \ |x_2 - x_1| + n = |x_4 - x_2| \ para \ n \in \{0, 1, 2\} \ y \ y_4 \neq y_5, \ entonces \ p = c_4. \\ (1b) \ |x_2 - x_1| + 2 = |x_4 - x_2| \ y \ y_4 = y_5, \ entonces \ p = c_3. \\ (2) \ Si \ |x_1 - x_2| = |y_2 - y_3| = |x_3 - x_4| = 1, \ y \ además, \\ (2a) \ y_4 = y_5, \ entonces \ p = c_3. \\ (2b) \ |y_5 - y_4| \ge 2, \ entonces \ p = c_4. \\ (3) \ Si \ x_1 = x_2 \land y_2 = y_3 \land |x_3 - x_4| = 1, \ y \ además, \\ (3a) \ y_4 = y_5, \ entonces \ p = c_3. \\ (3b) \ |y_4 - y_5| \ge 2, \ entonces \ p = c_4. \\ (4) \ Si \ x_1 = x_2 \land y_2 \neq y_3 \land x_3 = x_4, \ y \ además, \\ (4a) \ |y_4 - y_5| < |y_2 - y_3|, \ entonces \ p = c_3. \\ (4b) \ |y_4 - y_5| > |y_2 - y_3| + 2, \ entonces \ p = c_4. \\ (5) \ Si \ |x_1 - x_2| = 1 \land y_2 = y_3 \land x_3 = x_4 \land |y_4 - y_5| \ge 2, \ entonces \ p = c_4. \\ (6) \ Si \ x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land |y_4 - y_5| \ge 3, \ entonces \ p = c_4. \end{array}$ 

Si  $(c_1, c_2, c_3)$  pertenece al Grupo 2 entonces:

 $\begin{array}{l} (1) \; Si\; y_1 \neq y_2 \wedge x_2 = x_3 \wedge y_3 \neq y_4, \; y \; además, \\ (1a) \; |y_1 - y_2| + n = |y_2 - y_4| \; para\; n \in \{0, 1, 2\}, \; y\; x_4 \neq x_5, \; entonces\; p = c_4. \\ (1b) \; |y_1 - y_2| + 2 = |y_2 - y_4| \; y\; x_4 = x_5, \; then\; p = c_3. \\ (2) \; Si\; |y_1 - y_2| = |x_2 - x_3| = |y_3 - y_4| = 1, \; y \; además, \\ (2a)\; x_4 = x_5, \; entonces\; p = c_3. \\ (2b)\; |x_4 - x_5| \geq 2, \; entonces\; p = c_4. \\ (3)\; Si\; y_1 = y_2 \wedge x_2 = x_3 \wedge |y_3 - y_4| = 1, \; y \; además, \\ (3a)\; x_4 = x_5, \; entonces\; p = c_3. \\ (3b)\; |x_4 - x_5| \geq 2, \; entonces\; p = c_4. \\ (4)\; Si\; y_1 = y_2 \wedge x_2 \neq x_3 \wedge y_3 = y_4, \; y \; además, \\ (4a)\; |x_4 - x_5| < |x_2 - x_3|, \; entonces\; p = c_3. \\ (4b)\; |x_4 - x_5| > |x_2 - x_3| + 2, \; entonces\; p = c_4. \\ (5)\; Si\; |y_1 - y_2| = 1 \wedge x_2 = x_3 \wedge y_3 = y_4 \wedge |x_4 - x_5| \geq 2, \; entonces\; p = c_4. \\ (6)\; Si\; y_1 = y_2 \wedge x_2 = x_3 \wedge y_3 = y_4 \wedge |x_4 - x_5| \geq 3, \; entonces\; p = c_4. \end{array}$ 

Este lema proporciona un método de detección de vértices complementarios, apropiado para implementaciones: para toda sublista  $(c_1, c_2, c_3, c_4, c_5)$  a ser procesada, basado en el conocimiento del grupo que ya ha sido determinado antes, en el peor de los casos, las diez condiciones (1a), (1b),  $\cdots$ , (5), (6), tienen que ser checadas. Sin embargo, nótese que eso involcura solamente comparaciones y operaciones de cálculo sencillas entre las coordenadas de los puntos, que son números enteros.

## CAPÍTULO 4

# Algoritmo para construir una aproximación poligonal para 4-contornos generales

#### 1. Algoritmo para determinar los vértices del polígono propuesto

El Algoritmo 2 muestra un pseudo-código que determina los vértices del polígono propuesto para cualquier 4-contorno. A continuación comentamos sobre su funcionamiento, su justificación, y su implementación:

(a) Determinar la lista de candidatos Cand(C) a partir de la lista C (línea 2), se basa en Definición 12 y Corolario 7. Para poder efectuar eso eficientemente, es recomendado que la lista C, a parte de las coordenadas de cada punto  $p_i$ , contiene también los códigos de Freeman de la dirección de paso desde  $p_i$  hacia  $p_{i+1}$ .

(b) Como resultado del preprocesamiento de la lista Cand(C) (línea 3), para i=1, exactamente una de las condiciones de líneas 6 y 14, se cumple, por lo tanto, el primer punto  $p_1$  de la lista Polygon(C) es un punto convexo de la MLPC.

(c) El tratamiento de una sublista de *Cand* fue mostrado en el Algoritmo 1, el cual toma la lista  $(c_m, c_{m+1}, \dots, c_i)$  de candidatos subsecuentes como dato de entrada, y genera una lista de  $l \ge 0$  vértices complementarios del polígono, la cual después tiene que ser insertada a la lista Polygon(C) entre los puntos  $c_m$  y  $c_i$ .

(d) El condicionamiento para agregar el punto  $c_i$  a la lista Polygon(C) en líneas 15-17, que consiste en que este punto no es ya el último punto de la lista actual Polygon(C), es necesitado cuando Cand(C) contiene más que dos puntos subsecuentes que todos son convexos, o, todos son cóncavos:

Supongamos que  $i \leq t-1$  y  $c_i$ ,  $c_{i+1}$ ,  $c_{i+2}$  de Cand(C), todos son puntos convexos. Puesto que la condición de línea 14 se cumple para la pareja  $c_i$ ,  $c_{i+1}$ , al menos  $c_{i+1}$  es agregado a Polygon(C), volviéndose el actualmente último punto de esta lista. Después de la prueba si vértices complementarios deben ser insertados en la lista Polygon(C) en posiciones antes del punto  $c_i$ , el próximo paso inicia aumentando i, luego la pareja  $c_{i+1}$ ,  $c_{i+2}$  de puntos convexos es encontrada (línea 14) y se pretende agregarla a Polygon(C). Sin embargo,  $c_{i+1}$  ya es el último elemento de la lista actual Polygon(C). Eso justifica la condición en línea 15.

El condicionamiento para agregar el punto  $c_{i+1}$  a Polygon(C) en línea 18 es justificado puesto que  $c_{i+1} = c_1$  para i = t (vea línea 14), pero  $c_1$  ya pertenece a la lista Polygon(C) como su primer elemento.

(e) El borrado de puntos de Polygon(C) que son colineales entre otros puntos situados en la lista inmediatamente antes y subsecuentemente después (línea 29), puede requerer localmente varias iteraciones. Es decir, después de borrar el punto medio de una tripleta de puntos colineales, los puntos restantes podrían todavía estar en una situación de colinealidad con otros puntos situados inmediatamente antes y después en la lista. Trazando Polygon(C) como secuencia cíclica significa incluir el eventual borrado del punto  $p_1$  de Polygon(C) en caso que fuera colineal con  $p_n$  y  $p_2$ . La lista final Polygon(C) contiene todos los vértices del polígono a construir, y en ella, cualesquiera tres puntos subsecuentes no son colineales.

#### Algorithm 2 Determinación de la lista ordenada de vértices del polígono.

**Input:** Lista  $C = (p_1, p_2, \cdots, p_n), n \ge 2$ , de un 4-contorno. **Output:** Lista Polygon(C) de vértices del polígono. 1: Se inicializa la lista Polygon(C) como vacía. 2: Se determina la lista  $Cand(C) = (c_1, c_2, \cdots, c_t)$  de candidatos, donde para cada  $c_i$ , sus coordenadas  $x_i, y_i$  and su tipo (punto convexo, punto cóncavo, pico convexo o cóncavo) son guardadas. 3: La lista Cand(C) es preprocesada: se determina al primer punto  $c_k$  que es un pico convexo, o, un punto convexo tal que  $c_{k+1}$  también es convexo. Después, la secuencia cíclica Cand(C) es trasladada con movimientos  $c_1 := c_k, c_2 := c_{k+1}$ , etc., tal que la versión final procesada queda como  $Cand(C) = (c_1, c_2, \dots, c_t)$ , es decir, inicia con un punto convexo de la MLPC. 4: i := 1 (índice de Cand), j := 0 (índice de Polygon), m := 15: while  $i \leq t$  do if  $c_i = (x_i, y_i)$  es un pico then 6: 7: j := j + 1, entonces  $p_j = c_i$  es agregado a Polygon(C). if  $i - m \ge 2$  then 8: Tratamiento de la sublista de Cand  $(c_m, c_{m+1}, \cdots, c_i)$ , los  $l \ge 0$  vértices complemen-9: tarios obtenidos son insertados en Polygon(C) entre los puntos  $c_m \ge c_i$ . 10: j := j + lend if 11: m := i (último índice de *Cand* de un punto final de un canto extremo) 12:end if 13:14: if  $c_i = (x_i, y_i)$  y  $c_{i+1} = (x_{i+1}, y_{i+1})$  (para  $i = t, c_i$  and  $c_1$ ) ambos son convexos, o, ambos son cóncavos then if el punto  $c_i$  no coincide con el punto  $p_i$  then 15:16:j := j + 1, entonces  $p_j = c_i$  es agregado a Polygon(C). end if 17:18:if  $i \leq t - 1$  then j := j + 1, entonces  $p_j = c_{i+1}$  es agregado a Polygon(C). 19:20: end if if i - m > 2 then 21: Tratamiento de la sublista de Cand  $(c_m, c_{m+1}, \cdots, c_i)$ , los  $l \ge 0$  vértices complemen-22:tarios son insertados en Polygon(C) entre los puntos  $c_m$  y  $c_i$ . 23: j := j + lend if 24:m := i + 1 (último índice de *Cand* de un punto final de un canto extremo) 25: end if 26:27:i := i + 128: end while 29: Trazando Polygon(C) como una secuencia cíclica, se borran todos los puntos en medio de tripletas de puntos subsecuentes que son colineales.

(f) Realizar el tratamiento de colinealidad al final del algoritmo durante un trazado adicional de la lista Polygon(C), no es la única opción. En nuestra implementación, pruebas de colinealidad son efectuados cada vez cuando uno o dos puntos pretenden de ser agregados a la lista Polygon(C). Una tal prueba es utilizada para decidir si un punto de la lista actual Polygon(C) tiene que ser borrado del fin de la lista, antes de que un nuevo punto es agregado, o, si de dos nuevos puntos, realmente ambos son agregados o no. Por ejemplo, cuando se detectó un pico (línea 6) o un prospectivo vértice complementario durante el "Tratamiento de una sublista de *Cand*", digamos p, y los últimos dos puntos  $p_j$ ,  $p_{j-1}$  de la lista actual Polygon(C) satisfacen que  $p_j$ ,  $p_{j-1}$ , p son colineales, entonces  $p_{j-1}$  es eliminado de Polygon(C) antes de agregar p a esta lista. En caso que  $p_j$ ,  $p_{j-1}$  ambos son

convexos, o, ambos son cóncavos, y una nueva pareja (p, q) de tales puntos es detectada (línea 14), es conveniente checar si  $(p_j, p_{j-1}, p, q)$  están todos sobre la misma línea recta, en este caso,  $p_{j-1}$ es borrado de Polygon(C) y luego, solamente q es agregado. Entonces, al final del algoritmo sólo queda analizar la situación alrededor del primero y el último punto de Polygon(C).

#### 2. Propiedades del algoritmo

#### 2.1. Correctitud.

• El algoritmo primero selecciona de la lista de candidatos todos los puntos finales de cantos localmente extremos, incluyendo picos, todos estos son copiados a la lista Polygon(C). Por Lema 11 y Corolario 13, todos estos puntos pertenecen a la MLPC, pero no necesariamente son vértices, por posibles situaciones de colinealidad.

• Después, mediante el tratamiento de sublistas de *Cand*, vértices complementarios del polígono eventualmente son obtenidos y son insertados apropiadamente en la lista Polygon(C). Vértices complementarios satisfacen condiciones semi-locales de caminos más cortos, además, garantizan que la curva poligonal a ser construida es confinada por el poliomino definido por el 4-contorno dado. El tratamiento de sublistas de *Cand* según Algoritmo 1 trabaja con la sublista dada de candidatos mediante una ventana deslizante de maximalmente cinco puntos subsecuentes, donde primero, los primeros tres puntos are considerados. En caso que éstos no necesitan un vértice complementario, el cuarto punto es incluido. Si la curva generada por estos cuatro puntos no sale del poliomino, el quinto punto es incorporado al tratamiento. La correctitud de este procedimiento se basa en los Lemas 17, 18, 19. Vértices complementarios no necesariamente son puntos de la MLPC.

• Comentario (a) de arriba ya fundamentó la generación de la lista de candidatos Cand(C). Para preprocesar esta lista en línea 3 del algoritmo, es necesario encontrar un pico convexo, o una pareja de candidatos subsecuentos convexos. Tales puntos obviamente existen para el 4-contorno C de cualquier objeto (conjunto finito 4-conexo de al menos dos píxeles). Puesto que C corresponde a una curva cerrada débilmente simple que rodea al objeto, si el objeto contiene un cuadrado de 2x2 puntos, C tiene al menos cuatro cantos localmente extremos con puntos finales convexo, aunque cualquiera de estos cantos puede estar degenerado a un pico. Aún en el caso especial que el objeto fuera degenerado a un conjunto "delgado", contendría al menos dos picos convexos.

• Como fue explicado en los Comentarios (e),(f) arriba, pruebas apropiadas y tratamientos de colinealidad local completan al algoritmo, para que genere la lista ordenada completa de píxeles que son los vértices del polígono deseado.

#### 2.2. Requerimiento de espacio. .

Los datos de entrada son proporcionados como lista de un 4-contorno  $C = (p_1, p_2, \dots, p_n)$  de npuntos. Para cada punto  $p_i$ , C contiene sus coordenadas enteros  $x_i, y_i$  y el código de Freeman  $f_i \in \{0, 1, 2, \dots, 7\}$  de la dirección de paso desde  $p_i$  hacia  $p_{i+1}$ . Por lo tanto, C es una matriz de enteros, de tamaño nx3. El algoritmo genera Cand(C) y Polygon(C), ambas son matrices de enteros con maximalmente n renglones, sus primeras dos columnas contiene las coordenadas enteras de puntos. Cand(C) tiene una tercer columna, guardando para cada punto  $p_i = (x_i, y_i)$  su tipo  $t_i \in \{1, 2, 3, 4\}$  (1 = punto convexo, 2 = punto cóncavo, 3 = pico convexo, 4 = pico cóncavo). Polygon(C) podría también guardar tal información adicional para futuros usos. Si ambas listas Cand(C) y Polygon(C) son manejadas como matrices kx3,  $k \leq n$ , entonces el algoritmo requiere a lo más 9n lugares para enteros.

La lista sometida al tratamiento de sublistas de *Cand* (líneas 9 y 22 del algoritmo) es parte de la lista Cand(C) y puede ser manejada como tal. Las listas *C*, Cand(C) y Polygon(C) no necesariamente tiene que ser guardadas de manera separada, la matriz *C* puede ser extendida por una columna donde por números enteros puede ser codificada informacón como el tipo del punto, o si es candidato, o si es un vértice el polígono final. De esta manera, el algoritmo requiere solamente 4n lugares para enteros.

#### 2.3. Complejidad de tiempo.

La complejidad de tiempo del algoritmo es lineal en dependencia del número n de puntos del 4contorno de entrada. Más precisamente, generar Cand(C) requiere trazar la lista C una vez, tratando cada punto involucra solamente su predecesor y su sucesor inmediatos. Los restantes pasos están basados en trazar Cand(C) que tiene a lo más n points. Los números máximos de veces que cada punto de Cand(C) es visitado, y los cálculos necesitados, son como sigue:

• Si C es dado sólo como lista de coordenadas, se necesita trazar C una vez, realizando esencialmente 2n operaciones, para generar los códigos de Freeman y agregarlos a la lista.

• Preprocesar Cand(C) (línea 3) tiene complejidad de orden on, puesto que el índice k tiene valor de a lo más aproximadamente n/2, y trasladar la lista requiere n operaciones.

• Cada vez cuando un canto extremo (pico, o puntos subsecuentes ambos convexos, o ambos cóncave) es encontrado, el último *Cand*-índice del punto final de un canto extremo es actualizado (lineas 12 y 25). Por eso, el punto inicial de una lista para el tratamiento de sublistas de *Cand* (líneas 9 y 22) siempre está disponible. Durante el tratamiento de sublistas de *Cand*, todos los puntos de dicha sublista son tratados por segunda vez como elementos de Cand(C). Cada tal tratamiento involucra a lo más cuatro otros puntos, donde en el peor caso, todas las condiciones para detectar vértices complementarios tienen que ser checadas. Después de haber determinado el grupo según Definición 16 (lo cual requiere un cálculo simple involucrando tres puntos), hay una tal condición para tres candidatos (Lema 17), seis condiciones para cuatro candidatos (Lema 18), y diez condiciones para cinco candidatos (Lema 19). Trabajando con la lista preprocesada Cand(C) que tiene a lo más n puntos, en el peor de los casos, se necesitan 18n tests para determinar todos los vértices prospectivos del polígono.

• El proceso de borrar de la lista Polygon(C) que tiene a lo más n puntos, los puntos que son colieales entre sus predecesores y sucesores inmediatos, vea línea 29 del algoritmo, tiene complejidad de tiempo de orden n, aún si se necitan varias iteraciones para eso (vea Comentario (e) arriba).

Asumiendo que la lista de entrada C ya incluye los códigos de Freeman, se pueden construir (artificialmente) casos donde casi todos los puntos del 4-contorno resultan ser candidatos, en tales caso el algoritmo alcanza su máxima complejidad de tiempo de orden 21n. Para los mejores casos donde casi todos los vértices del polígono son puntos finales de cantos localmente extremos, el algoritmo necesita un orden de 3n operaciones solamente. Para los 4-contornos usados en experimentos para el presente trabajo, el número de candidatos resultó entre 58.5% y 64%, el número de vértices del polígono entre 8.5% y 14.6%, relativo al número de puntos del 4-contorno de entrada. Es importante enfatizar que todos los datos de entraa y de salida son números enteros, y que todos los cálculos necesitados pueden efectuarse entre enteros.

### 3. Ejemplos

Las Figuras 1 y 2 presentan los candidatos y el polígono de un objeto pequeño mostrado ya antes. Las figuras subsecuentes muestran otros objetos, entre ellos algunos cuyos 4-contornos generan curvas débilmente simples, pero no simples.

Mientras que antes, píxeles fueron visualizados como puntos de retícula, ahora usamos también una representación por cuadrado, donde cada pixel es mostrado como cuadrado sólido. Entonces, 4-contornos son dibujados en azul. Candidatos aparecen sobrepuestos sobre el 4-contorno azul C, un candidato siendo un punto convexo ( $\in C$ ) se vuelve rojo, un punto cóncaveo ( $\in Ext(C)$ ) verde, un pico convexo ( $\in C$ ) se ve café, y un pico cóncavo ( $\in Ext(C)$ ) recibe color salmón. En otras figuras, el polígono es presentado, entonces éste fue sobrepuesto sobre el 4-contorno el cual entonces aparece en negro, cantos extremos con puntos finales convexos son dibujados completos en rojo,



FIGURA 1. Representación por retícula: a) lista de candidatos (convexo - rojo, cóncavo - verde, pico convexo - café, pico cóncavo - salmón), b) vértices del polígono marcados por círculos amarillos, la frontera del polígono marcada en negra para m = 3, c) el polígono para m = 4, d) el polígono para m = 5. Comparación con Figura 5 revela que el polígono no coincide con el MLP, puesto que tiene un vértice adicional marcado como p.



FIGURA 2. Representación por cuadrado: a) C del objeto de Figura 1. b) candidatos. c) vértices del polígono para m = 5: cuatro picos convexos en café, un pico cóncavo en salmón, un vértice complementario convexo en azul cielo, un vértice complementario cóncavo en amarillo. Durante el trazado de *Cand* en sentido del reloj, el punto rojo en la línea inferior line de c) fue encontrado como punto inicial de un canto extremo horizontal, y su vecino izquierdo como punto final de este canto. Más tarde, este punto fue confirmado como pico convexo y por eso, fue marcado nuevo como café.

cantos extremos con puntos finales cóncavos en verde, picos convexos lucen café, picos cóncavos en color salmón. Cada vértice complementario convexo tiene color azul, cada vértice complementario cóncavo es mostrado en amarillo.

En la representación por retícula, usada como antes, C es dibujado en azul, Ext(C) en rosa, el poliomino entre C y Ext(C) en algunas figuras es sombreado en gris. Candidatos son presentados por los mismos colores como en la representación por cuadrado, su orden en la lista Cand(C) es visualizado por ténuas líneas negras, los vértices del polígono son entonces marcados por círculos amarillos, y la frontera del polígono es marcada por una curva negra.



FIGURA 3. Representación por cuadrado: a) objeto, b) C, c) C pintado en azul sobre el objeto negro, luego, Ext(C) fue marcado sobre eso en rosa, d) candidatos marcados sobre el 4-contorno azul, d) el polígono construido para m = 5: cantos extremos (rojo y verde), otros vértices extremos (dos picos en café y salmón), dos vértices complementarios (azul cielo, amarillo), todos pintados sobre el 4-contorno negro.



FIGURA 4. Polígono (m = 5) del objeto de Figura 3a), vértices del polígono encerrados por círculos amarillos, la frontera del polígono marcada negra.



FIGURA 5. Representación por cuadrado: vértices del polígono (convexos complementarios) y cantos localmente extremos (con puntos finales convexos), para versiones rotadas de una elipse (ejes de 150 y de 50 píxeles).



FIGURA 6. Representación por cuadrado: a) objeto, b) C, c) candidatos sobrepuestos sobre C, d) vértices del polígono (m = 5) y cantos extremos sobrepuestos sobre el 4-contorno negro. Abajo, la representación por retícula del polígono para m = 5.



FIGURA 7. Representación por cuadrado: parte superior de los círculos con radios de 10 a 100 píxeles, arriba son marcados los puntos candidatos, abajo son visualizados sus polígonos calculados con m = 5.



FIGURA 8. Representación por cuadrado: vértices del polígono y cantos localmente extremos, para cuatro versiones escaladas de un objeto con 4-contorno simple.



FIGURA 9. Representación por cuadrado: objeto Cx10, con su 4-contorno, y su polígono calculado para m = 5. En la segunda línea, el polígono para versiones rotadas del mismo objeto.



FIGURA 10. Representación por cuadrado del polígono del objeto Cx5, para m = 3, 4, 5. Para mejor apreciación, abajo se muestra la representación por retícula, de la región alrededor de uno de los picos.

## CAPÍTULO 5

# Experimentos de estimación del perímetro

#### 1. Planteación y preparación de experimentos

Para ilustrar que la aproximación poligonal propuesta en esta tesis tiene utilidad para 4-contornos generales de objetos digitales de tamaños pequeños y medianos, el presente capítulo reporta resultados de experimentos de estimación del perímetro de objetos del plano cuya discretización genera objetos digitales 4-conexos que caben en imágenes de hasta 4000x4000 píxeles, con 4-contornos que contienen hasta 30200 píxeles. La longitud euclidiana de la curva que fronteriza al polígono propuesto, es usada como estimador del perímetro del objeto original del plano euclidiano  $\mathbb{R}^2$ . Los objetos en  $\mathbb{R}^2$  empleados para nuestros experimentos fueron generados a partir de curvas cuya longitud verdadera es calculable mediante fórmulas conocidas, como círculos o arcos circulares, elipses o arcos elipsoidales, segmentos de líneas rectas, y espirales arquimedianos. Las curvas cerradas fueron discretizadas por el método de discretización de retícula (grid intersection digitization) [15] y después rellenadas, para así generar objetos digitales 4-conexos. Después, sus 4-contornos fueron obtenidos mediante métodos estándar de seguimiento de contornos en imágenes binarias.

El error (relativo) de la estimación del perímetro es calculado como el porcentaje

$$error = \frac{|perímetro \ estimado - perímetro \ verdadero|}{perímetro \ verdadero} \cdot 100.$$

Debido al método semi-local para determinar los vértices del polígono, no se puede esperar la convergencia del estimador de perímetro bajo aumento de la resolución de discretización. Sin embargo, el trabajo de la presente tesis incluye un análisis del comportamiento del error bajo aumento de la resolución de discretización, o, equivalentemente, bajo escalamientos del objeto original: el objeto es generado en muchas versiones más grandes, y luego discretizado de nuevo. Para objetos cada vez m'as grandes, también fueron analizadas la varianza del error relativo bajo rotaciones del objecto original, y la **razón de compresión**, dada como el porcentaje

 $\label{eq:razon} \textit{razon de compression} = \frac{|\textit{número de píxeles de C} - \textit{número de píxeles del polígono}|}{\textit{número de píxeles de C}} \cdot 100 \,.$ 

#### 2. Estimación de perímetro de objetos con 4-contornos simples

Los experimentos iniciaron con objetos cuyos 4-contornos son curvas digitales simples, con el fin de comprobar que el código del algoritmo determine correctamente al polígono, y para realizar primeras pruebas del comportamiento de perímetros estimados bajo aumento del tamaño del objeto.

• Círculos: fueron generados de radios siendo múltiples de 10, entre 10 y 1000 píxeles, y algunos de radios entre 1500 y 2000 píxeles. Figura 7 muestra parte de los círculos de radios entre 10 y 100 píxeles, con sus polígonos. Los errores relativos del perímetro resultaron entre 0.19% y 0.30% para radios entre 300 y 1000 píxeles, y de 0.15% a 0.20% para radios entre 1000 y 2000 píxeles.

• Elipses: Se realizaron pruebas con elipses en posicin alineada y con elipses rotadas, con diversas combinaciones entre eje mayor y menor entre 50 y 950 píxeles. Los errores principalmente resultaron debajo de 0.1%, con una variación hasta 0.1 si ambos ejes tienen al menos 150 píxeles. Parte de los resultados pueden ser consultadas en las tablas del Apéndice B.



FIGURA 1. Objeto Kx10 en representation por cuadrados. Primera línea: el objeto, una ilustración de su construcción, y su 4-contorno en azul. Segunda línea: su polígono para m = 5, ta, bién para dos versiones rotadas del objeto.



FIGURA 2. Object Mx20, its polygon vertices and extremal edges.

Para calcular el perímetro verdadero de elipses, se utilizó una fórmula de Ramanuyan conocida de la literatura: el perímetro de una elipse con medios ejes  $a \ge b$ , puede ser aproximado por

$$\pi(a+b)\left(1+rac{3h}{10+\sqrt{4-3h}}
ight), \text{ donde } h=rac{(a-b)^2}{(a+b)^2}.$$

La fórmula es mencionada, por ejemplo, en página 602 de [1]. (el artículo es disponible en http://www.jstor.org/stable/2323302)

#### 3. Objetos con 4-contornos débilmente simples usados para la experimentación

**Objeto C:** es construido a partir de arcos circulares, vea Figure 10. Su versión magnificada **CxN** tiene una anchura de 20·N píxeles. El objeto fue analizado para N=10, 15, 20,  $\cdots$ , 150 (29 instancias).

**Objeto K:** es generado a partir de arcos circulares segmentos de líneas rectas, vea Figure 1. Su versión magnificada **KxN** tiene una anchura de 15·N píxeles. El objeto fue analizado para N=10, 20,  $\cdots$ , 230, 240, 248 (25 instancias).

**Objeto M:** construido a partir de círculos, un arco circular y un arco elipssoidal, y segmentos de líneas rectas, vea Figure 2. La versión magnificada MxN tiene una anchura de N·10 píxeles. El objeto fue analizado para N=30,40,50,...,380 (36 instancias).

**Objetos Q1 y Q3:** son construidos a partir de dos espirales arquimedianos [**38**] y un arco circular. Tal espiral es una curva en el plano, dada para coordenadas cartesianas  $x, y \in \mathbb{R}$  por

 $x = a \cdot \delta \cdot \cos \delta, \ y = a \cdot \delta \cdot \sin \delta, \ \delta \in \mathbb{R}, \delta \ge 0,$ 

donde  $\delta$  es un parámetro de ángulo en segundos de arco, y  $a \in \mathbb{R}, a > 0$ , es un parámetro fijo, vea las Figuras 3 y 4. En coordenadas polares  $(r, \delta)$ , la curva es representada como  $r = a \cdot \delta$ . La longitud de arco de la curva generada por  $\delta \in [0, t]$  puede ser calculada por integración:

$$\int_0^t \sqrt{\left(\frac{dx}{d\delta}\right)^2 + \left(\frac{dy}{d\delta}\right)^2} \, d\delta$$
$$= \int_0^t \sqrt{a^2 \left[(\cos\delta - \delta\sin\delta)^2 + (\sin\delta + \delta\cos\delta)^2\right]} \, d\delta$$

Por lo tanto, la longitud de la curva para  $\delta \in [0, t]$  es dada por

$$a \int_0^t \sqrt{1+\delta^2} \ d\delta = \frac{a}{2} \left[ \delta \sqrt{1+\delta^2} + \ln\left(\delta + \sqrt{1+\delta^2}\right) \right]_0^t$$

El objeto Q1 es fronterizado por una espiral arquimediana larga con parámettro  $a_1$  y otra espiral más corta con parámetro  $a_2 = a_1 - 10$ . La misma idea es usada para el objeto Q3 donde  $a_2 - a_1 = 30$ . Ambas espirales inician en el punto orígen (0, 0) y terminan sobre el eje x. La espiral larga termina en el punto  $x = 4\pi a_1$ , la corta en  $x = 4\pi a_2$ . El hueco entre los dos puntos finales es cerrado por un medio círculo, vea Figura 4. Debido a los tres picos muy pronunciados, los 4-contornos, marcados en azul, no son curvas digitales simples. El objeto Q1 es analizado para  $a_1 \in \{25, 30, 35, 40, \dots, 150\}$  (26 instancias), Q3 para  $a_1 \in \{65, 70, 75, 80, \dots, 150\}$  (18 instancias). El objeto más largo resulta tener una anchura de casi 4000 píxeles.

# 4. Resultados de experimentos de estimación de perímetro con 4-contornos débilmente simples

Las Figuras 5, 6, 7, 8, y 10, presentan propiedades de los objetos C, K, M, Q1, Q3, para una magnificación creciente de los objetos. Particularmente,

• del objeto CxN,  $N \leq 150$ , el error relativo del perímetro estimado es menor a 0.1% para  $35 \leq N \leq 110$ , y menor a 0.123% para  $N \geq 25$ . Relativo al número de puntos del 4-contorno, el número de candidatos se encuentra cerca de 59%, la razón de compresión (%) está en el intervalo [10.7, 14.3].

• para el objeto KxN,  $N \leq 248$ , el error del perímetro es menor a 0.05% para  $N \geq 130$ , y menor a 0.1% para  $N \geq 100$  (el 4-contorno C tiene entonces entre 8596 y 21324 puntos). Relativo al número de puntos del 4-contorno, el número de candidatos está entre 62% y 64%, la razón de compresión (%) en el intervalo [8.5, 14.6].



FIGURA 3. Una espiral arquimediana, y el objeto Q1 con  $a_1 = 25$ .



FIGURA 4. Objetos Q3 (izquierda) y Q1 (derecha) con  $a_1 = 65$ , cada uno de estos objetos caben exactamente en una imagen de 1700x1700 píxeles.

• para el objeto MxN,  $N \leq 380$ , el error del perímetro es menor a 0.5% para  $90 \leq N$ , no sobrepasa 0.2% para  $160 \leq N$ , en este último caso, el 4-contorno tiene entre 12422 y 29526 puntos. Relativo al número de puntos del 4-contorno, el número de candidatos es de 61%, la razón de compresión (%) está en el intervalo [8.8, 12.4].

• para el objeto Q1, el error relativo máximo para todos los tamaños del objeto, es de 0.1553%, el 4-contorno C tiene 4372 puntos para  $a_1 = 25$  y 30160 puntos para  $a_1 = 150$ . Para el objeto Q3, el error máximo es de 0.1488%, C tiene 11066 puntos para  $a_1 = 65$ , y 28596 puntos para  $a_1 = 150$ . Para ambos objetos Q1 y Q3, el número de candidatos se encuentra alrededor de 59%, relativo al número de puntos del 4-contorno C, la razón de compresión (%) está en el intervalo [10.4, 11.8].

Todos los objetos estudiados caben dentro de imágenes de hasta 4000x4000 píxeles. Errores, en general, son esperados como grandes cuando la resolució de discretización es demasiada baja para que la forma geométrica del objeto sea bien representada. Pero estos errores bajan lentamente en tendencia, para crecientes magnificaciones de los objetos, hasta que los objetos alcanzan los tamaños medianos estudiados en este trabajo. Se espera que los errores pueden volver a crecer lentamente, para magnificaciones medos de los objetos, debido al método semi-local de determinación de los vértices del polígono.

La Tabla 1 resume promedios de los errores relativos, su desviación estándar  $\sigma$  (la raíz cuadrada de la varianza estadística), y el promedio de la razón de compresión, para los objetos estudiados.



FIGURA 5. Números de puntos del 4-contorno, candidatos, y de vértices del polígono para m = 5, de los objetos C y K bajo magnificación.



FIGURA 6. Errores relativos del perímetro estimado (porcentaje) para los objetos C y K bajo magnificación (polígono para m = 5).



FIGURA 7. Razón de compresión para los objetos C and K bajo magnificación (polígono para m = 5).



FIGURA 8. Analysis of object M under magnification.



FIGURA 9. Vértices complementarios del polígono para m = 5 (marcados en azul cielo y amarillo), cantos extremos (en rojo y verde), y picos convexos (café) del objeto Q1 en la región alrededor de pico central muy pronunciado, para diversas magnificaciones de este objeto.

Las Figuras 11 y 12 visualizan la varianza del error relativo del perímetro, bajo rotaciones del objeto por ángulos de  $5, 10, 15, \dots, 90$  grados. Nótese que una escala muy fina es usada para mostrar estos errores, su variación corresponde a la esperada, puesto ques aproximadamente similar



FIGURA 10. Analysis of objects Q1 and Q3 under magnification.

al comportamiento de los números de puntos del 4-contorno y de los candidatos. La Tabla 2 resume los errores y su desviación estándar  $\sigma$ , sobre todas las versiones rotadas, para dos objetos.

Intuitivamente, se espera que los errores relativos del perímetro estimado, decrecen en tendencia, y su comportamiento se hace similar a la convergencia bajo aumento de la resolución de

| objeto | error    | error  | error  | desviación        | razón      | razón      |
|--------|----------|--------|--------|-------------------|------------|------------|
|        | promedio | mínimo | máximo | estándar $\sigma$ | compresión | compresión |
|        | (%)      | (%)    | (%)    | del error         | promedia   | máxima     |
| С      | 0.1210   | 0.0036 | 0.7002 | 0.1327            | 11.2093    | 14.3006    |
| K      | 0.1564   | 0.0003 | 1.0080 | 0.2387            | 9.6137     | 14.5688    |
| M      | 0.2915   | 0.0014 | 1.5222 | 0.3275            | 9.6043     | 12.3921    |
| Q1     | 0.1133   | 0.0180 | 0.1553 | 0.0409            | 10.8568    | 11.8024    |
| Q3     | 0.1296   | 0.0996 | 0.1488 | 0.0151            | 10.7368    | 11.2236    |

TABLA 1. Propiedades estadísticas de la estimación del perímetro para los objetos bado estudio, de todas las magnificaciones, usando el poígono para m = 5.



FIGURA 11. Análisis del perímetro para dos objetos bajo rotaciones.

| objeto | error    | error  | error  | desviación        |
|--------|----------|--------|--------|-------------------|
|        | promedio | mínimo | máximo | estándar $\sigma$ |
|        | (%)      | (%)    | (%)    | del error         |
| Cx20   | 0.1314   | 0.0050 | 0.4358 | 0.1196            |
| Cx50   | 0.1015   | 0.0076 | 0.3154 | 0.0773            |
| Kx100  | 0.0505   | 0.0046 | 0.1121 | 0.0349            |
| Kx180  | 0.0641   | 0.0003 | 0.1329 | 0.0415            |
| Mx150  | 0.2072   | 0.1067 | 0.2906 | 0.0565            |
| Mx200  | 0.1093   | 0.0274 | 0.2906 | 0.0424            |
| Mx300  | 0.0322   | 0.0011 | 0.0800 | 0.0196            |

TABLA 2. Varianza del error del perímetro bajo rotaciones por todos los ángulos de  $5, 10, 15, 20, \dots 90$  grados, para algunos objetos.



FIGURA 12. Analysis of Object M under rotations.

discretización, entre más grande es m, el número máximo de puntos que participan en los patrones usados para detectar vértices complementarios del polígono. En el mismo proceso de aumentar m, el número de vértices del polígono debería decrecer (relativamente al número de puntos del 4-contorno), lo cual aumentaría la razón de compresión.

Sin embargo, el número de vértices del polígono, y el resultanto error relativo del perímetro, no dependen de manera sencilla y solamente de m, sino también de propiedades locales y globales de curvatura del 4-contorno, también pueden depender de la orientación rotacional del objeto.

Se espera que valores pequeõnes como m = 3 o m = 4, generan un número uy grande de puntos que potencialmente son vértices complementarios. Sin embargo, es posible que la mayoría de estos puntos sean eliminados durante la construcción de la curva poligonal, debido a que resultan ser colineales entre otros puntos de la curva. Por eso, es posible que para ciertos objetos, el algoritmo para m = 3 genere un resultado similar como para m = 5 o para otros números impares para m. Para los mismos datos de entrada, m = 4 podría generar un resultado de error mucho mayor, puesto que los patrones para cuatro puntos podrían interrumpir ciertas partes largas del 4-contorno, poniendo muchos vértices complementarios que no resultarían colineales con otros. Experimentos usando varios valores para m revelaron que no hay garantía de que, aumentando m solo por uno, resulte en un error menor de la estimación del perímetro. La Tabla 3 ilustra este fenómeno.

Para investigar sobre la estimación del perímetro usando valores m mayores, el conjunto de condiciones para cada m tiene que ser determinado. Luego, experimentos tienen que ser realizados para estos m, para investigar si los errores son esencialmente menores para más grandes m. Para cada nuevo m, el conjunto adicional de condiciones (los "patrones") tiene que ser agregado al algoritmo, eso lo vuelve claramente más tediosos y lento. Recordemos que, una vez que el grupo según Definición 16 fue determinado, se tiene que checar en el algoritmo una condición para detectar vértices complementarios para m = 3, seis condiciones adicionales para m = 4, y diez condiciones adicionales para m = 5 (dando un total de 17 condiciones). Como resultado de nuestras investigaciones, el polígono para m = 5 propuesto en esta tesis, parece ser una aproximación para 4-contornos

| ertic        | -                |
|--------------|------------------|
|              | vértices colin.  |
| no   borrado | polígono borrado |
| 3 m = 3      | m = 3 $m = 3$    |
|              |                  |
| 710          | 706 710          |
| 1101         | 1159 1101        |
| 1411         | 1411 1411        |
|              |                  |
| 1266         | 909 1266         |
| 1478         | 1229 1478        |
| 2262         | 1797 2262        |
|              |                  |
| 1683         | 1752 1683        |
| 3563         | 3530 3563        |
| 4178         | 4131 4178        |

Cuadro 1: Números específicos de puntos y errores del perímetro, usando el polígono para m=3,4,5 para algunos objetos.

generales interesante, todavía fácil a ser calculada, y además, útil y de calidad suficiente para estimar el perímetro de objetos de tamaños medianos.



45

# Conclusiones

La tesis propone un polígono novedoso y presenta un algoritmo para determinar sus vértices, con el fin de aproximar 4-contornos generales correspondientes a curvas poligonales débilmente simples que pueden tener picos o puntos finales, pueden tocarse a sí mismas, o trazar de regreso sobre partes de sí mismas, o tener cavidades delgadas. El polígono propuesto es una versión aproximativa de lo que sería una generalización del polígono de perímetro mínimo (MLP), el cual ha sido definido en la literatura en el contexto de 4-contornos, solamente para el caso de 4-curvas digitales simples, o continuos de retícula simples [7, 14, 15, 24, 32, 33, 10, 11]. La tesis emplea una definición simplificada de una curva generalizada de longitud mínima (MLPC) para 4-contornos generales, no necesariamente simples.

El algoritmo de construcción del polígono fue implementado en una plataforma libre de acceso llamada "Digital Image Analysis System" desarrollada por la Universidad Jena (Alemania), utilizando su lenguage de programación, y algunos precidimientos de procesamiento de imágenes tales como de segumiento de contornos. Una implementación en Matlab o Python es planeada para el cercano futuro.

La tesis reporta resultados de experimentación de la estimación del perímetro bajo creciente resolución de discretización (equivalentemente, bajo incremento del tamaño de los objetos). La longitud de la frontera del polígono construido es usado como estimador del perímetro del objeto. Los experimentos arrojaron un comportamiento acceptable de errores relativos para objetos del plano fronterizados por curvas débilmente simples de longitudes conocidas, cuyas versiones discretizadas son objetos 4-conexos del plano digital de tamaños pequeõs y medianos, con 4-contornos entre 300 and 30000 píxeles.

El algoritmo propuesto de detección de los vértices del polígono, es semi-local puesto que incluye una técnica similar al amapeamiento de patrones, donde el número de puntos participantes en cada patron es restringuido por una cota prefijada. Sin embargo, ninguna restricción es impuesta sobre las distancias entre estos punts. La tesis propone trabajar con m = 5 puntos para participar como máximo en cada patron.

Sería interesante trabajar con valores más grandes para m, por ejemplo, para la estimación del perímetro. Sin embargo, para cada m mayor, un conjunto adicional de patrones tiene que ser involucrado en el algoritmo, lo cual puede aumentar notablemente su complejidad de tiempo, y no garantiza en todo caso errores relativos menores del perímetro estimado. Como conclusión, el polígono para m = 5 propuesto en este trabajo, parece ser una aproximación útil e interesante para 4-contornos generales, la cual todavía es fácil de calcular, y a la vez, es suficientemente buena de calidad, para estimar el perímetro de objetos de tamaños medianos.

# Bibliografía

- G. Almkvist and B. Berndt. Gauss, landen, ramanujan, the arithmetic-geometric mean, ellipses, pi, and the ladies diary. The American Mathematical Monthly, 95:585–608, 1988.
- [2] A.A.A. Aman, A. Sarkar, M. Dutt, and A. Biswas. A linear time combinatorial algorithm to compute the relative orthogonal convex hull of digital objects. *Theoretical Computer Science*, 847:103–121, 2020.
- [3] T. Asano, Y. Kawamura, R. Klette, and K. Obokata. Minimum-length polygons in approximation sausages. In C. Arcelli et al., editor, Proc. of IWVF4, 4th Int. Workshop on Visual Form, pages 103–112. Springer, LNCS 2059, Berlin Heidelberg, 2001.
- [4] T. Asano, Y. Kawamura, R. Klette, and K. Obokata. Digital curve approximation with length evaluation. ICEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E86-A(5):987–994, 2003.
- [5] A. Biswas, P. Bhowmick, and B.B. Bhattacharya. Construction of isothetic covers of a digital object: A combinatorial approach. Journal of Visual Communication and Image Representation, 21(4):295–310, 2010.
- [6] Hsien-Chih Chang, J. Erickson, and Chao Xu. Detecting weakly simple polygons. In P. Indyk, editor, Proc. of SODA 2015, 26th Annual ACM-SIAM Symp. on Discrete Algorithms (USA, 2015), volume 3, pages 1657–1672. SIAM (ISBN 978-1-61197-374-7), 2015.
- [7] D. Coeurjolly and R. Klette. Comparative evaluation of length estimators of digital curves. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(2):252-258, 2004.
- [8] F. de Vieilleville and J.O. Lachaud. Digital deformable model simulating active contours. In S. Brlek et al., editor, Proc. of DGCI, Int. Conf. on Discrete Geometry for Computer Imagery, pages 203–216. Springer LNCS 5810, Berlin Heidelberg, 2009.
- [9] M. Dutt, A. Biswas, P. Bhowmick, and B.B. Bhattacharya. On finding an orthogonal convex skull of a digital object. Int. Journal on Imaging Systems and Technology, 21:14–27, 2011.
- [10] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison Wesley Comp., USA, reprint 1993 edition, 1992.
- [11] R.C. Gonzalez, R.E. Woods, and S.L. Eddins. *Digital Image Processing using Matlab (The parts of interest for this article are contained as the same in its 2nd edn. 2010)*. Gatesmark Publishing LLC, USA, 3rd edition, 2020.
- [12] B. Grünbaum and G.C. Shephard. *Tilings and Patterns*. W.H. Freeman and Company, USA, 1978.
  [13] R. Klette. Multigrid convergence of geometric features. In G. Bertrand, A. Imiya, and R. Klette, editors, *Digital*
- and Image Geometry, pages 318–338. Springer, LNCS 2243, Heidelberg, 2002. [14] R. Klette, V. Kovalevsky, and B. Yip. On the length estimation of digital curves. In SPIE, editor, SPIE Proc. of
- Vision Geometry VIII, pages 117–129. SPIE Proc. Series, USA, 1999.
  [15] R. Klette and A. Rosenfeld. Digital Geometry Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publisher. USA, 2004.
- [16] R. Klette and B. Yip. The length of digital curves. Machine Graphics and Vision, 9:673-703, 2000.
- [17] V. Kovalevsky and S. Fuchs. Theoretical and experimental analysis of the accuracy of perimeter estimates. In W. Förster and S. Ruwiedel, editors, *Robust Computer Vision*, pages 218–242. Wichmann, Karlsruhe, Germany, 1992.
- [18] V.A. Kovalevsky. New definition and fast recognition of digital straight segments and arcs. In Proc. of 10th Int. Conf on Pattern Recognition, Vol.II, pages 31–34. IEEE, NJ, USA, 1990.
- [19] J.O. Lachaud and X. Provencal. Two linear-time algorithms for computing the minimum length polygon of a digital contour. Discrete Applied Mathematics, 159:2229–2250, 2011.
- [20] F. Li and R. Klette. Euclidean Shortest Paths, Exact or Approximate Algorithms. Springer, London, 2011.
- [21] J. Mukhopadhyay et al. Digital Geometry in Image Processing. IIT Kharagpur Research Monograph Series, CRC Press, India, 2013.
- [22] J. O'Rourke. Computational Geometry in C. Cambridge University Press, USA, 2nd edition, 1998.
- [23] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press, USA, 1982.
- [24] X. Provencal and J.O. Lachaud. Two linear-time algorithms for computing the minimum length polygon of a digital contour. In S. Brlek, C. Reutenauer, and X. Provencal, editors, Proc. of DGCI, Int. Conf. on Discrete Geometry for Computer Imagery, pages 104–117. Springer, LNCS 5810, Berlin Heidelberg, 2009.
- [25] T. Roussillon and I. Sivignon. Faithful polygonal representation of the convex and concave parts of a digital curve. *Pattern Recognition*, 44:2693–2700, 2011.

- [26] T. Roussillon and I. Sivignon. Local convexity properties of digital curves. Technical Report, at https://liris.cnrs.fr/Documents/Liris-4798.pdf (accessed Dec.2, 2020), pages 1–22, Aug. 2010.
- [27] T. Roussillon, L. Tougne, and I. Sivignon. What does digital straightness tell about digital convexity? In P. Wiederhold and R.P. Barneva, editors, Proc. of IWCIA, Int. Workshop on Combinatorial Image Analysis IWCIA, pages 43–55. Springer, LNCS 5810, Berlin Heidelberg, 2009.
- [28] J. Sklansky. Recognition of convex blobs. Pattern Recognition, 2:3–10, 1970.
- [29] J. Sklansky. Measuring cavity on a rectangular mosaic. IEEE Trans. on Computing, C-21(12):1355-1364, 1972.
- [30] J. Sklansky, R.L. Chazin, and B.J. Hansen. Minimum perimeter polygons of digitized silhouettes. *IEEE Trans.* on Computing, 21(3):260–268, 1972.
- [31] J. Sklansky and D.F. Kibler. A theory of nonuniformly digitized binary pictures. IEEE Trans. on Systems, Man, and Cybernetics, 6(9):637-647, 1976.
- [32] F. Sloboda and J. Stoer. On piecewise linear approximation of planar jordan curves. Journal of Computational and Applied Mathematics, 55:369–383, 1994.
- [33] F. Sloboda, B. Zatco, and J. Stoer. On approximation of planar one-dimensional continua. In R. Klette, A. Rosenfeld, and F. Sloboda, editors, Advances in Digital and Computational Geometry, pages 113–160. Springer, Singapore, 1998.
- [34] M. Tajine and A. Daurat. On local definitions of length of digital curves. In Nyström et al., editor, Proc. of DGCI, Int. Conf. on Discrete Geometry for Computer Imagery, pages 114–123. Springer, LNCS 2886, Berlin Heidelberg, 2003.
- [35] G.T. Toussaint. Computing geodesic properties inside a simple polygon. Revue d'Intelligence Artificielle, 3(2):265-278, 1989.
- [36] M. Villafuerte and P. Wiederhold. A polygonal approximation for general 4-contours corresponding to weakly simple curves (accepted nov. 9, 2021. Journal of Mathematical Imaging and Vision, 22(0):xx-xx, 2022.
- [37] K. Voss. Discrete images, objects, and functions in  $\mathbb{Z}^n$ . Springer-Verlag, Berlin Heidelberg, 1993.
- [38] Eric W. Weisstein. Archimedes' Spiral. From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/ArchimedesSpiral.html (accessed Oct. 2021), 2021.
- [39] E.W. Weisstein. Polygon. From MathWorld A Wolfram Web Resource. http://mathworld.wolfram.com/Polygon.html, 2021.
- [40] E.W. Weisstein. Polyomino. From MathWorld A Wolfram Web Resource. https://mathworld.wolfram.com/Polyomino.html, 2021.
- [41] P. Wiederhold. Digital geometry. In P. Laplante, editor, Encyclopedia of Computer Science and Technology (2nd Ed.), volume I, pages 364–376. Taylor and Francis Group, 2016.
- [42] P. Wiederhold and H. Reyes. Relative convex hull determination from convex hulls in the plane. In R.P. Barneva et al., editor, Proc. of IWCIA, Int. Workshop on Combinatorial Image Analysis (India, 2015), pages 1–15. Springer LNCS 9448, Switzerland, 2015.

#### APÉNDICE A

# Lemas extendidas y demostraciones matemáticas

#### 1. Demostración de Lema 15

#### Demostración:

El objetivo es obtener para cada situación, una condición equivalente a  $\overline{c_1c_3} \not\subset M$ . Debido a las similaridades entre las situaciones, es suficiente analizar la situación de tipo a), las otras tendrían que ser tratadas de manera análoga.

Supongamos primero que  $c_1$  es convexo, entonces también  $c_3$ . Entonces, en cualquier situación de tipo a),  $y_2 = y_1 + 1$ ,  $x_3 = x_2 + 1$ ,  $x_2 \ge x_1$ ,  $y_3 \ge y_2$ , recuerde la Figura 6. Si  $x_2 = x_1$  o  $y_3 = y_2$ , entonces claro que  $\overline{c_1c_3} \subset M$ , vea Figura 1 que incluye al caso especial ( $x_2 = x_1 \land y_3 = y_2$ ). En consecuencia, ( $x_1 < x_2 \land y_2 < y_3$ ) es una condición necesaria para  $\overline{c_1c_3} \not\subset M$ . Recuerde que  $c_1, c_2, c_3 \in \mathbb{Z}^2$ , la condición significa ( $x_1 + 1 \le x_2 \land y_2 + 1 \le y_3$ ).

Más generalmente,  $\overline{c_1c_3} \not\subset M$  si y sólo si la pendiente de le línea recta  $\overrightarrow{c_1c_2}$  es estrictamente menor a la pendiente de  $\overrightarrow{c_1c_3}$ , es decir, si  $\frac{y_2-y_1}{x_2-x_1} < \frac{y_3-y_1}{x_3-x_1}$ . Eso es equivalente a  $1 + \frac{1}{x_2-x_1} < y_3 - y_1$ , porque  $y_2 - y_1 = 1$ ,  $x_3 = x_2 + 1$ , y asumiendo las condiciones obtenidas antes, es decir,  $x_1 + 1 \leq x_2$ y  $y_3 \geq y_2 + 1$  que implica  $y_3 - y_1 \geq 2$ . Puesto que  $x_2 - x_1 \geq 1$ , el lado izquierdo de la última desigualdad no sobrepasa 2, por lo tanto, la desigualdad se cumple cuando  $y_3 - y_1 > 2$ . Sólo falta analizar la desigualdad para el caso  $y_3 - y_1 = 2$  que es equivalente a  $x_2 - x_1 \geq 2$ . Ya antes habíamos requerido que  $x_2 - x_1 \geq 1$ , entonces, la única situación en la cual, la condición para  $\overline{c_1c_3} \not\subset M$  no está satisfecha, ocurre cuando  $x_2 - x_1 = 1$ . Pero  $(x_2 - x_1 = 1 \land y_3 - y_1 = 2)$  corresponde al caso diagonal de situación a), con ningún punto colineal entre  $c_1, c_2, c_3$ , donde  $c_1, c_2, c_3$  son colineales y  $c_2 \in \overline{c_1c_3} \subset M$ . En este caso,  $c_2$  no es necesitado como nuevo vértice, vea Figura 1. Como resultado, la condición para detectar  $c_2$  como vértice complementario es as follows:  $\overline{c_1c_3} \not\subset M \iff$  $(x_1 < x_2 \land y_2 < y_3 \land not(x_1 + 1 = x_2 \land y_2 + 1 = y_3))$ .

Si  $c_1$  es cóncavo entonces también  $c_3$  lo es, y  $x_2 = x_1 + 1$ ,  $y_3 = y_2 + 1$ ,  $y_2 \ge y_1$ ,  $x_3 \ge x_2$ . Nótese que todas las suposiciones y afirmaciones para este caso pueden ser obtenidas simplemente intercambiando todas las coordenadas x por las y, y al revés, en las expresiones del caso que  $c_1$ es convexo. Eso se debe a que cada situación con  $c_1$  cóncavo es obtenida a partir de la situación únicamente determinada correspondiente con  $c_1$  convexo, aplicando la función espejo por una línea recta paralela al eje x, seguido por una rotación por 90 grados, similarmente como es mostrado para



FIGURA 1. Demostración de Lema 15, situaciones de tipo a),  $c_1$  convexo,  $\overline{c_1c_3} \subset M$ .
cinco candidatos en Figura 12. Por lo tanto, la demostración para  $c_1$  cóncavo sería completamente análoga al caso que  $c_1$  es convexo.

#### 2. Lema sobre la detección de vértices complementarios del polígono, para cuatro puntos candidatos, con su demostración

**Lema 20.** Sean  $c_1, c_2, c_3, c_4$  cualesquiera puntos subsecuentes de la lista Cand(C) que alternadamente son convexos y cóncavos, además, donde  $c_2$  y  $c_3$  no son picos. Denotemos por M el conjunto unión del poliomino de C, además,  $c_i = (x_i, y_i)$  para  $i \in \{1, 2, 3, 4\}$ . Para dada una de los ocho posibles tipos de situaciones, si cualquiera de las siguientes seis condiciones se cumple, entonces  $\overline{c_1c_4} \not\subset M$ . Si ninguna condición se satisface, entonces  $\overline{c_1c_4} \subset M$ . Para el caso que alguna condición se cumple, la indicación abajo afirma cuál  $p \in \{c_2, c_3\}$  satisface que  $\overline{c_1p} \cup \overline{pc_4}$  está en M y tiene la longitd mínima entre las dos opciones para p.

Para el caso ( $c_1$  convexo,  $c_2$  cóncavo,  $c_3$  convexo,  $c_4$  cóncavo): a) Si C avanza en direción NE, es decir,  $y_1 + 1 = y_2, x_2 + 1 = x_3, y_3 + 1 = y_4$ , (1) si  $x_1 = x_2 \land y_2 < y_3 \land x_3 < x_4$  entonces  $p = c_3$ . (2a) si  $x_1 < x_2 \land y_2 = y_3 \land x_4 - x_2 < x_2 - x_1$  entonces  $p = c_2$ . (2b) si  $x_1 < x_2 \land y_2 = y_3 \land x_4 - x_3 > x_3 - x_1$  entonces  $p = c_3$ . (3) si  $x_1 = x_2 \land y_2 = y_3 \land x_4 - x_3 \ge 2$  entonces  $p = c_3$ . (4a) si  $x_1 + 1 = x_2 \wedge y_2 + 1 = y_3 \wedge x_3 = x_4$  entonces  $p = c_2$ . (4b) si  $x_1 + 1 = x_2 \land y_2 + 1 = y_3 \land x_4 - x_3 \ge 2$  entonces  $p = c_3$ . b) Si C avanza en dirección SE, es decir,  $x_1 + 1 = x_2, y_2 - 1 = y_3, x_1 + 1 = x_2$ , (1) si  $y_1 = y_2 \land x_2 < x_3 \land y_3 > y_4$  entonces  $p = c_3$ . (2a) si  $y_1 > y_2 \land x_2 = x_3 \land y_2 - y_4 < y_1 - y_2$  entonces  $p = c_2$ . (2b) si  $y_1 > y_2 \land x_2 = x_3 \land y_3 - y_4 > y_1 - y_3$  entonces  $p = c_3$ . (3) si  $y_1 = y_2 \land x_2 = x_3 \land y_3 - y_4 \ge 2$  entonces  $p = c_3$ . (4a) si  $y_1 - 1 = y_2 \wedge x_2 + 1 = x_3 \wedge y_3 = y_4$  entonces  $p = c_2$ . (4b) si  $y_1 - 1 = y_2 \wedge x_2 + 1 = x_3 \wedge y_3 - y_4 \ge 2$  entonces  $p = c_3$ . c) Si C avanza en dirección SW, es decir,  $y_1 - 1 = y_2, x_2 - 1 = x_3, y_3 - 1 = y_4$ , (1) si  $x_1 = x_2 \land y_2 > y_3 \land x_3 > x_4$  entonces  $p = c_3$ . (2a) si  $x_1 > x_2 \land y_2 = y_3 \land x_2 - x_4 < x_1 - x_2$  entonces  $p = c_2$ . (2b) si  $x_1 > x_2 \land y_2 = y_3 \land x_3 - x_4 > x_1 - x_3$  entonces  $p = c_3$ . (3) si  $x_1 = x_2 \land y_2 = y_3 \land x_3 - x_4 \ge 2$  entonces  $p = c_3$ . (4a) si  $x_1 - 1 = x_2 \wedge y_2 - 1 = y_3 \wedge x_3 = x_4$  entonces  $p = c_2$ . (4b) si  $x_1 - 1 = x_2 \land y_2 - 1 = y_3 \land x_3 - x_4 \ge 2$  entonces  $p = c_3$ . d) Si C avanza en dirección NW, es decir,  $x_1 - 1 = x_2, y_2 + 1 = y_3, x_3 - 1 = x_4$ , (1) si  $y_1 = y_2 \land x_2 > x_3 \land y_3 < y_4$  entonces  $p = c_3$ . (2a) si  $y_1 < y_2 \land x_2 = x_3 \land y_4 - y_2 < y_2 - y_1$  entonces  $p = c_2$ . (2b) si  $y_1 < y_2 \land x_2 = x_3 \land y_4 - y_3 > y_3 - y_1$  entonces  $p = c_3$ . (3) si  $y_1 = y_2 \land x_2 = x_3 \land y_4 - y_3 \ge 2$  entonces  $p = c_3$ . (4a) si  $y_1 + 1 = y_2 \land x_2 - 1 = x_3 \land y_3 = y_4$  entonces  $p = c_2$ . (4b) si  $y_1 + 1 = y_2 \wedge x_2 - 1 = x_3 \wedge y_4 - y_3 \ge 2$  entonces  $p = c_3$ . Para el caso ( $c_1$  cóncavo,  $c_2$  convexo,  $c_3$  cóncavo,  $c_4$  convexo): a) Si C avanza en dirección NE, es decir,  $x_1 + 1 = x_2, y_2 + 1 = y_3, x_3 + 1 = x_4$ , (1) si  $y_1 = y_2 \land x_2 < x_3 \land y_3 < y_4$  entonces  $p = c_3$ . (2a) si  $y_1 < y_2 \land x_2 = x_3 \land y_4 - y_2 < y_2 - y_1$  entonces  $p = c_2$ . (2b) si  $y_1 < y_2 \land x_2 = x_3 \land y_4 - y_3 > y_3 - y_1$  entonces  $p = c_3$ . (3) si  $y_1 = y_2 \land x_2 = x_3 \land y_4 - y_3 \ge 2$  entonces  $p = c_3$ . (4a) si  $y_1 + 1 = y_2 \wedge x_2 + 1 = x_3 \wedge y_3 = y_4$  entonces  $p = c_2$ .

(4b) si  $y_1 + 1 = y_2 \wedge x_2 + 1 = x_3 \wedge y_4 - y_3 \ge 2$  entonces  $p = c_3$ . b) Si C avanza en dirección SE, es decir,  $y_1 - 1 = y_2, x_2 + 1 = x_3, y_3 - 1 = y_4$ , (1) si  $x_1 = x_2 \land y_2 > y_3 \land x_3 < x_4$  entonces  $p = c_3$ . (2a) si  $x_1 < x_2 \land y_2 = y_3 \land x_2 - x_1 > x_4 - x_2$  entonces  $p = c_2$ . (2b) si  $x_1 < x_2 \land y_2 = y_3 \land x_3 - x_1 < x_4 - x_3$  entonces  $p = c_3$ . (3) si  $x_1 = x_2 \land y_2 = y_3 \land x_3 - x_4 \ge 2$  entonces  $p = c_3$ . (4a) si  $x_1 + 1 = x_2 \land y_2 - 1 = y_3 \land x_3 = x_4$  entonces  $p = c_2$ . (4b) si  $x_1 + 1 = x_2 \land y_2 - 1 = y_3 \land x_4 - x_3 \ge 2$  entonces  $p = c_3$ . c) Si C avanza en dirección SW, es decir,  $x_1 - 1 = x_2, y_2 - 1 = y_3, x_3 - 1 = x_4$ , (1) si  $y_1 = y_2 \land x_2 > x_3 \land y_3 > y_4$  entonces  $p =_3$ . (2a) si  $y_1 > y_2 \land x_2 = x_3 \land y_1 - y_2 > y_2 - y_4$  entonces  $p = c_2$ . (2b) si  $y_1 > y_2 \land x_2 = x_3 \land y_1 - y_3 < y_3 - y_4$  entonces  $p = c_3$ . (3) si  $y_1 = y_2 \land x_2 = x_3 \land y_3 - y_4 \ge 2$  entonces  $p = c_3$ . (4a) si  $y_1 - 1 = y_2 \wedge x_2 - 1 = x_3 \wedge y_3 = y_4$  entonces  $p = c_2$ . (4b) si  $y_1 - 1 = y_2 \land x_2 - 1 = x_3 \land y_3 - y_4 \ge 2$  entonces  $p = c_3$ . d) Si C avanza en dirección NW, es decir,  $y_1 + 1 = y_2, x_2 - 1 = x_3, y_3 + 1 = y_4$ , (1) si  $x_1 = x_2 \wedge y_2 < y_3 \wedge x_3 > x_4$  entonces  $p = c_3$ . (2a) si  $x_1 > x_2 \land y_2 = y_3 \land x_1 - x_2 > x_2 - x_4$  entonces  $p = c_2$ . (2b) si  $x_1 > x_2 \land y_2 = y_3 \land x_1 - x_3 < x_3 - x_4$  entonces  $p = c_3$ . (3) si  $x_1 = x_2 \land y_2 = y_3 \land x_3 - x_4 \ge 2$  entonces  $p = c_3$ . (4a) si  $x_1 - 1 = x_2 \wedge y_2 + 1 = y_3 \wedge x_3 = x_4$  entonces  $p = c_2$ . (4b) si  $x_1 - 1 = x_2 \wedge y_2 + 1 = y_3 \wedge x_3 - x_4 \ge 2$  entonces  $p = c_3$ .

#### Demostración:

El objetivo es obtener para cada tipo de situación, todas las condiciones que garantizan que  $\overline{c_1c_4} \not\subset M$ , suponiendo que  $\overline{c_1c_3} \subset M$ . Es suficiente analizar situación a), todas las situaciones restantes pueden ser tratadas de manera análoga.

Asumimos primero que  $c_1$  as convexo, entonces también  $c_3$  lo es, y cada situación de tipo a) es characterizada por  $y_1 + 1 = y_2$  y  $x_2 + 1 = x_3$ , y también satisface  $y_3 + 1 = y_4$ ,  $x_1 \le x_2$ ,  $y_2 \le y_3$ ,  $x_3 \le x_4$ . Lema 15 implica que  $\overline{c_1c_3} \subset M$  si y sólo si  $not(x_1 < x_2) \lor not(y_2 < y_3) \lor (x_1 + 1 = x_2 \land y_2 + 1 = y_3)$ , lo cual es equivalente a  $(x_1 = x_2) \lor (y_2 = y_3) \lor (x_1 + 1 = x_2 \land y_2 + 1 = y_3)$ . Vamos a analizar todas las situaciónes para las cuales, la última condición consistiendo de tres expresiones, es verdad. Eso con el fín de encontrar condiciones para  $\overline{c_1c_4} \not\subset M$ , y en dado caso, determinar  $p \in \{c_2, c_3\}$  tal que la curva  $\overline{c_1p} \cup \overline{pc_4}$  es contenida en M y es la más corta, entre las dos opciones para p.

|                       |       |                       |   |   | <i>c</i> <sub>4</sub> |       |                       |  |       |                       | <i>c</i> <sub>4</sub> |  |  |
|-----------------------|-------|-----------------------|---|---|-----------------------|-------|-----------------------|--|-------|-----------------------|-----------------------|--|--|
|                       |       |                       | ~ | - |                       |       |                       |  |       |                       | $\square$             |  |  |
|                       |       | <i>c</i> <sub>3</sub> |   |   |                       |       | <i>c</i> <sub>4</sub> |  |       |                       | <i>c</i> <sub>3</sub> |  |  |
|                       |       |                       |   |   |                       |       | Δ                     |  |       |                       |                       |  |  |
| <i>c</i> <sub>2</sub> |       |                       |   |   | $c_2$                 |       | / c <sub>3</sub>      |  | $c_2$ |                       |                       |  |  |
|                       |       |                       |   |   |                       |       |                       |  |       |                       |                       |  |  |
|                       | $c_1$ |                       |   |   |                       | $c_1$ |                       |  | 1     | <i>c</i> <sub>1</sub> |                       |  |  |

FIGURA 2. Demostración de Lema 20, caso a),  $c_1$  convexo,  $x_1 = x_2$ .

(i) Supongamos  $(x_1 = x_2)$ , recuerde que también  $y_1 + 1 = y_2$ ,  $x_2 + 1 = x_3$ ,  $y_3 + 1 = y_4$ ,  $y_2 \le y_3$ ,  $x_3 \le x_4$ , vea Figura 2. El caso  $(y_2 = y_3)$  será tratado más tarde, ahora sea  $(y_2 < y_3)$ . Evidentemente  $\overline{c_1c_4} \subset M$  si  $x_3 = x_4$  Asumimos ahora que  $x_3 < x_4$ . El punto  $c_2$  es irrelevante para el problema puesto



FIGURA 3. Demostración de Lema 20, caso a),  $c_1$  convexo,  $y_2 = y_3$ .



FIGURA 4. Demostración de Lema 20, caso a),  $c_1$  convexo,  $(x_1 + 1 = x_2 \land y_2 + 1 = y_3)$ .

que no restringue el segmento  $\overline{c_1c_4}$ . Entonces, solamente  $p = c_3$  podría ser necesitado como vértice complementario. Claro que  $\overline{c_1c_4} \not\subset M$  siempre cuando la pendiente de  $\overline{c_1c_3}$  sobrepasa estrictamente la pendiente de  $\overline{c_3c_4}$ . Pero eso es verdad bajo las suposiciones:  $x_4 \ge x_3 + 1$  implica que la pendiente de  $\overline{c_3c_4}$  es menor o igual a 1,  $y_3 \ge y_2 + 1 = (y_1 + 1) + 1 = y_1 + 2$  y  $x_3 = x_2 + 1 = x_1 + 1$  implican que la pendiente de  $\overline{c_1c_3}$  es mayor o igual a 2. En consecuencia, la condición para definir  $c_3$  como vértice complementario, es dada por  $(x_1 = x_2) \land (x_3 = x_4) \land (y_2 < y_3)$ . Eso comprueba condición (1) del lema.

(ii) Supongamos que  $(y_2 = y_3)$ , recuerde que también  $y_1 + 1 = y_2$ ,  $x_2 + 1 = x_3$ ,  $y_3 + 1 = y_4$ ,  $x_1 \le x_2$ ,  $x_3 \le x_4$ , vea Figura 3. El caso  $(x_1 = x_2)$  será tratado más tarde, ahora sea  $(x_1 < x_2)$ . Figura 3 muestra que

 $-\overline{c_1c_4} \not\subset M$  si la pendiente de  $\overline{c_1c_2}$  es estrictamente menor que la pendiente de  $\overline{c_2c_4}$ , en este caso, solamente  $p = c_2$  asegura que  $\overline{c_1p} \cup \overline{pc_4} \subset M$ .

 $-\overline{c_1c_4} \not\subset M$  si la pendiente de  $\overline{c_1c_3}$  estrictamente sobrepasa la pendiente de  $\overline{c_3c_4}$ , en este caso, solamente  $p = c_3$  asegura que  $\overline{c_1p} \cup \overline{pc_4} \subset M$ .

La condición para definir  $p = c_2$  es obtenida como sigue, tomando en cuenta que  $x_2 - x_1 > 0$ ,  $y_2 - y_1 = 1$ ,  $x_4 - x_4 \ge 1 > 0$ , y  $y_4 - y_2 = y_4 - y_3 = 1$ ,

$$\frac{y_2 - y_1}{x_2 - x_1} < \frac{y_4 - y_2}{x_4 - x_2} \iff x_4 - x_2 < x_2 - x_1.$$

La condición para definir  $p = c_3$  es obtenida como

$$\frac{y_3 - y_1}{x_3 - x_1} > \frac{y_4 - y_3}{x_4 - x_3} \iff x_4 - x_3 > x_3 - x_1 \,.$$

Resumiendo,  $(y_2 = y_3) \land (x_1 < x_2) \land (x_4 - x_2) < (x_2 - x_1)$  es la condición para definir  $p = c_2$ , y  $(y_2 = y_3) \land (x_1 < x_2) \land (x_4 - x_3) > (x_3 - x_1)$  lleva a definir  $p = c_3$ . Eso demuestra (2a) y (2b) del lema.

(iii) Supongamos que  $(x_1 + 1 = x_2 \land y_2 + 1 = y_3)$ , recuerde que también  $y_1 + 1 = y_2$ ,  $x_2 + 1 = x_3$ ,  $y_3 + 1 = y_4$ ,  $x_1 \le x_2$ ,  $y_2 \le y_3$ ,  $x_3 \le x_4$ . Eso es el caso diagonal donde  $c_2 \in \overline{c_1c_3}$ , trivialmente también  $(x_1 < x_2)$  y  $(y_2 < y_3)$ . De Figura 4 es claro que  $\overline{c_1c_4} \subset M$  si  $x_4 = x_3 + 1$ , puesto que entonces  $c_1, c_2, c_3, c_4$  son colineales. Además,

 $-\overline{c_1c_4} \not\subset M$  si  $x_4 = x_3$ , puesto que entonces, la pendiente de  $\overline{c_1c_4}$  es estrictamente mayor a 1. En este caso, ambos  $p = c_2$  y  $p = c_3$  implican que  $\overline{c_1p} \cup \overline{pc_4} \subset M$ . Sin embargo, la curva  $\overline{c_1c_2} \cup \overline{c_2c_4}$  tiene longitud  $\sqrt{2} + \sqrt{5}$  mientras que  $\overline{c_1c_3} \cup \overline{c_3c_4}$  tiene la longitud mayor  $2\sqrt{2} + 1$ . Por lo tanto, la condición



FIGURA 5. Demostración de Lema 20, caso a),  $c_1$  convexo,  $(x_1 = x_2) \land (y_2 = y_3)$ .

 $(x_1 + 1 = x_2) \land (y_2 + 1 = y_3) \land (x_3 = x_4)$ lleva a definir  $p = c_2$  como vértice complementario. Eso confirma (4a) del lema.

 $-\overline{c_1c_4} \not\subset M$  si  $x_4 \ge x_3 + 2$ , puesto que entonces, la pendiente de  $\overrightarrow{c_1c_4}$  es estrictamente menor a 1. En este caso, solamente  $p = c_3$  garantiza que  $\overline{c_1p} \cup \overline{pc_4} \subset M$ . Eso comprueba (4b) del lema.

(iv) Supongamos que  $(x_1 = x_2)$  y  $(y_2 = y_3)$ , recuerde que también  $y_1 + 1 = y_2$ ,  $x_2 + 1 = x_3$ ,  $y_3 + 1 = y_4$ ,  $x_3 \le x_4$ , vea Figura 5. Claro que  $x_4 = \{x_3, x_3 + 1\}$  implica  $\overline{c_1c_4} \subset M$ . Pero para  $x_4 \ge x_3 + 2$ , la pendiente de  $\overline{c_3c_4}$  es estrictamente menor a 1 lo cual es la pendiente de  $\overline{c_1c_3}$ . Ambos  $p = c_2$  y  $p = c_3$  aseguran que  $\overline{c_1p} \cup \overline{pc_4} \subset M$  pero la curva  $\overline{c_1c_2} \cup \overline{c_2c_4}$  es más larga que  $\overline{c_1c_3} \cup \overline{c_3c_4}$ . Por eso, la condición  $(x_1 = x_2) \land (y_2 = y_3) \land (x_4 - x_3 \ge 2)$  lleva a definir  $p = c_3$  como vértice complementario. Eso demuestra (3) del lema.

(v) Las tres expresiones  $[(x_1 = x_2) \land (x_1 + 1 = x_2 \land y_2 + 1 = y_3)]$ ,  $[(y_2 = y_3) \land (x_1 + 1 = x_2 \land y_2 + 1 = y_3)]$ , y  $[(x_1 = x_2) \land (y_2 = y_3) \land (x_1 + 1 = x_2 \land y_2 + 1 = y_3)]$ , no pueden ser verdaderas. Por eso, ya no se necesita estudiar más situaciones, no hay más condiciones que implican  $\overline{c_j c_{j+2}} \not\subset M$ . Por lo tanto, si ninguna condición enlistada en el lema como (1), (2a), (2b), (3), (4a), o, (4b), es cumplida, entonces  $\overline{c_j c_{j+2}} \subset M$ .

En caso que  $c_1$  es cóncavo, también  $c_3$  lo es, y toda situación del tipo a) es caracterizada por  $x_1 + 1 = x_2$  y  $y_2 + 1 = y_3$ , y también satisface  $x_3 + 1 = x_4$ ,  $y_1 \le y_2$ ,  $x_2 \le x_3$ ,  $y_3 \le y_4$ . Como ya fue observado en la demostración del lema para tres candidatos, todas las descripciones para este caso, son transcripciones del caso donde  $c_1$  es convexo, simplemente, todas las coordenadas x son intercambiadas con las y. Eso es verdad por la función bijectiva entre cada situación local para  $c_1$  convexo, y su contraparte para  $c_1$  cóncavo. Esa función espeja la situación por una línea recta paralela al eje x, y luego realiza una rotactión por 90°, similar a la Figura 12 donde lo mismo es mostrado para cinco candidatos. Eso completa la demostración.

#### 3. Lema sobre la detección de vértices complementarios del polígono, para cinco puntos candidatos, con su demostración

**Lema 21.** Sean  $c_1, c_2, c_3, c_4, c_5$  cualesquiera puntos subsecuentes de Cand(C) que son alternadamente convexos y cóncavo, y donde  $c_2, c_3, c_4$  no son picos. Sea M el conjunto unión del poliomino de C, además sea  $c_i = (x_i, y_i)$  for  $i \in \{1, 2, 3, 4, 5\}$ . Si cualquiera de las siguientes condiciones se cumple, entonces  $\overline{c_1c_5} \not\subset M$ , y el punto  $p \in \{c_2, c_3, c_4\}$  indicado abajo satisface que  $\overline{c_1p} \cup \overline{pc_4}$ está dentro de M y tiene longitud mínima, entre las tres opciones para p. Si ninguna condición se cumple, entonces  $\overline{c_1c_5} \subset M$ .

Para el caso  $(c_1 \text{ convexo}, c_2 \text{ cóncavo}, c_3 \text{ convexo}, c_4 \text{ cóncavo}, c_5 \text{ convexo})$ :

a) Supongamos que C avanza en dirección NE:  $y_1 + 1 = y_2$ ,  $x_2 + 1 = x_3$ ,  $y_3 + 1 = y_4$ ,  $x_4 + 1 = x_5$ . (1) Si  $x_1 < x_2 \land y_2 = y_3 \land x_3 < x_4$ , y, además,

(1a)  $x_2 - x_1 + n = x_4 - x_2$  para  $n \in \{0, 1, 2\}$ ,  $y y_4 < y_5$ , entonces  $p = c_4$ .

(1b)  $x_2 - x_1 + 2 = x_4 - x_2 \ y \ y_4 = y_5$ , entonces  $p = c_3$ .

(2) Si  $x_1 + 1 = x_2 \wedge y_2 + 1 = y_3 \wedge x_3 + 1 = x_4$ , y, además,

(2a)  $y_4 = y_5$ , entonces  $p = c_3$ .

(2b)  $y_5 - y_4 \ge 2$ , entonces  $p = c_4$ . (3) Si  $x_1 = x_2 \wedge y_2 = y_3 \wedge x_3 + 1 = x_4$ , y, además, (3a)  $y_4 = y_5$ , entonces  $p = c_3$ . (3b)  $y_5 - y_4 \ge 2$ , entonces  $p = c_4$ . (4) Si  $x_1 = x_2 \land y_2 < y_3 \land x_3 = x_4$ , y, además,  $(4a) y_5 - y_4 < y_3 - y_2$ , entonces  $p = c_3$ . (4b)  $y_5 - y_4 > y_3 - y_2 + 2$ , entonces  $p = c_4$ . (5) Si  $x_1 + 1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_5 - y_4 \ge 2$  entonces  $p = c_4$ . (6) Si  $x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_5 - y_4 \ge 3$  entonces  $p = c_4$ . b) Supongamos que C avanza en dirección SE:  $x_1 + 1 = x_2, y_2 - 1 = y_3, x_3 + 1 = x_4, y_4 - 1 = y_5$ . (1) Si  $y_1 > y_2 \land x_2 = x_3 \land y_3 > y_4$ , y, además, (1a)  $y_1 - y_2 + n = y_2 - y_4$  para  $n \in \{0, 1, 2\}$ ,  $y x_4 < x_5$ , entonces  $p = c_4$ . (1b)  $y_1 - y_2 + 2 = y_2 - y_4 \ y \ x_4 = x_5$ , entonces  $p = c_3$ . (2) Si  $y_1 - 1 = y_2 \wedge x_2 + 1 = x_3 \wedge y_3 - 1 = y_4$ , y, además, (2a)  $x_4 = x_5$ , entonces  $p = c_3$ . (2b)  $x_5 - x_4 \ge 2$ , entonces  $p = c_4$ . (3) Si  $y_1 = y_2 \wedge x_2 = x_3 \wedge y_3 - 1 = y_4$ , y, además, (3a)  $x_4 = x_5$ , entonces  $p = c_3$ . (3b)  $x_5 - x_4 \ge 2$ , entonces  $p = c_4$ . (4) Si  $y_1 = y_2 \wedge x_2 < x_3 \wedge y_3 = y_4$ , y, además,  $(4a) x_5 - x_4 < x_3 - x_2$ , entonces  $p = c_3$ .  $(4b) x_5 - x_4 > x_3 - x_2 + 2$ , entonces  $p = c_4$ . (5) Si  $y_1 - 1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_5 - x_4 \ge 2$  entonces  $p = c_4$ . (6) Si  $y_1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_5 - x_4 \ge 3$  entonces  $p = c_4$ . c) Supongamos que C avanza en dirección SW:  $y_1 - 1 = y_2, x_2 - 1 = x_3, y_3 - 1 = y_4, x_4 - 1 = x_5$ . (1) Si  $x_1 > x_2 \land y_2 = y_3 \land x_3 > x_4$ , y, además, (1a)  $x_1 - x_2 + n = x_2 - x_4$  para  $n \in \{0, 1, 2\}$ ,  $y y_4 > y_5$ , entonces  $p = c_4$ . (1b)  $x_1 - x_2 + 2 = x_2 - x_4$  y  $y_4 = y_5$ , entonces  $p = c_3$ . (2) Si  $x_1 - 1 = x_2 \wedge y_2 - 1 = y_3 \wedge x_3 - 1 = x_4$ , y, además, (2a)  $y_4 = y_5$ , entonces  $p = c_3$ . (2b)  $y_4 - y_5 \ge 2$ , entonces  $p = c_4$ . (3) Si  $x_1 = x_2 \land y_2 = y_3 \land x_3 - 1 = x_4$ , y, además, (3a)  $y_4 = y_5$ , entonces  $p = c_3$ . (3b)  $y_4 - y_5 \ge 2$ , entonces  $p = c_4$ . (4) Si  $x_1 = x_2 \land y_2 > y_3 \land x_3 = x_4$ , y, además,  $(4a) y_4 - y_5 < y_2 - y_3$ , entonces  $p = c_3$ . (4b)  $y_4 - y_5 > y_2 - y_3 + 2$ , entonces  $p = c_4$ . (5) Si  $x_1 - 1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 - y_5 \ge 2$  entonces  $p = c_4$ . (6) Si  $x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 - y_5 \ge 3$  entonces  $p = c_4$ . d) Supongamos que C avanza en dirección NW:  $x_1 - 1 = x_2, y_2 + 1 = y_3, x_3 - 1 = x_4, y_4 + 1 = y_5$ . (1) Si  $y_1 < y_2 \land x_2 = x_3 \land y_3 < y_4, y, además,$ (1a)  $y_2 - y_1 + n = y_4 - y_2$  para  $n \in \{0, 1, 2\}, y x_4 > x_5$ , entonces  $p = c_4$ . (1b)  $y_2 - y_1 + 2 = y_4 - y_2 \ y \ x_4 = x_5$ , entonces  $p = c_3$ . (2) Si  $y_1 + 1 = y_2 \wedge x_2 - 1 = x_3 \wedge y_3 + 1 = y_4$ , y, además, (2a)  $x_4 = x_5$ , entonces  $p = c_3$ . (2b)  $x_4 - x_5 \ge 2$ , entonces  $p = c_4$ . (3) Si  $y_1 = y_2 \land x_2 = x_3 \land y_3 + 1 = y_4$ , y, además, (3a)  $x_4 = x_5$ , entonces  $p = c_3$ . (3b)  $x_4 - x_5 \ge 2$ , entonces  $p = c_4$ . (4) Si  $y_1 = y_2 \land x_2 > x_3 \land y_3 = y_4$ , y, además,

 $(4a) x_4 - x_5 < x_2 - x_3$ , entonces  $p = c_3$ . (4b)  $x_4 - x_5 > x_2 - x_3 + 2$ , entonces  $p = c_4$ . (5) Si  $y_1 + 1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_4 - x_5 \ge 2$  entonces  $p = c_4$ . (6) Si  $y_1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_4 - x_5 \ge 3$  entonces  $p = c_4$ . Para el caso ( $c_1$  cóncavo,  $c_2$  convexo,  $c_3$  cóncavo,  $c_4$  convexo): a) Supongamos que C avanza en dirección NE:  $x_1 + 1 = x_2, y_2 + 1 = y_3, x_3 + 1 = x_4, y_4 + 1 = y_5$ . (1) Si  $y_1 < y_2 \land x_2 = x_3 \land y_3 < y_4$ , y, además, (1a)  $y_2 - y_1 + n = y_4 - y_2$  para  $n \in \{0, 1, 2\}$ ,  $y x_4 < x_5$ , entonces  $p = c_4$ . (1b)  $y_2 - y_1 + 2 = y_4 - y_2$  y  $x_4 = x_5$ , entonces  $p = c_3$ . (2) Si  $y_1 + 1 = y_2 \wedge x_2 + 1 = x_3 \wedge y_3 + 1 = y_4$ , y, además, (2a)  $x_4 = x_5$ , entonces  $p = c_3$ . (2b)  $x_5 - x_4 \ge 2$ , entonces  $p = c_4$ . (3) Si  $y_1 = y_2 \wedge x_2 = x_3 \wedge y_3 + 1 = y_4$ , y, además, (3a)  $x_4 = x_5$ , entonces  $p = c_3$ . (3b)  $x_5 - x_4 \ge 2$ , entonces  $p = c_4$ . (4) Si  $y_1 = y_2 \wedge x_2 < x_3 \wedge y_3 = y_4$ , y, además,  $(4a) x_5 - x_4 < x_3 - x_2$ , entonces  $p = c_3$ . (4b)  $x_5 - x_4 > x_3 - x_2 + 2$ , entonces  $p = c_4$ . (5) Si  $y_1 + 1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_5 - x_4 \ge 2$  entonces  $p = c_4$ . (6) Si  $y_1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_5 - x_4 \ge 3$  entonces  $p = c_4$ . b) Supongamos que C avanza en dirección SE:  $y_1 - 1 = y_2, x_2 + 1 = x_3, y_3 - 1 = y_4, x_4 + 1 = x_5$ . (1) Si  $x_1 < x_2 \land y_2 = y_3 \land x_3 < x_4$ , y, además, (1a)  $x_2 - x_1 + n = x_4 - x_2$  para  $n \in \{0, 1, 2\}$ ,  $y y_4 > y_5$ , entonces  $p = c_4$ . (1b)  $x_2 - x_1 + 2 = x_4 - x_2$  y  $y_4 = y_5$ , entonces  $p = c_3$ . (2) Si  $x_1 + 1 = x_2 \wedge y_2 - 1 = y_3 \wedge x_3 + 1 = x_4$ , y, además, (2a)  $y_4 = y_5$ , entonces  $p = c_3$ . (2b)  $y_4 - y_5 \ge 2$ , entonces  $p = c_4$ . (3) Si  $x_1 = x_2 \wedge y_2 = y_3 \wedge x_3 + 1 = x_4$ , y, además, (3a)  $y_4 = y_5$ , entonces  $p = c_3$ . (3b)  $y_4 - y_5 \ge 2$ , entonces  $p = c_4$ . (4) Si  $x_1 = x_2 \land y_2 > y_3 \land x_3 = x_4$ , y, además,  $(4a) y_4 - y_5 < y_2 - y_3$ , entonces  $p = c_3$ . (4b)  $y_4 - y_4 > y_2 - y_3 + 2$ , entonces  $p = c_4$ . (5) Si  $x_1 + 1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 - y_5 \ge 2$  entonces  $p = c_4$ . (6) Si  $x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 - y_5 \ge 3$  entonces  $p = c_4$ . c) Supongamos que C avanza en dirección SW:  $x_1 - 1 = x_2, y_2 - 1 = y_3, x_3 - 1 = x_4, y_4 - 1 = y_5$ . (1) Si  $y_1 > y_2 \land x_2 = x_3 \land y_3 > y_4$ , y, además, (1a)  $y_1 - y_2 + n = y_2 - y_4$  para  $n \in \{0, 1, 2\}$ ,  $y x_4 > x_5$ , entonces  $p = c_4$ . (1b)  $y_1 - y_2 + 2 = y_2 - y_4$  y  $x_4 = x_5$ , entonces  $p = c_3$ . (2) Si  $y_1 - 1 = y_2 \wedge x_2 - 1 = x_3 \wedge y_3 - 1 = y_4$ , y, además, (2a)  $x_4 = x_5$ , entonces  $p = c_3$ . (2b)  $x_4 - x_5 \ge 2$ , entonces  $p = c_4$ . (3) Si  $y_1 = y_2 \wedge x_2 = x_3 \wedge y_3 - 1 = y_4$ , y, además, (3a)  $x_4 = x_5$ , entonces  $p = c_3$ . (3b)  $x_4 - x_5 \ge 2$ , entonces  $p = c_4$ . (4) Si  $y_1 = y_2 \land x_2 > x_3 \land y_3 = y_4$ , y, además,  $(4a) x_4 - x_5 < x_2 - x_3$ , entonces  $p = c_3$ . (4b)  $x_4 - x_5 > x_2 - x_3 + 2$ , entonces  $p = c_4$ . (5) Si  $y_1 - 1 = y_2 \land x_2 = x_3 \land y_3 = y_4 \land x_4 - x_5 \ge 2$  entonces  $p = c_4$ . (6) Si  $y_1 = y_2 \wedge x_2 = x_3 \wedge y_3 = y_4 \wedge x_4 - x_5 \geq 3$  entonces  $p = c_4$ .



FIGURA 6. Demostración de Lema 21, instancias de las tres posibles situaciones para el caso  $x_1 < x_2 \land y_2 = y_3 \land x_3 < x_4 \land y_4 \leq y_5$ .

 $\begin{array}{l} d) \ Supongamos \ que \ C \ avanza \ en \ dirección \ NW: \ y_1 + 1 = y_2, \ x_2 - 1 = x_3, \ y_3 + 1 = y_4, \ x_4 - 1 = x_5. \\ (1) \ Si \ x_1 > x_2 \land y_2 = y_3 \land x_3 > x_4, \ y, \ además, \\ (1a) \ x_1 - x_2 + n = x_2 - x_4 \ para \ n \in \{0, 1, 2\}, \ y \ y_4 < y_5, \ entonces \ p = c_4. \\ (1b) \ x_1 - x_2 + 2 = x_2 - x_4 \ y \ y_4 = y_5, \ entonces \ p = c_3. \\ (2) \ Si \ x_1 - 1 = x_2 \land y_2 + 1 = y_3 \land x_3 - 1 = x_4, \ y, \ además, \\ (2a) \ y_4 = y_5, \ entonces \ p = c_3. \\ (2b) \ y_5 - y_4 \ge 2, \ entonces \ p = c_4. \\ (3) \ Si \ x_1 = x_2 \land y_2 = y_3 \land x_3 - 1 = x_4, \ y, \ además, \\ (3a) \ y_4 = y_5, \ entonces \ p = c_4. \\ (3) \ Si \ x_1 = x_2 \land y_2 = y_3 \land x_3 - 1 = x_4, \ y, \ además, \\ (3a) \ y_4 = y_5, \ entonces \ p = c_4. \\ (4) \ Si \ x_1 = x_2 \land y_2 < y_3 \land x_3 = x_4, \ y, \ además, \\ (4a) \ y_5 - y_4 \ge 2, \ entonces \ p = c_3. \\ (4b) \ y_5 - y_4 < y_3 - y_2, \ entonces \ p = c_4. \\ (5) \ Si \ x_1 - 1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_5 - y_4 \ge 2 \ entonces \ p = c_4. \\ (6) \ Si \ x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_5 - y_4 \ge 3 \ entonces \ p = c_4. \end{array}$ 

#### Demostración:

El objetivo es obtener para cada tipo de situación, todas las condiciones que garantizan que  $\overline{c_1c_5} \not\subset M$ , suponiendo que  $\overline{c_1c_3} \subset M$  y  $\overline{c_1c_4} \subset M$ . Es suficiente analizar la situación a), las restantes situaciones pueden ser obtenidas por rotaciones y presentan propiedades análogas.

Asumimos primero que  $c_1$  as convexo, entonces  $c_3$  y  $c_5$  también lo son. Cualquier situación de tipo a) es caracterizada por  $y_1 + 1 = y_2$  y  $x_2 + 1 = x_3$ , y también satisface  $y_3 + 1 = y_4$  y  $x_4 + 1 = x_5$ . Además, las siguientes cuatro relaciones son libres: pueden presentar menor estricto, o igualdad,  $x_1 \leq x_2, y_2 \leq y_3, x_3 \leq x_4, y_4 \leq y_5$ . Vamos a analizar todas las posibles combinaciones de menor estricto e igualdad.

• Supongamos que  $x_1 = x_2 \land y_2 < y_3 \land x_3 < x_4 \land y_4 \leq y_5$ .

Esta situación no es de interés, puesto que incluye condición (1) de Lema 20 para  $c_1, c_2, c_3, c_4$ , eso implica que  $\overline{c_1c_4} \not\subset M$ .

• Supongamos que  $x_1 < x_2 \land y_2 = y_3 \land x_3 < x_4 \land y_4 \le y_5$ .

La parte  $(x_1 < x_2 \land y_2 = y_3)$  está incluida en las condiciones (2a),(2b) de Lema 20 para  $c_1, c_2, c_3, c_4$ . Para evitar la contradicción  $\overline{c_1c_4} \not\subset M$ , las partes restantes de las condiciones (2a),(2b) tienen que ser negadas, por eso, debemos asumir  $x_4 - x_2 \ge x_2 - x_1 \land x_4 - x_3 \le x_3 - x_1$ . Tomando en cuenta que  $x_2 + 1 = x_3$ , la segunda desigualdad significa  $x_4 - x_2 - 1 \le x_2 + 1 - x_1$ . Entonces, todo junto es  $x_2 - x_1 \le x_4 - x_2 \le x_2 - x_1 + 2$ . Existen tres situaciones que satisfacen eso: (vea Figura 6): (i)  $x_2 - x_1 = x_4 - x_2$ . Entonces  $c_1$ ,  $c_2$ ,  $c_4$  son colineales,  $x_4 - x_1 = 2(x_2 - x_1)$ , las pendientes de  $\overrightarrow{c_1c_2}$ ,  $\overrightarrow{c_2c_4}$  y  $\overrightarrow{c_1c_4}$  todas coinciden:  $(x_2 - x_1)^{-1} = (x_4 - x_2)^{-1} = 2(x_4 - x_1)^{-1}$ .

Si  $y_4 = y_5$  entonces la pendiente de  $\overline{c_1c_5}$  es estrictamente menor que la pendiente de  $\overline{c_1c_4}$ , pero también es estrictamente mayor que la pendiente de  $\overrightarrow{c_1c_3}$ :

 $2(x_5 - x_1)^{-1} = 2(x_4 - x_1 + 1)^{-1} < 2(x_4 - x_1)^{-1}, y$   $2(x_5 - x_1)^{-1} = 2(x_4 - x_1 + 1)^{-1} = 2(x_3 - x_1 + 2)^{-1} < 2(x_3 - x_1)^{-1}.$ 

Por lo tanto,  $\overline{c_1c_5} \subset M$ , ningún vértice complementario es necesitado.

Si  $y_4 \neq y_5$  entonces  $y_5 - y_4 \geq 1$ . Claro que  $\overline{c_1c_5} \not\subset M$  siempre y cuando la pendiente de  $\overrightarrow{c_1c_5}$ estrictamente sobrepasa la pendiente de  $\overrightarrow{c_1c_4}$ , es decir, cuando  $\frac{2}{x_4-x_1} < \frac{2+y_5-y_4}{x_5-x_1}$ , lo cual es equivalente a  $2 < (y_5 - y_4)(x_4 - x_1)$ , recordando que  $x_4 + 1 = x_5$ . Pero esta última condición se cumple siempre cuando  $y_4 < y_5$ . Eso es debido a que las suposiciones  $x_2 - x_1 \ge 1$ ,  $x_2 + 1 = x_3$ ,  $x_4 - x_3 \ge 1$ , implican  $x_4 - x_2 \ge 2, x_3 - x_1 \ge 3, x_4 - x_1 \ge 4$ . Incluyendo  $y_5 - y_4 \ge 1$ , se sigue  $2 < 1 \cdot 4 \le (y_5 - y_4)(x_4 - x_1)$ . En consecuencia, la condición para  $\overline{c_1c_5} \not\subset M$  se reduce a  $y_4 < y_5$ , donde claramente  $p = c_4$  es necesitado como vértice complementario. Eso demuestra parte de Condición (1a) del lema.

(ii) 
$$x_2 - x_1 + 1 = x_4 - x_2$$
.

Si  $y_4 = y_5$  entonces  $\overrightarrow{c_1c_3}$  tiene la pendiente  $(x_3 - x_1)^{-1} = (x_2 + 1 - x_1)^{-1} = (x_4 - x_2)^{-1} = (x_4 - (x_3 - 1))^{-1} = (x_4 + 1 - x_3)^{-1} = (x_5 - x_3)^{-1}$  que es la pendiente de  $\overrightarrow{c_3c_5}$ , así que,  $c_1$ ,  $c_3$ ,  $c_5$  son colineales. Es claro también que la pendiente de  $\overline{c_1c_5}$  es menor que las pendientes de  $\overline{c_1c_2}$  y  $\overline{c_1c_4}$ , vea Figura 6. Por lo tanto,  $\overline{c_1c_5} \subset M$ , ningún vértice complementario es necesitado.

Si  $y_5 - y_4 \ge 1$ , de la Figura 6 es claro que  $\overline{c_1c_5} \not\subset M$  y  $c_4$  es necesitado y apropiado como vértice complementario. Eso debido a que  $\overline{c_1c_4}$  es el camino más corto que conecta  $c_1$  y  $c_4$ , y la pendiente de  $\overrightarrow{c_1c_4}$  es estrictamente menor que la de  $\overrightarrow{c_4c_5}$ .

Hay un caso especial donde también  $c_3$  parece posible como vértice complementario: para  $x_3+1=x_4$ y  $y_4 + 1 = y_5$ , entonces  $c_3$ ,  $c_4$ ,  $c_5$  son colineales. Entonces el camino  $c_1 - c_3 - c_4 - c_5$  tiene longitud  $\sqrt{5}+2\sqrt{2}$ . Sin embargo,  $c_1-c_4-c_5$  tiene la longitud más corta  $\sqrt{13}+\sqrt{2}$ , por eso,  $c_4$  resulta ser el vértice complementario correcto, de nuevo. Eso contribuye a demostrar la condición (1a) de lema.

(iii)  $x_2 - x_1 + 2 = x_4 - x_2$ .

Entonces  $c_1$ ,  $c_2$ ,  $c_4$  son colineales, vea Figura 6.

Si  $y_4 = y_5$ , todas las posiciones de puntos son fijadas, y  $\overline{c_1c_5} \not\subset M$ . El camino  $c_1 - c_3 - c_5$  tiene longitud  $\sqrt{5} + \sqrt{10}$ , el camino  $c_1 - c_4 - c_5$  tiene la longitud mayor  $\sqrt{20} + 1$ . Por eso, la condición  $y_4 = y_5$  lleva a definir  $c_3$  como vértice complementario. Eso comprueba la condición (1b) del lema. En contraste, si  $y_5 - y_4 \ge 1$  entonces  $\overline{c_1c_5}$ ,  $\overline{c_2c_5}$ , y  $\overline{c_3c_5}$  no cabe dentro de M. Por lo tanto, entonces  $c_4$  es el único posible vértice complementario, eso completa la demostración de condición (1a).

• Supongamos que  $x_1 < x_2 \land y_2 < y_3 \land x_3 = x_4 \land y_4 \le y_5$ .

 $(x_1 < x_2 \land y_2 < y_3)$  es parte de la condición para el vértice complementario  $c_2$  para los puntos  $c_1, c_2, c_3$ . La suposición  $\overline{c_1c_3} \subset M$  nos requiere asumir  $x_1 + 1 = x_2$  y  $y_2 + 1 = y_3$ , es decir,  $c_1, c_2, c_3$ forman una línea diagonal. Pero junto con  $x_3 = x_4$ , eso constituye la condición (4a) de Lema 20, en contradicción de la suposición  $\overline{c_1c_4} \subset M$ . Así que, esta situación no es de interés.

• Supongamos que  $x_1 < x_2 \land y_2 < y_3 \land x_3 < x_4 \land y_4 \le y_5$ .

De nuevo, puesto que  $(x_1 < x_2 \land y_2 < y_3)$  es parte de la condición de Lema 15, la suposición  $\overline{c_1c_3} \subset M$ lleva a asumir al caso especial diagonal para  $c_1, c_2, c_3$ :  $x_1 + 1 = x_2 \wedge y_2 + 1 = y_3$ .

Puesto que  $x_3 \neq x_4$ , la condición (4a) de Lema 20 no se cumple, entonces la condición (4b) tiene que ser negada. Eso requiere asumir  $x_4 - x_3 < 2$ . Por la suposición  $x_3 < x_4$ , entonces  $x_4 - x_3 = 1$ ,  $c_1, c_2, c_3, c_4$  todos están situados en la misma línea recta diagonal.

De Figura 7 es claro que, si  $y_4 = y_5$ ,  $c_3$  es necesitado como vértice complementario. Eso se debe a que  $\overline{c_3c_5}$  tiene pendiente 1/2 < 1,  $\overline{c_1c_5}$  y  $\overline{c_2c_5}$  no caben dentro de M, y el camino  $c_3 - c_4 - c_5$  es más largo que  $\overline{c_3c_5}$ . Eso demuestra (2a).

Si  $y_4 + 1 = y_5$ ,  $x_4 + 1 = x_5$  implica que  $c_5$  está sobre la misma línea diagonal  $\overline{c_1c_4}$ , entonces  $\overline{c_1c_5} \subset M$ , ningún vértice complementario es necesitado.



FIGURA 7. Demostración de Lema 21, caso  $x_1 < x_2 \land y_2 < y_3 \land x_3 < x_4 \land y_4 \leq y_5$ .

| 1 |                       |                       |                       |            |                       |                       |                       |          |                       |                       |                       |                       | 1 |                       |
|---|-----------------------|-----------------------|-----------------------|------------|-----------------------|-----------------------|-----------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|---|-----------------------|
|   |                       |                       |                       |            |                       |                       |                       |          |                       |                       |                       |                       |   | <i>c</i> <sub>5</sub> |
|   |                       |                       | <i>c</i> <sub>4</sub> |            |                       |                       | <i>c</i> <sub>4</sub> | $\angle$ | <i>c</i> <sub>5</sub> |                       |                       | <i>c</i> <sub>4</sub> |   |                       |
|   | <i>c</i> <sub>2</sub> |                       | $\geq$                | <i>c</i> 5 | <i>c</i> <sub>2</sub> |                       | $\mathbb{Z}$          |          |                       | <i>c</i> <sub>2</sub> |                       |                       |   |                       |
|   |                       | $\square$             | <i>c</i> <sub>3</sub> |            |                       |                       | <i>c</i> <sub>3</sub> |          |                       |                       | $\square$             | <i>C</i> 3            |   |                       |
|   |                       | <i>c</i> <sub>1</sub> |                       |            |                       | <i>c</i> <sub>1</sub> |                       |          |                       |                       | <i>c</i> <sub>1</sub> |                       |   |                       |

FIGURA 8. Demostración de Lema 21, caso  $x_1 = x_2 \wedge y_2 = y_3 \wedge x_3 < x_4 \wedge y_4 \leq y_5$ .

En contraste, si  $y_5 - y_4 \ge 2$ , la pendiente de  $\overrightarrow{c_4c_5}$  es igual o mayor que 2, estrictamente sobrepasando la pendiente de  $\overrightarrow{c_1c_4}$ . Por lo tanto,  $c_4$  es necesitado como vértice complementario. Eso comprueba (2b).

• Supongamos que  $x_1 = x_2 \land y_2 = y_3 \land x_3 < x_4 \land y_4 \le y_5$ .

 $(x_1 = x_2 \land y_2 = y_3)$  es parte de la condición (3) de Lema 20, entonces la suposición  $\overline{c_1c_4} \subset M$  lleva a tener que asumir  $x_4 - x_3 < 2$ , entonces  $x_4 - x_3 = 1$ . Eso significa que  $c_1, c_3, c_4$  pertenecen a la línea diagonal con pendiente 1, vea Figura 8.

Si  $y_4 = y_5$  entonces  $\overline{c_1c_5} \not\subset M$ , puesto que  $\overline{c_3c_5}$  tiene la pendiente 1/2 < 1. Entonces un vértice complementario  $p \in \{c_2, c_3, c_4\}$  es necesitado. Claro que  $p = c_3$  proporciona el camino más corto de  $c_1$  hacia  $c_5$ . Eso demuestra (3a) del lema.

Si  $y_4 + 1 = y_5$ , puesto que también  $x_4 + 1 = x_5$ ,  $c_5$  está sobre la línea diagonal formada por  $c_1, c_3, c_4$ , entonces  $\overline{c_1c_5} \subset M$ , no se necesita un vértice complementario.

Si  $y_5 - y_4 \ge 2$  entonces  $\overline{c_1c_5} \not\subset M$ , puesto que  $\overline{c_4c_5}$  tiene la pendiente  $\ge 2 > 1$ , implicando que el vértice complementario  $c_4$  es necesitado. Eso demuestra (3b)del lema.

• Supongamos que  $x_1 = x_2 \land y_2 < y_3 \land x_3 = x_4 \land y_4 \le y_5$ .

Las posiciones relativas de  $c_1, c_2$  y de  $c_3, c_4$  son entonces fijadas, y  $\overline{c_1c_2}, \overline{c_1c_3}$  y  $\overline{c_1c_4}$  caben dentro de M. La situación de  $\overline{c_1c_5}$  depende del valor de  $(y_5 - y_4)$  en relación con  $(y_3 - y_2)$ , vea Figura 9.

Si  $y_5 - y_4 = y_3 - y_2$  entonces  $y_5 - y_3 = y_3 - y_1$ ,  $\overrightarrow{c_1c_3}$  y  $\overrightarrow{c_3c_5}$  tienen pendientes iguales,  $c_1, c_3, c_5$  son colineales,  $\overrightarrow{c_1c_5} \subset M$ .

La misma conclusion es obtenida para  $y_5 - y_4 = y_3 - y_2 + 2$ . Eso se debe a que entonces  $y_5 - y_4 = y_4 - y_1$ ,  $\overrightarrow{c_1c_4}$  y  $\overrightarrow{c_4c_5}$  tienen pendientes iguales,  $c_1, c_4, c_5$  son colineales,  $\overrightarrow{c_1c_5} \subset M$ . En ambos casos, no se necesitan vértices complementarios.

Si  $y_5 - y_4 = y_3 - y_2 + 1$ , vea Figura 9, la pendiente de  $\overline{c_1c_5}$  es dada por  $\frac{1}{2}((y_5 - y_4) + 1 + (y_3 - y_2) + 1) = \frac{1}{2}((y_3 - y_2 + 1) + (y_3 - y_2) + 2) = \frac{1}{2}(2(y_3 - y_2 + 1) + 3) = (y_3 - y_2) + \frac{3}{2}$ . Este valor se encuentra entre la pendiente  $(y_3 - y_2) + 1$  de  $\overline{c_1c_3}$  y la pendiente  $(y_3 - y_2) + 2$  de  $\overline{c_1c_4}$ , por lo tanto,  $\overline{c_1c_5}$  está en M, no se necesita un vértice complementario.



FIGURA 9. Demostración de Lema 21, caso  $x_1 = x_2 \wedge y_2 < y_3 \wedge x_3 = x_4 \wedge y_4 \leq y_5$ . De la izquierda a la derecha, la figura muestra las situaciones  $y_5 - y_4 = y_3 - y_2$  (ningún vértice),  $y_5 - y_4 = y_3 - y_2 + 2$  (ningún vértice),  $y_5 - y_4 = y_3 - y_2 + 1$  (ningún vértice),  $y_5 - y_4 < y_3 - y_2$  (vértice  $c_3$ ),  $y_5 - y_4 > y_3 - y_2 + 2$  (vértice  $c_4$ ).

|                       |                       |                       |                       |  |                       |                       |                       |                       |  |                       |                       | 1                     |       |
|-----------------------|-----------------------|-----------------------|-----------------------|--|-----------------------|-----------------------|-----------------------|-----------------------|--|-----------------------|-----------------------|-----------------------|-------|
|                       |                       |                       |                       |  |                       |                       |                       |                       |  |                       |                       |                       | $c_5$ |
|                       | <i>c</i> <sub>4</sub> |                       |                       |  |                       | <i>c</i> <sub>4</sub> | $\square$             | <i>c</i> <sub>5</sub> |  |                       | <i>c</i> <sub>4</sub> |                       |       |
| <i>c</i> <sub>2</sub> |                       |                       | <i>c</i> <sub>5</sub> |  | <i>c</i> <sub>2</sub> | $\angle$              |                       |                       |  | <i>c</i> <sub>2</sub> | $\mathbb{Z}$          |                       |       |
| $\triangleright$      |                       | <i>c</i> <sub>3</sub> |                       |  | $\mathbb{Z}$          |                       | <i>c</i> <sub>3</sub> |                       |  | $\angle$              |                       | <i>c</i> <sub>3</sub> |       |
| <i>c</i> <sub>1</sub> |                       |                       |                       |  | $c_1$                 |                       |                       |                       |  | $c_1$                 |                       |                       |       |

FIGURA 10. Demostración de Lema 21, caso  $x_1 < x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 \leq y_5$ .

|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 1                     |            |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | <i>c</i> 5 |
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | <i>c</i> <sub>5</sub> |                       |                       |                       |            |
|                       | <i>c</i> <sub>4</sub> |                       |                       |                       | <i>c</i> <sub>4</sub> |                       | <i>C</i> <sub>5</sub> |                       | <i>c</i> <sub>4</sub> |                       |                       |                       | <i>c</i> <sub>4</sub> |                       |            |
| <i>c</i> <sub>2</sub> |                       | $\square$             | <i>c</i> <sub>5</sub> | <i>c</i> <sub>2</sub> |                       |                       |                       | <i>c</i> <sub>2</sub> |                       |                       |                       | <i>c</i> <sub>2</sub> | $\Box$                |                       |            |
|                       | $\square$             | <i>c</i> <sub>3</sub> |                       |                       | Ζ                     | <i>c</i> <sub>3</sub> |                       |                       |                       | <i>c</i> <sub>3</sub> |                       |                       | $\mathbb{Z}$          | <i>c</i> <sub>3</sub> |            |
|                       | <i>c</i> <sub>1</sub> |                       |                       |                       | <i>c</i> <sub>1</sub> |                       |                       |                       | <i>c</i> <sub>1</sub> |                       |                       |                       | <i>c</i> <sub>1</sub> |                       |            |

FIGURA 11. Demostración de Lema 21, caso  $x_1 = x_2 \wedge y_2 = y_3 \wedge x_3 = x_4 \wedge y_4 \leq y_5$ .

Si  $y_5 - y_4 < y_3 - y_2$  (lo cual incluye al caso especial  $y_5 = y_4$ ) entonces  $\overline{c_1c_5} \not\subset M$ , puesto que  $\overrightarrow{c_1c_3}$  tiene una pendiente estrictamente mayor que la de  $\overrightarrow{c_3c_5}$ . De las opciones  $p \in \{c_2, c_3, c_4\}$ , claro que  $p = c_3$  proporciona el camino más corto  $c_1 - c_3 - c_5$ . Eso demustra (4a).

Si  $y_5 - y_4 > y_3 - y_2 + 2$  entonces  $(y_5 - y_4) - (y_3 - y_2 + 2) = k > 0$  que implica  $\overline{c_1c_5} \not\subset M$ . Eso debido a que  $\overline{c_1c_4}$  tiene la pendiente  $y_4 - y_1 = (y_3 - y_2 + 2)$  pero  $c_1c_5$  tiene la pendiente estrictamente mayor  $\frac{1}{2}(y_5 - y_4 + y_3 - y_2 + 2) = \frac{1}{2}(2(y_3 - y_2 + 2) + k) = (y_3 - y_2 + 2) + \frac{k}{2}$ . Aunque ambos puntos  $c_3$  y  $c_4$ parecen ser posibles vértices complementarios, vea Figura 9, el camino  $c_1 - c_4 - c_5$  es más corto que el camino  $c_1 - c_3 - c_5$ . Por lo tanto,  $c_4$  es el vértice correcto. Eso comprueba (4b).

• Supongamos que  $x_1 < x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 \le y_5$ .

 $(x_1 < x_2 \land y_2 = y_3)$  es parte de las condiciones (2a),(2b) de Lema 20, negación de (2a) lleva a asumir  $x_4 - x_2 \ge x_2 - x_1$ . La parte restante de (2b) es  $x_4 - x_3 \ge x_3 - x_1$  lo cual es impossible, puesto que  $x_3 = x_4$ . Asumiendo  $x_4 - x_2 \ge x_2 - x_1$  y tomando en cuenta  $x_2 + 1 = x_3$ ,  $x_1 < x_2$  implica  $x_2 = x_1 + 1$ . Por lo tanto,  $c_1, c_2, c_3, c_4$  tiene posiciones fijadas donde  $c_1, c_2, c_4$  son colineales sobre una línea de pendiente 1, vea Figura 10.



FIGURA 12. Ejemplo que ilustra la función que transforma cada situación local para  $c_1$  convexo en la situación correspondiente para  $c_1$  cóncavo.

Obviamente  $\overline{c_1c_5} \subset M$  si  $y_4 = y_5$ , también si  $y_5 - y_4 = 1$  donde  $c_1, c_2, c_4, c_5$  son colineales. Pero para  $y_5 - y_4 \geq 2$ , la pendiente de  $\overline{c_4c_5}$  estrictamente sobrepasa 1, entonces  $\overline{c_1c_5} \not\subset M$  y  $c_4$  es necesitado como vértice complementario. Eso confirma (5) del lema.

• Supongamos que  $x_1 = x_2 \land y_2 = y_3 \land x_3 = x_4 \land y_4 \le y_5$ .

 $(x_1 = x_2 \land y_2 = y_3)$  es parte de la condición (3) de Lema 20, pero la parte restante de (3) es  $x_4 - x_3 \ge 2$ lo cual no es posible, puesto que  $x_3 = x_4$ . Entonces tenemos un caso nuevo a ser analizado, donde  $c_1, c_2, c_3, c_4$  tienen posiciones fijadas,  $\overline{c_1c_4}$  cabe dentro de M y tiene pendiente 2, vea Figura 11.

Claro que  $\overline{c_1c_5} \subset M$  si  $y_4 = y_5$  donde  $c_1, c_3, c_4$  son colineales, y también si  $y_5 - y_4 = 1$  donde  $\overline{c_1c_5}$ tiene pendiente 3/2 y por eso, pasa entre  $\overline{c_1c_4}$  y  $\overline{c_1c_4}$ . Aún para  $y_5 - y_4 = 2$  todavía vale  $\overline{c_1c_5} \subset M$ , puesto que entonces  $c_1, c_4, c_5$  son colineales. Pero cuando  $y_5 - y_4 \ge 3$ , la pendiente de  $\overline{c_4c_5}$  es estrictamente mayor a 2 lo cual es la pendiente de  $\overline{c_1c_4}$ . Entonces  $\overline{c_1c_5} \not\subset M$ ,  $c_4$  es necesitado como vértice complementario. Eso proporciona la condición (6) del lema.

Si  $c_1$  es cóncavo, también  $c_3$  y  $c_5$  lo son. Cualquier situación de tipo a) es caracterizada por  $x_1 + 1 = x_2$  y  $y_2 + 1 = y_3$ , y también satisface  $x_3 + 1 = x_4$ ,  $y_4 + 1 = y_5$ ,  $y_1 \leq y_2$ ,  $x_2 \leq x_3$ ,  $y_3 \leq y_4$ ,  $x_4 \leq x_5$ . Para analizar las situaciones dadas por todas las posibles combinaciones donde las últimas cuatro relaciones son estrictas o presentan igualdades, sería completamente análogo al caso donde  $c_1$  es convexo. Como ya fue observado en las demostraciones anteriores, cada situación local para  $c_1$  convexo, corresponde a su contraparte donde  $c_1$  es cóncavo, mediante la biyección espejo que mapea la situación con  $c_1$  convexo, por una línea recta paralela al eje x, seguido por una rotación por 90°, vea Figura 12. Eso completa la demostración.

#### APÉNDICE B

# Tablas de resultados de experimentos de estimación del perímetro

Las siguientes páginas contienen tablas de resultados de experimentos de estimación del perímetro, para varios objetos. Estas tablas dan el soporte de evidencia para las gráficas y estadísticas presentadas en el Capítulo 5 de la tesis.

### Resultados de estimación del perímetro para círculos

en todas las tablas:

C8 = número de píxeles del 8-contorno, C4 = número de píxeles del 4-contorno cand = número de puntos candidatos, polyg = número de vértices del polígono iso = número de puntos finales de cantos localmente extremos ("isotéticos") peak = número de picos, collin = número de puntos colineales borrados por el algoritmo compl = número de vértices complementarios perim = perímetro estimado, error = error relativo de perímetro rad = radio

| rad | C8   | C4   | cand | polyg | iso    | peak | compl      | collin | perim   | error  |
|-----|------|------|------|-------|--------|------|------------|--------|---------|--------|
| 100 | 564  | 800  | 476  | 104   | 8      | 0    | 96         | 52     | 631.13  | 0.4479 |
| 110 | 624  | 880  | 516  | 120   | 8      | 0    | 112        | 36     | 694.47  | 0.4803 |
| 120 | 680  | 960  | 564  | 128   | 8      | 0    | 120        | 36     | 757.32  | 0.4424 |
| 130 | 736  | 1040 | 612  | 128   | 8      | 0    | 120        | 64     | 820.27  | 0.4236 |
| 140 | 792  | 1120 | 660  | 176   | 8      | 0    | 168        | 24     | 883.27  | 0.4117 |
| 150 | 848  | 1200 | 708  | 144   | 8      | 0    | 136        | 68     | 945.79  | 0.3514 |
| 160 | 904  | 1280 | 756  | 144   | 8      | 0    | 136        | 80     | 1008.65 | 0.3325 |
| 170 | 960  | 1360 | 804  | 176   | 8      | 0    | 168        | 68     | 1071.65 | 0.3288 |
| 180 | 1020 | 1440 | 844  | 152   | 8      | 0    | 144        | 80     | 1134.61 | 0.3213 |
| 190 | 1076 | 1520 | 892  | 168   | 8      | 0    | 160        | 96     | 1197.67 | 0.3237 |
| 200 | 1132 | 1600 | 940  | 192   | 8      | 0    | 184        | 96     | 1260.92 | 0.3409 |
| 210 | 1188 | 1680 | 988  | 192   | 8      | 0    | 184        | 104    | 1323.66 | 0.3178 |
| 220 | 1244 | 1760 | 1036 | 192   | 8      | 0    | 184        | 116    | 1386.26 | 0.2863 |
| 230 | 1300 | 1840 | 1084 | 208   | 8      | 0    | 200        | 104    | 1449.22 | 0.2827 |
| 240 | 1356 | 1920 | 1132 | 184   | 8      | 0    | 176        | 144    | 1512.09 | 0.2738 |
| 250 | 1416 | 2000 | 11/2 | 232   | 8      | 0    | 224        | 112    | 1575.85 | 0.3215 |
| 260 | 1472 | 2080 | 1220 | 216   | 8      | 0    | 208        | 140    | 1638.23 | 0.2817 |
| 270 | 1528 | 2160 | 1268 | 248   | 8      | 0    | 240        | 140    | 1/01.40 | 0.2914 |
| 280 | 1584 | 2240 | 1316 | 280   | 8      | 0    | 272        | 104    | 1/64.84 | 0.3154 |
| 290 | 1640 | 2320 | 1364 | 288   | 8      | 0    | 280        | 120    | 1827.50 | 0.2952 |
| 300 | 1696 | 2400 | 1412 | 272   | 8      | 0    | 264        | 148    | 1890.21 | 0.2790 |
| 310 | 1/52 | 2480 | 1460 | 2/6   | 8      | 0    | 208        | 152    | 1952.91 | 0.2629 |
| 320 | 1012 | 2000 | 1500 | 308   | 8      | 0    | 300        | 130    | 2010.41 | 0.28/9 |
| 240 | 1000 | 2040 | 1040 | 204   | 0      | 0    | 290        | 144    | 2079.00 | 0.2703 |
| 340 | 1924 | 2120 | 1644 | 222   | O<br>Q | 0    | 200        | 164    | 2142.20 | 0.2799 |
| 360 | 1900 | 2000 | 1602 | 202   | 0<br>Q | 0    | 024<br>001 | 204    | 2203.11 | 0.2723 |
| 370 | 2030 | 2000 | 1740 | 292   | 0<br>Q | 0    | 204        | 204    | 2207.03 | 0.2012 |
| 380 | 2092 | 2900 | 1788 | 324   | 8      | 0    | 316        | 200    | 2330.30 | 0.2001 |
| 300 | 2208 | 3120 | 1828 | 311   | 8      | 0    | 336        | 18/    | 2000.02 | 0.2332 |
| 400 | 2260 | 3200 | 1876 | 352   | 8      | 0    | 344        | 184    | 2519.80 | 0.2704 |
| 400 | 2320 | 3280 | 1924 | 356   | 8      | 0    | 348        | 188    | 2581.89 | 0.2000 |
| 420 | 2376 | 3360 | 1972 | 376   | 8      | 0    | 368        | 196    | 2645 11 | 0.2240 |
| 430 | 2432 | 3440 | 2020 | 356   | 8      | 0    | 348        | 212    | 2708.07 | 0.2331 |
| 440 | 2488 | 3520 | 2068 | 308   | 8      | 0    | 300        | 260    | 2770.09 | 0 1986 |
| 450 | 2544 | 3600 | 2116 | 360   | 8      | Õ    | 352        | 240    | 2833.77 | 0.2241 |
| 460 | 2604 | 3680 | 2156 | 432   | 8      | Õ    | 424        | 196    | 2898.01 | 0.2678 |
| 470 | 2660 | 3760 | 2204 | 404   | 8      | 0    | 396        | 216    | 2959.98 | 0.2330 |
| 480 | 2716 | 3840 | 2252 | 448   | 8      | 0    | 440        | 200    | 3023.25 | 0.2427 |
| 490 | 2772 | 3920 | 2300 | 452   | 8      | Ō    | 444        | 228    | 3086.90 | 0.2644 |
| 500 | 2828 | 4000 | 2348 | 460   | 8      | 0    | 452        | 228    | 3149.58 | 0.2542 |

| rad  | C8   | C4   | cand | polyg | iso | peak | compl | collin | perim   | error  |
|------|------|------|------|-------|-----|------|-------|--------|---------|--------|
| 510  | 2884 | 4080 | 2396 | 424   | 8   | 0    | 416   | 264    | 3211.73 | 0.2279 |
| 520  | 2940 | 4160 | 2444 | 440   | 8   | 0    | 432   | 260    | 3274.36 | 0.2175 |
| 530  | 3000 | 4240 | 2484 | 456   | 8   | 0    | 448   | 256    | 3338.37 | 0.2486 |
| 540  | 3056 | 4320 | 2532 | 480   | 8   | 0    | 472   | 236    | 3400.91 | 0.2356 |
| 550  | 3112 | 4400 | 2580 | 420   | 8   | 0    | 412   | 308    | 3464.03 | 0.2394 |
| 560  | 3168 | 4480 | 2628 | 492   | 8   | 0    | 484   | 260    | 3527 14 | 0 2430 |
| 570  | 3224 | 4560 | 2676 | 472   | 8   | Õ    | 464   | 304    | 3589.40 | 0.2228 |
| 580  | 3280 | 4640 | 2724 | 432   | 8   | 0    | 424   | 336    | 3652.16 | 0.2170 |
| 590  | 3336 | 4720 | 2772 | 492   | 8   | Õ    | 484   | 300    | 3715.35 | 0.2231 |
| 600  | 3396 | 4800 | 2812 | 464   | 8   | 0    | 456   | 340    | 3778.15 | 0.2184 |
| 610  | 3452 | 4880 | 2860 | 532   | 8   | 0    | 524   | 276    | 3841.52 | 0.2290 |
| 620  | 3508 | 4960 | 2908 | 544   | 8   | 0    | 536   | 292    | 3904.48 | 0.2285 |
| 630  | 3564 | 5040 | 2956 | 512   | 8   | Õ    | 504   | 340    | 3967.24 | 0.2232 |
| 640  | 3620 | 5120 | 3004 | 576   | 8   | 0    | 568   | 288    | 4030.73 | 0.2360 |
| 650  | 3676 | 5200 | 3052 | 536   | 8   | 0    | 528   | 336    | 4093.31 | 0.2262 |
| 660  | 3732 | 5280 | 3100 | 552   | 8   | 0    | 544   | 344    | 4156.22 | 0.2247 |
| 670  | 3792 | 5360 | 3140 | 600   | 8   | 0    | 592   | 296    | 4219.76 | 0.2380 |
| 680  | 3848 | 5440 | 3188 | 548   | 8   | 0    | 540   | 348    | 4281.97 | 0.2201 |
| 690  | 3904 | 5520 | 3236 | 580   | 8   | 0    | 572   | 328    | 4344.69 | 0.2142 |
| 700  | 3960 | 5600 | 3284 | 624   | 8   | 0    | 616   | 320    | 4408.31 | 0.2291 |
| 710  | 4016 | 5680 | 3332 | 560   | 8   | Ō    | 552   | 384    | 4470.50 | 0.2115 |
| 720  | 4072 | 5760 | 3380 | 592   | 8   | 0    | 584   | 368    | 4533.42 | 0.2105 |
| 730  | 4128 | 5840 | 3428 | 556   | 8   | 0    | 548   | 404    | 4596.18 | 0.2062 |
| 740  | 4188 | 5920 | 3468 | 636   | 8   | 0    | 628   | 340    | 4659.34 | 0.2104 |
| 750  | 4244 | 6000 | 3516 | 668   | 8   | 0    | 660   | 332    | 4723.13 | 0.2279 |
| 760  | 4300 | 6080 | 3564 | 632   | 8   | 0    | 624   | 376    | 4785.43 | 0.2138 |
| 770  | 4356 | 6160 | 3612 | 644   | 8   | 0    | 636   | 384    | 4847.94 | 0.2044 |
| 780  | 4412 | 6240 | 3660 | 648   | 8   | 0    | 640   | 388    | 4911.09 | 0.2082 |
| 790  | 4468 | 6320 | 3708 | 648   | 8   | 0    | 640   | 404    | 4973.83 | 0.2038 |
| 800  | 4524 | 6400 | 3756 | 636   | 8   | 0    | 628   | 432    | 5036.32 | 0.1944 |
| 810  | 4584 | 6480 | 3796 | 676   | 8   | 0    | 668   | 416    | 5100.53 | 0.2191 |
| 820  | 4640 | 6560 | 3844 | 704   | 8   | 0    | 696   | 392    | 5163.97 | 0.2283 |
| 830  | 4696 | 6640 | 3892 | 720   | 8   | 0    | 712   | 400    | 5226.73 | 0.2241 |
| 840  | 4752 | 6720 | 3940 | 736   | 8   | 0    | 728   | 380    | 5289.52 | 0.2205 |
| 850  | 4808 | 6800 | 3988 | 712   | 8   | 0    | 704   | 428    | 5352.36 | 0.2182 |
| 860  | 4864 | 6880 | 4036 | 724   | 8   | 0    | 716   | 428    | 5415.83 | 0.2274 |
| 870  | 4920 | 6960 | 4084 | 740   | 8   | 0    | 732   | 428    | 5477.88 | 0.2106 |
| 880  | 4980 | 7040 | 4124 | 724   | 8   | 0    | 716   | 448    | 5541.27 | 0.2183 |
| 890  | 5036 | 7120 | 4172 | 744   | 8   | 0    | 736   | 436    | 5603.95 | 0.2131 |
| 900  | 5092 | 7200 | 4220 | 736   | 8   | 0    | 728   | 444    | 5666.93 | 0.2134 |
| 910  | 5148 | 7280 | 4268 | 760   | 8   | 0    | 752   | 456    | 5729.96 | 0.2145 |
| 920  | 5204 | 7360 | 4316 | 780   | 8   | 0    | 772   | 440    | 5792.79 | 0.2122 |
| 930  | 5260 | 7440 | 4364 | 732   | 8   | 0    | 724   | 488    | 5855.31 | 0.2045 |
| 940  | 5316 | 7520 | 4412 | 740   | 8   | 0    | 732   | 472    | 5917.57 | 0.1926 |
| 950  | 5376 | 7600 | 4452 | 776   | 8   | 0    | 768   | 464    | 5981.44 | 0.2079 |
| 960  | 5432 | 7680 | 4500 | 816   | 8   | 0    | 808   | 460    | 6044.79 | 0.2144 |
| 970  | 5488 | 7760 | 4548 | 824   | 8   | 0    | 816   | 468    | 6107.06 | 0.2029 |
| 980  | 5544 | 7840 | 4596 | 772   | 8   | 0    | 764   | 508    | 6169.68 | 0.1974 |
| 990  | 5600 | 7920 | 4644 | 764   | 8   | 0    | 756   | 536    | 6232.48 | 0.1950 |
| 1000 | 5656 | 8000 | 4692 | 852   | 8   | 0    | 844   | 464    | 6295.99 | 0.2038 |

| rad  | C4    | cand | polyg | iso | peak | compl | collin | perim    | error  |
|------|-------|------|-------|-----|------|-------|--------|----------|--------|
| 1800 | 14400 | 8436 | 1428  | 8   | 0    | 1420  | 936    | 11331.47 | 0.1922 |
| 1810 | 14480 | 8484 | 1472  | 8   | 0    | 1464  | 912    | 11395.03 | 0.1975 |
| 1820 | 14560 | 8532 | 1480  | 8   | 0    | 1472  | 932    | 11458.40 | 0.2012 |
| 1830 | 14640 | 8580 | 1524  | 8   | 0    | 1516  | 884    | 11520.41 | 0.1929 |
| 1840 | 14720 | 8628 | 1520  | 8   | 0    | 1512  | 920    | 11584.21 | 0.2002 |
| 1850 | 14800 | 8676 | 1524  | 8   | 0    | 1516  | 920    | 11645.91 | 0.1894 |
| 1860 | 14880 | 8724 | 1464  | 8   | 0    | 1456  | 960    | 11708.58 | 0.1870 |
| 1870 | 14960 | 8764 | 1496  | 8   | 0    | 1488  | 956    | 11772.03 | 0.1912 |
| 1880 | 15040 | 8812 | 1540  | 8   | 0    | 1532  | 932    | 11834.92 | 0.1907 |
| 1890 | 15120 | 8860 | 1544  | 8   | 0    | 1536  | 972    | 11899.06 | 0.2008 |
| 1900 | 15200 | 8908 | 1576  | 8   | 0    | 1568  | 940    | 11961.03 | 0.1925 |

#### Resultados de estimación de perímetro para elipses

en todas las tablas:

C8 = número de píxeles del 8-contorno, C4 = número de píxeles del 4-contorno cand = número de puntos candidatos, polyg = número de vértices del polígono iso = número de puntos finales de cantos localmente extremos ("isotéticos") peak = número de picos, collin = número de puntos colineales borrados por el algoritmo perim = perímetro estimado, error = error relativo de perímetro true = perímetro verdadero calculado con fórmula de Ramanuyan

#### Elipses pequeñas, posición alineada (sin rotación):

r = longitud del eje mayor, s = longitud del eje menor

| r                                             | S                                            | C8                                              | C4                                                  | cand                                          | polyg                                        | iso                        | peak                       | collin                                | perim                                            | true                                             | error                                                              |
|-----------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------|----------------------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|
| 100                                           | 50                                           | 220                                             | 300                                                 | 160                                           | 32                                           | 0                          | 4                          | 20                                    | 241                                              | 242                                              | 0.3802                                                             |
| 150<br>150                                    | 50<br>100                                    | 316<br>360                                      | 400<br>500                                          | 168<br>280                                    | 56<br>80                                     | 0<br>0                     | 4<br>4                     | 0<br>8                                | 334<br>397                                       | 334<br>397                                       | 0.0801<br>0.0487                                                   |
| 200<br>200<br>200                             | 50<br>100<br>150                             | 412<br>444<br>500                               | 500<br>600<br>700                                   | 176<br>312<br>400                             | 56<br>72<br>76                               | 0<br>0<br>0                | 4<br>4<br>4                | 4<br>28<br>40                         | 428<br>484<br>553                                | 429<br>484<br>553                                | 0.1969<br>0.0560<br>0                                              |
| 250<br>250<br>250<br>250                      | 50<br>100<br>150<br>200                      | 508<br>536<br>580<br>640                        | 600<br>700<br>800<br>900                            | 184<br>328<br>440<br>520                      | 44<br>76<br>84<br>104                        | 0<br>0<br>0<br>0           | 4<br>4<br>4<br>4           | 16<br>24<br>48<br>56                  | 525<br>575<br>638<br>709                         | 525<br>575<br>638<br>709                         | 0.1330<br>0.0788<br>0.0475<br>0.0333                               |
| 300<br>300<br>300<br>300<br>300               | 50<br>100<br>150<br>200<br>250               | 608<br>632<br>668<br>720<br>780                 | 700<br>800<br>900<br>1000<br>1100                   | 184<br>336<br>464<br>560<br>640               | 60<br>88<br>112<br>140<br>120                | 0<br>0<br>0<br>0           | 4<br>4<br>4<br>4           | 4<br>16<br>28<br>36<br>68             | 622<br>668<br>727<br>794<br>866                  | 623<br>668<br>727<br>793<br>866                  | 0.0953<br>0.0498<br>0.0094<br>0.0931<br>0.0425                     |
| 350<br>350<br>350<br>350<br>350<br>350<br>350 | 50<br>100<br>150<br>200<br>250<br>300        | 704<br>728<br>760<br>804<br>860<br>920          | 800<br>900<br>1000<br>1100<br>1200<br>1300          | 192<br>344<br>480<br>592<br>680<br>760        | 56<br>88<br>102<br>112<br>124<br>146         | 0<br>0<br>0<br>0<br>0      | 4<br>4<br>4<br>4<br>4      | 4<br>20<br>46<br>68<br>64<br>70       | 719<br>762<br>817<br>880<br>950<br>1023          | 720<br>763<br>817<br>880<br>949<br>1023          | 0.1702<br>0.0564<br>0.0036<br>0.0022<br>0.0732<br>0.0525           |
| 400<br>400<br>400<br>400<br>400<br>400<br>400 | 50<br>100<br>150<br>200<br>250<br>300<br>350 | 804<br>824<br>852<br>892<br>940<br>1000<br>1060 | 900<br>1000<br>1100<br>1200<br>1300<br>1400<br>1500 | 192<br>352<br>496<br>616<br>720<br>800<br>880 | 60<br>100<br>100<br>130<br>144<br>156<br>182 | 0<br>0<br>0<br>0<br>0<br>0 | 4<br>4<br>4<br>4<br>4<br>4 | 8<br>20<br>44<br>54<br>76<br>80<br>78 | 818<br>858<br>909<br>969<br>1035<br>1106<br>1181 | 819<br>858<br>909<br>969<br>1035<br>1105<br>1179 | 0.1286<br>0.0180<br>0.0432<br>0.0117<br>0.0347<br>0.0981<br>0.1005 |

**Elipses pequeñas con rotación** r = longitud del eje mayor, s = longitud del eje menor w = ángulo de rotación / inclinación (en grados)

r = 100, s = 50, perímetro verdadero: 242

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 220 | 300 | 160  | 32    | 0   | 4    | 20     | 241   | 0.3802 |
| 20  | 216 | 304 | 180  | 37    | 8   | 0    | 21     | 241   | 0.4524 |
| 40  | 210 | 312 | 208  | 46    | 8   | 0    | 20     | 241   | 0.4476 |
| 60  | 212 | 312 | 204  | 46    | 8   | 0    | 22     | 241   | 0.3568 |
| 80  | 220 | 300 | 164  | 40    | 8   | 0    | 12     | 241   | 0.4306 |
| 100 | 220 | 300 | 164  | 40    | 8   | 0    | 12     | 241   | 0.4306 |
| 120 | 212 | 312 | 204  | 46    | 8   | 0    | 22     | 241   | 0.3568 |
| 140 | 210 | 312 | 208  | 46    | 8   | 0    | 20     | 241   | 0.4107 |
| 160 | 216 | 304 | 180  | 36    | 8   | 0    | 22     | 241   | 0.4894 |

#### r = 150, s = 50, perímetro verdadero: 334

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 316 | 400 | 168  | 56    | 0   | 4    | 0      | 334   | 0.0801 |
| 20  | 304 | 416 | 228  | 58    | 8   | 0    | 16     | 333   | 0.3210 |
| 40  | 282 | 440 | 320  | 64    | 8   | 0    | 30     | 335   | 0.1859 |
| 60  | 290 | 436 | 296  | 58    | 8   | 0    | 34     | 334   | 0.1526 |
| 80  | 312 | 400 | 180  | 44    | 8   | 0    | 14     | 333   | 0.4374 |
| 100 | 312 | 400 | 180  | 44    | 8   | 0    | 14     | 333   | 0.4106 |
| 120 | 290 | 436 | 296  | 58    | 8   | 0    | 34     | 334   | 0.1715 |
| 140 | 282 | 440 | 320  | 64    | 8   | 0    | 30     | 333   | 0.2127 |
| 160 | 304 | 416 | 228  | 58    | 8   | 0    | 16     | 333   | 0.3210 |

#### r = 150, s = 100, perímetro verdadero: 397

| w   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 360 | 500 | 280  | 80    | 0   | 4    | 8      | 397   | 0.0487 |
| 20  | 356 | 500 | 292  | 64    | 8   | 0    | 22     | 396   | 0.1036 |
| 40  | 352 | 504 | 308  | 68    | 8   | 0    | 28     | 396   | 0.1196 |
| 60  | 354 | 504 | 304  | 72    | 8   | 0    | 24     | 396   | 0.0878 |
| 80  | 356 | 496 | 284  | 56    | 8   | 0    | 32     | 396   | 0.2643 |
| 100 | 356 | 496 | 284  | 56    | 8   | 0    | 32     | 396   | 0.2802 |
| 120 | 354 | 504 | 304  | 72    | 8   | 0    | 24     | 396   | 0.1037 |
| 140 | 352 | 504 | 308  | 68    | 8   | 0    | 28     | 396   | 0.1196 |
| 160 | 356 | 500 | 292  | 64    | 8   | 0    | 22     | 396   | 0.1036 |

#### r = 200, s = 50, perímetro verdadero: 429

| w   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 412 | 500 | 176  | 56    | 0   | 4    | 4      | 428   | 0.1969 |
| 20  | 392 | 540 | 300  | 68    | 8   | 0    | 24     | 429   | 0.0888 |
| 40  | 354 | 580 | 456  | 90    | 8   | 0    | 44     | 429   | 0.0020 |
| 60  | 372 | 564 | 388  | 78    | 8   | 0    | 36     | 429   | 0.0850 |
| 80  | 406 | 512 | 216  | 58    | 8   | 0    | 16     | 428   | 0.2860 |
| 100 | 406 | 512 | 216  | 58    | 8   | 0    | 16     | 428   | 0.2798 |

| 120 | 372 | 564 | 388 | 76 | 8 | 0 | 38 | 429 | 0.0703 |
|-----|-----|-----|-----|----|---|---|----|-----|--------|
| 140 | 354 | 580 | 456 | 90 | 8 | 0 | 44 | 429 | 0.0250 |
| 160 | 392 | 540 | 300 | 68 | 8 | 0 | 24 | 429 | 0.0741 |

#### r = 200, s = 100, perímetro verdadero: 484

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 444 | 600 | 312  | 72    | 0   | 4    | 28     | 484   | 0.0560 |
| 20  | 436 | 612 | 356  | 66    | 8   | 0    | 36     | 484   | 0.1321 |
| 40  | 424 | 628 | 412  | 86    | 8   | 0    | 36     | 484   | 0.0329 |
| 60  | 428 | 624 | 396  | 88    | 8   | 0    | 34     | 484   | 0.0462 |
| 80  | 442 | 600 | 320  | 62    | 8   | 0    | 40     | 484   | 0.1635 |
| 100 | 442 | 600 | 320  | 62    | 8   | 0    | 40     | 484   | 0.1820 |
| 120 | 428 | 624 | 396  | 88    | 8   | 0    | 34     | 484   | 0.0408 |
| 140 | 424 | 628 | 412  | 84    | 8   | 0    | 38     | 484   | 0.0384 |
| 160 | 436 | 612 | 356  | 66    | 8   | 0    | 36     | 484   | 0.1321 |

#### r = 200, s = 150, perímetro verdadero: 553

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 500 | 700 | 400  | 76    | 0   | 4    | 40     | 553   | 0      |
| 20  | 496 | 700 | 412  | 94    | 8   | 0    | 34     | 553   | 0.0223 |
| 40  | 494 | 704 | 424  | 84    | 8   | 0    | 42     | 552   | 0.0307 |
| 60  | 494 | 700 | 416  | 78    | 8   | 0    | 48     | 552   | 0.0489 |
| 80  | 496 | 696 | 404  | 68    | 8   | 0    | 48     | 552   | 0.1260 |
| 100 | 496 | 696 | 404  | 68    | 8   | 0    | 48     | 552   | 0.1422 |
| 120 | 494 | 700 | 416  | 78    | 8   | 0    | 48     | 552   | 0.0651 |
| 140 | 494 | 704 | 424  | 84    | 8   | 0    | 42     | 552   | 0.0307 |
| 160 | 496 | 700 | 412  | 96    | 8   | 0    | 32     | 553   | 0.0053 |

#### r = 250, s = 50, perímetro verdadero: 525

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 508 | 600 | 184  | 44    | 0   | 4    | 16     | 525   | 0.1330 |
| 20  | 482 | 660 | 360  | 72    | 8   | 0    | 32     | 524   | 0.2473 |
| 40  | 428 | 716 | 580  | 110   | 8   | 0    | 64     | 526   | 0.1870 |
| 60  | 454 | 696 | 488  | 96    | 8   | 0    | 46     | 524   | 0.1566 |
| 80  | 502 | 620 | 240  | 68    | 8   | 0    | 6      | 525   | 0.1258 |
| 100 | 502 | 620 | 240  | 68    | 8   | 0    | 6      | 524   | 0.1449 |
| 120 | 454 | 696 | 488  | 97    | 8   | 0    | 45     | 525   | 0.1415 |
| 140 | 428 | 716 | 580  | 108   | 8   | 0    | 66     | 526   | 0.1870 |
| 160 | 482 | 660 | 360  | 72    | 8   | 0    | 32     | 524   | 0.2423 |

#### r = 250, s = 100, perímetro verdadero: 575

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 536 | 700 | 328  | 76    | 0   | 4    | 24     | 575   | 0.0788 |
| 20  | 520 | 724 | 412  | 80    | 8   | 0    | 42     | 575   | 0.1040 |
| 40  | 496 | 760 | 530  | 108   | 4   | 2    | 50     | 576   | 0.1339 |
| 60  | 506 | 748 | 488  | 98    | 8   | 0    | 48     | 575   | 0.0036 |
| 80  | 532 | 704 | 348  | 76    | 8   | 0    | 36     | 575   | 0.1178 |
| 100 | 532 | 704 | 348  | 76    | 8   | 0    | 36     | 575   | 0.1132 |

| 120 | 506 | 748 | 488 | 100 | 8 | 0 | 46 | 575 | 0.0082 |
|-----|-----|-----|-----|-----|---|---|----|-----|--------|
| 140 | 496 | 760 | 530 | 108 | 4 | 2 | 50 | 576 | 0.1137 |
| 160 | 520 | 724 | 412 | 80  | 8 | 0 | 42 | 575 | 0.1241 |

r = 250, s = 150, perímetro verdadero: 638

| w   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 580 | 800 | 440  | 84    | 0   | 4    | 48     | 638   | 0.0475 |
| 20  | 574 | 808 | 472  | 92    | 8   | 0    | 48     | 638   | 0.0386 |
| 40  | 564 | 820 | 516  | 102   | 8   | 0    | 52     | 638   | 0.0036 |
| 60  | 568 | 816 | 500  | 114   | 8   | 0    | 42     | 638   | 0.0142 |
| 80  | 580 | 796 | 436  | 88    | 8   | 0    | 42     | 638   | 0.0632 |
| 100 | 580 | 796 | 436  | 88    | 8   | 0    | 42     | 638   | 0.0590 |
| 120 | 568 | 816 | 500  | 112   | 8   | 0    | 44     | 638   | 0.0340 |
| 140 | 564 | 820 | 516  | 102   | 8   | 0    | 52     | 638   | 0.0145 |
| 160 | 574 | 808 | 472  | 92    | 8   | 0    | 48     | 638   | 0.0427 |

#### r = 250, s = 200, perímetro verdadero: 709

| W   | C8  | C4  | cand | polyg | iso | peak | collin | perim | error  |
|-----|-----|-----|------|-------|-----|------|--------|-------|--------|
| 0   | 640 | 900 | 520  | 104   | 0   | 4    | 56     | 709   | 0.0333 |
| 20  | 636 | 900 | 532  | 110   | 8   | 0    | 54     | 709   | 0.0337 |
| 40  | 634 | 904 | 544  | 102   | 8   | 0    | 58     | 709   | 0.0098 |
| 60  | 636 | 900 | 532  | 90    | 8   | 0    | 64     | 709   | 0.0131 |
| 80  | 636 | 896 | 524  | 108   | 8   | 0    | 54     | 709   | 0.0028 |
| 100 | 636 | 896 | 524  | 108   | 8   | 0    | 54     | 709   | 0.0318 |
| 120 | 636 | 900 | 532  | 90    | 8   | 0    | 64     | 709   | 0.0384 |
| 140 | 634 | 904 | 544  | 102   | 8   | 0    | 58     | 709   | 0.0080 |
| 160 | 636 | 900 | 532  | 110   | 8   | 0    | 54     | 709   | 0.0211 |

# Elipses medianas sin rotación:

| r   | S   | C8   | C4   | cand | polyg | iso | peak | collin | perim | true | error  |
|-----|-----|------|------|------|-------|-----|------|--------|-------|------|--------|
| 500 | 50  | 1004 | 1100 | 192  | 74    | 0   | 4    | 4      | 1015  | 1016 | 0.0763 |
| 500 | 100 | 1016 | 1200 | 368  | 98    | 0   | 4    | 30     | 1050  | 1051 | 0.0752 |
| 500 | 150 | 1044 | 1300 | 512  | 130   | 0   | 4    | 34     | 1097  | 1096 | 0.0026 |
| 500 | 200 | 1076 | 1400 | 648  | 148   | 0   | 4    | 56     | 1151  | 1151 | 0.0336 |
| 500 | 250 | 1116 | 1500 | 768  | 156   | 0   | 4    | 80     | 1212  | 1211 | 0.0569 |
| 500 | 300 | 1164 | 1600 | 872  | 164   | 0   | 4    | 98     | 1277  | 1276 | 0.0554 |
| 500 | 350 | 1220 | 1700 | 960  | 206   | 0   | 4    | 94     | 1347  | 1346 | 0.1099 |
| 500 | 400 | 1280 | 1800 | 1040 | 196   | 0   | 4    | 112    | 1420  | 1418 | 0.1002 |
| 500 | 450 | 1344 | 1900 | 1112 | 228   | 0   | 4    | 104    | 1493  | 1493 | 0.1316 |
|     |     |      |      |      |       |     |      |        |       |      |        |
| 600 | 50  | 1204 | 1300 | 192  | 70    | 0   | 4    | 4      | 1214  | 1214 | 0.0374 |
| 600 | 100 | 1216 | 1400 | 368  | 102   | 0   | 4    | 26     | 1245  | 1245 | 0.0211 |
| 600 | 150 | 1236 | 1500 | 528  | 140   | 0   | 4    | 34     | 1287  | 1287 | 0.0016 |
| 600 | 200 | 1264 | 1600 | 672  | 160   | 0   | 4    | 54     | 1337  | 1336 | 0.0178 |
| 600 | 250 | 1296 | 1700 | 808  | 166   | 0   | 4    | 86     | 1393  | 1392 | 0.0148 |
| 600 | 300 | 1340 | 1800 | 920  | 182   | 0   | 4    | 96     | 1454  | 1453 | 0.0828 |
| 600 | 350 | 1388 | 1900 | 1024 | 186   | 0   | 4    | 114    | 1519  | 1518 | 0.0843 |

| 600<br>600<br>600<br>600                                           | 400<br>450<br>500<br>550                                                                             | 1440<br>1500<br>1560<br>1624                                                                                                 | 2000<br>2100<br>2200<br>2300                                                                                                         | 1120<br>1200<br>1280<br>1352                                                                                                    | 210<br>240<br>256<br>272                                                                                          | 0<br>0<br>0<br>0                                                                  | 4<br>4<br>4<br>4                                                                  | 122<br>128<br>124<br>134                                                                                     | 1588<br>1660<br>1733<br>1809                                                                                                         | 1587<br>1658<br>1731<br>1807                                                                                                 | 0.0898<br>0.1394<br>0.1014<br>0.1105                                                                                                                         |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700 | 50<br>100<br>250<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650                             | 1400<br>1412<br>1428<br>1456<br>1484<br>1520<br>1564<br>1612<br>1664<br>1720<br>1780<br>1840<br>1908                         | 1500<br>1600<br>1700<br>1800<br>2000<br>2100<br>2200<br>2300<br>2400<br>2500<br>2600<br>2700                                         | 200<br>376<br>544<br>688<br>832<br>960<br>1072<br>1176<br>1272<br>1360<br>1440<br>1520<br>1584                                  | 64<br>112<br>118<br>164<br>202<br>190<br>202<br>244<br>278<br>278<br>278<br>286<br>310<br>298                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                          | 12<br>22<br>56<br>60<br>62<br>104<br>118<br>114<br>112<br>140<br>146<br>138<br>168                           | 1411<br>1440<br>1478<br>1525<br>1578<br>1635<br>1697<br>1762<br>1830<br>1901<br>1973<br>2047<br>2124                                 | 1413<br>1441<br>1479<br>1525<br>1577<br>1634<br>1695<br>1760<br>1828<br>1898<br>1971<br>2045<br>2121                         | 0.0891<br>0.0594<br>0.0433<br>0.0208<br>0.0542<br>0.0484<br>0.0692<br>0.0974<br>0.1248<br>0.1318<br>0.1336<br>0.1174<br>0.1207                               |
| 800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | 50<br>100<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750                      | 1600<br>1612<br>1624<br>1648<br>1676<br>1708<br>1744<br>1788<br>1832<br>1884<br>1940<br>2000<br>2060<br>2124<br>2192         | 1700<br>1800<br>1900<br>2000<br>2100<br>2200<br>2300<br>2400<br>2500<br>2600<br>2700<br>2800<br>2900<br>3000<br>3100                 | 200<br>376<br>552<br>704<br>848<br>984<br>1112<br>1224<br>1336<br>1432<br>1520<br>1600<br>1680<br>1752<br>1816                  | 74<br>118<br>150<br>204<br>194<br>232<br>248<br>254<br>276<br>314<br>302<br>336<br>384<br>354                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                | 8<br>16<br>38<br>48<br>66<br>100<br>114<br>114<br>142<br>146<br>146<br>174<br>158<br>156<br>190              | 1610<br>1637<br>1672<br>1716<br>1765<br>1819<br>1877<br>1939<br>2004<br>2071<br>2142<br>2214<br>2287<br>2363<br>2439                 | 1611<br>1637<br>1673<br>1716<br>1765<br>1818<br>1876<br>1938<br>2002<br>2069<br>2139<br>2210<br>2284<br>2359<br>2435         | 0.0586<br>0.0418<br>0.0323<br>0.0324<br>0.0351<br>0.0406<br>0.0631<br>0.0710<br>0.0866<br>0.0896<br>0.1512<br>0.1446<br>0.1286<br>0.1718<br>0.1546           |
| 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900 | 50<br>100<br>250<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850 | 1800<br>1808<br>1824<br>1840<br>1868<br>1928<br>1968<br>2012<br>2056<br>2108<br>2160<br>2220<br>2280<br>2340<br>2408<br>2472 | 1900<br>2000<br>2100<br>2200<br>2300<br>2400<br>2500<br>2600<br>2700<br>2800<br>2900<br>3000<br>3100<br>3200<br>3300<br>3400<br>3500 | 200<br>384<br>552<br>720<br>864<br>1008<br>1144<br>1264<br>1376<br>1488<br>1584<br>1680<br>1760<br>1840<br>1920<br>1984<br>2056 | 72<br>98<br>152<br>160<br>172<br>220<br>230<br>250<br>290<br>288<br>290<br>318<br>336<br>350<br>370<br>404<br>396 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 4<br>32<br>34<br>74<br>90<br>92<br>114<br>124<br>138<br>158<br>190<br>174<br>178<br>194<br>206<br>180<br>220 | 1809<br>1833<br>1867<br>1907<br>1954<br>2005<br>2061<br>2120<br>2182<br>2246<br>2314<br>2382<br>2453<br>2527<br>2601<br>2677<br>2754 | 1810<br>1834<br>1908<br>1954<br>2005<br>2060<br>2118<br>2180<br>2244<br>2311<br>2380<br>2451<br>2523<br>2597<br>2673<br>2749 | 0.0577<br>0.0557<br>0.0114<br>0.0336<br>0.0088<br>0.0268<br>0.0783<br>0.1147<br>0.0901<br>0.1139<br>0.0985<br>0.1158<br>0.1364<br>0.1320<br>0.1554<br>0.1499 |
| 950<br>950<br>950                                                  | 50<br>100<br>150                                                                                     | 1900<br>1908<br>1920                                                                                                         | 2000<br>2100<br>2200                                                                                                                 | 200<br>384<br>560                                                                                                               | 88<br>106<br>134                                                                                                  | 0<br>0<br>0                                                                       | 4<br>4<br>4                                                                       | 0<br>24<br>44                                                                                                | 1909<br>1932<br>1964                                                                                                                 | 1910<br>1933<br>1965                                                                                                         | 0.0519<br>0.0420<br>0.0454                                                                                                                                   |

| 950 | 200 | 1940 | 2300 | 720  | 144 | 0 | 4 | 78  | 2004 | 2004 | 0.0157 |
|-----|-----|------|------|------|-----|---|---|-----|------|------|--------|
| 950 | 250 | 1964 | 2400 | 872  | 200 | 0 | 4 | 74  | 2050 | 2049 | 0.0303 |
| 950 | 300 | 1992 | 2500 | 1016 | 224 | 0 | 4 | 88  | 2099 | 2099 | 0.0362 |
| 950 | 350 | 2024 | 2600 | 1152 | 228 | 0 | 4 | 126 | 2153 | 2152 | 0.0520 |
| 950 | 400 | 2060 | 2700 | 1280 | 268 | 0 | 4 | 122 | 2211 | 2210 | 0.0615 |
| 950 | 450 | 2100 | 2800 | 1400 | 300 | 0 | 4 | 126 | 2272 | 2270 | 0.0882 |
| 950 | 500 | 2144 | 2900 | 1512 | 310 | 0 | 4 | 140 | 2335 | 2333 | 0.1055 |
| 950 | 550 | 2192 | 3000 | 1616 | 304 | 0 | 4 | 174 | 2401 | 2398 | 0.0930 |
| 950 | 600 | 2244 | 3100 | 1712 | 342 | 0 | 4 | 166 | 2469 | 2466 | 0.1120 |
| 950 | 650 | 2300 | 3200 | 1800 | 388 | 0 | 4 | 166 | 2539 | 2535 | 0.1530 |
| 950 | 700 | 2360 | 3300 | 1880 | 366 | 0 | 4 | 186 | 2610 | 2607 | 0.1393 |
| 950 | 750 | 2420 | 3400 | 1960 | 388 | 0 | 4 | 196 | 2684 | 2680 | 0.1539 |
| 950 | 800 | 2480 | 3500 | 2040 | 404 | 0 | 4 | 196 | 2758 | 2754 | 0.1389 |
| 950 | 850 | 2548 | 3600 | 2104 | 408 | 0 | 4 | 216 | 2834 | 2830 | 0.1464 |
| 950 | 900 | 2616 | 3700 | 2168 | 434 | 0 | 4 | 214 | 2911 | 2907 | 0.1540 |

# Elipses medianas, rotadas por 30 grados:

| r                                                    | S                                                   | C8                                                        | C4                                                           | cand                                                    | polyg                                                | iso                                       | peak                            | collin                                           | perim                                                        | true                                                         | error                                                                        |
|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 50<br>100<br>150<br>200<br>250<br>300<br>350<br>400 | 876<br>910<br>958<br>1014<br>1074<br>1138<br>1204<br>1274 | 1368<br>1396<br>1436<br>1496<br>1560<br>1636<br>1716<br>1804 | 988<br>976<br>960<br>968<br>976<br>1000<br>1028<br>1064 | 202<br>196<br>194<br>194<br>200<br>196<br>202<br>194 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 94<br>98<br>92<br>100<br>96<br>106<br>104<br>118 | 1016<br>1052<br>1098<br>1152<br>1212<br>1278<br>1347<br>1419 | 1016<br>1051<br>1096<br>1151<br>1211<br>1276<br>1346<br>1418 | 0.0002<br>0.1062<br>0.1263<br>0.1301<br>0.1299<br>0.0944<br>0.1001<br>0.0808 |
| 500                                                  | 450                                                 | 1342                                                      | 1896                                                         | 1112                                                    | 206                                                  | 8                                         | 0                               | 122                                              | 1494                                                         | 1493                                                         | 0.1042                                                                       |
| 600<br>600<br>600<br>600                             | 50<br>100<br>150<br>200                             | 1046<br>1078<br>1120<br>1172                              | 1644<br>1668<br>1700<br>1748                                 | 1200<br>1182<br>1164<br>1156                            | 224<br>232<br>236<br>240                             | 8<br>4<br>8<br>8                          | 0<br>2<br>0                     | 124<br>118<br>110<br>108                         | 1215<br>1247<br>1289<br>1339                                 | 1214<br>1245<br>1287<br>1336                                 | 0.0763<br>0.1583<br>0.1529<br>0.1715                                         |
| 600                                                  | 250                                                 | 1230                                                      | 1804                                                         | 1152                                                    | 236                                                  | 8                                         | Ö                               | 110                                              | 1395                                                         | 1392                                                         | 0.1556                                                                       |
| 600<br>600<br>600<br>600<br>600                      | 300<br>350<br>400<br>450<br>500                     | 1290<br>1354<br>1420<br>1486<br>1554<br>1624              | 1872<br>1948<br>2028<br>2112<br>2204<br>2296                 | 1168<br>1192<br>1220<br>1256<br>1304<br>1348            | 224<br>246<br>242<br>250<br>244<br>252               | 8<br>8<br>8<br>8<br>8                     | 0<br>0<br>0<br>0                | 130<br>116<br>120<br>120<br>144<br>144           | 1455<br>1518<br>1589<br>1660<br>1733<br>1809                 | 1453<br>1518<br>1587<br>1658<br>1731<br>1807                 | 0.1316<br>0.1525<br>0.1434<br>0.1095<br>0.1105<br>0.1106                     |
| 000                                                  | 550                                                 | 1024                                                      | 2230                                                         | 1040                                                    | 202                                                  | 0                                         | 0                               | 144                                              | 1003                                                         | 1007                                                         | 0.1100                                                                       |
| 700<br>700<br>700                                    | 50<br>100<br>150                                    | 1220<br>1246<br>1284                                      | 1916<br>1936<br>1964                                         | 1396<br>1384<br>1364                                    | 278<br>284<br>266                                    | 8<br>8<br>8                               | 0<br>0<br>0                     | 128<br>128<br>138                                | 1414<br>1443<br>1482                                         | 1413<br>1441<br>1479                                         | 0.1164<br>0.1928<br>0.1719                                                   |
| 700<br>700                                           | 200<br>250                                          | 1332<br>1386                                              | 2008<br>2056                                                 | 1356<br>1344                                            | 266<br>270                                           | 8<br>8                                    | 0                               | 142<br>130                                       | 1528<br>1580                                                 | 1525<br>1577                                                 | 0.1720                                                                       |
| 700                                                  | 300                                                 | 1444                                                      | 2116                                                         | 1348                                                    | 260                                                  | 8                                         | 0                               | 142                                              | 1637                                                         | 1634                                                         | 0.1544                                                                       |
| 700<br>700                                           | 350<br>400                                          | 1506<br>1568                                              | 2184<br>2260                                                 | 1360<br>1388                                            | 260<br>284                                           | 8<br>8                                    | 0                               | 148<br>132                                       | 1698<br>1763                                                 | 1695<br>1760                                                 | 0.1497                                                                       |
| 700                                                  | 450                                                 | 1634                                                      | 2336                                                         | 1408                                                    | 260                                                  | 8                                         | Ö                               | 156                                              | 1830                                                         | 1828                                                         | 0.1236                                                                       |
| 700<br>700                                           | 500<br>550                                          | 1700<br>1768                                              | 2420<br>2508                                                 | 1444<br>1484                                            | 282<br>306                                           | 8<br>8                                    | 0<br>0                          | 152<br>150                                       | 1901<br>1973                                                 | 1898<br>1971                                                 | 0.1308<br>0.1342                                                             |
| 700                                                  | 600                                                 | 1838                                                      | 2604                                                         | 1536                                                    | 304                                                  | 8                                         | 0                               | 156                                              | 2048                                                         | 2045                                                         | 0.1449                                                                       |

| 700                                                                | 650                                                                                                                       | 1908                                                                                                                                         | 2696                                                                                                                                         | 1580                                                                                                                                                         | 310                                                                                                                        | 8                                                                                           | 0                                                                                           | 154                                                                                                                        | 2124                                                                                                                                         | 2121                                                                                                                                 | 0.1331                                                                                                                                                                           |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | 50<br>100<br>250<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750                                    | 1392<br>1414<br>1450<br>1494<br>1544<br>1600<br>1660<br>1720<br>1784<br>1850<br>1916<br>1984<br>2052<br>2122<br>2190                         | 2188<br>2204<br>2232<br>2264<br>2316<br>2368<br>2428<br>2496<br>2572<br>2648<br>2728<br>2816<br>2908<br>3004<br>3096                         | 1596<br>1584<br>1568<br>1544<br>1540<br>1540<br>1556<br>1580<br>1600<br>1628<br>1668<br>1716<br>1768<br>1816                                                 | 326<br>310<br>312<br>298<br>310<br>296<br>302<br>310<br>306<br>326<br>302<br>306<br>340<br>364<br>334                      | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 142<br>154<br>162<br>164<br>150<br>150<br>152<br>156<br>150<br>178<br>166<br>170<br>200                                    | 1613<br>1640<br>1676<br>1719<br>1768<br>1821<br>1879<br>1941<br>2005<br>2072<br>2142<br>2213<br>2287<br>2363<br>2439                         | 1611<br>1637<br>1673<br>1716<br>1765<br>1818<br>1876<br>1938<br>2002<br>2069<br>2139<br>2210<br>2284<br>2359<br>2435                 | 0.1068<br>0.1444<br>0.2023<br>0.1689<br>0.1918<br>0.1474<br>0.1521<br>0.1578<br>0.1520<br>0.1517<br>0.1349<br>0.1348<br>0.1559<br>0.1642<br>0.1313                               |
| 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900 | 50<br>100<br>250<br>250<br>300<br>350<br>400<br>450<br>550<br>600<br>650<br>700<br>750<br>800<br>850                      | 1564<br>1584<br>1616<br>1656<br>1706<br>1758<br>1816<br>1936<br>2000<br>2064<br>2130<br>2198<br>2264<br>2334<br>2402<br>2474                 | 2460<br>2476<br>2500<br>2532<br>2572<br>2620<br>2680<br>2740<br>2808<br>2884<br>2960<br>3040<br>3128<br>3216<br>3308<br>3404<br>3496         | 1796<br>1788<br>1772<br>1756<br>1736<br>1732<br>1732<br>1732<br>1748<br>1772<br>1796<br>1824<br>1864<br>1908<br>1952<br>2008<br>2048                         | 358<br>352<br>336<br>344<br>330<br>342<br>348<br>354<br>354<br>356<br>356<br>356<br>356<br>360<br>378<br>362<br>388        | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 160<br>174<br>194<br>182<br>174<br>168<br>164<br>182<br>178<br>182<br>178<br>198<br>200<br>194<br>224<br>218               | 1811<br>1838<br>1871<br>1911<br>1957<br>2008<br>2064<br>2122<br>2183<br>2248<br>2314<br>2383<br>2455<br>2526<br>2601<br>2676<br>2753         | 1810<br>1834<br>1868<br>1908<br>1954<br>2005<br>2060<br>2118<br>2180<br>2244<br>2311<br>2380<br>2451<br>2523<br>2597<br>2673<br>2749 | 0.0582<br>0.1724<br>0.1855<br>0.1926<br>0.1741<br>0.1698<br>0.1844<br>0.1980<br>0.1622<br>0.1769<br>0.1450<br>0.1327<br>0.1327<br>0.1530<br>0.1242<br>0.1442                     |
| 950<br>950<br>950<br>950<br>950<br>950<br>950<br>950<br>950<br>950 | 50<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900 | 1650<br>1670<br>1740<br>1786<br>1838<br>1894<br>1950<br>2014<br>2076<br>2138<br>2206<br>2270<br>2338<br>2406<br>2476<br>2546<br>2546<br>2614 | 2596<br>2612<br>2636<br>2664<br>2708<br>2752<br>2804<br>2864<br>2932<br>3000<br>3076<br>3156<br>3240<br>3328<br>3416<br>3508<br>3604<br>3696 | 1896<br>1888<br>1876<br>1852<br>1848<br>1832<br>1824<br>1832<br>1840<br>1852<br>1840<br>1852<br>1880<br>1904<br>1944<br>1984<br>2024<br>2068<br>2120<br>2168 | 380<br>360<br>372<br>380<br>360<br>346<br>358<br>362<br>366<br>366<br>366<br>366<br>354<br>386<br>406<br>398<br>406<br>406 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 170<br>200<br>182<br>178<br>190<br>194<br>182<br>190<br>186<br>182<br>216<br>186<br>220<br>208<br>192<br>212<br>220<br>232 | 1912<br>1937<br>1969<br>2009<br>2053<br>2103<br>2156<br>2213<br>2274<br>1337<br>2402<br>2470<br>2539<br>2611<br>2683<br>2758<br>2834<br>2911 | 1910<br>1933<br>1965<br>2004<br>2099<br>2152<br>2210<br>2270<br>2333<br>2398<br>2466<br>2533<br>2607<br>2680<br>2754<br>2830<br>2907 | 0.0791<br>0.1849<br>0.2118<br>0.2303<br>0.2088<br>0.1961<br>0.1864<br>0.1663<br>0.1851<br>0.1716<br>0.1470<br>0.1509<br>0.1466<br>0.1458<br>0.1454<br>0.1512<br>0.1577<br>0.1411 |

#### Resultados de estimación del perímetro para Objeto C

FigCxN, N es el factor de magnificación, perímetro verdadero: N x 75.398224

en todas las tablas:

C8 = número de píxeles del 8-contorno, C4 = número de píxeles del 4-contorno cand = número de puntos candidatos, polyg = número de vértices del polígono iso = número de puntos finales de cantos localmente extremos ("isotéticos") peaks = número de picos, collin = número de puntos colineales borrados por el algoritmo compl = número de vértices complementarios perim = perímetro estimado, error = error relativo de perímetro

| Ν   | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
|-----|-------|-------|------|-------|-----|-------|--------|--------|----------|--------|
| 10  | 674   | 958   | 569  | 137   | 16  | 3     | 118    | 49     | 748.70   | 0.7002 |
| 15  | 1014  | 1438  | 849  | 198   | 16  | 3     | 179    | 71     | 1126.07  | 0.4333 |
| 20  | 1352  | 1918  | 1133 | 231   | 16  | 3     | 212    | 117    | 1503.45  | 0.2993 |
| 25  | 1692  | 2398  | 1413 | 302   | 16  | 3     | 283    | 131    | 1881.83  | 0.1659 |
| 30  | 2032  | 2878  | 1693 | 354   | 16  | 3     | 335    | 151    | 2259.32  | 0.1163 |
| 35  | 2372  | 3358  | 1973 | 437   | 16  | 3     | 418    | 159    | 2637.33  | 0.0611 |
| 40  | 2710  | 3838  | 2257 | 430   | 16  | 3     | 411    | 229    | 3014.03  | 0.0630 |
| 45  | 3050  | 4318  | 2537 | 471   | 16  | 3     | 452    | 267    | 3391.78  | 0.0336 |
| 50  | 3390  | 4798  | 2817 | 564   | 16  | 3     | 545    | 271    | 3770.20  | 0.0076 |
| 55  | 3728  | 5278  | 3101 | 535   | 16  | 3     | 516    | 365    | 4147.04  | 0.0036 |
| 60  | 4068  | 5758  | 3381 | 599   | 16  | 3     | 580    | 377    | 4524.72  | 0.0183 |
| 65  | 4406  | 6238  | 3665 | 659   | 16  | 3     | 640    | 409    | 4902.45  | 0.0320 |
| 70  | 4750  | 6718  | 3937 | 781   | 16  | 3     | 762    | 377    | 5281.59  | 0.0703 |
| 75  | 5088  | 7198  | 4221 | 813   | 16  | 3     | 794    | 417    | 5658.59  | 0.0658 |
| 80  | 5426  | 7678  | 4505 | 867   | 16  | 3     | 848    | 439    | 6035.80  | 0.0653 |
| 85  | 5766  | 8158  | 4785 | 893   | 16  | 3     | 874    | 491    | 6413.92  | 0.0792 |
| 90  | 6104  | 8638  | 5069 | 925   | 16  | 3     | 906    | 529    | 6791.04  | 0.0767 |
| 95  | 6444  | 9118  | 5349 | 979   | 16  | 3     | 960    | 551    | 7168.38  | 0.0775 |
| 100 | 6784  | 9598  | 5629 | 1027  | 16  | 3     | 1008   | 583    | 7546.11  | 0.0834 |
| 105 | 7124  | 10078 | 5909 | 1091  | 16  | 3     | 1072   | 611    | 7924.26  | 0.0941 |
| 110 | 7462  | 10558 | 6193 | 1069  | 16  | 3     | 1050   | 673    | 8300.74  | 0.0837 |
| 115 | 7802  | 11038 | 6473 | 1189  | 16  | 3     | 1170   | 657    | 8679.93  | 0.1053 |
| 120 | 8142  | 11518 | 6753 | 1243  | 16  | 3     | 1224   | 673    | 9056.83  | 0.1000 |
| 125 | 8480  | 11998 | 7037 | 1265  | 16  | 3     | 1246   | 743    | 9434.95  | 0.1079 |
| 130 | 8818  | 12478 | 7321 | 1337  | 16  | 3     | 1318   | 763    | 9812.32  | 0.1076 |
| 135 | 9158  | 12958 | 7601 | 1407  | 16  | 3     | 1388   | 761    | 10189.99 | 0.1103 |
| 140 | 9502  | 13438 | 7873 | 1417  | 16  | 3     | 1398   | 811    | 10568.10 | 0.1167 |
| 145 | 9840  | 13918 | 8157 | 1425  | 16  | 3     | 1406   | 893    | 10945.11 | 0.1131 |
| 150 | 10178 | 14398 | 8441 | 1513  | 16  | 3     | 1494   | 885    | 11322.90 | 0.1164 |
| 155 | 10518 | 14878 | 8721 | 1579  | 16  | 3     | 1560   | 915    | 11701.02 | 0.1223 |
| 160 | 10856 | 15358 | 9005 | 1637  | 16  | 3     | 1618   | 925    | 12078.48 | 0.1224 |

FigCx50, con rotaciones

| ángulo  | C8   | C4   | cand | polyg | iso | peaks | compl. | collin | perim | error  |
|---------|------|------|------|-------|-----|-------|--------|--------|-------|--------|
| 0       | 3390 | 4798 | 2817 | 564   | 16  | 3     | 545    | 271    | 3770  | 0.0076 |
| 5<br>10 | 3391 | 4790 | 2010 | 562   | 25  | 2     | 535    | 275    | 3771  | 0.0300 |
| 15      | 3390 | 4798 | 2817 | 571   | 23  | 2     | 545    | 267    | 3771  | 0.0320 |
| 20      | 3396 | 4804 | 2817 | 568   | 23  | 3     | 542    | 270    | 3776  | 0.1717 |
| 25      | 3392 | 4800 | 2817 | 572   | 23  | 3     | 546    | 266    | 3773  | 0.0834 |
| 30      | 3391 | 4798 | 2815 | 560   | 23  | 3     | 534    | 274    | 3771  | 0.0393 |
| 35      | 3395 | 4804 | 2820 | 566   | 25  | 2     | 539    | 271    | 3776  | 0.1734 |
| 40      | 3392 | 4800 | 2817 | 563   | 23  | 3     | 537    | 272    | 3774  | 0.1043 |
| 45      | 3381 | 4778 | 2795 | 567   | 23  | 3     | 541    | 262    | 3758  | 0.3154 |
| 50      | 3395 | 4802 | 2815 | 572   | 23  | 3     | 546    | 262    | 3776  | 0.1497 |
| 55      | 3395 | 4804 | 2819 | 567   | 23  | 3     | 541    | 266    | 3777  | 0.1760 |
| 60      | 3390 | 4796 | 2813 | 567   | 22  | 3     | 542    | 268    | 3771  | 0.0257 |
| 65      | 3394 | 4802 | 2817 | 573   | 22  | 3     | 548    | 260    | 3775  | 0.1423 |
| 70      | 3387 | 4792 | 2811 | 571   | 23  | 3     | 545    | 261    | 3768  | 0.0604 |
| 75      | 3388 | 4794 | 2813 | 573   | 23  | 3     | 547    | 259    | 3769  | 0.0239 |
| 80      | 3386 | 4796 | 2818 | 573   | 24  | 6     | 543    | 264    | 3767  | 0.0800 |
| 85      | 3385 | 4792 | 2815 | 563   | 18  | 3     | 542    | 273    | 3765  | 0.1267 |
| 90      | 3396 | 4804 | 2817 | 565   | 16  | 3     | 546    | 271    | 3776  | 0.1663 |

FigCx20, con rotaciones (perímetro verdadero: 1507.96)

| ángulo | C8   | C4   | cand | polyg | iso | peaks | compl. | collin | perim | error  |
|--------|------|------|------|-------|-----|-------|--------|--------|-------|--------|
| 0      | 1352 | 1918 | 1133 | 231   | 16  | 3     | 212    | 117    | 1503  | 0.2993 |
| 5      | 1360 | 1928 | 1137 | 231   | 18  | 3     | 210    | 120    | 1512  | 0.2584 |
| 10     | 1353 | 1918 | 1131 | 228   | 19  | 3     | 206    | 122    | 1504  | 0.2419 |
| 15     | 1358 | 1924 | 1133 | 232   | 23  | 3     | 206    | 118    | 1509  | 0.0997 |
| 20     | 1358 | 1926 | 1135 | 231   | 22  | 5     | 204    | 120    | 1510  | 0.1135 |
| 25     | 1359 | 1928 | 1139 | 233   | 23  | 3     | 207    | 118    | 1512  | 0.2974 |
| 30     | 1355 | 1922 | 1135 | 232   | 23  | 3     | 206    | 118    | 1508  | 0.0050 |
| 35     | 1355 | 1920 | 1132 | 230   | 25  | 2     | 203    | 119    | 1507  | 0.0885 |
| 40     | 1356 | 1922 | 1133 | 235   | 23  | 3     | 210    | 111    | 1508  | 0.0114 |
| 45     | 1357 | 1922 | 1131 | 237   | 23  | 3     | 211    | 110    | 1508  | 0.0355 |
| 50     | 1356 | 1922 | 1133 | 233   | 23  | 3     | 207    | 114    | 1508  | 0.0222 |
| 55     | 1356 | 1922 | 1133 | 235   | 23  | 3     | 209    | 111    | 1508  | 0.0242 |
| 60     | 1356 | 1920 | 1129 | 234   | 22  | 3     | 209    | 112    | 1507  | 0.0808 |
| 65     | 1357 | 1922 | 1131 | 235   | 22  | 3     | 210    | 114    | 1509  | 0.0381 |
| 70     | 1353 | 1918 | 1132 | 237   | 24  | 2     | 211    | 112    | 1505  | 0.1831 |
| 75     | 1354 | 1920 | 1133 | 235   | 23  | 3     | 209    | 115    | 1508  | 0.1493 |
| 80     | 1355 | 1922 | 1135 | 231   | 20  | 3     | 208    | 116    | 1508  | 0.0158 |
| 85     | 1350 | 1916 | 1132 | 229   | 15  | 4     | 210    | 120    | 1501  | 0.4358 |
| 90     | 1358 | 1924 | 1133 | 231   | 16  | 3     | 212    | 117    | 1509  | 0.0960 |

| N=10  | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
|-------|-------|-------|------|-------|-----|-------|--------|--------|----------|--------|
| M=5:  | 674   | 958   | 569  | 137   | 16  | 3     | 118    | 49     | 748.70   | 0.7002 |
| M=4:  | 674   | 958   | 569  | 194   | 14  | 3     | 177    | 10     | 761.16   | 0.9516 |
| M=3:  | 674   | 958   | 569  | 154   | 14  | 3     | 137    | 138    | 750.37   | 0.4796 |
| N=50  | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 3390  | 4798  | 2817 | 564   | 16  | 3     | 545    | 271    | 3770.20  | 0.0076 |
| M=4:  | 3390  | 4798  | 2817 | 934   | 16  | 3     | 915    | 19     | 3817.75  | 1.2690 |
| M=3:  | 3390  | 4798  | 2817 | 706   | 14  | 3     | 689    | 710    | 3778.90  | 0.2383 |
| N=80  | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 5426  | 7678  | 4505 | 867   | 16  | 3     | 848    | 439    | 6035.80  | 0.0653 |
| M=4:  | 5426  | 7678  | 4505 | 1499  | 16  | 3     | 1480   | 23     | 6119.94  | 1.4604 |
| M=3:  | 5426  | 7678  | 4505 | 1159  | 14  | 3     | 1142   | 1101   | 6049.50  | 0.2924 |
| N=100 | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 6784  | 9598  | 5629 | 1027  | 16  | 3     | 1008   | 583    | 7546.11  | 0.0834 |
| M=4:  | 6784  | 9598  | 5629 | 1875  | 16  | 3     | 1856   | 21     | 7640.22  | 1.3316 |
| M=3:  | 6784  | 9598  | 5629 | 1411  | 14  | 3     | 1394   | 1411   | 7563.24  | 0.3105 |
| N=150 | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 10178 | 14398 | 8441 | 1513  | 16  | 3     | 1494   | 885    | 11322.90 | 0.1164 |
| M=4:  | 10178 | 14398 | 8441 | 2821  | 16  | 3     | 2802   | 19     | 11481.36 | 1.5175 |
| M=3:  | 10178 | 14398 | 8441 | 2091  | 14  | 3     | 2074   | 2137   | 11347.87 | 0.3372 |

## Experimentos con m=3,4,5 para FigCxN (perímetro verdadero: N x 75.398224)

#### Resultados de estimación del perímetro para Objeto K

FigKxN, N es el factor de magnificación, perímetro verdadero: N x 66.905549

en todas las tablas:

C8 = número de píxeles del 8-contorno, C4 = número de píxeles del 4-contorno cand = número de puntos candidatos, polyg = número de vértices del polígono iso = número de puntos finales de cantos localmente extremos ("isotéticos") peaks = número de picos, collin = número de puntos colineales borrados por el algoritmo compl = número de vértices complementarios perim = perímetro estimado, error = error relativo de perímetro

| Ν   | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | perim    | error  |
|-----|-------|-------|-------|-------|-----|-------|--------|--------|----------|--------|
| 20  | 1181  | 1716  | 1068  | 250   | 27  | 6     | 217    | 78     | 1324.72  | 1.0008 |
| 30  | 1767  | 2576  | 1616  | 298   | 27  | 6     | 265    | 190    | 1994.39  | 0.6363 |
| 40  | 2355  | 3436  | 2160  | 310   | 29  | 6     | 275    | 291    | 2662.60  | 0.5091 |
| 50  | 2941  | 4296  | 2708  | 450   | 29  | 6     | 415    | 366    | 3334.24  | 0.3301 |
| 60  | 3543  | 5156  | 3224  | 542   | 29  | 6     | 507    | 368    | 4004.22  | 0.2519 |
| 70  | 4129  | 6016  | 3772  | 718   | 29  | 6     | 683    | 379    | 4675.59  | 0.1666 |
| 80  | 4715  | 6876  | 4320  | 615   | 29  | 6     | 580    | 624    | 5342.51  | 0.1857 |
| 90  | 5317  | 7736  | 4836  | 675   | 29  | 6     | 640    | 650    | 6012.97  | 0.1416 |
| 100 | 5903  | 8596  | 5384  | 828   | 29  | 6     | 793    | 744    | 6684.41  | 0.0918 |
| 110 | 6491  | 9456  | 5928  | 843   | 29  | 6     | 808    | 847    | 7352.50  | 0.0966 |
| 120 | 7077  | 10316 | 6476  | 810   | 29  | 6     | 775    | 1010   | 8022.17  | 0.0810 |
| 130 | 7679  | 11176 | 6992  | 948   | 29  | 6     | 913    | 1029   | 8693.33  | 0.0505 |
| 140 | 8265  | 12036 | 7540  | 1188  | 29  | 6     | 1153   | 944    | 9365.48  | 0.0139 |
| 150 | 8851  | 12896 | 8088  | 1152  | 29  | 6     | 1117   | 1155   | 10033.58 | 0.0225 |
| 160 | 9453  | 13756 | 8604  | 1322  | 29  | 6     | 1287   | 1120   | 10704.98 | 0.0008 |
| 170 | 10039 | 14616 | 9152  | 1310  | 29  | 6     | 1275   | 1257   | 11374.67 | 0.0064 |
| 180 | 10627 | 15476 | 9696  | 1282  | 29  | 6     | 1247   | 1446   | 12043.03 | 0.0003 |
| 190 | 11213 | 16336 | 10244 | 1390  | 29  | 6     | 1355   | 1501   | 12712.18 | 0.0010 |
| 200 | 11815 | 17196 | 10760 | 1484  | 29  | 6     | 1449   | 1506   | 13384.22 | 0.0232 |
| 210 | 12401 | 18056 | 11308 | 1592  | 29  | 6     | 1557   | 1583   | 14052.31 | 0.0153 |
| 220 | 12987 | 18916 | 11856 | 1374  | 29  | 6     | 1339   | 1844   | 14719.23 | 0.0004 |
| 230 | 13589 | 19776 | 12372 | 1822  | 29  | 6     | 1787   | 1639   | 15396.13 | 0.0510 |
| 240 | 14175 | 20636 | 12920 | 1884  | 29  | 6     | 1849   | 1708   | 16063.83 | 0.0405 |
| 248 | 14639 | 21324 | 13368 | 1856  | 29  | 6     | 1821   | 1874   | 16598.77 | 0.0373 |

FigKx100 con rotaciones

(perímetro verdadero sin rotación: 6690.5549)

| angle | C8   | C4   | cand | polyg | iso | peaks | compl. | collin | perim   | error  |
|-------|------|------|------|-------|-----|-------|--------|--------|---------|--------|
| 0     | 5903 | 8596 | 5384 | 828   | 29  | 6     | 793    | 744    | 6684.41 | 0.0918 |
| 5     | 5949 | 8612 | 5324 | 1092  | 37  | 6     | 1049   | 511    | 6697.58 | 0.1050 |
| 10    | 5977 | 8606 | 5255 | 1122  | 48  | 7     | 1067   | 467    | 6693.97 | 0.0510 |
| 15    | 5999 | 8590 | 5178 | 1048  | 47  | 8     | 993    | 485    | 6692.27 | 0.0257 |
| 20    | 6016 | 8554 | 5070 | 989   | 46  | 8     | 935    | 526    | 6687.85 | 0.0404 |
| 25    | 6050 | 8512 | 4920 | 1052  | 45  | 8     | 999    | 412    | 6689.54 | 0.0152 |
| 30    | 6074 | 8454 | 4756 | 978   | 46  | 6     | 926    | 444    | 6690.25 | 0.0046 |
| 35    | 6083 | 8400 | 4630 | 959   | 47  | 6     | 906    | 443    | 6687.90 | 0.0396 |

| 40 | 6090 | 8382 | 4582 | 957  | 45 | 6 | 906  | 423 | 6689.97 | 0.0087 |
|----|------|------|------|------|----|---|------|-----|---------|--------|
| 45 | 6080 | 8354 | 4544 | 849  | 41 | 6 | 802  | 503 | 6689.99 | 0.0085 |
| 50 | 6085 | 8402 | 4630 | 972  | 46 | 4 | 922  | 438 | 6685.16 | 0.0807 |
| 55 | 6089 | 8454 | 4727 | 984  | 41 | 7 | 936  | 447 | 6692.41 | 0.0278 |
| 60 | 6066 | 8472 | 4810 | 980  | 42 | 6 | 932  | 458 | 6683.06 | 0.1121 |
| 65 | 6051 | 8512 | 4919 | 1073 | 41 | 7 | 1025 | 408 | 6693.20 | 0.0395 |
| 70 | 6019 | 8558 | 5076 | 1096 | 41 | 6 | 1049 | 444 | 6694.63 | 0.0609 |
| 75 | 5978 | 8590 | 5218 | 1097 | 41 | 8 | 1048 | 460 | 6693.11 | 0.0382 |
| 80 | 5938 | 8602 | 5326 | 1022 | 43 | 6 | 973  | 563 | 6689.34 | 0.0181 |
| 85 | 5930 | 8612 | 5363 | 1094 | 39 | 5 | 1050 | 490 | 6697.21 | 0.0995 |
| 90 | 5903 | 8596 | 5384 | 828  | 29 | 6 | 793  | 744 | 6684.41 | 0.0918 |

FigKx180 con rotaciones (perímetro verdadero sin rotación: 12042.998)

| angle | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim    | error  |
|-------|-------|-------|------|-------|-----|-------|--------|--------|----------|--------|
| 0     | 10627 | 15476 | 9696 | 1282  | 29  | 6     | 1247   | 1446   | 12043.03 | 0.0003 |
| 5     | 10703 | 15498 | 9586 | 1738  | 38  | 8     | 1692   | 1050   | 12056.91 | 0.1155 |
| 10    | 10758 | 15492 | 9466 | 1826  | 51  | 4     | 1771   | 932    | 12059.00 | 0.1329 |
| 15    | 10790 | 15452 | 9321 | 1694  | 47  | 7     | 1640   | 963    | 12045.84 | 0.0236 |
| 20    | 10833 | 15404 | 9137 | 1520  | 44  | 9     | 1467   | 1103   | 12050.03 | 0.0583 |
| 25    | 10896 | 15332 | 8868 | 1679  | 45  | 6     | 1628   | 856    | 12055.12 | 0.1006 |
| 30    | 10921 | 15212 | 8579 | 1556  | 44  | 5     | 1507   | 916    | 12039.34 | 0.0304 |
| 35    | 10956 | 15132 | 8349 | 1514  | 45  | 7     | 1462   | 911    | 12052.23 | 0.0767 |
| 40    | 10954 | 15088 | 8264 | 1537  | 43  | 6     | 1488   | 873    | 12045.68 | 0.0222 |
| 45    | 10944 | 15040 | 8187 | 1301  | 38  | 7     | 1256   | 1039   | 12047.53 | 0.0376 |
| 50    | 10958 | 15138 | 8356 | 1541  | 39  | 8     | 1494   | 884    | 12052.28 | 0.0771 |
| 55    | 10954 | 15218 | 8526 | 1588  | 42  | 6     | 1540   | 891    | 12052.62 | 0.0799 |
| 60    | 10923 | 15262 | 8677 | 1552  | 45  | 5     | 1502   | 929    | 12042.94 | 0.0005 |
| 65    | 10893 | 15326 | 8862 | 1715  | 38  | 8     | 1669   | 855    | 12051.72 | 0.0724 |
| 70    | 10833 | 15406 | 9143 | 1755  | 42  | 7     | 1706   | 911    | 12056.71 | 0.1138 |
| 75    | 10760 | 15458 | 9394 | 1742  | 44  | 6     | 1692   | 946    | 12053.81 | 0.0897 |
| 80    | 10691 | 15486 | 9589 | 1653  | 46  | 5     | 1602   | 1103   | 12051.25 | 0.0685 |
| 85    | 10668 | 15500 | 9662 | 1755  | 38  | 6     | 1711   | 1025   | 12057.10 | 0.1171 |
| 90    | 10627 | 15476 | 9696 | 1282  | 29  | 6     | 1247   | 1446   | 12043.03 | 0.0003 |

Experimentos con m = 3, 4, 5 para FigKxN (perímetro verdadero: N x 66.905549)

| perímetro verdadero: N x 66.905549) |
|-------------------------------------|
|-------------------------------------|

| N=20 | C8   | C4   | cand | polyg | iso | peaks | compl. | collin | perim   | error  |
|------|------|------|------|-------|-----|-------|--------|--------|---------|--------|
| M=5: | 1181 | 1716 | 1068 | 250   | 27  | 6     | 217    | 78     | 1324.72 | 1.0008 |
| M=4: | 1181 | 1716 | 1068 | 360   | 27  | 6     | 327    | 20     | 1347.80 | 1.7244 |
| M=3: | 1181 | 1716 | 1068 | 332   | 23  | 6     | 303    | 217    | 1331.88 | 0.4658 |
| N=50 | C8   | C4   | cand | polyg | iso | peaks | compl. | collin | perim   | error  |
| M=5: | 2941 | 4296 | 2708 | 450   | 29  | 6     | 415    | 366    | 3334.24 | 0.3301 |
| M=4: | 2941 | 4296 | 2708 | 906   | 29  | 6     | 871    | 19     | 3391.96 | 1.3954 |
| M=3: | 2941 | 4296 | 2708 | 591   | 23  | 6     | 562    | 778    | 3343.57 | 0.0510 |

| N=80  | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | perim    | error  |
|-------|-------|-------|-------|-------|-----|-------|--------|--------|----------|--------|
| M=5:  | 4715  | 6876  | 4320  | 615   | 29  | 6     | 580    | 624    | 5342.51  | 0.1857 |
| M=4:  | 4715  | 6876  | 4320  | 1456  | 29  | 6     | 1421   | 20     | 5426.87  | 1.3905 |
| M=3:  | 4715  | 6876  | 4320  | 909   | 23  | 6     | 880    | 1266   | 5358.30  | 0.1094 |
| N=100 | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 5903  | 8596  | 5384  | 828   | 29  | 6     | 793    | 744    | 6684.41  | 0.0918 |
| M=4:  | 5903  | 8596  | 5384  | 1787  | 29  | 6     | 1752   | 36     | 6794.64  | 1.5558 |
| M=3:  | 5903  | 8596  | 5384  | 1229  | 23  | 6     | 1200   | 1478   | 6704.18  | 0.2037 |
| N=150 | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 8851  | 12896 | 8088  | 1152  | 29  | 6     | 1117   | 1155   | 10033.58 | 0.0225 |
| M=4:  | 8851  | 12896 | 8088  | 2709  | 29  | 6     | 2674   | 31     | 10193.21 | 1.5682 |
| M=3:  | 8851  | 12896 | 8088  | 1797  | 23  | 6     | 1768   | 2262   | 10059.81 | 0.2389 |
| N=200 | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | perim    | error  |
| M=5:  | 11815 | 17196 | 10760 | 1484  | 29  | 6     | 1449   | 1506   | 13384.22 | 0.0232 |
| M=4:  | 11815 | 17196 | 10760 | 3591  | 29  | 6     | 3556   | 36     | 13602.41 | 1.6538 |
| M=3:  | 11815 | 17196 | 10760 | 2517  | 23  | 6     | 2488   | 2878   | 13421.12 | 0.2990 |

#### Resultados de estimación del perímetro para Objeto M

FigMxN, N es el factor de magnificación,

perímetro verdadero: es calculado en cada caso (tiene un arco de media elipse el cual es calculado con la fórmula de Ramanuyan)

en todas las tablas:

C8 = número de píxeles del 8-contorno, C4 = número de píxeles del 4-contorno cand = número de puntos candidatos, polyg = número de vértices del polígono iso = número de puntos finales de cantos localmente extremos ("isotéticos") peaks = número de picos, collin = número de puntos colineales borrados por el algoritmo compl = número de vértices complementarios perim = perímetro estimado, error = error relativo de perímetro

#### FigMxN sin rotación

| Ν   | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | true  | perim | error  |
|-----|-------|-------|-------|-------|-----|-------|--------|--------|-------|-------|--------|
| 50  | 2676  | 3876  | 2379  | 415   | 40  | 17    | 358    | 309    | 3005  | 2975  | 1.0018 |
| 60  | 3219  | 4650  | 2849  | 497   | 38  | 17    | 442    | 341    | 3607  | 3576  | 0.8356 |
| 70  | 3759  | 5424  | 3318  | 647   | 40  | 16    | 591    | 345    | 4208  | 4178  | 0.7083 |
| 80  | 4302  | 6204  | 3792  | 641   | 38  | 16    | 587    | 472    | 4809  | 4782  | 0.5729 |
| 90  | 4847  | 6980  | 4255  | 718   | 42  | 15    | 661    | 515    | 5411  | 5385  | 0.4850 |
| 100 | 5382  | 7758  | 4740  | 802   | 40  | 16    | 746    | 599    | 6012  | 5987  | 0.4176 |
| 110 | 5919  | 8536  | 5221  | 819   | 37  | 17    | 765    | 715    | 6614  | 6588  | 0.3880 |
| 120 | 6459  | 9314  | 5699  | 870   | 42  | 15    | 813    | 778    | 7215  | 7191  | 0.3397 |
| 130 | 7002  | 10094 | 6170  | 948   | 36  | 18    | 894    | 846    | 7817  | 7794  | 0.2834 |
| 140 | 7544  | 10868 | 6635  | 1088  | 37  | 17    | 1034   | 842    | 8418  | 8396  | 0.2556 |
| 150 | 8080  | 11646 | 7120  | 1110  | 39  | 16    | 1055   | 960    | 9019  | 8999  | 0.2233 |
| 160 | 8624  | 12422 | 7583  | 1179  | 39  | 17    | 1123   | 1005   | 9621  | 9601  | 0.2027 |
| 170 | 9162  | 13200 | 8064  | 1248  | 40  | 16    | 1192   | 1084   | 10222 | 10204 | 0.1775 |
| 180 | 9698  | 13976 | 8544  | 1254  | 40  | 16    | 1198   | 1196   | 10824 | 10804 | 0.1809 |
| 190 | 10237 | 14756 | 9026  | 1380  | 41  | 16    | 1323   | 1232   | 11425 | 11408 | 0.1514 |
| 200 | 10781 | 15532 | 9490  | 1421  | 39  | 16    | 1366   | 1292   | 12027 | 12010 | 0.1354 |
| 210 | 11321 | 16308 | 9963  | 1561  | 41  | 15    | 1505   | 1298   | 12628 | 12612 | 0.1250 |
| 220 | 11862 | 17088 | 10440 | 1500  | 41  | 16    | 1443   | 1440   | 13229 | 13215 | 0.1101 |
| 230 | 12406 | 17862 | 10899 | 1739  | 38  | 17    | 1684   | 1392   | 13831 | 13820 | 0.0797 |
| 240 | 12943 | 18640 | 11384 | 1787  | 43  | 14    | 1730   | 1450   | 14432 | 14420 | 0.0859 |
| 250 | 13482 | 19422 | 11864 | 1830  | 33  | 20    | 1777   | 1562   | 15034 | 15025 | 0.0610 |
| 260 | 14019 | 20196 | 12342 | 1871  | 40  | 16    | 1815   | 1655   | 15635 | 15625 | 0.0640 |
| 270 | 14562 | 20974 | 12812 | 1957  | 38  | 16    | 1903   | 1682   | 16237 | 16229 | 0.0465 |
| 280 | 15105 | 21754 | 13283 | 2013  | 34  | 19    | 1960   | 1745   | 16838 | 16832 | 0.0319 |
| 290 | 15642 | 22526 | 13758 | 2001  | 45  | 14    | 1942   | 1899   | 17439 | 17433 | 0.0387 |
| 300 | 16185 | 23308 | 14232 | 2033  | 37  | 18    | 1978   | 1997   | 18041 | 18036 | 0.0252 |
| 310 | 16724 | 24084 | 14708 | 2164  | 40  | 16    | 2108   | 2009   | 18642 | 18638 | 0.0244 |
| 320 | 17259 | 24860 | 15190 | 2298  | 39  | 16    | 2243   | 2025   | 19244 | 19240 | 0.0188 |
| 330 | 17798 | 25640 | 15672 | 2296  | 40  | 16    | 2240   | 2167   | 19845 | 19843 | 0.0113 |
| 340 | 18342 | 26418 | 16137 | 2347  | 35  | 19    | 2293   | 2208   | 20447 | 20446 | 0.0018 |
| 350 | 18882 | 27192 | 16608 | 2465  | 40  | 16    | 2409   | 2250   | 21048 | 21048 | 0.0014 |

| 360 | 19424 | 27972 | 17083 | 2423 | 39 | 17 | 2367 | 2381 | 21649 | 21650 | 0.0045 |
|-----|-------|-------|-------|------|----|----|------|------|-------|-------|--------|
| 370 | 19967 | 28750 | 17550 | 2583 | 33 | 20 | 2530 | 2374 | 22251 | 22253 | 0.0112 |
| 380 | 20506 | 29526 | 18027 | 2656 | 38 | 17 | 2601 | 2427 | 22852 | 22855 | 0.0139 |
| 390 | 21044 | 30308 | 18512 | 2756 | 32 | 20 | 2704 | 2471 | 23454 | 23460 | 0.0287 |

FigMx200 con rotaciones (perímetro: 12026.58, imagen de 2410 x 2410 píxeles)

| ángulo | C8    | C4    | cand | polyg | iso | peaks | compl. | collin | perim | error  |
|--------|-------|-------|------|-------|-----|-------|--------|--------|-------|--------|
| 0      | 10781 | 15532 | 9490 | 1421  | 39  | 16    | 1366   | 1292   | 12010 | 0.1354 |
| 5      | 10750 | 15460 | 9411 | 1873  | 52  | 13    | 1808   | 880    | 12018 | 0.0747 |
| 10     | 10723 | 15324 | 9192 | 1728  | 55  | 14    | 1659   | 952    | 12018 | 0.0732 |
| 15     | 10754 | 15168 | 8819 | 1618  | 58  | 13    | 1547   | 883    | 12008 | 0.1564 |
| 20     | 10791 | 15096 | 8599 | 1356  | 53  | 15    | 1288   | 1095   | 12009 | 0.1498 |
| 25     | 10864 | 15126 | 8511 | 1519  | 52  | 17    | 1450   | 886    | 12018 | 0.0688 |
| 30     | 10924 | 15162 | 8464 | 1460  | 55  | 16    | 1389   | 988    | 12003 | 0.1978 |
| 35     | 10982 | 15200 | 8422 | 1650  | 48  | 18    | 1584   | 795    | 12013 | 0.1155 |
| 40     | 10995 | 15254 | 8504 | 1558  | 54  | 18    | 1486   | 892    | 12008 | 0.1542 |
| 45     | 10980 | 15258 | 8547 | 1648  | 61  | 13    | 1574   | 883    | 12013 | 0.1157 |
| 50     | 10923 | 15204 | 8550 | 1609  | 54  | 16    | 1539   | 876    | 12015 | 0.0922 |
| 55     | 10834 | 15178 | 8679 | 1497  | 57  | 13    | 1427   | 994    | 12016 | 0.0886 |
| 60     | 10722 | 15218 | 8980 | 1595  | 54  | 16    | 1525   | 940    | 12009 | 0.1496 |
| 65     | 10672 | 15272 | 9190 | 1687  | 58  | 14    | 1615   | 919    | 12020 | 0.0510 |
| 70     | 10683 | 15368 | 9358 | 1712  | 52  | 16    | 1644   | 976    | 12018 | 0.0708 |
| 75     | 10716 | 15456 | 9471 | 1830  | 63  | 13    | 1754   | 961    | 12023 | 0.0274 |
| 80     | 10742 | 15540 | 9586 | 1674  | 60  | 14    | 1600   | 1065   | 12011 | 0.1255 |
| 85     | 10784 | 15566 | 9553 | 1604  | 52  | 15    | 1537   | 1093   | 12016 | 0.0906 |
| 90     | 10780 | 15532 | 9492 | 1425  | 40  | 16    | 1369   | 1293   | 12010 | 0.1403 |

FigMx300 con rotaciones (perímetro: 18040.87, imagen de 3610 x 3610 píxeles)

| ángulo | C8    | C4    | cand  | polyg | iso | peaks | compl. | collin | perim | error  |
|--------|-------|-------|-------|-------|-----|-------|--------|--------|-------|--------|
| 0      | 16185 | 23308 | 14232 | 2033  | 37  | 18    | 1978   | 1997   | 18036 | 0.0252 |
| 5      | 16231 | 23192 | 14112 | 2728  | 55  | 14    | 2659   | 1361   | 18039 | 0.0124 |
| 10     | 16102 | 22996 | 13775 | 2525  | 51  | 17    | 2457   | 1445   | 18048 | 0.0380 |
| 15     | 16149 | 22766 | 13224 | 2390  | 57  | 14    | 2319   | 1324   | 18037 | 0.0237 |
| 20     | 16198 | 22652 | 12897 | 1986  | 53  | 15    | 1918   | 1613   | 18033 | 0.0450 |
| 25     | 16300 | 22680 | 12748 | 2203  | 52  | 16    | 2135   | 1333   | 18034 | 0.0360 |
| 30     | 16409 | 22764 | 12700 | 2043  | 58  | 14    | 1971   | 1565   | 18034 | 0.0360 |
| 35     | 16487 | 22808 | 12628 | 2357  | 47  | 18    | 2292   | 1258   | 18038 | 0.0141 |
| 40     | 16507 | 22890 | 12752 | 2261  | 53  | 18    | 2190   | 1382   | 18029 | 0.0640 |
| 45     | 16481 | 22898 | 12822 | 2362  | 55  | 16    | 2291   | 1382   | 18036 | 0.0278 |
| 50     | 16395 | 22816 | 12828 | 2361  | 55  | 16    | 2290   | 1311   | 18041 | 0.0018 |
| 55     | 16256 | 22770 | 13013 | 2156  | 44  | 19    | 2093   | 1525   | 18036 | 0.0295 |
| 60     | 16104 | 22850 | 13482 | 2296  | 59  | 14    | 2223   | 1446   | 18041 | 0.0011 |
| 65     | 16021 | 22914 | 13775 | 2455  | 59  | 15    | 2381   | 1443   | 18046 | 0.0291 |
| 70     | 16037 | 23060 | 14033 | 2483  | 53  | 17    | 2413   | 1532   | 18045 | 0.0207 |
| 75     | 16085 | 23194 | 14209 | 2680  | 58  | 13    | 2609   | 1479   | 18052 | 0.0611 |
| 80     | 16128 | 23320 | 14376 | 2456  | 66  | 12    | 2378   | 1622   | 18035 | 0.0344 |
| 85     | 16176 | 23338 | 14313 | 2332  | 55  | 15    | 2262   | 1674   | 18026 | 0.0800 |
| 90     | 16185 | 23308 | 14234 | 2037  | 41  | 16    | 1980   | 2000   | 18035 | 0.0311 |

#### Resultados de estimación del perímetro para Objetos Q1, Q3

en todas las tablas:

C8 = número de píxeles del 8-contorno, C4 = número de píxeles del 4-contorno cand = número de puntos candidatos, polyg = número de vértices del polígono

iso = número de puntos finales de cantos localmente extremos ("isotéticos")

peaks = número de picos, collin = número de puntos colineales borrados por el algoritmo

compl = número de vértices complementarios

perim = perímetro estimado, error = error relativo de perímetro

FigQ1 con parámetro creciente (perímetro verdadero es calculado en cada caso)

a1 C8 C4 peaks compl. collin cand polyg iso true perim error 0.0180 0.0243 0.0402 0.0719 0.0556 0.0633 10562 6239 0.0931 11596 6845 0.1172 12626 7457 0.1233 10704 10717 0.1181 13656 8061 10350 14686 8674 11512 11524 0.1059 11076 15714 9278 12320 12334 0.1152 11808 16754 9893 13128 13146 0.1369 12532 17782 10501 1922 13937 13956 0.1361 13260 18814 11109 1997 14745 14765 0.1378 13987 19846 11719 2114 15553 15575 0.1424 14710 20870 12322 2215 16361 16382 0.1294 15436 21908 12946 2317 17169 17192 0.1292 16167 22940 13547 2470 17978 18005 0.1500 16892 23972 14161 2561 18786 18814 0.1518 17620 25004 14769 2653 19594 19623 0.1469 18348 26032 15369 2786 20402 20434 0.1553 19070 27062 15986 2840 21210 21240 0.1390 19799 28094 16592 2973 22019 22050 0.1412 20525 29126 17203 3067 22827 22861 0.1514 21255 30160 17811 3169 23635 23671 0.1513 

parámetros: a1 dado en la tabla, a2 = a1-10

FigQ3 con parámetro creciente (perímetro verdadero es calculado en cada caso)

parámetros: a1 dado en la tabla, a2 = a1-30

| a1 | C8   | C4    | cand | polyg | iso | peaks | compl. | collin | true  | perim | error  |
|----|------|-------|------|-------|-----|-------|--------|--------|-------|-------|--------|
| 65 | 7798 | 11066 | 6538 | 1242  | 37  | 2     | 1203   | 651    | 8674  | 8683  | 0.1031 |
| 70 | 8523 | 12096 | 7148 | 1315  | 38  | 2     | 1275   | 746    | 9482  | 9492  | 0.0996 |
| 75 | 9251 | 13126 | 7752 | 1453  | 38  | 2     | 1413   | 779    | 10290 | 10301 | 0.1047 |
| 80 | 9980 | 14158 | 8358 | 1510  | 38  | 2     | 1470   | 870    | 11099 | 11112 | 0.1170 |

| 85<br>90<br>95<br>100                                              | 10706<br>11433<br>12159<br>12885                                                       | 15192<br>16222<br>17250<br>18282                                                       | 8974<br>9580<br>10184<br>10796                                                         | 1654<br>1748<br>1827<br>1951                                                 | 37<br>38<br>38<br>38                                                 | 2<br>2<br>2<br>2                                                                       | 1615<br>1708<br>1787<br>1911                                                 | 916<br>987<br>1071<br>1125                                                   | 11907<br>12715<br>13523<br>14331                                                       | 11921<br>12730<br>13540<br>14350                                                       | 0.1212<br>0.1209<br>0.1248<br>0.1319                                                                       |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 105<br>110<br>115<br>120<br>125<br>130<br>135<br>140<br>145<br>150 | 13613<br>14338<br>15067<br>15794<br>16520<br>17247<br>17973<br>18700<br>19425<br>20154 | 19314<br>20348<br>21382<br>22408<br>23438<br>24472<br>25502<br>26538<br>27566<br>28596 | 11404<br>12022<br>12632<br>13230<br>13838<br>14452<br>15060<br>15678<br>16284<br>16886 | 2067<br>2190<br>2304<br>2400<br>2483<br>2579<br>2704<br>2835<br>2904<br>3032 | 37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 2028<br>2150<br>2264<br>2360<br>2443<br>2539<br>2664<br>2795<br>2864<br>2992 | 1172<br>1225<br>1282<br>1369<br>1441<br>1515<br>1559<br>1612<br>1710<br>1740 | 15140<br>15948<br>16756<br>17564<br>18372<br>19181<br>19989<br>20797<br>21605<br>22413 | 15160<br>15969<br>16779<br>17589<br>18398<br>19207<br>20018<br>20828<br>21636<br>22447 | 0.1325<br>0.1339<br>0.1383<br>0.1415<br>0.1389<br>0.1393<br>0.1445<br>0.1445<br>0.1476<br>0.1440<br>0.1488 |
| FigQ                                                               | 1 ро                                                                                   | lígono                                                                                 | para m                                                                                 | n = 3, 4,                                                                    | 5                                                                    | (par                                                                                   | ámetro                                                                       | a2 = a1                                                                      | -10)                                                                                   |                                                                                        |                                                                                                            |
| a1=30                                                              | C8                                                                                     | C4                                                                                     | cand                                                                                   | polyg                                                                        | iso                                                                  | peaks                                                                                  | compl.                                                                       | collin                                                                       | true                                                                                   | perim                                                                                  | error                                                                                                      |
| M=5:<br>M=4:<br>M=3:                                               | 3812<br>3812<br>3812                                                                   | 5408<br>5408<br>5408                                                                   | 3193<br>3193<br>3193                                                                   | 622<br>1068<br>851                                                           | 35<br>33<br>34                                                       | 3<br>3<br>3                                                                            | 584<br>1032<br>814                                                           | 320<br>28<br>758                                                             | 4238<br>4238<br>4238                                                                   | 4239<br>4300<br>4249                                                                   | 0.0242<br>1.4560<br>0.2567                                                                                 |
| a1=60                                                              | C8                                                                                     | C4                                                                                     | cand                                                                                   | polyg                                                                        | iso                                                                  | peaks                                                                                  | compl.                                                                       | collin                                                                       | true                                                                                   | perim                                                                                  | error                                                                                                      |
| M=5:<br>M=4:<br>M=3:                                               | 8174<br>8174<br>8174                                                                   | 11596<br>11596<br>11596                                                                | 6845<br>6845<br>6845                                                                   | 1268<br>2281<br>1752                                                         | 36<br>36<br>34                                                       | 3<br>3<br>3                                                                            | 1229<br>2242<br>1715                                                         | 695<br>35<br>1683                                                            | 9088<br>9088<br>9088                                                                   | 9098<br>9218<br>9118                                                                   | 0.1172<br>1.4350<br>0.3372                                                                                 |
| a1=90                                                              | C8                                                                                     | C4                                                                                     | cand                                                                                   | polyg                                                                        | iso                                                                  | peaks                                                                                  | compl.                                                                       | collin                                                                       | true                                                                                   | perim                                                                                  | error                                                                                                      |
| M=5:<br>M=4:<br>M=3:                                               | 12532<br>12532<br>12532                                                                | 17782<br>17782<br>17782                                                                | 10501<br>10501<br>10501                                                                | 1922<br>3496<br>2637                                                         | 36<br>36<br>34                                                       | 3<br>3<br>3                                                                            | 1883<br>3457<br>2600                                                         | 1066<br>39<br>2626                                                           | 13937<br>13937<br>13937                                                                | 13956<br>14140<br>13986                                                                | 0.1361<br>1.4568<br>0.3555                                                                                 |
| a1=120                                                             | C8                                                                                     | C4                                                                                     | cand                                                                                   | polyg                                                                        | iso                                                                  | peaks                                                                                  | compl.                                                                       | collin                                                                       | true                                                                                   | perim                                                                                  | error                                                                                                      |
| M=5:<br>M=4:<br>M=3:                                               | 16892<br>16892<br>16892                                                                | 23972<br>23972<br>23972                                                                | 14161<br>14161<br>14161                                                                | 2561<br>4721<br>3530                                                         | 36<br>35<br>34                                                       | 3<br>3<br>3                                                                            | 2522<br>4683<br>3493                                                         | 1464<br>44<br>3563                                                           | 18786<br>18786<br>18786                                                                | 18814<br>19057<br>18859                                                                | 0.1518<br>1.4453<br>0.3675                                                                                 |
| a1=140                                                             | C8                                                                                     | C4                                                                                     | cand                                                                                   | polyg                                                                        | iso                                                                  | peaks                                                                                  | compl.                                                                       | collin                                                                       | true                                                                                   | perim                                                                                  | error                                                                                                      |
| M=5:<br>M=4:<br>M=3:                                               | 19799<br>19799<br>19799                                                                | 28094<br>28094<br>28094                                                                | 16592<br>16592<br>16592                                                                | 2973<br>5521<br>4131                                                         | 38<br>38<br>36                                                       | 2<br>2<br>2                                                                            | 2933<br>5481<br>4093                                                         | 1724<br>56<br>4178                                                           | 22019<br>22019<br>22019                                                                | 22050<br>22340<br>22100                                                                | 0.1412<br>1.4580<br>0.3678                                                                                 |

| FigQ                 | 3 ро                    | olígono                 | para n                  | n = 3, 4             | , 5            | (pai        | rámetro              | a2 = a1-30)         |                         |                         |                            |
|----------------------|-------------------------|-------------------------|-------------------------|----------------------|----------------|-------------|----------------------|---------------------|-------------------------|-------------------------|----------------------------|
| a1=70                | C8                      | C4                      | cand                    | polyg                | iso            | peaks       | compl.               | collin              | true                    | perim                   | error                      |
| M=5:<br>M=4:<br>M=3: | 8523<br>8523<br>8523    | 12096<br>12096<br>12096 | 7148<br>7148<br>7148    | 1315<br>2380<br>1803 | 38<br>38<br>36 | 2<br>2<br>2 | 1275<br>2340<br>1765 | 746<br>40<br>1784   | 9482<br>9482<br>9482    | 9492<br>9616<br>9513    | 0.0996<br>1.4049<br>0.3204 |
| a1=80                | C8                      | C4                      | cand                    | polyg                | iso            | peaks       | compl.               | collin              | true                    | perim                   | error                      |
| M=5:<br>M=4:<br>M=3: | 9980<br>9980<br>9980    | 14158<br>14158<br>14158 | 8358<br>8358<br>8358    | 1510<br>2789<br>2120 | 38<br>38<br>36 | 2<br>2<br>2 | 1470<br>2749<br>2082 | 870<br>36<br>2072   | 11099<br>11099<br>11099 | 11112<br>11261<br>11136 | 0.1170<br>1.4583<br>0.3383 |
| a1=90                | C8                      | C4                      | cand                    | polyg                | iso            | peaks       | compl.               | collin              | true                    | perim                   | error                      |
| M=5:<br>M=4:<br>M=3: | 11433<br>11433<br>11433 | 16222<br>16222<br>16222 | 9580<br>9580<br>9580    | 1748<br>3189<br>2417 | 38<br>38<br>36 | 2<br>2<br>2 | 1708<br>3149<br>2379 | 987<br>43<br>2386   | 12715<br>12715<br>12715 | 12730<br>12897<br>12758 | 0.1209<br>1.4295<br>0.3410 |
| a1=100               | <b>)</b> C8             | C4                      | cand                    | polyg                | iso            | peaks       | compl.               | collin              | true                    | perim                   | error                      |
| M=5:<br>M=4:<br>M=3: | 12885<br>12885<br>12885 | 18282<br>18282<br>18282 | 10796<br>10796<br>10796 | 1951<br>3597<br>2665 | 38<br>37<br>36 | 2<br>2<br>2 | 1911<br>3558<br>2627 | 1125<br>147<br>2746 | 14331<br>14331<br>14331 | 14350<br>14540<br>14381 | 0.1319<br>1.4552<br>0.3475 |