DISEÑO DE UN SISTEMA DIFERENCIAL CON ALINEAMIENTOS.

TESINA

QUE PARA OBTENER EL GRADO DE INGENIERO EN AERONÁUTICA

PRESENTA:

Omar Cortes Vasquez.

Asesor:

Dr. Armando Oropeza Osornio.
INSTITUTO POLITÉCNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA
UNIDAD Ticomán

QUE PARA OBTENER EL TÍTULO DE: INGENIERO EN AERONÁUTICA
POR LA OPCIÓN DE TITULACIÓN: SEMINARIO
DEBERÁ PRESENTAR: EL C. PASANTE: CORTES VASQUEZ OMAR

"DISEÑO DE UN SISTEMA DIFERENCIAL CON ALINEAMIENTOS"

RESUMEN
ABSTRACT
INTRODUCCIÓN
ANTECEDENTES
ESTADO DEL ARTE
OBJETIVO

CAPÍTULO I MAARCO CONTEXTUAL
CAPÍTULO II LINEALIDAD
CAPÍTULO III MODELADO
CAPÍTULO IV MAQUINADO
CAPÍTULO V CONCLUSIONES
REFERENCIAS
BIBLIOGRAFÍA

México, DF., a 25 de junio de 2012.

A S E S O R

M. EN C. ARMANDO OROPEZA OSORNO

Vo. Bb.

M. EN C. JOSÉ JAVIER RODÍGUEZ SOTO
DIRECTOR

DIRECCIÓN
ÍNDICE

Resumen...1
Abstract..2
Introducción...3
Antecedentes...5
Estado del arte...6
Objetivo..8

CAPÍTULO 1: MARCO CONTEXTUAL

1.1 Tipos de diferenciales.................................10
1.2 Modelo dinámico del diferencial abierto........11
1.3 Redistribución del par de manera apropiada......13
1.4 Tipos de diferenciales de deslizamiento limitado 13
 1.4.1 Diferencial autoblocante......................13
 1.4.2 Diferencial viscoso..............................15

CAPÍTULO 2: LINEALIDAD

2.1 Desalineamiento...17

CAPÍTULO 3: MODELADO

3.1 Diseño del proyecto....................................18
3.2 Modelo matemático......................................19
3.3 Cálculos de engranajes cónicos....................20
3.4 Dimensionado..22
3.5 Desarrollo del modelo (piñón)....................24
CAPÍTULO 4: MAQUINADO

4.1 Generación del código...42
4.2 Lubricación...44
4.3 Posibles fallas en los dientes de los engranajes.........................45

Conclusiones...47
Referencias..48
Bibliografía...49
Anexo 1: Cálculos del sistema diferencial.......................................50
Anexo 2: Planos del sistema diferencial...53
LISTA DE TABLAS

Tabla 1 - Comparaciones entre diferenciales..18
Tabla 2 - Cálculos de engranajes cónicos..22
Tabla 3 - Propiedades de los engranajes diseñados...23
Tabla 4 - Coeficientes de seguridad...24
Tabla 5 - Restricciones de diseño..24

LISTA DE FIGURAS

Figura 1 - Diagrama de giro...9
Figura 2 - Diferencial abierto...10
Figura 3 - Torque del eje, (interno, externo) ..12
Figura 4 - Carga vertical, interno (punteada), externo (continua)....................12
Figura 5 - Velocidad de las llantas, interna (punteada), externa (continua)....12
Figura 6 - Diferencial autoblocante...14
Figura 7 - Torque del eje, interno (línea punteada), externo..........................14
Figura 8 - Velocidad de las llantas, interna (línea punteada), externa...........14
Figura 9 - Diferencial viscoso...15
Figura 10 - Engranaje cónico..19
Figura 11 - Engranajes cónicos..21
Figura 12 - Parámetros y relaciones...25
Figura 13 - Activación de parámetros..26
Figura 14 - Activación de fórmulas...26
Figura 15 - Definición de involuta en X..27
Figura 16 - Definición de involuta Y...27
Figura 17 - Definición del punto...28
Figura 18 - Editor de fórmula..28
RESUMEN

En el presente trabajo, se realizó el diseño de un sistema diferencial empleando el programa CATIA V5 y se elaboró un análisis para mejorar el rendimiento, evitar desajustes en el montaje del sistema, desgastes prematuros, sobrecalentamiento o posibles daños por diseño. Así mismo se realizó la simulación del proceso de maquinado en una máquina de 3 ejes.

El diseño del sistema diferencial se fundamento en alineamientos de medición correcta en las dimensiones de los engranajes, paso correcto entre dientes y montaje correcto de las piezas, para obtener un buen desempeño de éste sistema, pues al realizarse de una manera adecuada se reducen las ineficiencias anteriormente mencionadas. El diseño y análisis se fundamento en un sólo tipo de diferencial (diferencial abierto).

La estabilidad se obtuvo con un modelo matemático adecuado, de esta manera se logró un cálculo correcto de la relación existente entre los engranajes y las medidas exactas de éstos.

Los alineamientos se basan en recomendaciones necesarias para un mejor desempeño de la unidad diferencial, realizando comparaciones entre los diferentes tipos de sistemas diferenciales existentes en el mercado, dado a que no todos funcionan de la misma manera; es necesario considerar las aplicaciones, tamaños, pesos, esfuerzos, velocidades, etc. a las que será sometida la unidad diferencial para realizar una elección adecuada del tipo de diferencial necesario.
ABSTRACT

In this document, we performed a differential system design using CATIA V5 program and developed an analysis to improve performance, avoid mismatches in the system assembly, premature wear, overheating or damage by design. Also performed the machining process simulation in a 3-axis machine.

The design was based on alignments to obtain a good performance of this system, because when carried out in a suitable manner reduces the inefficiencies mentioned above. The design and analysis was based on a single type of differential (open differential).

The stability was achieved with an appropriate mathematical model thus achieved a correct calculation of the relationship between the gears and the exact measurements thereof.

The alignments are based on recommendations for improved performance of the differential unit, making comparisons between different types of differential systems in the market, given that not all work the same way, it is necessary to consider the applications, sizes, weights , effort, speed, etc.. which is subjected to the differential unit to perform a proper choice of the type of differential necessary.
INTRODUCCIÓN

Actualmente la importancia de fabricar componentes no sólo está en que éstos cumplan su función, si no que muestren un mejor desempeño y esto comienza en el diseño. El diseño es de vital importancia para obtener un prototipo de calidad, analizar sus posibles defectos o desventajas desde el boceto, antes de manufacturar y tener un cuidado especial en las piezas importantes, pues éstas deben mantener una precisión con una tolerancia mínima.

Uno de los aspectos más importantes en el ensamblaje del diferencial es el contacto entre dientes de los engranes y el juego que existe entre éstos, que permite exista una lubricación adecuada y el error de transmisión con el que se fabricarán los engranes se mantenga dentro de los límites de control, para evitar el ruido a la frecuencia de engranes. Para lograr esta condición es importante que cada uno de los componentes del diferencial cumpla con las especificaciones de ingeniería, así como garantizar que cuando el vehículo que se encuentre en operación no se alteren drásticamente los parámetros de ajuste de los diferentes elementos que componen el sistema y ocasionen fallas.

Se sabe que lo anterior no es fácil, debido a que los mecanismos y componentes se encuentran en movimiento y bajo cargas, ocasionando que cambien las condiciones iniciales de los ajustes, pero estos cambios no deben ser de tal magnitud que alteren el funcionamiento normal de los mismo, existen rangos de especificación y lo que se requiere conocer es hasta que punto los diseños actuales permiten absorber estas variaciones sin poner en riesgo el funcionamiento de los componentes.

El proceso de diseño implica aspectos matemáticos para determinar en que puntos debe haber mayor resistencia o rigidez, donde se puede eliminar peso y reducir o aumentar el tamaño de la geometría.
Uno de los puntos más importantes en los procesos de fabricación de partes mecánicas, es la generación de diseños que incrementen la calidad con procesos de fabricación que permitan reducir costos. Sin embargo, es sumamente importante optimizar cualquier cambio, para ello es necesario analizar el desempeño de cada componente, durabilidad, costo, etc. La desventaja es que estos estudios suelen ser caros y de lento proceso.
ANTECEDENTES

El diseño del sistema diferencial comienza cuando los ingenieros se dieron cuenta que cuando un automóvil se desplaza en una curva, las ruedas exteriores deben girar más rápido que las interiores debido a que tienen que recorrer una mayor distancia en el mismo lapso de tiempo, esto significa que cuando un automóvil toma una curva, las ruedas deben avanzar a diferentes velocidades. Por tal motivo diseñaron los primeros automóviles con ruedas traseras que giraban de manera independiente, pero sólo una rueda estaba conectada al motor, esto ocasionó que al tener una sola rueda haciendo todo el trabajo se pierda agarre y tenga un bajo desempeño.

Por lo tanto, la propulsión en una sola rueda queda obsoleta. Pero si las dos ruedas están unidas a un mismo eje de manera que no giren de manera independiente, provocará que una de las ruedas tenga que derrapar. Así que los ingenieros encontraron la manera de conectar las dos ruedas traseras al motor sin derrapar ni deslizarse en las curvas. El dispositivo que hace esto posible es la parte trasera llamada diferencial por que puede propulsar las ruedas traseras a diferentes velocidades. A partir de éste sistema se han desarrollado varios sistemas diferenciales cada uno con características diferentes de rendimiento. Sin embargo, el sistema básico diferencial no queda obsoleto, pues se debe hacer un análisis detallado del tipo de uso o necesidades para decidir que tipo de sistema diferencial se debe utilizar.
ESTADO DEL ARTE

La generación de herramientas cada vez más sofisticadas, para un mercado más competitivo, requiere de la integración de diferentes ciencias, que permitan mejoras en operatividad, desempeño, y una integración a cadenas productivas. Un ejemplo que ha venido a revolucionar el mercado de la industria automotriz es el uso de los automóviles cada vez más sofisticados y con mejores niveles de desempeño, y que requieren de una interacción con el usuario y su medio de desarrollo.

El estudio de la ingeniería mecánica, automotriz, aeronáutica entre otras, permite ver al todo como un sistema en el que se busca la optimización global del sistema llamado automóvil, que permitan darle al usuario mayor confiabilidad en sus operaciones, hasta llegar a sistemas que cuentan con interacción entre máquinas y máquinas con humanos.

Pero el automóvil contiene un sin fin de sistemas que lo componen, por ejemplo el sistema diferencial. Aunque para algunos parezca un sistema de poca importancia, es esencial para un buen desempeño, pues en el sistema que debe cumplir con la tracción en las cuatro ruedas de manera correcta. Para efectuar este trabajo se han diseñado varios sistemas diferenciales, algunos de ellos han quedado obsoletos, pero el pionero fue el diferencial abierto y ha logrado ser la base de todos los nuevos diseños existentes.

Existen diversos y avanzados sistemas diferenciales en el mercado, todos diseñados para un uso específico. Por ejemplo: el diferencial autoblocante, diferencial bloqueable, diferencial viscoso o eléctrico. Sin embargo, el diferencial compuesto por engranes de semiejes y los piñones son utilizados aún debido a sus características propias, principalmente por su costo.
El diseño mecánico en la industria automotriz como aeronáutica, aún es poco abordado en México y en su mayoría los diseños de los diversos componentes se realizan fuera del país, uno de éstos son los ejes de tracción motriz donde la industria nacional sólo realiza la manufactura utilizando diferentes procesos de producción, sin embargo, siempre existe la necesidad de mejorar los diseños que permitan competir en el mercado globalizados y optimizar el producto.

Actualmente el sistema más sofisticado lo tiene Ferrari FF, pues es el primer modelo en equipar con tracción total, un sistema que, comercialmente, la marca denomina 4RM. Este sistema cuenta con un diferencial central inteligente que transmite el par al eje delantero, únicamente cuando el tren posterior pierde tracción, por lo que se estaría hablando de un modelo de tracción trasera, siempre y cuando las ruedas posteriores giren adecuadamente.

El sistema de tracción total 4RM basa su funcionamiento en una caja de transferencia situada sobre el eje delantero, que toma la fuerza del cigüeñal. La caja de transferencia cuenta con un sistema hidráulico y dos embragues multidisco, todos ellos controlados por un software que se encarga de transmitir la fuerza a cada una de las ruedas delanteras.
OBJETIVO

El objetivo de este trabajo es desarrollar el proceso de diseño de un sistema diferencial abierto, que consiste en el diseño de los engranes, semiejes y piñones. Una vez obtenido el diseño se realizan recomendaciones con base a lineamientos y lubricación para implementar mejoras en su desempeño.
Las dos principales funciones de un sistema diferencial son: permitir que las ruedas motrices giren a diferentes velocidades angulares relativas entre sí y para transferir energía a los mismos desde la transmisión. La primera función es importante para permitir el giro suave como puede verse en la figura 1, que ilustra un giro a la izquierda.

Figura 1- Diagrama de giro

Diagrama de giro

A partir del diagrama de giro mostrado anteriormente, es evidente que \(r_o \) es mayor que \(r_i \), por lo tanto la rueda exterior que viaja a lo largo de \(r_o \) tiene que cubrir más distancia que la rueda interior a lo largo de \(r_i \). Dado que ambas ruedas son del mismo diámetro, la rueda exterior tiene que completar más revoluciones que la rueda interior, para lograr esto debe girar más rápido. Si la diferencia de las velocidades no son adecuadas y las ruedas se posicionan a lo largo de un eje solamente, esto ocasionará que durante el giro de la rueda exterior pierda tracción y genere deslizamiento. Dando como resultado una reducción del rendimiento, inflexión y el aumento de desgaste de los neumáticos [1].
1.1 Tipos de diferenciales

Diferenciales abiertos: Hacen uso de un mecanismo de engranajes planetarios que distribuye el par por igual entre los ejes de transmisión al tiempo que permite que las ruedas giren a diferentes velocidades [2].

El eje de entrada transmite el par de la transmisión a un engranaje de tipo corona. Cuando el vehículo está viajando en una línea recta, el mecanismo se mantiene desembragado y la caja del diferencial gira a la misma velocidad que los ejes de transmisión. A medida que el vehículo entra en una curva, el juego de engranajes se acopla y el engrane de los piñones con los engranajes laterales permiten hacer girar a diferentes velocidades. [1]

![Figura 2 – Diferencial abierto](image-url)
1.2 Modelo dinámico del diferencial abierto

La fuerza transmitida por un neumático al suelo se separa en componentes longitudinales y laterales. La fuerza longitudinal es responsable del movimiento hacia adelante. Cuando el par aplicado a la rueda excede la fuerza longitudinal máxima que el neumático puede transmitir provocará un deslizamiento. La fuerza longitudinal máxima transmisible por el neumático es una función de la fuerza normal que actúa contra la superficie inferior de la cubierta del neumático y por tanto también una función de la cantidad de carga por encima de la cubierta del neumático.

En curvas de alta velocidad, el peso de un automóvil se desplaza desde el sentido de giro debido a la inercia, creando una mayor carga sobre la rueda exterior y una carga más pequeña en el interior. Por lo tanto, la máxima fuerza longitudinal transmisible es reducida para el neumático interior y aumentada para la llanta exterior. Así, la rueda exterior es capaz de manejar más torque mientras el neumático interior, menos. Como el par se divide por igual entre ambos ejes motrices en un diferencial abierto, la rueda interior pronto experimenta más torque que puede transmitir su neumático causando deslizamientos y pérdida de control. En condiciones de alto rendimiento, esta inestabilidad puede plantear un riesgo significativo para la seguridad de los ocupantes.

En las figuras: 3, 4 y 5 se representa un modelo de las cargas verticales, pares axiales y velocidad de rotación de la rueda interior y exterior [3]
CAPÍTULO 1: Marco Contextual

Figura 3 – Torque del eje, (interno, externo)

Figura 4 – Carga vertical, interno (punteada), externo (continua)

Figura 5 – Velocidad de las llantas, interna (punteada), externa (continua)
1.3 Redistribución del par de manera apropiada

Para obtener una redistribución de manera apropiada, lo ideal es que la rueda exterior reciba una cantidad cada vez mayor del par en el tiempo de cambios de carga, consecuentemente se desarrollan soluciones diferentes para mitigar los problemas experimentados por diferenciales abiertos durante la gestión de giros a alta velocidad.

1.4 Tipos de diferenciales de deslizamiento limitado

1.4.1 Diferencial autoblocante

Una de las soluciones al problema de la distribución de par entre los ejes no apropiado, es el diferencial de tipo autoblocante, en el que sólo se anula una parte del efecto diferencial, es decir, limita la posibilidad de que una rueda gire libre respecto a la otra según un trabajo fijo predeterminado, que se expresa como una relación entre las dos ruedas en tanto por ciento, de forma que el cero corresponde a un diferencial libre, y el 100 a ruedas que giran solidarias, es decir, con el diferencial completamente bloqueado (como un eje rígido).

Los hay de varios tipos, aunque tradicionalmente los más utilizados eran los autoblocantes mecánicos, en los que al detectar diferencia de giro entre los semiejes la resistencia de un muelle hace actuar un mecanismo que aumenta el rozamiento interno limitando el efecto diferencial. En la actualidad se utilizan mucho los diferenciales autoblocantes electrónicos, que utilizan los sensores del ABS y frenan las ruedas que pierden adherencia, incluso limitan momentáneamente la potencia del motor para que no se pierda la capacidad de tracción por ellas [4].
CAPÍTULO 1: Marco Contextual

El par y características del eje de velocidad se detallan a continuación. [2]

Figura 6 - Diferencial autoblocante

Figura 7 – Torque del eje, interno (línea punteada), externo

Figura 8 – Velocidad de las llantas, interna (línea punteada), externa
1.4.2 Diferencial viscoso

En este diferencial no existe una unión mecánica entre los semiejes, sino a través de un fluido de alta viscosidad. Este fluido baña un cilindro en el que hay dos juegos de discos intercalados, cada uno de ellos solidario con uno de los semiejes del diferencial. Si la diferencia de giro entre estos dos juegos de discos no es grande (por ejemplo, la que se produce entre las ruedas de cada lado al tomar una curva) se mueven casi independientemente y a medida que la diferencia de giro aumenta, los que giran más rápido tienden a arrastrar a los otros. Si se trata de un diferencial trasero y una de las dos ruedas patinan, arrastrará en alguna medida a la otra, lo que mejora la tracción. Este sistema puede estar unido a un diferencial normal, como sistema autobloqueante; en éste caso se denomina acoplamiento viscoso. El principal inconveniente del sistema viscoso de transmisión es que su funcionamiento está condicionado por la temperatura del fluido, que pierde viscosidad a medida que se calienta [4].

Otros tipos de diferenciales autoblocantes son los torsen y los electrónicos.
El principio de los diferenciales es el mismo en la mayoría de carros de pasajeros que usan ejes traseros. El ensamblaje de los ejes traseros es hecho de diferentes maneras, dependiendo del costo, requerimientos de torque y preferencias de ingeniería. El piñón y la corona son ajustados y lapeados juntos como un par (hermanamiento) cuando éstos son manufacturados, de esta manera opera silenciosamente en el vehículo. Cuando son instalados en el porta diferencial, deben ser alineados de la misma manera que cuando fueron lapeados para garantizar que en la operación del vehículo sean silenciosos. La alineación es mantenida precargando los rodamientos, de esta manera los componentes no se pueden mover de su posición inicial [6].

El piñón en los ejes traseros está montado sobre rodamientos dentro del porta diferencial. Utiliza rodamientos de rodillos cónicos que están situados en dos zonas a lo largo del piñón maquinadas para tal fin, las tazas o pistas exteriores de los rodamientos de rodillos cónicos son montadas en los alojamientos del porta diferencial.

La precarga en los rodamientos del piñón puede darse de dos maneras, una vez que se ha ajustado la distancia de montaje del mismo. Un método es usando lainas de ajuste entre los rodamientos, la precarga se logra adicionando o removiendo éstas lainas hasta alcanzar una separación efectiva entre rodamientos. Después de haber apretado la tuerca del piñón al torque especificado, se mide la precarga verificando el torque del piñón con un torquímetro o transductor de la máquina. Si el torque es demasiado alto, se adicionan lainas, si es bajo, se quitan lainas. El segundo y más popular ajuste de recarga en piñón es el uso de espaciador colapsible, la tuerca del piñón es apretada con el espaciador en su lugar hasta que se alcanza el torque apropiado en el piñón.
Para lograr esta condición es importante que el maquinado del porta diferencial cuente con las especificaciones de ingeniería, y con esto se logren alcanzar tanto la precarga, como la alineación correcta en el montaje del piñón.

2.1 Desalineamiento

El desalineamiento cuesta tiempo y dinero; además es el responsable de más del 50% de las fallas en maquinaria rotativa. Estas fallas incrementan los tiempos de paro de las máquinas, lo cuál se traslada directamente en altos costos. Adicionalmente, un incorrecto alineamiento da lugar a grandes cargas en los componentes de las máquinas, obteniendo como resultado un incremento en daños y cambios de piezas constantemente [7]

El desalineamiento puede causar:

- Incremento en las cargas en los rodamientos
- Reducción en la vida del rodamiento
- Incremento en daño de los sellos
- Incremento en vibraciones
- Incremento de ruido
- Incremento en consumo de energía

Ventajas de la alineación adecuada

- Optimización en la vida de los rodamientos
- Mínimo estrés en acoplamientos, reduciendo el riesgo de sobrecalentamiento y paros no planeados
- Mínimo daño de sellos, bajando el riesgo de contaminación y fuga del lubricante.
- Bajo consumo de energía
- Mínimo ruido y vibración
- Incremento del tiempo de uso de la maquinaria
3.1 Diseño del proyecto

El diseño de éste sistema diferencial es aplicable para un vehículo ligero de un motor medio de aproximadamente 70 - 100 hp.

Considerando las alternativas que se existen para diseñar el diferencial, se hace una comparación para decidir que tipo de diferencial será el indicado para diseñar.

Para esta decisión, se contempla la información contenida en la tabla 1.

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>FACTOR DE PESO</th>
<th>AUTOBLOCANTE LSD</th>
<th>DIFERENCIAL VISCOSO</th>
<th>DIFERENCIAL TORSEN</th>
<th>DIFERENCIAL ABIERTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Puntuación</td>
<td>Clasificación</td>
<td>Puntuación</td>
<td>Clasificación</td>
<td>Puntuación</td>
</tr>
<tr>
<td>PRECIO</td>
<td>0.0</td>
<td>3.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DURABILIDAD</td>
<td>0.1</td>
<td>2.02</td>
<td>4.04</td>
<td>5.05</td>
<td>5.05</td>
</tr>
<tr>
<td>PERSONALIZACIÓN</td>
<td>0.3</td>
<td>5.00</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>RENDIMIENTO EN GIRO</td>
<td>0.4</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>RENDIMIENTO EN RECTA</td>
<td>0.2</td>
<td>4.00</td>
<td>4.08</td>
<td>4.08</td>
<td>4.08</td>
</tr>
<tr>
<td>RENDIMIENTO TOTAL</td>
<td>19.00</td>
<td>4.50</td>
<td>15.00</td>
<td>3.50</td>
<td>18.00</td>
</tr>
</tbody>
</table>

Como se observa en la anterior tabla el mejor sistema es el autoblocante LSD. Sin embargo, este diseño sería costoso de fabricar, por contener muchas piezas de formas complejas. Debido a que la aplicación del diseño es de un auto ligero, el adecuado es el sistema diferencial abierto.
CAPÍTULO 3: Modelado

3.2 Modelo matemático

Los dientes de engranajes cónicos están provistos de acuerdo con el sistema estándar de proporciones de diente usado en engranajes rectos. Sin embargo, el ángulo de presión de todos los engranajes cónicos de diseño estándar se limita a 20°. Piñones con un pequeño número de dientes son agrandados automáticamente.

La geometría y la identificación de las partes de engranajes cónicos se ejemplifican en la Figura 10.

Figura 10 – Engranaje cónico
3.2 Cálculos de engranajes cónicos

Un engranaje es un mecanismo simple formado por ruedas dentadas que giran alrededor de ejes cuya posición es relativamente invariable. Una de las ruedas arrastra a la otra por la acción de los dientes que entran sucesivamente en contacto. La rueda de menor número de dientes se llama piñón. Las ruedas dentadas que efectúan la transmisión son cónicas. Para asegurar una transmisión sin deslizamiento los vértices de las ruedas de un engranaje cónico deben coincidir con el punto de intersección de los ejes de ambas [6]. En la ecuación 1.1 se tiene que z_1 y z_2 son los números de dientes del engranaje, el ángulo del eje Σ, y para calcular el ángulo de paso del cono δ_1 y δ_2. Se tiene:

Ecuación 1.1

\[
\tan \delta_1 = \frac{\sin \Sigma}{\frac{Z_2}{Z_1} + \cos \Sigma}
\]

\[
\tan \delta_2 = \frac{\sin \Sigma}{\frac{Z_1}{Z_2} + \cos \Sigma}
\]

Generalmente, el ángulo del eje $\Sigma = 90 \, ^\circ$ es más utilizada. En caso de ser 90° se denomina "unidad de engranaje cónico en ángulo recto".

Ecuación 1.2

Cuando $\Sigma = 90 \, ^\circ$, la ecuación (1.1) se convierte en:

$$\delta_1 = \tan^{-1}\left(\frac{Z_1}{Z_2}\right)$$

$$\delta_2 = \tan^{-1}\left(\frac{Z_2}{Z_1}\right)$$
Cuando los engranajes tienen $\Sigma = 90^\circ$. Su velocidad proporción $z_1 / z_2 = 1$.

La figura 11 representa el juego de los engranajes cónicos. El juego se debe considerar en pares debido a que los ángulos de paso δ_1 y δ_2 están restringidos por la relación de engranaje Z_1 / Z_2. En la vista facial, es normal que la línea de contacto de paso en los conos dentro de los engranajes cónicos parezca ser similar a los engranajes de dientes rectos.
3.3 Dimensionado

El diferencial de tipo abierto, funciona con engranes de tipo cónico recto. Para obtener el cálculo de las principales características del sistema, se hace referencia a la tabla 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Parámetro</th>
<th>Símbolo</th>
<th>Fórmula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ángulo de eje</td>
<td>Σ</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Módulo</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ángulo de presión transversal</td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Número de dientes</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Diámetro primitivo</td>
<td>de</td>
<td>$z \cdot m$</td>
</tr>
<tr>
<td>6</td>
<td>Ángulo de paso del cono</td>
<td>δa</td>
<td>$\tan^{-1} \frac{\sin \Sigma}{Z_2} \left(\frac{Z_2}{Z_1} + \cos \Sigma \right)$</td>
</tr>
<tr>
<td>7</td>
<td>Distancia del cono</td>
<td>R_o</td>
<td>$\frac{d_2}{2 \sin \delta_2}$</td>
</tr>
<tr>
<td>8</td>
<td>Ancho de cara</td>
<td>b</td>
<td>debe ser menor a R_o</td>
</tr>
<tr>
<td>9</td>
<td>Addendum (Cabeza de diente)</td>
<td>h_a</td>
<td>$1.00 m$</td>
</tr>
<tr>
<td>10</td>
<td>Dedendum (Pie de diente)</td>
<td>h_f</td>
<td>$1.25 m$</td>
</tr>
<tr>
<td>11</td>
<td>Ángulo del dedendum</td>
<td>θ_f</td>
<td>$\tan^{-1} \left(\frac{h_f}{R_o} \right)$</td>
</tr>
<tr>
<td>12</td>
<td>Ángulo de addendum</td>
<td>θ_a</td>
<td>$\tan^{-1} \left(\frac{h_a}{R_o} \right)$</td>
</tr>
<tr>
<td>13</td>
<td>Ángulo del cono exterior</td>
<td>δ_a</td>
<td>$\delta + \theta_2$</td>
</tr>
<tr>
<td>14</td>
<td>Ángulo de raíz del cono</td>
<td>δ_f</td>
<td>$\delta - \theta_f$</td>
</tr>
<tr>
<td>15</td>
<td>Diámetro exterior</td>
<td>dae</td>
<td>$d + 2h_a \cos \delta$</td>
</tr>
<tr>
<td>16</td>
<td>Paso de corona</td>
<td>X</td>
<td>$R_a \cos \delta - h_a \sin \delta$</td>
</tr>
<tr>
<td>17</td>
<td>Ancho de la cara axial</td>
<td>X_b</td>
<td>$\frac{b \cos \delta_a}{\cos \theta_a}$</td>
</tr>
<tr>
<td>18</td>
<td>Diámetro interno</td>
<td>dai</td>
<td>$d_a - \frac{2b \sin \delta_a}{\cos \theta_a}$</td>
</tr>
</tbody>
</table>
El dimensionado se calculó en un archivo Excel. Éste puede ser consultado en los anexos. Hay dos tipos principales de engranaje en los componentes del conjunto diferencial: los engranajes laterales grandes y los engranajes planetarios más pequeños. Ambos son del diseño de bisel diente recto. En la tabla 3 se encuentra el resumen de las propiedades más sobresalientes de los engranajes diseñados.

Tabla 3 - Propiedades de los engranajes diseñados

<table>
<thead>
<tr>
<th>Engranaje</th>
<th>Piñón planetario</th>
<th>Engranajes laterales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo</td>
<td>8.75</td>
<td>8.75</td>
</tr>
<tr>
<td>Ángulo de presión transversal</td>
<td>20°</td>
<td>20°</td>
</tr>
<tr>
<td>Número de dientes</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Ángulo del eje</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>Paso del diámetro</td>
<td>59.48</td>
<td>118.97</td>
</tr>
<tr>
<td>Ángulo de paso</td>
<td>26.56</td>
<td>63.43</td>
</tr>
</tbody>
</table>

Un gran número de normas relacionadas con el diseño de engranajes (Tabla 4) están disponibles en las organizaciones de estándares internacionalmente reconocidos, como ISO, DIN y AGMA. MITCalc es un paquete de cálculo en la forma de un archivo de Microsoft Excel. La hoja de cálculo de macro tiene tales estándares de diseño de engranajes programados [19]. El componente "engranajes cónicos" del paquete se utilizó para determinar las fuerzas generadas en los engranajes, así como para evaluar su diseño. Un resumen detallado de los resultados se incluye en el anexo.
Tabla 4 - Coeficientes de seguridad

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Piñón</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente de seguridad para la durabilidad de la superficie</td>
<td>SH</td>
<td>0.33</td>
</tr>
<tr>
<td>Coeficiente de seguridad para una mayor durabilidad de flexión</td>
<td>SF</td>
<td>0.49</td>
</tr>
<tr>
<td>Seguridad en contacto en un tiempo de sobrecarga</td>
<td>SHst</td>
<td>0.50</td>
</tr>
<tr>
<td>Seguridad de flexión en un tiempo de sobrecarga</td>
<td>SFst</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Tabla 5 - Restricciones de diseño

<table>
<thead>
<tr>
<th>Tipo de sistema diferencial</th>
<th>Diferencial abierto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso máximo</td>
<td>42 kg</td>
</tr>
<tr>
<td>Potencia</td>
<td>100 hp</td>
</tr>
<tr>
<td>Material</td>
<td>Acero 1045</td>
</tr>
<tr>
<td>Longitud máxima</td>
<td>905 mm</td>
</tr>
<tr>
<td>Máquina</td>
<td>3 ejes</td>
</tr>
</tbody>
</table>

3.3 Desarrollo del modelo (Piñón)

Como se mencionó anteriormente, el desarrollo del modelo se realiza en CATIA V5R20. Una vez calculadas las dimensiones, se utilizan algunos de éstos datos para comenzar con la elaboración del engranaje.

Z – Número de dientes
m – Módulo
a – Ángulo de presión transversal
de – Diámetro primitivo
dai – Diámetro interno de punta
dfe – Diámetro de raíz
dae – Diámetro externo de punta

Estos datos se obtuvieron de tabla elaborada en Excel y para poder usarlos es necesario declararlos como radios y no como diámetros para tener una forma adecuada.

Para comenzar, dentro del escritorio o en todos los programas se inicia CATIA V5 y el primer paso es configurar dentro del programa algunos parámetros para poder hacer uso de fórmulas y parámetros.

TOOLS->OPTIONS->Infrastructure-> Part Infrastructure, en la pestaña **Display**, se selecciona **Parameters and Relations**. (Figura 12)
Después, en **Options->General** dentro de **Parameters and Measures** debe seleccionarse **With value** así también **With formula** dentro de **Parameters Tree View**. (Figura 13)

Ahora el *product* se desarrollará en **start – shape - generative shape design**. Como se elaborarán varios engranajes, es necesario dejar parametrizados estos datos de entrada. Entonces para facilitar el proceso, se hará uso de fórmulas que dependan sólo de los números de diente, el módulo y el ángulo. Esto mediante las fórmulas mostradas en la figura 14.
Ahora se declaran laws que definen la involuta. En el icono de FOG, el nombre law x add parameters, t and x añada los tipos de valores y aceptar (figura 15).

Figura 15 – Definición de involuta en X

Lo mismo debe hacerse para y. Esta opción de law ayudará a crear puntos que definen ranuras para la involuta. La involuta es la línea que se traza del punto que pertenece a la línea que está siempre tangente a la base del cilindro de engranajes. Se utiliza para el perfil de diente. De esta manera se obtiene lo siguiente (Figura 16)

Figura 16 – Definición de involuta Y
Ahora es el momento para empezar a crear puntos para la involuta. Desde el clic en el ícono de punto, se selecciona el plano XY, en el cuadro H se agrega la fórmula de la siguiente manera (Figura 17)

![Figura 17 – Definición del punto](image)

Ahora se le pedirá en el cuadro de diálogo Editar fórmula. Escriba: Relaciones \(x \). Evaluar (0) (Figura 18)

![Figura 18 – Editor de fórmula](image)
El paso anterior se repite, en el cuadro abierto para la definición del punto, se edita fórmula en el recuadro V, y se escribe: \textit{Relaciones} y. \textit{evaluar} (0). De esta manera se obtiene un punto de partida para la involuta. Se repite este paso para evaluar de \textit{Evaluate(0.1) a Evaluate(0.5)}. Se obtiene lo siguiente (Figura 19)

Ahora se crea un \textit{spline} desde la barra de \textit{Wireframe} y se seleccionan los 6 puntos generados, de esta manera se tiene una línea que da forma al perfil del diente y se dibuja un círculo en el centro cuyo radio sea el de (dai).
Ahora hay que extrapolar la involuta con la siguiente fórmula: \((rb - rf) \times 1.5\) (Figura 21)

Dentro del mismo plano, se dibuja otro círculo de radio \((df)\) y dentro de la barra operations, hay que dar clic en corner y seleccionar el círculo y la involuta, esto con el fin de evitar sobrantes de la interpolación. Dentro de la misma barra, hay que seleccionar la herramienta trim y con ello quitar el sobrante de la línea respecto al círculo.

Figura 22 – Generación del diente (A)
Desde la misma barra de operations, fuera del sketch, se selecciona el ícono Symmetry definition para copiar la línea interpolada de forma simétrica. Ahora se genera un nuevo círculo de radio (dae) para delimitar la forma del perfil. Posteriormente dentro de Sketch usando la herramienta trim ubicada dentro de la barra de operations, se puede quitar las líneas sobrantes para que el perfil quede de la siguiente manera. (Figura 23)

Ya con el primer perfil dibujado, es posible hacer los demás de manera más sencilla, haciendo uso de la opción Circular pattern que está ubicada en la barra Replication fuera del Sketch. Después de dar clic sobre Circular pattern, hay que seleccionar el número de repeticiones que se necesitan, en este caso son 8 perfiles. Finalmente se hace uso de la opción Join definition que se encuentra en la barra de operations para unir cada uno de los perfiles generados. Quedando de la siguiente manera (Figura 24)
Ahora que se tiene el perfil completo del engrane, es posible generar el sólido que dará forma al piñón. Se debe generar un Sketch dentro del plano zx o perpendicular al perfil creado, posteriormente se dibuja una línea con el ángulo de paso declarado anteriormente, de igual manera se crea otro Sketch para dibujar una línea perpendicular al perfil que servirá de apoyo. (Figura 25)
Con la herramienta *Revolution surface definition* que se encuentra en la barra *Volumes* fuera de *Sketch*, es posible revolucionar la línea con ángulo de paso ya definido, se revoluciona respecto a la línea vertical creada anteriormente. (Figura 26)

![Figura 26 – Creación de la superficie inferior](image)

Con la opción *Projection definition* ubicada en la barra de herramientas *operations*, dentro del Sketch, se puede proyectar el perfil del engrane sobre el elemento revolucionado, únicamente se selecciona el perfil que se requiera proyectar sobre el área revolucionada. (Figura 27)

![Figura 27 – Perfil proyectado](image)
Después de la proyección realizada anteriormente, hay que salir del Sketch y se crea un nuevo plano que sea paralelo al plano anterior pero con la distancia de paso del diámetro y sobre ese mismo plano se proyecta el perfil primario que se encuentra en el área revolucionado. Usando la herramienta Project 3D elements, seleccionando el perfil y el nuevo plano donde se desea proyectar el perfil. (Pagina 28)

Se repite el proceso, sobre el nuevo plano, se hace una línea con el mismo ángulo utilizado anteriormente, y de igual manera se revoluciona respecto a la misma línea de apoyo creado anteriormente, usando la herramienta Project 3D elements. (Figura 29)
Después de tener estos perfiles proyectados, se usa la herramienta *multi- Section Surface Definition* que se encuentra en la barra *surfaces* para crear la superficie, lo único que se hace es seleccionar cada uno de los perfiles y automáticamente se crea la superficie. Queda de la siguiente manera. (Figura 30)

Ahora se hace uso de *Split* para quitar las superficies no necesarias, este comando se encuentra en la barra *Operations*, sólo se debe seleccionar cada superficie no necesaria respecto a las superficies que definen al piñón (Figura 31)
Finalmente, sólo queda hacer el piñón formado, en un sólido. Para lograr este paso es necesario cambiar de módulo, de Generative shape design a part design, posteriormente se crea un Body desde la barra de herramientas y se usa el comando Close surface, de esta manera se tiene el piñón completo. Con el mismo método se crean las demás piezas mostradas en las siguientes figuras.

Figura 32 – Corona
Figura 33 – Piñón
Figura 34 – Engrane
Figura 35 – Tornillo
Haciendo el ensamble de las piezas, El sistema diferencial queda de la siguiente manera (Figura 36 y 37)

Figura 36 – Ensamble final A

Figura 37- Ensamble final B
CAPÍTULO 4: MAQUINADO

CATIA Machining (maquinado) consiste en una serie de aplicaciones software de fácil uso, que permiten que el usuario simule el mecanizado NC (Control Numérico) y la trayectoria de la herramienta o código ISO en un entorno CAM (fabricación asistida por computadora) integrado en la plataforma PLM CATIA.

Los programadores pueden alternar fácilmente entre la definición de la trayectoria de la herramienta y la validación, sin perder tiempo efectuando la transferencia de datos o preparación. Esto elimina los problemas de interfaz y reduce considerablemente los plazos totales de fabricación.

Al prever un rápido análisis de la trayectoria de la herramienta, CATIA Machining optimiza las etapas de ajuste fino y modificación, integrando el diseño y mecanizado en un mismo entorno. Además, el soporte del OS 64-bit posibilita una gran gestión de programación NC y acorta en la mitad los plazos de computación. [5]

CATIA Machining (maquinado):

- Las aplicaciones CATIA para diseño y mecanizado están totalmente integradas, por lo que ya no existe la fase de conversión de datos entre las aplicaciones de software autónomas.
- CATIA machining (maquinado) puede reutilizar los procesos genéricos de mecanizado para aumentar la automatización y reducir los plazos de programación NC.
- Simular. La simulación abarca desde la eliminación del material y análisis del material restante hasta el funcionamiento realista de las máquinas, basado en el código ISO.

A partir del modelo obtenido, se usará como ejemplo el piñón para hacer el proceso en CATIA machining (maquinado).
A partir de la pieza (piñón) de la figura 38

![Figura 38 - Piñón final](image)

Para hacer la simulación del proceso, se usa el módulo *Advanced Machining* que se encuentra en *Start - Machining – Advanced Machining*. (Figura 39)

![Figura 39- Menú de maquinado](image)
En éste caso es posible utilizar una máquina de 3 ejes. Primero se crea el *Rough stock*, y después en la opción *Part operation*, se define lo siguiente (Figura 40):

Los procesos necesarios para el maquinado del engranaje fueron dos básicamente, un *Roughing* inicial para quitar el exceso de material en la parte dentada, el segundo proceso; un *multi-Axis Sweeping* para definir los dientes, y se repiten los pasos para la parte trasera. Para cada uno de éstos procesos se necesita ajustar el tipo de herramienta que se va utilizar, la forma en que hará el corte, etc. Como se puede observar en la figura 41. El árbol de operaciones se observa en la figura 42.
Una vez ajustada la máquina con la herramienta adecuada se inicia la simulación del proceso, esta simulación permite observar la trayectoria que realizará la herramienta y un tiempo aproximado en cada conjunto de procesos. Como se presenta en la figura 43:

![Figura 43 – Simulación del proceso](image)

Uniendo los procesos el producto final quedo de la siguiente manera (Figura 44 y 45)

![Figura 44 – Proceso de maquinado](image)
4.1 Generación del código

El código se obtiene partiendo del proceso terminado, como primer paso se debe dar clic secundario sobre Manufacturing program que se encuentra en el árbol de operaciones. Después de dar clic, se selecciona la opción manufacturing program object y en la nueva ventana se elige la opción Generate NC code interactively.

Subsiguientemente en la pestaña NC code se despliega el IMP Post-Processor file y se escoge como opción Acramatic 2100. Una vez realizado este paso se da clic en Execute para generar el código en una carpeta específica (Figura 46)
El código lo expide en un formato de bock de notas, dado a que es muy extenso, sólo se presenta en la siguiente imagen la forma que CATIA V5 presenta el código. (Figura 47 y 48)
4.2 Lubricación

La eficiencia con la cual un engranaje opera no depende sólo de la forma en la que son usados, sino también del lubricante que les sea aplicado. Los lubricantes para engranajes tienen varias funciones importantes.

Cuando los engranajes transmiten potencia, los esfuerzos sobre sus dientes se concentran en una región pequeña y ocurre en un tiempo corto. Las fuerzas que actúan en esa región son muy elevadas, si los dientes de los engranajes entran en contacto directo, los efectos de la fricción y el desgaste destruirán rápidamente los engranajes. La principal función de un lubricante para engranajes es reducir la fricción entre los dientes del engranaje y de esta forma disminuir cualquier desgaste resultante. Idealmente, esto se logra por la formación de una película delgada de fluido la cual mantiene separadas las superficies de trabajo.

Refrigeración

Particularmente en engranajes cerrados, el lubricante debe actuar como un refrigerante y extraer el calor generado a medida que el diente rueda y se desliza sobre otro.

Protección

Los engranajes deben ser protegidos contra la corrosión y la herrumbre.

Mantener la limpieza

Los lubricantes para engranajes deben sacar todos los desechos que se forman durante el encaje de un diente con otro.
4.3 Posibles fallas en los dientes de los engranajes

- Fatiga superficial
- Picadura inicial o *pitting*
- Picadura destructiva
- Descostrado
- Desgaste y ralladura
- Deformación plástica o por sobrecarga
- Ruptura de dientes
- Otros procesos de falla

Métodos para prevenir el *pitting* (picadura inicial)

- Reducir las cargas sobre los engranajes o modificando su diseño, por ejemplo alterando el diámetro, el ancho de los dientes o el número de dientes.
- Usar componentes de acero con tratamientos térmicos de endurecimiento superficial para reducir las inclusiones.
- Mejorar el acabado superficial de los dientes.

Prevención de ralladura.

- Operar con menor carga.
- Uso de lubricantes EP.
- Mejorar el acabado superficial.
- Incrementar la velocidad de operación.
- Enfriamiento.

Prevención del desgaste abrasivo

- Engranajes endurecidos en su superficie.
- Mantener sellos de aceite herméticos.
- Venteos o respiraderos con filtros.
- Lubricantes de alta viscosidad.
• Cambiar el aceite periódicamente y filtrarlo en sistemas de circulación.
• Hábitos de limpieza durante el mantenimiento.

Prevención de fatiga puede ser minimizada:
• Reduciendo la carga sobre el engranaje.
• Incrementando el tamaño del diente o el ancho de la cara.
• Incrementando el diámetro del engranaje.
• Incrementando el radio de la raíz.
• Tecnología de fabricación.
CONCLUSIONES

Los resultados de este informe han ilustrado la metodología de diseño del sistema diferencial y el conjunto de transmisión. Los procesos realizados muestran todas las consideraciones de diseño necesarias en la elaboración de un sistema diferencial.

Se concluye que para desarrollar un sistema diferencial eficiente es necesario tomar en cuenta una serie de parámetros, los cuales se tienen que analizar detalladamente para la elaboración del sistema. Sin embargo, el problema principal del diseño, no es propiamente el diseño, sino los demás procesos que hay detrás de éste, la manufactura, el ensamblaje, etc.

El rendimiento de un rodamiento o movimiento mecánico puede verse seriamente afectado por el empleo de erróneos procedimientos de montaje, o por la falta de cuidado durante el mismo. La limpieza del entorno durante el montaje de un sistema mecánico es un factor esencial para que éste alcance su vida máxima de funcionamiento. Los rodamientos de rodillos cónicos en su embalaje original están convenientemente protegidos contra la humedad y la oxidación mediante una impregnación de lubricante.

Rebabas, partículas extrañas o alojamientos deformados pueden ser el origen de desalineaciones sobre los rodamientos. Debe además tenerse gran cuidado de no golpear, marcar o dañar de cualquier otro modo los componentes durante su montaje, ésta es también una posible causa de desalineaciones que conducen al funcionamiento defectuoso, y a la pérdida del correcto reglaje de los componentes.
REFERENCIAS

BIBLIOGRAFÍA

ANEXO 1: Cálculos del sistema diferencial
Dimensiones básicas del engranaje

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Número de dientes del piñón / engranaje</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6.2 Módulo Transversal (externo, medio e interior)</td>
<td>met, mmt, mit</td>
<td>8.7500</td>
<td>7.4358</td>
</tr>
<tr>
<td>6.3 Módulo normal (externo, medio e interior)</td>
<td>men, mmn, min</td>
<td>8.7500</td>
<td>7.4358</td>
</tr>
<tr>
<td>6.4 Longitud del cono (externo, medio e interior)</td>
<td>R_{e}, R_{m}, R_i</td>
<td>78.262</td>
<td>66.507</td>
</tr>
<tr>
<td>6.5 Paso del cono</td>
<td>a</td>
<td>28.5651</td>
<td>63.4349 [°]</td>
</tr>
<tr>
<td>6.6 Ángulo de paso del cono</td>
<td>δ_a</td>
<td>35.0229</td>
<td>67.7189 [°]</td>
</tr>
<tr>
<td>6.7 Dedendum cono de ángulo</td>
<td>δ_f</td>
<td>21.0094</td>
<td>53.7279 [°]</td>
</tr>
<tr>
<td>6.8 Diámetro de punta (exterior)</td>
<td>d_{ae}</td>
<td>80.818</td>
<td>145.344 [mm]</td>
</tr>
<tr>
<td>6.9 Diámetro de punta (medio)</td>
<td>d_{am}</td>
<td>77.177</td>
<td>123.428 [mm]</td>
</tr>
<tr>
<td>6.10 Diámetro de punta (interior)</td>
<td>d_{ai}</td>
<td>63.536</td>
<td>101.612 [mm]</td>
</tr>
<tr>
<td>6.11 Diámetro primitivo (externo)</td>
<td>d_e</td>
<td>70.000</td>
<td>140.000 [mm]</td>
</tr>
<tr>
<td>6.12 Diámetro de paso (medio)</td>
<td>d_{m}</td>
<td>59.486</td>
<td>118.972 [mm]</td>
</tr>
<tr>
<td>6.13 Diámetro de paso (interior)</td>
<td>d_i</td>
<td>48.972</td>
<td>97.944 [mm]</td>
</tr>
<tr>
<td>6.14 Diámetro de raíz (externo)</td>
<td>d_{fe}</td>
<td>56.382</td>
<td>128.026 [mm]</td>
</tr>
<tr>
<td>6.15 Diámetro de raíz (medio)</td>
<td>d_{fm}</td>
<td>47.914</td>
<td>108.796 [mm]</td>
</tr>
<tr>
<td>6.16 Diámetro de raíz (interior)</td>
<td>d_{fi}</td>
<td>39.445</td>
<td>89.567 [mm]</td>
</tr>
<tr>
<td>6.17 Addendum angle</td>
<td>ρ_{a}</td>
<td>8.4578</td>
<td>4.2389 [°]</td>
</tr>
<tr>
<td>6.18 Dedendum angle</td>
<td>ρ_{f}</td>
<td>5.9556</td>
<td>9.7070 [°]</td>
</tr>
<tr>
<td>6.19 Addendum (externo)</td>
<td>h_{ae}</td>
<td>11.6375</td>
<td>5.8625 [mm]</td>
</tr>
<tr>
<td>6.20 Addendum (medio)</td>
<td>h_{am}</td>
<td>9.8895</td>
<td>4.9820 [mm]</td>
</tr>
<tr>
<td>6.21 Addendum (interior)</td>
<td>h_{ai}</td>
<td>8.1416</td>
<td>4.1014 [mm]</td>
</tr>
<tr>
<td>6.22 Dedendum (externo)</td>
<td>h_{fe}</td>
<td>7.6125</td>
<td>13.3875 [mm]</td>
</tr>
<tr>
<td>6.23 Dedendum (medio)</td>
<td>h_{fm}</td>
<td>6.4691</td>
<td>11.3767 [mm]</td>
</tr>
<tr>
<td>6.24 Dedendum (interior)</td>
<td>h_{fi}</td>
<td>5.3257</td>
<td>9.3659 [mm]</td>
</tr>
<tr>
<td>6.25 Ángulo de presión normal</td>
<td>α_n</td>
<td>20.0000</td>
<td>[°]</td>
</tr>
<tr>
<td>6.26 Ángulo de presión transversal</td>
<td>α_t</td>
<td>20.0000</td>
<td>[°]</td>
</tr>
<tr>
<td>6.27 Ángulo helix</td>
<td>β</td>
<td>0.00</td>
<td>[°]</td>
</tr>
<tr>
<td>6.28 Ángulo de base helix</td>
<td></td>
<td>0.0000</td>
<td>[°]</td>
</tr>
<tr>
<td>6.29 Ángulo de presión en el cilindro de inclinación</td>
<td>α_{wn}</td>
<td>20.0000</td>
<td>[°]</td>
</tr>
<tr>
<td>6.30 Ángulo de presión transversal en el cilindro de paso</td>
<td>α_{wt}</td>
<td>20.0000</td>
<td>[°]</td>
</tr>
<tr>
<td>6.31 Paso circular</td>
<td>p_e</td>
<td>27.489</td>
<td>[mm]</td>
</tr>
<tr>
<td>6.32 Paso circular transversal</td>
<td>p_{te}</td>
<td>27.489</td>
<td>[mm]</td>
</tr>
<tr>
<td>6.33 Espesor del diente en el diámetro de paso</td>
<td>s_{ne}</td>
<td>15.8464</td>
<td>11.6425 [mm]</td>
</tr>
<tr>
<td>6.34 Espesor del diente en el diámetro de paso</td>
<td>s_{n}</td>
<td>13.4663</td>
<td>9.8938 [mm]</td>
</tr>
<tr>
<td>6.35 Espesor del diente en el diámetro de paso</td>
<td>s_{ni}</td>
<td>11.0861</td>
<td>8.1451 [mm]</td>
</tr>
<tr>
<td>6.36 Grosor del diámetro de la punta</td>
<td>s_{ae}</td>
<td>4.3513</td>
<td>9.8492 [mm]</td>
</tr>
<tr>
<td>6.37 Grosor del diámetro de la punta</td>
<td>s_{a}</td>
<td>3.8677</td>
<td>8.3699 [mm]</td>
</tr>
<tr>
<td>6.38 Grosor del diámetro de la punta</td>
<td>s_{ai}</td>
<td>3.1841</td>
<td>6.8905 [mm]</td>
</tr>
<tr>
<td>6.39 Unit tooth thickness on the tip diameter</td>
<td>s_{ae}</td>
<td>0.5201</td>
<td>1.1256 [modul]</td>
</tr>
</tbody>
</table>
DISEÑO DE UN SISTEMA DIFERENCIAL CON ALINEAMIENTOS

8.0 Índices cualitativos de un engranaje

<table>
<thead>
<tr>
<th>Índice</th>
<th>(e_1)</th>
<th>(e_5)</th>
<th>(e_{40})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relación de contacto Transversal</td>
<td>1.4286</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Total contact ratio</td>
<td>(\psi_1)</td>
<td>1.4286</td>
<td></td>
</tr>
<tr>
<td>Resonancia velocidad</td>
<td>(n_{EI})</td>
<td>48396.47</td>
<td>[rpm]</td>
</tr>
<tr>
<td>relación de resonancia</td>
<td>(N)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Peso aproximado de la transmisión</td>
<td>(m)</td>
<td>2.4512</td>
<td>[kg]</td>
</tr>
<tr>
<td>La eficiencia de la transmisión</td>
<td>(\mu)</td>
<td>96.63%</td>
<td></td>
</tr>
<tr>
<td>Viscosidad del lubricante recomendados</td>
<td>(\nu_{50})</td>
<td>498</td>
<td>498</td>
</tr>
</tbody>
</table>

9.0 Coeficientes para calculo de seguridad

<table>
<thead>
<tr>
<th>Coeficiente de seguridad</th>
<th>(Sh)</th>
<th>0.33</th>
<th>0.41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente de seguridad para un mayor durabilidad de flexión</td>
<td>(SF)</td>
<td>0.49</td>
<td>0.46</td>
</tr>
<tr>
<td>Seguridad en contacto en una sola vez sobrecarga</td>
<td>(Shst)</td>
<td>0.50</td>
<td>0.58</td>
</tr>
<tr>
<td>Seguridad de flexión de una sola vez sobrecarga</td>
<td>(SFst)</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td>Tensión de contacto nominal</td>
<td>(\Sigma H_{0})</td>
<td>2053.01</td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>(\Sigma H)</td>
<td>3348.69</td>
<td>2879.36</td>
</tr>
<tr>
<td>Límite de tensión</td>
<td>(\Sigma H_{G})</td>
<td>1121.64</td>
<td>1192.49</td>
</tr>
<tr>
<td>Esfuerzo de contacto admisible</td>
<td>(\Sigma H_{PP})</td>
<td>855.87</td>
<td>917.30</td>
</tr>
<tr>
<td>Esfuerzo nominal diente-raíz</td>
<td>(\Sigma F_{0})</td>
<td>610.33</td>
<td>643.93</td>
</tr>
<tr>
<td>Esfuerzo diente-raíz</td>
<td>(\Sigma F_{F})</td>
<td>1200.52</td>
<td>1266.61</td>
</tr>
<tr>
<td>Límite de esfuerzo</td>
<td>(\Sigma F_{G})</td>
<td>585.95</td>
<td>578.22</td>
</tr>
<tr>
<td>Esfuerzo de flexión admisible</td>
<td>(\Sigma F_{FP})</td>
<td>366.22</td>
<td>361.38</td>
</tr>
</tbody>
</table>

11.0 Condiciones de fuerza (fuerzas que actúan sobre el dentado)

<table>
<thead>
<tr>
<th>Condición</th>
<th>(F_t)</th>
<th>32276.64</th>
<th>[N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerza tangencial</td>
<td>(F_n)</td>
<td>34348.08</td>
<td>[N]</td>
</tr>
<tr>
<td>Fuerza nominal</td>
<td>(F_a)</td>
<td>5253.75</td>
<td>10507.49</td>
</tr>
<tr>
<td>Fuerza axial</td>
<td>(F_r)</td>
<td>10507.49</td>
<td>5253.75</td>
</tr>
<tr>
<td>Fuerza radial (rotación acc. a la imagen)</td>
<td>(F_a)</td>
<td>5253.75</td>
<td>10507.49</td>
</tr>
<tr>
<td>Fuerza axial (rotación opuesta a la imagen)</td>
<td>(F_r)</td>
<td>10507.49</td>
<td>5253.75</td>
</tr>
<tr>
<td>Fuerza radial (opuesta a la rotación de la imagen)</td>
<td>(v)</td>
<td>1.56</td>
<td>(< 5)</td>
</tr>
<tr>
<td>Velocidad periférica en el diámetro de paso</td>
<td>(w_t)</td>
<td>1615.16</td>
<td>217.22</td>
</tr>
</tbody>
</table>

12.0 Parámetros del material elegido

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>(R_0)</th>
<th>7870</th>
<th>7870</th>
<th>[kg/m^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's Modulus (Modulus of Elasticity)</td>
<td>(E)</td>
<td>206</td>
<td>206</td>
<td>[GPa]</td>
</tr>
<tr>
<td>Tensile Strength, Ultimate</td>
<td>(R_m)</td>
<td>880</td>
<td>785</td>
<td>[MPa]</td>
</tr>
<tr>
<td>Tensile Strength, Yield</td>
<td>(R_{p0.2})</td>
<td>685</td>
<td>588</td>
<td>[MPa]</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>(\nu)</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Contact Fatigue Limit</td>
<td>(S_{H_{lim}})</td>
<td>1270</td>
<td>1270</td>
<td>[MPa]</td>
</tr>
<tr>
<td>Bending Fatigue Limit</td>
<td>(S_{F_{lim}})</td>
<td>700</td>
<td>700</td>
<td>[MPa]</td>
</tr>
<tr>
<td>Tooth Hardness - Side</td>
<td>(V_{H_{V}})</td>
<td>650</td>
<td>650</td>
<td>[HV]</td>
</tr>
<tr>
<td>Tooth Hardness - Core</td>
<td>(J{_{N}})</td>
<td>285</td>
<td>250</td>
<td>[HV]</td>
</tr>
<tr>
<td>Base Number of Load Cycles in Contact</td>
<td>(N_{H_{lim}})</td>
<td>1.00E+08</td>
<td>1.00E+08</td>
<td></td>
</tr>
<tr>
<td>Wohler Curve Exponent for Contact</td>
<td>(q_H)</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Base Number of Load Cycles in Bend</td>
<td>(N_{F_{lim}})</td>
<td>3.00E+06</td>
<td>3.00E+06</td>
<td></td>
</tr>
<tr>
<td>Wohler Curve Exponent for Bend</td>
<td>(q_{F})</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
PIÑÓN
- NÚMERO DE DIENTES: 8
- MÓDULO: 8.75
- DIÁMETRO PRIMITIVO: 70
- ÁNGULO DE PRESIÓN: 20°
- MATERIAL: ACERO 1045
- DUREZA: 206/15 BHN/RC
- CALIDAD DE PRECISIÓN: IT 5
- RUGOSIDAD: 0.4 µm

ENGRANES
- NÚMERO DE DIENTES: 40
- MÓDULO: 6.7
- DIÁMETRO PRIMITIVO: 134 mm
- ÁNGULO DE PRESIÓN: 20°
- MATERIAL: ACERO 1045
- DUREZA: 206/15 BHN/RC
- CALIDAD DE PRECISIÓN: IT 5
- RUGOSIDAD: 0.4 µm

CORONA
- NÚMERO DE DIENTES: 16
- MÓDULO: 8.75
- DIÁMETRO PRIMITIVO: 70
- ÁNGULO DE PRESIÓN: 20°
- MATERIAL: ACERO 1045
- DUREZA: 206/15 BHN/RC
- CALIDAD DE PRECISIÓN: IT 5
- RUGOSIDAD: 0.4 µm

BARRA
- NÚMERO: 4
- MATERIAL: ACERO 1045
- CANTIDAD: 2

DISCO
- NÚMERO: 7
- MATERIAL: ACERO 330/36
- CANTIDAD: 2

TORNILLOS
- NÚMERO: 5
- MATERIAL: ACERO 330/36
- CANTIDAD: 2

NOMBRES DE PARTES
- PIÑÓN
- ENGRANES
- CORONA
- DISCO
- TORNILLOS

INSTITUTO POLITECNICO NACIONAL
SISTEMA DIFERENCIAL

Checklist de partes:
- Piñón (1): ACERO 1045
- Engrané (2): ACERO 1045
- Corona (3): ACERO 1045
- Eje (6): ACERO 330/36
- Tornillos (5): ACERO 330/36

Talla (mm):
- 79.99
- 85.65
- 165.7
- 209.38
- 385.97
- 903.08
Front view

Scale: 1:3

- \(\varnothing 60 \) H7
- \(\varnothing 150 \pm 0.1 \)
- \(\varnothing 257.32 \pm 0.1 \)
- 60 H7
- 0.4 ES

Bottom view

Scale: 1:3

- \(\varnothing 60 \) H7
- 0.4 ES
- 0.4 ES
- \(R3 \) H7 X 8
- 45 \pm 0.1
- \(\varnothing 110 \pm 0.05 \)
- \(\varnothing 60 \pm 0.05 \)
- 20.62 \pm 0.1

Detail A

Scale: 4:3

- \(R2.03 \pm 0.05 \)
- \(0.02 \) F G
- \(0.02 \) G H
- \(0.02 \) F G
- \(0.4 \) ES
- 14.62 \pm 0.05
- 5.8 \pm 0.05
- 15.49 \pm 0.05
- 19.57 \pm 0.05
- \(R156.14 \pm 0.05 \)

Detail B

Scale: 2:3

- \(24.55 \pm 0.05 \)
- \(4.76 \pm 0.05 \)
- \(R135.63 \pm 0.05 \)

Instituto Politécnico Nacional

INSTITUTO POLITECNICO NACIONAL