“OPTIMIZACIÓN DE LA ADQUISICIÓN DE DATOS EN LA TÉCNICA DEL HILO CALIENTE VOLADOR”

PROYECTO DE INVESTIGACIÓN

QUE PARA OBTENER EL GRADO DE:

INGENIERO EN AERONÁUTICA CON ESPECIALIDAD EN DISEÑO Y CONSTRUCCIÓN DE AERONAVES

PRESENTA:

LUIS FELIPE BLAS MARTÍNEZ

DIRECTORES:

M. en C. JORGE SANDOVAL LEZAMA DR. TIBURCIO FERNÁNDEZ ROQUE

DICIEMBRE DE 2010
INSTITUTO POLITÉCNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA
UNIDAD TICOMÁN

QUE PARA OBTENER EL TÍTULO DE: INGENIERO EN AERONÁUTICA
POR LA OPCIÓN DE TITULACIÓN: PROYECTO DE INVESTIGACIÓN
DEBERÁ PRESENTAR: EL C. PASANTE:
BLAS MARTÍNEZ LUIS FELIPE

"OPTIMIZACIÓN DE LA ADQUISICIÓN DE DATOS EN LA TÉCNICA DEL HILO CALIENTE VOLADOR"

LISTA DE FIGURAS
LISTA DE TABLAS
SÍMBOLOGÍA
RESUMEN
ABSTRACT
INTRODUCCIÓN
ANTECEDENTES
PLANTEAMIENTO DEL PROBLEMA
PROPUESTA DE SOLUCIÓN
JUSTIFICACIÓN
OBJETIVO
ALCANCE

CAPÍTULO I
ANEMOMETRÍA DE TEMPERATURA CONSTANTE

CAPÍTULO II
LA TÉCNICA DEL HILO CALIENTE VOLADOR

CAPÍTULO III
INTERFASE PARA SINCRONIZAR EL ANEMÓMETRO Y EL SERVO-MOTOR LINEAL
CONCLUSIONES Y RECOMENDACIONES
REFERENCIAS

México, DF., a 07 de diciembre de 2010.

ASSEORES

DR. TIBURCIO FERNÁNDEZ ROQUE
M. EN C. JORGE SANDOVAL LEZAMA

ING. MIGUEL ÁLVAREZ MONTALVO
DIRECTOR
DEDICATORIA

A MIS PADRES,
FELIPE BLAS CRUZ Y
VIRGINIA MARTÍNEZ CASTRO,
Y A MIS HERMANOS.
AGRADECIMIENTOS

Agradezco la gran ayuda y comprensión del M. en C. Jorge Lezama Sandoval por su apoyo para la realización de este proyecto, así como también al Dr. Tiburcio Fernández Roque, quién es director del mismo, registrado en la SIP (Secretaría de Posgrado e Investigación) con número de registro 20090930 y 20101358.

Agradecemos también a la ESIME UPT por el apoyo brindado en el laboratorio de eléctrica-electrónica para la realización de las pruebas respectivas.
<table>
<thead>
<tr>
<th>ÍNDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE FIGURAS ... 6</td>
</tr>
<tr>
<td>LISTA DE TABLAS ... 7</td>
</tr>
<tr>
<td>SIMBOLOGÍA ... 8</td>
</tr>
<tr>
<td>RESUMEN ... 9</td>
</tr>
<tr>
<td>ABSTRACT ... 10</td>
</tr>
<tr>
<td>INTRODUCCIÓN ... 11</td>
</tr>
<tr>
<td>ANTECEDENTES ... 12</td>
</tr>
<tr>
<td>PLANTEAMIENTO DEL PROBLEMA ... 12</td>
</tr>
<tr>
<td>PROPUESTA DE SOLUCIÓN ... 14</td>
</tr>
<tr>
<td>JUSTIFICACIÓN ... 14</td>
</tr>
<tr>
<td>OBJETIVO ... 15</td>
</tr>
<tr>
<td>ALCANCE ... 15</td>
</tr>
<tr>
<td>CAPÍTULO I. ANEMOMETRÍA DE TEMPERATURA CONSTANTE ... 16</td>
</tr>
<tr>
<td>1.1 Principio básico ... 17</td>
</tr>
<tr>
<td>1.2 Componentes ... 29</td>
</tr>
<tr>
<td>1.2.1 Sensores ... 31</td>
</tr>
<tr>
<td>1.2.2 Anemómetro CTA ... 36</td>
</tr>
<tr>
<td>1.2.3 Acondicionador de señales ... 37</td>
</tr>
<tr>
<td>1.2.4 Tarjeta A/D ... 37</td>
</tr>
<tr>
<td>1.2.5 Computadora ... 38</td>
</tr>
<tr>
<td>1.2.6 Software de aplicación para el CTA ... 39</td>
</tr>
<tr>
<td>1.2.7 Sistema transversal ... 40</td>
</tr>
<tr>
<td>1.3 Calibración del sistema ... 40</td>
</tr>
<tr>
<td>1.4 Adquisición de datos ... 41</td>
</tr>
<tr>
<td>1.5 Análisis de datos ... 43</td>
</tr>
</tbody>
</table>
CAPÍTULO II. LA TÉCNICA DEL HILO CALIENTE VOLADOR ... 49
2.1 Necesidad de la técnica del hilo caliente volador ... 50
2.2 Principio básico .. 50
2.3 Componentes .. 52
2.3.1 Servo-motor lineal ... 53
2.3.2 Servo-amplificador y controlador ... 54
2.3.4 Tablero de control ... 55
2.3.5 Soporte del sensor de hilo caliente ... 56
2.3.6 Integración del los componentes (Mesa soporte) .. 57
2.4 Operación del sistema .. 59

CAPÍTULO III. INTERFASE PARA SINCRONIZAR EL ANEMÓMETRO Y EL SERVO-
MOTOR LINEAL .. 59
3.1 Necesidad de la sincronización ... 60
3.2 Tarjeta electrónica de interfase ... 60
3.3 Componentes de la tarjeta .. 63
3.4 Software para la medición y adquisición de datos .. 67
3.5 Pruebas de validación ... 68

CONCLUSIONES Y RECOMENDACIONES .. 76
REFERENCIAS .. 77
<table>
<thead>
<tr>
<th>No.</th>
<th>DESCRIPCIÓN</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Patrones de velocidad del sensor en movimiento</td>
<td>13</td>
</tr>
<tr>
<td>1.2</td>
<td>Sujeción del vástago y de los cables del sensor</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Velocidad relativa del fluido obtenida con el sensor en movimiento</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Características del elemento sensor de hilo caliente</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Características estáticas-transferencia de calor estacionario</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Características dinámicas-límite de frecuencia</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Diseño de la sonda</td>
<td>22</td>
</tr>
<tr>
<td>1.8</td>
<td>Resolución espacial del hilo caliente</td>
<td>23</td>
</tr>
<tr>
<td>1.9</td>
<td>Sensibilidad direccional (cabeceo y guñada)</td>
<td>25</td>
</tr>
<tr>
<td>1.10</td>
<td>Respuesta general en flujos tri-dimensionales</td>
<td>25</td>
</tr>
<tr>
<td>1.11</td>
<td>Diagrama del principio del anemómetro de CTA</td>
<td>27</td>
</tr>
<tr>
<td>1.12</td>
<td>Respuesta mejorada del alambre</td>
<td>27</td>
</tr>
<tr>
<td>1.13</td>
<td>Respuesta típica de frecuencia del CTA</td>
<td>28</td>
</tr>
<tr>
<td>1.14</td>
<td>Respuesta típica de velocidad</td>
<td>28</td>
</tr>
<tr>
<td>1.15</td>
<td>Diagramas típico de los componentes del CTA (Anemómetro de Temperatura Constante)</td>
<td>29</td>
</tr>
<tr>
<td>1.16</td>
<td>Tipos de sensores</td>
<td>31</td>
</tr>
<tr>
<td>1.17</td>
<td>Software de aplicación para el CTA</td>
<td>33</td>
</tr>
<tr>
<td>1.18</td>
<td>Espectro de potencia del flujo detrás de un cilindro circular</td>
<td>39</td>
</tr>
<tr>
<td>1.19</td>
<td>Razón de muestreo</td>
<td>42</td>
</tr>
<tr>
<td>1.20</td>
<td>Análisis del espectro de energía del fluido</td>
<td>43</td>
</tr>
<tr>
<td>1.21</td>
<td>Serie velocidad-tiempo</td>
<td>44</td>
</tr>
<tr>
<td>1.22</td>
<td>Asimetría</td>
<td>45</td>
</tr>
<tr>
<td>1.23</td>
<td>No linealidad</td>
<td>45</td>
</tr>
<tr>
<td>1.24</td>
<td>Función del coeficiente de auto-correlación</td>
<td>47</td>
</tr>
<tr>
<td>1.25</td>
<td>Espectro de potencia detrás de un cilindro circular</td>
<td>48</td>
</tr>
<tr>
<td>2.1</td>
<td>Principio de medición con un sensor de hilo caliente volador</td>
<td>51</td>
</tr>
<tr>
<td>2.2</td>
<td>Componentes del servo-motor lineal</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>Dimensiones del servo-motor lineal</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>Servo-amplificador y controlador del servo-motor lineal</td>
<td>55</td>
</tr>
<tr>
<td>2.5</td>
<td>Tablero de control del servo-motor lineal</td>
<td>56</td>
</tr>
<tr>
<td>2.6</td>
<td>Soporte de los cables del sensor de hilo caliente, diseño inicial</td>
<td>57</td>
</tr>
<tr>
<td>2.7</td>
<td>Modificación del soporte de los cables del sensor de hilo caliente</td>
<td>57</td>
</tr>
<tr>
<td>2.8</td>
<td>Diseño inicial de la mesa del servo-motor lineal</td>
<td>58</td>
</tr>
<tr>
<td>2.9</td>
<td>Vista general del equipo experimental</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagrama a bloques que representa a un operador humano.</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Protoboard con circuito electrónico de prueba.</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Prototipos de los circuitos de interfase basados en fototransistores y relevadores del estado sólido (SSR’s).</td>
<td>64</td>
</tr>
</tbody>
</table>
3.4 Representación del principio de medición del orden de los microsegundos basado en un microcontrolador. 65
3.5 Diagrama que representa al sistema de sincronización y la medición de datos. 66
3.6 Diagrama del lado de soldadura del circuito impreso diseñado para el circuito de medición y adquisición de datos del orden de los microsegundos. 68
3.7 Circuito generador de pulsos mediante un circuito integrado 555 70
3.8 Señal de entrada al microcontrolador 70
3.9 Circuito medidor de retrasos mediante el microcontrolador 71
3.10 Circuito integrado 555 generando pulsos al microcontrolador 71
3.11 Fuente de pulsos 71
3.12 Implementación de la compuerta NOT al circuito 73
3.13 Integración del equipo de medición 73
3.14 Amplitud corregida a 5V 74
3.15 Medición correcta de retrasos 75

LISTA DE TABLAS

<table>
<thead>
<tr>
<th>No.</th>
<th>DESCRIPCIÓN</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Guía rápida para la selección de la sonda</td>
<td>34</td>
</tr>
<tr>
<td>1.2</td>
<td>Cálculo del número de muestras</td>
<td>42</td>
</tr>
</tbody>
</table>
SIMBOLOGÍA

I: Intensidad de corriente del alambre
E: Voitaje
R_w: Resistencia del alambre
Re: Número de Reynolds
Pr: Número de Prandtl
U: Velocidad media
W: Potencia generada por el efecto Joule
Q: Calor transferido a los alrededores
Q_i: Energía térmica almacenada en el alambre
C_w: Capacidad calorífica del alambre
T_w: Temperatura del alambre
d: Diámetro del alambre
K_f: Conductividad de calor del fluido
Nu: Coeficiente de transferencia de calor unidimensional
μ: Viscosidad dinámica del aire
α_0: Coeficiente de resistencia de temperatura
t: Constante de tiempo
f_c: Frequencia límite
I_c: Resolución del hilo – caliente
$U(a)^2$: Sensibilidad de cabeceo
$U(\theta)^2$: Sensibilidad de guñada
U_{eff}^2: Respuesta general de flujos en tres dimensiones
$U(0)$: Velocidad real del fluido
U_{eff}: Velocidad efectiva de enfriamiento (calculada de la calibración de la velocidad)
a: Ángulo de guñada
θ: Ángulo de cabeceo
k: Factor de guñada
h: Factor de cabeceo
(x, y, z): Sistema coordenado a la sonda
a: relación de sobrecalentamiento
S: Ganancia del amplificador
f_{max}: Frecuencia máxima
u: nivel de incertidumbre
SR: Ritmo de muestreo
N: Número de muestras
U_{rms}: Desviación estándar de la velocidad
σ: Varianza
(x_p, y_p): Posición del sensor
RESUMEN

La implementación y el uso de la técnica del hilo caliente volador a nivel internacional es poco común por lo que aun existen pocos trabajos de investigación utilizando dicha técnica. A pesar de que la técnica del hilo caliente volador implementada en el Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP) de la SEPI IPN de la ESIME Zacatenco México en el año 2007 es útil para medir el flujo inverso generado en el núcleo de un flujo en torbellino, el sistema desarrollado presentó ciertas dificultades para realizar mediciones de manera eficiente. Entre los problemas detectados se encuentran los siguientes:

a. La vibración del sensor en su movimiento longitudinal

b. El sistema no permite detectar el momento en que la carrera del sensor se inicia, principalmente cuando existe un flujo en torbellino.

El sistema de anemometría de hilo caliente a temperatura constante (CTA, Constant Temperature Anemometry) utilizado es el denominado Streamline fabricado por la Empresa Dantec, el cual utiliza para el procesamiento de señales obtenidas el software denominado Stream Ware. El sensor unidimensional empleado es el 55P11 y el bidimensional 55P61. Asimismo el dispositivo seleccionado para mover el sensor de hilo caliente es un equipo fabricado por la empresa Yaskawa denominado Sigma Trac Linear Servo System, el cual consiste de un servo-motor lineal que está compuesto de una bobina móvil formada por un núcleo de hierro laminado y de una guía magnética fija.

Se presentan resultados en el desarrollo de un sistema electrónico que servirá de interfase para la sincronización entre el inicio de la adquisición de datos del flujo y el movimiento del servomotor lineal. (Proyecto de Investigación de la SIP-IPN 20090930).

Palabras clave: Anemometría, Hilo Caliente Volador, Interfase, Flujo en Torbellino.
ABSTRACT

The implementation and use of flying-hot wire technique at international level is rare as there are still little research using this technique. Although the flying-hot wire technique developed in the Laboratory of Thermal Engineering and Applied Hydraulics (LABINTHAP) of the IPN SEPI Zacatenco ESIME Mexico in 2007 is useful for measuring reverse flow generated in the core of a swirling flow, the system developed presented some difficulties for measurements more efficiently. Among the problems identified are the following:

a. The vibration of the sensor in its longitudinal movement
b. The system can not detect when the flying sensor starts, specially when there is a turbulent flow.

The system of hot wire Anemometry at Constant Temperature (CTA) used is called Streamline manufactured by Dantec Company, which use to process the signals obtained the Stream Ware Software. The unidimensional sensor used is 55P11 and bidimensional 55P61. Also the selected device to move the hot wire sensor is a device manufactured by Yaskawa Sigma Trac Linear Servo System, which consists of a linear servo motor with a coil formed by a laminated iron core and fixed mangetid guide.

Results are presented in the development of an electronic system that will interface the synchronization between the beginning of flow data acquisition and motion of linear actuator (Research Project number 20090930 SIP-IPN, “Optimization of data acquisition using the flying hot-wire technique).

Key words: Flying hot wire, anemometry, interfase, swirling flow.
INTRODUCCIÓN

La utilización de un flujo en torbellino tiene diversas motivaciones tecnológicas. Se emplea en las turbinas de gas, en hornos, quemadores y ciclones (separadores de fases). Se ha reportado que el flujo en torbellino puede ser usado para reducir la intensidad del ruido del chorro que emerge del escape del motor de un avión. El flujo en torbellino se utiliza principalmente en tuberías para mejorar la transferencia de calor por convección entre el fluido y las paredes del tubo o para incrementar el mezclado en las cámaras de combustión. Algunos estudios han demostrado que la introducción de un torbellino en el banco de tubos del cabezal de una máquina productora de papel, mejora el mezclado y por tanto incrementa la dispersión y la isotropía en la orientación de la fibra en el producto final. Los flujos en torbellino también son empleados para probar la eficiencia de modelos de turbulencia y códigos de dinámica de fluidos computacional (CFD) ya que reproducir las características de dicho flujo representa un gran reto. La principal desventaja del flujo en torbellino en tuberías, por ejemplo en intercambiadores de calor y dispositivos similares, es la caída de presión que acompaña al incremento en transferencia de calor. Por lo tanto, su empleo exige un análisis en términos del consumo de energía y del beneficio obtenido.

Bajo ciertas condiciones, el flujo en torbellino genera un flujo axial inverso, el cual es difícil de detectar y de medir con una instrumentación convencional como lo es el tubo Pitot-estático y la anemometría de hilo caliente cuándo el sensor permanece fijo. Una de las técnicas adecuadas para tal fin es la denominada técnica del hilo caliente volador, la cual requiere que el sensor de hilo caliente utilizado para adquirir los datos del flujo esté en movimiento. Está técnica fue instrumentada en el Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP) de la Sección de Estudios de Posgrado e Investigación de la ESIME Unidad Zacatenco, utilizando el Anemómetro de hilo caliente, propiedad de dicho laboratorio en combinación de un dispositivo para mover los sensores del sistema de anemometría, el cual fue integrado en los laboratorios y talleres de la ESIME Unidad Ticoman. Se considera que la instrumentación de la técnica del hilo caliente volador realizada en las unidades Zacatenco y Ticoman de la ESIME es única a nivel nacional por lo que se considera importante mejorar el funcionamiento de la misma y difundir las acciones realizadas para su desarrollo.
ANTECEDENTES

El tema aquí propuesto es una continuación al trabajo realizado por el Dr. Tiburcio Fernández Roque en el desarrollo y montaje de la técnica del hilo caliente volador en el LABINTHAP de la ESIME Zacatenco como parte de su tesis de doctorado realizada entre los años 2007 y 2008. Durante la utilización de dicha técnica se presentaron algunos problemas al realizar las mediciones, las cuales son explicadas a continuación.

PLANTEAMIENTO DEL PROBLEMA

A pesar de que la técnica del hilo caliente volador implementada en el Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP) de la SEPI de la ESIME Zacateno en el año 2007 por el Dr. Tiburcio Fenández Roque es útil para medir el flujo inverso generado en el núcleo de un flujo en torbellino, el sistema desarrollado presentó ciertas dificultades para realizar mediciones de manera más eficiente. Entre los problemas detectados se encuentran los siguientes:

1. La vibración del sensor en la carrera hacia delante durante la cual se realiza la adquisición de datos, como se muestra en la figura 1.1, debido a que la longitud que sirve de apoyo al vástago que sujeta al sensor, en el propio soporte del vástago, es pequeña, como se puede observar en la figura 1.2.

Figura 1.1. Patrones de velocidad del sensor en movimiento mostrando la fluctuación de la velocidad (vibración) en la carrera de avance.
2. Existe una gran fricción entre el tubo por donde pasan los cables del sensor con el soporte del mismo, originando vibración y tensión en las uniones de los cables al momento de frenar la carrera del motor. Esto propició que los conectores del sensor se desoldaran.

3. El sistema no permite detectar el momento en que la carrera del sensor se inicia, principalmente cuando existe el flujo en torbellino, ya que este es bastante turbulento, como se puede observar en la figura 1.3. El criterio utilizado para determinar el momento en que el sensor inicia su viaje fue el de encontrar un patrón ascendente de velocidad. Este es el principal problema que concierne a este proyecto y al cual nos enfocaremos mayormente.
Figura 1.3 Velocidad relativa del fluido, obtenida con el sensor en movimiento.

Con el fin de aclarar la finalidad del proyecto, en el desarrollo del mismo se describe el principio de operación de la técnica del hilo caliente volador y el equipamiento que se requiere.

PROPUESTA DE SOLUCIÓN

Se propone para la interfaz del servo-motor lineal y el anemómetro de hilo caliente una tarjeta de sincronización, mediante componentes electrónicos (relevadores del estado sólido SSR, fototransistores y microcontroladores) para de esta forma reducir al mínimo los retrasos de ésta, y como éstos son mínimos también serán medidos por un microcontrolador para de esta forma tener una certeza exacta de su cuantificación.

JUSTIFICACIÓN

Aunque el método del hilo caliente volador es una técnica recomendada por diversos autores para la medición del flujo inverso, no se ha encontrado ninguna referencia que haya reportado su uso en la medición del flujo inverso generado por un flujo en torbellino que se conduce a través de un tubo. Al parecer esta técnica
representa un campo de investigación casi virgen sobre todo en su aplicación al flujo tema del proyecto de investigación del cual surge está tesis. Sin embargo, dado que el flujo inverso inducido por un flujo en torbellino que se mueve en el interior de un tubo de sección transversal circular, es un área de investigación que presenta aún muchas dudas e inconsistencias desde el punto de vista experimental y que aun se requiere mayor información cuantitativa para establecer resultados y conclusiones definitivas al respecto, es de suma importancia obtener resultados confiables con la instrumentación desarrollada. Para esto es imprescindible optimizar la adquisición de datos mediante la sincronización entre el inicio del movimiento del sensor y el inicio de la adquisición de datos. De aquí surge la justificación y la importancia del presente trabajo.

OBJETIVO

Diseñar y construir una tarjeta electrónica que servirá de interfase para la sincronización entre el inicio de la adquisición de datos del flujo y el movimiento del servomotor lineal.

ALCANCE

Se muestra el principio de operación de la técnica de hilo caliente volador, los componentes que lo integran: el sistema anemometría de hilo caliente y el servomotor lineal y la problemática que presentó el diseño inicial el cual fue realizado en el año 2007 y que fue detectada durante su empleo en el segundo semestre del mismo año al realizar mediciones de la velocidad axial de un flujo en torbellino. Se muestran las modificaciones realizadas al soporte del sensor con el fin de disminuir la vibración del mismo en la carrera de medición y para evitar la fricción en el tubo soporte de los cables del sensor. También se muestra la tarjeta electrónica diseñada y construida con el fin de determinar de manera precisa el inicio del movimiento del servomotor lineal, lo cual se requiere para determinar la velocidad del flujo de aire.
Capítulo I:
Anemometría de Temperatura Constante
1.1 PRINCIPIO BÁSICO DEL ANEMÓMETRO DE TEMPERATURA CONSTANTE (CTA)

El anemómetro de hilo caliente fue introducido en su forma original en la primera mitad del siglo XX. Un mayor adelanto fue dado en los años 50’s del mismo siglo, cuando estuvo comercialmente disponible, siendo el tipo más utilizado el de temperatura constante (CTA por sus siglas en inglés). Desde entonces ha sido una herramienta fundamental para determinar velocidades instantáneas las cuales se requieren para realizar estudios de turbulencia. La medición de la velocidad instantánea de flujos está basada en la transferencia de calor entre el elemento sensor, por ejemplo un alambre delgado o una película de metal calentada eléctricamente, y el medio fluido circundante, como se muestra en la figura 1.4. El ritmo de la pérdida de calor depende del exceso de temperatura del elemento sensor, sus propiedades físicas y configuración geométrica, y las propiedades del fluido que se mueve. Un anemómetro de hilo-caliente provee información fiable de las componentes de las fluctuaciones de velocidad del flujo en el dominio de tiempo y espacio.

Ecuación gobernante:

Considerando un alambre delgado calentado y montado al soporte y expuesto a una velocidad U:

\[W = Q + \frac{dQ_i}{dt} \]

\(W = \text{potencia generada por el efecto Joule.} \)
\(W = I^2 R_w, \) recordando que \(R_w = R_w(T_w) \)
\(Q = \text{calor transferido a los alrededores.} \)
\(Q_i = C_w T_w = \text{energía térmica almacenada en el alambre.} \)
\(C_w = \text{Capacidad calorífica del alambre.} \)
\(T_w = \text{Temperatura del alambre.} \)
CARACTERÍSTICAS DEL ELEMENTO SENSOR DE HILO CALIENTE

Características estáticas – transferencia de calor estacionaria.

La relación entre la velocidad del flujo y la pérdida de calor de un alambre cilíndrico está basada en la suposición de que el fluido es incompresible y que el flujo alrededor del alambre es potencial (no viscoso). Cuando una corriente eléctrica (I) pasa a través de un alambre con una resistencia eléctrica R_w, se genera calor, Q, a una razón dada por la ecuación $Q=I^2R_w$. Durante el equilibrio, el calor generado es balanceado por el calor perdido (principalmente por convección) que es entregado a los alrededores. Si la velocidad del flujo cambia, el coeficiente de transferencia de calor por convección también cambia produciendo un cambio en la temperatura del alambre que eventualmente alcanzará un nuevo equilibrio con el medio circundante. En particular el anemómetro a temperatura constante requiere que la temperatura del alambre se mantenga constante, para tal fin se dispone de algún mecanismo para hacer pasar mayor o menor corriente eléctrica con el fin de mantener constante la temperatura del sensor. Luego entonces, la variación de la corriente eléctrica o del voltaje utilizado para generar dicha variación es una indicación de la variación de la velocidad.

Para poder determinar la velocidad o la variación de velocidad del flujo se requiere de una curva de calibración. La curva de calibración estática obtenida experimentalmente se representa típicamente en una gráfica en donde se representa el voltaje suministrado al hilo-caliente contra la velocidad del flujo. Esta curva de
La calibración se puede describir mediante una ley exponencial dada en términos de los parámetros adimensionales del número de Reynolds, Re, número de Nusselt, Nu, y el número de Prandtl, Pr. Empíricamente este tipo de dependencia es válida para $0.01 < Re < 10^4$. En realidad la pérdida de calor es influenciada por otros factores tales como: convección natural, cuando la velocidad del flujo es muy baja, efectos de compresibilidad, cuando la velocidad del flujo es alta, o por efectos de densidad, cuando el flujo presenta bajas presiones.

La relación existente entre los números adimensionales antes indicado se muestra a continuación:

Si el calor almacenado en el alambre es cero:

$$W = Q = I^2 R = h A (T_w - T_0) \quad (2)$$

Reemplazando h con Nu:

$$I^2 R_w = \frac{A}{d} Nu k_f (T_w - T_0) \quad (3)$$

En las ecuaciones 2 y 3 se tiene que:

$h =$ coeficiente de película de transferencia de calor
$A =$ Área de transferencia de calor
$d =$ diámetro del alambre
$k_f =$ conductividad de calor del fluido
$Nu =$ coeficiente de transferencia de calor unidimensional

En el régimen de convección forzada ($0.02 < Re < 140$)

El número de Reynolds: $Re = \frac{\rho U d}{\mu}$; en donde $\rho =$ densidad del aire, $U =$ Velocidad y $\mu =$ viscosidad dinámica del aire.

El número de Nusselt está dado por:

$$Nu = A_1 + B_1 \cdot Re^n = A_2 + B_2 U^n \quad (4)$$

La relación entre el voltaje aplicado y la velocidad del flujo está dado por la Ley de King:

$$I^2 R_w = (R_w - R_0) (A + BU^n) \quad (5)$$

Esta relación se muestra gráficamente en la figura 1.5.
Características dinámicas- límite de frecuencia

La respuesta del hilo-caliente puede ser derivada de la ecuación de balance de calor no estacionario. Cuando el alambre se expone a los cambios de velocidad del flujo, este no reacciona instantáneamente debido a su inercia térmica. Esto amortiguará las variaciones en la resistencia eléctrica del alambre \(R_w \) (y el voltaje del alambre) y proporcionará mediciones más pequeñas de las fluctuaciones del flujo de lo que realmente son. La respuesta del alambre solo es demasiado lenta para la mayoría de los estudios de turbulencia y, por tanto, es necesaria una compensación en la electrónica del anemómetro. Mediante el uso del principio del anemómetro de temperatura constante y empleando un amplificador de retroalimentación para mantener la resistencia del sensor constante independientemente de las variaciones de la velocidad del flujo, \(U \), el límite de frecuencia puede incrementarse hasta 1000 veces o más.

Agregando el término del calor almacenado a la ecuación de transferencia de calor estacionario, se obtiene:

\[
R^2 R_w = (R_w - R_0)(A + BU^n) + C_w \frac{dT_w}{dt}
\] \(\text{(6)} \)
O expresando T_w en términos de R_w y el coeficiente resistencia eléctrica por temperatura α_0:

$$I^2 R_w = (R_w - R_0)(A + BU^n) + \frac{C_w}{\alpha_0 R_0} \frac{dR_w}{dt}$$

Este ecuación diferencial tiene la constante de tiempo τ:

$$\tau = \frac{C_w}{\alpha_0 R_0(A_1 + B_1 U^n - I^2)}$$

Frecuencia límite (3 dB)

$$f_{cp} = \frac{1}{2\pi\tau}$$

Figura 1.6 Características dinámicas-límite de frecuencia
DISEÑO MECANICO DE SENsores DE HILO CALIENTE

Un sensor de hilo caliente para medir fluctuaciones de flujo a altas frecuencias consiste de un alambre muy delgado montado en algún tipo de soporte. El material del hilo caliente se escoge de manera que pueda cumplir un número de requerimientos tales como: alto coeficiente de resistencia eléctrica por temperatura, alta resistencia eléctrica específica, alta resistencia mecánica y capacidad de operar a altas temperaturas. El Tungsteno es muy superior a otros metales en estas funciones y es por tanto usado para dichos fines. Puede ser utilizado como material del sensor a temperaturas por encima de los 300°C y a velocidades en el rango supersónico. Muchos hilos calientes tienen un diámetro de 5 micras y longitud de aproximadamente 1mm. El alambre es soldado a una forma de aguja normalmente hecha de acero inoxidable, como se puede observar en la figura 1.4. Las puntas son incrustadas en el cuerpo de la sonda que consiste de un tubo de cerámica, la cual se conecta eléctricamente al anemómetro vía un soporte de la sonda y un cable. Algunos sensores se fabrican recubriendo con oro los extremos del hilo con el fin de minimizar los efectos de los soportes del hilo (puntas), como se observa en la figura 1.7.

![Diseño de la sonda](image)

Figura 1.7 Diseño de la sonda

RESOLUCIÓN ESPACIAL DE HILO-CALIENTE

El volumen con respecto al cual el hilo caliente proporciona la salida promedio depende del tamaño del alambre, su frecuencia límite y la velocidad del flujo. La longitud de resolución en la dirección del flujo será directamente proporcional a la velocidad media e inversamente proporcional a la frecuencia límite superior del hilo.
La técnica del hilo caliente volador

caliente inclusive del circuito del anemómetro. La frecuencia límite superior de
l~ el anemómetro debería ser escogida de tal manera que la longitud de la resolución en
dirección de la velocidad media del flujo sea del mismo orden de magnitud que la
longitud del alambre. Por ejemplo, a 50 m/s un anemómetro con una frecuencia límite
de 25 KHz, un sensor de hilo caliente típico tendrá una resolución espacial de 1 mm en
dirección del flujo. La resolución del hilo caliente l_x, en dirección a lo largo del flujo se
determina con la siguiente ecuación:

$$l_x = \frac{U_{\text{mean}}}{2f_{cp}}$$ \hspace{1cm} (10)

En donde

U_{mean}= Velocidad media

f_{cp}= frecuencia límite

Se ha comprobado que para obtener alta resolución espacial a altas velocidades se
requiere un alto ancho de banda, como se ilustra en la figura 1.8.

![Figura 1.8 Resolución espacial del hilo caliente](image)
SENSIBILIDAD DIRECCIONAL DE HILOS-CALIENTES

La relación de transferencia de calor para un hilo caliente, la cual forma las bases para su calibración estática, se determina considerando que el vector de velocidad tiene una dirección normal al alambre. De hecho la transferencia de calor depende fuertemente del ángulo entre el vector de velocidad y el alambre. En el caso de un sensor ideal, donde no hay conducción de calor a las puntas, la transferencia de calor varía con el coseno del ángulo entre la velocidad y la normal del alambre. En realidad el calor es conducido a las puntas y un factor de sensibilidad direccional k (factor de guiñada), el cual describe la interferencia de las puntas, tiene que ser introducido. En un flujo de 3 dimensiones, donde la velocidad se mueve fuera del plano formado por el hilo caliente y su soporte, la transferencia de calor se incrementará debido al incremento en el enfriamiento de las puntas. Esto puede ser descrito por el factor de cabeceo h.

La calibración individual direccional de los hilos calientes, además de la calibración de velocidades, hace posible medir ambas, la magnitud de la velocidad y la dirección en flujos de dos o tres dimensiones usando sondas de 2 o 3 hilos acomodados en arreglos ortogonales.

Para obtener la respuesta finita de un hilo caliente se debe incluir los factores debido a la sensibilidad del sensor tanto en cabeceo como en guiñada, mediante las ecuaciones (11 y 12), efectos que se ilustran en la figura 1.9:

\[U(\alpha)^2 = U(0)^2(\cos^2\alpha + k^2 \sin^2\alpha) \quad \theta = 0 \] \hspace{1cm} (11)

\[U(\theta)^2 = U(0)^2(\cos^2\theta + k^2 \sin^2\theta) \quad \alpha = 0 \] \hspace{1cm} (12)

La respuesta general en flujos en tercera dimensión se determina con la siguiente ecuación:

\[U_{eff}^2 = U_x^2 + k^2 U_y^2 + h^2 U_z^2 \] \hspace{1cm} (13)

En las ecuaciones anteriores se tiene que:

U(0): Velocidad real en el flujo
\[U_{eff}: \text{Velocidad efectiva de enfriamiento (calculada de la calibración de velocidad)} \]
\[\alpha: \text{Ángulo de guiñada (ángulo entre la velocidad y la normal del alambre)} \]
\[\theta: \text{Ángulo de cabeceo (ángulo entre la velocidad y el plano de las puntas del alambre)} \]
\[k: \text{factor de guiñada} \]
\[h: \text{factor de cabeceo} \]
\[(x,y,z): \text{sistema coordenado orientado a la sonda}. \]
En la figura 1.10 se muestra el comportamiento de la velocidad de enfriamiento del hilo caliente en función de la dirección con la que llega el flujo al sensor tanto en cabeceo como en guiñada.
1.2.2 EL ANEMÓMETRO DE TEMPERATURA CONSTANTE

El anemómetro de temperatura constante está diseñado con el propósito de eliminar la influencia de la inercia térmica del alambre en las fluctuaciones del flujo, así que la frecuencia límite del instrumento está principalmente determinada por la circuitería electrónica. Esto es conseguido por el suministro de la energía eléctrica al hilo caliente exactamente al mismo ritmo como el calor es entregado al fluido circundante y al mismo tiempo. Dado que la temperatura del hilo caliente se conserva constante independientemente de la velocidad del flujo, la importancia de la capacitancia del calor del hilo caliente se disminuye en gran medida.

La operación del anemómetro de temperatura constante puede describirse como sigue:

El hilo-caliente se coloca en un brazo opuesto a la resistencia variable de un puente de Wheatstone, la cual define la resistencia eléctrica de operación, y por lo tanto la temperatura de operación del hilo-caliente. En el caso de que el puente esté balanceado, no existirá diferencia de voltaje a través de su diagonal. Cuando la velocidad del flujo se incrementa, la resistencia eléctrica del hilo caliente tenderá a disminuir y una diferencia de voltaje estará presente a la entrada del amplificador que regula la corriente. Esto causará que la corriente del sensor se incremente. El hilo caliente se calentará e incrementará su resistencia eléctrica hasta que el balance se restablezca. Debido a la alta ganancia del amplificador que regula la corriente, existe una condición de balance en el puente, el cual es prácticamente independiente de la velocidad del flujo que baña al hilo caliente. Por tanto, la constante de tiempo del hilo caliente se reduce por un factor de cientos de veces, es decir, de fracciones de milisegundo a pocos microsegundos. La corriente del sensor está representada por la caída de voltaje a través del puente. Como todas las resistencias en el puente son constantes, el cuadrado del voltaje de salida E^2 representa directamente la pérdida de calor del alambre y puede sustituir a Q en la ecuación de transferencia de calor del hilo caliente. El principio de operación antes descrito se muestra en la figura 1.11. El circuito lo complementan otros componentes que no se muestra en la figura, tales como, el control de forma de la ganancia, un filtro, un amplificador de potencia y un compensador para el cable.
El servo amplificador tiene por finalidad mejorar la respuesta del hilo caliente al incrementar la frecuencia límite del mismo. El incremento se calcula con la ecuación (14) y el comportamiento en función de la constante de tiempo del hilo caliente se muestra en la figura 1.12.

\[f_{c, CTA} = 2aSR_w f_{c, wire} \]

(14)

- \(\tau_w \): Constante de tiempo del alambre
- \(a \): relación de sobrecalentamiento
- \(R_w \): Resistencia del alambre
- \(S \): ganancia del amplificador

Figura 1.11 Diagrama del principio del anemómetro de CTA

Figura 1.12 Respuesta mejorada del alambre
La respuesta típica de frecuencia (amplitud relativa de amortiguamiento y ángulo de retraso de la fase) del anemómetro de temperatura constante con una sonda de alambre de 5 micras se muestra en la figura 1.13, mientras que una respuesta típica entre el voltaje de salida E del anemómetro de temperatura constante (CTA) y la velocidad U se muestra en la figura 1.14, la cual representa la calibración del sensor de hilo caliente. De esta curva de calibración se deriva la función de transferencia $U = f(E)$ del sensor la cual se indica en la ecuación (15).

Figura 1.13 Respuesta típica de frecuencia del CTA

Respuesta típica de velocidad

Figura 1.14 Respuesta típica de velocidad del CTA
29

\[U = \left(\frac{E^2}{B} - \frac{A(T_w - T_0)}{B} \right)^{\frac{1}{n}} \] \hspace{1cm} (15)

o,

\[U = C_0 + C_1 E + C_2 E^2 + C_3 E^3 + C_4 E^4 \] \hspace{1cm} (16)

en donde B, C0, C1, C2, C3 y C4 son constantes obtenidas a partir del ajuste realizado a los datos obtenidos de voltaje, E, y de velocidad, U.

1.2 COMPONENTES

CADENA DE MEDICIONES

El equipo completo constituye una cadena de mediciones. Consiste típicamente de un sensor, el cual incluye un soporte y el cableado correspondiente, un anemómetro a temperatura constante, un acondicionador de señales, un convertidor ANALÓGICO-DIGITAL y una computadora. Con frecuencia se incluye un software específico con el fin de facilitar la adquisición y el análisis de los datos obtenidos con el anemómetro a temperatura constante. También se puede incluir un sistema electromecánico para mover al sensor de hilo caliente cuando el sistema de anemometría se emplea para determinar el perfil de velocidades del flujo que se investiga. Finalmente, con la finalidad de ahorrar costos y tiempo al prescindir de un túnel de viento para obtener la curva de calibración del sensor, se puede incluir dentro de la cadena de medición un calibrador para el sensor. Lo antes descrito se muestra de manera gráfica en la figura 1.15.
Figura 1.15 Diagramas de la cadena de mediciones de un sistema de anemometría a temperatura constante.

El equipo de mediciones constituye una cadena de mediciones. Consiste típicamente de una sonda, con un soporte de sonda y cableado, un anemómetro temperatura constante, un acondicionador de señales, un convertidor Analógico-Digital y una computadora. Con frecuencia un software de aplicación dedicado para el anemómetro de temperatura constante, la adquisición de datos y el análisis de datos son parte del anemómetro de temperatura constante.

SELECCIÓN DE LA SONDA

Las sondas son principalmente seleccionadas en base a:

- Medio del fluido
- Número de componentes de velocidad a ser medidos (1, 2 o 3)
- Rango de velocidad esperado
- Cantidad a ser medida (velocidad, esfuerzo de corte de la pared, etc.)
- Resolución espacial requerida
- Intensidad de la turbulencia y frecuencia de fluctuación en el flujo
- Variaciones de temperatura
- Riesgo de contaminación
- Espacio disponible alrededor del punto de medición (flujo libre, capa límite de los flujos, flujos confinados)
1.2.1 TIPOS DE SENSORES

Las sondas de los anemómetros están disponibles con cuatro tipos de sensores: alambres miniatura, alambres chapeados de oro, películas de fibra o sensores de película. Los alambres son normalmente de 5 micras de diámetro y 1.2 mm de longitud sujetos entre dos puntas en forma de aguja, tal y como se muestra en la figura 1.7. Los alambres chapeados de oro tienen la misma longitud activa pero son de cobre y chapeados en oro en las puntas para un total de 3 mm de longitud con el fin de minimizar la interferencia de las puntas. Los sensores de fibra emplean fibras de cuarzo, normalmente de 70 micras de diámetro y 1.2 mm de longitud activa, cubiertas por una película delgada de níquel, las cuales otra vez son protegidas por una cubierta de cuarzo. Los sensores de fibra consisten de películas delgadas de níquel depositadas sobre la punta de cuerpos aerodinámicos en forma de cuñas o conos. En la figura 1.16 también se muestran los tipos de sondas mencionados.

Figura 1.16.- Tipos de sensores
SELECCIÓN DEL TIPO DE SENSOR

Enseguida se proporcionan algunos criterios para la selección de la sonda adecuada al tipo de flujo que se va a analizar.

SENSORES DE ALAMBRE:

Alambres miniatura: Son la primera elección para aplicaciones en flujos de aire con intensidades de turbulencia hasta de 5-10%. Estos tienen la más alta frecuencia de respuesta. Pueden ser reparados y son los tipos de sensores más utilizados ya que son de fácil adquisición.

Alambres chapeados de oro: Son adecuados para aplicaciones en flujos de aire con intensidades de turbulencia hasta de 20-25%. La frecuencia de respuesta es inferior a los alambres miniatura. Pueden ser reparados.

SENSORES DE PELÍCULA DE FIBRA:

Cuarzo de cubierta delgada: Son adecuados para aplicaciones en flujo de aire. La frecuencia de respuesta es inferior a los alambres. Estos son más resistentes que los sensores de alambre y pueden ser usados en aire menos limpio. Pueden ser reparados.

Cuarzo de cubierta gruesa: Son adecuadas para aplicaciones en agua. Son más resistentes que los sensores de fibra. Normalmente no pueden ser reparados.

SENSORES DE PELÍCULA:

Cuarzo de cubierta delgada: Son adecuados para aplicaciones en aire con frecuencias de fluctuación de bajas a moderadas. Son los tipos de sondas más resistentes dentro de la anemometría a temperatura constante y pueden ser usados en aire menos limpio que los sensores de fibra. Normalmente no pueden ser reparados.

Cuarzo de cubierta gruesa: Son adecuadas para aplicaciones en agua. Son más resistentes que los sensores de fibra. Normalmente no pueden ser reparados.

Algunas sondas de alambre y de película de fibra con cubierta delgada de cuarzo pueden ser usadas en líquidos no conductores.
ARREGLOS DE SENsoRES

Las sondas están disponibles en versiones para medir una, dos o tres componentes de la velocidad, y se les denomina de acuerdo al número de sensores que tienen como sonda simple, dual o triple, como puede verse en la figura 1.17. Ya que los sensores (alambre o películas de fibra) responden a la magnitud y a la dirección del vector de velocidad, la información de ambas puede ser obtenida solo cuando dos o más sensores son colocados a diferentes ángulos con respecto a la dirección del flujo.

Figura 1.17.- Tipos de arreglos de sensores

Las sondas de fibra con dos y con triple división se consideran diseños especiales cuando dos o tres sensores de película delgada son colocadas en paralelo sobre la superficie del cilindro de cuarzo. Pueden complementar a las sondas en X en flujos de dos dimensiones, cuando el vector de flujo excede un ángulo de ±45°. El inconveniente de estas sondas es que no son compatibles con el software comercialmente disponible para los anemómetros a temperatura constante.

SELECCIÓN DEL ARREGLO DE SENsoRES:

Sondas normales de un solo sensor: Son adecuadas para flujos de una dimensión y unidireccionales. Están disponibles con dos diferentes geometrías de puntas, las cuales permiten que la sonda sea montada correctamente con el sensor perpendicular al flujo y las puntas paralelas al mismo flujo.

Sondas de un solo sensor inclinadas (45° entre el sensor y el eje de la sonda): Son adecuadas para flujos estacionarios de tres dimensiones donde el vector de velocidad permanece dentro de un cono de 90°. La resolución espacial es de 0.8x0.8x0.8 mm (sonda estándar). Deben ser girados durante la medición.

Sondas de sensor doble:

Sondas en X: Son adecuadas para flujos de dos dimensiones, cuando el vector de la velocidad permanece dentro de ±45° con respecto al eje de la sonda.
Sondas de fibra con división: Son adecuadas para flujos de dos dimensiones, donde el vector de la velocidad permanece dentro de un cono de ±90° con respecto al eje de la sonda. La resolución espacial de modo cruzado es de 0.2 mm, la cual los hace mejor que las sondas en X en mediciones dentro de las capas cortantes de los flujos.

Sondas de triple sensor:

Sondas tri-axiales: Son adecuadas para flujos de dos dimensiones, cuando el vector de velocidad permanece dentro de un cono de ángulo ±70° abierto alrededor del eje de la sonda y a una intensidad de la turbulencia correspondiente de 15%. La resolución espacial está definida por una esfera de 1.3 mm de diámetro.

Sondas de película de triple división: Son adecuadas para flujos de dos dimensiones completamente inversos, por lo cual permite realizar mediciones en flujos que tienen una dirección de ±180° con el sensor.

En la tabla 1.1 se muestra una guía rápida para seleccionar la sonda de acuerdo al tipo de flujo y al medio fluido.

Tabla 1.1 GUÍA RAPIDA PARA SELECCIONAR LA SONDA

<table>
<thead>
<tr>
<th>FLUJOS LIBRES Y LIMITADOS DE ESPACIO</th>
<th>TIPO DE FLUJO</th>
<th>MEDIO</th>
<th>SONDAS RECOMENDADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-DIMENSIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIDIRECCIONAL</td>
<td></td>
<td>GAS</td>
<td>Alambre de un solo sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fibra de un solo sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Películas en forma de cuña, cubierta delgada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Película cónica, cubierta delgada</td>
</tr>
<tr>
<td>LÍQUIDO</td>
<td></td>
<td></td>
<td>Fibra de un solo sensor, cubierta gruesa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Película en forma de cuña, cubierta gruesa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Película cónica, cubierta gruesa</td>
</tr>
<tr>
<td>BIDIRECCIONAL</td>
<td></td>
<td>GAS</td>
<td>Fibras divididas, cubierta delgada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LÍQUIDO</td>
<td>Fibras divididas, cubierta gruesa</td>
</tr>
</tbody>
</table>
2-DIMENSIONES

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Medio</th>
<th>Sensaciones recomendadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN CUADRANTE</td>
<td>GAS</td>
<td>Arreglos en X de alambres Arreglos X de fibras, cubierta delgada Película en forma de cuña en v, cubierta delgada</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDO</td>
<td>Arreglos de fibras en X, película gruesa Película en forma de cuña en v, cubierta gruesa</td>
</tr>
<tr>
<td>MEDIO PLANO</td>
<td>GAS</td>
<td>Fibras divididas, cubierta delgada</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDO</td>
<td>Fibras divididas, cubierta gruesa</td>
</tr>
<tr>
<td>PLANO COMPLETO</td>
<td>GAS</td>
<td>Fibras con triple división, cubierta delgada Alambre en arreglo X, hilo caliente volador</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDO</td>
<td>Fibras con triple división, especial.</td>
</tr>
</tbody>
</table>

3-DIMENSIONES

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Medio</th>
<th>Sensaciones recomendadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN OCTANTE (70° CONO)</td>
<td>GAS</td>
<td>Alambre tri-axial Fibra tri-axial</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDO</td>
<td>Fibra tri-axial, especial</td>
</tr>
<tr>
<td>90° CONO</td>
<td>GAS</td>
<td>Alambre inclinado, sonda rotada</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDO</td>
<td>Fibra inclinada, cubierta gruesa</td>
</tr>
<tr>
<td>ESPACIO COMPLETO</td>
<td>GAS</td>
<td>Película omnidireccional</td>
</tr>
</tbody>
</table>

FLUJOS SOBRE PAREDES (ESFUERZO DE CORTE)

<table>
<thead>
<tr>
<th>Tipo de Flujo</th>
<th>MEDIO</th>
<th>SENSORES RECOMENDADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-DIMENSIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIDIRECCIONAL</td>
<td>GAS</td>
<td>Película alineada al flujo, cubierta delgada Película pegada, cubierta delgada</td>
</tr>
<tr>
<td></td>
<td>LÍQUIDO</td>
<td>Película alineada al flujo, cubierta gruesa. Película pegada, especial</td>
</tr>
</tbody>
</table>
1.2.2 ANEMÓMETRO CTA

SELECCIÓN DEL ANEMÓMETRO

Generalmente el anemómetro a temperatura constante que se emplea en un experimento es el que está disponible ya que es poco frecuente que la selección y la compra de un anemómetro sea parte de un estudio experimental. En ambos casos, sin embargo, es importante asegurarse que el anemómetro a ser usado tenga el ancho de banda requerido y un ruido y desviación suficientemente baja para proveer resultados estables y confiables. En aplicaciones en agua es también importante verificar que el puente del anemómetro a temperatura constante pueda entregar suficiente potencia para operar la sonda a la velocidad del flujo esperada.

Selección del anemómetro de CTA y puente:

Para definir y establecer las características del anemómetro y del puente se distinguen dos tipos de aplicaciones:

1.- Anemómetro a temperatura constante para investigación (Modelo Streamline de la marca Dantec): El ancho de banda es típicamente de 100-200 KHz, siendo el máximo de 400 KHz. El ruido contribuye típicamente con 0.005% cuando la turbulencia es de 0.1% y el ancho de banda de 10 KHz. Las variaciones típicas son de 0.5 microVolts por °C en la entrada del amplificador

Características del puente: La relación debe ser de 1:20 para puentes de propósito general para aplicaciones en aire a anchos de banda menores a aproximadamente 250KHz. También es de 1:20 para puentes de propósito general con alta potencia para aplicaciones en agua. Se utiliza una relación 1:1 en puentes simétricos para anchos de banda de hasta 400 KHz, o para sondas con cables largos de hasta 100 m (para estas condiciones generalmente se reducen los anchos de banda máximos a típicamente 50KHz).

Ajuste: El ajuste y la operación del puente del anemómetro es automática mediante el software de aplicación.

2.- Anemómetros a temperatura constante específicos, como el mini CTA de Dantec. El ancho de banda es típicamente de 10KHz, el ruido en la señal de salida es típicamente de 1-2 mV y las variaciones típicas son de 1 microVolt por °C en la salida del amplificador.
Características del puente: La relación común es de 1:20 para puentes de propósito general para aplicaciones en aire a un ancho de banda aproximado de hasta 10 KHz.

Ajuste: El ajuste y la operación del puente del CTA es manual.

Los tipos de anemómetros utilizados en investigación normalmente son sistemas multicanal hasta 6 o más canales de CTA. Tienen incluidos acondicionadores para la amplificación y filtración de la señal del CTA antes de la conversión analógico/digital (A/D). Los anemómetros específicos son instrumentos de un solo canal por lo que solamente soportan un sensor. Normalmente solo tienen un filtro pasa-bajas para la señal de salida. Pueden ser combinados para mediciones multipuntos.

1.2.3 ACONDICIONADOR DE SEÑALES

La mayoría de los anemómetros de CTA tienen instalados acondicionadores de señales para filtros pasa-altas y pasa bajas y para amplificación de la señal del CTA.

SELECCIÓN DEL ACONDICIONADOR DE SEÑALES

Compensación: Debería idealmente cubrir el rango de la tarjeta A/D. En la práctica, sin embargo, basta cubrir el rango esperado de la señal de salida del CTA. Por ejemplo; 0-5 V.

Ganancia: Mejora la resolución de la tarjeta A/D. Una ganancia de 16 da una tarjeta A/D de 12 bits nos da la misma resolución que una de 16 bits.

Filtro pasa-altas: Elimina la parte de la señal de DC (Corriente Directa). Es solo necesario, cuando las fluctuaciones de baja frecuencia tienen que ser eliminadas de la señal antes del análisis espectral.

Filtros pasa-bajas: Elimina el ruido electrónico de la señal y previene el doblamiento del espectro. El filtro debería tener una pendiente de 90° en su frecuencia de corte. Los anemómetros investigados normalmente tienen una respuesta en la frecuencia de corte de -60dB/década, mientras los anemómetros más simples deben tener -20 dB/década.

1.2.4 TARJETA A/D (CONVERTIDOR ANALÓGICO-DIGITAL)

La señal del CTA es adquirido vía una tarjeta con un convertidor analógico-digital y guardado como una serie de datos en una computadora.
SELECCIÓN DE LA TARJETA A/D:

Número de canales: Debería ser como mínimo igual el número de canales del CTA, además de los canales adicionales (p.e. temperatura) necesitada en el experimento.

Alcance de entrada: Debería cubrir como mínimo el alcance de voltaje del CTA. Un alcance de 0-10 Volts está bien para la mayoría de los anemómetros y aplicaciones.

Resolución de entrada: Debería ser suficiente para proveer la resolución requerida en datos convertidos. Una tarjeta de 12 bits típicamente da una resolución de velocidad de 0.1 a 0.2%.

Rango de muestreo SR: Debería ser como mínimo dos veces la frecuencia máxima en el flujo: \(SR = 2f_{\text{max}} \). SR es reducida por el número de canales, \(n \), en uso: \(SR(n) = \frac{1}{n} 2f_{\text{max}} \). Una tarjeta de 100 KHz cubre la mayoría de las aplicaciones en el rango bajas a moderadas velocidades (menores a 100m/s).

Muestreo simultáneo: Se requiere cuando se debe determinar la correlación entre los muestreos rápidos obtenidos entre canales múltiples, tal como los esfuerzos cortantes de Reynolds. La tarjeta A/D comprueba la razón de muestreo por canal, ya que puede ser reducida significativamente debido a retrasos en la tarjeta comparado con la razón de muestreo para señales muestreadas consecutivamente con la misma tarjeta.

Disparador externo: Se requiere para iniciar la adquisición de datos relacionado con alguna variable específica del flujo.

1.2.5 COMPUTADORA

La elección de la computadora a ser usada para las mediciones con un anemómetro a temperatura constante no es crítica. La velocidad y almacenamiento de memoria típicas son normalmente más que suficientes para la mayoría de las aplicaciones. Sin embargo, es importante asegurar que el controlador del CTA, el manejar del convertidor A/D y el manejar del sistema de posicionamiento, sean compatibles, por ejemplo: que corren con el mismo sistema operativo y pueden ser llamados con el mismo software de aplicación. También es importante que el número requerido de puertos de comunicación con el anemómetro CTA y el sistema de posicionamiento estén disponibles.
1.2.6 SOFTWARE DE APLICACIÓN PARA EL CTA

Los anemómetros CTA comercialmente disponibles se entregan normalmente con un software de aplicación. Paquetes avanzados de software controlan el anemómetro y llevan a cabo el ajuste automático del puente del anemómetro CTA y del acondicionador de señales. También realizan automáticamente la calibración de velocidad y direccional de los sensores de hilo caliente y pueden ser programados para realizar experimentos automáticos en los cuales se realiza la adquisición de datos mediante un barrido transversal al flujo. Finalmente los datos son convertidos en unidades de ingeniería y transformadas a cantidades estadísticas relevantes tales como: momentos, espectro de energía, etc. El software de aplicación para anemómetros sencillos, manualmente operados, está también disponible comercialmente. Excepto para los manejadores del anemómetro y del calibrador de los sensores, el software para anemómetros simples también tienen la misma amplia funcionalidad que los paquetes avanzados. En la figura 1.18 se muestra un esquema del tipo de salida que proporciona el software empleado con los anemómetros a temperatura constante.

Figura 1.18 Software de aplicación para el CTA
1.2.7 SISTEMA DE POSICIONAMIENTO TRANSVERSAL

Un sistema transversal es necesario, si el movimiento de la sonda es parte del procedimiento experimental. Este sistema puede tener movimiento en los tres ejes y una unidad de rotación que es necesaria cuando se utilizan sondas inclinadas.

Selección del sistema de posicionamiento transversal: En la selección de este dispositivo es necesario considerar los siguientes factores:

Ejes: Número y alcance de los brazos del dispositivo a lo largo de cada uno de los ejes transversales, los cuales deben ser adecuados al experimento a desarrollar.

Resolución. La resolución lineal debe ser adecuada al tipo de mediciones a realizar. Dispositivos de posicionamiento disponibles comercialmente para sondas CTA normalmente tienen una resolución mejor que 0.01 mm y pueden ser reposicionadas con aproximadamente –0.1 mm de precisión.

Control: El control de dispositivos de posicionamiento automático se realizará de manera más eficiente a través del software de aplicación del CTA.

Impacto sobre el patrón de flujo: El dispositivo de posicionamiento no debe perturbar el flujo en la posición de la sonda. Esto se puede conseguir usando sondas con forma aerodinámica montadas sobre el dispositivo de posicionamiento.

El dispositivo de posicionamiento debe ser rígido de tal manera que las partes expuestas a las cargas del aire no vibren o se flexionen. Tales vibraciones o la flexión del dispositivo influirán en la medición de la velocidad.

1.3 CALIBRACIÓN DEL SISTEMA

Una calibración del sistema normalmente no se considera parte de la cadena de mediciones. Sin embargo, juega un papel importante para la precisión y rapidez, con la cual un experimento puede ser llevado a cabo. Las calibraciones se realizan en un dispositivo especial que genera un chorro libre de baja turbulencia, cuya velocidad se calcula con base en la caída de presión en su salida. Las calibraciones también se pueden realizar en un túnel de viento, donde los experimentos se llevan a cabo tomando como referencia la velocidad obtenida con un tubo pitot estático.

INSTRUMENTOS DE CALIBRACIÓN: Las características que debe tener el dispositivo para realizar la calibración del sistema son:
Calibrador especial de sondas: El rango de velocidad es desde pocos cm/s hasta varios ciento de m/s. La precisión generalmente es de ±0.5% de la lectura obtenida para velocidades mayores a 5 m/s. En algunos casos tiene características adicionales, tales como la facilidad de poder obtener la calibración direccional de sondas multi-sensores.

Calibración con túnel de viento y tubo pitot estático: En este caso el rango de velocidad es desde aproximadamente 2 m/s hasta típicamente 50 m/s. La precisión generalmente es de ± 1% de la lectura obtenida para velocidades mayores a 5 m/s. La precisión depende de la presión del dispositivo y disminuye a velocidades bajas.

1.4 ADQUISICIÓN DE DATOS

La señal del CTA es un voltaje continuo análogo. Para procesarlo digitalmente tiene que ser muestreado como una serie en función del tiempo consistente de valores discretos digitalizados por un convertidor analógico-digital (tarjeta A/D).

Los parámetros definidos en la adquisición de datos son la razón de muestreo, SR y el número de muestras, N. Ambos determinan el tiempo de muestreo el cual se define como T=N/SR. Los valores para SR y N dependen principalmente del experimento específico, el análisis de datos requerido (valores promedio en función del tiempo o análisis espectral), la memoria de la computadora disponible y de un nivel de incertidumbre aceptable. El análisis de los valores promedio en función del tiempo, tal como la velocidad media y la raíz media cuadrática, rms, de la velocidad, requiere de muestreos no correlacionados, los cuales pueden ser conseguidos cuando el tiempo entre muestras es por lo menos dos veces más grande que la integral de la escala de tiempo de las fluctuaciones de velocidad. Por su parte, el análisis espectral requiere que la razón de muestreo sea por lo menos el doble de la frecuencia de fluctuación más alta que ocurre en el flujo. El número de muestras dependen de la incertidumbre requerida y del nivel de confianza de los resultados.

Análisis del tiempo promedio: Para realizar un análisis de los datos adquiridos en función de valores promedio en función del tiempo se debe realizar los siguientes pasos:

a).- **Estimar las siguientes cantidades esperadas en el flujo:** Velocidad U [m/s], intensidad de la turbulencia, T_u, [%], y la integral de la escala de tiempo, T_1 [segundos].

b).- **Seleccionar la incertidumbre adecuada y el nivel de confianza:** La Incertidumbre u, se da en porcentaje de la velocidad media, $\%$ de U_{mean}. El nivel de confianza (1-a), $\%$, es típicamente del 95%.
c).- Calcular la razón de muestreo, SR: Para el caso de que las muestras no estén correlacionadas, se calcula con la siguiente ecuación.

\[SR \leq \frac{1}{2T_1}, \]

En la figura 1.19 se muestra la relación entre la razón de muestreo y la integral de la escala de tiempo.

![Figura 1.19 Razón de muestreo](image)

d).- Calcular el número de muestras N: Esto se calcula con la siguiente ecuación:

\[N = \left(\frac{1}{u} \left(\frac{z_\alpha}{2} \right) T_u \right)^2 \]

en donde \(z_\alpha \) es una variable relacionada con el nivel de confiabilidad (1-\(a \)) de la función de densidad de la probabilidad Gaussiana \(p(z) \), como se muestra en la tabla 1.2:

<table>
<thead>
<tr>
<th>(z_\alpha/2)</th>
<th>(1-(a)) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>90</td>
</tr>
<tr>
<td>1.96</td>
<td>95</td>
</tr>
<tr>
<td>2.33</td>
<td>98</td>
</tr>
</tbody>
</table>

Análisis del espectro de energía del flujo. La relación entre la razón de muestreo y la frecuencia en el flujo se muestra en la figura 1.20. La razón de muestreo SR, se determina en función de la frecuencia seleccionada como crítica, con base en los siguientes criterios:

a).- \(SR \geq 2f_{\text{max}} \), en donde \(f_{\text{max}} \) es la frecuencia máxima esperada en las fluctuaciones del flujo.
b). \(SR = 2f_{\text{cut-off}} \) (basado en la frecuencia de corte del filtro pasa-bajas), o

c). \(SR = 2.5f_{\text{cut-off}} \) (El factor 2.5 adopta un filtro pasa-bajas no ideal, el cual no fija la señal a cero en la frecuencia de corte).

![Figura 1.20 Análisis del espectro de energía del fluido](image)

1.5 ANÁLISIS DE DATOS

Puesto que la señal que se obtiene con el anemómetro a temperatura constante de un flujo turbulento será de naturaleza aleatoria, es necesaria una descripción estadística de dicha señal. La serie de datos obtenidos a lo largo del tiempo puede ser analizada o reducida (o ambas), en el dominio de la amplitud, en el dominio del tiempo y en el dominio de la frecuencia.

El software de aplicación del CTA contiene módulos que realizan los análisis de datos más comunes. El procedimiento estándar consiste en seleccionar el análisis buscado y aplicarlo a la serie en el tiempo real. Los datos reducidos serán después guardados en un archivo específico en la computadora para su presentación gráfica o para exportarlos y manipularlos con algún otro software. La manipulación más común de los datos adquiridos se muestra a continuación. Los siguientes procedimientos requieren datos aleatorios estacionarios.

ANÁLISIS DE DATOS EN EL DOMINIO DE LA AMPLITUD

El análisis en el dominio de la amplitud provee información acerca de la distribución de amplitud en la señal. Está basado en una o más series de tiempo muestreadas en base a una integral de escala de tiempo única en el flujo. Una serie de velocidad-
tiempo representa datos de un sensor, convertidos en componentes de velocidad en unidades de ingeniería.

Una serie velocidad-tiempo, como la mostrada en la figura 1.21, proporciona características (o momentos) medias, medias cuadráticas y de mayor orden del flujo.

![Figura 1.21 Serie velocidad-tiempo](image)

Momentos basados en una serie de tiempo única:

Velocidad media:

\[U_{\text{mean}} = \frac{1}{N} \sum_{i=1}^{N} U_i \]

Desviación estándar de la velocidad:

\[U_{\text{rms}} = \left(\frac{1}{N-1} \sum_{i=1}^{N} (U_i - U_{\text{mean}})^2 \right)^{0.5} \]

Intensidad de la turbulencia

\[T_u = \frac{U_{\text{rms}}}{U_{\text{mean}}} \]

Asimetría (Skewness)

\[S = \sum_{i=1}^{N} \frac{(U_i - U_{\text{mean}})^3}{N \cdot \sigma^3} \]

Factor de no linealidad (kurtosis)

\[K = \sum_{i=1}^{N} \frac{(U_i - U_{\text{mean}})^*}{N \cdot \sigma^*} \]

Donde \(\sigma \) la varianza está definida como:
La Asimetría, S, es una medida de la falta de simetría estadística en el flujo, como se muestra en la figura 1.22, mientras que el Desnivel es una medida de la distribución de la amplitud y se representa en la figura 1.23.

$$\sigma = \left(\frac{\sum_{i=1}^{N} (U_i - U_{mean})}{N - 1} \right)^{0.5}$$

Momentos basados en series de dos tiempos

Dos series de velocidad-tiempo simultáneas proporcionan momentos cruzados (básicos para determinar los esfuerzos cortantes de Reynolds) y momentos cruzados de alto orden (transporte de cantidades lateral), cuando los datos están adquiridos en el mismo punto. Si son adquiridos en diferentes puntos estos proporcionan correlaciones espaciales, las cuales llevan información acerca de las escalas de longitud típica en el flujo.
Esfuerzos cortantes de Reynolds:

\[
\overline{uv} = \frac{1}{N} \sum_{i=1}^{N} (U_i - U_{\text{mean}}) \cdot (V_i - V_{\text{mean}})
\]
\[
\overline{uw} = \frac{1}{N} \sum_{i=1}^{N} (U_i - U_{\text{mean}}) \cdot (W_i - W_{\text{mean}})
\]
\[
\overline{vw} = \frac{1}{N} \sum_{i=1}^{N} (V_i - V_{\text{mean}}) \cdot (W_i - W_{\text{mean}})
\]

Cantidades de transporte lateral:

\[
\overline{u^2v} = \frac{1}{N} \sum_{i=1}^{N} (U_i - U_{\text{mean}})^2 \cdot (V_i - V_{\text{mean}})
\]
\[
\overline{u^2w} = \frac{1}{N} \sum_{i=1}^{N} (U_i - U_{\text{mean}})^2 \cdot (W_i - W_{\text{mean}})
\]
\[
\overline{v^2u} = \frac{1}{N} \sum_{i=1}^{N} (V_i - V_{\text{mean}})^2 \cdot (U_i - U_{\text{mean}})
\]
\[
\overline{v^2w} = \frac{1}{N} \sum_{i=1}^{N} (V_i - V_{\text{mean}})^2 \cdot (W_i - W_{\text{mean}})
\]
\[
\overline{w^2v} = \frac{1}{N} \sum_{i=1}^{N} (W_i - W_{\text{mean}})^2 \cdot (V_i - V_{\text{mean}})
\]

u, v y w son las componentes de las fluctuaciones de la velocidad instantánea en el flujo, Ui, Vi y Wi son las componentes de la velocidad instantánea y U_{\text{mean}}, V_{\text{mean}} y W_{\text{mean}} son las componentes de la velocidad media.

ANÁLISIS DE DATOS EN EL DOMINIO DEL TIEMPO

La variable estadística en el dominio del tiempo más aplicada es la función de auto-correlación, R_x(\tau), a partir de la cual se puede calcular la integral de la escala de tiempo. Esta es una cantidad importante ya que define el intervalo de tiempo entre muestras estadísticamente no correlacionadas.

En la mayoría de los software de aplicación de CTA que permiten la reducción de datos, normalmente calculan la función del coeficiente de auto-correlación y la muestran de manera gráfica. Esta función empieza con el valor 1 en el tiempo cero,
cae a cero y normalmente continua oscilando alrededor de cero, como se muestra en la figura 1.24. Una estimación razonable de \(T_I \) es el tiempo que toma el coeficiente en caer del valor unitario de inicio a cero.

![Figura 1.24 Función del coeficiente de auto-correlación](image)

Función de auto-correlación e integral en la escala del tiempo: Para determinar estas variables se requiere una serie larga en el tiempo \(x(t) \). Las variables importantes se calculan con las siguientes ecuaciones:

Función de auto-correlación:

\[
R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) \cdot x(t + \tau) \cdot dt
\]

Integral de la escala del tiempo:

\[
T_I = \int_0^\infty \rho_x(\tau) \cdot d\tau
\]

donde el \(px \) es el coeficiente de auto-correlación, definido como:

\[
\rho_x(\tau) = \frac{R_x(\tau)}{R_x(0)}
\]

ANÁLISIS DE DATOS EN EL DOMINIO ESPECTRAL

El análisis espectral puede ser usado para proveer información acerca de cómo la energía de la señal es distribuida con respecto a la frecuencia.
El análisis espectral puede ser usado para proveer información acerca de cómo la energía de la señal es distribuida con respecto a la frecuencia. El análisis puede ser realizado sobre conjuntos de señales no linealizadas. La precisión del espectro depende del algoritmo usado y del número de muestras, el cual normalmente debe ser alto. La mayoría de los algoritmos utilizados para calcular el espectro de energía están basados en las transformadas de Fourier, las cuales producen valores de frecuencias discretas dentro de los sub-registros de la señal. Normalmente el software de aplicación utilizado con el CTA contiene rutinas para análisis espectrales. Un ejemplo de las gráficas obtenidas en un análisis espectral se muestra en la figura 1.25.

Figura 1.25 Espectro de potencia del flujo detrás de un cilindro circular
Capítulo II:
La técnica del hilo caliente volador
2.1 NECESIDAD DE LA TÉCNICA DEL HILO CALIENTE VOLADOR

La medición exacta de flujos altamente turbulentos y de flujos inversos ha estado históricamente limitada debido a la incapacidad de las técnicas de medición para medir fluctuaciones amplias en el ángulo con el cual incide el flujo y en particular a la aparición de flujos inversos, es decir, en sentido contrario al flujo medio general. Las técnicas como la anemometría Láser Doppler logran salvar estos problemas utilizando una técnica denominada cambio de frecuencia, pero padecen de otros problemas [25]. La anemometría de hilo caliente pulsado, aunque es capaz de medir amplias desviaciones en el ángulo del flujo, es relativamente inexacto y presenta el inconveniente de requerir sensores especiales [6, 15, 26, 27]. La Velocimetría de Imagen de Partículas (PIV por sus siglas en inglés) es capaz de medir el flujo inverso, sin embargo la técnica no está suficientemente desarrollada para medir con exactitud la turbulencia [6]. La medición con un sensor de hilo caliente fijo, ofrece alta exactitud con flujos en que la intensidad de la turbulencia es baja, pero está limitado en el rango de ángulos de flujo, los cuales no pueden ser medidos en forma exacta [5, 6, 8, 26, 27, 28 y 29]. Adicionalmente, el sensor de hilo caliente fijo es incapaz de medir flujos inversos debido a un problema de ambigüedad direccional que presenta el sistema de adquisición de datos al rectificar los voltajes que se miden [12, 13, 27, 29]. Una forma de extender el rango de aplicaciones de la anemometría de hilo caliente es mover el sensor a una velocidad relativamente alta en contra del flujo que se quiere medir ya que con una velocidad suficientemente alta, el flujo inverso y flujos con alta turbulencia serán registrados por el sensor que se mueve como pequeñas perturbaciones, por lo que el sensor es capaz de medir con gran exactitud. Este sistema permitió que las estelas turbulentas detrás de diversos cuerpos romos fueran medidas por primera vez en forma exacta [6]. Puesto que en el Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP) de la SEPI de la ESIME Zacatenco se cuenta con el sistema de anemometría de hilo caliente a temperatura constante así como la experiencia en la utilización de dicho equipo, se tomó la decisión de seleccionar, adquirir y construir el equipo y accesorios necesarios para emplear tal sistema de anemometría e implementar la técnica del hilo caliente volador para realizar la etapa experimental requerida para analizar el flujo inverso.

2.2 PRINCIPIO BÁSICO

PRINCIPIO BÁSICO DEL SISTEMA DE ANEMOMETRÍA DE HILO CALIENTE VOLADOR

Una de las restricciones principales de la anemometría de hilo caliente estacionario es la incapacidad de medir y de interpretar correctamente los flujos que contienen flujo inverso. Puesto que el sensor de hilo caliente responde a la velocidad
relativa a los hilos, este problema puede ser superado usando un sensor de hilo caliente en movimiento, lo cual da lugar a la técnica conocida como anemometría mediante un hilo caliente volador (FHA por sus siglas en inglés).

El principio básico del método FHA se puede explicar haciendo referencia a la figura 2.1.

Considérese una superficie con una región de flujo separado bi-dimensional y un sistema de coordenadas fijo en el espacio, en el cual el vector velocidad del flujo, \(\vec{V} \), y sus componentes de velocidad \(U \) y \(V \) deben ser evaluados. Determinado por la geometría del mecanismo del sistema FHA, los hilos del sensor, generalmente una configuración en \(X \) aunque también se han utilizado sensores unidimensionales [8], seguirán una curva establecida; por ejemplo, la curva (a) en la figura 5.1. En el tiempo \(t \), el sensor se supone que está en una posición conocida \((x_p, y_p) \) y que se mueve con una velocidad también conocida, \(\vec{V}_p \).

Figura 2.1.-Principio de medición con un sensor de hilo caliente volador, adaptada de [5].

El sensor de hilo caliente móvil se expone a una velocidad relativa, \(V_r \), y es éste vector velocidad el que normalmente se mide y se evalúa en términos de las componentes de velocidad \((U', V') \) en un sistema coordenado alineado con el vástago del sensor. En el supuesto de que la orientación del vástago del sensor relativo al sistema coordenado fijo en el espacio sea conocida, las componentes de la velocidad correspondientes al sistema fijo en el espacio \((U_r, V_r) \) pueden ser evaluados. Habiendo medido \(\vec{V}_p \) y \(\vec{V}_r \), el vector velocidad del flujo, \(\vec{V} \), se obtiene de

\[\vec{V} = \vec{V}_p + \vec{V}_r \]
como se ilustra en la figura 2.1, con la condición de que la magnitud de la velocidad del sensor, V_p, sea mayor que la magnitud de la velocidad del flujo, V, entonces el vector de la velocidad relativa permanecerá dentro del cuadrante de aproximación del sensor y la señal del hilo caliente se puede interpretar en forma única.

Considerando una trayectoria del sensor en línea recta, como la utilizada en este trabajo, un sistema coordenado xy semejante al mostrado en la figura 3.1 y que la velocidad del sensor es en sentido x negativo, entonces la velocidad relativa tendrá sentido x positivo si se cumplen las siguientes condiciones:

a. Si la velocidad del flujo es en sentido x positivo, ya que la velocidad relativa, \vec{V}_r, medida siempre será mayor que la velocidad del sensor \vec{V}_p y la resultante, \vec{V}, siempre tendrá sentido positivo.

b. Si la velocidad del flujo es en sentido x negativo y su magnitud es menor que la velocidad del sensor, ya que la velocidad relativa medida será menor que la velocidad del sensor y al realizar la suma vectorial indicada por la ecuación (5.1), la resultante tendrá signo negativo, es decir, el flujo será un flujo inverso.

Resulta fácil ver que si el flujo es en sentido x negativo y su magnitud es mayor que la velocidad del sensor, la velocidad relativa debería ser en sentido x negativo pero como aparece nuevamente la ambigüedad en la rectificación de la señal, el sistema de medición reportará un valor positivo y la técnica del hilo caliente volador ya no es aplicable.

2.3 COMPONENTES

DISPOSITIVO PARA MOVER SENSORES DE HILO CALIENTE

El equipo diseñado y construido como parte del proyecto de investigación “Optimización de la Adquisición de Datos Empleando la Técnica del Hilo Caliente Volador” con número de registro SIP 20090930, tiene la finalidad de mover linealmente sensores de hilo caliente del tipo empleado en la anemometría a temperatura constante (CTA) con el propósito de implementar la técnica del hilo caliente volador, la cual se utiliza para medir velocidades de flujos inversos que se generan en los flujos en torbellino, en las estelas de los cuerpos al moverse y en expansiones bruscas (escalones) por las que circula un fluido. Para tal fin se integraron en una mesa metálica diferentes componentes comprados tales como un servomotor lineal, un servo-amplificador y un controlador. La mesa metálica cuenta con una base de aluminio cuya finalidad es la de soportar al servomotor lineal. La base de aluminio se puede desplazar transversalmente a lo largo de una carrera de 30 cm por medio de una manivela, un tornillo sinfín y dos varillas guías. Los componentes
integrados se controlan mediante un tablero el cual fue diseñado y construido en el laboratorio de Eléctrica-Electrónica de la ESIME Ticoman. Puesto que los componentes electrónicos fueron comprados, no hubo necesidad de realizar ningún cálculo y solamente nos limitamos a cumplir con las especificaciones de voltaje, corriente y calibre de los cables. La actividad de diseño realizada fue establecer la disposición de los controles en el tablero. Con respecto a la mesa metálica, el criterio empleado fue que está fuera lo suficientemente pesada para evitar al máximo la vibración y el desplazamiento al momento del arranque y del paro del servomotor para lo cual se le colocaron en las patas tornillos para anclarla al piso. Enseguida se describen con detalle cada uno de los componentes mencionados.

2.3.1 SERVO-MOTOR LINEAL

El dispositivo seleccionado para mover el sensor de hilo caliente es un equipo fabricado por la empresa Yaskawa denominado Sigma Trac Linear Servo System, el cual consiste de un servo-motor lineal que está compuesto de una bobina móvil formada por un núcleo de hierro laminado y de una guía magnética fija, como se muestra en la figura 2.2. La bobina móvil del motor lineal está compuesta de un núcleo de hierro laminado y de varios devanados insertados en las ranuras localizadas sobre el núcleo. La unidad de bobinas completa está encapsulada de forma permanente con una resina térmicamente conductiva que le da rigidez estructural. La guía magnética del servomotor lineal está hecho de una fila de magnetos de tierras raras colocados de manera precisa sobre uno de los lados de una placa de acero al níquel. Los magnetos tienen una cubierta de acero inoxidable que los protegen contra posibles daños.

Figura 2.2.- Componentes del servo-motor lineal.

El modelo de servomotor adquirido es el STF20090-D, el cual tiene una carrera L2 de 595 mm y una longitud total de 910 mm. En la figura 2.3 se muestra la vista superior y un corte transversal con las dimensiones del motor.
En la vista superior se muestran los barrenos en donde se instala la carga de trabajo, lo cual en nuestro caso es el soporte del sensor de hilo caliente el cual fue diseñado y construido por los participantes del proyecto antes mencionado y que se muestra más adelante.

El servomotor lineal cuenta con un encoder que le permite realizar movimientos precisos del orden de micras de metro.

2.3.2 SERVO-AMPLIFICADOR Y CONTROLADOR

Para el óptimo funcionamiento del servomotor se requiere de un servo amplificador (se adquirió el Sigma II, marca Yaskawa) y de un controlador específico para el servo-amplificador (se compró el controlador Legend-MC, también marca Yaskawa). El Servo-amplificador y el controlador se muestran en la figura 2.4. El controlador Legend-MC tiene un CPU Motorola de 25 mHz con entradas y salidas digitales de 24 VDC. Además, el controlador proporciona un ambiente de programación de texto estructurado y la posibilidad de desarrollar varios modos de movimiento. La empresa que vendió el controlador, a solicitud del director del proyecto, le instaló un programa con una rutina que permite seleccionar 5 velocidades de avance diferentes y el retroceso a una sola velocidad del servomotor. El sistema funciona con corriente alterna de 125 volts, tiene una potencia de 125 Watts, una aceleración máxima de 50
m/s² y una velocidad máxima de 5 m/s de acuerdo a las especificaciones indicadas en el manual. Sin embargo, la velocidad máxima lograda fue de aproximadamente 3 m/s.

Figura 2.4.- Servo-amplificador y controlador del servomotor lineal.

2.3.4 TABLERO DE CONTROL

Para accionar el motor y producir diversas velocidades en el servomotor lineal se requiere de un tablero de control que mediante interruptores operados manualmente permiten seleccionar la velocidad que se desea utilizar así como el avance y el regreso del mismo. El tablero de control cuenta con cinco interruptores, cada uno selecciona una velocidad diferente desde 1 m/s hasta 5 m/s en incrementos de 1 m/s. Además tiene un interruptor para el avance del motor y otro para el regreso. También cuenta con un interruptor de límite que es el que permite fijar la posición de inicio del motor lineal en el encendido del sistema y un interruptor para el paro de emergencia del motor. En el tablero de control está también una fuente de 24 volts de corriente continua que es la que alimenta las entradas y salidas digitales del controlador del motor lineal. Es conveniente indicar que este tablero de control fue diseñado por los participantes del proyecto y construido por los mismos en el laboratorio de Eléctrica-Electrónica de la ESIME Ticoman. La figura 2.5 muestra una foto de este tablero.
2.3.5 SOPORTE DEL SENSOR DEL HILO CALIENTE

Para poder fijar el sensor de hilo caliente al servomotor lineal se diseñó y construyó el soporte que se muestra en la figura 5. El soporte es totalmente de aluminio con excepción de los prisioneros que tiene para fijar los diversos elementos. Dicho soporte fue construido por los participantes del proyecto en el taller de máquinas herramientas de la ESIME Ticoman. En la misma figura se muestra el soporte que se construyó para sostener el cable del sensor al momento de estar en movimiento y evitar que se deteriore con el rozamiento o bien que pudiera dañarse al atorarse con algún elemento del conjunto. Este elemento se modificó en el año 2009, como parte de las actividades realizadas en el proyecto de investigación en cuestión. Esta modificación se muestra en la figura 2.6.
2.3.6 INTEGRACIÓN DE LOS COMPONENTES (MESA SOPORTE)

Para poder utilizar el servomotor lineal se diseñó una mesa soporte que integra a dicho motor con el servo-amplificador, el controlador y el tablero de control. La mesa fue construida por la empresa Tecnometalics S. A. de C. V. Dicha mesa soporte tiene la posibilidad de moverse transversalmente con una carrera de 30 cm, con la finalidad de poder hacer mediciones transversales al flujo (a lo largo del diámetro del tubo) y determinar el perfil de velocidades. El diseño inicial se muestra en la figura 7. La mesa soporte se instaló en la descarga del equipo que genera el flujo en torbellino. La instalación completa se muestra en la figura 2.8.
Figura 2.8.- Diseño inicial de la mesa soporte del servo-motor lineal.

Figura 2.9.- Vista general del equipo experimental.
2.4 OPERACIÓN DEL DISPOSITIVO PARA MOVER SENSORES DE HILO CALIENTE.

Una vez colocado el sensor de hilo caliente en su soporte y una vez instalado en la plataforma de carga del servo-motor lineal se procede como sigue:

1.- Ubicar el servo-motor lineal en la posición radial que se desea medir el flujo que descarga el tubo haciendo girar la manivela de la mesa soporte.

2.- Conectar el servo-amplificador y el tablero de control a la corriente. El servo-motor automáticamente iniciará su movimiento hacia la posición inicial de arranque (el extremo opuesto a la descarga del flujo de aire).

3.- Antes de que el servo-motor llegue al extremo opuesto a la descarga (aproximadamente 0.5 cm), apretar el interruptor de límite, con lo cual el servo-motor se para en la posición deseada.

4.- Establecer la velocidad de avance requerida subiendo uno de los interruptores de selección de velocidad, el utilizado en las mediciones realizadas fue el interruptor número dos (se numeran de izquierda a derecha viendo de frente el tablero de control) con el cual se obtiene una velocidad de avance de 2 m/s.

5.- Oprimir el interruptor de avance y el servo-motor se moverá hacia la descarga y se frenará automáticamente un cm antes de llegar al final de la distancia posible de carrera. En esta carrera el sensor de hilo caliente realiza las mediciones de la velocidad del flujo. Volver a oprimir nuevamente el interruptor de avance para preparar al servomotor para el retorno a su posición inicial.

6.- Apretar el interruptor de regreso, con lo cual el servomotor retorna a su posición inicial. Volver a apretar el interruptor de regreso con lo cual el servomotor queda listo para realizar otra carrera hacia la descarga, es decir otra medición de la velocidad del flujo. Si se desea cambiar de posición radial se acciona nuevamente la manivela de la mesa soporte hasta la posición deseada.
Capítulo III:
Interfase para sincronizar el anemómetro y el servo-motor lineal
3.1 NECESIDAD DE LA SINCRONIZACIÓN

Para este proyecto de investigación, se llevó a cabo una metodología experimental, mediante la cual se realizaron diversos circuitos, analizando las características específicas del dispositivo de adquisición de datos que se pretendía adaptar.

De la ponencia presentada en el 8avo Congreso Iberoamericano de Ingeniería Mecánica CIBIM 2007 en la ciudad de Cusco Perú, “Utilización de la técnica del hilo caliente volador para medir el flujo inverso generado por un flujo en torbellino”, de la página 5, que dice textualmente:

La frecuencia de Adquisición de Datos de 50Khz se decidió utilizarla con el fin de contar con datos suficientes para determinar la velocidad local promedio, ya que a esta frecuencia se adquieren 50 valores de velocidad en un milisegundo en una distancia aproximada de 2 mm.

Dado que el accionamiento del servomotor lineal es mediante un interruptor manual, existe el inconveniente de que se debe apretar el botón dentro del tiempo de adquisición de datos, ya que si se hace antes no se captura el inicio del movimiento del motor lineal o por el contrario si se hace después, es posible que no se capture el final del recorrido. Por lo anterior, aunque el recorrido del motor lineal se logra en aproximadamente 0.39 segundos, se definió un tiempo de adquisición de datos de un segundo, lo cual es adecuado para que el operador del motor lineal tenga el tiempo suficiente para reaccionar y apretar el botón de arranque.

El inicio de la carrera del motor lineal no siempre ocurre en el mismo instante, esto se debe como se indicó antes, al tiempo de reacción del operador del motor lineal.

3.2 TARJETA DE INTERFASE

De lo investigado en la bibliografía, así como de lo observado en los experimentos se concluye que el tiempo el Tiempo de respuesta del Humano Promedio es del orden de los 180 a 220 milisegundos, es decir de 180 000 a 200 000 microsegundos [21],[22],[23].
Y de acuerdo a la gráfica de velocidad contra tiempo del sensor montado en el servomotor lineal, se analizó dicha gráfica y se concluye que coincide con los 0.39 segundos del recorrido planteado anteriormente. También se concluye lo siguiente:

a) Acelera en un lapso de tiempo desde 0 a 170 milisegundos
b) Permanece con velocidad constante de aproximadamente 2 m/s de 170 350 milisegundos
c) Desacelera en lapso desde 350 hasta 440 milisegundos

Por otro lado se investigó que los fototransistores tienen un tiempo de respuesta del orden de 1 microsegundo [14],[18].

De la hoja de datos del fabricante, el transistor 2N2222A utilizado en este proyecto indica que se tienen características de conmutación que son función del tiempo de subida (flanco de subida) del orden de los 10 nanosegundos y del tiempo de bajada (flanco de bajada) del orden de los 25 nanosegundos [18].

Así mismo debemos de considerar el uso de un relevador del estado sólido. Un relevador del estado sólido es un switch eléctrico formado por componentes electrónicos es decir que no tiene partes móviles como en el caso de los relevadores electromecánicos (tiempos de respuesta típicos del orden de los 10 milisegundos). Debido a que no existen partes mecánicas que se cierren o abran dentro del SSR no se producen arcos voltaicos ni se producen desgastes mecánicos. Es por esto que los SSR pueden operar millones de ciclos de encendido/apagado sin deterioro en su desempeño. Para este proyecto el aspecto más relevante de los SSR es el tiempo de respuesta que se refiere al hecho de que existe un tiempo entre la aplicación de una
señal de comando al circuito de control y la respuesta que es cuando cambia de estado en la salida.

3.3 COMPONENTES DE LA TARJETA

RELEVADOR DEL ESTADO SÓLIDO (SSR)

A continuación se mencionan las características del relevador del estado sólido (Solid State Relay SSR del inglés) utilizado en este proyecto:

- SSR marca: Gentron, Scottsdale, AZ
- Modelo: SSR600240d25
- Voltaje de excitación: 3.0 a 30 VCD
- Voltaje que se maneja en la salida: 240 VCA hasta 25 Amperes
- Tiempo de respuesta: 20 microsegundos

De lo mencionado en los tres párrafos anteriores, se deduce que la suma de los tiempos de respuesta de los componentes que intervienen en el diseño y construcción del circuito de interface para sincronizar es del orden de los 21 microsegundos, lo que se traduce en solo un error con un dato o valor perdido. Con la frecuencia de 50 KHz y con la velocidad seleccionada de 2m/s para el servomotor lineal que mueve al sensor de hilo caliente se deduce que se toman 50,000 datos en un segundo en una distancia aproximada de 2 mm; es decir se toman 50 valores en un milisegundo, lo que equivale a 500 datos o valores en 100 microsegundos, concluyendo que el sistema toma 1 dato o valor cada 20 microsegundos.

Por otro lado, sabemos que el servomotor lineal utilizado en este proyecto para mover el hilo caliente de la anemometría funciona con 125 VCA a una corriente de 1 Ampere, lo que implica una potencia de consumo de 125 watts, por lo que el SSR seleccionado está más que sobrado para el manejo de la potencia del servomotor lineal ya que el SSR maneja 240 VCA a 25 Amperes, lo que implica una potencia de 6000 watts, a partir de una señal de entrada de 3.0 a 32 VCD.
Figura 3.2 Protoboard con circuito electrónico de prueba

Figura 3.3 Prototipos de los circuitos de interface basados en fototransistores y relevadores del estado sólido SSR

MICROCONTROLADOR (PIC16F84)

Casi para finalizar, y para obtener el producto final se investigó, desarrolló y construyó una tarjeta basada en el microcontrolador PIC16F84 que funciona como instrumento de medición de intervalos de tiempo en el rango de los 4 hasta los 256
microsegundos. Esta tarjeta se considera adecuada para medir los tiempos de respuesta de los diferentes dispositivos electrónicos que conforman los circuitos de interface de sincronización de este proyecto.

El principio de funcionamiento del sistema es el siguiente:

- Contar los pulsos a partir de la frecuencia interna del PIC16F84 que es de 1Mhz (periódico de 1 microsegundo) mientras el período del pulso a medir (señal desconocida) está en alto. Este proceso es equivalente al funcionamiento de una compuerta AND. Esto comparación se muestra en las siguientes figuras.

Figura 3.4 Representación del principio de medición del orden de los microsegundos basado en un microcontrolador.
Figura 3.5 Diagrama que representa al sistema de sincronización y la de medición de datos

Figura 3.6 Diagrama del lado de soldadura del circuito impreso diseñado para el circuito de medición y adquisición de datos del orden de los microsegundos.
3.4 SOFTWARE PARA EL SISTEMA DE MEDICIÓN Y ADQUISICIÓN DE DATOS

- Se desarrolló un programa en lenguaje ensamblador para el sistema de medición y adquisición de datos del orden de los microsegundos, realizado con el Programador de Microchip en ambiente MPLAB. El código de este programa se presenta a continuación.

```assembly
; (memory map)
tmr0 equ 0x01
status equ 0x03
porta equ 0x05
portb equ 0x06
optreg equ 0x81
trisa equ 0x85
trisb equ 0x86
rp0 equ 5
org 0x000

Inicio
bsf status,rp0 ; cambia al banco 1
movlw b'00000011' ; puerto A entradas R0, R1 y R2
movwf trisa
movlw b'00000000' ; puerto B salidas B0 a B7
movwf trisb
bsf status,rp0 ; cambia al banco 1
movlw b'11011111' ; fija el timer/contador
movwf optreg
bcf status,rp0 ; regresa al banco 0
clrf portb ; apaga leds
clrf tmr0 ; limpia timer antes de asignar wdt
clrf wdt ; asigna preescaler
bsf status,rp0 ; cambia al banco 1
movlw b'11011111' ; fija el timer/contador
movwf optreg
bsf status,rp0 ; regresa al banco 0

contar btfss porta,1 ; señal de excitación en R1
goto contar ; aun no
alto btfss porta,0 ; señal de excitación 5v en R1, checa R0
goto alto ; aun no
clrf tmr0 ; limpia timer
bajo btfsc porta,2 ; señal en R2 es cero
goto bajo ; aun no
movf tmr0,w ; lee el timer
movwf portb ; exhibe el valor de la cuenta
goto contar ; realiza otra medición
```

end
3.5 PRUEBAS DE VALIDACIÓN PARA LA MEDICIÓN DE LOS RETRASOS GENERADOS POR LOS COMPONENTES:

A continuación se muestran las pruebas realizadas con la tarjeta que se encarga de medir los retrasos, de los componentes de tal forma que la señal de entrada sea la misma a la salida en el tiempo teórico estimado:

Las pruebas realizadas para obtener la señal de entrada (pulso cuadrado) que se aplicará a un microcontrolador PIC 16F84 fueron:

- A través de un circuito integrado 555 en su modo astable y monoestable

Al trabajar con el circuito Monoestable, se presentó el inconveniente de la frecuencia a la cual se deseaba trabajar, ya que al realizar el cálculo con la fórmula \(t = \frac{1}{f} \), se obtenía una frecuencia y de manera práctica resultaba diferente; esto implicó hacer una serie de prueba y error al variar el valor de la resistencia (en primera instancia) y posteriormente el valor del capacitor. Sin embargo, no se logró obtener la frecuencia deseada.

Debido a que el circuito del 555 en su implementación como circuito Monoestable no cumplió con los requerimientos necesarios, se realizaron nuevamente las pruebas pero ahora como circuito ASTABLE (tren de pulsos siempre constante).

[Figura 3.7: Circuito generador de pulsos mediante un circuito integrado 555]

Con esta implementación y el valor de la resistencia de 470 \(\Omega \) se obtuvieron los siguientes resultados:
<table>
<thead>
<tr>
<th>PERIODO (µs)</th>
<th>FRECUENCIA (Khz.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>32</td>
<td>31.25</td>
</tr>
<tr>
<td>128</td>
<td>7.8</td>
</tr>
<tr>
<td>205</td>
<td>4.87</td>
</tr>
<tr>
<td>255</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Los leds están ordenados del bit más significativo (MBS) al bit menos significativo (LBS); es decir, de izquierda a derecha, cada led representa el siguiente valor: 128, 64, 32, 16, 8, 4, 2, 1.

<table>
<thead>
<tr>
<th>FRECUENCIA (Khz.)</th>
<th>PERIODO TEÓRICO (µs)</th>
<th>PERIODO PRÁCTICO (µs)</th>
<th>Resultado Teórico</th>
<th>Resultado Práctico</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.87</td>
<td>205</td>
<td>208</td>
<td>✗ ✗ ✗ ✗</td>
<td>✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>11.5</td>
<td>174.2</td>
<td>37</td>
<td>✗ ✗ ✗ ✗ ✗</td>
<td>✗ ✗ ✗ ✗ ✗</td>
</tr>
<tr>
<td>52.8</td>
<td>19</td>
<td>2</td>
<td>✗ ✗ ✗ ✗ ✗</td>
<td>✗ ✗ ✗ ✗ ✗</td>
</tr>
</tbody>
</table>

Las discrepancias de los resultados entre los valores teóricos a los que se obtuvieron de manera práctica, son asociadas a la señal que se le aplica al microcontrolador (pulso cuadrado); debido a que era una señal con una amplitud menor a 5 volts y además contenía ruido.
La salida del microcontrolador es:

Debido a que los leds están acomodados del mayor bit significativo de derecha a izquierda en la parte superior de la figura y los leds que se encuentran en la parte inferior de la figura representan los bits menos significativos; siendo el de menor valor el primer led que se encuentra del lado izquierdo; la salida es de 8 µs, cuando debe ser de 19 µs.

Las conexiones del equipo y los circuitos utilizados se muestran en las siguientes figuras:
Figura 3.10.a Circuito integrado 555 generando pulsos al microcontrolador

La señal de salida del circuito integrado 555 se aplica a la entrada del microcontrolador (cable morado).

Figura 3.10.b

❖ **Con una fuente que proporciona el pulso**

Figura 3.11 Fuente de pulsos
La medición que se realizó utilizando esta fuente fue para una frecuencia de 2.5 Khz y un periodo de 400 µs y una amplitud de 4.2 V. Los valores que desplegarán los Leds corresponden al tiempo del Ciclo útil de la señal:

<table>
<thead>
<tr>
<th>PERIODO (µs)</th>
<th>FRECUENCIA (Khz.)</th>
<th>% CICLO UTIL</th>
<th>CICLO UTIL (µs)</th>
<th>% DE ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>2.5</td>
<td>35.38</td>
<td>141.5</td>
<td>6</td>
</tr>
<tr>
<td>491.5</td>
<td>2.035</td>
<td>48.38</td>
<td>237.7</td>
<td>38.9</td>
</tr>
</tbody>
</table>

A pesar de que la señal de entrada se estaba tomando de la fuente, la salida del microcontrolador aun presentaba error. Por lo que se implementó una compuerta para aumentar la amplitud de la señal de entrada de 4.2 V a 5 volts. La compuerta que se utilizó es la compuerta NOT (circuito integrado 7404); con esta nueva implementación fue necesario alimentar al circuito integrado con 5.7 volts para que el pulso cuadrado tuviera 5 volts de amplitud.
Figura 3.12 Implementación de la compuerta NOT

Las conexiones del equipo utilizado así como los circuitos utilizados se muestran en la siguiente figura:

Figura 3.13 Integración del equipo de medición

Las mediciones que se realizaron fueron las siguientes:

<table>
<thead>
<tr>
<th>FRECUENCIA (Khz.)</th>
<th>PERIODO (µs)</th>
<th>% CICLO ÚTIL</th>
<th>TIEMPO DEL CICLO ÚTIL (µs)</th>
<th>% DE ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>202</td>
<td>50</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
Las siguientes figuras muestran la señal de salida con una frecuencia de 22.86 Khz y amplitud de 5 volts.

Figura 3.14 Amplitud corregida a 5 Volts
La figura muestra la salida del microcontrolador para una señal de entrada de 22.86 Khz y, la salida de 36 µs; esto lo podemos determinar ya que los leds están acomodados del mayor bit significativo de derecha a izquierda en la parte superior de la figura y los leds que se encuentran en la parte inferior de la figura representan los bits menos significativos; siendo el de menor valor el que se encuentra al principio del lado izquierdo; por lo tanto el valor que leemos es 36 µs.
CONCLUSIONES

- La tarjeta de interfase de sincronización propuesta, analizada y desarrollada reduce el error o incertidumbre a 1 o 2 valores de adquisición de datos respecto a un promedio de 10000 valores perdidos por el operador humano o en el mejor de los casos 9000 valores perdidos por el operador humano entrenado.

- La tarjeta electrónica basada en microcontrolador es adecuada para medir tiempos del orden de microsegundos, para poder determinar errores de sincronización para el proyecto.

- Se puede usar para medir tiempos de retraso en otros sistemas de control, tales como para medir las revoluciones por minuto en aeromodelos, UAV’s, etc.

- El resultado de este proyecto se puede aplicar en materias tales como sistemas de control en aeronaves.

- En un principio se contaba con un sistema de anemometría de hilo caliente fijo de la marca Dantec. Con la implementación del servo-motor lineal Yaskawa y la interfase electrónica desarrollada en este proyecto fue posible montar la técnica de anemometría del hilo caliente volador, con lo cual nos adentramos a realizar investigación en nuevas áreas.

RECOMENDACIONES

Se recomienda que para trabajos futuros se mejore la tarjeta electrónica de interfase, cambiando los leds que nos dan la medición de los retrasos de los componentes por un par de displays que muestren de manera directa los dígitos de los microsegundos que tardaron en responder los componentes.
REFERENCIAS

2. Fernández Roque Tiburcio, Análisis de un flujo de aire generado por un ventilador axial en el interior de un tubo circular giratorio, Tesis de maestria, SEPI ESIME Zacatenco, IPN, 2003.

10. www.dantecdynamics.com
11. Microprocessors & Interfacing Programming and Hardware
 Douglas V. Hall,
 Mc Graw Hill 1986

12. NTE Semiconductor Manual de reemplazos

14. Interfacing Sensors to the IBM PC
 Willis J. Thomkins,
 Prentice Hall USA 1990

15. Real Time Software for Control, Program Examples in C
 David M. Auslander
 Prentice Hall USA 1990

16. Design wit PIC Microcontrollers
 John B. Peatman
 Prentice Hall USA 1997

17. Intelligente Sensor Design Using the Microchip dsPIC
 Creed Huddleston
 Elsevier Newnes USA 2007

18. The Electronics Problem Solver
 Research and Education Association
 USA 1982

19. Why use Solid State Relays, CST Crydom
 www.crydom.com

20. Human Factors Desings Guideliness for Multifunction Displays
 Office of Aerospace Medicine, Washington DC
 DOT/FAA/AM-01/17 Federal Aviation Administration, USA 2001
21. Fundamentals of Time Interval Measurements
 Application Note 200-3 Agilent Technologies
 www.agilent.com/find/products

22. Perceptions of Visual and Motion Cues during Control of Self-Motion in Optic Flow Environments AIAA 2006 6627
 AIAA Modeling & Simulation Technologies, USA 2006

23. Simultanealy constancy: detecting events with touch and vision
 Vanessa Harr, Laurance R. Harris
 Experiments Brain Research 166 465-473 Canada 2005

24. Palacios Enrique, Microcontrolador PIC16f84, desarrollo de proyectos.
 Editorial Alfaomega. México. 2004

INSTITUTO POLITÉCNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA
UNIDAD PROFESIONAL TICOMAN

OTORGA EL PRESENTE

RECONOCIMIENTO

AL C: BLAS MARTÍNEZ LUIS FELIPE

POR SU PARTICIPACION COMO CONFERENCISTA EN EL:

ENCUENTRO PIFI 2009

MÉXICO D.F., A 01 DE DICIEMBRE

"LA TÉCNICA AL SERVICIO DE LA PATRIA"

ING. MIGUEL ALCÉRREZ MONTALVO
DIRECTOR

M. EN. C. ASUR CORTÉS GÓMEZ
JEFE DE LA SECCION DE ESTUDIOS
DE POSGRADO E INVESTIGACIÓN