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Abstract 

Mobility is an essential part of our daily life, and this is where the health of our lower limbs is 

essential. Gait analysis using kinetic data, together with a medical decision support system or 

computer-assisted diagnosis, provides the physician with assistance in detecting gait disorder and 

the risk of foot ulcers, especially in diabetic patients, leg discrepancy, and footprints pathologies 

and many other applications in biomedical diagnosis.  

The purpose of this study was to establish a procedure to correlate plantar pressure data to foot 

disorders. With that aim, we review the state of the art of hardware and software, plantar pressure 

acquisition devices and the algorithms that researchers and medical practitioners have used in this 

matter. Based on this background, we decided to use electronic baropodometry equipment and 

Fuzzy Cognitive Map (FCM) to analyze plantar pressure data. In this sense, two FCM architectures 

with different configurations were used to achieve the established goals.  

In the first experiment, an FCM type I trained by a genetic algorithm was implemented, with one 

hundred and fifty-one local volunteers subject (aged 7 to 77), which were classified previously 

with a flat foot (n=70) and cavus foot (n=81) by specialized physicians of the Piédica diagnostic 

center. The trial walking was conducted using plantar pressure platforms FreeMed ®. The foot 

surface was divided into 14 areas that included toe 1st to 5th, metatarsal joint 1st to 5th, lateral 

midfoot, medial midfoot, lateral heel, and medial heel. 

In the second experiment, an FCM Type II trained by Bacterial Foraging Optimization Algorithm 

was used, in which one hundred twenty-five local volunteers subject (20 to 68 years) participate. 

Foot classification into normal (n=31), flat (n=32), cavus type III (n=31), and cavus type IV (n=31) 

to train the system was carried out by specialized physicians. A FreeMed® platform was used to 

obtain the database. 

A graphical user interface (GUI) was developed to implement intended methodologies. In our GUI, 

the user enters plantar pressure data, and as a result, the system gives probability percentages of 

an alteration.  

 Our results indicate that our methods resulted in a high-performance classification of the plantar 

foot alteration according to the plantar pressure. Results can be improved using the knowledge of 

physicians in the training process to avoid possible bias and including more population with similar 

morphological characteristics of other countries, to obtain results that may be applicable and 

scalable in other places.  
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Resumen 

La movilidad es una parte esencial de nuestro día a día, y es aquí donde la salud de nuestras 

extremidades inferiores es fundamental. El análisis de la marcha utilizando datos cinéticos, junto 

con un sistema de apoyo a la toma de decisiones médicas o diagnóstico asistido por computadora, 

proporciona al médico asistencia en la detección de trastornos de la marcha, riesgo de úlceras en 

el pie, especialmente en pacientes diabéticos, además de discrepancia en las piernas, patologías de 

huellas y muchas otras aplicaciones en diagnóstico biomédico. 

El propósito de este estudio fue establecer un procedimiento para correlacionar los datos de la 

presión plantar con los trastornos del pie. Con ese objetivo, revisamos el estado del arte del 

hardware y software, los dispositivos de adquisición de presión plantar y los algoritmos que 

investigadores y médicos han utilizado en esta materia. Basándonos en estos antecedentes, 

decidimos utilizar equipos de baropodometría electrónica y Fuzzy Cognitive Map (FCM) para 

analizar los datos de presión plantar. En este sentido, se utilizaron dos arquitecturas FCM con 

diferentes configuraciones para lograr los objetivos establecidos. 

En el primer experimento se implementó un FCM tipo I entrenado por un algoritmo genético, con 

ciento cincuenta y un sujetos voluntarios locales (de 7 a 77 años), que fueron clasificados 

previamente con pie plano (n = 70) y pie cavo (n = 81) por médicos especialistas del centro de 

diagnóstico Piédica. La marcha de prueba se realizó utilizando plataformas de presión plantar 

FreeMed®. La superficie del pie se dividió en 14 áreas que incluían dedo del pie 1º al 5º, 

articulación metatarsiana 1º al 5º, mediopié lateral, mediopié medial, talón lateral y talón medial. 

En el segundo experimento, se utilizó un FCM Tipo II entrenado por un Algoritmo de 

Optimización de Forrajeo Bacteriano. En el experimento participaron ciento veinticinco sujetos 

voluntarios locales (de 20 a 68 años). La clasificación del pie en normal (n = 31), plano (n = 32), 

cavo tipo III (n = 31) y cavo tipo IV (n = 31) para entrenar el sistema fue realizada por médicos 

especializados. Se utilizó una plataforma FreeMed® para obtener la base de datos. 

Se desarrolló una interfaz gráfica de usuario (GUI) para implementar las metodologías previstas. 

En nuestra GUI, el usuario ingresa datos de presión plantar y, como resultado, el sistema 

proporciona porcentajes de probabilidad de una alteración. 

 Nuestros resultados indican que los métodos tienen un alto grado de rendimiento para la 

clasificación de alteración del pie de acuerdo con la presión plantar. Los resultados se pueden 

mejorar utilizando el conocimiento de más médicos en el proceso de entrenamiento de los 

algoritmos para evitar posibles sesgos e incluir más población con características morfológicas 

similares de otros países, para obtener resultados que puedan ser aplicables y escalables en otros 

lugares. 
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Chapter 1. Introduction 

In this chapter, a brief introduction will be made related to plantar pressure measurements, 

applications, and the parts required for a system to help in the detection of alterations in the human 

footprint. It includes its history and evolution in the academic and commercial environments. 

Afterwards, we describe the purpose and scope of our research, highlighting the requirements of 

the system to process and analyze the signals and correlate them with footprint alterations. In last 

section, it is described thesis content organization.  

1.1 Background and scope 

Plantar pressure measurements provide detailed information for the evaluation of diseases or 

abnormalities, involving the function of the ankle, knee, hip, the back, and other pathologies 

reflected in the footprint. It also allows for understanding the human foot's mechanical behavior 

in static and dynamic load conditions. 

Biomedical signal classification systems give rise to the development of medical diagnostic 

support systems, which have been working for a couple of decades using flexible computing 

methods. These systems benefit medical centers; since they contribute to positive aspects as low 

rates of false-positive results, low-cost, and relatively simple tests, among others [1]. An accurate 

and efficient application can increase the possibility of early diagnosis of many diseases and 

prevent deterioration of health [1].  

There are three types of plantar pressure systems: Pressure platforms, imaging 

technologies, and instrumented footwear systems, in which the latest are the most efficient, 

flexible, portable, and lowest cost systems [2]. The measurement of pressures between the foot 

and the shoe during walking has been studied area since 1963 when Bauman et al. [3] reported a 

device and method to evaluate footwear for leprosy patients through plantar measurements simple 

tools. At this time, the pressure measurement systems were wired, until 1997, when Lawrence et 

al. [4] [5] reported a device and method to evaluate footwear for patients with leprosy through 

plantar measurements with simple tools such as gyros, accelerometers, humidity and temperature 

sensors.  

Biomedical signal classification systems led to the development of medical diagnostic support systems, 

providing benefits for medical centers; as they contribute to aspects such as low false-positive 

results, low cost, and relatively simple tests, among others [1]. These diagnostic systems are leaving aside 

the physicians' unanimous decision, which can sometimes be wrong, to support them, with systems that 

have medical records of patients who have been used in recent years [6]. In this study, the analysis software 

is an expert system capable of automatically classifying plantar pressure data in normal, flat, cavus type 3 

and cavus type 4 foot. 

A healthy walk requires coordination of both the neural and musculoskeletal systems to 

provide balance and stabilization of the body. It is possible to determine many diseases that are 

reflected through the abnormal distribution of weight using the footprint. For obtaining gait or 
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footprint data, it is necessary to use specific devices. There are three types of plantar pressure 

systems: Pressure platforms, imaging technologies, and instrumented footwear [2], These systems 

use different sensor technologies and produce quantities of signals that can be normalized, 

classified, and interpreted to develop systems that help in the monitoring and early diagnosis of 

diseases.  

Computer-Aided Diagnosis (CAD) or Clinical Decision Support Systems (DSS) are an 

active research area since the beginning of artificial intelligence. There is an application area for 

any innovative computing approach, which handles the massive amounts of imprecise or 

ambiguous data in this field.  The hybrid approach seeks to exploit each component's individual 

advantage, obtaining improved performance for their combination[6]. With the footprint analysis 

study, it is possible to diagnose and treat many diseases that affect the lower extremities. On the 

downside, one has to analyze complex and dependent data, with non-linear correlations since each 

person walks differently. It is at that point where the physician gives importance to the use and 

robustness of efficient systems, able to process and interpret significant amounts of data to 

diagnose, monitor, and suggest treatment options to different gait disorders [7]. Therefore, the need 

for robust development systems that are versatile and easy to use in supporting medical diagnosis 

is evident. These systems must leverage emerging technologies based on sensors, along with 

computational intelligence techniques that allow performing successful real-time applications. 

Other benefits of DSS are the reduction of long recording times, and to dispense the gait 

laboratories mounting, getting portable, continuously monitoring, and cost-effective solutions [6]. 

The main goal of this work was to implement an expert system for supporting the 

detection of orthopedic alteration in the human footprint by using kinetic data from 

pressure sensors. The milestones required to obtain main goal were: 

• Determine the characteristic patterns in the human footprint that indicate orthopedic 

alterations, through kinetic pressure data. 

• Analyze databases with existing baropodometric equipment on normal and altered 

footprints. 

• Define the techniques for using the pressure data classification system. 

• Experimentally validate the developed technique obtained with an acquisition 

system, in patients with and without alterations. 

1.2 Hypothesis formulated at the beginning of project 

By having a system for the analysis of plantar pressures that can be adapted to different 

foot sizes and weight of people, to associate them with normal or pathological footprints, will 

provide a useful tool to help doctors in the detection and monitoring of pathologies in patients. 

The system must interpret and analyze complex data from the electronic insole and give output as 

a percentage of the possible alteration. 
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1.3 Methodology employed in project  

For the development of the project, the methodology proposed by Buchanan was used, 

which is described below: 

 

Figure 1. Diagram that shows steps defined in Buchanan methodology 

Each stage performed during the project is described as follows: 

a) Identification 

The problem was identified. Interviews with experts in the field of plantar pressure analysis 

were carried out, as well as searches in the literature to contemplate the solutions proposed 

above. This phase was essential to obtain the problem, which was addressed together with the 

possible solution, the target population, the objectives and goals to be achieved with the 

system. With the identification stage, the computational functions are established, enter 

symptoms, provide a diagnosis expressed in percentage, low computational cost, and provide 

an easy-to-use GUI. 

b) Conceptualization 

The concepts obtained from the field experts were analyzed, as well as all the information 

reported in the literature. Variables that indicate a specific pathology were defined, as well as 

obtaining a healthy reference standard, normalized in weight and size. At this stage, two 

searches were considered, on the one hand, everything related to plantar pressure acquisition 

systems and, on the other, the algorithms used by previous authors to analyze biomedical data. 

c) Formalization 

Based on the information obtained in the previous stage, the relevant concepts that were 

considered to classify plantar pressures were identified. The programming paradigm and the 

representation of the knowledge base were determined. 

d) Implementation 

Visual Studio IDE was chosen as an environment to develop the entire project, with the C# 

and R languages. For the graphical part, Windows Forms was used, which was the name given 

to the graphical application programming interface, which provides access to the elements of 

the native Microsoft Windows interface, this in C# language. For the analysis and 
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classification of plantar pressure data, the R language was used, which can be integrated with 

the graphical interfaces programmed in C#, and it was one of the most important languages 

used by data scientists and programmers. 

e) Validation 

The system's performance was verified using a plantar pressure acquisition system in patients 

with and without alterations. 

1.4 Content Summary  

This thesis is structured with four additional chapters. The second Chapter presents the 

state of art of adquisition systems, reviewing the technologies used in the sensors and the 

developments that have been made commercially and academically, highlighting the need to create 

systems that correlate these signals with footprint alterations, regardless of foot size and patient 

weight. Besides the algorithms used for recognizing patterns in the plantar pressure data, their 

current state, and the improvement aspects reported by the authors. The third Chapter presents the 

phases of obtaining human plantar pressure data through a plantar pressure platform; in addition, 

we describe the procedure for acquiring and preprocessing plantar pressure data. The fourth 

Chapter presents the algorithms and the experiments used for the classification of alterations in the 

human plantar foot. The last chapter, describe the conclusion of the work and the future work 

recommended to follow on the classification of the alteration of the human plantar foot using Fuzzy 

approaches. Fig. 2 shows the content summary. 

 

Figure 2. Content Diagram 
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Chapter 2. Acquisition System and Algorithms for Plantar 

Pressure Analysis 

 This chapter presents the antecedents related to plantar measurement systems, focusing on 

instrumented footwear or instrumented insole, disclosing in detail the development of this type of 

system, their scope, and future work reported by the authors academically or commercially. The 

last part deals with the alterations that can be detected and the algorithms used for plantar pressure 

data pattern recognition considering the scope and the aspects to improve reported by the authors. 

Appendices 1.1 and 1.2 show the original documents.     

2.1 Acquisition System for Plantar Pressure Kinetic Data 

Plantar pressure measurement provides important information about the pleople´s health, the 

human body structure, and foot functionality [8]. Advancements have been made in the 

development of measurement technologies for plantar pressure to get systems for understanding 

general behavior and/or pathologies by analyzing the pressure generated by the feet during human 

motion [9], [10]. Plantar foot measurement systems can be classified into three types: pressure 

platforms, imaging technologies, and instrumented footwear systems [2], [11].  

Foot pressure measurement by instrumented shoes has been an exciting area since 1963, when  

Bauman, J.H et al. [3] described this equipment and method to evaluate footwear for leprosy 

patients through plantar measurements with simple devices. The measuring pressure systems were 

wired until 1997 when Tracie L. Lawrence et al. [4] presented a wireless in-shoe force system for 

analyzing normal and paraplegic patients. In recent times, both commercial and academic groups 

have been developing instrumented shoes with different types of sensor technologies, allowing 

wireless communication and low power consumption in simple systems for improving data 

acquisition. These advances have been made to achieve significant social acceptation [5]. The 

inclusion of other types of sensors, such as gyroscopes, accelerometers, humidity, and temperature 

sensors, makes these instrumented insoles a helpful tool for detecting many diseases. 

These devices have been widely used in the clinical and research field to evaluate patients with 

structural disorders, foot illness, or early diagnosis pathologies [8]. Plantar pressure analysis lets 

us estimate many parameters, such as mean pressure, peak pressure, center pressure, and 

displacement speed of the center of pressure [12]. Allowing to determine balance analysis [13], 

[14]; measuring of spatiotemporal gait [15], [16]; and ground reaction forces (GRFs) [17] in sports 

and medicine. For detecting abnormalities, such as the type of foot, cavus, or flat [18], flat-valgus, 

and clubfoot [19]. But also for monitoring and diagnosing many diseases as insensible feet [20], 

Parkinson, peripheral neuropathy, frailty, dementia [21], and pressure peak in diabetic foot [22]. 

Detectable when the inappropriate forces are present in the measuring [23]. 

By utilizing pressure-sensitive elements and inertial sensors such as accelerometers in 

conjunction with gyroscopes, both commercial and academic groups are developing ergonomic 

and wearable systems intended to be used in real life for long periods. 
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The main requirements for measuring plantar pressure and gait parameters are: 

Flexible electronics: Allows the best place of the measurement electronics for obtaining accurate 

information. Also, the device can be more flexible and adaptable to the natural human movements 

[2], [24]. 

Sensor placement: The foot surface can be divided into areas to obtain more relevant data. Reports 

show that the sole can be divided into 15 differentiable areas [2]. The minimum number of 

recommended sensors is 15, but it is limited to the changes in foot size, resulting in the 

displacement of interest pressure points [25], [21].  

Sensor size: The sensor size recommended by the previous works is 5mm x 5mm [26], [27]. A 

larger sensor can underestimate the peak pressure. And with a smaller sensor, it is difficult to 

control the displacement of the points of interest during gait. 

Embedded electronics: The completely integrated micro-electro-mechanical systems MEMs 

technology (sensors, communication, battery, storage, etc.), becomes an excellent option since 

there are not strange elements perceived by the users [24], [28]. Studies report that a device 

attached to the shoe weighing less than 300 g does not affect gait [2]. 

Low power consumption:  The system must operate through a complete day to obtain sufficient 

data for research and/or continuous monitoring of the patients [8]. 

Low cost: The cost of the system is an essential factor because current systems are efficient and 

comfortable but not affordable. 

The development is being carried out in the commercial and academic groups, obtaining the 

following results. 

2.1.1 Commercial systems 

There are entirely integrated commercial devices such as the German company Moticon 

[29], which develops, manufactures, and distributes sensor products for motion analysis in 

medicine and sports applications. Moticon products are characterized by fully integrated design 

and easy handling with 13 capacitive sensors per insole, 3D accelerometer sensor, wireless 

communication, flash memory, and power supply, all integrated into the insole, as shown in Fig. 

3a. The Chinese InsoleX, developed by Sennotech [30], is a wearable monitoring product with 

high accuracy and reliability. This insole is easy-to-use and integrates approximately 48 smart 

textile pressure sensors (depending on the insole size) in the 30-1200 kPa range, 3D accelerometer, 

3D gyroscope, 3D compass, and wireless communication, among other features (Fig. 3b).  
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a)   b)  

 

Figure 3. Insoles completely integrated, unobtrusive to the user. a) Moticon system [29]. b) 

InsoleX system [30]. 

These systems reduce space constraints in the rehabilitation or research centers and offer freedom 

of movement for the patient. The summary of these systems is shown in Table 1. 

 

Table I. Commercially Available Instrumented Insole 

Insole Sensor 

Technology 

Sensors 

per insole 

Other sensors Battery Communication Sampling 

(Hz) 

Image 

F-Scan [31]  Resistive 960 ------ 2 hours USB 100  

 

Moticon 

[29] 

Capacitive 13 3D 

accelerometer 
 

------ Wireless 100 

 

Pedar-X 

Insoles [32] 

Piezo electric 99 ------ 4.5 hours Bluetooth/ USB/ 

Optic Fiber 

100 

 

Footwork 

Insole [33] 

Capacitive 80 ------ 3 hours Bluetooth / USB 400 

 

Biofoot/IB

V [34] 

Piezo electric 64 ------ ------ Wi-Fi/ USB 750 

 

ParoTec 

[35] 

Hydro-cell, 

piezo resistive 

24 ó 36 ------ ------ Memory card 300 

 

Dynafoot2 

[36] 

Resistive 58 Accelerometer 3.5 hours Bluetooth 100 

 

 
 

 

Wiisel [37] Resistive 14 Accelerometer 

Gyroscope 

------ Bluetooth ------  
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Sennopro 

Insole X 

[30] 

Textile sensor 48 Accelerometer 

Gyroscope 

Compass 

48 hours Bluetooth 100 

 

Medilogic 

insole [38] 

 

------ 240 ------ 16 hours Wireless 300  

Orpyx 

LogR [39] 

------ 8 ------ 12-8 

hours 

Bluetooth 100 

 

Sensor 

Medica 

Flexinfit 

[40] 

 

Resistive 214 ------ 4 hours Bluetooth 25 to 50   

2.1.2 Academical systems 

Due to the high cost of the commercial systems, academicals have been developing 

different devices with novel sensor technology [41] while determining their best positions to obtain 

a significant amount of features from both, gait parameters and plantar pressure [2]. In these 

systems, they are integrating up to 64 sensing elements. For example, Donati M. et al. [42] 

developed a system composed of flexible matrices of 64 optoelectric sensors covered by soft 

silicone, called Pressure Sensor Pads (PSP), as in Fig. 4a. The system has an excellent performance 

in terms of accuracy, sensitivity, dynamic behavior, and compliance with the mechanical 

requirements. 

Leemets K et al. [43], presents a lightweight, and robust sensor array system for the instrumented 

insole. The setup enables the use of both resistive sensing and capacitive sensing, but the authors 

used a capacitive setup because it turned out to be the most reliable and consistent. The system is 

composed of layers (Fig. 4b). 

 

a)   b)  

Figure 4. Development of the sensor arrays for pressure measurement. a) Opto-electric system by 

Donati M. et al. [42]. b) The multi-layer system by Leemets K. et al. [43]. 

There are many academic efforts to obtain better systems covering different interesting issues like 
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low-cost, size reduction, sensitivity, measurement range, accuracy, and spatial resolution.  

A summary of these developments is shown in Table 2. This review intends to present the advances 

in plantar measurement systems that have been developed since 1963.  

 

Table II. Academic instrumented insoles 

Technology 
Sensors per 

insole 
Other sensors 

Sampling 

(Hz) 
Reference 

Resistive 

1 to 5 

Accelerometer 

Gyroscope 

Humidity 

Temperature 

24 to 100 

[15], [21], [51]–

[55], [25], [44]–

[50], [56] 

>5 to 10 ---- 
 

25 to 25000  

[4], [57]–[62], 

[63] 

>10 to 20 
Humidity 

Temperature 

 

25 to 30 

[18], [58], [64], 

[65], [66] 

Capacitive 
1 to 5 ---- 

 

100 
[67], [68] 

>20 to 30 ---- ---- [43] 

Piezo-resistive 

and piezo-electric 

<1 to 10 Accelerometer 60 to 155 [46], [69]–[73] 

> 30 
Accelerometer 

Temperature 
5 to 13 [13], [74] 

other array ---- 
 

10 to 1000 
[41], [75] 

Opto-electronic 
4 None 1000 [17] 

64 None 100 [42] 

Conductive 

compound 

7 
Electrotactile 

stimulator 
20 [76] 

8 

Accelerometer 

Humidity 

Temperature 

---- [22] 

EMFI-Film 16 None 10 [77] 

Elastometer 5 None 240 [65] 

Conductive 

rubber 
7 None 20 [78] 

Air pressure 4 None ---- [79] 

Tri-axial force 

transducers 
5 None 100 to 300 [80], [81] 

Six-axial force 

sensors 
3 

Gyroscope 

Accelerometer  

Magnetometer 

---- [82] 

Optical fiber 6 None 960 [83] 

Textile sensor 

1 to 6 ---- 100 [12], [84] 

48 

Accelerometer 

Gyroscope 

Compass 

100 [85] 
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1040 None 30 [86] 

2.1.3 Pressure sensor technologies 

The literature has reported different sensing elements for measuring plantar pressure, which can 

be divided in: 

Capacitive sensors 

It is composed of two electrical conducting plates separated by a dielectric elastic layer in which 

the distance changes according to the force applied, producing a voltage variation [8]. Some 

studies have reported this technology [29], [33], [43], [67]. 

Resistive sensors 

They are made of a conductive polymer that varies its resistance according to the applied force, 

i.e., the higher the pressure, the lower the resistance. Is the most common type and has been used 

in several studies [18], [20], [31], [57], [64], [87]–[90]. 

Opto-electronic sensors 

These sensors are composed of a light transmitter and a photodiode receiver separated by an 

external silicone bulk structure. When a load is applied, the cover deforms itself, the light is 

screened, and the sensor changes its output voltage proportionally [42], [17].  

Piezo-resistive and piezo-electric Sensors 

These devices can be constructed using a miniature pressure sensor based on MEMS technology.  

Studies with this type of technology are reported in [32], [13], [91], [41] and [92]. 

Other Technologies 

There are systems developed with different technologies such as textile sensors, as used by 

Wenyao et al. [85] and Sennotech [30]; this technology is based on conductive inks to create a 

stretchable, thin, and pressure-sensitive textile, in which it is possible to include a higher number 

of sensing elements [48]. Kyoungchul et al. [23] developed a system based on air pressure sensors 

composed of air bladders made of winding soft silicone tubes and an air pressure sensor.  

2.1.4 Detected and monitored disorders 

Plantar pressure measurement systems are widely used in sports, research, and medical 

applications, these systems allow to estimate several biomechanical and foot disorders [93]. These 

devices aim to provide support for researchers and medics by generating reports for studying the 

patient progress or by aiding in identifying pathologies. Many of the reported developments were 

made for application in fields like monitoring, pattern extraction, rehabilitation, disorder detection, 

among others.  
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Monitoring and disorder detection applications 

The first study in 1963 was the design of orthopedic shoes for patients with leprosy [3]. 

In 1990 began the development of systems for monitoring diseases as diabetes [60], which is the 

most widely studied disease. The diabetic patients lose pain and temperature sensations in their 

feet. For this, the monitoring of the foot is transcendental to prevent complications as ulcerations, 

pathological neuropathy, infections, and even amputation due to the lack of sense. The absence of 

adequate sensation produces changes in the walking pattern as abnormal pressure distributions 

indicating a risk area when the plantar pressure increases [94], [95].  

In 1995 Hausdorff et al. [47] presented a simple footswitch system that provides accurate 

estimations of the start and end of the stance phase for distinguishing normal and pathologic gait. 

The systems developed by Shu Lin et al. [22], Torres et al. [20], Patil et al. [59], Benbakhti et al. 

[61], Wenyao et al.[85], Talavera et al. [96], [37], and Orpyx [39] are focused on monitoring 

reduced or inexistent sensation in the foot, avoiding the excessive friction with the skin. They also 

allow proper orthopedic prescriptions preventing ulcers or amputation due to sensory failure. 

Besides, they have used other sensors for measuring temperature and humidity to give feedback in 

both friction and humidity rates. In many cases to determinate the higher-pressure areas, they refer 

to previous works to obtain the six main areas where foot ulcerations are more common [97] (Toe, 

Medial Forefoot, Lateral Forefoot, Medial Med-foot, Lateral Mid-foot, and Heel) allowing a 

smaller number of sensors used. 

The combination of plantar pressure analysis and inertial sensors allows for monitoring patient 

balance to assess neurological disorders, early disease detection, monitoring new medication or 

training, and elderly fall risk [70], [98]. The lack of balance is a secondary effect of a large number 

of diseases. Ghaida et al [99] used only 3 sensors to study the human equilibrium determining the 

displacement and velocity of the center of pressure in real-time. By doing this, they obtained a 

portable monitoring system with low-power consumption focused on fall risk detection, 

encouraging new studies in comparing healthy and unhealthy people.  

Finally, developments such as those made by Ahmad et al.[87], Kawsar et al. [100], Crea et al. 

[42] and, Meng et al. [52], are focused on monitoring and detecting abnormalities in human gait, 

giving a low-cost tool for future studies. Many devices have been tested in healthy and unhealthy 

people of different ages and weights to obtain more reliable results, providing medical specialists 

a tool to analyze and evaluate patients' progress, as reported by Pineda et al. [18]. They developed 

a device for capturing the distribution of loads in the feet during quiet, standing, and gait cycles. 

It provides valuable information for medics using a graphical interface (Fig. 5b) to determine 

possible dysfunctions of the foot, postural abnormalities, and the symmetry ratio between feet. 

This system is shown in Fig 5a. 
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a)   b)  

Figure 5. System for children’s postural and gait analysis proposed by Pineda et al. [18]. a) 

System for acquire signals. b) Example of information maps to assist in medical diagnostic. 

Rehabilitation applications 

In this topic Qin et al. [57] developed a device that provides real-time feedback for 

monitoring the evolution in post-stroke rehabilitation (Fig. 6). The authors used a tailored insole 

to be adapted to the deformity of the paralyzed foot, and they obtained that the peak contact area 

was significantly more significant in the 3D insoles than in the flat insoles.  

  

Figure 6. Instrumented insole for analysis of post-stroke rehabilitation, flat insole (left) and 3D 

insole (right) [57]. 

Many efforts in the development of devices seek to offer an efficient tool that the researchers and 

medics can use to assess rehabilitation treatments [101]. Authors present innovative wearable 

monitoring systems for studying walking patterns in ill and healthy people, providing more and 

better treatment methods [49], [91]. 

Monitoring athletes  

Analyzing the load differences in the foot is determinant in assessing success factors and 

risks of injury in an athlete, as well as the comfort of his footwear [102]. Besides, it is useful to 

develop motion protocols for athletes when they are injured,  providing a source of information to 

analyze and understand the injury mechanisms [103]. In this field, researchers have carried out an 

analysis to improve sports achievements as in the soccer players as it is reported in [104]. Their 

purpose was to evaluate the balance ability in the players both before and after soccer training 

session. In [84], a textile pressure sensor is used for snowboarding applications; in [68], the 

instrumented insole is used for javelin; and [69] mentions other applications in which researchers 

have worked, such as tennis, skiing, running and soccer, among others. Additional references are 
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focused on providing a tool that benefits the sports community because these systems can help to 

increase the performance of the athletes [105], [75], and improve the comfort of sports shoes [106].   

The instrumented insoles are fundamental for plantar pressure analysis required for many 

applications. One of their major limitations is the price for massive use, as it is reported in many 

works. In many cases, these systems do not have the necessary comfort and efficiency features. 

With the technology evolution and the facility to miniaturize measurement systems, systems 

nowadays tend to be more efficient, smaller, and capable of measuring more extensive ranges. 

The number of pressure sensing elements in the insoles is an essential consideration since the ideal 

instrumented insole requires a large number of sensors to provide smaller detection areas to 

achieve better analysis results. Unfortunately, the increase in the sensor number is reflected in the 

energy consumption, and in the computational cost to analyze and process the signals to converge 

to a solution.  

By experience, to obtain the most representative signals of the whole foot, the minimum necessary 

sensors are fifteen as the foot can be divided into this number of representative regions. Still, this 

quantity is not enough for measuring different foot sizes since the position of pressure points 

changes. Besides, the system's weight is another factor to consider; it is reported that 300 g or less 

do not affect gait while the system is attached to the shoe (including sensors, electronics, and 

batteries) [2]. 

2.2 Algorithms for Plantar Pressure Analysis  

 Medical diagnosis depends strongly on the medical's experience, which cannot be inherited 

incoming generation, repeating the training processes with new doctors. For this reason, it is 

needed to develop diagnosis systems that help to store and manage the information acquired with 

the experience to provide a tool for improving the diagnostic processes [107]. Traditionally, 

hospitals continuously collect vast amounts of information by monitoring the physiological 

parameters of patients. This becomes a great opportunity and a challenge because the manual 

analysis of large amounts of medical data is complicated [108], [109]. Clinical decision support 

systems (CDSS) are currently useful for analyzing medical data, and much work has been done in 

medical diagnosis problems [110]–[118], but in the case of diagnosis of diseases related to plantar 

pathologies, only a few works have been reported. 

2.2.1 Plantar pressure analysis 

There are many systems developed with different technologies for measuring the footprint 

pressure distribution [119], [2], [5], [9]. The development of algorithms to analyze load 

distributions between healthy and unhealthy people allows us to obtain useful information for 

medicals and researchers [120]. The foot is divided into different areas that support all bodyweight 

and balance adjusting to get more efficient and precise plantar pressure measurements and to 
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facilitate its analysis.    

For example, in [121]–[123], the authors sectioned the foot into four areas; in the case of [124]–

[128], it is divided from eight to fifteen areas. In many cases, those areas satisfy the requirements 

of a particular study, but when not all the regions are considered, there is a risk of losing important 

information. After analyzing the previous studies, we propose that a foot divided into fourteen 

areas is suitable for making studies without losing information. These relevant areas are medial 

heel, lateral heel, medial midfoot, lateral midfoot, 1st to 5th metatarsal joint, and 1st to 5th toe, as 

presented in Fig. 7.  For perceiving every move and impulse of the human footprint, it is required 

a sampling rate of around 300 Hz, reported by [38]. For the analysis of fast-moving actions in 

sports, this sampling rate is adequate to capture short time force peaks, such as those produced by 

a fast motion of 7 km/h. 

 

Figure 7. Interest regions on the foot surface. Lateral heel (LH), medial heel (MH), lateral 

midfoot (LM), medial midfoot (MM), metatarsal joint 1st to 5th (M1-M5), toe 1st to 5th (T1-

T5). 

Pressure analysis for diabetes 

Biomechanical observations on the footprint could reflect clinical pathologies such as the 

diabetic foot. It is a disease caused by diabetes disease that affects the patient's quality of life, and 

the authors reported that it would exceed 365 million in 2030 [129].  Table III summarizes the 

reported outcomes obtained in this area, taking into account the most relevant features of each 

study. 
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Table III. Syntesis of diabetic foot analysis reports 

Author Sampled 

population 

Age (years) Mass Acquisition 

System 

Technical Details Regions of Interest Sampling 

Rate 

 

 

Z. Pataky et 

al. [121] 

33 diabetic patients, 

10 with callus, 10 

without callus and 

13 treatment group 

 

 

 

----- 

 

 

 

----- 

Own system made 

of Force Sensing 

Resistors 

(International 

Electronics & 

Engineering, 

Luxembourg) 

Thick: 

Unspecified 

Sensor: 174 

attached on the 

foot 

Resolution: 

Unspecified 

1st, 3rd, and 5th  

metatarsal head 

 

 

 

250 Hz 

 

 

Bacarin T. et 

al. [122] 

20 control patients, 

17 without foot 

ulcers, 10 history of 

ulcers 

Control patients: 

48.7(9.4), 

Without foot 

ulcers:54.7(7.8), 

History of ulcers: 

58.8(6.7) 

BMI 

Control patients:24.3+-2.6 

kg/m2, 

Without foot 

ulcers:26.1+-4.6 kg/m2, 

History of ulcers: 27+-5.5 

kg/m2 

Pedar-X system 

insoles 

Thick: 2.5 mm 

Sensor: 99 

capacitive 

pressure sensors 

Resolution: 1.6 to 

2.2 cm2 

Rearfoot, midfoot, 

lateral forefoot, 

medial forefoot, and 

hallux 

 

 

 

50 Hz 

 

Z. Pataky et 

al. [130] 

15 diabetic and 15 

non-diabetic 

patients 

Diabetic patient: 

43.5+- 9.1 

Non-diabetic patient: 

43.4+-10.8 

 

Diabetic patient: 85.3+-

11.50kg 

Non-diabetic patient: 

82.0+-10.3kg 

 

Own system made 

of Force Sensing 

Resistors 

(International 

Electronics & 

Engineering, 

Luxembourg) 

Thick: 

Unspecified 

Sensor: 174 

attached on the 

foot 

Resolution: 

Unspecified 

1st, 3rd, and 5th 

metatarsal head 

 

96Hz 



 

25 

 

 

 

Linah Wafai 

et al. [131] 

16 diabetic and 16 

control patients 

Control female: 

33.7+-11.6 

Control male: 37.4+-

13.0 

Diabetic female: 

32.8+-14.1 

Diabetic male: 40.8+-

13.8  

Control female: 64.6+-

13.8kg 

Control male: 

85.9+-7.6kg 

Diabetic female: 

63.0+-6.4kg 

Diabetic male:  

82.0+-18.8kg 

F-scan  in-shoe 

(Tekscan, MA, 

USA) 

Thick: 0.178 mm 

Sensor: 960 

resistive pressure 

sensors 

Resolution: 3.9 

sensels / cm2 

 

Interphalangeal 

joint and 1st to 5th  

metatarsophalangea

l joints 

 

 

 

----- 

 

Chi-Wen 

Lung et al. 

[123] 

19 diabetic and 8 

control patients 

Diabetic: 42.2+- 12.6 

Control patients: 

23.1+-3.2 

Diabetic: 94.0+-21.7kg 

Control patients: 66.8+-

21.3kg 

F-scan in-shoe 

(Tekscan, South 

Boston, MA, 

USA) 

Thick: 0.178 mm 

Sensor: 960 

resistive pressure 

sensors 

Resolution: 3.9 

sensels / cm2 

1st toe, 1st 

metatarsal head, 

2nd metatarsal 

head, and heel 

 

 

200Hz 

 

A. Veves et 

al. [132] 

58 neuropathic and 

28 non-neuropathic   

Neuropathic: 28-77,  

Non-neuropathic: 17-

66  

Neuropathic: 74.8+-

17.2kg 

Non-neuropathic: 74.4+-

15.0kg  

Optical pedobaro-

graph 

Thick: 

Unspecified 

Sensor: 

Unspecified 

Resolution: 

Unspecified 

1st to 5th metatarsal 

head, heel, and toes 

 

----- 

 

T. Duckworth 

[126] 

41 patients with 

diabetic neuropathy 

and 41 healthy 

patients 

 

 

------ 

 

 

------ 

Optical pedobaro-

graph 

Thick: 

Unspecified 

Sensor: 

monochrome 

television camera 

Resolution: 

Unspecified 

1st to 5th metatarsal 

head, heel, toes, and 

forefoot 

 

 

----- 



 

26 

 

 

 

Zequera et al. 

[133] 

40 diabetic and 40 

non-diabetic 

patients 

 

 

------- 

 

 

 

------ 

 

Parotec system 

insole 

Thick: 3.5 mm 

Sensor: 24 with 

Hydrocell 

technology 

Resolution: 

Unspecified 

 

------ 

 

300 Hz 

 

Madavi et al. 

[128] 

 

 

------- 

 

 

------- 

 

 

------ 

Own system made 

of piezo-resistive 

sensors 

 

Thick: 

Unspecified 

Sensor: 6  

Resolution: 

Unspecified 

Toe area, metatarsal 

area, heel and mid-

foot 

 

 

------ 
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Orthopedic alterations 

According to its arch, another condition that can be detected and analyzed through plantar 

pressure is the foot type [134]. The most studied foot types in previous work are: flat foot, cavus 

foot, and hallux valgus foot, as shown in Table IV. The flat foot condition occurs in childhood 

when the arch of the foot is not totally developed, causing pain in feet, ankles, and knees, besides 

the mechanical instability during the gait, abduction, and valgus of the hindfoot. It is caused by 

the insufficiency of the posterior tibial tendon in adults [135]. This condition is observed in the 

work from Vorlickova et al. [136] showed in Fig. 8. 

 

Figure 8. Plantar pressure distribution is taken from Vorlickova et al. [136]. a) Flat foot. B) Flat 

foot after therapy. 

The opposite condition is called cavus foot, characterized by a medial longitudinal arch higher 

than the normal. In most cases, it is associated with claw toe or hammer toe, with the contracture 

of the plantar fascia, or with metatarsalgia, and callosities. An example of this condition is shown 

in Fig. 9. 

   

Figure 9. Cavus foot map [137]. 

The hallux valgus foot is associated with a prominent protuberance on the inside of the forefoot 

produced by the medial deviation of the first metatarsal [127] as shown in Fig. 10. 

 

Figure 2. Hallux valgus foot. Left, radiological image. Right, plantar pressure mapping [138]. 
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Table IV. Syntesis of foot type analysis reports 

Author Sampled 

population 

Age  Mass Acquisition 

System 

Regions of Interest Sampling 

Rate 

Flat foot 

Ledoux et 

al. [139] 

16 flat foot and 22 

normal foot 

Flat foot: 25.6 

Normal: 26.6 

Flat foot: 78.88kg 

Normal: 79.64kg 

Pressure plate 

Musgrave 

Medical 

Sub-hallucal, five sub-metatarsals, 

and sub-calcaneal area 

 

28 Hz 

Queen et al. 

[140] 

12 normal feet and 

10 flat feet 

Flat foot: 25+-3.6 

Normal:25+-3.6 

Flat foot: 78.8+-18.5kg 

Normal: 80.5+-17.9kg 

Insole by 

Pedar-X 

system 

Side-cut, shuttle run, cross-cut, and 

landing 

 

50 Hz 

Vorlickova 

et al. [136] 

3 patients 6.3+-1.7 21.0+-3.6kg Emed platform Midfoot, forefoot, thumbs, and 2nd 

to 5th toe 

 

----- 

Cavus foot 

Fernández 

Seguín et al. 

[141] 

34 patients with pes 

cavus and 34 

patients with normal 

feet 

Cavus foot: 24.21+-5.18 

Normal: 27.88+-10.49 

Cavus foot: 22.10+-2.64kg/m2 

Normal: 22.28+-3.02kg/m2 

 

Footscan 

platform 

1st to 5th metatarsal heads, forefoot, 

midfoot, and heel 

 

 

500 Hz 

Burns et al. 

[142] 

30 with cavus foot, 

10 with Charcot-

Marie-Tooth and 30 

normal patients 

Cavus foot:30.6+-13.5 

Charcot-Marie-Tooth:56+-

18.6 

Normal: 31.7+-11.1 

Cavus foot: 25.4+-5.3 kg/m2 

Charcot-Marie-Tooth: 25.9+-

1.9 kg/m2 

Normal: 24.3+-3.6 kg/m2 

EMED-SF 

platform 

Rearfoot and forefoot 50 Hz 

Hallux valgus foot 

 

Wen et al. 

[127] 

248 with pain, 210 

without pain and 70 

normal patients 

Pain:51.2+-12.14 

Without:49.4+-Normal:16.14 

46.7+-9.76 

Pain:61.9+-7.71kg 

Without:60.4+-8.16kg 

Normal:66.5+-13.17kg 

 

Pressure plate 

Hallux, the 2nd to 5th toe as a region, 

metatarsal joints 1st to 5th, middle 

foot, medial heel and lateral heel 

 

 

250 Hz 
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Wafai et al. 

[131] 

16 unhealthy 

patients, and 16 

control patients 

Unhealthy female: 32.8+-14.1 

Control female: 33.7+-11.6 

Unhealthy male: 40.8+-13.8 

Control male: 37.4+-13.0 

Unhealthy female: 63.0+-6.4kg 

Control female: 64.6+-13.8kg 

Unhealthy male: 82.0+-18.8kg 

Control male: 85.9+-7.6kg 

F-scan       in-

shoe 

Interphalangeal joint and the 

metatarsophalangeal joints 1st to 5th  

 

 

----- 

Koller et al. 

[138] 

61 feet of 55 

patients 

57.7+-11.3 ------ Emed-at 

platform 

Hallux valgus angle 60 Hz 

Club-foot 

Giacomoz-

zi et al. 

[143] 

20 patients with 

club-foot and 20 

control patients 

Control: 11.5+-2.8 

Club-foot: 11.0+-3.3 

Control: 18.1+-3.1kg/m2  

Club-foot: 19.5+-4.0kg/m2 

Emed-m 

platform 

Medial hind foot, lateral hind foot, 

midfoot, medial forefoot and lateral 

forefoot 

 

 

50 Hz 

Normal foot, flat foot, cavus foot, hallux-valgus foot and Hallux varus foot 

Costea et al. 

[144] 

67 patients 52-84 45-70kg RSscan 

pressure plate 

Foot length, heel width, toe width, 

hallux-valgus angle, middle foot 

width 

 

 

----- 
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Other pathologies  

There are other relevant pathologies that researchers have been studied as summarized in 

Table V. Rouhani et al. [145], analyzed the initial contact time, terminal contact time, maximum 

force time, peak pressure time, maximum force and peak pressure, to demonstrate that it is possible 

to use plantar pressure parameters as a tool for assessing patients with total ankle replacement 

(TAR) and ankle arthrodesis (AA). 

Zammit et al. [146] found changes in the load function of the foot, which may produce other 

effects, such as plantar callus formation and hyperextension of the hallux interphalangeal joint, as 

is shown in Fig. 11. 

 

Figure 11. Comparison of a normal foot (a) and foot with osteoarthritis in the first 

metatarsophalangeal joint (b) [146]. 

These analyses indicate the importance of realizing studies using plantar pressure measurements 

for early detecting changes in plantar loading characteristics and their relationship to foot pain in 

patients as the case of rheumatoid arthritis [147]. Another possible issue to analyze through plantar 

pressure is the pathological gait because during standing, the foot assists in controlling the delicate 

muscular activity required to keep balance [148]. Hayafune et al. [149] analyzed normal force 

distribution pattern of the forefoot during the push-off phase to obtain more information when the 

forefoot carries the whole weight.   

Another related application is to detect leg length discrepancy. This condition affects gait and 

posture, for which it is important to understand the biomechanics of these patients, Abu-Faraj et 

al. [150]. Choi et al. [151], [152], studied the possibility of detecting a slip-off event early through 

identifying plantar pressure distribution differences during heel contact between normal and 

slipped step. Patients with Parkinson or Hemiparesis can be analyzed through plantar pressure. 

Okuno et al. [153] concluded that it is possible to separate patients with Parkinson´s disease from 

normal patients taking as a feature the time of step cycle and the step length. Meyring et al. [154] 

reported that gait pressure distribution analysis improves the assessment and therapy of 

hemiparetic patients.  

Plantar pressure for people characterization 

The purpose of others authors is to compare the plantar pressure distribution between 

young, adults, and elderly [155], children and adults [156], obese and non-obese [157], [158], or 

visually impaired and normal people [159], as shown in Table VI. 
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Table V. Some other reported analysis 

Disease Sampled 

population 

Age Mass Acquisition 

System 

Regions of interest Sampling 

Rate 

Reference 

Ankle  

Osteoarthritis 

(AO) 

47 patients Control: 59+-27 

AO:60.5+-17 

TAR:66.5+-19 

AA: 65+-13.3 

Control: 66.6+-12.6kg 

AO: 80.6+-18.3kg 

TAR: 80.5+-8.8kg 

AA: 87.7+-9.2kg 

Insole Pedar-X Medial and lateral hind foot; 

medial and lateral midfoot; 

medial, central, and lateral 

forefoot; and 1st to 5th toe 

200 Hz  

[145] 

Osteoarthritis 

(OA)   

on the first 

metatarso- 

phalangeal joint 

197 patients Control: 74.8+-7.8 

OA:76.6+-8.1 

Control: 73.2+-17.9kg 

OA: 78.7+-14.7kg 

Mat-Scan 

system 

Heel, midfoot, 1st to 5th 

metatarsophalangeal joint, 

hallux, 

and lesser toes 

40 Hz  

[146] 

Rheumatoid 

arthritis (RA) 

112 patients RA 

and 20 control 

RA: 55.0+-11.0 

Control: 53.2+-

12.3 

RA1: 25.1+-4.1kg/m2 

RA2: 26.0+-6.9kg/m2 

RA3: 28.2+-5.4kg/m2 

Control: 25.2+-4.7kg/m2 

Plat-form Emed 

ST4 

Medial and lateral heel; medial 

and lateral midfoot; 1st to 2nd  

metatarsal, lateral metatarsals, 

hallux, 2nd toe and lateral 

50 Hz  

[147] 

Normal force 

distribution 

pattern 

42 healthy patients 34.8+-10.2 66.4+-10.8kg EMED-SF4 

system 

1st to 5th metatarsal head, big 

toe, 2nd to 5th toe. 

---- [149] 

Leg discrepancy 

(LD) 

2 patients Normal: 22 

LD:44 

Normal: 68kg 

LD:65kg 

Insole system 

Pedar-x 

Lateral and medial heel; 

midfoot; lateral and forefoot; 

lesser toes, and hallux 

 

---- 

 

[150] 

Slip event early 

detection 

11 patients 25 to 39 55 to 88 kg Insole system 

Pedar-C 

Toes, metatarsal head, arch and 

heel 

50 Hz [151]  
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Reduction of 

plantar sensation 

40 patients 25.3+-3.3 70.8+-10.6kg EMED ST4 

platform (Novel 

GmbH, Munich) 

 

Medial and lateral heel, medial 

and lateral midfoot, medial, 

central and lateral forefoot, 

hallux, 2nd toe and lateral toes 

50 Hz [152] 

Parkinson 

disease (PD) 

6 PD patients and 

14 control 

PD: 45 to 81 

Control: 55 to 85 

 

------- 

Pressure sensors 

(Nitta Co.) 

Spatial-temporal plantar 

pressure patterns 

60 Hz [153] 

Hemiparetic 

patients (HP) 

18 HP and 111 

control 

HP: 50.2+-16.4 

Control:27.2+-8.4 

HP: 175.9+-8.4kg 

Control:175.5+-8.2kg 

Platform 

EMED-FOI 

system 

Medial, lateral heel, midfoot, 

hallux, and 1st, 3rd and 5th 

metatarsal heads 

 

 

20 Hz 

 

 

[154] 
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Table VI. Studies and comparisons of plantar pressure distribution 

Study Sampled population Age Mass Acquisition 

System 

Regions of interest Sampling 

Rate 

Reference 

Foot sensitivity between 

young adults and elderly 

19 young adults and 19 

elderly 

Young adults: 

24.7+-5.8 

Elderly: 78.6+-

4.2 

Young adults: 

63.2+-10kg 

Elderly: 68.8+-

9.5kg 

Pressure plate 

Matscan 

Forefoot, midfoot, and rear foot  

100 Hz 

 

[155] 

Compares young school 

children and adults 

125 children and 111 adults Boys: 102+-

14.3 months 

Girls: 100+-12.1 

months 

Adults: 27.4+-

8.4years 

Boys: 30.3+-6.7kg 

Girls:28.1+-5.3kg  

Adults: 70.0+-

11.8kg  

Pressure 

platform 

System EMED  

Medial and lateral heel; 

midfoot; 1st, 3rd and 5th 

metatarsal heads; and hallux 

 

 

20 Hz 

 

 

[156] 

Compares obese and 

non-obese adults 

25 obese (O) and non-obese 

(NO) adults 

NO: 48.0+-12.2 

O: 53.0+-9.5 

Non-obese: 24.0+-

3.4kg/m2 

Obese: 32.2+-

2.0kg/m2 

Pressure 

platform 

System Mini-

EMED 

Peak pressure of forefoot, and 

rear foot. Total plantar force 

 

 

----- 

 

[157] 

Compares obese and 

non-obese adults 

35 obese (O) and non-obese 

(NO) adults 

Women(N): 

35.1+-9.6 

Women(O): 

44.6+-13.5 

Men(N): 42.3+-

11.7 

Men(O): 42.6+-

10.0 

Women (N): 

65.7+-10.9kg/m2 

Women(O): 

101.7+-21.2kg/m2 

Men(N): 83.6+-

10.7kg/m2 

Men(O): 127.2+-

22.5kg/m2 

Pressure 

platform 

System EMED 

F01 

Heel, mid-foot, 1st to 5th 

metatarsal heads, and hallux 

 

20 Hz 

 

[158] 

Plantar pressures in 

visually-impaired 

individuals 

2 control patients and 3 

visually-impaired patients 

(VIP) 

Control: 22 and 

21 

VIP: 17-37 

Control: 62 and 

58kg 

VIP: 60-80kg 

In-shoe system 

pedar-x 

Lateral and medial heel; 

midfoot; lateral and medial 

forefoot; hallux; lesser toes  

 

 

100 Hz 

 

 

[159] 

Pressures during 

walking in older people 

172 older people 80.0+-6.4 26.7+-4.2kg/m2 Pressure 

platform 

System Mat-

Scan 

1st to 5th metatarsophalangeal 

joint, midfoot and heel 

 

40 Hz 

 

[160] 
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2.2.2 Automatic plantar pathologies diagnosis 

The most commonly used techniques are clustering, artificial neural networks, and fuzzy 

logic.  

Clustering is an unsupervised pattern classifications method that uses the existing relationships 

in the data for creating groups, based on a measure of similarity [161]. In this field, the most 

common algorithms are Fuzzy C-means and K-means.  

Fuzzy c-means is the most common fuzzy clustering technique in data mining. It is based on 

each object's membership value to determine which cluster belongs to [162]. This technique was 

used by Wang et al. [163] in the Anterior Cruciate Ligament Deficiency (ACLD) analysis, related 

to plantar pressure.  

K-means is another unsupervised clustering method used to partition a data set into k groups in 

which each observation belongs to the group whose mean value is the nearest [164]. This technique 

has been used by many authors as Bennetts et al. [129] to obtain typical local peak plantar pressure 

distributions. De Cock et al. [165], analyzed the loading patterns during jogging and developed a 

foot-type classification, Giacomozzi et al. [166], detected gait alterations in rheumatoid arthritis 

patients. Niemann et al. [167] classified the regional plantar pressure distributions in diabetic 

patients, as shown in Fig. 12. Deschamps et al. [168], [169] identified patterns of forefoot loading 

in patients with and without diabetes. In this case, Niemann et al. observed that using four clusters 

allows for the observation of differences between patients with and without diabetic foot, 

potentially using its prevention and/or treatment. 

 

Figure 12. The image is taken from Niemann et al. [167]. The quality of separation between 

classes based on a number of clusters k set. 

Artificial Neural Networks (ANN) are another popular technique, which consists of a 

mathematical representation of the behavior of the human brain, formed by a series of one or more 

layers of neurons joined by links. The ANNs are widely used in many applications fields [170], 

specifically in medicine has been applied in medical diagnosis, since through the models generated 

by the ANNs, it is possible to solve difficult problems when you have a lot of data to analyze. 
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The technique has been used by Keijsers [171] to classify between patients with and without 

forefoot pain, based on plantar pressure measurements. Sazonov et al. [172], identified abnormal 

gait patterns and reduced risk factors. Piecha et al. [173], developed a walk-abnormalities 

diagnosis system. Oh et al. [174] used an ANN to study the Ground Reaction Force (GRF), helping 

the farmers that present musculoskeletal disorders caused by harvesting posture. Joo et al. [175], 

realized a method to predict 6-axis ground reaction forces. Finally, Acharya et al. [176], compared 

the Gaussian mixture model (GMM) and a four-layer feed-forward neural network to classify 

between normal, diabetic and neuropathy patients; as a result, they reported that both the ANN and 

GMM have an accuracy of 86% and 83%, respectively. 

Fuzzy logic is characterized by the robustness of its interpolative reasoning mechanism. It tries 

to imitate human reasoning, in the sense of considering all available information to infer using 

partial truths. The principles of fuzzy logic are simple, and its implementation in software is 

relatively easy [177], [178]. In this field, there are reported works as Biswas et al. [179], in which 

they obtained a gait stability index sensitive to the change conditions that induce gait instability. 

Another work with this approach is reported by Xu et al. [180], they used an adaptive neuro-fuzzy 

inference system (ANFIS) for gait analyzing with problems of cavus foot and flat foot. The process 

implemented was gait data measurement, extraction, and selection of features and classification 

with ANFIS. To train the system, they used 300 training data, 500 training periods, and 81 rules. 

Other algorithms have been tried to provide more accuracy systems for plantar pressure analysis 

applied in a different area. Some authors have used techniques like KNN-based classifiers.  In 

Liang et al. [181], they analyzed both gait and balance and classified elderly people with a risk of 

falling. They compared local mean-based k-nearest neighbor (LMKNN), pseudo-nearest neighbor 

(PNN), and local mean pseudo-nearest neighbor (LMPNN) classification to obtain the best model. 

Waldecker [182] utilized logistic regression to classify the patients with risk for foot ulcers. Jeon 

et al. [183] classified the normal step and the step of Parkinson´s disease patients. They used 

Principal Component Analysis (PCA) to extract 25 features of gait and Support Vector Machine 

(SVM) with a radial basis function as kernel function for classifying between types. Goulermas et 

al. [184], applied various data dimensionality reduction techniques for plantar pressure feature 

extraction in patients with pathological plantar hyperkeratosis, testing different types of Bayesian 

classifiers. Crea et al. [185], applied the Hidden Markov Model machine-learning method to detect 

gait phases based on pressure sensors signals. 

Table VII presents an updated summary of the reviewed works about automatic plantar pathologies 

diagnosis since 1983. The systems developed for medical applications must guarantee optimum 

performance, but very few algorithms have been applied in this field, as shown in Fig. 13 and as 

discussed above; there is poor use despite its enormous potential to handle large amounts of data. 

Mainly the reported developments are focused on using algorithms to partition data and classify 

between healthy and unhealthy people. The most common algorithms are fuzzy C-means and K-



 

36 

 

 

means, followed by ANNs from which researchers have obtained important accurate results. Few 

reported studies are using fuzzy systems for the analysis of plantar pathologies, becoming a vast 

area of opportunity, given its operation similar to the human brain. Finally, a representative group 

is integrated by the KNN, PCA, SVM, Hidden Markov Model, and logistic regression algorithms, 

with which the researchers have obtained promising conclusions. 

 

Figure 13. Current use of algorithms for analysis of plantar pressure. 
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Table VII. Works reported in automatic plantar pathologies diagnosis 

Technique Author Application Acquisition 

System 

Sampled 

population 

Age Mass Regions of interest Samplin

g Rate 

Accuracy 

 

Fuzzy c-

means 

 

Wang et al. 

[163] 

Anterior 

cruciate 

ligament 

deficiency 

analysis 

 

Footscan plate 

 

----- 

 

----- 

 

----- 

Normal left foot, normal 

right foot, sick left foot, 

sick right foot 

 

Walk: 

126Hz  

Run: 

500Hz  

 

----- 

 

 

 

 

 

 

 

 

 

 

 

 

K-means 

 

Bennetts et 

al. [129] 

Typical 

regional peak 

plantar 

pressure 

distributions 

EMED X 

pressure 

platform 

819 feet of 438 

patients 

59.5+-

12.6 

----- Hallux, lesser toes 

(toes2–5), 1st to 5th  

metatarsal head, 

midfoot, and heel 

 

100Hz 

 

----- 

 

De Cock et 

al. [165] 

Loading 

patterns during 

jogging and 

foot-type 

classification 

Pressure 

measuring plate 

RsScan and 

AMTI force 

platform 

215 healthy young 

adults 

18.3+-1.0 65.1+-

8.6kg 

Medial pattern on 2nd 

metatarsophalangeal, 

central–lateral pattern 

central pattern and 

medial pattern on 1st  

metatarsophalangeal 

 

 

480 Hz 

 

 

----- 

 

 

 

Giacomozzi 

et al. [166] 

 

 

 

Gait 

alterations in 

rheumatoid 

arthritis 

 

 

EMED ST-4 

pressure 

platform 

90 rheumatoid 

arthritis (RA) 

patients and 30 

control patients 

RA1: 

52.4+-

10.3 

RA2: 

54.2+-

10.6 

RA3: 

58.5+-

10.0 

Control: 

53.2+-

12.3 

RA1: 

68.5+-

11.6kg 

RA2: 

69.7+-12.8 

RA3: 

75.1+-15.4 

Control: 

71.5+-14.0 

Peak pressure, peak 

force, pressure–time 

integral, force–time 

integral, duration of 

stance phase, peak 

pressure curve, and 

normalized vertical 

force curve 

 

 

 

50 Hz 

 

Peak pressure 

curve: 96.5% 

 Normalized 

vertical force 

curve: 96.4% 

 

Niemann et 

al. [167] 

 

 

 

Pressure 

distributions in 

diabetic 

patients 

Instrumented 

insole with 8 

sensors 

18 control and 25 

diabetics patient 

Control: 

62.9+-7.6 

Diabetic: 

64.8+-9.8 

 

----- 

1st toe, 1st to 5th 

metatarsal bone, lateral 

and calcaneus 

 

----- 

 

----- 

 

Deschamps 

et al. [168], 

[169] 

Footscan 

pressure plate 

97 diabetic and 33 

control patients 

Diabetic: 

40-70 

Control: 

45-70 

Diabetic: 

20-

40kg/m2 

Control:20-

40kg/m2 

Hallux, 2nd to 5th toe, 

1st to 5th metatarsal 

heads, midfoot, medial 

and lateral heel 

 

200 Hz 

 

----- 
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Artificial 

Neural 

Network 

 

 

Acharya et 

al. [176] 

 

Classifier 

normal, 

diabetic and 

neuropathy 

patients 

 

In-shoe F-Scan 

system 

63 patients for 

training and 21 for 

testing 

Control: 

14-52 

Diabetic:3

2-79 

Neuropath

y:57-84 

Control: 

23.52+-

4.65kg/m2 

Diabetic: 

26.19+-

4.77 

Neuropath

y: 26.12+-

4.13kg/m2 

Hallux; 2nd toe; lateral 

toes; 1st, 2nd and lateral 

metatarsals; medial and 

lateral midfoot; medial 

and lateral heel  

 

 

----- 

 

 

Sensitivity: 

100% 

Specificity: 

85%   

Keijsers 

[171] 

Classify 

between 

patients with 

and without 

forefoot pain 

Pressure plate 

Rsscan 

297 patients 

 

Pain: 53+-

14 

No pain: 

50+-16 

Pain: 

26.0+-

4.2kg/m2 

No pain: 

25.7+-

4.0kg/m2 

pressure–time integral, 

mean pressure, and peak 

pressure 

 

 

500 Hz 

 

70.4% 

 

 

Sazonov et 

al. [172] 

 

 

Identify 

abnormal gait 

patterns and 

reduce risk 

factors 

 

 

Instrumented 

insole with 34 

sensors 

 

 

 

----- 

 

 

 

----- 

 

 

 

----- 

 

 

 

----- 

 

 

 

25 Hz 

Normal 

standing: 99.6% 

Heel dominated 

standing: 87.6% 

Normal gait 

pattern: 92.0% 

Geriatric gait 

pattern: 79.5% 

Forefoot gait 

pattern: 99.3% 

 

Piecha et al. 

[173] 

 

Bunion, 

ischialgia, and 

paresis 

 

Parotec insole 

System 

 

 

----- 

 

 

------ 

 

 

------ 

4800 input signals given 

by the number of steps, 

feet, sample per step 

and insole sensors 

 

 

300 Hz 

 

 

99.9% 

 

Joo et al.  

[186] 

 

Predict gait 

speed 

 

Insole Novel 

Pedar-x system 

 

20 patients 

 

24.5+-2.3 

 

68.1+-

8.9kg 

 

99 sensors distributed 

on insole 

 

100 Hz 

Normal walking 

96.3% 

Slow walking 

97.8% 

Fast walking 

95% 

 

 

 

 

Joo et al. 

[175] 

 

 

 

 

 

 

 

 

Insole Novel 

Pedar-x system 

 

 

 

 

80 patients 

 

 

 

 

27.9+-7.3 

 

 

 

 

65.8+-

11.2kg 

3-axis ground reaction 

force in medial-lateral 

(GRFML), anterior-

posterior (GRFAP) and 

vertical (GRFV) and 3-

axis ground reaction 

 

 

 

 

100 Hz 

Left-foot 

GRFV, GRMF, 

GRMT and 

right-foot 

GRFAP, 

GRFML, 
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Predict 6-axis 

ground 

reaction forces 

moment in sagittal 

(GRFS), frontal (GRFF)  

and transverse (GRFT) 

GRMF, GRMT: 

97% 

left-foot 

GRFAP, 

GRFML, 

GRMS, and 

right-foot 

GRFV, GRMS: 

98% 

 

 

Oh et al. 

[174] 

 

 

Ground 

Reaction Force 

Insole Novel 

Pedar-x system 

 

force plate 

AMTI 

 

 

 

1 patient 

 

 

27 

 

 

68.2kg 

 

Selected 15 and 17 

sensors for left and right 

foot 

 

100 Hz 

 

1080 Hz 

 

 

80% 

 

 

 

 

 

 

Fuzzy 

Logic 

 

 

 

Biswas et al. 

[179] 

 

 

 

Determine 

dynamic gait 

stability index 

 

 

 

F-Scan insole 

 

 

 

15 healthy patients 

 

 

 

33.53+-

11.85 

 

 

 

69.21+-

11.77kg 

Anterior–posterior 

center of force (CoF) 

motion, medial–lateral 

CoF motion, maximum 

lateral position, cell 

triggering, stride time, 

and double support time 

 

 

 

 

140 Hz 

 

 

 

 

----- 

 

 

Xu et al. 

[180] 

 

Analyze 

problems of 

pes cavus and 

pes planus 

 

 

Pressure 

platform 

50 patients, 12 of 

them with cavus 

foot and 8 with flat 

foot 

 

20-50 

 

----- 

 

Staheli Index, 

Chippaux-Smirak 

Index, Arch Index and 

Modified Arch Index 

 

50 Hz 

 

Normal 

patients: 

96.15% 

Pes cavus: 

92.5% 

Pes planus: 

93.3% 

Local 

mean 

pseudo-

nearest 

neighbor 

 

Liang et al. 

[181] 

Analyze the 

gait and 

balance to 

classify elderly 

people into 

fallers 

Force platform 

AMTI and 

MatScan 

system 

 

38 patients 

 

65-84 

 

40-90kg 

Medial-lateral, anterior-

posterior and superior-

inferior ground reaction 

force  

 

 

----- 

 

 

100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time integral forefoot, 

peak pressure midfoot, 

pressure time integral 

heel, and peak pressure 

heel 

 

 

 

 

 

 

Sensitivity of 

73%  

Specificity of 

87% 
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Logistic 

regression 

Waldecker 

[182] 

Classify the 

patients with 

risk for foot 

ulcers 

EMED ST 2 

Platform 

systems 

Non diabetics: 90 

patients; diabetics: 

120 patients 

 

 

 

 

------ 

 

 

 

 

------ 

 

----- 

 

Peak pressure on 

metatarsal 4th and 5th, 

and great toe; pressure 

time integral on 

metatarsal 2nd, and 4th; 

force on metatarsal 4th, 

force time integral on 

2nd toe, and great toe 

 

 

 

Sensitivity of 

95%  

Specificity of 

90% 

PCA and 

SVM 

Jeon et al. 

[183] 

Step of 

Parkinson 

disease 

In-shoe Pedar-

X 

21 patients with 

Parkinson and 17 

control 

Parkinson: 

64.1+-

7.34 

Control: 

62.8+-

5.62 

 

----- 

 

----- 

 

----- 

 

91.7% 

Hidden 

Markov 

Model 

Crea et al. 

[185] 

Gait 

Segmentation 

Methods 

Insole with 64 

optoelectronic 

pressure 

sensors 

 

5 patients 

 

28.8+-3.6 

 

72.6+-

9.0kg 

 

----- 

 

100 Hz 

 

94.9%-96.8% 
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2.2.3 Algorithms with potential use 

The intelligent algorithms have been tested today with much success in areas such as 

autonomous vehicles, pattern recognition, speech recognition, and aerospace field, among others 

[187], [188]. Many researchers have worked with different machine learning algorithms for 

disease diagnosis, promising to improve the accuracy of perception and diagnosis. In the bio-

medical field, the researchers have used different algorithms for many diseases, as is shown in 

[189], where they obtained promising results. As shown in the previous section, using intelligent 

algorithms to extract more information from plantar measurement devices and correlate them with 

pathologies has been low. In the following, we describe the algorithms with potential use in the 

analysis and diagnosis of plantar pressure, which could help obtain more precise and flexible 

results. 

Artificial neural networks (ANNs) 

ANNs are widely applied in bio-medicine to solve many non-linear problems by finding a 

relationship between very complex variables and to converge in a solution. Many works are 

reported as in [114], [170], [190], [191], where they use different approaches of ANNs to improve 

the accuracy of predictions. Currently, Deep learning has shown strong potential in the biomedical 

field. Although it is recent and not thoroughly explored, the main advantage of Deep learning is 

its ability to learn from the raw data. Conventional methods require sufficient knowledge to extract 

effective and robust features from data with statistical function and build a prediction or clustering 

models [191], [192]. The difference with a conventional neural network is its deep architecture, 

where the number of levels is a free parameter forming multiple levels of data representation.  

For developing predictive models using a Deep Learning method, large computing capacity and 

large databases are needed. Many efforts are made to obtain increasingly efficient computing, 

perform the many hidden layers' operations, and learn significant abstractions of the data entered 

in a short time. In the biomedical field, it is possible to obtain large amounts of information from 

thousands of patients through the different devices of analysis, to detect, diagnose, and monitor 

patients in different fields of medicine. The authors reported that the deep architectures applied in 

this field are based on Convolutional Neural Networks, Recurrent Neural Networks, Restricted 

Boltzmann Machines, and Auto-Encoders [193]. 

Fuzzy approach 

Fuzzy logic has an advantage over the previous methods because it does not depend on 

internal learning parameters as weights and biases or network size, for its performance. Fuzzy 

logic allows us to reduce the amount of data, facilitating its interpretation and understanding, 

offering less complexity and faster processing time [194]. 

The case of Fuzzy-Granular computing is applied in fields like data clustering, machine learning, 

approximate reasoning, knowledge discovery. In biomedicine have been used by [195], [196]. The 

principle is to convert the complexity of the problem into computationally simpler algorithms. 

With this is possible to obtain smaller sub-problems that can be represented by set theory, rough 

sets and/or fuzzy sets [197], [198].   
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Fuzzy cognitive maps combine fuzzy logic with cognitive maps theory, obtaining an approach 

similar to the human decision-making process. They are based on nodes, also known as concepts 

(states, events, trends, inputs: facts, outputs: decision) that interact with each other. Its 

interconnections indicate the direction and weight of each relationship. The value for each weight 

is calculated through inferring from the fuzzy rules that describe the influence between concepts 

[199], [200]. This method has been used in [201], [202] finding that it is appropriate for support 

systems in medical diagnosis given its operation similar to human reasoning.  

Fuzzy techniques have been well accepted in the medical diagnosis field because the ambiguity 

and uncertainty are present in real-world knowledge [203]. In many cases, medical diagnoses can 

be uncertain given the nature of the data, and it is possible to apply methods as fuzzy inference 

system, fuzzy relation, fuzzy concept lattice [204], intuitionistic fuzzy sets [205], interval type-2 

fuzzy [206], among others.  

Metaheuristic algorithm 

The bio-inspired algorithms have the potential to be applied in the biomedical field. 

Evolutionary computation is an approach in which researchers have worked to solve complex 

problems as optimization, automatic programming, circuit design, machine learning, and medicine 

[207]. The bio-inspired algorithms have the potential to be applied in the biomedical field. 

Evolutionary computation is an approach in which researchers have worked to solve complex 

problems as optimization, automatic programming, circuit design, machine learning, and medicine 

[208]. There are many works reported in medicine that use this algorithm to diagnose Parkinson's 

disease [209]. In this category, the colony optimization techniques are used to diagnose gastric 

cancer [210], and pap smear diagnosis [211]. Other techniques that could be applied are particle 

swarm optimization algorithm, artificial bee colony algorithm, and their hybridizations. These 

techniques provide ways for solving real-world problems more efficiently and quickly with 

accuracy [212].  

Hybrid approach 

Hybrid computational intelligence is an effective combination of intelligent techniques to 

efficiently solve problems compared with standard intelligent techniques [213]. All computing 

techniques have different capabilities for different processing phases, from data normalization to 

decision making. By combining the strengths of the individual components, their performance is 

enhanced [6]. That is why hybrid approaches are promising, especially in medicine, where many 

variables have to be taken into account. Hybrid systems must perform better than simple, 

intelligent approaches, increasing the comprehensibility of the resulting model and improving the 

speed of the process and the time required to produce a high-performance decision model [213]. 

There are many works related to this approach in the literature. Table VIII summarizes the 

reviewed works, where the authors show greater accuracy using hybrid techniques to solve 

biomedical problems. Hassan et al. [214], used a hybrid genetic algorithm and fuzzy algorithm for 

the recognition of gait patterns in fall risk patients. They obtained an accuracy of 97.5% with the 

hybrid genetic algorithm, which is higher than the 89.3% achieved with the fuzzy system. 
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Table VIII. Some recent works reported using hybridization 

Author Application Algorithms Accuracy 

Şahan et al. [215] Breast cancer diagnosis Fuzzy-weighting procedure, artificial 

immune system and k-nearest neighbor 

 

99.1% 

Polat et al. [115] Heart disease diagnosis Decision tree algorithm, fuzzy weighting pre-

processing and artificial immune system 

 

92.5%  

Polat et al. [115] Hepatitis disease diagnosis Decision tree algorithm, fuzzy weighting pre-

processing and artificial immune system 

 

81.8% 

Polat et al. [110] Diabetes disease diagnosis Principal component analysis and adaptive 

neuro-fuzzy inference system (ANFIS) 

 

89.4% 

Hassan et al. [214] Falls risk patients Genetic algorithm and fuzzy set algorithm 97.5% 

Parthiban  et al. 

[216] 

Heart disease diagnosis Coactive neuro-fuzzy inference system 

(CANFIS) 

 

99.9% 

Kumar et al. [111] Diabetes disease diagnosis Genetic algorithm and perceptron multi-layer 

Neural Network 

 

79.1% 

Martins et al. [217] Feature selection in walker-

assisted gait 

Non-dominated sorting genetic algorithm-II 

and support vector machine 

 

----- 

 

Applying different algorithms to solve complex problems with large amounts of data is possible 

in the current processing speed. Deep learning is a field capable of being applied in the analysis of 

plantar pressure since it can extract more characteristics from plantar pressure than a human can 

see. On the other hand, the fuzzy algorithms, given its great capacity to reason similarly to humans, 

are an advantage to problems where uncertainty and vagueness are handled, as it occasionally 

happens in medical diagnostic processes. Hybridization is a strategy that brings great advantages 

to the field of biomedical diagnosis and monitoring, as mentioned. Hybrid systems seek to exploit 

strong individual components for robust solutions that provide improvements in prediction models 

reducing the computational cost. 

Some of the algorithms that are potential candidates for automating pressure distribution analysis 

were summarized. We can conclude that the hybrid systems, which include fuzzy concepts, are the 

most recommended, given their great decision-making capacity similar to humans, by handling 

uncertain and vague data as it happens in medical diagnosis processes. 
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Chapter 3. Plantar Pressure Database Setup  

 This chapter introduces the steps in obtaining human plantar pressure data using a commercial 

plantar pressure acquisition platform. The procedure for acquiring and preprocessing these signals 

is shown, to be used in the classification algorithm and the GUI designed to use the developed 

system. 

3.1 Device to Generate the Database  

After reviewing the devices for the acquisition of plantar pressure, the main conclusion was 

that the instrumented insoles are the most flexible and portable system. Still, to build the database, 

it is easier to use electronic platforms. These devices do not allow portability because of their 

architecture but are available at many diagnostic centers.  

The diagnostic center named PIEDICA located in Mexico City provided us plantar pressure data. 

PIEDICA Diagnostic Center performs several tests that are applied according to the specific needs 

of each patient. For this, they use platforms with a density of four sensors per square centimeter 

(Fig.14), which also has a specialized software (Fig.15) [218]. 

 

Figure 14. Baropodometer freeMed [218] 

The main features of the acquisition system are resistive pressure sensors with conductive rubber. 

In configurations up to 40cm per 300cm, durable, compact, ergonomic, and very versatile, it allows 

a frequency of acquisition of up to 400 Hz in real-time [219]. FreeStep software is a platform for 

the study of baropodometry, posture, biomechanical analysis, and the patient-space relationship. 

This software shows both static and dynamic data Fig. 15 and Fig. 16, respectively, and export 

them to a .scv file for analysis with other methods. 
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Figure 15. FreeStep software. Static data visualization 

 

Figure 16. Dyamic data visualization 

The diagnostic center provided us the plantar pressure of around 1000 patients with different 

alterations as cavus foot, flat foot, hallux valgus, fasciitis, spur, among others. 

3.2 Plantar Pressure Data Extraction 

Considering the data distribution in the Excel template generated by the FreeStep software, 

the process for the extraction of the pressure data is carried out. The exported file by FreeStep 

software not only has the static and dynamic plantar pressure data, but it also has related data with 

the height and weight of the patient, and sex. Regardless of the patient, the data is always 
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distributed in the same way within the Excel template. Fig 17. show the data distribution on the 

template. Data are related to the static plantar pressure of a patient. In this way, it is not comfortable 

to visualize the static data because each square of the template represents a sensing point of 5x5 

mm in the acquisition system. 

 

Figure 17. Static plantar pressure data visualized with Excel software 

For visualizing in the best way the static and dynamic plantar pressure data, the R software in the 

Visual Studio framework is used. Visualize the data is very important in this step because it allows 

confirming that the data were extracted in their entirety. The shapes of the feet were not cut 

arbitrarily (Fig. 18). The space occupied by static plantar pressure data is always the same; only 

the amount of these varies according to the size of each patient's foot. 
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Figure 18. Static plantar pressure data visualized with R software 

In this way, now the data are available to use with whatever analysis software and for applying 

any computational technique for its analysis. Fig 18. shows the static plantar pressure data in levels 

of colors related to the intensity of each sensing point.  

3.3 Graphical User Interface (GUI) 

A GUI was developed to visualize the plantar pressure of each patient and show the 

classification result. The development is carried out in the visual study IDE since it presents many 

advantages of integration with techniques such as databases and the R environment. Fig. 19 shows 

the GUI's main features, among which are useful for the data extraction and analysis using FCM 

and features for future use in medical centers for medical decision making. 
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Figure 19. Main window of the GUI 

Where: 

1. Menu bar 

2. Toolbar 

3. Database panel 

4. Panel of plantar pressure data acquisition 

5. Analysis tool panel 

6. System information 

7.Main window 

8. Database management 

9. Information of the patient 

10. Static analysis of the intelligent algorithm 

11. Dynamic analysis of the intelligent algorithm 

12. Diagnostic report 

The toolbar provides access to all components of the GUI. Button allows creating a new 

file for a patient, cleaning all the fields of the previous file consulted. Button  import a patient 

file, in this version of the software, the file that can be imported is in the form of the file exported 

by the FreeStep software from SensorMedica. All open files can be saved for later use, button   

allows access to the files per patient to re-analyze them or to print a report. With the button  it 
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is possible to access all the saved files. Button   saves a new file. Button  saves changes to a 

previously saved file. Button  extracts all the necessary data from the archive to analyze them 

and classify the type of foot. Button  Analyze the data entered to classify them according to the 

type of foot. Button  export the report for the patient. Button  export the entire databases in 

a .csv file. Button  shows static analysis panel. Button  shows a dynamic analysis panel. 

The panel called Database (Fig. 20) contains the tools to import or access patient files with the 

values of load percentage by area of the foot surface, and additional data such as height, weight, 

age, shoe size, and sex. As shown in Fig. 20(a), on the right, there is a table with the entire system 

database and on the left the selected patient information. The buttons allow updating to the 

database to delete all fields from a previous search, open an existing patient file, export the entire 

database to a .csv file, save a new patient file, and delete a selected file. Fig. 20(b) shows the panel 

with the tool to import a new patient file, the button called File loads the new file, which is shown 

in the table below the button.  

(a)  
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(b)  

Figure 20. Data Base panel. (a) Information per selected patient. (b) Visualization of new file 

imported. 

 

Figure 21. General information of the patient. 
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(a)  

(b)  

Figure 223. Static analysis panel, all the tools to classify the patient's foot type and visualize the 

behavior of the system are included. (a) Main analysis panel. (b) Plantar pressure values per area 

of interest without normalization 

1 2 

3 

4 
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The panel shown in Fig. 21 contains the relevant patient information displayed in the previous 

table, as well as additional patient information and observations that the treating physician deems 

necessary. This panel was added to the GUI, thinking about in the possible utility in a clinical 

environment. Only numerical patient information (Plantar pressure data and total patient weight) 

was necessary for the project. But in a clinical application, contact information, background, 

insurance data, etc., are needed. 

The most important panel of the GUI  presented is shown in Fig. 22. This panel develops the 

analysis of the data entered. The FCM is activated and generates a classification type alteration 

report, as well as the simulation performance. Fig. 22(a) the indicators: (1) indicates the 

configuration of the methodology used for the classification of plantar pressure data. The graph 

shows the graph of the methodology and how the FCM concepts are related. (2) shows the input 

data for the classification methodology, since the values must be in the [0-1] range, the figure 

shows what the system sees to classify, which is the plantar pressure values by areas normalized 

based on the patient's weight. (3) It shows the FCM simulation's stability graph when it makes the 

classification decision. If it shows a stable behavior, it means that the system is safe with the 

decision made. Four lines per foot are showed representing the type of foot that is available to 

classify (Normal, Flat, Cavo type 3 and Cavo type 4). (4) shows plantar pressure values per area 

without normalizing. (5) shows the result of the final classification, giving a percentage of 

probability to each type that can classify. In this way, the system can assist in the diagnosis by the 

doctor. Fig. 22(b) shows the panel with the numerical data of the load percentages in the areas of 

interest of the plantar surface. 

 

Figure 234.  Report for the patient, contains the input data and the classification result given by 

the FCM 
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Fig. 23 shows the final report format for the patient. It includes the graph of the distribution of 

plantar pressure over the entire plantar surface, the data of the percentage of load by area of 

interest, relevant personal information, as well as the rates of prediction of plantar alteration found. 

The file is printed with a .pdf extension and stored in the location that the user wants. 

The dynamic analysis panel is not yet available in this version of the software. It can be considered 

for future work. 

3.4 System Flow Chart 

The system was developed in Visual Studio IDE, integrating SQL to store the database, 

Window Form for graphic environments, and R for support in extraction, processing, and graphing 

of plantar pressure data. The flow chart shown in Fig. 24, details the internal operation of the 

system, the final equations used in the system for plantar pressure data classification are specified 

in chapter 5 of this document. 

 

Figure 24. System Flow char 
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3.5 Plantar Pressure Data Sources 

The database has two sources. The first set of data was obtained through the database of 

PIEDICA center, located in Mexico City. The diagnostic center provided us around 1000 plantar 

pressure data of patients. We observed that only 151 patient data had the appropriate form with 

the analysis of each of the data. This means that only those patients were diagnosed by qualified 

medical personnel. The remaining data in this database did not have a label or were empty. To 

obtain more reliable data through a controlled experiment. We obtain plantar pressure data from 

the voluntary personnel of the CICATA-IPN Unit Qro. and the Universidad Autónoma de 

Querétaro, using an electronic platform provided by the PIEDICA center and a medical test 

protocol (appendix 2.1 y appendix 2.2). 

3.5.1 Data collection and configuration of plantar pressure values in first experiment 

It is used plantar pressure data from the right foot of 151 patients (60% men and 40% women) 

with flat foot (n=70) and cavus foot (n=81). The initial data classification is carried out by 

specialized physicians. The age of the patients is between 7 to 77 years-old; their height is between 

114 to 196 cm; and their weight was between 17 to 95 Kg.  The acquired data was obtained from 

PIEDICA [218], and was used to test the GA-FCM and MLPNN methodology. 

3.5.2 Data collection and configuration of plantar pressure values in second experiment 

It is used plantar pressure data from the feet of 125 subjects with normal (n=31), cavus type 

3 (n=31), cavus type 4 (n=31), and flat foot (n=32) previously diagnosed. The subjects 

participating in the experiment were 44% women and 56% men with the following features, age 

between 20 to 68 years-old, height between 150 to 180 cm, and weight between 46.4 to 103 kg. 

The baropodographic platform was provided by PIEDICA center from Mexico City, which has 

FreeMed® platforms with an XY resolution of 2.5 dpi and an 8-bit Z resolution [218].. 



 

55 

 

 

Chapter 4. Algorithms and Experiments performed to Classify 

Plantar Pressure Alterations 

 This chapter describe the algorithms used for the classification of plantar pressure alterations. 

Also, it shows the results obtained through two experiments; in the first one, the performance of 

fuzzy versus non-fuzzy approaches is compared, using small amounts of training data, (appendices 

1.3 and 1.4 contain the original documents). The second experiment presents the performance of 

a modified type II diffuse cognitive map (MFCM-II) trained with the Bacterial Forage 

Optimization Algorithm (BFOA), (See appendix 1.5). 

4.1 Fuzzy Cognitive Maps (FCM) 

FCM was introduced by Kosko in 1986, and is used for both static and dynamic analysis 

because of its reasoning approach similar to human reasoning and human decision-making [220]. 

Specifically, FCM is an artificial neural network represented by a signed fuzzy graph structure 

with concepts (nodes) and relationships (weighted arcs) [221]. Each concept indicates a key factor 

of the modeled system, the relationship among themselves is carried out through a weight matrix 

that indicates the degree of cause and effect. The concepts values (Ci) fall within the unit range [0, 

1]. The number of connections in the weight matrix (Wij) is quadratic in terms of the number of 

concepts, and the weights assigned to the arcs fall in the range [-1, 1] that indicates the inhibitory 

or amplification effects [222]. The FCM simulation of the system is carried out by: 

𝑉𝑘(𝑖+1) = 𝑓(𝑊(𝑖𝑗) ∗ 𝑉𝑘(𝑖))                                                  (1) 

Where V represents the current state of concepts, W is the weight matrix that connect the concepts 

and f is the threshold function that keeps activation values in an allowed range. There are some 

versions of this function, but the sigmoid function (2) is the most commonly used [220] [223]. The 

parameter λ defines the steepness of the function. 

Sigmoid function f(x) =   
1

1+𝑒−𝜆𝑥                                           (2) 

With this structure and some iteration that depends on the study system, the simulation ends up in 

a fixed-point attractor (which happens when the values of concepts converge to a final stable 

value), in a limited cycle (which happens when a series of n state concepts appears with a certain 

pattern but do not converge in a stable state), or the simulation may have a chaotic behavior [222]. 

When the knowledge to build the weight matrix is not available due to the complexity of the 

system, the main approach is to compute a weight matrix that fits best with the decision-making 

and prediction problems. With learning algorithms, the strength connections (weights) between 

the concepts of FCM can be obtained, as in the case of synapses of neural networks. In most of the 

studies reported to train FCM, the expert provides the set of concept labels C (input/output), and 
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the matrix W is obtained through a series of historical data  [224]–[226]. The most important 

approaches to get the weight matrix are Hebbian-based, population-based, and hybrid learning 

[226], [224]. Hebbian-based methods are unsupervised learning algorithms based on the modified 

Hebbian law and historical data, in which the FCM weights are adjusted in each iteration until they 

reach the desired structure [225]–[228]. Population-based algorithms like genetic and evolutionary 

algorithms, particle swarm optimization, bacterial foraging optimization are optimization 

techniques. These techniques can replace the expert knowledge through historical input data to 

train FCMs but they have high computation demand [227], [225]. Hybrid approaches combine the 

two types of learning mentioned above. The main goal of this technique is to improve the resulting 

outcome based on initial experience and historical data [227], [225].  

In the case presented to learn the weight matrix, a genetic algorithm (GA) is used, which has been 

successfully applied in different learning processes of FCMs [225], [229]. GA is a general-purpose 

algorithm based on genetic evolution to solve problems, originally presented by Holland in 1975 

[230]. In this algorithm, as in real life, the fittest individuals survive and are selected for 

reproduction to produce improved individuals and the weak individuals disappear  [231].  The 

initial weight matrix generated by GA is random, then GA calculates the next weight matrix using 

(3) as the objective function. 

𝐸𝑟𝑟𝑜𝑟 = ∑  𝑎𝑏𝑠(𝐴𝑖(𝑡)𝑛
𝑖=1 − 𝐴𝑗

𝑃(𝑡)) +  𝑎𝑏𝑠(𝑆𝐸(𝑡))                          (3) 

where n is number of output concepts, Ai(𝑡) is output concept values expected, 𝐴𝑗
𝑃(𝑡) is concept 

values proposed by GA-FCM and 𝑆𝐸(𝑡) is the stabilization error of the model to reach a fixed-

point attractor. 

4.2 Fuzzy Cognitive Maps Type-II (FCM-II) 

In the FCM Type-II model, the previous value of each concept is considered. In this way, the 

new value of the concept is calculated through the multiplication of a portion to the state vector 

and the weight matrix and the adding of a portion of the previous concept value [232]. This 

formulation is represented by (4) [232]. 

𝑥𝑖(t) = 𝑓 [𝑘1 ∑ 𝑥𝑗(𝑡 − 1)𝑛
𝑗=1
𝑗≠𝑖

𝑊𝑗𝑖 + 𝑘2𝑥𝑖(𝑡 − 1)]                                       (4) 

Where k1 expresses the influence [0-1] of the new value in the interconnected concepts, k2 is the 

portion [0-1] of the previous concept considered and 𝑥𝑖(𝑡 − 1) is the values of the concept Ci at 

time t-1. Initially, k1 is fixed with a higher value, and k2 is fixed with a lower value, but during the 

training process of the FCM both parameters vary according to the simulated system [232]. 

Inference rules are applied in the amount of iteration required until the detention criteria are 

satisfied [222].  
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4.3 Multi-Layer Perceptron Neural Network (MLPNN) 

MLPNN is a system of interconnected neurons (except between the nodes in the same layer 

neurons), through weights and output signals, which are the sum of the input values to each node 

modified by an activation function nonlinear. This modification is part of the learning process, the 

widely used algorithm is back-propagation (BP) [233]–[235]. This type of NN is characterized by 

an input layer, an output layer and may have one or more hidden layers. 

The method to establish the number of hidden layer nodes is described in the following equation 

[234]: 

𝑁ℎ = 𝐼𝑁𝑇√𝑁𝑖 ∗ 𝑁𝑜                                                           (5) 

Where, Ni refer to the number of input layer nodes, No is the number of output layer nodes, and 

INT function approximate to a next integer. 

The main objective of training the neural network is to reduce an error function. This procedure is 

done by adapting the input and output weights of each neuron. Backpropagation uses the resulting 

error to modify the weights using a method such as the descending gradient to locate the absolute 

error in the workspace [233]. The error function used is the sum of squared error (6) or cross 

entropy (7). 

𝐸𝑠𝑠𝑒 =
1

2
 ∑ ∑ (𝑜𝑙ℎ − 𝑦𝑙ℎ)2𝐻

ℎ=1
𝐿
𝑙=1                                            (6) 

𝐸𝑐𝑒 =
1

2
 ∑ ∑ [𝑦𝑙ℎ log(𝑜𝑙ℎ) + (1 − 𝑦𝑙ℎ) log(1 − 𝑜𝑙ℎ)]𝐻

ℎ=1
𝐿
𝑙=1                    (7) 

Where, l is the index of L observations, h is the index of H output nodes, o is the predicted output 

and y is the real output. 

To find a minimum error the absolute partial derivatives of the error function (6) or (7) are used 

with respect to weight (∂ E/∂ w), when each new weight given by (8) is based on the actual weight 

wk [235].  

        𝑤𝑘
(𝑡+1)

= 𝑤𝑘
(1)

− η
𝜕𝐸(𝑡)

𝑤
𝑘
(𝑡)                                                                   (8) 

where η is the learning rate. 

4.4 Bacterial Foraging Optimization Algorithm (BFOA) 

BFOA was proposed by Kevin Passino (2002) to solve numerical optimization problems. This 

technique is based on mimicking the foraging behavior of E. coli bacteria, and it has shown a 

competitive performance against well-known nature-inspired optimization algorithms [236] [237]. 

The key idea of BFOA is the application of group foraging strategy of a swarm of Escherichia coli 

bacteria in multi-optimal function optimization. Bacteria search for nutrients in a manner to 
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maximize energy obtained per unit time. There are four main phases in BFOA [238] [239]: 

Chemotaxis: This process simulates the movements of an Escherichia coli cell through swimming 

and tumbling via flagella. A bacterium may swim for a period in the same direction, or it may 

tumble and alternate between these two modes of operation for all their life. In computational 

chemotaxis, the movement of the bacterium may be represented by (9). 

𝜃𝑖(j + 1, k, l) =  𝜃𝑖(j, k, l) + c(i) =
∆(i)

√∆𝑇(i)∗∆(i)
                                    (9) 

Where ∆ is a vector in the random direction whose elements lie in [-1,1], j-th is the chemotactic 

step, k-th is the reproduction step, l-th is the elimination-dispersal step, θi(j,k,l) is the i-th bacterium 

at j-th chemotactic and C(i) is the size of the step. 

Swarming: The cell with better environment sends signal to attract others, forming swarm. The 

cell-to-cell signaling in Escherichia coli swarm may be represented by (10). 

𝐽𝑐𝑐(𝜃, 𝑃(𝑗, 𝑘, 𝑙)) = ∑ 𝐽𝑐𝑐 (𝜃, 𝜃𝑖(𝑗, 𝑘, 𝑙))

𝑆

𝑖=1

= 

= ∑ [−𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑒𝑥𝑝(−𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡 ∑ (𝜃𝑚−𝜃𝑚
𝑖 )2𝑃

𝑚=1 )]
𝑆

𝑖=1
+ ∑ [ℎ𝑟𝑒𝑝𝑒𝑙𝑙𝑒𝑥𝑝(−𝑤𝑟𝑒𝑝𝑒𝑙𝑙 ∑ (𝜃𝑚−𝜃𝑚

𝑖 )2𝑃
𝑚=1 )]

𝑆

𝑖=1
            (10) 

Where S is the total number of bacteria, Jcc (θ, P(j,k)) is the objective function to reduce; P is the 

number of variables to optimize; T is the point in the p-dimensional search domain; dattrac, 

wattrac, hrepell, and wrepell are coefficients [1,9]. 

Reproduction: Less healthy bacteria die, while each of the fittest bacteria asexually split into two 

bacteria, which are then placed in the same location, keeping the swarm size constant. 

Elimination and dispersal: some bacteria are randomly liquidated with a very small probability, 

while new replacements are randomly initialized in the search space. 

4.5 First Experiment: GA-FCM against MLPNN 

In the first experiment the operation of GA-FCM and MLPNN is tested. To simplify the 

model, foot surface was divided into 14 areas (toe 1st to 5th (T1–T5), metatarsal joint 1st to 5th 

(M1–M5), lateral midfoot (LM), medial midfoot (MM), lateral heel (LH), medial heel (MH)), as 

Fig. 25. reported by [240]. The percentage of weight supported by each area was calculated and 

then normalized according to the total weight of the patient. In a later step, these areas will 

represent each input concept in the FCM model and MLPNN. 
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Figure 255. Main regions on the foot surface that reduce the number of sensing points of the 

acquisition system. 

4.5.1 GA-FCM method 

The concept vector is built with three parts, the first part contains 14 plantar pressure values 

per area, the second part are 4 intermediate concepts and the last part are 3 output concepts, such 

as it is shown in Fig. 26. The quantity of intermediate concepts (IC) in the second part of the state 

concept vector is fixed on 4 concepts. This value was obtained after testing 3 to 14 concepts, with 

4 being the best value. A three-bit binary combination is proposed for the output concepts in the 

last part of the state vector concept. With this combination of  3 output concept values, it is possible 

to classify 8 different foot alterations.  

FCM simulation calculates the future states of the system through a series of iterations using (1) 

and (2). In each iteration, the FCM generates a new state vector that becomes the current state, 

generating the behavior of the system, which is reflected as one of the three possible states 

mentioned above. The concept vector is formed as shown in Fig. 27, where values of the input 

concepts are given by the values of plantar pressure in each normalized region. Data normalization 

was performed based on the unit, considering the weight of each patient as a reference value. Since 
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the value of intermediate concepts is not known, 0.5 is assumed because it is in the middle of the 

range of values specified by the FCM methodology (0 to 1). The values of the output concepts are 

given by the established binary combination, and its initial value is 0.5. In this way, it is expected 

that for a Flat foot the system will respond as 001 and for a Cavus foot 011 when a fixed-point 

attractor is reached (Fig. 28). 

When FCM simulation converges in a fixed attractor point, the first 14 concepts are the attractor 

points of each input concept, the next 4 concepts represent the attractor point of each intermediate 

concept, and the last 3 values represent the value for a specific alteration. Under these conditions, 

the proposed FCM model is shown in Figure 29. 

 

Figure 26. Division of the complete concept vector for the Fuzzy approach methodology 

 

Figure 27. Encoding schema of the initial concepts for FCM-GA methodology 

 

Figure 28. Example of the behavior of the concepts when a fixed attractor point is reached. 
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Figure 29. Graph of the proposed FCM, where the circles show concepts and the arrows 

represent weighted connections. The first layer indicates input concepts, the second layer 

indicates intermediate concepts and the last layer indicates output concepts. 

The Relationships not considered are: between input concepts, from intermediate concepts to input 

concepts, from output concepts to input concepts, from output concepts to intermediate concepts 

and between output concepts. 

After the above process to arrange the concepts of the state vector, the next step is to solve the 

FCM weight matrix. The genetic algorithm used in our experiments to obtain the weight matrix 

has a chromosomal representation, since each value of the weight matrix is a chromosome in the 

algorithm. It means that in each iteration, GA proposes a new weight matrix that is assessed in the 

FCM simulation. When an FCM simulator reaches a fixed-point attractor or after a certain number 

of iterations, the output concepts and the stabilization of the systems is assessed. If the output 

values in the simulation are the target and the system is stable, the objective function will be zero 

and the system will stop, but if one of these conditions are not fulfilled, the GA will need to 

calculate a new weight matrix.  

The values of the GA configuration parameters are shown in Table IX, values for the probability 

of mutation and population size were obtained through tests in a range of 0.009 to 0.050 and 50 to 

150, respectively. The encoding gene is composed of 127 values of the matrix of weights and 1 

value for the number of iterations.  In this way, the genetic algorithm defines when the system is 

stable for all elements of the training set. The complete algorithm shown in Fig. 30, was 
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implemented in C++ using Visual Studio IDE. 

Table IX. Configuration parameters of GA 

Parameter Factor 

Recombination operator single point 

Mutation Random 

Probability of mutation 0.009 

Population size 120 

Number of genes 127 

Max. number of generations 5000 

Fitness function (7) 

Termination method Maximum iteration 

 

 

Figure 30. Flowchart describing the GA-FCM methodology. 

4.5.2 MLPNN method 

The input layer nodes of the neural network, as for the GA-FCM method, were given by 

the regions of interest of the plantar surface. To calculate the number of nodes in the hidden layer 

is used (5) and the resulting value was 4 nodes. The output layer has only one node, in this way 

the Flat foot label was coded with 0 and the Cavus foot with 1. 
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Table X shows the configuration parameters for MLPNN. Considering to keep the same conditions 

for both methodologies, the parameters were set in the best configuration.  Fig. 31 shows the graph 

of the implemented MLPNN. For the experiment, R software environment was used in the Visual 

Studio IDE, and the library called NeuralNet. 

Table X. Configuration parameters of MLPNN 

Parameter Value 

Maximum steps 100000 

Repetitions 50 

Learning rate 0.5 

Training algorithm Backpropagation 

Error function Sum of square errors 

Activation Function Logistic 

Threshold value 0.01 

 

 

Figure 31. MLPNN chart describing the input layer, a hidden layer, the output layer and biases, 

the circles show nodes and arrows representing weight connections. 
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4.6 Second Experiment: MFCM-II Method 

A modification is carried out to the FCM Type-II in the calculation rule used. Considering a 

part of the value of the past concept, according to the following equation: 

𝑥𝑖(t) = 𝑓[∑ 𝑥𝑗(𝑡 − 1)𝑛
𝑗=1
𝑗≠𝑖

𝑊𝑗𝑖 + 𝑘 (𝑥𝑖(𝑡 − 1))]                                          (11) 

Where k is the portion between 0 to 1of the previous concept that is considered to calculate the 

new concept value, 𝑥𝑖(𝑡 − 1) is the value of the concept Ci at time t-1,  𝑊𝑗𝑖 is the weight matrix, 

𝑥𝑗(𝑡 − 1) is the value of the concept Cj at time t-1 and f is the threshold function (2). To calculate 

the weight matrix that interconnects the concepts and the steepness parameter in the threshold 

function, a BFOA and the historical data from 250 feet from 125 subjects with normal, flat, cavus 

type 3, and cavus type 4 foot, is used. 

The use of each resolution point as a concept in the FCM makes the graph complex. For avoiding 

this condition, the division of the foot surface was used as reported with a small modification 

[240]. In this experiment, the data from the T2 to T5 were combined, because, the device used 

does not provide relevant information in these regions, the value merged is denoted by TM. This 

change generates a less division of the foot surface in just 11 regions (Fig. 32). The data of the 

regions of interest were obtained through the software of the baropodographic device. 

 

Figure 326. Main regions on the foot surface. 

The value of each defined region in the input stage is taken as the percentage load value for each 

region of the foot, which was normalized according to the unit using the weight of each patient, to 

establish each value in the range of 0 to 1. The state vector consists of 11 input concepts, and 1 

output concept, the initial values of the input concepts are the plantar value of each patient.The 

initial value of the output concept is 0.5, (Fig. 33) this value is fixed considering the middle of the 

range than handle the FCM theory. 
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Figure 33. Encoding scheme of concepts 

The algorithm used has a bacterium representation in which each one is formed by 132 values that 

compone the weight matrix, and one value for the steepness parameter (2), the number of iteration 

and the constant k (11). The optimization algorithm in each iteration tries to find the fittest values 

to reduce the error function (3). This means that the algorithm generates new vales for the next 

weight matrix and the parameters for performing the FCM simulation, as shown in Fig. 34.  

 

Figure 34. Flowchart describing the BFOA-MFCM-II method 

In the processing stage, the input concepts are assumed to have an external input with their weight 

as [232]. Allowing the input variables to remain unchanged, but each auxiliary concept 

(representing a region of interest of the plantar surface) may relate to each other to know the 

behavior of the system (Fig. 35).  

 

Figure 35. Graph of the MFCM-II proposed. Circles mean concepts, and arrows represent 

weighted connections. 
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If the error function (3) is satisfied, taking into account the stability of the system and that the 

desired output value is very close to the proposed value (±0.01), the values are considered an 

acceptable solution; otherwise, the algorithm calculates new parameters to be assessed. The set-up 

values for the BFOA are shown in Table XI.  

The output stage was established considering 1 if a specific alteration is true or 0 if it is false, thus 

classifying the type of foot. 

Table XI. Set-up values for the bfoa 

Parameter Value 

Population size 30.0 

Number of splits 15.0 

Step size 0.3 

Number of elimination-dispersal events 20.0 

Number of reproduction steps 10.0 

Number of chemotactic steps 20.0 

Swim length 10.0 

Eliminate probability 0.01 

Depth of the attractant 5.0 

Width of the attractant signal 5.0 

Height of the repellant effect 5.0 

Width of the repellant 10.0 

4.6.1 GA-FCM against MLPNN 

A 4-fold cross validation was performed to obtain a reliable result. The folds were obtained 

using the Caret library of R. In each fold, 90% of the data were chosen for training and 10% for 

testing. The symmetry between the number of flat foot and cavus foot in each fold was not 

considered. 

In the case of GA-FCM methodology, in each run of the algorithm with the corresponding data, 

the classification error was adjusted on average to 16.25% of the training data of the 4 folds. The 

FCM simulation shows a stable response for the classification of alterations that were established. 

The system response is stable after the tenth iteration for a flat foot (001) and a Cavus foot (011). 

As the genetic algorithm calculates the parameter of the number of iterations, the output reached 

a fixed-point attractor, avoiding the limit cycle and chaotic behavior. The parameter λ (2) was 

chosen using a range of 1 to 10 in 0.1 steps, in which 5 was found as the best value. 
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The algorithm found the best solution in a different number of iterations for each execution because 

the data are differents. Table XII shows partial data of the conceptual matrix of the GA-FCM 

methodology for the training and test fold, where concepts C1 to C14 represent the main regions 

of the foot considering and concepts C15 to C21 are the intermediate concepts initialized by 0.5. 

In the table XII, identifiers 1 and 2 are plantar pressure data of patients with a Flat foot and 

identifiers 3 and 4 represent data of patients with a Cavus foot. To train the system, the algorithm 

required two files, one corresponding to the plantar pressure data of the patient and another file 

with the labels corresponding to each alteration. This means that the input data had a corresponding 

output value, which the genetic algorithm had to adjust. Considering the allowed connection 

conditions between concepts, the resulting density of the weight matrix is 22.8%.  

Table XII. Initial state concept matrix in fold 1. C1 to C14 are normalized plantar pressure values 

and C15 to C21 are the established initial value 

Data Initial Concepts 

  ID C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15-C21 

Training 

1 0.040 0.006 0 0 0 0.046 0.127 0.167 0.150 0.046 0 0.171 0.114 0.127 0.5 

2 0.046 0.029 0 0 0 0.144 0.112 0.044 0.052 0 0.255 0.064 0.155 0.094 0.5 

3 0.085 0 0 0 0 0.071 0.080 0.095 0 0 0 0 0.316 0.350 0.5 

4 0.040 0 0 0 0 0.074 0.172 0.137 0.135 0.078 0 0.008 0.195 0.155 0.5 

Testing 

1 0.035 0 0 0 0 0.037 0.046 0.045 0.05 0.021 0.058 0.134 0.338 0.225 0.5 

2 0.071 0.015 0 0 0 0.084 0.088 0.129 0.069 0.028 0.034 0.177 0.163 0.137 0.5 

3 0.113 0.008 0 0 0 0.206 0.132 0.123 0.139 0.042 0.023 0.055 0.110 0.044 0.5 

4 0.043 0 0 0 0 0.103 0.066 0.068 0.066 0.021 0 0.034 0.250 0.345 0.5 

The data sets with which the system was trained produced a matrix of different weights for each 

case. As an example, Table XIII shows the matrix of weights obtained for the first fold. To carry 

out the validation, the data were entered without labels. In this way, the score observed in Table 

XIII was obtained as a result. The identifiers in Table XIII mean the number of each fold used for 

validation. 

Table XII. Weight matrix given by GA in fold 1 

 C1-14 C15 C16 C17 C18 C19 C20 C21 

C1 0 -0.64611 -0.50456 -0.05734 -0.81616 -0.88318 -0.86792 0.291177 

C2 0 0.256935 -0.14188 -0.46574 0.793634 0.18894 -0.62676 0.712455 

C3 0 0.757866 -0.79968 0.695303 0.210181 0.133213 0.561449 0.277566 

C4 0 0.348308 0.813593 -0.61968 0.80694 -0.89721 -0.99408 -0.54198 

C5 0 -0.03879 0.840754 0.714103 -0.47801 0.922544 0.923093 0.291116 

C6 0 -0.84899 -0.54088 0.493332 -0.67858 -0.29557 0.388897 0.522202 

C7 0 -0.61834 0.251259 0.092746 0.147679 -0.54625 0.024323 0.898801 

C8 0 -0.58824 0.260659 -0.9234 0.102573 0.917173 0.506394 -0.48973 

C9 0 0.573412 -0.00955 0.427168 0.052095 0.531236 0.906186 -0.66417 

C10 0 -0.71294 0.034761 -0.31382 0.72808 -0.44029 0.355937 0.627918 

C11 0 0.077975 -0.01083 0.599231 -0.17783 0.531053 0.093478 0.871822 

C12 0 0.892758 0.503769 -0.47264 0.067171 -0.03147 0.329691 -0.54094 

C13 0 -0.90582 -0.0903 -0.9118 0.492477 -0.77532 -0.20469 -0.85656 

C14 0 0 0.961608 -0.20823 -0.32554 0.517319 0.355754 -0.64867 

C15 0 0 0.199316 0.07242 -0.68059 -0.01419 -0.4782 -0.369 
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C16 0 0.977844 0 0.130284 -0.98779 -0.92883 -0.69939 0.676565 

C17 0 0.472518 -0.12442 0 -0.10617 -0.87329 -0.55449 -0.71667 

C18 0 -0.52458 -0.67046 -0.22935 0 -0.72155 0.405927 0.394208 

C19-C21 0 0 0 0 0 0 0 0 

Density of the model is calculated with (12). 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑊𝑛𝑜𝑛−𝑧𝑒𝑟𝑜

𝑁2−𝑁
                                                         (12)  

Where 𝑊𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 is the weight numbers without including the zero-diagonal and N indicate the 

number of concepts.  

In the case of MLPNN, the training classification error was adjusted on average to 18.25%, as 

shown in Table XIII. If the neural network is adjusted too close to the training data, the probability 

of classifying the test data decreases. The classification has a stable response to the established 

alterations. For the validation process, only the file with the plantar pressure data was required. 

Table XIV shows the values obtained from the weights of the neural network, including the two 

biases, with the first set of training data. This matrix was chosen because these values gave the 

best classification result, as the GA-FCM methodology showed.  

Comparing the classification results in Table XIII, close indexes were obtained, where the GA-

FCM methodology classify 91.17%  and MLPNN 87.29% of the test data on average. To obtain a 

more detailed analysis of the classification performance for both methodologies, a confusion 

matrix was made with the results obtained. Table XV shows the average of true positives (TP), 

false positives (FP), false negatives (FN), and true negatives (TN) of both techniques for the 

classification of Cavus and Flatfoot. Equations 13 to 15 show the rates computed from the 

confusion matrices, where: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                    (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝐹𝑃 + 𝑇𝑁)                                    (14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)                (15) 

These rates were chosen to obtain the classification results with greater precision and compare the 

performance of both techniques. 

The results are shown in Table XVI, for the average of the test fold. In this table, sensitivity allows 

the GA-FCM methodology to have a greater capacity to detect plantar alteration in patients who 

have it. 

Through specificity, GA-FCM has more capacity to detect the absence of the specific plantar 

alteration. And finally, observing the accuracy, GA-FCM has the best proximity of the 

measurements, with a value of 0.91 against 0.87 of the MLPNN. 
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Table XIII. Score of each fold for GA-FCM and MLPNN methodologies 

Technique Fold Score 

training 

data 

Score 

testing 

data 

Average 

score 

traning 

Average 

score 

testing 

 

GA-FCM 

1 85% 100.0%  

83.75% 

 

91.17% 
2 85% 91.66% 

3 83% 83.33% 

4 82% 85.71% 

 

MLPNN 

1 78% 100.0%  

81.75% 

 

87.29% 
2 65% 100.0% 

3 92% 77.77% 

4 92% 71.42% 

Table XIV. Weight matrix of MLPNN in fold 1 

Input Layer Hidden 

node 1 

Hidden 

node 2 

Hidden 

node 3 

Hidden  

node 4 

Bias 

Bias 1.01072 2.31514 -1.71659    -0.65134  

C1 2.76455 -20.12813 68.42477   -14.40239 

C2 538.88379 -53.43668 7.97747 -0.96111 

C3 -1.70239 -0.99529 -1.88439 -1.14712 

C4 -1.09829 0.57721 -0.77540 -0.30279 

C5 0.06019 -0.63408 0.57891 0.41863 

C6 2.96899 -3.22786 -103.6708 84.97005 

C7 30.22780 -35.09383 -93.56199 149.93200 

C8 5.47972   82.44947   -26.96725   183.36702 

C9 2.83560   61.32675   -37.96629   -67.05491 

C10 -67.92741 -81.39720    43.74652   -98.45673 

C11 -48.15851 563.2206 -20.86826 -119.2881 
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C12 -23.79057 -19.26990    -5.57095 -319.2177 

C13 53.10472   44.73620     2.65627   -54.69429 

C14 -45.91110 -43.92571    -8.04353    81.97045 

Output  -1.72081 -1.72081 2.19841 2.23394 0.4994 

Table XV. Confusion matrix comparison for GA-FCM and MLPNN methods 

  Predicted Flat foot Predicted Cavus foot 

 GA-FCM 

Real Flat foot 6.7 0.9 

Real Cavus foot 0.4 6.3 

 MLPNN 

Real Flat foot 6.1 1.5 

Real Cavus foot 0.4 6.2 

 Table XVI. Validation results in term of sensivity, specifity and accurancy 

Technique Sensitivity Specificity Accuracy 

GA-FCM 0.94 0.87 0.91 

MLPNN 0.93 0.80 0.87 

4.6.2 MFCM-II models 

Five MFCM-II models were implemented, to obtain one that represents each alteration that 

was being considered. The independent model can differentiate between what is a specific 

alteration and what is not. Graphically, the alteration analysis in this study has the structure shown 

in Fig. 36(a-d). The grayscale images in Fig. 36(e-h) is the view considering the main regions on 

the surface of the foot. It is clear to note the differences between types, but these conditions may 

have small variations in all people. 

The numerical modifications have the form shown in Table XVII (T1-LH), in which the data were 

normalized according to the weight of the subject to obtain each of the data in a range of 1 to 0. In 

the experiment, 5-fold cross-validation was performed to get more consistent results. Each fold 

has 90% of the data for training and the remaining 10% for testing. The type of alteration was 

coded to handle it in a computer program. The normal foot is treated as 1, flat foot as 2, cavus foot 

type 3 as 3, and cavus foot type 4 as 4 (Table XVII). 
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(a)  (b)  (c)  (d)  

 

(e) (f) (g) (h)  

Figure 36. Shape of the foot surface. (a) Normal foot. (b) Flat foot. (c) Cavus foot type 3. (d) 

Cavus foot type 4. (e) Main regions for normal foot. (f) Main regions for flat foot. (g) Main 

regions for cavus foot type 3. (h) Main regions for cavus foot type 4. 

Table XVII. Initial state concept vector 

Alteration Normalized Values 

ID T1 TM M1 M2 M3 M4 M5 MM LM MH LH AC Cout 

C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9 C0.10 C0.11 C1-

11 

C12 

1 0.142 0.049 0.065 0.079 0.109 0.100 0.049 0.023 0.050 0.204 0.120 0.5 0.5 

2 0.153 0.081 0.095 0.097 0.126 0.114 0.072 0.006 0.071 0.079 0.101 0.5 0.5 

3 0.085 0.045 0.054 0.110 0.128 0.095 0.049 0.024 0.100 0.168 0.130 0.5 0.5 

4 0.1422 0.049 0.065 0.079 0.109 0.100 0.049 0.023 0.050 0.204 0.120 0.5 0.5 

The weight matrices required by the proposed model and produced by BFOA have a density of 

24.95%, which means that on all possible connections, 75.05% was not used, to obtain a simpler 

graph. The model representing each alteration has a different weight matrix, so four weight 

matrices were obtained that show the behavior of each system. 

During the MFCM-II simulation, the relationship between concepts produces a behavior between 

interest areas, which change until the MFCM-II simulation reaches a fixed-point attractor. This 

different behavior for each model allows knowing which were the areas of interest that at the time 

of the simulation considered to converge on the expected result, as it is shown in Fig. 37. This 

figure shows the behavior of the system when the alteration is present and when it is not present. 

In the classification results, the MFCM-II simulation reached a fixed-point attractor. Fig 38. shows 

the stabilization behavior of the output concepts for all the alterations considered in this study, 

after 12th iterations, the system achieves the stability that allows obtaining the expected result and 
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observing the behavior between the concepts. 

(a) (b)  (c)  (d)  

 

(e)  (f)  (g)  (h)  

 

Figure 37. Behavior of the concepts when a fixed-point attractor is reached. (a) Flat foot 

detected. (b) Cavus foot type 4 detected. (c) Cavus foot type 3 detected. (d) Normal foot 

detected. (e) Non-Flat foot detected. (f) Non-Cavus foot type 4 detected. (g) Non-Cavus foot 

type 3 detected. (h) Non-normal foot detected. 

(a)  (b)  

(c)  (d)  

Figure 38. Subsequent values of output concepts till convergence for all the models in fold 1. (a) 

Normal foot. (b) Flat foot. (c) Cavus foot type 3. (d) Cavus foot type 4. 
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Parameter λ (2), and the number of state vectors were chosen by the optimization algorithm that 

allows the output to reach a fixed-point attractor efficiently before the 12th iteration for alteration 

(1) and non-alteration (0) avoiding limit cycle and chaotic behavior. The simulation of the FCM 

for normal foot requires more iterations to reach a fixed-point, while the simulations for the 

remaining alterations, reach stability before the 9th iteration. The result is because the relationship 

between the regions is closer and difficult to find. For each model, the algorithm found the best 

solution with different parameters in terms of the weight matrix, parameter λ (2), and constant k 

(11). 

Table XVIII shows the results of the classification of the system in each fold. The identifiers mean 

the number of each fold used for validation. The classification error rate with the training data was 

adjusted around 10% for all the alterations and folds used, as shown in Table XVIII. The 

probability that the system could correctly classify the test data for each model was adjusted by 

89% on average. 

The confusion matrices were made to obtain a more detailed result of the performance in the 

classification task with the proposed method. Table XIX shows the average of TP, FP, FN, and 

TN for the classification of Normal foot, Flat foot, Cavus foot type 3 and Cavus foot type 4. 

Through each confusion matrix, equations 13 to 15 showing the sensitivity, specificity, and 

precision of the models were calculated. Table XX shows the calculated results for the average of 

the test fold for each alteration. 

The BFOA-MFCM-II methodology has a high capacity to detect alterations with a sensitivity value 

around 0.93, but the capacity to detect the absence of a specific plantar alteration is lower with a 

specificity value around of 0.80, as shown in Table XX. The accuracy of the methodology applied 

has a value of 0.84 on average, considering that the methodology is not a black box; it has good 

proximity to the measurements. 

Table XVIII. Score of each fold for classify between alterations 

Type of foot Fold Score testing data Average score testing Average score training 

 

Normal vs non-normal foot 

1 86.6%  

 

83.7% 

 

 

85% 
2 80.6% 

3 84.3% 

4 80.4% 

5 86.6% 

 

Flat vs non-flat foot 

1 91.1%  

 

 

 
2 93.5% 
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3 96.8% 
90.7% 90% 

4 90.2% 

5 82.5% 

Cavus foot type 3 vs non-cavus foot type 3 1 88.8%  

 

84.1% 

 

 

85% 
2 80.6% 

3 81.2% 

4 80.4% 

5 89.4% 

Cavus foot type 4 vs non-cavus foot type 4 1 91.1%  

 

96.5% 

 

 

95% 
2 100% 

3 93.7% 

4 100% 

5 97.7% 

Table XIX. Confusion matrices for each model obtained with the bfoa-mfcm-ii methodology 

 Normal foot 

 Predicted normal foot Predicted non-normal foot 

Real normal foot 10.6 1.6 

Real non-normal foot 6 22.4 

 Flat foot 

 Predicted flat foot Predicted non-flat foot 

Real flat foot 8.6 0.4 

Real non-flat foot 5 26.6 

 Cavus type foot 3  

 Predicted cavus foot type 3 Predicted non-cavus foot type 3 

Real cavus foot type 3 8.6 0.8 
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Real non-cavus foot type 3 7.6 24 

 Cavus foot type 4  

 Predicted cavus foot type 4 Predicted non-cavus foot type 4  

Real cavus foot type 4  9.6 0 

Real non-cavus foot type 4  3 27.2 

Table XX. Validation results in term of sensivity, specifity and accurancy 

Type of Foot Sensitivity Specificity Accuracy 

Normal foot 0.86 0.78 0.81 

Flat foot 0.95 0.84 0.86 

Cavus foot type 3 0.91 0.76 0.74 

Cavus foot type 4 1 0.78 0.92 

4.7 Discussion of results obtained with different methods 

Diagnosing or detecting disorders are essential challenges. Using effective, efficient 

computerized knowledge systems, it is possible to include recommendations for treatment, 

prescribe preventive health tasks, and improve people's quality of life [240][119]. Studies to treat 

or detect different diseases with promising results have been reported [241][242]. On the 

biomedical field, plantar pressure through static and dynamic measurements allows for 

understanding the human foot's mechanical behavior for detecting, monitoring, and treating many 

other diseases reflected in the abnormal distribution of loads. Abnormal foot posture (flat foot or 

cavus foot) has been associated with lower limb injuries, such as patellofemoral joint pain, medial 

tibial stress syndrome, Achilles tendinopathy, patellar tendinopathy, plantar fasciitis, medial 

midfoot arthritis, and posterior tibial tendon dysfunction [243]–[246]. A deeper researcher is 

needed, for a deeper analysis of plantar information correlated with alterations to improve 

therapeutic or surgical strategies for patients and obtain more efficient support systems 

[247][245][248], in [240] the different techniques used to detect diabetic foot, orthopedic 

alterations, plantar hyperkeratosis, among others, are reported.  

Despite, pressure platforms are restricted to be used in laboratories by its structure made of a flat 

and a rigid array of pressure sensing elements embedded in the ground. Platforms can be used for 

dynamic and static studies easily. The appropriate cost-resolution relationship allows carrying out 

different studies as presented. The resolution of the pressure platforms produces large amounts of 

data by the sensing points. In the specific device used provided by Piedica, the tool produces an 

average of 450 detection points per foot, producing a complex graph. For simplifying the model, 
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the first experiment foot surface was divided into 14 areas (toe 1st to 5th, metatarsal joint 1st to 

5th, lateral midfoot, medial midfoot, lateral heel, medial heel). In the second experiment, the foot 

surface was divided into 11 areas (toe 1st, toe 2nd to 5th, metatarsal joint 1st to 5th, lateral midfoot, 

medial midfoot, lateral heel, medial heel) as reported. This division of the foot surface provides 

efficient and precise plantar pressure measurements without losing information because these areas 

support body weight and adjust the balance. This information may be analyzed to identify patterns 

and correlate them with medical diseases. Nevertheless, analyze this data requires efficient 

techniques to deal with the inaccuracy, vagueness, and uncertainty present in medical and 

biological data [249][250]. In addition, these systems should be easy to interpret, where the same 

prediction model may clearly explain the results.  

Traditional classifiers, such as neural networks, have higher prediction rates but are considered 

black-boxes, in which each node has no meaning related to the problem, making it difficult to 

interpret the results [251][249]. Fuzzy Cognitive Maps (FCM) have proven to overcome those 

difficulties because they are a useful tool to design knowledge-based systems that behave like 

human reasoning, giving interpretability to their network. In an FCM, each node represents a 

specific variable that models the problem, resulting in versatile models that help to explain the 

solution [252][253][254]. Different proposals to calculate the rule of Fuzzy Cognitive Maps have 

been reported [232][255], in addition to being used for modeling complex systems, including 

medical decision support systems [252][256][257][258].  

4.7.1 Specific discussion from first experiment 

In the classification task, the performance of the Fuzzy approach was compared against a 

non-Fuzzy approach,  specifically an MLPNN for finding the best methodology for classification 

using small amounts of data. The results obtained show a better performance of the Fuzzy 

approach, improving the classification score by 4%. The GA-FCM methodology can detect 94% 

of patients who have the alteration, and can detect 87% of patients who do not actually have it 

(considering the confusion matrix). 

Reported indexes have between 80% and 94% of accuracy in the classification of alterations and 

have been obtained handling both different complexities in the systems and the different number 

of interest areas [180] [176] [180]. The work that shows the highest classification score was 

developed applying Adaptive Neuro-Fuzzy Inference System (ANFIS), but it has a complex 

architecture (software or hardware), with at least 162 nodes. Otherwise, the GA-FCM 

methodology shows an apparent advantage being one of the highest classification indexes with a 

simple and understandable architecture of 21 nodes and direct data from the most representative 

areas that provide reliable information about the load distribution on the human foot surface. 

FCM achieves better performance compared to MLPNN since fuzzy models handle uncertainty 

better because human behavior is considered and can work with limited amounts of data. On the 

other hand, MLPNN needs training samples that are large and representative enough to avoid 
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possible over-fitting.  In addition, the results are difficult to interpret because each node does not 

have a meaning related to the problem. 

Although the GA-FCM methodology achieved 91% accuracy, the knowledge produced by the 

database used is not enough for decision support in actual clinical practice. Future work should 

focus on building a complete database of plantar pressure and integrating more sources of 

knowledge. In addition, the adaptation of the weight matrix of the FCM can be improved by 

applying other methods such as unsupervised learning based on the Hebbian method, supervised 

with the use of Bacterial Evolutionary Algorithms (BEA) and/or gradient-based methods. 

4.7.2 Specific discussion from second experiment 

In the presented model, each node has a specific meaning that represents the interest areas 

of the foot surface. To evaluate the methodology, two physicians classified a sample of 50 patient 

data from the same database, and their classification result was compared. In this way, physicians 

agree 60% in the classification of the normal foot, 75% in flat foot, 50% in cavus foot type 3, and 

25% in cavus foot type 4. Each physician classified the different types of the foot according to 

their criteria by viewing images with pressure levels as in Fig. 46(a-d). This is not an easy 

classification task since confusion may occur when the plantar pressure levels of a subject resemble 

the two-foot types, it should be taken into account that basic alterations were used, such as a flat 

foot and not combinations, for example flat-valgus foot. 

Authors as  [180], [176] have applied different techniques to use plantar pressure information to 

detect alterations and provide physicians with useful analysis tools. Table XXI shows a 

comparison of previous studies using fuzzy and non-fuzzy approaches for the classification of 

plantar foot alterations. 

 The proposed methodology shows a high classification score when the classification is evident, 

as is the case of differentiating between what is a flat foot and what is not, and between what is a 

cavus foot type 4 and what is not is. In these cases, it was possible to achieve up to 100% success 

in the classification. By including more classes, the ranking score decreases because it becomes 

more difficult to find the pattern because the differences that identify them are more subtle. 

Table XXI. Classification of plantar foot alterations by different approaches 

Technique Reference Classification task Number of 

patients 

Parameters of interest Simplicity 

of the model 

Classificat

ion rate 

ANFIS  

[180] 

Classifies 

between normal, 

flat and cavus foot 

 

50 

Staheli Index (SI), 

Chippaux-Smirak Index 

(CSI), Arch Index (AI) and 

Modified Arch Index 

(MAI). 

81 Fuzzy 

rules 

93.9% 

BP Neural 

Network 

------- 84.0% 
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BP Neural 

Network 

 

 

[176] 

Classifies 

between normal, 

diabetic Type 2 

with and without 

neuropathy 

patients 

 

 

  

84 

Toe 1st (T1), toe 2nd (T2), 

toe 3rd to 5th (T3–T5), 

metatarsal joint 1s (M1), 

metatarsal joint 2nd (M2), 

metatarsal joint 3rd to 5th 

(M3–M5), lateral midfoot 

(LM), medial midfoot 

(MM), lateral heel (LH), 

medial heel (MH). 

 

20 nodes 

 

90.4% 

 

GMM 

 

------- 

 

80.9% 

 

 

GA-FCM 

 

 

Applied 

model 

 

 

Classifies between 

flat and cavus foot 

 

 

Right foot of 

151 patients 

Toe 1st, to toe 5th (T1–T5), 

metatarsal joint 1st to 5th 

(M1–M5), lateral midfoot 

(LM), medial midfoot 

(MM), lateral heel (LH), 

medial heel (MH). 

 

 

21 nodes 

 

 

91.17% 

 

 

MLPNN 

 

 

Applied 

model 

 

 

Classifies between 

flat and cavus foot 

 

 

Right foot of 

151 patients 

Toe 1st, to toe 5th (T1–T5), 

metatarsal joint 1st to 5th 

(M1–M5), lateral midfoot 

(LM), medial midfoot 

(MM), lateral heel (LH), 

medial heel (MH). 

 

 

21 nodes 

 

 

87.29% 

 

 

BFOA-

MFCM-II 

 

Applied 

model 

Classifies 

between normal, 

flat, cavus type 3 

and cavus type 4 

foot 

 

250 feet of 

125 patients 

Toe 1st, toe 2nd to 5th (T2–

T5), metatarsal joint 1st to 

5th (M1–M5), lateral 

midfoot (LM), medial 

midfoot (MM), lateral heel 

(LH), medial heel (MH). 

 

 

23 nodes 

 

 

89% 

 

Classification 

by physicians 

 

Applied 

method 

Classifies 

between normal, 

flat, cavus type 3 

and cavus type 4 

foot 

 

100 feet of 

50 patients 

Toe 1st, toe 2nd to 5th (T2–

T5), metatarsal joint 1st to 

5th (M1–M5), lateral 

midfoot (LM), medial 

midfoot (MM), lateral heel 

(LH), medial heel (MH). 

 

------ 

 

 

52.5% 

The BFOA-MFCM-II methodology, which considers the past of the concept, proved to be more 

efficient in the classification task of plantar pressures. Besides, it was possible to eliminate the 

black boxes of the model, since each concept has a definite meaning. It is possible to see each one's 

behavior to converge to a solution. In this sense, to improve the classification results of plantar 

alterations with very sensitive patterns, more concepts should be considered. One option is to 

divide the surface of the foot into more areas, and another option is to consider postural Inputs 

such as in ankles: dorsal/plantar flexion, inversion/eversion, internal/external rotation; in knees: 

flexion/extension, valgus/varus, internal/external rotation; in hips: flexion/extension, 

adduction/abduction and in foot internal/external rotation. These variables also make the 

classification of plantar alterations more precise and efficient, since not only the plantar pressure 

variables but also the postural variables of the patients would be considered. 
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Chapter 5. Conclusion and final remarks 

5.1 Conclusion 

In the review of the literature carried out in this research, it was evident the work that different 

authors in different universities around the world are doing to obtain models and systems that can 

be applied to the detection of plantar foot alterations using data from electronic devices of 

acquisition. In addition to algorithms to analyze plantar pressure data, the development of 

electronic devices has been a relevant issue, as shown in the review. The most used tools to acquire 

pressure information on the surface of the foot are electronic insoles and baropodometers, the first 

being the most flexible for use, but the second most used in research by the adequate resolution-

costs relationship. 

Dividing the surface of the foot by regions and considering the load percentages in each one, 

makes the analysis of the information more efficient, as reported. This strategy provides efficient 

and accurate plantar pressure measurements without losing information because these areas 

support body weight and adjust balance. On the other hand, the graph obtained is simple to interpret 

and use with the methodologies. 

Methodology FCM with GA proved to be better than MLPNN in the classification with small 

amounts of patient plantar pressure data. Although the system is not over-fitted, the learning 

method must be improved to reduce convergence time. The final model is easy to understand, with 

21 total nodes divided as follows: 14 nodes representing each region of interest of the plantar 

surface; 4 intermediate nodes proposed as a hidden layer and 3 output nodes for the binary 

combination established by the classification between flat and cavus foot. 

MFCM-II with BFOA proves to be a useful methodology, because through a simple structure, 

easy to understand and by using an effective decision-making mechanism similar to that of 

humans. It is possible to classify the plantar pressure data and know the interaction between 

regions, which the system considered to achieve the result. On the other hand, the response of the 

system is stable and achieved with few iterations, where this number of iterations varies when it is 

more difficult to find the pattern that represents. It has a low computational cost with 11 input 

nodes representing each interest region of the plantar surface, depending on the percentage of the 

load. Plus 11 auxiliary nodes proposed to improve the performance of the graph and observe the 

relationship between the concepts of input, and an output node, removing black boxes. 

The support system for the detection of alterations in the human footprint using plantar The 

support system for the detection of alterations in the human footprint using plantar pressures, 

proved to be a useful tool, as shown in Chapter 7, due to the complexity and decision-making 

based on the criteria of each specialist, low ranking rates may be obtained. With the system, it was 
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possible to get high rates in the classification task. It can be improved using the knowledge of 

many physicians in the training process to achieve results with the least possible bias. During the 

development of the investigation, it was evidenced that for obtaining a more generalized model, 

more population with similar morphological characteristics of other countries must be included to 

get results that may be applicable and scalable in other places. The GUI has the necessary 

functionalities to work stably in real environments. Through different methods, the GUI can 

receive plantar pressure data from new patients, analyze them with the MFCM-II methodology, 

and print a classification result with graphic information related to plantar pressures entered.  

5.2 Final remarks 

Currently, the development of plantar pressure acquisition systems is an activity that works in 

both academic and commercial settings. The academic developments have the disadvantage that 

they are built specifically for a particular application; on the other hand, commercial developments 

have a high economic cost. I recommend designing and building the own plantar pressure 

acquisition system (electronic platform or template system). The thesis presented has all the 

necessary information regarding the requirement to build it and would bring many benefits for 

future research in this area. 

The methodology showed good results to classify planting alternations pressure, but to 

improve outcomes in future work should consider two fundamental aspects. First, increasing the 

sample size of the study subjects, including populations from other countries with similar 

morphological characteristics. And second, to use a larger group of specialists. With these 

considerations, it will be possible to get a more general model of plantar foot alterations with the 

least bias. 

I recommend to analyze the relationship between body posture and foot changes. The 

classification of plantar alterations is more precise and efficient, when considering postural 

variables such as: inversion/eversion and internal/external rotation, in the ankles; 

flexion/extension, valgus/varus, internal/external rotation, in knees; flexion/extension and 

adduction/abduction, in hips; and internal/external rotation of the foot. Since plantar foot 

alterations are reflected in the surface of the foot (through pressure leves) and in the posture of the 

human body. 
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Appendices 

Appendix 1 shows the products derived from the thesis, all of them have been published except 

for appendix 1.5, which is under review. Appendix 2 shows the documents used to carry out the 

experiments considering medical protocols. 

Appendix 1. Products 

1.1. J. A. Ramirez-Bautista, J. A. Huerta-Ruelas, S. L. Chaparro-Cardenas, and A. Hernandez-

Zavala, “A Review in Detection and Monitoring Gait Disorders Using In-Shoe Plantar 

Measurement Systems,” IEEE Rev. Biomed. Eng., vol. 10, no. c, pp. 299–309, 2017. 

 

1.2. J. A. R. Bautista, S. L. C. Cárdenas, A. H. Zavala, and J. A. Huerta-Ruelas, “Review on plantar 

data analysis for disease diagnosis,” Biocybern. Biomed. Eng., vol. 8, 2018. 

 

1.3. J. A. Ramirez-Bautista, A. Hernández-Zavala, J. A. Huerta-Ruelas, M. F. Hatwágner, S. L. 

haparro-Cárdenas and L. T. Kóczy, “Detection of Human Footprint Alterations by Fuzzy 

Cognitive Maps Trained with Genetic Algorithm,” IEEE procc. MICAI 2018. 

 

1.4. J. A. Ramirez-Bautista, A. Hernández-Zavala, J. A. Huerta-Ruelas, M. F. Hatwágner, S. L. 

Chaparro-Cárdenas and L. T. Kóczy, “Classification of Plantar Foot Alterations by Fuzzy 

Cognitive Maps against Multi-Layer Perceptron Neural Network” Biocybern. Biomed. Eng., 

vol. 40, 2020. 

 

1.5. Julian Andres Ramirez-Bautista, Student Member, IEEE, Antonio Hernández-Zavala, Ruth 

Magdalena Gallegos-Torres, Silvia L. Chaparro-Cárdenas, Student Member, IEEE, Martha 

Lucía Zequera, Yosabad Tovar-Barrera, Juan Manuel Pradilla-Gómez and Jorge A. Huerta-

Ruelas, “Modified Fuzzy Cognitive Map Type-II and Bacterial Foraging Optimization 

Algorithm for Classify Plantar Foot Alterations,”. under review. 

 

Appendix 2. Protocols and Informed Consent 

2.1. Protocol used for plantar pressure acquisition, “Protocolo para Obtención de Datos de Presión 

Plantar”. 

2.2. Information document and Informed Consent. 
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