INTEGRACIÓN DE UNA MESA X-Y
IMPLEMENTADA CON SERVOMOTORES

TESIS
QUE PARA OBTENER EL TÍTULO DE
INGENIERO EN CONTROL Y AUTOMATIZACIÓN

PRESENTAN:
JACINTOS ORTIZ ALBERTO DANIEL
MAYSSE ROQUE JOSÉ ARTURO

ASESORES
M. EN C. PEDRO FRANCISCO HUERTA GONZALEZ
M. EN C. MAURICIO AARÓN PÉREZ ROMERO

MÉXICO D. F. MARZO DE 2014
INSTITUTO POLITÉCNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELECTRICA
UNIDAD PROFESIONAL “ADOLFO LÓPEZ MATEOS”

TEMA DE TESIS

QUE PARA OBTENER EL TITULO DE INGENIERO EN CONTROL Y AUTOMATIZACIÓN POR LA OPCIÓN DE TITULACIÓN TESIS COLECTIVA Y EXAMEN ORAL INDIVIDUAL
DEBERAN(N) DESARROLLAR

C. ALBERTO DANIEL JACINTOS ORTIZ
C. JOSE ARTURO MAYSSE ROQUE

“INTEGRACIÓN DE UNA MESAS X-Y IMPLEMENTADA CON SERVOMOTORES”

TRANSPORTAR SUSTANCIAS PELIGROSAS EN ALMACÉN, POR MEDIO, DE UNA GRÚA DE PUENTE CON POLIPASTO, CAPAZ DE TENER UNA ACELERACIÓN Y DESACELERACIÓN, CON UN MOVIMIENTO SUAVE.

- GENERALIDADES DEL PROYECTO.
- ESTADO DEL ARTE.
- MARCO TEÓRICO.
- DESCRIPCIÓN DEL PROTOTIPO.
- CONFIGURACIÓN Y PROGRAMACIÓN.
- ANÁLISIS DE RESULTADOS Y CONCLUSIONES

MÉXICO D.F., 06 DE MARZO DE 2014.

ASESORES

M. EN C. PEDRO FRANCISCO HUERTA GONZÁLEZ M. EN C. MARIACIO AARON PÉREZ ROMERO

DRA. BLANCA MARGARITA OCCHAO S. JEFÉ DEL DEPARTAMENTO ACADÉMICO DE INGENIERÍA EN CONTROL Y AUTOMATIZACIÓN
Agradecimientos

Le agradezco a Dios todas las cosas y a las personas que ha puesto en mi camino para alcanzar llegar a este momento, que sin importar las circunstancias ni las tribulaciones que me encontré en el camino, siempre me ayudo a salir adelante, siempre me oriento.

Agradezco a mi madre todos los sacrificios que ha hecho para ayudarme, le agradezco cada una de las cosas que ha hecho desde que llegue a este mundo, esa mujer que sin saber cómo educarme siempre se esforzó porque yo saliera adelante, que nunca le importo el cómo sino el porqué, gracias.

Le doy las gracias a mi padre, que sin importar la distancia ni las circunstancias siempre estuvo ahí para orientarme, decir una palabra de aliento o corregirme cuando se necesitará, le agradezco su esfuerzo que ha hecho para ayudarme, le agradezco que allá estado para esos malos momentos.

Agradezco al Instituto Politécnico Nacional, que me recibió con los brazos abiertos, que me apoyo para salir adelante, agradezco a los profesores que durante mi carrera fueron inspiración y un gran cimiento en mi preparación.

Alberto Daniel Jacintos Ortíz

Agradecimientos

A Dios por darme la fortaleza y sabiduría para escoger la senda que me llevaría al camino que más de me agradaba, por socórreme en los momentos de austeridad y no dejarme jamás que me saliera de la trayectoria trazada para alcanzar la meta planteadas, al colocarme a todas las personas claves para seguir adelante conocidos, amigos que formaron con el tiempo de marcha, enemigos que me hicieron fuerte e inteligente con sus trabas y envidias, por las buenas cosas venideras en su momento, las malas también en donde aprendí que no existen los problemas solo situaciones a resolver. Le agradezco por darme más que una carrera una vida donde encuentro amigos y una verdadera familia. Más que agradecimientos se la dedico a Dios por todo lo anterior y más.

José Arturo Maysse Roque
Índice

<table>
<thead>
<tr>
<th>Objetivo general</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivos específicos</td>
<td>ii</td>
</tr>
<tr>
<td>Introducción</td>
<td>iii</td>
</tr>
<tr>
<td>Alcance</td>
<td>iv</td>
</tr>
<tr>
<td>Estado del arte</td>
<td>v</td>
</tr>
<tr>
<td>0.1 Grúas en la antigua Grecia</td>
<td>vi</td>
</tr>
<tr>
<td>0.2 Grúas en la antigua Roma</td>
<td>viii</td>
</tr>
<tr>
<td>0.3 Grúas Medievales</td>
<td>ix</td>
</tr>
<tr>
<td>0.4 Introducción de la electricidad</td>
<td>x</td>
</tr>
<tr>
<td>0.5 Grúa de puente</td>
<td>xi</td>
</tr>
<tr>
<td>Glosario</td>
<td>i</td>
</tr>
</tbody>
</table>

Capítulo I. Marco Teórico

1.1 PAC (ProgrammableAutomationController – Controlador Automatizado Programable) | 2
1.1.1 PLC (ProgrammableLogicController – Controlador Lógico programable) | 3
1.1.1.1 Autómatas programables con una unidad lógica | 3
1.2 Servomotores | 4
1.2.1 Servomotores de Corriente Continua | 4
1.2.2 Servomotores de Corriente Alterna | 6
1.3 Servo-Drive | 7
1.3.1 Display | 8
1.3.2 Entrada de potencia | 8
1.3.3 Salida Potencia | 8

“La técnica al servicio de la patria”
Capítulo II. Descripción del prototipo

2.1 Sistemas mecánicos

2.1.1 Estructura

2.1.2 Ejes

2.1.3 Servomotores serie MP

2.2 Sistemas de automatización

2.2.1 Selección de entradas al PLC (sensores)

2.2.2 Final de carrera

2.2.2.1 Funcionamiento

2.2.2.2 Ventajas e inconvenientes

2.2.3 Sensor inductivo

2.2.4 Selección de la salida al PLC

2.2.5 PAC

“La técnica al servicio de la patria”
Capítulo III. Configuración y programación

3.1 BOOTP/DHCP ... 49
3.2 RSLinx ... 50
3.3 RSLogix 5000 aplicación 52
3.4 Grupo de movimiento 61
3.5 Unidades de posición 63

“La técnica al servicio de la patria”
Capítulo IV. Análisis de resultados y conclusiones

4.1 Análisis de resultados

4.1.1 Partes físicas

4.1.2 HMI

4.1.2.1 Descripción de botones

4.1.3 Análisis de la propuesta

4.1.3.1 Prueba con trapezoidal

4.1.3.2 Prueba con “curva suave”

4.2 Conclusiones
Índice de tablas y figuras

Capítulo IV. Análisis de resultados y conclusiones

<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>shadoof</td>
<td>v</td>
</tr>
<tr>
<td>0.2</td>
<td>representacion a escala de un puntual o pluma</td>
<td>vi</td>
</tr>
<tr>
<td>0.3</td>
<td>grúa de la antigua Grecia</td>
<td>vii</td>
</tr>
<tr>
<td>0.4</td>
<td>grúa Romana</td>
<td>viii</td>
</tr>
<tr>
<td>0.5</td>
<td>grúa móvil de Leonardo Da Vinci</td>
<td>ix</td>
</tr>
<tr>
<td>0.6</td>
<td>Tipos de grúas</td>
<td>x</td>
</tr>
<tr>
<td>0.7</td>
<td>Grúas de puente</td>
<td>xi</td>
</tr>
<tr>
<td>1.1</td>
<td>Elementos que conforman el PAC</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Controlador automatizado programable</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Esquemas de bloques básicos de un autómata programable</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>equipado con una unidad lógica</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Servo driver</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Pirámide de CIM</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Sensor capacitivo</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Final de carrera</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Perfil de aluminio</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Barra de 430mm</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Barra de 450mm</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Barra 700mm</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Barra 540mm</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Barra 710mm</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Unión de todos los perfiles</td>
<td>19</td>
</tr>
</tbody>
</table>

“La técnica al servicio de la patria”
Figura 2.8 Perfil de ejes ... 20
Figura 2.9 Tornillo sin fin y perfil ... 20
Figura 2.10 Ejes .. 21
Figura 2.11 Servomotores ... 21
Tablas 2.1 Características de los servomotores 22
Figura 2.12 Ejes con servomotores y motor 23
Figura 2.13 Prototipo .. 23
Figura 2.14 Fin de carrera ... 24
Figura 2.15 Sensor inductivo ... 25
Figura 2.16 CompactLogix .. 26
Figura 2.17 Componentes CompactLogix 27
Figura 2.18 Red CompactLogix ... 28
Figura 2.19 Red CompactLogix ... 28
Figura 2.20 Red de control .. 29
Tabla 2.2 software para el enlace con el PAC - PC 29
Figura 2.21 Modulo de comunicación .. 31
Figura 2.22 Modulo de entrada ... 33
Figura 2.23 Descripción del modulo ... 34
Tabla 2.3 ... 35
Figura 2.24 Diagrama del circuito de salida 36
Figura 2.25 Características físicas .. 37
Tabla 2.3 Características físicas ... 38
Tabla 2.4 Comunicación ethernet .. 39
Figura 2.26 Modulo ethernet ... 39
Tabla 2.5 Indicador del estado ethernet 40

“La técnica al servicio de la patria”
Figura 2.27 Perfiles de la curva-S y trapezoidal

Figura 2.28 Kinetix 2000

Figura 2.29 Diagrama esquemático

Figura 2.30 Diagrama de potencia eléctrica de los servomotores

Figura 2.31 Diagrama de conexión de comunicación de los servomotores

Figura 2.32 Diagrama de entrada digitales

Figura 2.33 Diagrama de salida digitales

Figura 3.1 Configuración del bootp/DHCP

Figura 3.2 RSLinx configuración

Figura 3.3 RSWho

Figura 3.4 RSLinx configuración

Figura 3.5 Dato del programa

Figura 3.6 Altas de los modulos de entrada y salida

Figura 3.7 Alta del modulo SERCOS

Figura 3.8 Alta modulo SERCOS

Figura 3.9 Dispositivos de comunicación 1768-ENBT/A

Figura 3.10 Nuevo modulo

Figura 3.11 Alta de módulos con respecto al nodo 1769 bus

Figura 3.12 Asignación de nombre y slot

Figura 3.13 Alta módulos de entrada y salida

Figura 3.14 Asignación de nombre slot

Figura 3.15 Alta modulo de salida

Figura 3.16 Asignacion nombre

Figura 3.17 Alta de servodriver 1

Figura 3.18 Asignacion de nombre y slot

“La técnica al servicio de la patria”
Figura 3.19 Alta de servo driver 2
Figura 3.20 Asignación de nombre y slot
Figura 3.21 Nuevo grupo de movimiento
Figura 3.22 Asignación de nombre del nuevo grupo de movimiento
Figura 3.23 Adición de ejes
Figura 3.24 Asignación del nombre al motor
Figura 3.25 Propiedades del motor
Figura 3.26 Unidades de posición
Figura 3.27 Selección de servodriver que mandara y recibirá señales
Figura 3.28 Configuración de la pestaña de conversión
Figura 3.29 Selección de servodriver que mandara y recibirá señales
Figura 3.30 Descarga de valores al PLC
Figura 3.31 Pestaña de comunicación WHO
Figura 3.32 Selección de dispositivo para la descarga
Figura 3.33 Test incremental
Figura 3.34 Marcador de prueba
Figura 3.35 Test feedback
Figura 3.36 Análisis del feedback
Figura 3.37 Prueba de salida y feedback
Figura 3.38 Lazo de control interno del feedback
Tabla 3.1
Figura 3.39 Tune
Figura 3.40 Comando MSO
Figura 3.41 Comando MSF
Figura 3.42 Comando MAS

“La técnica al servicio de la patria”
Figura 3.43 Comando MAM --- 78
Figura 3.44 Movimiento trapezoidal ------------------------------------ 79
Diagrama 1 de flujo del programa-- 80
Figura 3.45 Menu principal --- 82
Figura 3.46 Sub rutina eje 1 -- 86
Figura 3.47 Eje_Comandos 1 -- 89
Figura 3.48 Eje 2 -- 91
Figura 3.49 Eje_comando 2 -- 93
Figura 4.1 Mesa y estructura --- 95
Figura 4.2 Servo motores y base de carga------------------------------ 96
Figura 4.3 Fines de carrera y sensor capacitivo ----------------------- 97
Figura 4.4 HMI -- 98
Figura 4.5 Botones -- 99
Figura 4.6 Posicion_Eje_1 Posicion_Eje_2 ----------------------------- 100
Figura 4.7 Curva trapezoidal a 200rev/s ----------------------------- 101
Figura 4.8 Curva trapezoidal a 100rev/s ----------------------------- 101
Figura 4.9 Curva trapezoidal a 100rev/s ----------------------------- 102
Figura 4.10 Curva trapezoidal a 200rev/s ----------------------------- 103
Figura 4.11 Curva trapezoidal a 100rev/s ----------------------------- 103
Figura 4.12 Curva trapezoidal a 1rev/s ------------------------------- 104
Figura 4.13 Curva suave a 200rev/s ---------------------------------- 105
Figura 4.14 Curva suave a 100rev/s ---------------------------------- 105
Figura 4.15 Curva suave a 1rev/s ------------------------------------- 106
Figura 4.16 Curva suave a 200rev/s ---------------------------------- 107
Figura 4.17 Curva suave a 100rev/s ---------------------------------- 107

“La técnica al servicio de la patria”
Figura 4.18 Curva suave a 1rev/s

“La técnica al servicio de la patria”
Objetivo general

Transportar sustancias peligrosas en almacén, por medio, de una grúa de puente con polipasto, capaz de tener una aceleración y desaceleración, con un movimiento suave.
Objetivos específicos

- Seleccionar un PAC capaz de brindarnos herramientas para controlar servo motores industriales, con eficiencia.
- Adecuar un servo-drive que nos permita acelerar y des acelerar nuestro sistema con exactitud.
- Seleccionar servo motores adecuados para nuestro prototipo, que nos permitan manipular nuestras cargas.
- Crear un polipasto capaz de trabajar en conjunto con nuestro PAC ayudando a aislar movimientos perjudiciales.
- Enlazar nuestro programa y dispositivo con una HMI que nos permita manipularlo con mayor facilidad y que sea más amigable para el operador.
Las grúas con polipastos han servido como medio de transporte dentro de almacén, haciendo la carga, descarga y estibaje más sencillo, pero siempre hemos tenido problemas con las sustancias peligrosas, ya que por el movimiento de la grúa podemos provocar múltiples accidentes, así que se pretende diseñar una grúa de puente con polipasto capaz de limitar esos movimientos perjudiciales, de tal manera que el manejo de las sustancias peligrosas sea más amigable y con menos índices de accidente.
Alcance

Podremos tener una grúa de puente capaz de evitar derrames y accidentes por manejo de sustancias peligrosas, así como sumar seguridad para el trabajador, el equipo y la planta. Siendo capaces de asegurar un manejo de sustancias peligrosas amigable con el usuario.
Introducción y cartas de presentación

Estado del arte

No se tienen datos precisos de la primera grúa que existió en el mundo, ya que no se cuenta con ninguna prueba, como, pinturas o algo que indique el periodo en el que se desarrollaron [1], por lo que sólo se tienen indicios que abordaremos enseguida.

Podemos considerar como los primeros dispositivos de elevación y transporte a las palancas, poleas, rodillos y planos inclinados [2], pero, estos elementos requerían de un número muy exigente de gente para la creación de construcciones monumentales como la pirámide de Cheops, que originalmente, tenía 150 m de alto, construida con bloques de 9 x 2 x 2 m, y de 90 toneladas aproximadamente, ubicada en Giza Egipto, y se cree que su construcción abarco la etapa de 2550 - 2530 a. de C. [3].

Hacia 2820 a. de C. se produce en China, fibras resistentes a partir de la planta del cáñamo, siendo los ancestros de los cables de acero que utilizamos hoy en día para elementos de elevación [2]. Con este elemento se realizó un elemento llamado shadoof (figura 0.1), que se conforma de una columna fija en donde se monta la palanca alrededor de un eje, utilizada para subir agua de un río, canal, depósito o pozo. Se utilizó en China, Egipto, Mesopotamia y América [4], aunque con diferentes nombres.

Figura 0.1 Shadoof

“La técnica al servicio de la patria”
Introducción y cartas de presentación

También se cree que este el ancestro más antiguo aún más que el shadoof, es el puntual o pluma (figura 0.2), ya que se considera como el elemento que se usaba para la carga y descarga de embarcaciones, usada por los sumerios y caldeos [5], y también se tiene la teoría de que este mecanismo se les transmitió a los egipcios.

![Figura 0.2 Representación a escala de un puntual o pluma](image)

0.2 Grúas en la antigua Grecia

Después de esto en Grecia, se comienza a tener adelantos que servirían más adelante para el desarrollo de máquinas elevadoras, ya que surgen tres inventores importantes como son:

- Ctesibio, padre de la hidráulica, fabricó el primer cilindro provisto de un émbolo, considerada como la primera bomba de pistón [2]. También se le atribuye el reloj de agua y el órgano de agua [6].
- Arquimedes, creador del tornillo sin fin [2] y creador de la ley de la palanca. Una de las frases más emblemáticas de este personaje fue, denme un punto de apoyo y moveré al mundo [7].

“La técnica al servicio de la patria”
Introducción y cartas de presentación

Herón de Alejandría, creador de la polea compuesta [2]. La mayor parte de sus obras están dedicadas a la física aplicada y a la geometría práctica, desarrolla la teoría de las cinco máquinas simples: palanca, tornillo, cuña polea y plano [8].

Con estos elementos de la época y con pruebas, de algunas marcas dejadas en los bloques apilados que conforman las grandes construcciones en la antigua Grecia, marcas de pinzas de hierro, que se encuentran en el centro de gravedad de dichos bloques [9], se considerará el remplazo de planos inclinados y poleas por los primeros mecanismos ancestros de las grúas (figura 0.3). Así que los siguientes doscientos años, las construcciones griegas contemplan un manejo de los pesos más ligeros, pues la nueva técnica de elevación permitió la carga de muchas piedras más pequeñas por ser más práctico, que pocas piedras más grandes [5]. En comparación con el período arcaico y su tendencia a los tamaños de bloque cada vez mayores, los templos griegos de la edad clásica como el Parthenon ofrecieron una cantidad de bloques de piedra que podían ser usados para cargar no menos de 15 - 20 toneladas. También, la práctica de erigir grandes columnas monolíticas fue abandonada prácticamente para luego usar varias ruedas que conforman la columna [5].

Figura 0.3 Grúa de la antigua Grecia

“La técnica al servicio de la patria”
0.2 Grúas en la antigua Roma

En Roma se incrementaron los trabajos de construcción, ya que crearon edificios monumentales, pero con esto también se necesitaba de elementos de elevación más eficaces, así que adoptaron la grúa de la antigua Grecia y mejoraron algunos de sus elementos [5].

La grúa romana más simple (figura 0.4), se conformaba de un tripastos, que tenía una horca de una sola viga, un torno, una cuerda y un bloque que contenía tres poleas, obteniendo así una ventaja mecánica de 3:1, esto lo podemos entender, como que cada hombre elevaba 50 Kg con una sola polea, pero con la ayuda del arreglo de poleas, obteníamos, de cada uno de las poleas una ayuda de 50 Kg, es decir, que al tener tres poleas, en vez de elevar 50 Kg por persona, al auxiliarse con el torno y el juego de poleas, se elevaría 150 Kg (3 poleas x 50 kg = 150), obteniendo más trabajo de un solo hombre, tanto en elevación como en tiempo de trabajo. Tipos más pesados de grúa ofrecieron cinco poleas (Pentapasto) o, en el caso más grande, un sistema de tres por cinco poleas (Polipasto) con dos, tres o cuatro mástiles, dependiendo de la carga máxima. El Polipasto, cuando era operado por cuatro hombres en ambos lados del torno, podría levantar hasta 3000 kg (3 cuerdas x 5 poleas x 4 hombres x 50 kilogramos = 3000 kg). Si consideramos que el torno fuera substituido por un acoplamiento, la carga máxima incluso se dobló a 6000 kg con solamente la mitad del equipo, puesto que el acoplamiento posee una ventaja mecánica mucho más grande debido a su diámetro más grande. Se considera que en las pirámides se necesitaban 50 hombres para mover un bloque de 2.5 toneladas por el plano inclinado (50 Kg x persona), así que con el polipasto se maxifico 60 veces la capacidad de elevación [5].

Figura 0.4 Grúa romana

“La técnica al servicio de la patria”
0.3 Grúas Medievales

Tras la caída del imperio Romano se pierden algunas tecnologías como la grúa de acoplamiento, pero hace su reaparición en Europa occidental, teniendo como referencia más cercana, la literatura archivada en Francia, cerca de 1225, y una pintura iluminada en un manuscrito, seguramente francés con fecha de 1240. También en navegación, las aplicaciones más cercanas de las grúas de puerto, se documentan para Utrecht en 1244, Amberes en 1263, Brujas en 1288 y Hamburgo en 1291, mientras que en Inglaterra no se encuentra información del acoplamiento hasta 1331 [5].

Como se sabe la etapa medieval, fue también una época en la que surge el oscurantismo, es decir, no hubo muchos avances en general, ya que se restringía la difusión del conocimiento y a su vez la creación de conocimiento, para poder mantener a las masas bajo el poder de líderes, como reyes o la iglesia [10]. Por lo que en esta época no surgen muchos avances en la tecnología con respecto a las grúas.

En esta etapa Leonardo da Vinci crea una grúa móvil para facilitar las labores de construcción, dicha grúa está montada sobre un vehículo y se gobierna desde arriba mediante un cable tensado. Con esto propone una serie de elementos como: tornillos sin fin, engranes helicoidales, una cadena articulada y diversos cojinetes de rodillas y bolas, así como rodamientos axiales [2].

Figura 0.5 Grúa móvil de Leonardo da Vinci

“La técnica al servicio de la patria”
0.4 Introducción de la electricidad

Se comenzaron a hacer muy solicitadas las estructuras de acero, lo que permitió realizar estructuras más resistentes y al combinarse con introducción del motor eléctrico se comenzaron a desarrollar múltiples innovaciones.

El motor moderno de la C.C. fue inventado por accidente en 1873, cuando Gramo de Zénobe conectó dínamo él había inventado a una segunda unidad similar, conduciéndolo como motor. Máquina del gramo era el primer motor eléctrico que era acertado en la industria [10].

En 1888 Nikola Tesla inventó el primer practicable Motor de CA y con él el sistema polifásico de la transmisión de energía. Tesla continuó su trabajo en el motor de CA en los años para seguir en la compañía de Westinghouse [11].

Con estos dos elementos se realizaron y se realizan las grúas que conocemos hoy en día, por mencionar algunas: móviles (figura 0.6a), hidráulicas (figura 0.6b), pluma (figura 0.6c), etcétera [12].

Figura 0.6 Tipos de Grúas

“La técnica al servicio de la patria”
0.5 Grúa de puente

La grúa de puente (figura 0.7), es un tipo de grúa que se utiliza en fábricas e industrias, para levantar y desplazar cargas pesadas, permitiendo que se puedan movilizar piezas de gran peso en forma horizontal y vertical. Una grúa de puente se compone de un par de rieles paralelos ubicados a gran altura sobre los laterales del edificio con un puente metálico (viga), desplazable que cubre el espacio entre ellas. El guinche, el dispositivo de levantamiento de la grúa, se desplaza junto con el puente sobre el cual se encuentra; el guinche a su vez se encuentra alojado sobre otro riel que le permite moverse para ubicarse en posiciones entre los dos rieles principales [13].

Figura 0.7 Grúa de puente
Introducción

En este capítulo se presentarán los elementos más relevantes del proyecto de una manera general, conociéndolos desde un punto teórico.
CAPÍTULO I. Marco teórico

1.1 PAC (Programmable Automation Controller - Controlador Automatizado Programable)

Un PAC es una tecnología industrial que está encaminada al control automatizado, al diseño de prototipos y a la medición [14]. Se conforma por un controlador programable, una PC, módulos de entradas y salidas, y algún bus de datos, en su forma más básica (figura 1.1).

![Figura 1.1 Elementos que conforman un PAC](image)

Una de las características primordiales con las que se puede contar, es que podemos explotar eficientemente la fiabilidad del controlador (PLC), así como la flexibilidad de monitorización y cálculo de una PC [14], estos elementos los podemos encontrar y utilizar en el área de investigación, pero en su mayoría lo podremos observar en la industria, en control de máquinas y procesos, su monitorización y comunicación.

Los PAC’s se comunican usando los protocolos de red más comunes como son:

- Abiertos como: TCP/IP, OPC, SMTP, serial RS32 y ModBUS
- Y es compatible con los privados (CAN, Profibus y DeviceNet)

Los PAC’s (figura 1.2) son capaces de transmitir datos desde una máquina controlada a diferentes máquinas y componentes en sistema de control o aplicaciones de software o bases de datos. Un PAC como centro del sistema de automatización puede integrar múltiples redes de comunicación [15].
1.1.1 PLC (Programmable Logic Controller - Controlador Lógico programable)

En la actualidad también se conocen como autómatas programables. Podemos definir a este elemento como: dispositivo electrónico digital, que utiliza una memoria programable para guardar instrucciones y llevar a cabo funciones lógicas [16], de secuencia, conteo y aritméticas, mediante la programación adecuada [17], introducida mediante teclas en su parte frontal o con la ayuda de una PC, con el fin de controlar máquinas o procesos [18].

Podemos decir que se clasifican en dos tipos:

- Autómatas programables que contienen una unidad operativa, es una unidad lógica con la característica de realizar una función lógica entre dos variables binarias [19]. Son los pioneros de esta tecnología, en la actualidad sólo son usados como métodos didácticos.

- Autómatas programables con una unidad operativa que posee una unidad aritmética y lógica que forma parte de la unidad central de proceso (CPU) de un computador [19]. Su principal característica, es que pueden realizar operaciones con cierto número de variables binarias al mismo tiempo y procesar tanto variables analógicas como información alfanumérica.

Nos enfocaremos a los autómatas programables con unidad lógica, ya que como se mencionó, la primera clasificación ya no se usa, más que como elemento didáctico.

1.1.1.1 Autómatas programables con una unidad lógica

El autómata programable se conforma por las siguientes partes básicamente (figura 1.3):

- Una unidad de entrada (UNE): con ellas podemos rescatar la información obtenida en el proceso.
- Una unidad de salida: se generan las señales que controlan al proceso.
- Una unidad central: que se conforma por:
Marco teórico

- Una unidad de control: conformada por un generador de pulsos, un contador síncrono, una memoria de acceso aleatorio no volátil (pasiva: ROM, EPROM, E²PROM, etc. Inicialmente era una memoria de ferrita) y un circuito combinacional que genera las señales de control de la unidad operativa.
- Una unidad operativa formada una unidad lógica (UL) y un biestable: con esto memoriza el resultado y al que algunos fabricantes denominan RLO (Result of Logic Operations) utilizado para memorizar los resultados parciales [19].

![Esquema de bloques básicos de un autómata programable equipado con una unidad lógica](image)

Figura 1.3 Esquema de bloques básicos de un autómata programable equipado con una unidad lógica

1.2 Servomotores

1.2.1 Servomotores de Corriente Continua

Los servomotores de Corriente Continua son máquinas que controlan la posición. En realidad podemos decir que conservan el mismo de una máquina de corriente continua convencional con excitación independiente, su forma constructiva está adaptada a obtener un comportamiento dinámico rápido y estable y un par de arranque importante [20].

“La técnica al servicio de la patria”
Marco teórico

Por lo regular, el inductor se encuentra en el estator y puede ser de bobinado o de imán permanente. El inducido, alojado en el rotor, se suele construir de forma que presente una inercia mínima [20]. Constructivamente se diferencia básicamente en la forma del rotor. Las más habituales son:

- Rotor alargado
- Rotor en forma de cesta
- Rotor de disco

Los dos primeros suelen tener un colector clásico de forma cilíndrica mientras que en los de disco suele estar en forma radial. El rotor puede estar construido a base de circuito impreso o cable rígido con soporte de resina, dando una inercia propia extremadamente baja [20].

Los parámetros básicos de un servomotor de CC y las unidades de medida habituales son las siguientes:

- \(n \): velocidad (r.p.m.)
- \(E_i \): fuerza electromotriz del inducido (V)
- \(U_i \): tensión del inducido (V)
- \(I_i \): corriente del inducido (A)
- \(\Phi_e \): flujo inductor o excitación, en caso de motores con bobina de excitación es proporcional a la corriente de la bobina inductora.
- \(T_e \): constante de tiempo eléctrica \(L_i/R_i \) (s)
- \(C_m \): par motor (Nm)
- \(P \): potencia (W)
- \(K_e \): constante eléctrica (r.p.m./watt). Su valor se puede obtener de la relación \(\left(\frac{n_{nom}}{E_{inom}} \right) \)
- \(K_m \): constante mecánica, medida en metros Newton/amperio. Se obtiene de la relación \(C_m \frac{n_{nom}}{I_i \cdot n_{nom}} \)

Las relaciones fundamentales entre dichos parámetros para un servomotor con excitación para imanes permanentes o excitación independiente y constantes son las siguientes:

\[
 n = \frac{K_e}{\Phi_e} + E_i = K_e(U_i - R_i - I_i) \] (1.1)

\[
 C_m = K_m I_i \] (1.2)

\[
 P = E_{1}I_{1} = 0.1047 C_m n \] (1.3)

Con estas relaciones se deduce que el control de velocidad del motor puede realizarse regulando la tensión de inducido, y compensando la caída de tensión \(R_i I_i \), y el control
Marco teórico

de par requiere regular la corriente de inducido [20]. En ambos casos se debe mantener constante el flujo de excitación.

1.2.2 Servomotores de Corriente Alterna

Para los elementos de cierta potencia considerable, el motor de alterna presenta diversas mejoras frente al e continua, la principal de ellas es la ausencia de colector y escobillas [20]. Dentro de los motores de alterna podemos distinguir los asíncronos y los síncronos.

El motor asíncrono convencional no es recomendado para servosistemas que necesitan cierta precisión, a causa del deslizamiento y de la poca linealidad de las características par-velocidad [20]. Se utiliza, junto con variadores de frecuencia, para accionamientos de velocidad variable, donde gracias a un control en lazo cerrado pueden ser obtenidas precisiones adecuadas.

En un sistema de posicionamiento y poca potencia, los motores de alterna más usados, son el síncrono y el de reluctancia, debido a la ausencia de deslizamiento. A ellos nos referimos habitualmente al hablar de servomotor de CA.

Las formas constructivas del servomotor de CA pueden ser bastas. Lo común en una máquina asíncrona, es disponer un devanado estatórico, alimentado en CA y un devanado rotórico alimentado en CC a través de escobillas y un sistema de anillos rozantes [20].

A pesar de esto, en los servomotores, el rotor suele estar conformado por un bloque de hierro (motor de reluctancia) o por un imán permanente, para evitar la existencia de escobillas [20]. Las piezas polares y el rotor suelen tener forma dentada.

Los motores síncronos con rotor de imán permanente y los motores de reluctancia con rotor listo, trabajan con devanados trifásicos en el estator y con uno o más pares de polos por fase, de forma que se haga un campo giratorio sin saltos [20]. Los parámetros necesarios de los que depende el funcionamiento del motor son los siguientes:

- n: velocidad (r. p. m.)
- f: frecuencia (Hertz equivalente a segundos-1)
- p: pares de polos
- Ui: tensión de inducido (V)
- li: corriente de inducido (A)
- Li: inductancia de cada devanado (Hz)
- Cm: par motor (Nm)
- Km: constante de par (m*N/A)
- P: potencia (W)

Las relaciones fundamentales que cumple el motor son las siguientes:
Marco teórico

\[n = 60 \frac{f}{p} \] \hspace{1cm} (1.4)

\[li = Ui/2\pi f Li \] \hspace{1cm} (1.5)

\[Cm = KmLi \] \hspace{1cm} (1.6)

\[P = 2\pi Cmf/p \] \hspace{1cm} (1.7)

De las relaciones presentadas, se desprende que la velocidad es proporcional a la frecuencia, mientras que el par es proporcional a la corriente inductora [20].

1.3 Servo-Drive

Un servo – drive (figura 1.4) es un amplificador electrónico, utilizado para alimentar servomecanismos eléctricos y así poder tener un control sobre ellos.

Esta unidad controla la señal de realimentación desde el servomecanismo y la ajusta continuamente para tener un comportamiento esperado en el servomecanismo.

Figura 1.4 Servo – Drive

“La técnica al servicio de la patria”
Marco teórico

1.3.1 Display
Es una pantalla o Display que nos ayuda a visualizar algunas características del servo – drive, o con el cual podemos monitorearlo.

1.3.2 Entrada de potencia
Proporciona la energía necesaria al Drive con la que posteriormente rectificada y troceada sea entregada al motor [21].

Habitualmente encontramos versiones del servo para alimentación monofásica y trifásica. El límite entre sistemas monofásicos y trifásicos se sitúan entre 1KW y 1.5 KW, siendo el fabricante el que lo desida.

En su mayoría los servosistemas tienen una entrada adicional de control, que alimentará la unidad lógica del servo-drive [21]. Esta entrada acostumbra a ser de 230 V (para sistemas monofásicos) o 24 V (para sistemas trifásicos).

La deficiencia entre la alimentación del DC Bus y control, permite deshabilitar toda la potencia del DC Bus manteniendo el control (por ejemplo, para que el servo no pierda la realimentación de posición del encoder).

1.3.3 Salida Potencia
Es la encargada de alimentar al motor, es por donde la onda PWM de alta potencia, será transportada para hacer girar el motor según velocidad y par comandados.

Por tratarse la señal PWM de una señal de alta frecuencia y alta potencia, existe la posibilidad de que ondas radiadas alteren a otros equipos adyacentes. Para no provocar este problema deben seguirse las instrucciones de montaje e instalación del fabricante del equipo, un mal apantallamiento o aislamiento de estos cables (por ejemplo, si se los fabrica uno mismo, o se realizan empalmes) es la causa de numerosos problemas de ruido eléctrico, de difícil diagnosis y en ocasiones difícil solución [21].

1.3.4 Comunicaciones Serie
A pesar de que hoy en día la mayoría de los servos presentan versiones con Buses de Motion Control Digitales, hay muchas aplicaciones que se siguen solucionando con consignas analógicas o de pulsos. Para poder configurar dichos servos se acostumbra a incluir en servo, un puerto de comunicaciones serie [21]. En el pasado estos solían ser RS-232 o 422, pero en al día de hoy, la mayoría de servos de nueva generación vienen provistos de puertos serie USB, que permiten una comunicación mucho más rápida con el equipo.
Incluso los servos provistos de protocolo de comunicaciones para Motion, acostumbran a conservar el puerto serie/USB, es siempre un respaldo de acceso adicional cuando por algún problema es necesario.

1.3.5 Motion BUS

Para sistemas multi-ejes, aquellos que requiere acceso a parámetros de muchos ejes y funciones de control de eje, en las que varios ejes funcionan sincronizados o coordinados, normalmente se utilizan sistemas de Motion Bus digitales.

Existen muchos buses, ya sean propietarios del fabricante o abiertos mediante organizaciones. Cada fabricante intentará atraernos con las bondades de su Bus, pero en la actualidad nos encontramos en un momento de transición entre buses con un ancho de banda justa para controlar muchos ejes 10 - 20 Megas, a protocolos basados en medio físico Ethernet [21]. En la actualidad el número de ejes por máquina está aumentando, así como el número de ejes que es capaz de controlar un Motion Controller.

1.3.6 Seguridad Integrada

Ciertamente los móviles de una máquina son un punto de peligro, es por esto que desde hace tiempo se están haciendo presentes servosistemas con funciones de seguridad integrada [21], el motivo es claro: aumentan la seguridad (la seguridad está integrada en la electrónica del drive, reduciéndose así el tiempo re reacción), y facilitar el proceso de certificación de la seguridad de la máquina.

1.3.7 Entradas y salidas I/O

Todos los servos necesitan comunicarse con su entorno, en función de la naturaleza del servo y por ejemplo, la disponibilidad de un bus de control de motion, los servos vendrán equipados de más o menos entradas.

I/O’s típicas en un servos:

- Enable/Run: habilitación de la etapa de salida del DC BUS
- Alarm Reset: en caso de fallo, se requerirá de una entrada para borrar la alarma.
- Positive Over Travel (POT): los límites de carrera positivos indican al servo (por ejemplo, mediante un sensor inductivo) que ha alcanzado una posición física que no debe de ser superada.
- Negative Over Travel (NOT): análogamente al POT, existen posiciones en sentido negativo de movimiento que no deben de ser superadas.
- TouchProbe (o captura de registro): se trata de una entrada ultra rápida que permite al servo memorizar la posición del eje cuando dicha entrada es activada.

Adicionalmente el servo acostumbrará a tener como mínimo las siguientes salidas:
1.3.8 Realimentación del encoder del motor

Dicha entrada es necesaria para un control preciso del motor, es necesaria para poder cerrar el lazo de velocidad y, con frecuencia en las aplicaciones también se utilizará para cerrar el lazo de posición [21].

1.3.9 Realimentación encoder auxiliar

La realimentación del lazo de velocidad nos vendrá dada por el encoder del motor, pero en ocasiones resulta útil poder cerrar el lazo de posición con otro encoder adicional: por ejemplo, cuando la mecánica de la máquina es francamente deficiente, pueden existir notables holguras entre la posición del eje del motor y la posición de la carga que queremos controlar. También se da el caso de sistemas que tengan un deslizamiento inherente, por ejemplo, una cinta transportadora de papel en la que exista un cierto deslizamiento del papel respecto al eje [21].

1.4 HMI (Human Machine Interfaces - Interfaz Humano Máquina)

HMI es el acrónimo para Human Machine Interface (Interfaz Humano-Máquina), se define interfaz como el conjunto de elementos hardware y software de un sistema, con los cuales podemos tener un interacción entre lo que ocurre dentro del software y hardware, a fin de manipular el proceso [22]. En el caso industrial tenemos un conjunto de elementos que involucran pantallas, PC y elementos de comunicación, con lo cual podemos tener una interacción dentro del proceso que se esté controlando.

1.4.1 Tipos de HMI´s

De manera general se pueden dividir las HMI´s en dos categorías, la primera de acuerdo a la ubicación y los dispositivos empleados de la interfaz y la segunda con respecto a las funciones que desempeña en el proceso. La primera categoría se subdivide básicamente dos tipos de HMI`s:

➤ Terminal de Operador
Consiste en un dispositivo, generalmente construido para ser instalado en ambientes agresivos, donde pueden ser solamente de despliegues numéricos, o alfanuméricos o gráficos. Pueden ser además con pantalla sensible al tacto (touch screen) [23].

PC + Software

Esto es una alternativa basada en un PC en donde se carga un software apropiado para la aplicación. Como PC se puede utilizar cualquiera según lo exija el proyecto, en donde existen los llamados Industriales (para ambientes agresivos), los de panel (Panel PC) que se instalan en gabinetes dando una apariencia de terminal de operador, y en general casi cualquier PC pasando por el tradicional PC de escritorio [23].

La segunda categoría se subdivide según el conjunto de funciones que realizan (funciones de monitoreo, alarmas, supervisión, control, y manejo de históricos) de modo que se tienen tres tipos de HMI’s:

El sustituto de pulsador

Dispone de procesos simplificados de fabricación, centralizando todas las funciones de cada botón en un solo lugar.

El manejador de datos

Es ideal para aplicaciones que requieren una constante retroalimentación del sistema, o impresiones de los informes de producción. La pantalla HMI debe ser suficientemente grande para gráficos, representaciones visuales y resúmenes de producción, etc. Este incluye funciones tales como recetas, datos de tendencias, registro de datos y manejo de alarma / registro [23].

El capataz o supervisor

Por último, en cualquier momento una aplicación implica SCADA o MES, una HMI supervisor es muy beneficioso y probablemente se ejecuta en Windows, y se tienen varios puertos Ethernet [23].

1.5 Comunicaciones Industriales – Industrial Comunications

Se puede definir las comunicaciones industriales como el área de la tecnología que estudia la transmisión de información entre circuitos y sistemas electrónicos utilizados para llevar a cabo tareas de control y gestión del ciclo de vida de los productos industriales [24].

Las comunicaciones industriales deben, por lo tanto, resolver la problemática de la transferencia de información entre los equipos de control del mismo nivel y entre los correspondientes a los niveles contiguos de la pirámide CIM (figura 1.5).
Marco teórico

Figura 1.5 Pirámide CIM

Para poder realizar dicha comunicación se hace uso de buses de campo, como pueden ser:

- AS-i
- CAN
- ControlNet
- DiviceNet
- FIPIO
- PROFIBUS
- HART
- Interbus

1.6 Sensores

Para efectuar el control de las máquinas es necesario que los controladores conozcan la posición de las partes móviles de las máquinas, de los objetos fabricados por ellas, o de variables como son temperatura, presión, etc. Para suministrar esa información al controlador será necesario disponer de sensores en las máquinas.

La gama de sensores (también denominados captadores o detectores) disponible en el mercado es muy amplia con el objeto de responder a los múltiples problemas de detección que se plantean en las máquinas de fabricación [24]. Se pueden encontrar fines de carrera, detectores de proximidad inductivos, detectores de proximidad capacitivos, ultrasónicos, ópticos.

Una primera clasificación de los captadores se puede establecer según el tipo de señal suministrada a la salida:

- Captadores analógicos

Suministran una señal proporcional a una variable analógica, como pueden ser presión, temperatura, velocidad, posición.
Marco teórico

- Captadores “todo o nada”

Este tipo de captador suministra una señal que solamente tiene dos estados asociados al cierre o apertura de un contacto eléctrico, o bien a la conducción o corte de un interruptor estático como transistor o tiristor [24]. Son los más utilizados en la automatización de movimiento y adoptan diferentes formas: finales de carrera, detector de proximidad inductivo, detector de proximidad capacitivo, foto células.

- Captadores numéricos. Encoders

Se utilizan en la medida de posiciones, de caudales... Ofrecen como salida una señal codificada y la transmisión de la señal la efectúan por medio de una comunicación tipo serie o paralelo. Pueden ser encoders incrementales que suministran pulsos por medio de dos salidas indicando el decremento o incremento de la variable medida. Los encoders absolutos utilizan códigos binarios, gray, BCD... Para codificar el valor de la variable medida [24].

Los captadores basados en fenómenos eléctricos, magnéticos u ópticos adoptan una estructura general que se compone de tres etapas:

- Sensor o captador

Efectúa la conversión de las variaciones de una magnitud física en variaciones de la magnitud eléctrica o magnética.

- Etapa de tratamiento de la señal

Puede o no existir, se encarga de efectuar el filtrado, amplificación y comparación de la señal mediante circuitos electrónicos.

- Etapa de salida

Esta etapa está formada por los circuitos de amplificación conversión o comunicación necesaria en la puesta en forma de la señal de salida [24].

1.6.1 Sensor capacitivo

Los sensores capacitivos (figura 1.6) son interruptores electrónicos que trabajan sin contacto. Estos sensores aprovechan el efecto que tienen los materiales como el papel, el vidrio, plásticos, aceite, agua, así como de los metales, de aumentar la capacidad del sensor cuando se encuentran dentro del campo eléctrico generado.

Constan de un condensador que genera un campo eléctrico [24]. Este condensador forma parte de un circuito resonador, de manera que cuando un objeto se acerca a este campo, la capacidad aumenta y el circuito empieza a resonar.
1.6.2 Sensor de contacto – interruptor de límite – final de carrera

Son dispositivos eléctricos, neumáticos o mecánicos situados al final del recorrido de un elemento móvil (figura 1.7), con el objetivo de enviar señales que puedan modificar el estado de un circuito [24].

Se componen por dos partes: un cuerpo donde encontramos a los contactos y una cabeza que detecta el movimiento.
Introducción

En este capítulo se pretende explicar de forma detallada los elementos que conforman al prototipo, tanto físicamente como virtualmente.
CAPÍTULO II. Descripción del prototipo

2.1 Sistemas mecánicos

El desarrollo del prototipo se realizó con elementos que se tenía a la mano en el laboratorio, de igual forma, se seleccionaron cada uno de los elementos de tal manera que son los mejores y los más factibles para el proyecto.

2.1.1 Estructura

La estructura se conforma por perfiles de aluminio de la serie 40 (Figura 2.1), seleccionado por sus características mecánicas, así como su fácil adquisición y manejo.

Algunas de sus características mecánicas:

- Todos los perfiles son de aluminio IPS estructurales.
- Rendimiento 240 N/mm²
- Resistencia a la tracción 260 N/mm² [11].

Para formar los ejes se necesitaron barras de diferentes medidas como se muestra a continuación:

Figura 2.1 Perfil de aluminio
Descripción del prototipo

Barra de 430 mm (Figura 2.2)

![Figura 2.2 Barra de 430 mm](image1)

Barra de 450 mm (Figura 2.3)

![Figura 2.3 Barra de 450 mm](image2)
Descripción del prototipo

Barra de 700 mm (figura 2.4)

![Figura 2.4 Barra 700 mm]

Se tienen perfiles, mismos que funcionan para dar firmeza a los ejes, son de aluminio y poseen las mismas características ya que sólo cambia la serie, dichos perfiles pertenecen a la serie: 20.

Estos están conformados por barras de las siguientes medidas:

Barra de 540 mm (Figura 2.5)

![Figura 2.5 Barra de 540 mm]
Descripción del prototipo

Barra de 710 mm (Figura 2.6)

Figura 2.6 Barra 710 mm

Todas las barras unidas quedan de la siguiente manera (Figura 2.7):

Figura 2.7 Unión de todos los perfiles
2.1.2 Ejes

Se realiza con un perfil de aluminio (Figura 2.8) el cual tiene la siguiente medida:

![Figura 2.8 Perfil para ejes](image)

Se unen con ambos ejes permitiendo el movimiento con tornillos sin fin de rosca a 60° y por medio de pequeños perfiles de aluminio (figura 2.9).

![Figura 2.9 Tornillo sin fin y perfil](image)
Descripción del prototipo

La conformación de todos estos elementos queda de la siguiente manera (figura 2.10):

Figura 2.10 Ejes

2.1.3 Servomotores serie MP

La serie MP (figura 2.11) ofrece un nuevo diseño que reduce el tamaño del motor y proporciona un par significativamente más alto. Un diseño de estator de núcleo segmentado, administración termina mejorada así como múltiples configuraciones electrónicas disponibles, crean un motor que ofrece optimas funciones de rendimiento. Los conectores de motor fácilmente reversibles y diversas opciones de retroalimentación, incluso la resolución absoluta y alta, mejoran la versatilidad y capacidad de motor de serie MP.

Figura 2.11 Servomotor
Descripción del prototipo

Este servo-motor (Figura 2.11) moverá el eje, el cual cargará el material llevándolo hasta la posición que se le indique, este motor cumple con las características de mando de posición, velocidad, aceleración y desaceleración necesarios para mantener en condiciones adecuadas al material que se transportará, manteniendo un movimiento adecuado al transportar la carga.

Características [Tabla 2.1]:

- Innovadores rendimientos tecnología de bobinado, hasta un 40% más alto par de torsión por unidad de tamaño de servomotores convencionales.
- Material de aislamiento del bobinado mejorado para la gestión térmica mejorada y la transferencia de calor, lo que resulta en un rendimiento más alto.
- Temperatura de funcionamiento: 0 - 40 º C.
- La opción de freno de 24 V Integral.
- Encoder incremental o absoluto.

Tabla 2.1 Características de los Servomotor

<table>
<thead>
<tr>
<th></th>
<th>Eje 1</th>
<th>Eje 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPL-A1510V-HJ42A</td>
<td>8000 RPM Máximo</td>
<td>MPL-A1520U-VJ42A</td>
</tr>
<tr>
<td>3 fases (230 volts)</td>
<td>1.05 amperes</td>
<td>3 fases (230 volts)</td>
</tr>
<tr>
<td>1.05 amperes</td>
<td>Torque 0.26 Nm</td>
<td>1.8 amperes</td>
</tr>
<tr>
<td>Torque 0.26 Nm</td>
<td>Servo-motor giratorio de imán permanente</td>
<td>7000 RPM Máximo</td>
</tr>
<tr>
<td>Baja inercia</td>
<td>Servo-motor giratorio de imán permanente</td>
<td>Baja inercia</td>
</tr>
<tr>
<td>Tamaño del marco de 63 mm.</td>
<td>Longitud del imán 10 = 25.4 mm (1.0 in.)</td>
<td>Tamaño del marco 63 mm.</td>
</tr>
<tr>
<td>Longitud del imán 10 = 25.4 mm (1.0 in.)</td>
<td>Retroalimentación de 2000 líneas / revolución, encoder incremental</td>
<td>Longitud del imán 20 = 50.8 mm (2.0 in.)</td>
</tr>
</tbody>
</table>
Descripción del prototipo

A dichos ejes se les añaden los servomotores y el motor que fungirá como el tercer eje o polipasto, así que en realidad quedarán de la siguiente manera (figura 2.12):

![Figura 2.12 Ejes con servomotores y motor](image)

Una vez que se conforma toda la mesa queda como se muestra en la (figura 2.13):

![Figura 2.13 Prototipo](image)
Descripción del prototipo

2.2 Sistema de automatización

2.2.1 Selección de entradas al PLC (sensores)

En los siguientes puntos se describen los sensores seleccionados y sus características así como los criterios tomados en consideración.

2.2.2 Final de carrera.

Generalmente estos sensores están compuestos por dos partes: un cuerpo donde se encuentran los contactos y una cabeza que detecta el movimiento. Su uso es muy diverso, empleándose, en general, en todas las máquinas que tengan un movimiento rectilíneo de ida y vuelta o sigan una trayectoria fija, es decir, aquellas que realicen una carrera o recorrido fijo, como por ejemplo ascensores, montacargas, robots, etc. (Figura 2.14).

Figura 2.14 Final de carrera

2.2.2.1 Funcionamiento

Estos sensores tienen dos tipos de funcionamiento: normalmente abierto y normalmente cerrado. Este dispositivo cambia de estado al momento en el que el eje llega al final de su movimiento máximo o mínimo, enviando una señal al CPU del autómata programable, está a su vez procesa la información para el eje, si esta en movimiento, se detenga, además si se le da la indicación de una posición en el sentido posterior al fin de carrera este no permitirá el paso de la orden.

2.2.2.2 Ventajas e inconvenientes

Entre las ventajas encontramos la facilidad (Figura 2.14) en la instalación, la confiabilidad del sistema, es insensible a estados transitorios, trabaja a tensiones altas, debido a la inexistencia de imanes es inmune a la electricidad estática. Los inconvenientes de este dispositivo son la velocidad de detección y la posibilidad de rebotes en el contacto, además depende de la fuerza de actuación.

“La técnica al servicio de la patria”
2.2.3 Sensor inductivo

Características del interruptor de proximidad inductivo M18 (Figura 2.15):

- Interruptor de proximidad inductivo, estilo: cilindro, diámetro 18mm
- Distancia inductiva del montaje del interruptor de proximidad M18: Blindado (2m m)/sin blindaje (4m m)
- C.C. de dos hilos (C.C. 10-30V), alambre de dc 3 (10-30V C.C.), alambre de dc 4 (C.C. 10-30V), tipo de dos hilos de la CA (CA 90-250)
- Modo de conexión inductivo del interruptor de proximidad M18: Cables=2M directo; O con el conectador de cable M12.
- Con la operación del LED indicar la lámpara, fácilmente identificable
- Cromo de cobre amarillo plateado, prueba del aceite, ácido del agua, alcalino
- Objeto de detección estándar del interruptor de proximidad de M18 Inductive: Metales de Iferrous;
- Sobre carga, protección del cortocircuito, contra la revocación de polaridad
- Grados del IP: IP67 (IP68 puede ser hecho especialmente)
- Interruptor de proximidad inductivo M18 con otras formas: M5/M6/M12/M22/M30, tipos cuadrados y tipos de la crepe.
- Aplicado extensamente en la medición, la cuenta, la RPM que mide en mecanismo, el producto químico, la industria ligera de la fabricación de papel, el etc.

![Figura 2.15 Sensor inductivo](image)
2.2.4 Selección de salidas al PLC

Para la realización del proceso, se requiere de un conjunto de elementos de salida que deben ser directamente conectados a las terminales de los módulos del PLC por la razón de que la tensión o corriente de alimentación es diferente y puede ser suministrada por los módulos.

2.2.5 PAC

El automata programable CompactLogix (Figura 2.16) ofrece los elementos más avanzados de manipulación, comunicaciones y E/S en un paquete de multiproceso.

Figura 2.16 CompactLogix

Para crear un sistema más flexible (figura 2.17):

- Varios dispositivos en un solo chasis
- Varios elementos conectados a través de redes
- E/S en múltiples plataformas que se distribuyen entre muchas ubicaciones y se conectan a través de múltiples vínculos de E/S
2.2.6 Comunicación mediante redes

El automata programable CompactLogix es compatible con redes adicionales para ofrecer las siguientes facilidades:

E/S de multiproceso(remotas) (figura 2.18)

- EtherNet/IP
- ControlNet
- DeviceNet

Figura 2.17 Componentes CompactLogix
Descripción del prototipo

Producir/consumir (enclavar) datos entre dispositivos (figura 2.19):

- EtherNet/IP
- ControlNet

Envía y recibe (figura 2.20) mensajes hacia y desde otros dispositivos (incluido el acceso al automata mediante el software de programación RSLogix 5000).

- EtherNet/IP
- ControlNet
- DeviceNet (a dispositivos solamente)
- En serie
- DH-485

“La técnica al servicio de la patria”
Descripción del prototipo

Para comunicaciones EtherNet/IP, se unata un automata programable CompactLogix con puerto decomunicación EtherNet/IP integrado:

- 1769-L32E, automata programable CompactLogix
- 1769-L35E, automata programable CompactLogix

Tabla 2.2 Software para el enlace con el PAC - PC

<table>
<thead>
<tr>
<th>Software</th>
<th>Uso</th>
<th>Requerido/opcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software de programación RSLLogix 5000</td>
<td>Se usa esta software para configurar el proyecto CompactLogix y definir las comunicaciones EtherNet/IP.</td>
<td>Requerido</td>
</tr>
<tr>
<td>Utilidad BOOTP/DHCP</td>
<td>Esta utilidad se envía con el software de programación RSLLogix 5000. Se una esta utilidad para asignar direcciones IP a los dispositivos en una red EtherNet/IP.</td>
<td>Opcional</td>
</tr>
<tr>
<td>RSNetWorx para EtherNet/IP</td>
<td>Se usa este software para configurar dispositivos EtherNet/IP con direcciones IP y/o nombres de anfitrión.</td>
<td>Opcional</td>
</tr>
</tbody>
</table>

Los módulos de comunicación EtherNet/ip (figura 2.21):

- Aceptan mensajería, tags producidos/consumidos, HMI y E/S distribuidas
- Encapsulan mensajes dentro del protocolo TCP/UDP/IP estándar

“La técnica al servicio de la patria”
Descripción del prototipo

- Comparten una capa de aplicación común con ControlNet y DeviceNet
- Se interconectan mediante cable RJ45 categoría 5 con pares trenzados sin blindaje
- Pueden funcionar en half duplex y full duplex, a 10 Mbps 100 Mbps
- Son compatibles con conmutadores estándar
- No requieren sincronización de redes
- No requieren tablas de encaminamiento
- Los dispositivos pueden producir y consumir tags entre sí.
- Los dispositivos pueden iniciar instrucciones MSG que envían/reciben datos o configuran dispositivos.
- La computadora personal puede cargar/descargar proyectos a los automata programable.
- La computadora personal puede configurar dispositivos en Ethernet/IP.
2.2.7 Conexiones mediante EtherNet/IP

Determina indirectamente el número de conexiones que utiliza el automata programable al configurarlo para que se comunique con otros dispositivos en el sistema. Las conexiones son asignaciones de recursos que proporcionan comunicaciones más confiables entre dispositivos que los mensajes no conectados.

Todas las conexiones EtherNet/IP son conexiones no sincronizadas. Una conexión no sincronizada es una transferencia de mensaje entre controladores iniciada por el intervalo entre paquetes solicitados (RPI) o el programa (tal como una instrucción MSG). La mensajería no sincronizada le permite enviar y recibir datos cuando se necesita.

Figura 2.21 Módulo de comunicación
Descripción del prototipo

Los automata programable 1769-L32E y 1769-L35E admiten 100 conexiones. Sin embargo, el puerto EtherNet/IP integrado sólo admite 32 conexiones CIP mediante una red EtherNet/IP. Con estos dispositivos, el número de conexiones de nodo final que admiten eficazmente depende del RPI de la conexión:

Se puede las 32 conexiones de comunicación en el puerto EtherNet/IP integrado. Sin embargo, se recomienda que deje algunas conexiones disponibles para tareas como ponerse en línea y para propósitos diferentes de E/S.

2.2.7.1 Función

En el PAC se procesaran todas las señales que se adquieren de los sensores, la posición a la cual se moverán los ejes, además de mandar los tipos de movimiento, velocidad, aceleraciones para los SERCOS, estos a su vez manda la información a los servo driver de velocidad y posición indicadas.

2.2.8 Tarjetas de entradas y salidas

El 1769 Compact I / O módulos se puede utilizar con un controlador CompactLogix, así como para la ampliación de E / S en un conjunto del automata programable MicroLogix 1500 o en un conjunto de módulo adaptador 1769-ADN DeviceNet. Se instalaron los módulos de E / S en un panel con dos tornillos de montaje o en un carril DIN. Los módulos se montan entre sí por medio de un diseño de lengüeta y ranura y tiene un bus de comunicación integrada que se conecta de un módulo a un autobús móvil conector.

2.2.9 Módulo de entrada de 24V DC compacto:

Un módulo de entrada responde a una señal de entrada de la siguiente manera:

- El filtrado de entrada limita el efecto de los transitorios de tensión causadas por el rebote de contactos y / o ruido eléctrico. Si no se filtra, los transitorios de tensión podrían producir datos falsos. Todos los módulos de entrada utilizan el filtrado de entrada.
- Aislamiento óptico circuitos lógicos escudos de posibles daños debido a los transitorios eléctricos.
- Los circuitos lógicos procesan la señal.
- Un indicador de entrada se enciende o se apaga para indicar el estado del dispositivo de entrada correspondiente (Figura 2.22).
Descripción del prototipo

Figura 2.22 Módulo de entradas
2.2.10 Descripción del módulo de entradas (Figura 2.23)

<table>
<thead>
<tr>
<th>Nº</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Palanca de bus (con enclavamiento)</td>
</tr>
<tr>
<td>2a</td>
<td>Lengüeta superior para montaje en panel</td>
</tr>
<tr>
<td>2b</td>
<td>Lengüeta inferior para montaje en panel</td>
</tr>
<tr>
<td>3</td>
<td>LEDs de diagnóstico E/S</td>
</tr>
<tr>
<td>4</td>
<td>Puerta del módulo con etiqueta identificadora de terminales</td>
</tr>
<tr>
<td>5a</td>
<td>Conector de bus móvil con pines hembra</td>
</tr>
<tr>
<td>5b</td>
<td>Conector de bus fijo con pines macho</td>
</tr>
<tr>
<td>6</td>
<td>Etiqueta identificadora del módulo</td>
</tr>
<tr>
<td>7a</td>
<td>Ranuras superiores de machihembrado</td>
</tr>
<tr>
<td>7b</td>
<td>Ranuras inferiores de machihembrado</td>
</tr>
<tr>
<td>8a</td>
<td>Seguro superior para el riel DIN</td>
</tr>
<tr>
<td>8b</td>
<td>Seguro inferior para el riel DIN</td>
</tr>
<tr>
<td>9</td>
<td>Etiqueta rotulable (para identificaciones del usuario)</td>
</tr>
<tr>
<td>10</td>
<td>Bloque de terminales extraible (BTE) con cubierta protectora de los dedos</td>
</tr>
<tr>
<td>10a</td>
<td>Tornillo superior de retención del BTE</td>
</tr>
<tr>
<td>10b</td>
<td>Tornillo inferior de retención del BTE</td>
</tr>
</tbody>
</table>

Figura 2.23 Descripción del módulo
Descripción del prototipo

En la Tabla 2.3 se muestran las principales características técnicas del módulo mencionado. Es importante notar que una señal es activa cuando se encuentra entre los 10 y 30 voltios, y está apagada cuando se encuentra entre 0 y 5 voltios.

Tabla 2.3

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>118 mm alto x 87 mm profundidad x 35 mm ancho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso aproximado</td>
<td>270 g</td>
</tr>
<tr>
<td>Temperatura de almacenamiento</td>
<td>-40°C a +85°C</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>0°C a +60°C</td>
</tr>
<tr>
<td>Humedad</td>
<td>5 a 95 %</td>
</tr>
<tr>
<td>Rango de operación</td>
<td>10 a 30V dc a 30°C</td>
</tr>
<tr>
<td></td>
<td>10 a 26.4V dc a 60°C</td>
</tr>
<tr>
<td>Número de entradas</td>
<td>16</td>
</tr>
<tr>
<td>Retardo de la señal</td>
<td>On Delay: 8.0 ms</td>
</tr>
<tr>
<td></td>
<td>Off Delay: 8.0 ms</td>
</tr>
<tr>
<td>Voltaje de estado apagado max</td>
<td>5V DC</td>
</tr>
<tr>
<td>Corriente de estado apagado max</td>
<td>1.5 mA</td>
</tr>
<tr>
<td>Voltaje de estado activo min</td>
<td>10 VDC</td>
</tr>
<tr>
<td>Corriente de estado activo min</td>
<td>2 mA</td>
</tr>
<tr>
<td>Impedancia nominal</td>
<td>3 K ohms</td>
</tr>
<tr>
<td>Razón de distancia de la fuente de poder</td>
<td>8 (máxima cantidad de módulos de expansión en un banco)</td>
</tr>
<tr>
<td>Grupos asociados</td>
<td>Grupo 1: entradas 0 a 7</td>
</tr>
<tr>
<td></td>
<td>Grupo 2: entradas 8 a 15</td>
</tr>
</tbody>
</table>
2.2.11 Módulo de salida 1769-OB16

Un módulo de salida manipula la señal de salida de la siguiente manera:

- Los circuitos lógicos determinan el estado de la salida.
- Un indicador de salida muestra el estado de la señal de salida.
- Aislamiento óptico separa la lógica del módulo y circuitos de autobuses de alimentación de campo.
- El autómata programable de salida convierte la salida correspondiente activada o desactivada.

El módulo digital de salida 1769-OB16, es el encargado de trasferir las señales lógicas del autómata programable en forma de voltaje.

Para poder ofrecer una correcta señal de salida, el módulo 1769-OB16 tiene una configuración interna basada en resistores, capacitores, diodos, optoacopladores, tal como se indica en la Figura 2.24.

El módulo se alimenta de una fuente de 24 DC y cada bornera debido a ser una salida a transistor, entrega 24 DC según la lógica de programación utilizada.

![Diagrama del circuito de salida](image)
2.2.12 Descripción del módulo de salidas (Figura 2.25)

<table>
<thead>
<tr>
<th>Nº</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Palanca de bus (con enclavamiento)</td>
</tr>
<tr>
<td>2a</td>
<td>Lengueta superior para montaje en panel</td>
</tr>
<tr>
<td>2b</td>
<td>Lengueta inferior para montaje en panel</td>
</tr>
<tr>
<td>3</td>
<td>LEDs de diagnóstico E/S</td>
</tr>
<tr>
<td>4</td>
<td>Puerta del módulo con etiqueta identificadora de terminales</td>
</tr>
<tr>
<td>5a</td>
<td>Conector de bus móvil con pines hembra</td>
</tr>
<tr>
<td>5b</td>
<td>Conector de bus fijo con pines macho</td>
</tr>
<tr>
<td>6</td>
<td>Etiqueta identificadora del módulo</td>
</tr>
<tr>
<td>7a</td>
<td>Ranuras superiores de machihembrado</td>
</tr>
<tr>
<td>7b</td>
<td>Ranuras inferiores de machihembrado</td>
</tr>
<tr>
<td>8a</td>
<td>Seguro superior para el riel DIN</td>
</tr>
<tr>
<td>8b</td>
<td>Seguro inferior para el riel DIN</td>
</tr>
<tr>
<td>9</td>
<td>Etiqueta rotulable (para identificaciones del usuario)</td>
</tr>
<tr>
<td>10</td>
<td>Bloque de terminales extraíble (BTE) con cubierta protectora de los dedos</td>
</tr>
<tr>
<td>10a</td>
<td>Tornillo superior de retención del BTE</td>
</tr>
<tr>
<td>10b</td>
<td>Tornillo inferior de retención del BTE</td>
</tr>
</tbody>
</table>

Figura 2.25 Características físicas
Descripción del prototipo

Las características físicas del módulo de salida 1769-OB16 se describen en la Tabla 2.4:

Tabla 2.3 Características físicas

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de Funcionamiento</td>
<td>20.4->26.4 Vdc</td>
</tr>
<tr>
<td>Corriente del módulo de salida</td>
<td>1mA.</td>
</tr>
<tr>
<td>Tiempo de respuesta</td>
<td>Al encendido: 0.1ms</td>
</tr>
<tr>
<td></td>
<td>Al apagado: 1ms</td>
</tr>
<tr>
<td>Corriente de Bus</td>
<td>200mA/5Vdc</td>
</tr>
<tr>
<td>Tiempo de Respuesta de cada punto del módulo de entrada</td>
<td>OFF->ON 100μs</td>
</tr>
<tr>
<td></td>
<td>ON->OFF 1ms</td>
</tr>
</tbody>
</table>

2.2.13 Módulo de comunicación EtherNet 1768-ENBT

La red Ethernet ha sido una de las redes más maduras y confiables dentro de aplicaciones de automatización industriales. La red Ethernet/IP hace principal uso del estándar Ethernet, arquitectura TCP/IP y un protocolo de capa de aplicación abierta, llamada CIP (Protocolo de Control e Información), el cual es utilizado generalmente en redes DeviceNet y ControlNet, para la comunicación entre los dispositivos de la familia Rock Well Automation. La red Ethernet/IP permite realizar operaciones de manipulación de las variables que se encuentran dentro del automata programable de la mejor manera, logrando así obtener una estación debidamente actualizada y manipulada. Para poder establecer la comunicación entre el automata y al red Ethernet, es necesario hacer uso de un módulo que posea puerto Ethernet, ya que el dispositivo no tienen un puerto de Ethernet nativo.

El módulo 1768-ENBT mantienen las siguientes características:

- Permite mantener el mando sobre los módulos I/O del automata programable.
- Permite mantener comunicación con otros automatas mediante la configuración Productor/Consumidor.
- Hace posible la comunicación con la HMI, de manera eficiente y veraz.
- Permite transmitir mensajes mediante la trama de Ethernet.
- La tasa de transmisión capaz del módulo es de 100Mbits/s, establecida por la norma IEEE 802.3.
- Permite la administración continua, parcial y eventual del proceso de la estación neumática PN-2800.
- Permite la administración, manipulación y recolección de datos de un proceso de forma rápida y sencilla.
Descripción del prototipo

- Permite realizar acceso remoto y local de las aplicaciones existentes en el automata.
- Soporta hasta 32 conexiones TCP y 64 conexiones CIP a una tasa de transferencia de 5000 paquetes/segundo, dependiendo del tipo de firmware que posea el módulo.
- Permite mantener dos modos de transferencia de datos, tanto como productor/consumidor y por medio de mensajes.

Las especificaciones requeridas por el módulo de Ethernet se muestran en la tabla 2.4 y el medio de comunicación utilizado por este tipo de red es conocida como 10base T.

Tabla 2.4 comunicación ethernet

<table>
<thead>
<tr>
<th>Tasa de comunicación</th>
<th>Número de Conexiones Max.</th>
<th>Número de Módulos x Controlador</th>
<th>Tipo de Conector</th>
<th>Potencia de Disipación</th>
<th>Corriente de consumo en Backplane (5v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/100MB</td>
<td>- 64 Conexiones CIP (I/O e Información) - 32 Conexiones TCP/IP</td>
<td>Hasta 2 módulos de comunicación 1768</td>
<td>RJ45</td>
<td>4.38W</td>
<td>834mA</td>
</tr>
</tbody>
</table>

2.2.14 Características del Módulo Ethernet 1768-ENBT

El módulo de Ethernet 1768-ENBT, está compuesto por led’s indicadores que representan los estados de las diferentes funciones internas del módulo, a más de ello está compuesto por un display ubicado en la parte superior frontal del módulo, que nos permite identificar la dirección IP asignada, su dirección MAC y su estado correcto e incorrecto de funcionamiento tal como lo indica la (Figura 2.26.)

![Figura 2.26 Módulo EtherNet](image)
Descripción del prototipo

La tabla 2.5 muestra el significado de los diferentes estados de los led’s indicadores y las soluciones a los posibles problemas de operación del módulo de Ethernet 1768-ENBT.

Tabla 2.5 Indicador del estado de Ethernet

<table>
<thead>
<tr>
<th>INDICADOR</th>
<th>CONDICIÓN</th>
<th>SIGNIFICADO</th>
<th>ACCIONES REQUERIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFF</td>
<td>Módulo desconectado o no tiene configurado un dirección IP</td>
<td></td>
</tr>
<tr>
<td>NET</td>
<td>PARPADEANDO EN VERDE</td>
<td>PROBLEMA DE COMUNICACIÓN DEL CONTROLADOR</td>
<td>El controlador posee una dirección IP pero no se ha establecido conexiones todavía</td>
</tr>
<tr>
<td></td>
<td>VERDE</td>
<td>IP OK</td>
<td>El módulo posee una dirección IP establecida, por lo cual su funcionamiento esta correcto</td>
</tr>
<tr>
<td></td>
<td>PARPADEANDO EN ROJO</td>
<td>CONEXION AGOTADA</td>
<td>Las conexiones establecidas en el módulo han agotado, por lo que toca nuevamente establecer las conexiones.</td>
</tr>
<tr>
<td></td>
<td>ROJO</td>
<td>IP DUPLICADA</td>
<td>Una dirección IP ha sido detectada como duplicada, dado a que coincide con la dirección IP asignada al Módulo.</td>
</tr>
<tr>
<td>LINK</td>
<td>OFF</td>
<td>ENLACE PERDIDO</td>
<td>Ningún dato está siendo transmitido. El cable esta desconectado.</td>
</tr>
<tr>
<td></td>
<td>VERDE</td>
<td>192.168.1.104</td>
<td>Dirección IP correctamente configurada.</td>
</tr>
<tr>
<td></td>
<td>PARPADEANDO EN VERDE</td>
<td></td>
<td>Se están transmitiendo datos sobre la red</td>
</tr>
<tr>
<td>OK</td>
<td>OFF</td>
<td></td>
<td>El módulo no posee alimentación</td>
</tr>
<tr>
<td></td>
<td>PARPADEANDO EN VERDE</td>
<td>BOOTP/DHCP</td>
<td>El módulo no esta configurado.</td>
</tr>
<tr>
<td></td>
<td>VERDE</td>
<td>192.168.1.104</td>
<td>El módulo esta operando correctamente.</td>
</tr>
<tr>
<td></td>
<td>PARPADEANDO EN VERDE</td>
<td>Dirección IP duplicada Actualización del Firmware</td>
<td>La dirección de red Configurado en el módulo, coincide con otra dirección de red de otro dispositivo ubicado en la misma. Actualización del Firmware</td>
</tr>
<tr>
<td></td>
<td>PARPADEANDO EN VERDE Y ROJO</td>
<td>Rev%d.%.%</td>
<td>El módulo se está diagnosticando.</td>
</tr>
</tbody>
</table>
2.2.15 Interface de comunicación industrial SERCOS

En el campo de los Sistemas de Control Industrial, la interface de varios elementos de control debe de proveer un medio para coordinar las señales y comandos enviados desde los módulos de control. Mientras que una amplia sincronización es deseable por las entradas y salidas discretas, es especialmente importante en los controles de movimiento, donde sincronizar el movimiento de los ejes individuales debe de ser precisamente coordinado. En algún tipo de maquinaria se requiere de sincronización en los ejes que proporcionan movimiento, tales como máquinas cortadoras de metal, maquinaria de ensamble, maquinas envolventoras, robots y maquinaria de manejo de materiales. La interface SERCOS (SErial Real-timeCOmmunicationSystem), por sus siglas en inglés, se traduce como Sistema de Comunicación en Tiempo Real en Serie, es una interface digital abierta globalmente estandarizada para la comunicación entre los controles industriales, dispositivos de control (servoaccionadores) y dispositivos de entrada y salida (I/O). SERCOS es una interface óptica en tiempo real en serie que proporciona la comunicación entre los controles industriales de movimiento y servoaccionadores digitales.

2.2.16 Perfiles de movimiento

En control de movimiento, una necesidad común es mover un sistema desde una posición inicial hasta otra (punto a punto de movimiento). Siguiendo el movimiento más rápido posible, con un valor máximo permitido de velocidad, aceleración y torque. Para muchas aplicaciones, entre ellas la automatización médica, instrumentación científica, y muchos tipos de automatización en general, el movimiento punto a punto, es frecuentemente más usado que otro perfil. El movimiento punto a punto significa que desde un estado en reposo, la carga es acelerada a una velocidad constante, y después, desacelerada tal como la última aceleración, y la velocidad es cero cuando la carga llega a su destino programado. Los dos perfiles comúnmente usados para el movimiento punto a punto son el perfil de la curva-S, y su primo más cercano; el perfil trapezoidal. Estos dos perfiles son mostrados en la figura 2.27

![Figura 2.27 Perfiles de la curva-S y trapezoidal](image)
Descripción del prototipo

En el contexto de un movimiento punto a punto, una curva completa S está formada por 7 distintas fases de movimiento. La fase I comienza moviendo la carga desde el reposo con una aceleración lineal e incremental hasta que esta alcanza la aceleración máxima. En la fase II. El perfil acelera a su máxima velocidad de aceleración hasta que este debe de comenzar a desacelerar para alcanzar la máxima velocidad. Esto ocurre en la fase III cuando la aceleración se reduce linealmente hasta que alcanza el valor de cero. En la fase IV la velocidad es constante hasta que la desaceleración comienza, en el punto en cual los perfiles desaceleran en una manera simétrica a las fases I, II, y III. Por otro lado, un perfil trapezoidal tiene tres fases. Este perfil es un subconjunto de un perfil de la curva-S, teniendo solo las fases correspondientes al #2 del perfil de la curva-S (aceleración constante), #4 (velocidad constante), y #6 (desaceleración constante). Esto reduce el número de fases, explicando las diferencias entre estos dos perfiles: El perfil de la curva-S tiene fases extra de movimiento, las cuales, son la transición entre los periodos de aceleración, y los periodos de no-aceleración. El perfil trapezoidal tiene transiciones instantáneas entre estas fases. Esto se puede observar en las graficas correspondientes de velocidad de la figura 2.27 La característica que define el cambio en aceleración, o periodo transitivo, es conocida como “Jerk”. Jerk es definido como la velocidad de cambio de la aceleración con el tiempo. La meta de cualquier perfil es acercar las características de movimiento de un sistema a la aplicación deseada. Los perfiles de movimiento de la curva-S y trapezoidal trabajan bien cuando la curva de respuesta del torque del sistema de movimiento es bastante lineal. En otras palabras, cuando el torque de salida no varía mucho sobre el rango de velocidades el sistema será experimental.

2.2.17 Kinetix 2000

Este servodrive (figura 2.28) multi-ejes proporciona la simplicidad, permite ahorrar tiempo y dinero de cableado eléctrico inicial y programación de operación y diagnósticos.

Con una corriente de salida continua (rms) de 1.0 a 9.5 As, el Kinetix 2000 ofrece un diseño compacto, conjuntamente con las series de TL y MP, el Kinetix 2000 es ideal para las aplicaciones pequeñas y enfocadas a mejorar la productividad, calidad y tiempo de producción, en la siguiente figura se muestra el Kinetix 2000.

![Figura 2.28 Kinetix 2000](image)
Descripción del prototipo

Beneficios

Las conexiones de tendido eléctrico toman menos tiempo con:

- SERCOS interfaz™. un sencillo enlace digital de fibra óptica elimina hasta 18 alambres discretos por el eje.
- Un sencillo riel de poder reemplaza el tendido eléctrico de poder.
- Diseño de sistema compacto
- El tamaño más pequeño de los drives de módulos, conjuntamente con muchas características de economía de espacio.
- Ejecución excepcional
- Las capacidades de multiproceso proporcionan mayor detalle y rendimiento.
- El diseño del módulo reduce los costos de cableado eléctrico reduciendo el número total de conexiones.
- El tamaño compacto se traduce en mayor flexibilidad para el diseño de la máquina y más producción en la misma cantidad de espacio de piso.
- Los servomotores de Kinetix usan la tecnología Smart Motor para proporcionar la identificación automática al conectarlos reduciendo el tiempo de comisión.
2.3 Integración del prototipo

2.3.1 Diagrama de conexión general

En este diagrama mostramos cómo estarán unidos los elementos de mando y potencia en el prototipo (figura 2.29).

![Diagrama esquemático](image-url)

Figura 2.29 Diagrama esquemático
Descripción del prototipo

Comenzando con la comunicación entre la PC y el PLC, el donde la PC enviara los valores correspondientes para que el PLC procese los daos de las entradas y salidas, con la facilidad de visualizar estos valores en la PC. Con esto conformamos el PAC.

En los módulos de entrada y salida del PLC, están conectado: botoneras y sensores; con ellos podremos monitorear, energizar, des energizar o accionar a los ejes. Así mismo contamos con indicadores luminosos, los cuales se activaran dependiendo de las acciones realizadas por los ejes, como son:

- Rojo: des energizado
- Verde: energizado
- Azul: en movimiento
- Naranja: ascenso o descenso del tercer motor

El módulo de SERCOS enviara a los servo-drivers la información de posición, velocidad o aceleración a cada uno de los servo-motores respectivamente, a su vez devolverán la posición en la que se encuentran, uno de ellos de forma absoluta y el otro de forma incremental, debido al tipo de encoder que cuenta cada uno de ellos (MPL-A1510-VXX2 cuenta con un encoder absoluto y el MPL-A1520U-VXX2 cuenta con un encoder incremental).

2.3.2 Conexión servo variador- servo motor potencia

Se muestra el diagrama (figura 2.30) de conexión del cableado de alimentación, con el cual enviaremos la potencia al Kinetix 2000 que a su vez enviara la potencia al servo-motor.

![Figura 2.30 Diagrama de potencia electrica de los servomotores](image)
2.3.3 Conexión servo variador- servo motor potencia comunicación

Se muestra el diagrama de conexión (Figura 2.31) de los bornes de cada uno de los elementos entre el Kinetix y el servo-motor, la cual será de envío y recepción de datos entre ellos, esto retornará principalmente la posición a la que se ha movido y en la que se encuentran los ejes.

![Diagrama de conexión servo variador- servo motor potencia comunicación](image1)

Figura 2.31 Diagrama de conexión de comunicación de los servomotores

2.3.4 Entradas digitales

En el diagrama se muestra el diagrama de conexión de los elementos que censaran a los ejes (figura 2.32), como son, el final de carrera y el sensor capacitivo, al igual que los pulsadores correspondientes que energizaran, des energizaran y activaran a los ejes.

![Diagrama de entradas digitales](image2)

Figura 2.32 Diagrama de entradas digitales
2.3.5 Salidas digitales

El diagrama muestra la tarjeta de salida de los indicadores luminosos (Figura 2.33), los cuales muestran el estado de los ejes y el estado de los mismos indicadores.

Figura 2.33 Diagrama de salidas digitales
Capítulo III

Configuración y programación

Introducción
Este capítulo explica cada uno de los elementos que se usaron para el prototipo, así como su configuración.
CAPÍTULO III. Configuración y programación

3.1 BOOTP/DHCP

Si el PAC específicamente la tarjeta de Ethernet no cuenta con una dirección IP fija será necesario asignarle una dirección, la manera más sencilla de asignar la dirección es por medio del BOOTP/DHCP, el cual trabaja por medio de la MAC de la tarjeta de Ethernet del PAC (Figura 3.1).

Con el BOOTP/CDP se asigna solo una IP temporal, si se desea asignar una IP fija al dispositivo tendrá que configurar la tarjeta de Ethernet del PAC, desde el RSLinx Una
vez que la computadora y el PAC tienen sus direcciones IP, se procede con la configuración de la red Ethernet. Si la red Ethernet trabaja de manera correcta y la computadora y el PAC están en línea, procedemos con esto a generar el diagrama de flujo y con este generamos el código en diagrama de escalera para introducirlo en el PAC y finalmente el diagrama de conexiones que muestra todos los dispositivos que se encuentran instalados encada uno de los Slot’s del PAC.

3.2 RSLinx

El procedimiento de configuración de Computadora y PAC debe realizarse a través del software de configuración RSLinx.

Abrir el RSLinx para establecer la comunicación entre el PAC y la computadora (figura 3.2).
Configuración y programación

Como se puede observar en la primera parte del paso se abre el RSLinx (Figura 3.2) y se genera una ventana nueva la cual se encuentra vacía debido a que no se ha configurado el tipo de protocolo ni los dispositivos que interactuarán con la computadora (Figura 3.2).

El siguiente paso es iniciar con una nueva comunicación en Ethernet (Figura 3.2), no se recomienda una utilizar RS232 por que la configuración de Servo-Drives requiere de un protocolo de comunicación capaz de trasmitir gran cantidad de información en poco tiempo, es por ello que se recomienda el uso del Protocolo Ethernet IP. Con este protocolo se podrá transmitir información sin que la computadora salga de secuencia al conectar los Servo-Drives.

En RSLinx, usted encontrara una lista de 3 driver Ethernet diferentes: Ethernet/IP driver, Ethernet devices y Remote devices vialinx Gateway. En la mayoría de los casos debería utilizar el nuevo driver Ethernet/IP driver. Este buscará y encontrará automáticamente todos los dispositivos Ethernet/IP compatibles que se encuentren en la red. Solo unos pocos productos Ethernet/IP antiguos no podrán encontrarse con ayuda de este driver.

Cierra el cuadro de dialogo Configure Drivers y haga clic en el icono de RSWho.

Haga clic en el signo + situado al lado de AB_ETHIP-1, Ethernet/IP. Esto habilita el driver Ethernet/IP en RSLinx para examinar la red e identificar los nodos en esta. Se deberá ver los siguientes dispositivos, como se mostrará en la siguiente imagen (Figura 3.3):

![Figura 3.3 RSWho](image)
Una vez vistos los dispositivos de la red, se cierra el RSWho y RSLinx, esto competa la configuración de la computadora utilizando los drivers RSLinx Ethernet.

3.3 RSLogix 5000 aplicación

Se ejecuta el RSLogix y dentro de esta ventana creamos un nuevo proyecto, configurándolo de la siguiente manera (Figura 3.4):

![Figura 3.4 RSLinx configuración](image)

En la ventana New Controller, en el Type se selecciona en el tipo de control que se ocupa (en este caso 1768-L43 CompactLogix 5343controller), y se coloca el nombre del proyecto (Grua_de_puente) (Figura 3.5).
Daremos de alta los módulos de entrada y salida correspondiente en este proyecto, en el árbol de carpetas del lado izquierdo en la carpeta I/O Configuración, se hace clic derecho en el primer nodo 0 1768 Bus, se selecciona agregar nuevo módulo, apareciendo la siguiente ventana Figura 3.6.

Figura 3.5 Datos del programa

Figura 3.6 Alta de los módulos de entrada y salida
Daremos primeramente de alta el módulo de SERCOS interface, seleccionamos el tipo de dispositivo (1768-MO4SE), ya seleccionado damos click en ok. Posteriormente aparecerá otra venta donde le asignamos un nombre al dispositivo y el slot donde se encontrara conectado físicamente quedando la configuración de la siguiente manera (Figura 3.7).

![Figura 3.7 Alta del módulo SERCOS](image1)

Una vez agregado el módulo de SERCOS interface, agregaremos el módulo de comunicación, repitiendo el mismo paso que el primer módulo, (Figura3.8).

![Figura 3.8 Alta módulo SERCOS](image2)
Se selecciona el árbol de comunicaciones dentro de la venta de selección del modulo, en el cual el dispositivo de comunicación es el 1768-ENBT/A tipo Ethernet, ya que se escoge esté elementos damos click en ok (Figura 3.9).

![Figura 3.9 Dispositivo de comunicación 1768-ENBT/A tipo Ethernet](image)

Se selecciona el tipo de revisión 2, después se le asigna el nombre del dispositivo y la dirección IP que tiene el PLC, ya realizado esto se la da ok (Figura 3.10).

![Figura 3.10 Nuevo módulo](image)
Ahora se debe de dar de alta los módulos con respecto al segundo nodo 1769 Bus, al igual que los otros dar click derecho y agregar nuevo módulo. El primero que se le da de alta es un dispositivo de comunicación con nombre 1769-SDN/A y damos click en ok (Figura 3.11).

![figura 3.1](image1.png)

Figura 3.11 Alta de módulos con respecto al nodo 1769 bus

En la siguiente ventana se le asigna el nombre del dispositivo y el lugar del slot quedando de la siguiente manera (Figura 3.12).

![figura 3.12](image2.png)

Figura 3.12 Asignación de nombre y slot
En los siguientes slot se le da de alta los módulos de entrada y salida digitales correspondientemente, primeramente será el módulo de entradas en el slot 2 cuya tarjeta es 1769-IQ16 (Figura 3.13).

![Figura 3.13 Alta módulos de entrada y salida](image1)

Ya asignado el dispositivo asignamos el nombre y el número de slot correspondiente a este y se le da click en ok como se muestra en la (Figura 3.14).

![Figura 3.14 Asignación de nombre y slot](image2)
Ahora se le agrega el módulo de salidas cuyo dispositivo es el 1769-OB16 y se le da click en ok (Figura 3.15).

![Figura 3.15 Alta módulo de salidas](image)

Este módulo está en el slot 3 y se asigna un nombre, realizado esto se aceptan los datos (Figura 3.16).

![Figura 3.16 Asignamos nombre](image)

Ahora procede a dar de alta los servo-driver, para esto damos click derecho en SERCOS-Network y agregar nuevo módulo, seleccionar el primer dispositivo que
Configuración y programación

manipula al eje 1 de nuestro mecanismo, en este caso es 2093-AC05-MP5, y damos click en OK (Figura 3.17).

![Imagen de configuración y programación]

Figura 3.17 Alta de servo-drive 1

Se le asigna un nombre y el slot, dado que es el primero que se encuentra en el SERCOR será el slot 1, finalizando con OK, con esto ya se tiene un dispositivo que manipula nuestro primer servo-motor (Figura 3.18).

![Imagen de asignación de nombre y slot]

Figura 3.18 Asignación de nombre y slot

“La técnica al servicio de la patria”
Se repite lo mismo del serov-drive 1, pero en esta ocasión el siguiente módulo lo ocupará el 2093-AMP5 (Figura 3.19).

![Select Module](image)

Figura 3.19 Alta de servo-drive 2

Se le asigna el nombre (Servo_Driver_2) para distinguir a cada servo, este lo colocamos en el slot 2 y acepta al nuevo dispositivo dando click en OK(Figura 3.20).

![New Module](image)

Figura 3.20 Asignación de nombre y slot
3.4 Grupo de movimiento

Ahora vamos a crear un nuevo grupo de movimiento en el que se le da de alta a los servo-motores a partir de los servo-driver, lo realiza dando click derecho en la carpeta de grupo de movimiento (motiongrup) del árbol del lado izquierdo de la ventana principal de RSLogix 5000 (Figura 3.21)

![Figura 3.21 Nuevo grupo de movimientos](image)

Dentro de la ventana de new Tag se escribe el nombre del nuevo grupo de movimiento, para este proyecto se llamará ejes, que es de tipo base, perteneciente el tipo de dato MOTION_GRP (Figura 3.22).

![Figura 3.22 Asignación de nombre del nuevo grupo de movimiento](image)
Dentro del nuevo grupo de movimiento eje se le agrega los ejes que van a pertenecer a este, para ello se le da click derecho, nuevo eje, eje servo driver, para configurar al motor correspondiente de cada eje (Figura 3.23).

Figura 3.23 Adición de los ejes

Se le asigna un nombre al motor, para el prototipo será Eje_1, de tipo base con un tipo de dato AXIS_SERVO_DRIVER, quedando de la siguiente manera (Figura 3.24).

Figura 3.24 Asignación de nombre al motor
Ahora se asignaran las propiedades a ese eje, comenzamos en la pestaña general, en la configuración de ejes es de tipo SERVO, perteneciente al grupo de movimiento que se crean Ejes, lo vamos asociar al módulo Servo_Driver_1 del nodo 1, con esto se indica que el servo-drive que se dio de alta anteriormente, manda la señal a nuestro motor y esto es para nosotros el eje 1 (Figura3.25).

![Figura 3.25 Propiedades del motor](image)

3.5 Unidades de posición

Ahora se establecen las unidades de posición que se utilizan para etiquetar todos los valores relacionados con el movimiento (por ejemplo, la posición, la velocidad, etc) Estas unidades de posición pueden ser diferentes para cada eje. La referencia es en revoluciones, esto es para poder determinar la posición a la cual se mueve el eje cuando se le inserte un valor de posición.

Promedio de velocidad de base de tiempo

Especifica el tiempo (en segundos) que se utiliza para calcular la velocidad media del eje. Este valor se calcula tomando la distancia total del eje se desplaza en la cantidad de tiempo especificado, y dividiendo este valor por la base de tiempo.

El valor promedio de la velocidad de base de tiempo debe ser lo suficientemente grande como para filtrar los pequeños cambios en la velocidad que puedan resultar en un valor de velocidad "ruidoso", pero lo suficientemente pequeño como para seguir los cambios significativos en la velocidad del eje. Un valor entre de 0,25 segundos es funcional para la aplicación. (Figura 3.26).
Posteriormente en la pestaña Driver/Motor, estableceremos el servodriver que mande y reciba las señales al motor en AmplifierCatalogNumber, después se selecciona la serie del motor que ocuparemos en Motor CatalogNumber el cual será para este caso el MPL-A1510V-Hxx2. El ciclo de configuración es de servoposición (en esta caso es porque indicaremos la posición a la cual indicaremos donde moverse el eje respectivo) y la información del eje en tiempo real serán de datos por dos atributos, el primero de comando de posición y el segundo por el comando de velocidad, quedando la configuración de la siguiente manera (Figura 3.27).

Figura 3.26 Unidades de posición

Figura 3.27 Selección de servo-drive que mandará y recibirá señales
Configuración y programación

Configuraremos ahora la pestaña de conversión, en esta se determina el tipo de movimiento que va realizar el servo-motor, los cuales pueden ser:

- **Lineal** - proporciona un máximo desplazamiento lineal total de 1000 millones de conteos de retroalimentación. Con este modo, la función de descansar se desactiva y se puede limitar la distancia de recorrido lineal realizada por el eje mediante la especificación de los límites de desplazamiento positivo y negativo para el eje.

- **Rotary** - permite al descansar capacidad de giro del eje. Esta característica proporciona una gama infinita posición desenrollando la posición del eje cuando el eje se mueve a través de una distancia total descansar. El número de recuentos del codificador por descansar del eje se especifica por el parámetro de posición de desenrollado.

Como nuestro movimiento es en forma positiva y negativa se le asigna el tipo lineal.

Constante de conversión

El modo de posición determina el tipo de movimiento que va tener el eje ya sea de tipo lineal o rotatorio, el primero lo determina de forma longitudinal y el segundo de forma angular. La constante de conversión se utiliza para convertir las unidades de posición del eje en cuenta retroalimentación y viceversa para el tipo AXIS_SERVO y para el AXIS_SERVO_DRIVE, el número de pulsos por revolución del motor, como se establece en el campo Resolución de unidad de la pestaña Drive.

Quedando la configuración como se muestra en la (Figura 3.28).

![Figura 3.28 Configuración de la pestaña de conversión](image)
Para el eje dos se realizan los mismos procedimientos, con la diferencia en la pestaña de *Dreve/Motor* se selecciona el segundo servo-driver y el modelo del segundo servo-motor (MPL-A1520U-Vxx2) conservando los mismos atributos (Figura 3.29).

![Imagen de configuración y programación](Image)

Figura 3.29 Selección de servo-drive que mandará y recibirá señales

Una vez cargado todos los módulos de comunicación, entrada, salida y dispositivos, se descargan los valores al PLC para que este reconozca las comunicaciones entre los dispositivos, pero antes para que se pueda descargar sin problemas se tiene que ajustar la hora, eso se logra dando doble click en primer nodo cero [0] 1768-L43 Grua de puente, sale una pestaña *Controllerproperties*, en ella no vamos a la pestaña *Data/Time* y desactivamos la casilla de *Adjust for day lightsaving* (+01:00), aplicamos y aceptamos los cambios (Figura 3.30).

![Imagen de descarga de valores al PLC](Image)

Figura 3.30 Descarga de valores al PLC
Configuración y programación

Ahora se descargan los cambios al PLC, es lo logramos dirigiéndonos a la pestaña de comunicación/Who Active (Figura 3.31).

![Imagen de la pestaña de comunicación/Who Active]

Figura 3.31 Pestaña comunicación/Who

Una vez en la ventana se selecciona el dispositivo para descargar los cambios realizados y continuar con la sintonización del servo-motor (Figura 3.32).

![Imagen de la selección de dispositivo para la descarga]

Figura 3.32 Selección de dispositivo para la descarga
3.6 Programación RSLogix 5000

3.6.1 Hookup

Se sincronizó lo motores para verificar si los valor y la respuesta de los mismos son correctas, primero se abre la ventana de propiedades de eje y no dirigimos a la pestaña de Hookup.

Se llenó la posición absoluta deseada, en unidades de posición, para el eje después de la secuencia de homing especificado se ha completado. En la mayoría de los casos, esta posición se pone a cero, a pesar de cualquier valor dentro de los límites de software se puede utilizar. Después de la secuencia de recalada es completa, el eje se deja en esta posición.

Si el modo de posicionamiento (ubicado en la pestaña Conversión) del eje es lineal, entonces la posición de inicio debe estar dentro de los límites de recorrido, si está habilitado. Si el modo de colocación es Rotary, entonces la posición inicial debe ser menor que la distancia en unidades de posición descansar (para esta prueba llenaremos el valor con 1).

3.6.2 Test Incremental

Especifica la cantidad de distancia recorrida por el eje al ejecutar la prueba de salida y Feedback. El valor por defecto es de aproximadamente un cuarto de giro del motor en unidades de posición (Figura 3.33).

![Figura 3.33 Test Incremental]
3.6.3 Marcador de prueba

Ejecuta la prueba del marcador, lo que garantiza que el codificador A, B, y los canales de Z están conectados correctamente y eliminado adecuadamente para la detección del marcador. Cuando se inicia la prueba, debe mover manualmente el eje de una revolución para el sistema para detectar el marcador. Si no se detecta el marcador, compruebe el cableado del encoder y vuelva a intentarlo (Figura 3.34).

3.6.4 Test Feedback

Ejecuta la prueba de Evaluación, que revisa y, si es necesario, vuelve a configurar la configuración de polaridad comentarios. Cuando se inicia la prueba, debe mover manualmente el eje de una revolución para el sistema para detectar el marcador. Si no se detecta el marcador, compruebe el cableado del encoder y vuelva a intentarlo (Figura 3.35).
Configuración y programación

Al momento de realizar esta prueba internamente verifica los parámetros y regreso de señales de posición, velocidad y torque realizando análisis como se muestran en la Figura 3.36

Figura 3.36 Análisis del feedback
3.6.5 Prueba de salida y Feedback

Ejecuta la prueba de salida y Feedback, que comprueba y, si es necesario, vuelve a configurar tanto la polaridad de retroalimentación del codificador (ajuste Polaridad Feedback) y la polaridad de la salida del servo a la unidad (el valor Polaridad de salida), para un eje configurado para Servo operación en la pestaña general (Figura 3.37).

Figura 3.37 Prueba de salida y Feedback
La prueba de salida verifica las señal del servo drive y con ello realiza internamente el sistema de control PID donde ajusta los valores de posición y velocidad para el regreso de señal y mantener los parámetros introducidos durante la operación en una respuesta optima para el proceso de movimiento (Figura 3.38)

Figura 3.38 Lazo de control interno del Feedback
3.7 Sintonización

3.7.1 Límite de Viaje

Especifica un límite para la excursión del eje durante la prueba de sintonía. Si el módulo de servo determina que el eje no es capaz de completar el proceso de ajuste antes de exceder el límite de recorrido de sintonización, que termina el perfil de sintonización y el informe de que se ha sobrepasado este límite.

3.7.2 Velocidad

Determina la velocidad máxima para el proceso de sintonía. Este valor debe ajustarse a la velocidad máxima deseada del motor (en unidades de ingeniería) antes de ejecutar la prueba de tono.

Par/Fuerza (AXIS_SERVO_DRIVE)

El par máximo de la prueba de tono. Se usa la fuerza sólo cuando un motor lineal está conectado a la aplicación. Este atributo se debe establecer en el máximo nivel de par segura deseada antes de ejecutar la prueba de tono. El valor predeterminado es 100%, lo que da la información más precisa. En algunos casos un ajuste valor límite de par inferior puede ser deseable limitar la presión sobre la mecánica durante el procedimiento de sintonización. En este caso, las capacidades de aceleración y deceleración del sistema se extrapolan basándose en la relación del par de sintonización para la salida de par máximo del sistema. Error extrapolación aumenta a medida que el valor de par ajuste disminuye.

3.7.3 Dirección

La dirección del perfil de movimiento de sintonización. Las siguientes opciones están disponibles:

- Reenviar unidireccional - se inició el perfil de movimiento tuning en la dirección de ajuste hacia adelante solamente.
- Reenviar bidireccional - el perfil de movimiento de sintonización se inicia primero en la dirección de sintonización hacia delante y, a continuación, si tiene éxito, se repite en la dirección inversa. La información devuelta por el perfil de sintonización bi-direccional puede ser usada para ajustar compensación de rozamiento y de par Offset.
- Invertir unidireccional - el perfil de movimiento tuning se inicia solamente en la dirección inversa tuning.
- Inversa bidireccional - el perfil de movimiento de sintonización se inicia por primera vez en la dirección inversa de sintonización y, a continuación, si tiene éxito, se repite en la dirección hacia adelante. La información devuelta por el perfil de sintonización bi-direccional puede ser usada para ajustar compensación de rozamiento y de par Offset.
3.7.4 Factor de amortiguamiento

Especifica la respuesta dinámica del eje servo. El valor predeterminado es 0,8. Cuando las ganancias se sintonizan con un pequeño factor de amortiguación, una prueba de respuesta de paso realizado en el eje puede generar la oscilación no controlada. La ganancia generada utilizando un factor de amortiguación más grande se producen una respuesta de paso del sistema que no tiene ningún rebasamiento y es estable, pero pueden ser lentos en respuesta a los cambios.

3.7.5 Iniciar la sintonización

Se hace clic en este botón para iniciar la prueba de ajuste. Si el proceso de ajuste se realiza correctamente se definen los siguientes atributos.

<table>
<thead>
<tr>
<th>En esta ficha:</th>
<th>Estos atributos se establecen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>pestaña Ganancias</td>
<td>GainVelocityFeedforward (si se observa bajo Tune, arriba)</td>
</tr>
<tr>
<td></td>
<td>La aceleración de ganancia anticipativo (si observan bajo Tune, arriba)</td>
</tr>
<tr>
<td></td>
<td>Posición Proporcional Ganancia Integral (si se activa bajo Tune, arriba)</td>
</tr>
<tr>
<td></td>
<td>Velocidad Ganancia Proporcional Integral (si se activa bajo Tune, arriba)</td>
</tr>
<tr>
<td>ficha Dinámica</td>
<td>Velocidad máxima</td>
</tr>
<tr>
<td></td>
<td>La aceleración máxima</td>
</tr>
<tr>
<td></td>
<td>Deceleración máxima</td>
</tr>
<tr>
<td>ficha Salida</td>
<td>Escala de Torque</td>
</tr>
<tr>
<td></td>
<td>Escala de velocidad (sólo AXIS_SERVO)</td>
</tr>
<tr>
<td></td>
<td>Filtro de paso bajo de salida (ver nota más abajo)</td>
</tr>
<tr>
<td>Límites</td>
<td>Error de posición Tolerancia</td>
</tr>
</tbody>
</table>

Durante el ajuste, si el controlador detecta un alto grado de sintonía inercia, que permite que el filtro de paso bajo de salida y calcula y establece un valor para el ancho de banda del filtro de paso bajo de salida. Al ejecutar una operación Tune guarda automáticamente todos los cambios en las propiedades de eje (Figura 3.39).
3.8 Programa de movimiento de ejes

3.8.1 Comandos de RSLogix 5000

Los comandos son instrucciones que contienen los parámetros a los cuales de les asignaran para poder manipular los ejes respectivamente.

3.8.1.1 MSO

Utilice el Servo Motion On (MSO) instrucciones para activar el amplificador de accionamiento para el eje especificado y para activar el bucle de control servo del eje.

Operando

La instrucción MSO es compatible con los siguientes operando:

- Escalera de relés
- Texto estructurado

3.8.1.1.1 Escaleras de relés (Figura 3.40)

![Figura 3.40 Comando MSO](image)

Descripción del comando en diagrama de escalera:

Estructura MOTION_INSTRUCTION (MSO) en anexo 2:

Descripción

La instrucción MSO activa directamente la unidad y permite el servo configurado bucles asociados con un eje servo física. Se puede utilizar en cualquier parte en un programa, pero no debe ser utilizado mientras que el eje se está moviendo. Si se intenta, la instrucción MSO genera un "eje in Motion 'error.

La instrucción MSO activa automáticamente el eje especificado mediante la activación de la unidad y por la activación del bucle servo asociado. Con un eje no CIP, el estado
Configuración y programación

resultante del eje se conoce como el estado de control de servo. Con un eje CIP, el estado resultante del eje se conoce como el estado de ejecución.

El uso más común de esta instrucción es para activar el bucle de servo para especificar al eje en esta posición en preparación para el comando de movimiento.

La ejecución de la instrucción para ejecutar correctamente una instrucción MSO, el eje dirigido debe estar configurado como un eje servo. Si esta condición no se cumple con los errores de instrucción.

3.8.1.1.2 MSF (Figura 3.41)

Utilice la instrucción Motion Servo Off (MSF) para desactivar la salida de accionamiento para el eje especificado y desactivar bucle servo del eje.

La instrucción MSF da apoyo a los siguientes operandos:

- Escalera de relés
- Texto estructurado

Descripción del comando en diagrama de escalera en anexo 3:

Estructura MOTION_INSTRUCTION (MSO) en anexo 4:

Descripción

La instrucción MSF directamente e inmediatamente se apaga la salida del variador y desactiva el bucle de servo en cualquier eje servo físico. Con no CIP movimiento, esto coloca el eje en el estado de eje listo. Con control de movimiento integrado, esto coloca el eje en el estado Detenido. La instrucción MSF también desactiva los planificadores de movimiento que pueden estar activos en el momento de la ejecución. La instrucción MSF no requiere parámetros - simplemente escriba o seleccione el eje deseado.

Si el eje dirigido no aparece en la lista de ejes disponibles, el eje no tiene ha configurado para la operación. Utilice el editor de etiquetas para crear y configurar un nuevo eje.

Usted puede utilizar la instrucción MSF para activar la acción del servo cuando tiene que mover el eje con la mano. Debido a la posición continúa para ser rastreados

“La técnica al servicio de la patria”
incluso con servo acción OFF. Cuando el bucle servo está en ON de nuevo, por el Servo Motion On (MSO), el eje es de nuevo bajo el control de ciclo cerrado, en el nuevo posición.

3.8.1.1.3 MAS (Figura 3.42)

Utilice la instrucción Motion Axis parada (MAS) para detener un proceso de movimiento específico sobre un eje o para detener el eje completo.

Operandos

La instrucción MAS soporta los siguientes operandos:

- Escalera de relés
- Texto estructurado

![Figura 3.42 comando MAS](image)

Descripción del comando en diagrama de escalera en anexos 5:

Estructura MOTION_INSTRUCTION (MAS) en anexo 6:

Descripción

Use la instrucción MAS cuando se desea una parada desacelerado para cualquier movimiento controlado en el proceso para el eje. La instrucción detiene el movimiento sin desactivar el bucle servo. Un perfil trapezoidal se utiliza siempre para el MAS con el tipo de parada = ALL para el deceleración independientemente del tipo de perfil programado. Use la instrucción de hacer lo siguiente.

- Detener un proceso de movimiento específico, como correr, mover o engranajes.
- Detenga el eje completo.
3.8.1.1.4 MAM (Figura 3.43)

Utilice la instrucción Motion Axis Move (MAM) para mover un eje a una posición especificada.

Operando

La instrucción MAM soporta los siguientes operando:

- Escalera de relés
- Texto estructurado

![Figura 3.43 Comando MAM]

Descripción del comando en diagrama de escalera en anexo 7

Estructura MOTION_INSTRUCTION (MAS) en anexo 8

Descripción

La instrucción MAM mueve un eje tanto a una posición absoluta especificada o una distancia incremental especificado. La instrucción MAM también puede producir otros tipos de movimientos especiales.
3.9 Programación en diagrama de escalera del proceso

Se describe línea a línea, dando a conocer el funcionamiento y la funcionalidad de cada línea de programa.

3.9.1 Secuencia de operación

1. El operador verifica que la base de carga esté en posición, a su vez, el sistema se encontrará energizado, esto será comunicado al operador, por medio del indicador luminoso rojo.

2. Se energizan los ejes, esto será comunicado al operador, por medio del indicador luminoso verde, a su vez el operador podrá colocar el objeto en la base de carga.

3. El operador ingresará la posición en la cual desee mover la objeto, e iniciará el recorrido al oprimir el botón mover.

4. Al ascenso de la base de carga se encenderá el indicador luminoso naranja, una vez llegada a la posición máxima, los ejes se moverán según la posición que se ingresó, con esta secuencia encenderá el indicador luminoso azul, al finalizar su recorrido la base de carga descenderá, esto será comunicado al operador, por medio del indicador luminoso naranja.

5. El operador podrá retirar el objeto en la base de carga.
3.9.2 Diagrama de flujo

Diagrama 1. Diagrama de flujo del programa

“La técnica al servicio de la patria”
3.9.3 Main (Programa principal) (Figura 3.45)

0. Da un retraso al inicio del programa para mandar un pulso a los servo-driver para des energizarlos por precaución
1. Sólo deja pasar el pulso en el primer ciclo de lectura del programa
2. Espera que se activen los servo-driver, se introduzcan los valores de posición, una vez esto se da accionar para mandar los valores a los servo-motores
3. Sube el eje 3 cuando esta accionando el movimiento
4. Es el control de movimiento del tercer eje al subirlo o bajarlo
5.6. Controla el tiempo de subida o bajada del eje 3
7,8. salta a los diagramas de escalera de los ejes 1 y 2 respectivamente para verificar si han introducido los valores de posición o para cuando estos sean
Configuración y programación

Do el tiempo en que se moverá el eje 3 en sentido ascendente

Sube la carga para ser transportada

Manda la señal a los ejes 1 y 2 para moverse

Autonomía de mover los ejes 1 y 2 da el tiempo que se moverá el eje 3 en forma descendente

Descende la carga con el eje 3

Energiza el eje 3 cuando los otros dos ejes están energizados

Figura 3.45 Menú principal
3.9.4 Eje 1 (Figura 3.46)

0. Establecemos el comando MSF des energizar el eje 1 asignándolo al servo driver 1, nombrándolo E_1_Off, este se acciona al inicio del programa (cuando se energiza y comienza todo) o cuando es accionado el botón de des energizar eje 1 por el operador.

1. Aquí detenemos al eje 1 por completo en caso de que llegue al límite de movimiento positivo o negativo, esto se logra con la instrucción MAS, asignando el servo-driver-1, además nombramos acción de movimiento como E_1_Stop. Tendrá un tipo de alto total en el cual nuestro valores de cambio de desaceleración y velocidad de desaceleración será de 100 unit por sec2 y 100 unit por sec3 respectivamente, teniendo con esto un perfil de detenido total casi inmediato pero o brusco.

2. 3. Deja pasar solo un pulso en un ciclo de lectura inmediato la señal de los sensores de final de carrera cuando son accionados.

4. Manda la señal a un indicador visual cuando el eje esta energizado

5. Energiza al eje 1 cuando este recibe la señal por el operador, este mando es para el servo driver 1 con el nombre de E_1_On.

6. Manda una señal a un indicador visual cuando el eje 1 está des energizado.

7. Manda a la sub rutina Eje1_comandos que es donde se asigna la posición donde se moverá el servo motor.

8. Regresa al programa principal.
Configuración y programación

“La técnica al servicio de la patria”
Figura 3.46 Sub rutina Eje 1

“La técnica al servicio de la patria”
3.9.5 Eje_comandos 1 (Figura 3.47)

0. Si el eje 1 está en una posición adecuada para moverse en forma positiva o negativa respectivamente este puede recibir la indicación de ejecutarse el movimiento, de lo contrario es limitado por los parámetros de seguridad de los límites de carrera y viendo si la dirección en la que se moverá es permitido o no.

1. Cuando el eje 1 está en movimiento es encendido un indicador visual para hacer alusión a este

2. Se establecen los parámetros de movimiento para que se mueva el eje_1 de manera adecuada para él lo direccionalos al eje con el servo drive 1 y lo llamaremos Eje_1_movimiento, le estableceremos un tipo de movimiento incremental debido a que nos interesa que se mueva en dirección positiva o negativa desde el punto de donde se encuentre linealmente, la posición será asignada por el operador, la velocidad la determinamos de 0.5 unit por sec debido a que cuenta con un alto torque y su movimiento no es violento evitando oscilaciones notorios en la carga. El cambio de aceleración es de 1 unit por sec² para que sea lo más suave posible e indetectable a la inercia de la carga a transportar, del mismo modo la velocidad de des aceleración es de 1 unit por sec², para que esto valores serán notados en el movimiento designamos el perfil de movimiento el cual será curva-S para evitar cabios bruscos en cada paso de aceleración, des aceleración y velocidad. El AccelJerk es el régimen de curva de aceleración para el eje. El DecelJerk es el régimen de curva de deceleración del eje. Utilizamos estos valores para cada parámetro AccelJerk 100 unit por sec³, DecelJerk 100 unit por sec³.
Configuración y programación

La técnica al servicio de la patria
Configuración y programación

Figura 3.47 Eje_Comandos 1

“La técnica al servicio de la patria”
0. Establecemos el comando MSF des energizar el eje 2 asignándolo al servo driver 1, nombrándolo E_2_Off, este se acciona al inicio del programa (cuando se energiza y comienza todo) o cuando es accionado el botón de des energizar eje 2 por el operador.

1. Aquí detenemos al eje 2 por completo en caso de que llegue al límite de movimiento positivo o negativo, esto se logra con la instrucción MAS, asignando el servo_driver_2, además nombramos acción de movimiento como E_2_Stop. Tendrá un tipo de alto total en el cual nuestro valores de cambio de desaceleración y velocidad de desaceleración será de 100 unit por sec2 y 100 unit por sec3 respectivamente, teniendo con esto un perfil de detenido total casi inmediato pero o brusco.

2.3. Deja pasar solo un pulso en un ciclo de lectura inmediato la señal de los sensores de final de carrera cuando son accionados.

4. Manda la señal a un indicador visual cuando el eje esta energizado

5. Energiza al eje 2 cuando este recibe la señal por el operador, este mando es para el servo driver 2 con el nombre de E_2_On.

6. Manda una señal a un indicador visual cuando el eje 2 está des energizado.

7. Manda a la sub rutina Eje2_comandos que es donde se asigna la posición donde se moverá el servo motor.

8. Regresa al programa principal.
Configuración y programación

Figura 3.48 Eje 2

“La técnica al servicio de la patria”
Configuración y programación

3.9.7 Eje_comandos 2 (Figura 3.49)

0. Si el eje 2 está en una posición adecuada para moverse en forma positiva o negativa respectivamente este puede recibir la indicación de ejecutarse el movimiento, de lo contrario es limitado por los parámetros de seguridad de los límites de carrera y viendo si la dirección en la que se moverá es permitido o no.

1. Cuando el eje 2 está en movimiento es encendido un indicador visual para hacer alusión a este

2. Se establecen los parámetros de movimiento para que se mueva el eje_2 de manera adecuada para que lo direccionalizamos al eje con el servo drive 2 y lo llamaremos Eje_2_movimiento, le estableceremos un tipo de movimiento incremental debido a que nos interesa que se mueva en dirección positiva o negativa desde el punto de donde se encuentre linearmente, la posición será asignada por el operador, la velocidad la determinamos de 0.5 unidades por segundo debido a que cuenta con un alto torque y su movimiento no es violento evitando oscilaciones notorios en la carga. El cambio de aceleración es de 1 unidad por segundo al cuadrado para que sea lo más suave posible e indetectable a la inercia de la carga a transportar, del mismo modo la velocidad de desaceleración es de 1 unidad por segundo al cuadrado, para que estos valores serán notados en el movimiento designamos el perfil de movimiento el cual será curva-S para evitar cambios bruscos en cada paso de aceleración, desaceleración y velocidad. El AccelJerk es el régimen de curva de aceleración para el eje. El DecelJerk es el régimen de curva de deceleración del eje. Utilizamos estos valores para cada parámetro AccelJerk 100 unidad por segundo al cubo, DecelJerk 100 unidad por segundo al cubo.
Figura 3.49 Eje_Comandos 2
Capítulo IV

Análisis de resultados y conclusiones

Introducción
En este capítulo comprobaremos si lo planeado es lo que se obtiene como resultado, comprobándolo con pruebas concisas.
CAPÍTULO IV. Análisis de resultados y conclusiones

4.1 Análisis de resultados

4.1.1 Parte física

Se mostró en capítulos anteriores como debía quedar físicamente el prototipo, en el cual se conformarán todos los elementos descritos, con el propósito de obtener resultados satisfactorios.

Figura 4.1 Mesa y estructura
Servo-motores y base de carga (figura 4.2):

Figura 4.2 Servo-motores y base de carga

“La técnica al servicio de la patria”
Análisis de resultados y conclusiones

Fines de carrera y sensor capacitivo (figura 4.3):

Como se observa en la figura 4.1-4.2-4.3 en comparación la figura x.xx, todos los elementos se colocaron en donde se planeó, así que se considera un acierto entre lo planeado y lo realizado.

Figura 4.3 Fines de carrera y sensor capacitivo
4.1.2 HMI

Se consideró hacer un HMI, la cual hará más amistosa la manipulación de la grúa para el operario, con esto se pretende manipular las unidades que avanzarán los ejes, así como activar y desactivar el prototipo. Ahora en la figura 4.4, se mostrara ya montado en la HMI y funcionando.

A continuación describiremos cada uno de los botones que conforman la HMI, ya que como se dijo, se espera poder ingresar el número de unidades que va a desplazarse cada uno de los ejes que se tiene, otra de las cosas que se dijo, es que el descenso y ascenso de la base de carga, sería independiente de la manipulación humana (figura 4.5).
4.1.2.1 Descripción de botones

1. Accionar Ejes: este botón energiza a los tres servo-motores
2. Desactivar Ejes: este botón des energiza a los tres servo-motores
3. Posición Eje_1: aquí se despliega un teclado numérico (figura 4.6), en el cual ingresaremos las unidades que se desplazara el eje uno
4. Posición Eje_2: aquí se despliega un teclado numérico (figura 4.6), en el cual ingresaremos las unidades que se desplazara el eje dos
5. Mover: envía la señal que permite el comienzo de la rutina
6. Salir de la Aplicación: es el apagado del HMI, o también puede servir para cargar una nueva aplicación

Se observa que desde dicha HMI se puede manipular la grúa, desde esta internase se puede accionar, parar y manipular las unidades de movimiento que se requieran, por lo que se considera que se acertó.
4.1.3 Análisis de la propuesta

Para analizar la parte realizada con la propuesta, realizaremos una serie de pruebas con los dos tipos de perfiles que contamos, “curva suave” y “trapezoidal”, al mismo tiempo variaremos la velocidad y la posición del prototipo. Dichas pruebas se realizarán con el fin de encontrar la mejor velocidad para que cause los menores movimientos en la carga.

4.1.3.1 Prueba con “trapezoidal”

Sin carga

Como ya se explicó en el capítulo III, con el perfil trapezoidal, se obtiene un incremento y un decremento en la velocidad, pero este cambio se realiza de manera súbita, lo que provoca movimientos no deseados en la base de carga, de igual manera al detenerse, por el cambio tan drástico que experimenta, se produce un movimiento a causa de la inercia que experimenta. Se realizarán pruebas modificando las rev/min que nos
proporciona el equipo y a la vez se desplazara la carga en unidades específicas (1,2,5,10,-18,20,5,-25,30, y haciendo uso del fin de carrera y nuestro sensor capacitivo), vamos a hacer nuestras pruebas:

- **200rev/min:** observamos mucho movimiento en nuestra base de carga, consideramos que es normal por la velocidad que se consideró, esta velocidad no nos es de mucha utilidad, cuando el sistema se detiene, la base queda con mucha inercia, así que se procede a hacer la siguiente prueba (Figura 4.7).

![Figura 4.7 Curva trapezoidal a 200 rev/s](image)

- **100 rev/min:** con la modificación de la velocidad tenemos menos movimiento en la base de carga, pero aún no es suficiente para lo que se espera, aún no es funcional, así que se procede a hacer la siguiente prueba (Figura 4.8).

![Figura 4.8 Curva trapezoidal a 100 rev/s](image)
Análisis de resultados y conclusiones

- 70 rev/min: con la disminución de la velocidad vemos que en cada una de las posiciones que se ingresa, tenemos menos alteración en la base de carga, considerando que no tenemos carga, consideramos normal que exista muchas alteraciones con cualquier movimiento.
- 40 rev/min: comenzamos a ver resultados agradables, aunque no es lo esperado, los movimientos en la base de carga comienzan a disminuir en cada una de las posiciones que ingresamos, la inercia en el momento de paro es menor, pero aún no basta con lo que se espera.
- 25 rev/min: se aproxima al resultado esperado, aunque tenemos algunas deficiencias en cuanto a los movimientos que se observan en la base de carga.
- 10 rev/min: aquí se observa una disminución en los movimientos indeseables y al momento de paro, casi no tenemos inercia, así que al estar en paro total no hay alteraciones en la base de carga, pero aún existen. Como se mencionó, estas pruebas son sin carga, lo que limita el peso, haciendo más fácil la alteración en el estado de reposo de la base de carga.
- 1 rev/min: esta es la velocidad mínima que podemos considerar, esta limitante la da el equipo, así que con esta prueba, obtuvimos los resultados esperados, pero debido a la falta de carga, aún se nota un ligero movimiento en la base de carga a la hora de moverla de una posición a otra, también al momento de paro, podemos ver un poco de movimiento debido a la inercia que lleva la base de carga (Figura 4.9).

!Figura 4.9 Curva trapezoidal a 1 rev/s

Se concluye que sin carga, se debe usar la velocidad mínima, es decir, 1 rev/min.
Con carga

Con carga se presentan los mismos problemas, pero a la hora de detener el movimiento causado por la inercia es mayor, ya que la carga ayuda a dicho movimiento.

- 200 rev/min: se presentan menos movimientos perjudiciales a causa de la carga, pero no desaparecen, la inercia sigue causando estragos en la carga (Figura 4.10).

![Figura 4.10 Curva trapezoidal a 200 rev/s](image1)

- 100 rev/min: una vez más la carga nos ayuda a tener menos movimientos perjudiciales, pero se siguen presentando problemas al comenzar a mover de un punto al otro (Figura 4.11).

![Figura 4.11 Curva trapezoidal a 100 rev/s](image2)
Análisis de resultados y conclusiones

- 70 rev/min: aquí comenzamos a detectar menos movimientos, pero en cada movimiento, en cuanto se comienza a acelerar se ve un brusco cambio.
- 40 rev/min: podemos ver que entre menos sea la velocidad se comienza a eliminar movimientos perjudiciales, pero se sigue viendo el momento de aceleración y cuando comienza a detenerse.
- 25 rev/min: en esta prueba comenzamos a detectar menos el cambio de la aceleración y del momento en el que comienza el paro, pero no desaparecen totalmente.
- 10 rev/min: la carga deja de presentar movimientos bruscos en el cambio de velocidad y de paro, aunque aún no podemos decir que desaparezcan totalmente duchos movimientos.
- 1 rev/min: aquí se eliminan los cambios por los cambios de velocidad, así que volvemos a recomendar esta velocidad para este perfil (Figura 4.12).

![Figura 4.12 Curva trapezoidal a 1 rev/s](image)

También con carga podemos concluir que la mejor velocidad debe ser 1 rev/min.

4.1.3.2 Prueba con “curva suave”

Sin carga

Como ya se explicó en el capítulo III, con el perfil curva suave, se obtiene un incremento y un decremento en la velocidad, pero este cambio se realiza de manera suave, lo que nos permite tener movimientos graduales en su cambio de velocidad y paro, acercándonos a nuestra propuesta. Se realizarán pruebas modificando las rev/min que nos proporciona el equipo y a la vez se desplazará la carga en unidades específicas (1, 2, 5, 10, -18, 20, 5, -25, 30, y haciendo uso del fin de carrera y nuestro sensor capacitivo), vamos a hacer nuestras pruebas:
Análisis de resultados y conclusiones

- **200 rev/min**: se observa un movimiento sin alteraciones, el cual cumple con lo esperado (Figura 4.13).

 ![Figura 4.13 Curva suave a 200 rev/s]

- **100 rev/min**: se sigue viendo un movimiento uniforme, pero se comienzan a ver alteraciones pequeñas en la base de carga (Figura 4.14).

 ![Figura 4.14 Curva suave a 100 rev/s]

- **70 rev/min**: con esta velocidad se comienzan a ver muchas alteraciones en el movimiento, se presentan movimientos debido a la inercia.

- **40 rev/min**: la base de carga presenta muchas alteraciones en su movimiento, al momento de hacer paro, la inercia afecta a la base de carga.

“La técnica al servicio de la patria”
Análisis de resultados y conclusiones

- 25 rev/ min: con esta velocidad y la anterior se presentan muchas alteraciones en la base de carga, el movimiento es decadente y se observan movimientos que afectarían a la carga.
- 10 rev/min: se observa una vez más un movimiento sin alteraciones mayores, pero se comienza a tener mucha lentitud en el movimiento.
- 1 rev/min: aquí se cumple con totalidad con lo esperado, se puede decir que entre los extremos de velocidad se encuentra el rango que debemos usar (Figura 4.15).

![Figura 4.15 Curva suave a 1 rev/s](image)

Se puede concluir, que las velocidades adecuadas para la base de carga sin carga, se pueden considerar entre los extremos, que puede ser 1rev/min o 200 rev/min.
Análisis de resultados y conclusiones

Con carga

Lo que se puede observar con carga, son menos movimientos dañinos, ya que la carga ayuda a nuestro sistema a evitar dichos movimientos.

- **200 rev/min**: se observa un movimiento sin alteraciones, el cual cumple con lo esperado, la carga ayuda a evitar movimientos dañinos (Figura 4.16).

![Figura 4.16 Curva suave a 200 rev/s](image)

- **100 rev/min**: se sigue viendo un movimiento uniforme, pero se comienzan a ver alteraciones pequeñas en la carga, la cual también nos permite tener menos problemas en el movimiento de un punto a otro (Figura 4.17).

![Figura 4.17 Curva suave a 100 rev/s](image)
> 70 rev/min: a comparación de la prueba sin carga, aquí tenemos menos movimientos dañinos, pero se comienza a observar muchas alteraciones.
> 40 rev/min: la base de carga presenta muchas alteraciones en su movimiento, al momento de hacer paro, la inercia afecta a la carga.
> 25 rev/min: con esta velocidad y la anterior se presentan muchas alteraciones en la carga, el movimiento es decadente y se observan movimientos que afectaran a la carga que se tenga.
> 10 rev/min: se observa una vez más un movimiento sin alteraciones mayores, pero se comienza a tener mucha lentitud en el movimiento, pero también podemos considerar que para elementos demasiado pesados, podemos considerar esta velocidad.
> 1 rev/min: aquí se cumple con totalidad con lo esperado, se puede decir que entre los extremos de velocidad se encuentra el rango que debemos usar, con el detalle de una velocidad lenta, la carga no presenta alteraciones en su movimiento (Figura 4.18).

Al igual que lo concluido en el apartado de sin carga en curva suave, se observa que los extremos son los adecuados para llevar acabo nuestra función esperada.
4.2 Conclusiones

En el presente proyecto, se realizó una propuesta para el desarrollo de un prototipo de una grúa de puente, capaz de transportar sustancias peligrosas, con la distinción de tener una aceleración y desaceleración, permitiéndonos anular movimientos perjudiciales cuando esté trabajando.

Se estableció la selección de un PAC, capaz de brindarnos elementos necesarios, los cuales nos permitirían hacer cambios de movimiento suaves, esto fue posible gracias al CompacLogix 5000 y a su función MAM, que nos brinda dos perfiles de movimiento (trapezoidal y curva suave), de los que seleccionamos el perfil de “curva suave”, ya que como se vio en las pruebas nos proporciona la característica que deseábamos, hacer cambios suaves en el arranque y paro de nuestro prototipo para evitar cualquier percance por movimientos indeseables.

También se consideró la adecuación de un servo-drive, el cual nos brindaría la posibilidad de realizar la parte medular, una aceleración y desaceleración al momento de realizar algún movimiento, esto fue posible como ya se mencionó, gracias al PAC y al servo-drive Kinetix 2000, el cual nos brinda una velocidad de respuesta aceptable para nuestro sistema.

Se pretendió seleccionar dos servo-motores, los cuales debían indicarnos la posición, con la cual podemos manipular el recorrido de la grúa, esto fue posible gracias al servo-motor MPL-A1510V y MPL-A1520U, que tienen un encoder incremental y absoluto respectivamente, con ellos se cumple la manipulación de cargas, desplazándolas a la posición requerida.

Se estableció la creación de un polipasto, con el cual de manera automática ascendería o descendería la carga, esto es posible por un sevo-motor, el cual de manera automática eleva o desciende la carga.

Por último, consideramos la creación de un HMI, la cual haría la manipulación más amigable para el operario, esto se llevó a cabo gracias al Panel View Plus 1000, la cual se creó con el programa Factory Talk View, en donde nos permitió, hacer el ambiente cómodo y sencillo.

Con todo lo mencionado podemos decir que se cumplió con lo establecido en cada uno de nuestros objetivos, concluyendo con un prototipo de grúa de puente capaz de acelerar y desacelerar en sus movimientos, tanto de arranque como de paro, permitiéndonos evitar en lo mayor posible movimientos perjudiciales para la carga, pero sobre todo cuidando la seguridad del operario y del equipo, al igual que se hizo para el operario una manipulación agradable, gracias al HMI que se realizó, con dicho HMI, no se necesita de un personal muy calificado para manipular el prototipo.
Referencias

[5] http://es.wikipedia.org/wiki/Gr%C3%BAa_(m%C3%A1quina)

Referencias

