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Resumen

En este trabajo de tesis se abordan dos problemas relacionados con el concepto de Comple-

jidad Topológica (TC por sus siglas en inglés) el cual es un invariante algebraico relacionado

con el problema de planeación motriz en robótica. TC(X) mide la discontinuidad de los

algoritmos de planeación motriz en un espacio de estados X. Hallar este invariante requiere

de la construcción expĺıcita de planes motrices óptimos, por lo que hallar su valor de manera

directa puede complicarse. En este trabajo se usan métodos indirectos los cuales acotan su

valor; arriba por la dimensión y por abajo por medio de cálculos cohomológicos del espacio

X. Este invariante se puede generalizar a un nuevo invariante TCs que para el caso s = 2,

coincide con TC.

En la primera parte de la tesis se trabaja con el problema de hallar TC(F (1k,m)) donde

F (1k,m) es una variedad de banderas semi-completa, las cuales son generalizaciones del

espacio proyectivo y de las grassmanianas; además F (1k,m) modela ciertos espacios de con-

figuraciones.

En la segunda parte de la tesis se desarrolla una generalización del Teorema de Farber,

Yuzvinsky y Tabachnikov el cual demuestra que, para casi todo n, TC(RPn) = Imm(RPn),

donde la segunda parte de la ecuación es la dimensión de inmersión suave de RPn, cuyo

cálculo expĺıcito es un problema abierto en matemáticas. La generalización que buscamos es

para TCs(RPn) con s ≥ 3.
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.

Abstract

This thesis deals with two problems related to the concept of Topological Complexity

(TC) which is an algebraic invariant connected with the motion planning problem in robotics.

TC(X) parameter measures the order of discontinuity associated to the algorithms in motion

planning of a state space X. Determining this invariant requires explicit optimal construc-

tions of motion plannings therefore, to obtain its value in a direct way may be complicated.

In this work we use indirect methods to bound the value of TC(X); upper bounds were

obtained by the dimension and lower bounds by means of cohomological calculations of the

space X. TC(X) invariant can be generalized as a new invariant, TCs, so that in the case

s = 2, TC2 is equal to TC.

First part of this thesis concerns with the problem of finding TC(F (1k,m)), where

F (1k,m) is a semicomplete real flag manifold, which generalizes projective space and the

Grassmannians; besides F (1k,m) models certain configuration spaces.

Second part of this thesis carries out a generalization of Farber, Yuzvinsky and Tabach-

nikov’s Theorem, according to which TC(RPn) = Imm(RPn) for almost all n, where Imm(RPn)

is the smooth immersion dimension of RPn, which its explicit calculation is an open problem

in mathematics. We look for the generalization for TCs(RPn) with s ≥ 3.
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Chapter 1
Introduction

The topological complexity (TC) of a space X was introduced early this millennium by

Michael Farber, as a way to use techniques from homotopy theory to study and model, from

a topological perspective, the motion planning problem in robotics. If P (X) stands for the

space of free paths in X, then TC(X) is the reduced Schwarz genus (also known as sectional

category) of the fibration e : P (X)→ X×X given by e(γ) = (γ(0), γ(1)). We refer the reader

to the Section 2.1 and the references there in for a discussion of the meaning, relevance, and

basic properties of Farber’s concept.

The concept of topological complexity was generalized a few years later by Yuli Rudyak,

who defined in [31] the s-th topological complexity of X, TCs(X), as the reduced Schwarz

genus, of fibration es : P (X)→ X×· · ·×X = Xs given by evaluation of a path γ : [0, 1]→ X

at s given points of [0, 1] as we will see in detail in Section 2.2. In particular TC = TC2.

Rudyak’s “higher” topological complexity has been studied systematically in [2].

The motion planning problem in robotics is a problem of current relevance due to the

need to build robust algorithms in order to indicate different movements of the robots. The

motion planning considered in this work addresses the issue of producing motion algorithms

that are robust to noise.

The purposes of this thesis are manifold. In one hand, we give extensive computations

to estimate the value of TCs on a number of infinite families of semicomplete real flag

manifolds F(1k,m)—the Grassmann type manifolds consisting of (k+1)-tuples (L1, . . . Lk, V )

of mutually orthogonal linear subspaces of Rm+k with dim(V ) = m and dim(Li) = 1 for 1 ≤
i ≤ k. Much of the motivation here comes from an unexpected connection between Farber’s

TC and one of the central problems in differential topology, namely the Euclidean Immersion

Dimension for smooth manifolds. Explicitly, for a manifold M , let Imm(M) denote the

1



1. Introduction 2

dimension of the smallest Euclidean space where M can be immersed. Then the main result

in [15] asserts that TC = Imm for all real projective spaces RPm except for the only three

parallelizable manifolds, RP1, RP3, and RP7, for which the relation TC = Imm−1 holds. Of

course, flag manifolds F(1k,m) are a natural generalization of real projective spaces. So it is

natural to ask whether the above relationship between topological complexity and immersion

dimension also holds for the larger family of manifolds. Although the Euclidean immersion

dimension of real flag manifolds is a much studied problem, and quite a lot of numeric

information on it is available to date, the topological complexity of real flag manifolds had not

been considered before—except, of course, for the already noted results with real projective

spaces. The numeric TC-results obtained in this work show that the nice relationship between

TC and Imm holding for real projective spaces F(1,m) does not hold for flag manifolds

F(1k,m) with k > 1. For instance, F(1, 1, 1) is a closed parallelizable 3-manifold (see [25]),

so that Imm(F(1, 1, 1)) = 4. However, Theorem 1.1 below gives TC(F(1, 1, 1)) ∈ {5, 6}.
Thus the relation “TC = Imm− 1” holding for parallelizable real projective spaces no longer

holds in the case of the other parallelizable flag manifolds F(1k, 1). In general, flag manifolds

(whether parallelizable of not) seem to have a larger TC than an Imm. For instance, the 7-

dimensional flag manifold F(1, 1, 3) has Imm(F(1, 1, 3)) = 10 (see [27, 33]) whereas, according

to Theorem 1.1 below, TC(F(1, 1, 3)) ∈ {13, 14}. Our results on these topics are presented

in Chapter 3.

A second purpose of this thesis aims at exhibiting subtle but substantial differences be-

tween Farber’s original concept and Rudyak’s extended definition. The point is that, after an

initial examination, Rudyak’s higher TC could seem to be a close relative of Farber’s TC. For

instance, it has been shown that the families of spaces X whose TC has been computed have

an equally computable higher TC (cf. [2, 18, 20]). Likewise, some theoretical results for TC

have reasonable (although sometimes more complicated to prove) higher TC generalizations,

see for instance [5, 6, 21, 28]. However, other interesting theoretical properties known for TC

do not have a known higher TC counterpart. For instance, it is known that the standard

upper bound 2 dim(X) for TC(X) can be lowered by one unit whenever π1(X) = Z2 ([7]).

Before our studies, it was not even clear whether the proof of such a fact could be generalized

to the higher TC. As a consequence of Theorem 1.2 below (with k = 1), we now know that

such a potential TCs generalization is doomed to fail for s ≥ 3.

Closely related to the above fact is the phenomenon that there are infinite families of

spaces for which the computation of their TC would require a non-elementary homotopy the-

oretic argument, but whose higher TC can be computed using purely cohomological meth-
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ods. Indeed, as it is shown in this work (Theorem 1.2 and Proposition 3.12), flag manifolds

F(1k, 2e − k + 1) with k ≤ 3 have such a property1. Technically speaking, this phenomenon

can be summarized by saying that, in many cases, the TC2-obstruction described in [7, The-

orem 7] vanishes without the vanishing of the analogous TCs-obstruction for s ≥ 3 (see the

comments in Eq. 1.3, below). Results on this matter are enumerated in Chapter 3.

Another objective in this work, is the generalization of the relationship between TC

and Imm holding for real projective spaces F(1,m). Namely, it is shown in [15] that, for the

m-dimensional real projective space RPm, TC2(RPm) agrees with Imm(RPm), the Euclidean

immersion dimension of RPm, provided m 6= 1, 3, 7. Using the main result in [1], this means

that, without restriction on m, TC2(RPm) can be described, in purely homotopic terms, as

the minimal positive integer a(m), also denoted by axial(RPm), for which the restriction to

RPm×RPm of the Hopf multiplication

µ : RP∞×RP∞ → RP∞

can be compressed to a map RPm×RPm → RPa(m) —a so called (optimal) axial map. With

this in mind, it is natural to ask for the (geometric and homotopic) properties of RPm encoded

by the higher analogues TCs(RPm). Such a task is addressed in this thesis and, in doing so,

we are naturally lead to Davis’ projective product space Pms , introduced in [8], and defined

as the orbit space of (Sm)×s by the diagonal (antipodal) Z2-action; in Davis’ notation, ms

stands for the s-tuple (m, . . . ,m).

In slightly more detail, for s ≥ 2, a natural generalization of the construction in [15, (4.2)]

leads to

TCs(RPm) ≥ secat(πs), (1.1)

where πs : Pms → (RPm)×s is the “pivoted axial” (Z2)×(s−1)-principal bundle whose projec-

tion map is induced by the s-fold Cartesian power of the Hopf double cover Sm → RPm

(further details of this construction are reviewed in Chapter 4). The central result in [15]

asserts that Eq. 1.1 is an equality for s = 2. The proof of such a fact is achieved by

(1) Connecting secat(π2) to the existence of (optimal) axial maps

RPm×RPm → RPsecat(π2),

and then

1It might be the case that the restriction on k can be removed—see the second half of Remark 3.8.
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(2) Showing how (optimal) motion planners for RPm are encoded by such axial maps.

On the other hand, when m is even, the validity of a TCs-generalization in Item (1) is

hinted both by Proposition 4.4 below and by the cohomological calculations in Section 4.3.

In particular, for m even and s large enough, we prove that equality holds in Eq. 1.1, and

compute the resulting explicit value of TCs(RPm), see Corollary 4.9 below. Those results are

detailed in Chapter 4.

On the basis of our results, we conjecture that equality always holds in Eq. 1.1. This

would yield a full generalization of Farber-Tabachnikov-Yuzvinsky’s result to the higher TC.

Proving equality in Eq. 1.1 seems to be inherently more complex when s ≥ 3. See Re-

marks 4.3–4.5 for a discussion of why proving equality in Eq. 1.1 is elementary for s = 2,

while the corresponding task for s ≥ 3 becomes interestingly more intricate.

1.1 Statement of the Main Results

We next state our main results and explain how they fit within the introductory considerations

above. Further comments will be given throughout the thesis.

Theorem 1.1 (Corollary 3.10). Let k and m be positive integers, δ ∈ {0, 1, . . . , k−1}, and set

ε = min(δ, 1) and α(r) = max(0, r). If e is a non-negative integer satisfying 2δ ≤ 2e ≤ m+δ,

then

(k − δ + ε)(2e+1 − 1) + α((δ − 1)(2e − 1))− ε ≤ TC(F(1k,m)) ≤ k(2m+ k − 1). (1.2)

Of course, the parameter e should be taken as large as possible in order to get the full

strength of Theorem 1.1. Two special cases (where the estimate in Eq. 1.2 has a gap of a

unit) should be singled out from this result, namely:

• TC(F(1, 2e)) ∈ {2e+1 − 1, 2e+1}.

• TC(F(12, 2e − 1)) ∈ {2e+2 − 3, 2e+2 − 2}.

Since F(1, 2e) is the real projective space RP2e , the first situation is resolved by the well

known equality

TC(RP2e) = 2e+1 − 1 (1.3)

(see [15]). It might seem reasonable to expect TC(F(12, 2e − 1)) = 2e+2 − 3. In any case,

proving (disproving) such an equality is equivalent to showing the triviality (non-triviality)
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of the homotopy obstruction described in [7, Theorem 7] for X = F(12, 2e−1). The relevance

of such a task becomes apparent by noticing that, as a special case of Theorem 1.2 below,

the TCs-analogue of the above homotopy obstruction does not vanish for these spaces when

s ≥ 3:

Theorem 1.2 (Theorem 3.11 below). For positive integers e, k and s with e ≥ 1 + bk−1
2
c

and k ≤ 3 ≤ s, TCs(F(1k, 2e − k + 1)) = s× dim(F(1k, 2e − k + 1)).

For instance, when k = 1, we get TCs(RP2e) = 2es if s ≥ 3 and e ≥ 1, which is certainly

not the case for s = 2, as noted in Eq. 1.3. Restriction e ≥ 1 is also needed as TCs(S
1) = s−1

is well known ([31, Section 4]).

It should be noted that Theorem 1.2 can be thought of as a very distinguished manifes-

tation of a more general phenomenon, namely: for fixed k and m, the mod-2 cohomological

estimates in this work for TCs(F(1k,m)) become sharper as s increases. Such a point will be

clarified and worked out in Section 3.2 of this thesis (Remark 3.7 and Corollary 3.15).

Other interesting (almost-sharp) estimates for the higher topological complexity of some

semi-complete flag manifolds not considered in Theorem 1.2 are discussed in Section 3.2.

All together, our results seem to point out to what could be the best estimate that purely

cohomological methods can yield for the higher topological complexity of semi complete flag

manifolds F(1k,m) (see Remark 3.11).

Theorems 1.1 and 1.2 (and related results discussed in Section 3.2) are based on the

identification of suitably long products of zero-divisors. The form of the required factors

follows patterns that depend strongly on the value of k. The identification of such patterns

is a major task in this work that has greatly benefited from the help of extensive computer

calculations. On the other hand, the complexity of the calculations supporting Theorems 1.1

and 1.2 is in sharp contrast with the easy situation for the complex analogues FC(n1, . . . , n`).

The latter manifolds are 1-connected and symplectic (even Kähler), so their s-th topological

complexity is well known (and easy to see) to agree with s(dim(FC(n1, . . . , n`)))/2 (see [2,

Corollary 3.15]).

Theorem 1.2, gives of course an infinite family of spaces for which TCs accessibility

contrasts with the hardness of the TC2 situation. It would be interesting to know if such a

phenomenon holds for other families of spaces.

Section 2.5 addresses the problem of extending Farber-Tabachnikov-Yuzvinky’s relation-

ship between TC and Imm to the TCs realm. A key point is the identification of the map

that classifies the covering projection πs in Eq. (1.1):
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Proposition 1.3 (Proposition 4.2). For 1 ≤ i ≤ s let pi : (RPm)×s → RPm be the i-th

projection, ξm → RPm be the Hopf bundle over RPm, and µs : (RPm)×s → (RP∞)×(s−1)

classify πs. Then, for 1 ≤ i ≤ s− 1, the i-th component µi,s of µs classifies p∗i (ξm)⊗ p∗s(ξm).

The conclusion of Proposition 1.3 can of course be stated by saying that µi,s is homotopic

to the composition of the projection pi,s : (RPm)×s → RPm×RPm onto the (i, s) coordinates,

the inclusion RPm×RPm ↪→ RP∞×RP∞, and the Hopf multiplication µ : RP∞×RP∞ →
RP∞. The results in this thesis provide evidence toward the possibility that the covering

projection πs plays a central role in the calculation of the higher topological complexity TCs

of RPn. More explicitly, we have the next conjecture

Conjecture 1.1 (Conjecture 4.1). An s-motion planning algorithm for RPm having secat(πs)+

1 s-local rules can be constructed out of a map φs satisfying the condition in Eq. (4.6). Con-

sequently secat(πs) ≥ TCs(RPm), and Eq. 1.1 becomes an equality for any s ≥ 2.

The conjecture is motivated by its case s = 2 which holds true —see Proposition 4.4 and

Remark 4.3 below. Corollary 4.9 in Section 4.3 is meant to gather evidence for the plausibility

of Conjecture 1.1. A few additional instances where Conjecture 1.1 holds true are included

latter in this work.

The next result provides further evidence toward Conjecture 1.1. Here Gs = Zs−1
2 , Jk(Gs)

stands for the (k+1)-iterated self join power ofGs, and Uj ⊂ Jk(Gs) consists of the barycentric

expressions
∑k

`=0 t`g` with tj > 0.

Proposition 1.4 (Proposition 4.4). Let Ds = {(x1, . . . , xs) ∈ (Sm)×s : xi = xs for some

i ∈ {1, . . . , s − 1}}. The conclusions in Conjecture 4.1 hold true if one starts with a Gs-

equivariant map φs : (Sm)×s → Jsecat(πs)(Gs) satisfying Eq. 4.4 together with one of the fol-

lowing conditions:

1. For every j ∈ {0, 1, . . . , secat(πs)}, φs(Ds) intersects at most a single component of Uj.

2. For some j0 ∈ {0, 1, . . . , secat(πs)}, φs(Ds) is fully contained in some component of

Uj0.

The study about TCs(F (1k,m)) and the study about the extending the relationship be-

tween TC and Imm to the TCs give us ours principal results. Furthermore these antecedents

give different lines of research in a future, for one hand find the value of TCs from infinity

families from another flag manifolds or more evidence (or the proof) about the conjecture 4.1.
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1.2 Publications

All these results gave us the possibility to write two articles that have been published, namely:

• González,J., Gutiérrez, B., Gutiérrez, Darwin., and Lara, A. Motion Planing in Real

Flag Manifolds. Homotopy, Homology and Aplications, Vol 18(2), 2016, pp 359-375.

• Cadavid-Aguilar, Natalia.,Gonález J., Gutiérrez, Darwin., Guzmán-Sáenz A., Lara,

A. Sequential motion planing algorithms in projective spaces: An approach to their

immersion dimension. Forum Mathematicum. Vol 30, 2017, pp 269-295.

These two journals are indexed in the Journal Citation Reports (JCR).
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Chapter 2
State of the Art

In this chapter, the main topological concepts on the research of TC are summarized. This

includes the properties and bounds on the TC parameter, results on the real flag manifolds

and finally, the relation between TC and immersions.

2.1 Topological Complexity (TC)

This chapter starts with a concrete revision on the concepts behind the TC notion, and

Farber’s results obtained in the area of topological complexity. Some standard concepts and

results from algebraic topological are stated without proof: they are our main tools for the

work on this thesis. The main TC-results presented in this chapter are the following: first, an

upper bound on the number TC(X) is given in terms of the dimension of the configuration

space X (Theorem 2.4), and on the other hand, a lower bound in terms of the structure of

the cohomology ring of X is presented (Theorem 2.5). The homotopy invariance of TC is

also discussed, as well as the higher TC analogues of these properties.

Farber was the first researcher to work with a topological model for the motion planning

problem in robotics. He introduced the concept of topological complexity TC(X) for a

configuration space X, namely, TC(X) is a number which the end-points evaluation map

measures the discontinuity of the process of motion planning in the space X. That is,

TC(X) is defined as the minimal number k, such that X ×X can be covered by k + 1 open

subsets on each of which the end points evaluation map P (X)→ X×X admits a continuous

section (also called a motion planning rule).

9



2. State of the Art 10

θ1

θ2

Robot R

(a) Translate (b) Translate + rotate (c) A robotic arm R with 2 joints

Figure 2.1: Examples of Robots

The following discussion is meant to motivate the above Definition. Let X be the space of

all possible configurations of a mechanical system. A configuration can be informally under-

stood as everything that is needed to describe where a robot is (assuming known kinematics,

that is, its geometry). In most applications, the configuration space X is also a topological

space [12]. In 2.1, there are three examples of configurations, namely:

(a) A configuration for the robot in figure (2.1a) is determined by a pair A = (x, y), i.e.,

the x and y coordinates are sufficient to describe the robot since it is restricted to

translation motion. In this case X = R2.

(b) A configuration for the robot in figure (2.1b) is determined by three parameters A =

(x, y, θ), i.e., in addition to the (x, y) coordinates, we require an additional θ coordinate

to specify the rotation. In this case X = R2 × S1 a cylinder.

(c) For the robotic arm R in figure (2.1c), we require two parameters θ1, θ2 to completely

specify the position of the arm in the world. Therefore, A = (θ1, θ2) and in this case

X = S1 × S1 a torus.

Then, the motion planning problem consists in constructing a program or a devise,

which takes pairs of configurations (A,B) ∈ X ×X as an input and produces as an output,

a continuous path in X, which starts at A and ends at B. Here A is the initial configuration,

and and B is the final (desired) configuration state of the system. As we see can in Figure 2.2

a change of states is equivalent to a path in the configuration space.

In the following, it is assumed that the configuration space X is path-connected, which

means that for any pair of points in X, there exists a continuous path in X connecting

them. In spite of this, in non-path-connected spaces only the path-connected components
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a

b

Configuration b

θ1

θ2

θ′2

θ′1

Configuration a

Figure 2.2: Motion planing on the torus

are considered; in a such case, the motion planner should decide first whether the given points

A and B belong to the same path-connected component of X.

The motion planning problem is formalized as follows. Let P (X) be the space of all

continuous paths γ : [0, 1]→ X, and e : P (X)→ X ×X be the mapping which associates to

any path γ ∈ P (X) with the pair of initial and end points e(γ) = (γ(0), γ(1)). Additionally,

the path space P (X) is assumed to have the compact-open topology. Rephrasing the previous

Definition, it is easy to see that the problem of motion planning in X consists of finding a

continuous function s : X ×X → P (X), such that the composition e ◦ s = id is the identity

map. In other words, s must be a section of e i.e e ◦ s = IdX×X .

At this point, a natural question arises: does there exist a continuous motion planning in

X? Or equivalently, whether is it possible to construct a motion planning in the configuration

space X, so that the continuous path s(A,B) in X (which describes the movement of the

system from the initial configuration A to final configuration B) depends continuously on

the pair of points (A,B)?

Then, the aim in this theory, is to find a motion planning in X such that the section

s : X × X → P (X) be continuous. Continuity in motion planning is an important natu-
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ral requirement. Absence of continuity could result on instability of the desired behavior:

in a such case, there will exist arbitrarily close pairs (A,B) and (A′, B′) of initial desired

configurations such that the corresponding paths s(A,B) and s(A′, B′) are not close (in the

topological sense). The existence of a global continuous section gives a strong restriction on

the space X, as it is shown in the next result.

Theorem 2.1. A continuous motion planning s : X ×X → P (X) exists if and only if the

configuration space X is contractible.

Proof. Let us assume that there exist a continuous section, namely:

s : X ×X → P (X).

Fix a point A0 ∈ X and consider the homotopy ht : X → X given as ht(B) = s(A0, B)(t),

where B ∈ X, and t ∈ [0, 1]. So, h1(B) = B and h0(B) = A0. Therefore, ht gives a contraction

of the space X into the point A0 ∈ X.

Now let us assume that there is a continuous homotopy ht : X → X such that for any

A ∈ X, h0(A) = A and h1(A) = A0. Then, for a pair (A,B) ∈ X ×X, the path t → ht(A)

can be concatenated with the reversal of the path t → ht(B), to give a continuous motion

planning in X. We obtain a motion planning in the contractible space X by first moving A

into the base point A0, along the contraction and then, following with the inverse of the path

that brings B to A0. �

Definition 2.1. Given a path-connected topological space X, the topological complexity

of the motion planning in X is defined as the minimal number TC(X) = k, such that the

product X ×X can be covered by k + 1 open subsets, that is, X ×X = U0

⋃
U1

⋃
· · ·
⋃
Uk,

in such a way that for any index i = 0, 1, 2, · · · , k there exists a continuous motion planning

si : Ui → P (X), with π ◦ si = id on Ui. Otherwise, the topological complexity is defined as

TC(X) =∞.

Note that the topological complexity TC(X) measures the discontinuity of any motion

planner in X, moreover, it is and invariant up to homotopy (as it can be seen in the next

section). Taken into account this information, next step is to define a motion planning

algorithm.

Definition 2.2. Let {Ui}i=1,...,k be an open cover and si be sections. The idea of a motion

planning algorithm is organized as follows: given a pair of initial configurations (A,B),
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we first find the subset Ui with the smallest index i such that (A,B) ∈ Ui; then consider the

path si(A,B) as an output and this a planning motion algorithm.

As a consequence of Theorem 2.1, given a configuration space X, then TC(X) = 0 if and

only if X is contractible.

Example 2.1. Suppose that X is a convex subset of an Euclidean space Rn. Given a

pair of initial-desired configurations (A,B), we may move with constant velocity along the

straight line segment connecting A and B. This clearly produces a continuous algorithm for

the motion planning problem in X. This is consistent because we have TC(X) = 0 since X

is contractible.

Example 2.2. Consider the case when X = S1 namely, a circle. Since S1 is not con-

tractible, it is known that TC(S1) ≥ 1. Let us show that TC(S1) = 2. Define U0 ⊂ S1 × S1

as U0 = {(A,B) | A 6= −B}. A continuous motion planning over U0 is given by the map

s0 : U0 → P (S1) which moves A towards B with constant velocity along the unique shortest

arc-connecting A to B. This map s0 can not be extended to a continuous map on the pairs

of antipodal points A = −B. Now define U1 = {(A,B) | A 6= B}. Fix an orientation of the

circle S1. A continuous motion planning over U1 is given by the map s1 : U1 → P (S1) which

moves A towards B with constant velocity in the positive direction along the circle. Again,

s1 cannot be extended to a continuous map on the whole S1 × S1 and this construction is

explicit.

2.1.1 Homotopy Invariance of TC

Next property of homotopy invariance often allows a simplification on the configuration space

X without changing the topological complexity TC(X).

Theorem 2.2. TC(X) depends only on the homotopy type of X.

Proof. Suppose that X dominates Y, i.e. there exist continuous maps f : X → Y and

g : Y → X such that f ◦ g ' idY . Let us show that then TC(Y ) ≤ TC(X). Assume

that U ⊂ X × X is an open subset such that there exists a continuous motion planning

s : U → P (X) over U. Define V = (g × g)−1(U) ⊂ Y × Y. We will construct a continuous

motion planning σ : V → P (Y ) over V explicitly. Fix a homotopy ht : Y → Y with h0 = idY

and h1 = f ◦ g; here t ∈ [0, 1]. For (A,B) ∈ V and τ ∈ [0, 1] set

1. σ(A,B)(τ) = h3τ (A) if τ ∈ [0, 1
3
],
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2. σ(A,B)(τ) = f(s(gA, gB)(3τ − 1)) if τ ∈ [1
3
, 2

3
],

3. σ(A,B)(τ) = h3(1−τ)(B) if τ ∈ [2
3
, 1].

Thus we obtain that for k = TC(X) any open cover U0∪· · ·∪Uk = X×X with a continuous

motion planning over each Ui defines an open cover V0 ∪ · · · ∪ Vk = Y × Y with the similar

properties. This proves that TC(Y ) ≤ TC(X), and obviously implies the statement of the

Theorem. �

2.1.2 Bounds on TC(X)

In previous section it was shown the problematic to give an explicit construction of continuous

motion planning, and what is more, trying to prove that this construction be optimal. This

is the reason why it is important to have tools to provide bounds on this invariant.

Theorem 2.3. For any para-compact, path-connected space X,

TC(X) ≤ 2dim(X).

In particular, if X is a connected polyhedral subset of Rn then the topological complexity

TC(X) can be estimated from above as follows:

TC(X) ≤ 2n− 2.

Proof. Details of this fact are in [12] Theorem 5. �

In order to provide examples of lower bounds, it is convenient to introduce the relationship

between TC(X) and the Lusternik-Schnirelman category cat(X). Recall that cat(X) (in

algebraic topology) is defined as the smallest integer k such that X may be covered by k+ 1

open subsets V0 ∪ · · · ∪ Vk = X, with each inclusion Vi → X being null-homotopic. Next

result gives us lower bounds on the TC parameter.

Theorem 2.4. If X is path-connected and para-compact then

cat(X) ≤ TC(X) ≤ 2 cat(X).

Proof. Let U ⊆ X × X be an open subset such that there exists a continuous motion

planning s : U → P (X) over U . Let A0 ∈ X be a fixed point. Denote by V ⊆ X the set
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of all points B ∈ X such that (A0, B) belongs to U. Then clearly the set V is open and

it is contractible in X. This clearly leads to the first inequality in the conclusion of the

Theorem. The second inequality is an immediate consequence of the subadditivity of cat (i.e

cat(X×Y ) ≤ cat(X)+cat(Y )) and the obvious fact that the sectional category of a fibration

p : E → B is bounded from above by the LS-category of the base space B. �

Zero-divisors and TC

There is cohomological information that gives lower bounds for TC(X). Actually each gen-

eralized cohomology theory gives one such lower bound. In this section we show a relation

between cohomology of X an his TC(X). Let K be a field. The cohomology H∗(X;K) is a

graded K-algebra with the multiplication

∪ : H∗(X;K)⊗H∗(X;K)→ H∗(X;K),

given by the cup-product. The tensor product H∗(X; k)⊗H∗(X; k) is also a graded K-algebra

with the multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = −1|v1||u2|u1u2 ⊗ v1v2.

Note that the cup-product is an algebra homomorphism.

Definition 2.3. The kernel of the cup-product multiplication ∪ will be called the ideal of zero-

divisors of H∗(X;K). The zero-divisors-cup-length of H∗(X;K) is the length of the longest

non-trivial product in the ideal of zero-divisors of H∗(X;K)

For instance, the zero-divisors cup-length of H∗(Sn;Q) equals 1 for n odd and 2 for n

even, the elements can be given explicitly.

Theorem 2.5. The topological complexity of motion planning TC(X) is greater than or equal

to the zero-divisors-cup-length of H∗(X;K)

Proof. The topological complexity of motion planning TC(X) is the Schwartz genus of the

fibration e : P (X)→ X ×X and this map induces a homomorphism in cohomology:

e∗ : H∗(X ×X;K)→ H∗(P (X);K),
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Which, in terms of the Kunnet isomorphism H∗(X×X : K) ∼= H∗(X : K)⊗H∗(X : K) and

the homotopy equivalence P (X) ' X, agrees with the cup product. Theorem follows from

the cohomological lower bound for the Schwarz genus, see Theorem 4 of [12]. �

Those bounds can be used to calculate TC for some well-known spaces, as it is shown in

the following examples.

Example 2.3. The topological complexity of motion planning on the n-dimensional sphere

Sn is given by TC(Sn) = 1 when n is odd and TC(Sn) = 2 when n is even. This result holds

since it is possible to give an explicit motion planning for the sphere having 2 and 3 open

sets, respectively, and in view of the remark following Definition 2.3 above.

Example 2.4. Let X = Σg be a compact orientable two-dimensional surface of genus g.

Then TC(Σg) = 2 if g ≤ 1, while TC(Σg) = 4 if g ≥ 2. These values follow from consider-

ations with zero-cup-length in these spaces, and the same techniques will be used in the case

of (semicomplete) flag manifolds, one of the central goals in this thesis,

Let us consider the case g ≥ 2. Then, it is clear that there exist cohomology classes u1, v1,

u2, v2 ∈ H1(Σg;Q) forming a symplectic system, i.e u2
i = v2

i = 0 and u1v1 = u2v2 = A 6= 0,

and where A ∈ H2(Σg;Q) is the fundamental class, and besides viuj = vivj = uiuj = 0 for

i 6= j. Then in the algebra H∗(Σg;Q)⊗H∗(Σg;Q) holds

2∏
i=1

(1⊗ ui − ui ⊗ 1)(1⊗ vi − vi ⊗ 1) = 2A⊗ A 6= 0.

Thus, TC(Σg) ≥ 4 holds. The equality follows since TC(X) ≤ 2dim(X).

In case g = 0, TC(Σg) = 2. This is straightforward since Σg = S2. Finally, for g = 1,

it corresponds to the two-dimensional torus T 2, for which with cohomological arguments and

the next result we have TC(T 2) = 2.

The number TC has properties that can be useful when we are working with more than

one space at the same time.

Theorem 2.6. For any path–connected metric spaces X and Y,

TC(X × Y ) ≤ TC(X) + TC(Y ).

Proof. Details of the poof are in [12]. �
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These notes and properties will be used in the next chapter in order to bound TC in flag

manifolds, finding thus tight values for the number TC.

2.2 Higher Topological Complexity TCs

The idea of topological complexity was generalized by Yuli Rudyak in [31] in 2010. He defined

the s-th topological complexity of X, TCs(X), as the reduced Schwarz genus of the s-th fold

evaluation map es : P (X)→ Xs given by:

es(γ) =

(
γ(0), γ

(
1

s− 1

)
, γ

(
2

s− 1

)
, . . . , γ

(
s− 2

s− 1

)
, γ(1)

)
.

In particular, it holds TC = TC2. Rudyak’s higher topological complexity has been studied

systematically in [2].

2.2.1 Properties of TCs

Many of the TCs results generalize existing properties for Farber’s TC (Section 2.1). For

instance, the next result shows a close connection between higher topological complexity and

the Lusternik-Schnirelmann category of Cartesian powers of spaces:

Theorem 2.7. For a path-connected space X, cat(Xn−1) ≤ TCn(X) ≤ cat(Xn).

The proof of Theorem 2.7 is given later in this section. It is possible to prove that

TCn(G) = cat(Gn−1) for a path-connected topological group G, which extends the n = 2

property proved by Farber. Lupton and Scherer have recently proved that this property

extends to not-necessarily associative Hopf spaces.

Theorem 2.8. Let f × f0 : X ×X0 → Y × Y0 be the product of two maps f : X → Y and

f0 : X0 → Y0. If Y × Y0 is normal, then genus(f × f0) ≤ genus(f) + genus(f0).

Proof. This result is proved in [2] �

It has been proved in [2] that TCn(X) can also be defined as follows:

Definition 2.4. Let X be a path-connected space. The n-th topological complexity of

X, TCn(X), is the Schwarz genus of the fibration

eXn = en : XJn → Xn, en(γ) = (γ(11), · · · , γ(1n)), (2.1)
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where Jn is the wedge of n closed intervals [0, 1] (each with 0 ∈ [0, 1] as the base point), and

1i stands for 1 in the i− th interval.

Note that Eq. 2.1 is the standard fibrational substitute for the iterated diagonal map

dn = dXn : X → Xn, so TCn(X) = genus(dXn ). More generally, for a contractible space

Yn with n distinct distinguished points v1, · · · , vn ∈ Yn, consider the evaluation map eYn :

XYn → Xn, eYn(f) = (f(y1), · · · , f(yn)). Because of the contractibility of Yn, the genus of

eYn is equal to TCn(X), the proof is just as the one in [31]. In particular, we can take Yn

to be a tree with n − leaves, or (as done at the beginning of this section) the unit interval

In, say with distinguished points vi = (i − 1)/(n − 1), i = 1, · · · , n. In the later case we see

that the n− th higher topological complexity gives a topological measure of the complexity

of the motion planning problem where the robot is required to visit n ordered prescribed

stages. For this reason, we also refer to TCn as the n− th sequential topological complexity.

Farber’s TC is TC2.

Other fibrations (which not necessarily give fibrational substitutes of the iterated di-

agonal) can be used to define TCn. Indeed, let Gn be any connected graph where n or-

dered distinct vertices v1, · · · , vn have been selected. We assert that the evaluation map

eGn : XGn → Xn at the chosen vertices has genus genus(eGn) = TCn(X). To see this, choose

maps In → Gn → Jn preserving the selected vertices. For instance, the latter map can be

taken so to collapse most of Gn to the base point in Jn, except that the first half of each

directed edge (vi, v) in Gn is mapped linearly onto the directed edge (1i, 0) in Jn (in partic-

ular vertices vi are mapped to vertices 1i). Since the induced maps XJn → XGn → XIn are

compatible with the three evaluation maps, we get genus(eIn) ≤ genus(eGn) ≤ genus(eJn).

But, as explained in the paragraph above, the extremes in the preceding chain of inequalities

agree with TCn(X).

The higher topological complexities of a space X are closely related to the category of

Cartesian powers of X. The first indication of such a property comes from the inequality

TCn(X) ≤ cat(Xn) which is an immediate consequence of the well known fact that the

Schwarz genus of a fibration does not exceed the category of the base space. On the other

hand, the inequality cat(X) ≤ TC2(X) in Theorem 2.4, and can be generalized to:

Theorem 2.9. For any path-connected space X, cat(Xn−1) ≤ TCn(X).

Proof. Let TCn(X) = k and choose a covering B0, B1, · · · , Bk = Xn such that there is a

continuous section si for eXn over Bi for i = 0, · · · , k. Let p : Xn → X be the projection onto

the first factor, choose x1 ∈ X, and put Ai = p−1(x1) ∩ Bi. Note that {Ai}ki=0, is an open
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cover for p−1(x1). Since p−1(x1) is homeomorphic to Xn−1, it suffices to show that each Ai

is contractible within p−1(x1).

For a point (x1, x2, · · · , xn) ∈ Ai consider the n paths γ1, · · · , γn making up the mul-

tipath si(x1, x2, · · · , xn) = {γj}nj=1. Then γj(1) = xj and γj(0) = x0 for some x0 ∈ X

which is independent of j ∈ {1 · · ·n}. Then, the constant path δ1 at x1, and the paths

δj (j = 2, · · · , n)—formed by using the time reversed path γ−1
j the first half of the time,

and γ1 the second half—are the components of a path δ = (δ1, · · · , δn) in p−1(x1) from

δ(0) = (x1, x2, · · · , xn) to δ(1) = (x1, x1, · · · , x1). The continuity of si implies that δ depends

continuously on (x1, x2, · · · , xn), so we have constructed a contraction of Ai to (x1, x1, ..., x1)

in p−1(x1). Thus, cat(Xn−1) ≤ TCn(X). �

Using the fact that cat(Xn) ≤ n if X is not contractible, we see that Theorem 2.9 recovers

[[31], Proposition 3.5]. Note in addition that Theorem 2.7 follows from the above discussion.

Now, we define a function zcl as in the precedent section. Given a space X and a positive

integer n, zcl(X,n) denotes the cup-length of elements in the kernel of the map induced in

cohomology by dXn . Thus, zcl(X,n) is the largest integer m for which there exist cohomology

classes ui ∈ H(Xn;Ai) such that d∗n(ui) = 0 for i = 1, · · · ,m and u1 ∪ · · · ∪ um 6= 0 ∈
H(Xn;A1 ⊗ · · · ⊗ Am). In the following result, which is proved in [2], TCn(X) is lower

bounded by zcl(X,n), and upper bounded by the ratio between the connectivity conn(X)

and the homotopy dimension hdim(X) of X; the latter being the smallest dimension of

CW -complexes having the homotopy type of X.

Theorem 2.10. For any path-connected space X we have the inequalities

zcl(X,n) ≤ TCn(X) ≤ hdim(X) · n
conn(X) + 1

.

Proof. The details appear in [2]. �

Theorem 2.11. Let X be a CW complex of finite type, and R a principal ideal domain. Take

u ∈ Hd(Xn;R) with d > 0 even, and assume that the n-fold iterated self R-tensor product

um⊗· · ·⊗um ∈ Hmd(X;R)⊗n is an element of infinite additive order. Then TCn(X) ≥ mn.

Proof. For i = 1, · · · , n, let pi : Xn → X be the projection onto the ith factor and put

ui = p∗i (u) ∈ Hd(Xn, R). In view of Theorem 2.10, the required inequality follows from

v := (u2 − u1)2m(u3 − u1)m . . . (un − u1)m 6= 0.
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In order to check this, note that v comes from the tensor product, which injects into the

cohomology of the Cartesian product by the Künneth Theorem (this is where the finiteness

hypotheses are used). So, calculations can be performed in the former R-module. Now,

assuming that dim(X) ≤ dm+ 1, we have

v = (u2 − u1)2m(u3 − u1)m . . . (un − u1)m

= (−1)m
(

2m

m

)
um1 u

m
2 (u3 − u1)m . . . (un − u1)m

= (−1)m
(

2m

m

)
um1 u

m
2 u

m
3 (u4 − u1)m . . . (un − u1)m

= · · ·

= (−1)m
(

2m

m

)
um1 u

m
2 · · ·umn

which is non-zero by hypothesis. On the other hand, for dim(X) arbitrary, consider the

skeletal inclusion j : Xdm+1 → X and note that v 6= 0 since j∗(v) 6= 0. This proves the

Theorem. �

Corollary 2.12. For every closed simply connected symplectic manifold M2m, TCn(M) =

nm.

Proof. This follows from Theorem 2.11 (taking u to be the cohomology class given by the

symplectic 2-form on M , and noting that the hypothesis on um ⊗ · · · ⊗ um holds since the

coefficients are taken over the reals), the product inequality for category, and the inequality

cat(M2m) ≤ m which follows from cat(M2m) = m, a well known fact. �

Of course, Corollary 2.12 applies to complex projective spaces. In the quaternionic case

essentially the same proof gives:

Corollary 2.13. The quaternionic projective space of real dimension 4m, HPm, has TCn(HPm) =

nm.

Note that the previous corollaries imply that the upper bound in Corollary 2.12 are

optimal in general.

2.3 Real Flag Manifolds

A real flag manifold is the quotient space G/P of a real, connected, semisimple Lie group G

and a subgroup P of a special type which is called a parabolic subgroup. Classical examples
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are the projective space and the Grassmann manifold. Topological properties of (real) flag

manifolds have been a research topic for a long time. In the 1930’s Ehresmann [11] computed

the fundamental and homology groups of some classical (i.e. G = SL(n,R)) flag manifolds

and slightly more recently Kocherlakota [24] computed the homology groups of real flag

manifolds in terms of the Dynkin diagram of G.

The basic reference for the results reviewed in this section is Borel’s fundamental pa-

per [3]. In this thesis we focus on the classical case of Real Flag Manifolds, which arise as

follows. Let n1, · · · , nr be positive integers and let n = n1 + · · · + nr. The flag manifold

F (n1, · · · , nr) is the homogeneous space O(n)/O(n1)×· · ·×O(nr). Note that the underlying

set of F (n1, · · · , nr) consists of those tuples (V1, · · · , Vr) of vector subspaces Vi of Rn which

are mutually orthogonal and have dim(Vi) = ni. For i = 1, · · · , r, there is a tautological

vector bundle γi over F (n1, · · · , nr) whose total space is the subspace of F (n1, · · · , nr)×Rn

consisting of the tuples (V1, · · · , Vr, x) with x ∈ Vi. Note that the Whitney sum
⊕r

i=1 γi

is naturally isomorphic to the n dimensional trivial vector bundle. In particular, by taking

total Stiefel-Whitney classes, we get the relation

W (γ1)W (γ2) · · ·W (γr) = 1, (2.2)

in the mod-2 cohomology of F (n1, · · · , nr). Here W (γi) = 1+wi1 + · · ·+wij where wij stands

for the j-th Stiefel-Whitney class of γi.

2.4 Cohomology of F (n1, · · · , nr)

Borel showed that the mod-2 cohomology of F (n1, · · · , nr) is generated by the classes wij

subject solely to the several homogeneous relations encoded in Eq. 2.2. Namely:

Theorem 2.14 (Borel). The mod-2 cohomology ring of F (n1, · · · , nr) is the polynomial ring

over Z2 generated by the Stiefel-Whitney classes wij ∈ Hj(F (n1, · · · , nr); Z2) divided out by

the ideal generated by the positive dimensional homogeneous components of Πr
i=1W (γi)

Example 2.5. The 1-dimensional component of W (γ1)W (γ2) · · ·W (γr) = (1 + w11 +

w12 + · · · )(1+w21 +w22 + · · · ) · · · (1+wr1 +wr2 + · · · ) is given by w11 +w21 + · · ·+wr1, which

is trivial in H1(F (n1, · · · , nr);Z2). This means that the polynomial generator wr1 is really

superfluous in the presentation of the Theorem above. This observation will be brought to its

last consequences latter in this thesis in the case of semicomplete flag manifold F (1, · · · , 1,m),

whose cohomology mod-2 is recorded next.
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Thus in the particular case,

Theorem 2.15. For the special case F(1k, n) = F(1, · · · , 1, n) with k-ones the cohomology

of these spaces is given by Borel’s (non-minimal) presentation of H∗(F(1k, n);Z2), namely it

has generators xi and wj with the single (non-homogeneous) relation

∑
j≥0

wj

k∏
i=1

(1 + xi) = 1.

In this Theorem, xi stands for the first Stiefel-Whitney class of γi, while 1 + w1 + w2 +

· · ·+ wn stands for the total Stiefel-Whitney class of γk+1.

This presentation does not provide efficient calculations, so in Chapter 3 we will give a

better presentation than this, where calculations will be simpler.

2.5 Relation between TC(RPn) and Imm(RPn)

A main goal in this thesis is to generalize a classic result from Farber, Yuzvinsky and Tabach-

nikov. In this section we recapitulate some important results concerning the TC−Imm
relationship indicated in the introduction.

We will make a revision of principal results from [15] because in Chapter 4 we will establish

a relationship between TCs and a generalization of Immersion.

We study case X = RPn, i.e. the problem of computing the topological complexity of the

real projective space TC(RPn). This problem is much harder than finding the topological

complexity of the complex projective space. We review the work of Farber, Tabachnykov and

Yuzvinsky [15], the problem of finding the number TC(RPn) is equivalent to the problem of

finding the smallest k such that RPn can be immersed into the Euclidean space Rk.

We begin this section by proving a general result relating the topological complexity

of a topological space with the Schwarz genus of a covering. Let X be a finite-connected

polyhedron space with an action of a discrete group G.

Theorem 2.16. Let X be a finite-connected polyhedron and let p : X̃ → X be a regular

covering map with the group of covering transformations G. Let X̃ ×G X̃ be obtained from

the product X̃×X̃ by factorizing with respect to the diagonal action of G. Then, the topological

complexity TC(X) of the space X is greater than or equal to the Schwarz genus of the covering

q : X̃ ×G X̃ → X ×X.
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Proof. Remember that e : P (X) → X ×X will denote the canonical fibration of the space

of paths e(γ) = (γ(0), γ(1)), where γ ∈ P (X), γ : [0, 1] → X. Consider the following

commutative diagram:

P (X)
f //

e
$$

X̃ ×G X̃

q
yy

X ×X,

where the map f : P (X)→ X̃×G X̃ is defined as follows: given a continuous path γ : [0, 1]→
X, let γ̃ : [0, 1]→ X̃ be any lift of γ, and we set f(γ) = [(γ̃(0), γ̃(1))] ∈ X̃ ×G X̃. The lift γ̃

of γ depends on the choice of the initial point γ̃(0) ∈ X̃ but nevertheless the map f is well

defined and continuous.

If U is an open subset of X×X and s : U → P (X) is a continuous section of the fibration

e over U , then f ◦ s is a continuous section of q over U .

If there exits an open covering U0 ∪ · · · ∪ Uk of X ×X with a continuous section si of e

over each open set Ui, then f ◦ si is a continuous section of q over Ui and we see that the

Schwarz genus of the covering q is at most k. �

Corollary 2.17. The number TC(RPn) is greater than or equal to the Schwarz genus of the

two–fold covering Sn ×Z2 S
n → RPn×RPn.

We present this result in a different form.

If n is fixed, we always denote by ξ the canonical real line bundle over RPn. The exterior

tensor product ξ ⊗ ξ is a real line bundle over RPn×RPn. Its first Stiefel-Whitney class is

w1(ξ ⊗ ξ) = α × 1 + 1 × α ∈ H1(RPn×RPn;Z2), where α ∈ H1(RPn;Z2) is the generator.

This last condition determines uniquely the bundle ξ ⊗ ξ.

Corollary 2.18. The topological complexity TC(RPn) is not less than the minimal k such

that the Whitney sum (k + 1)(ξ ⊗ ξ) of k + 1 copies of ξ ⊗ ξ admits a nowhere vanishing

section.

Proof. By Corollary 2.17 TC(RPn) is not less than the Schwarz genus of the unit sphere

bundle q of ξ ⊗ ξ. By a Theorem of Schwarz [32], the latter coincides with the smallest k

such that the (k + 1)-fold fiberwise join q ∗ q ∗ · · · ∗ q admits a section. But, clearly, the

(k+ 1)-fold fiberwise join q ∗ q ∗ · · · ∗ q coincides with the unit sphere bundle of the Whitney

sum (k + 1)(ξ ⊗ ξ). This implies our statement. �
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We have seen also cat(X) ≤ TC(X) thus,

n ≤ TC(RPn).

Indeed the equality holds only at cases 1, 3, 7.

Theorem 2.19. If n ≥ 2r−1, then TC(RPn) ≥ 2r − 1

Proof. Let α ∈ H1(RPn;Z2) be the generator. Then, 1⊗α+α⊗ 1 is a zero-divisor, and we

consider its power (1⊗α+α⊗1)2r−1. The binomial expansion of this class contains the term(
2r−1
n

)
αk⊗αn where k = 2r−1−n < n. It is well known that the binomial coefficients

(
2r−1
i

)
are odd for all i. Hence

(
2r−1
n

)
αk ⊗ αn is a non-zero term, and so (1 ⊗ α + α ⊗ 1)2r−1 does

not vanish either. Applying the results about zcl, one finds that the topological complexity

of RPn is not less than 2r − 1. �

2.5.1 Nonsingular Maps and Axial Maps

In this section, we recall some notions and basic results concerning nonsingular maps Rn+1×
Rn+1 → Rk+1 and axial maps RPn×RPn → RPk. These maps appear in the mathematical

literature in relation to the immersion problem RPn → RPk. The presentation of this section

is based on section 5 in [15].

Definition 2.5. A continuous map

f : Rn × Rn → Rk

is called nonsingular if it has the following two properties:

(a) f(λu, µv) = λµf(u, v) ∀u, v ∈ Rn and λ, µ ∈ R

(b) f(u, v) = 0 implies u = 0 or v = 0

Bilinear nonsingular maps give immersions of projective spaces into Euclidean space [16].

We will see that the nonsingular maps in the sense of Definition 2.5 provide a convenient

tool for constructing explicit motion planning algorithms in projective spaces.

As an illustration, let us show that for any n there exists a nonsingular map f : Rn×Rn →
R2n−1. One constructs it as follows. Fix a sequence α1, α2, . . . , α2n−1 : Rn → R of linear
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functionals such that any n of them are linearly independent. For u, v ∈ Rn, the value

f(u, v) ∈ R2n−1 is defined as the vector whose j-th coordinate equals the product αj(u)αj(v),

where j = 1, 2, · · · , 2n− 1. If u 6= 0, then at least n among the numbers α1(u), · · · , α2n−1(u)

are nonzero. Hence if u 6= 0 and v 6= 0, there exists j such that αj(u)αj(v) 6= 0 and thus

f(u, v) 6= 0 ∈ R2n−1.

Lemma 2.20. There are no nonsingular maps f : Rn × Rn → Rk with k < n.

Proof. We may apply the Borsuk-Ulam Theorem to the map u → f(u, v), where v 6= 0

is fixed and where u varies on the unit sphere Sn−1 ⊂ Rn. By the Borsuk-Ulam Theorem,

f(u, v) = f(−u, v) for some u ∈ Sn−1, but the latter also is −f(u, v) and thus f(u, v) = 0.

This gives a contradiction with the nonsingularity property. �

Lemma 2.21. For n equal to 1, 2, 4, 8 there are nonsingular maps f : Rn × Rn → Rn with

the property that for any u ∈ Rn u 6= 0, the first coordinate of f(u, u) is positive. And if n is

different from 1, 2, 4, 8, there are no nonsingular maps f : Rn × Rn → Rn.

Proof. The complete proof is in [15]. �

Now we check the relationship between nonsingular maps and axial maps.

Definition 2.6. Let n and k be two positive integers with n < k. A continuous map

g : RPn×RPn → RPk

is called axial of type (n, k) if its restrictions to ∗ × RPn and RPn×∗ are homotopic to the

inclusion maps RPn → RPk.

Here, ∗ denotes a base point of RPn. Note that for n < k any continuous map h : RPn →
RPk is either homotopically trivial or it is homotopic to the inclusion map RPn → RPk.

If α ∈ H1(RPk;Z2) denotes the generator, then h∗(α) ∈ H1(RPn;Z2) is either zero or

equal to α. The map h is homotopically trivial if and only if h∗(α) = 0. This shows

that the property of the axial map g, can be equivalently stated by the formula g∗(α) =

α× 1 + 1×α. This last condition fixes the homotopy type of a map RPn×RPn → RP∞and

we are interested in finding the smallest k such that this map can be factorized through

the inclusion RPk → RP∞. This discussion explains that there always exists an axial map

RPn×RPn → RP2n. In fact, with some extra effort, one shows that there always exists an

axial map RPn×RPn → RP2n−1.
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Lemma 2.22. Assume that 1 < n < k. There exists a bijection between nonsingular maps

Rn+1 × Rn+1 → Rk+1 (viewed up to multiplication by a nonzero scalar) and axial maps

RPn×RPn → RPk .

Proof. Given a nonsingular map f : Rn+1×Rn+1 → Rk+1, one defines g : RPn×RPn → RPk,

where for u, v ∈ Sn ⊂ Rn+1, the value g(u, v) is the line through the origin containing the

point f(u, v) ∈ Rk+1. To show that g is indeed axial, we fix v ∈ Sn and vary only u ∈ Sn. We

see that the obtained map RPn → RPk lifts to a map Sn → Sk given by u→ f(u, v), and the

relation f(−u, v) = −f(u, v) implies that RPn → RPk is not null-homotopic. Similarly, using

f(u,−v) = −f(u, v), we find that the restriction of g onto ∗ × RPn is not null-homotopic.

Suppose now that we are given an axial map. Passing to the universal covers, we obtain

a continuous map g̃ : Sn × Sn → Sk (defined up to a sign). As explained above, the axial

property translates into g̃(−u, v) = −g̃(u, v) = g̃(u,−v) for all u, v ∈ Sn. Now, we may

define a nonsingular map f : Rn+1 × Rn+1 → Rk+1 by

f(u, v) = |u||v| · g̃
(
u

|u|
,
v

|v|

)
u, v ∈ Rk+1 − {0},

completing the proof. �

Lemma 2.23. Suppose that for a pair of integers 1 < n < k, there exists a nonsingular

map Rn+1 × Rn+1 → Rk+1. Then, there exists a nonsingular map f : Rn+1 × Rn+1 → Rk+1,

having the following additional property: for any non-zero u ∈ Rn+1, the first coordinate of

f(u, u) ∈ Rk+1 is positive.

Proof. Given a nonsingular map Rn+1 × Rn+1 → Rk+1, consider the corresponding axial

map g : RPn×RPn → RPk. The axial property implies that the restriction of g onto

the diagonal RPn ⊂ RPn×RPn is null-homotopic. Hence, we may find g′ ' g such that

g′ : RPn×RPn → RPk is constant along the diagonal. Now, consider the nonsingular

map f : Rn+1 × Rn+1 → Rk+1 corresponding to g′. We see that for all u ∈ Rk+1, the values

f(u, u) ∈ Rk+1 lie on a ray emanating from the origin. By performing an orthogonal rotation,

we may assume that all nonzero vectors of this ray have positive first coordinates. This proves

our claim. �

Theorem 2.24. The number TC(RPn) coincides with the smallest integer k such that there

exists a nonsingular map Rn+1 × Rn+1 → Rk+1.
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Proof. Details are in [15]. �

The proof of this Theorem needs the relationship between the existence of a nowhere

vanishing section for the vector bundle (k+ 1)(ξ⊗ ξ) and the existence of a nonsingular map

Rn+1×Rn+1 → Rk+1 (k is the same), together with the fact that if there exists a nonsingular

map g : Rn+1 × Rn+1 → Rk, where n + 1 < k, then RPn admits a motion planner with k

local rules.

The result about the correlation between nonsingular maps g : Rn+1 × Rn+1 → Rk, and

motion planners will be generalized in this thesis. In preparation for such a generalization

we give full details of:

Proposition 2.25. If there exists a nonsingular map g : Rn+1×Rn+1 → Rk, where n+1 < k,

then RPn admits a motion planner with k local rules, that is,

TC(RPn) ≤ k − 1.

Proof. We start with the following observation. Let φ : Rn+1 × Rn+1 → R be a scalar

continuous map such that φ(λu, µv) = λµφ(u, v) for all u, v ∈ Rn+1 and λ, µ ∈ R. Let

Uφ ⊂ RPn×RPn denote the set of all pairs (A,B) of lines in Rn+1 such that A 6= B and

φ(u, v) 6= 0 for some points u ∈ A and v ∈ B. It is clear that Uφ is open. We claim that there

exists a continuous motion planning strategy over Uφ, that is, there is a continuous map s

defined on Uφ with values in the space of continuous paths in the projective space RPn such

that, for any pair (A,B) ∈ Uφ the path s(A,B)(t), t ∈ [0, 1] starts at A and ends at B. We

may find unit vectors u ∈ A and v ∈ B such that φ(u, v) > 0. Such pair u, v is not unique;

instead of u, v, we may take −u,−v. Note that both pairs u, v and −u,−v determine the

same orientation of the plane spanned by A,B. The desired motion planning map s consists

in rotating A toward B in this plane, in the positive direction determined by the orientation.

Assume now additionally that φ : Rn+1 × Rn+1 → R is positive in the following sense: for

any u ∈ Rn+1, u 6= 0, one has φ(u, u) > 0. Then, instead of Uφ, we may take a slightly larger

set U ′φ ⊂ RPn×RPn which is defined as the set of all pairs of lines (A,B) in Rn+1 such that

φ(u, v) 6= 0 for some u ∈ A and v ∈ B. Now, all pairs of lines of the form (A,A) belong to U ′φ.

Then, for A 6= B, the path from A to B is defined as above (rotating A toward B in the plane,

spanned by A and B, in the positive direction determined by the orientation), and for A = B,

we choose the constant path at A. Continuity is not violated. A vector-valued nonsingular

map f : Rn+1 × Rn+1 → Rk determines k scalar maps φ1, · · · , φk : Rn+1 × Rn+1 → Rk (the

coordinates) and the above described neighborhoods Uφi cover the product RPn×RPn minus
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the diagonal. Since n + 1 < k, we may use Lemma 2.21. Hence, we may replace the initial

nonsingular map by such an f that for any u ∈ Rn+1, u 6= 0, the first coordinate φ1(u, u)

of f(u, u) is positive. The open sets U ′φ1 , Uφ2 , ..., Uφk cover RPn×RPn. We have described

explicit motion planning strategies over each of these sets. Therefore, TC(RPn) ≤ k − 1. �

In Chapter 4 we will use these constructions in order to the generalization about the

relationship between TCs(RPm) and axial(Pms).



Chapter 3
Motion Planning in Real Flag Manifolds

As it has been said in Section 2.1, the value of TC by a space X can be bounded for zcl and

by using the dimension of the manifold. Those results will be used to give information on

TC for some families of flag manifolds.

Unless otherwise is noted, all cohomology rings we deal with, have F2-coefficients by sim-

plicity of the calculations. Remember that Theorem 2.15 gives a presentation forH∗(F(1k,m)),

this presentation will be improved with the next result, it will be used to give explicit lower

bounds of TC2(F(1k,m)) by using zcl.

Proposition 3.1. Let m ≥ 1. A minimal presentation for the ring H∗(F(1k,m)) is given by

generators xi, 1 ≤ i ≤ k, all of dimension 1, subject to the relations

hm+i(x1, . . . , xk+1−i) = 0, 1 ≤ i ≤ k. (3.1)

A graded additive basis for H∗(F(1k,m)) is given by the monomials

x(n1, . . . , nk) :=
k∏
i=1

xnii (3.2)

where ni ≤ m+ k − i, for i = 1, . . . , k.

Remark 3.1. The above presentation is a strong generalization of Theorem 2.15, the one

given for complete flags—the latter one is not minimal. The direct proof below should be

compared to [30], a paper devoted to the proof (using Gröbner bases) of Proposition 3.1.

Proof. [Proof of Proposition 3.1] Let ei denote the i-th elementary symmetric polynomial,

and hi denote the i-th complete symmetric polynomial for i ≥ 0 (where e0 = h0 = 1). In

29
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both cases, the relevant variables will be explicitly indicated. For i = 1, . . . , k+1, let γi stand

for the i-th tautological bundle on F(1k,m), and set xi = w1(γi) for i ≤ k, and wj = wj(γk+1)

for j ≥ 0, the Stiefel-Whitney classes. Borel’s (non-minimal) presentation of H∗(F(1k,m))

has generators xi and wj with the single (non-homogeneous) relation

∑
j≥0

wj

k∏
i=1

(1 + xi) = 1.

This expression’s component in dimension j > 0 is∑
0≤t≤j

wj−tet(x1, . . . , xk) = 0. (3.3)

In particular, for j = 1, we get w1 = e1(x1, . . . , xk) = h1(x1, . . . , xk). Assuming inductively

that w` = h`(x1, . . . , xk) for ` < j, Eq. 3.3 gives

wj =
∑

1≤t≤j

hj−t(x1, . . . , xk)et(x1, . . . , xk) = hj(x1, . . . , xk).

This uses the basic relation between elementary and complete symmetric polynomials

j∑
t=0

(−1)tet(x1, . . . , xk)hj−t(x1, . . . , xk) = 0. (3.4)

Therefore, the generators wj are superfluous and, since wj = 0 for j > m, we get hm+i(x1, . . . , xk) =

0 for i > 0. This corresponds to Eq. 3.1 if i = 1, otherwise use

hm+i(x1, . . . , xk) = hm+i(x1, . . . , xk−1) + xkhm+i−1(x1, . . . , xk) (3.5)

to get hm+i(x1, . . . , xk−1) = 0 for i > 1. Iteration of this argument yields Eq. 3.1. Further,

these equations can be used to write any power x`i with ` > m + k − i in terms of powers

xnj with j < i or n < `. This shows that the monomials in Eq. 3.2 are additive generators

of H∗(F(1k,m)). On the other hand, the inclusion of the fiber in the total space of the

fibration F(1k−1,m) → F(1k,m) → RPm+k−1 is surjective in mod 2 cohomology. Therefore

the corresponding F2-Serre spectral sequence has trivial coefficients and collapses from its

second stage (cf. Theorem 4.4 in page 126 of [29, Part I]). An easy inductive argument 1 then

1Alternatively see [22, Corollary 9.5.15].
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shows that the F2-Poincaré polynomial of F(1k,m) is

P (x) =
k∏
i=1

1− xi+m

1− x
.

The proof is complete since P (1) =
∏k

i=1(m+i), which is the number of monomials in Eq. 3.2.

�

The relations in Eq. 3.1 are a distilled form of a more general (equivalent but non-minimal)

set of relations: our proof gives in fact

hm+i(x1, . . . , xk−j) = 0 if i > j ≥ 0. (3.6)

(Alternatively, Eq. 3.6 is a consequence of Eq. 3.1 and the obvious inclusions F(1k,m) ↪→
F(1k,m+ 1) ↪→ F(1k,m+ 2) ↪→ · · · .) In addition, the obvious action of the symmetric group

Σk on (the cohomology of) F(1k,m) implies that the relations in Eq. 3.6 extend to

hm+i(x`1 , . . . , x`k−j) = 0

for any 1 ≤ `1 < · · · < `k−j ≤ k with 0 ≤ j < i ≤ k. For instance,

xm+k
i = 0 6= xm+k−1

i for any i = 1, . . . , k, (3.7)

where the non-triviality of xm+k−1
i comes from Eq. 3.2. As noted in [30, Example 3.1], this

recovers the calculation in [26] of the heights of the generators xi’s. Proposition 3.1 also

allows us to recover the calculation of cat(F(1k,m)) in [26] (we use the normalized version of

the Lusternik-Schnirelmann category, so that a contractible space X has cat(X) = 0):

Corollary 3.2. cat(F(1k,m)) = dim(F(1k,m)) = km+ k(k − 1)/2.

Proof. It is well known that km + k(k − 1)/2 = dim(F(1k,m)) ≥ cat(F(1k,m)). The latter

term is bounded from below by the F2-cup-length of F(1k,m) which, in view of Proposi-

tion 3.1, is no less than km+ k(k − 1)/2 since xm+k−1
1 xm+k−2

2 · · ·xmk 6= 0. �

Corollary 3.3. The annihilator of the (non-trivial) class

xm+k−1
1 xm+k−2

2 · · · xmk ∈ H∗(F(1k,m))
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is the maximal ideal H>0(F(1k,m)) of positive-degree elements. More precisely,

xm+k−1
1 xm+k−2

2 · · ·xm+k−j
j xj = 0

for 1 ≤ j ≤ k.

Proof. Apply, inductively on j, the relation in Eq. 3.1 with i = k − j + 1. �

More important for our later purposes is the fact that, as indicated in the proof of Propo-

sition 3.1, the extended relations in Eq. 3.6 can be used in an inductive way to write any

polynomial in the xi’s in terms of the basis in Eq. 3.2. We next show that the resulting

process can be written down with a nice closed formula if certain basis elements are to be

neglected.

Here is an explicit example of calculations. Consider H∗(F(13, 2)) ≈ Z2[x1, x2, x3]/ ∼,
where in this case ∼ is given by the ideal generated by the relations h3(x1, x2, x3) = 0,

h4(x1, x2) = 0, h5(x1) = x5
1 = 0. If we want make arithmetic in this space, we must use those

relations. For instance, for the element x4
1x

3
2x

3
3 ∈ H∗(F(13, 2)) :

x4
1x

3
2x

3
3 = x4

1x
3
2[h3(x1, x2, x3)− x3

3]

= x4
1x

3
2(x3

1 + x2
1x2 + x2

1x3 + x1x
2
2 + x1x

2
3 + x1x2x3 + x2

2x3 + x2x
2
3 + x3

2)

= x4
1x

3
2(x2

2x3 + x2x
2
3 + x3

2), since x5
1 = 0

= x4
1x

4
2x

2
3, in view of Eq. 3.8

= x4
1[h4(x1, x2)− x4

2]x2
3

= x4
1[x1A]x2

3 = x5
1Ax

2
3 = 0, whereA = A(x1, x2).

In this example we see how the procedure is for the reduction of a monomial and this calcu-

lation can be programmed.

In this algorithm p = x4
1x

3
2x

3
3 ∈ H∗(F(13, 2)) returns p′ = 0.

Proposition 3.4. Let 0 ≤ j ≤ i ≤ k with i ≥ 1. In terms of the basis in Eq. 3.2, all basis

elements x(n1, . . . , nk) appearing in the expression of

xm+k−j
i + xm+k−i

i ei−j(x1, . . . xi−1) ∈ H∗(F(1k,m))

have ni < m+ k − i and n` = 0 for ` > i.
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Algorithm 1: Reduction

Data: p = p(x1, · · · , xk) ∈ H∗(F(1k,m))
Result: p′ ∼ p basic
p′ ← p;
while p′ is not basic do

Replace each power xm−i+k+1
i in p′ by hm−i+k+1(x1, . . . , xi)− xm−i+k+1

i ;
p′ ← ReducePoly(p′)

end
return p′

Proof. The cases j = 0 and j = i hold vacuously true in view of Eq. 3.7. The case j = i− 1

follows by observing that a repeated use of Eq. 3.5 allow us to write the relations in Eq. 3.1

as

xm+k−i+1
i = xm+k−i

i h1 + xm+k−i−1
i h2 + · · ·+ hm+k−i+1 (3.8)

where the complete symmetric polynomials are evaluated at the variables x1, . . . , xi−1. All

other cases (0 < j < i − 1) follow from an obvious (decreasing) inductive calculation using

Eq. 3.4 and the corresponding analogue of Eq. 3.8. �

3.1 F2 − zcl Bounds for TC(F(1k,m))

Most of the existing methods to estimate the topological complexity of a given space are coho-

mological in nature and are based on some form of obstruction theory. For our purposes, the

most successful method to estimate Farber’s topological complexity are in Subsection 2.1.2,

where we saw that TC2 is in between zcl and 2dim.

We use the notation λi (resp. ρi) for the generators xi on the left (resp. right) tensor

factor of H∗(F(1k,m) × F(1k,m)) = H∗(F(1k,m)) ⊗H∗(F(1k,m)). The sum λi + ρi, which

is a zero-divisor, will be denoted by zi.

Thus the cohomology ring H∗(F(1k,m))⊗H∗(F(1k,m)) its the polynomial ring

Z2[λ1, · · · , λk, ρ1, · · · , ρk]

with the relations hm+i(λ1, . . . , λk+1−i) = 0, hm+i(ρ1, . . . , ρk+1−i) = 0 with 1 ≤ i ≤ k. And

we look for max{
∑k

j=1 ej} such that ze11 · · · z
ek
k ∈ H∗(F(1k,m)) ⊗ H∗(F(1k,m)) is non-zero,

where zi = λi + ρi . This work can be programmed and it gives indication of a general
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pattern. The algorithm shown in the table “Algorithm 2:ZCL” is similar to the reduction

algorithm because we have the same relations, and we know zm−1
i 6= 0.

Algorithm 2: ZCL

Data: k,m
Result: (e1, . . . , ek) s.t. maximizes {

∑k
j=1 ej}

ej ← m− 1, j = 1, . . . , k;
while p = ze11 · · · z

ek
k 6= 0 (zj = λj + ρj) do

Replace powers of λ and ρ in p taken from relations
hm+i(λ1, . . . , λk+1−i) = 0, and
hm+i(ρ1, . . . , ρk+1−i) = 0;

ReducePoly(ze11 · · · z
ek
k ) ;

PermuteValues((e1, . . . , ek)) or IncreaseOne({
∑k

j=1 ej});
end
return (e1, . . . , ek)

Algorithm 2 was used to make extensive calculations in certain important cases. That

exercise gave us clues that point to the form of the solution for general case. Theory confirms

evidence as we will show in next results. However, in practice, the computational technique

has some problems due to the computational power needed in the polynomial arithmetic: it

needs long space in memory to store information (in spite that it can use dynamic memory,

and that the reductions are performed in every stage). Thus we need find patterns in “small”

convenient cases.

Lemma 3.5. In the ring H∗(F(1k, 2e))⊗2 we have

(z1 · · · zk)2e+1−1 6= 0. (3.9)

Remark 3.2. When k ≤ 2e, Eq. 3.9 is sharp in the sense that z2e+1

j = λ2e+1

j + ρ2e+1

j = 0 for

1 ≤ j ≤ k, in view of Eq. 3.7. However, such an optimality in Eq. 3.9 is far from holding

when k > 2e. For instance, Eq. 3.9 asserts that z1z2z3 6= 0 in H∗(F(14))⊗2, but we will show

in fact (Proposition 3.7 below) that z3
1z

3
2z

2
3 6= 0 in H∗(F(14))⊗2. A similar phenomenon holds

for F(13, 2)—replacing the use of Proposition 3.7 by Theorem 3.9 below (with k = 3).

Proof. [Proof of Lemma 3.5] We proceed by induction on k. The case for k = 1 is elementary

and well known—note that F(1, 2e) is the real projective space RP2e . Assume the result is

valid for k and consider the fibration

F(1k, 2e)
ι→ F(1k+1, 2e)

π→ F(1, 2e + k) = RP2e+k (3.10)
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where π(L1, . . . , Lk+1, V ) = (L1, V ⊕
⊕

2≤i≤k+1 Li). Since ι is surjective in cohomology, [29,

Theorem 4.4] shows that the Serre spectral sequence for the term-wise cartesian square of

Eq. 3.10 has a trivial system of coefficients, and collapses from its second term. The result

follows since, by the inductive hypothesis, the left-hand side term in Eq. 3.9 is non-zero in

the second stage of the spectral sequence. �

Theorem 2.10, Corollary 3.2, and Lemma 3.5 yield the estimate in Corollary 3.6 be-

low for the topological complexity of manifolds F(1k,m) admitting an equatorial inclusion

F(1k, 2e) ↪→ F(1k,m) with 2e ≤ m.

Corollary 3.6. Let e denote the integral part of log2(m). Then

k(2e+1 − 1) ≤ TC(F(1k,m)) ≤ k(2m+ k − 1). (3.11)

Note that the smallest gap in Eq. 3.11 is of k2 units (for m = 2e). On the other hand, the

lower bound in Eq. 3.11 is optimal in general. For instance, the gap of a unit for TC(F(1, 2e))

coming from Corollary 3.6 (with k = 1) is solved by Eq. 1.3. This is of course compatible with

the first assertion in Remark 3.2. But for k > 1 there is room for improvements of the lower

bound in Eq. 3.11 by a zero-divisors cup-length analysis of an intermediate space F(1k,m′)

with 2e < m′ ≤ m and m′ not a power of 2. For instance, since Eq. 3.7 yields z2e+1

j = 0 in

H∗(F(12, 2e+1 − 2))⊗2, the only possibility to improve the lower bound in Eq. 3.11 for k = 2

via zero-divisors cup-length considerations can come only through the analysis of the case

for F(12, 2e+1 − 1). In fact, we next give zero-divisors cup-length bounds for TC(F(1k,m))

inherent to the case m = 2e − 1. As observed at the end of Remark 3.3, our argument

will apply only for k ≥ 2 —after all, the case of F(1, 2e − 1), the real projective space of

dimension 2e− 1, has been one of the most difficult situations studied over the years (see for

instance [9, 23]).

Proposition 3.7. Assume k ≥ 2 and e ≥ 1. In H∗(F(1k, 2e − 1))⊗2 we have

(z1 · · · zk−1)2e+1−1z2e+1−2
k 6= 0. (3.12)

Remark 3.3. When k ≤ 2e + 1, Eq. 3.12 is almost sharp in the sense that z2e+1

j = 0 for

1 ≤ j ≤ k, in view of Eq. 3.7. Computer calculations show that such an optimality feature

fails in general if k > 2e + 1, for instance with complete Flag manifolds F(1k, 1). Also worth
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noticing is that, in Remark 3.4 below, we give evidence suggesting

(z1 · · · zk)2e+1−1 = 0

in Proposition 3.7. On the other hand, note that Eq. 3.12 certainly fails for k = 1.

Proof. [Proof of Proposition 3.7] The inductive argument in the proof of Lemma 3.5, now

replacing Eq. 3.10 by the fibrations

F(1k, 2e − 1)→ F(1k+1, 2e − 1)→ F(1, 2e + k − 1) = RP2e+k−1,

shows that the general case in Proposition 3.7 follows inductively from the case k = 2. On

the other hand, for the latter case, Eq. 3.7 gives in H∗(F(1, 1, 2e − 1))⊗2

z2e+1−1
1 z2e+1−2

2 = (λ1 + ρ1)2e+1−1(λ2 + ρ2)2e+1−2

=
(
λ2e

1 ρ
2e−1
1 + λ2e−1

1 ρ2e

1

) (
λ2

2 + ρ2
2

)2e−1

=
(
λ2e

1 ρ
2e−1
1 + λ2e−1

1 ρ2e

1

) (
(λ2

2)2e−1

(ρ2
2)2e−1−1 + (λ2

2)2e−1−1(ρ2
2)2e−1

)
=

(
λ2e

1 ρ
2e−1
1 + λ2e−1

1 ρ2e

1

) (
λ2e

2 ρ
2e−2
2 + λ2e−2

2 ρ2e

2

)
.

Further, if µ stands for either λ or ρ, the relations in Eq. 3.1 give µ2e

2 = µ2
1Aµ + µ1µ

2e−1
2 .

Thus

z2e+1−1
1 z2e+1−2

2

=
(
λ2e

1 ρ
2e−1
1 + λ2e−1

1 ρ2e

1

) (
λ2e

2 ρ
2e−2
2 + λ2e−2

2 ρ2e

2

)
=
(
λ2e

1 ρ
2e−1
1 + λ2e−1

1 ρ2e

1

) ((
λ2

1Aλ + λ1λ
2e−1
2

)
ρ2e−2

2 + λ2e−2
2

(
ρ2

1Aρ + ρ1ρ
2e−1
2

))
= λ2e

1 ρ
2e−1
1 · λ2e−2

2 ρ1ρ
2e−1
2 + λ2e−1

1 ρ2e

1 · λ1λ
2e−1
2 ρ2e−2

2

= λ2e

1 λ
2e−2
2 ρ2e

1 ρ
2e−1
2 + λ2e

1 λ
2e−1
2 ρ2e

1 ρ
2e−2
2 .

The result follows as the two monomials in the last expression are basis elements. �

Remark 3.4. Before discussing the implications of Proposition 3.7 to the topological com-

plexity of flag manifolds, we make a brief pause to say a few words about the sharpness of

Proposition 3.7 when 2 ≤ k ≤ 2e + 1 —hypothesis that will be in force in this paragraph.

Since 0 = z2e+1

i ∈ H∗(F(1k, 2e − 1))⊗2 for all i, the triviality of any product zi1 · · · zit with
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t ≥ (2e+1 − 1)k is equivalent to

(z1 · · · zk)2e+1−1 = 0. (3.13)

Proving Eq. 3.13 presents a major challenge (not addressed in this work). Checking the

validity of Eq. 3.13 for k = 2 is easy in view of the last expression for z2e+1−1
1 z2e+1−2

2 at the

end of the proof of Proposition 3.7. We have checked the validity of Eq. 3.13 for k ∈ {3, 4}
with the help of a computer, but the task quickly becomes computationally prohibitive for

larger values of k as the number of basis elements in the expression on the left-hand term of

Eq. 3.12 increases extremely fast as k grows: 16 basis elements are need for k = 3, while the

number of required basis elements increases to 1128 for k = 4—the sum of which would have

to vanish after multiplying by zk, should Eq. 3.13 be true.

Corollary 3.8. Let e denote the integral part of log2(m+ 1). If e ≥ 1 and k ≥ 2, then

k(2e+1 − 1)− 1 ≤ TC(F(1k,m)) ≤ k(2m+ k − 1). (3.14)

Remark 3.5. The smallest gap in Eq. 3.14 is of k(k − 2) + 1 units (for m = 2e − 1). The

case of F(12, 2e− 1) (e.g. the closed parallelizable 3-manifold F(13)) is particularly appealing,

as the corresponding gap is only of one unit.

Example 3.1. It is elementary to see that, when k = 1, Corollary 3.6 captures all the

TC-information cohomologically available from Lemma 3.5. Indeed, the relations z2e+1−1
1 6=

0 = z2e+1

1 , holding in H∗(F(1, 2e))⊗2, clearly hold in any H∗(F(1,m))⊗2 with 2e ≤ m < 2e+1.

Similarly, Corollaries 3.6 and 3.8 capture all the TC-information available from Lemma 3.5

and Proposition 3.7 if k = 2. For z2e+1−1
1 z2e+1−2

2 6= 0 holds sharply in H∗(F(1, 1, 2e − 1))⊗2

(c.f. Remark 3.4), and z2e+1−1
1 z2e+1−1

2 6= 0 holds sharply in H∗(F(1, 1,m))⊗2 for 2e ≤ m ≤
2e+1 − 2 (c.f. Remark 3.2).

Example 3.1 below (and extensive computer calculations) seem to suggest that all the

zcl-information for F(1k,m) is contained in the cases m = 2e − δ with 0 ≤ δ < k. The

analysis of the corresponding zcl properties is the subject of the remainder of this section

(see Theorem 3.9).

Example 3.2. Apply the inductive argument in the proofs of Lemma 3.5 and Proposi-

tion 3.7 to the fibration F(1, 2e − 2) → F(1k, 2e − 2) → F(1k−1, 2e − 1). For k ≥ 3 and

e ≥ 1, Proposition 3.7 gives (z1 · · · zk−2)2e+1−1z2e+1−2
k−1 6= 0 in H∗(F(1k−1, 2e − 1))⊗2. Since
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0 6= z2e−1
1 ∈ H∗(F(1, 2e − 2))⊗2 is a standard calculation for e ≥ 2, we see

(z1 · · · zk−2)2e+1−1 z2e+1−2
k−1 z2e−1

k 6= 0 in H∗(F(1k, 2e − 2))⊗2 if k ≥ 3 and e ≥ 2. (3.15)

What is remarkable in Eq. 3.15 is that, although this argument is really measuring the zero-

divisors cup-length of a graded object associated to H∗(F(1k, 2e − 2))⊗2, extensive computer

calculations suggest that no cohomological information has been missed.

Remark 3.6. At a first glance, Eq. 1.3 and Remark 3.5 might suggest that the methods in

this work could lead to estimate the TC of F(13, 2e − 2) with an error of at most a unit.

The error, however, increases exponentially with e (see Example 3.3). Yet, as shown in

Section 3.2 below, the corresponding TCs estimates for s ≥ 3 will in fact be sharp.

The argument leading to Eq. 3.15 can be iterated with the fibrations

F(1, 2e − δ)→ F(1k, 2e − δ)→ F(1k−1, 2e − δ + 1)

for δ ≥ 2 (but note that the case δ = 1 fails to recover Proposition 3.7) to get the following

generalizations of Lemma 3.5 and Proposition 3.7, and of Corollaries 3.6 and 3.8:

Theorem 3.9. The following assertions hold in H∗(F(1k,m))⊗2 :

(a) For m+ k ≤ 2e+1 and 1 ≤ i ≤ k, z2e+1

i = 0.

(b) For m = 2e − δ with k > δ ≥ 0 and 2e−1 ≥ δ,

(z1 · · · zk−δ)2e+1−1 z2e+1−2
k−δ+1 (zk−δ+2 · · · zk)2e−1 6= 0. (3.16)

Corollary 3.10. Let k and m be positive integers, δ ∈ {0, 1, . . . , k−1}, and set ε = min(δ, 1)

and α(r) = max(0, r). If a nonnegative integer e satisfies 2δ ≤ 2e ≤ m+ δ, then

(k − δ + ε)(2e+1 − 1) + α((δ − 1)(2e − 1))− ε ≤ TC(F(1k,m)) ≤ k(2m+ k − 1). (3.17)

Due to the form of the exponents of the factors on the left-hand side of Eq. 3.16, the

gap in Eq. 3.17 becomes in general larger as the parameter δ increases. Still, as shown in

the following examples, there are concrete situations where Corollary 3.10 yields better lower

bounds for larger values of δ.
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Example 3.3. Obtaining the sharpest information from Theorem 3.9 and Corollary 3.10

for a fixed flag manifold F(1k,m0) usually requires choosing a suitable combination of param-

eters (e, δ) with 2e−δ ≤ m0 (so that the non-triviality of a cohomology class in F(1k,m0) can

be obtained, via Theorem 3.9, from the non-triviality of its restriction to F(1k, 2e− δ)). Take

for instance the case of F(13, 2) where the conclusion of item (b) in Theorem 3.9 with δ = 0

is (z1z2z3)3 6= 0, but the conclusion with δ = 2 is in fact z7
1z

6
2z

3
3 6= 0. Alternatively, the case

δ = 0 in Corollary 3.10 implies TC(F(13, 6)) ≥ 21, while the case δ = 2 yields the stronger

estimate TC(F(13, 6)) ≥ 36. In particular, the smallest gap in Eq. 3.17 for F(13, 6) is of 6

units and corresponds to δ = 2. More generally, for e ≥ 2, the smallest gap in Eq. 3.17 for

F(13, 2e − 2) is of 2e − 2 units. In particular TC(F(13, 2)) ∈ {16, 17, 18}—a gap of only two

units.

As indicated in Remarks 3.2 and 3.3, the lower bound in Eq. 3.17 tends to get weaker as

k is larger than 2e − δ. Extreme cases hold (with (e, δ) ∈ {(0, 0), (1, 1)}) for complete flag

manifolds F(1k, 1).

3.2 Higher Topological Complexity

This thesis has shown methods to give almost-sharp estimates for the topological complexity

of flag manifolds F(1, 2e) and F(12, 2e − 1). This section’s goal is to show that, in the realm

of higher topological complexity, the cohomological estimates become sharp and, above all,

valid for other flag manifolds of the form F(1k, 2e− k+ 1). In general, our results show that,

as s increases, the cohomological method becomes better suited to estimate TCs(F(1k,m)).

This point will be made precise in Remark 3.7 and Corollary 3.15 below.

As it has seen in Subsection 2.2.1 (Theorem 2.10), value of TCs(X) is bounded as follows

zcl(X,n) ≤ TCn(X) ≤ hdim(X) · n
conn(X) + 1

. (3.18)

In what follows we use the notation zcln(X) as an alternative for zcl(X,n)

Remark 3.7. Let G(k,m, s) denote the gap in Eq. 3.21 and X = F(1k,m), i.e. G(k,m, s) =

s · dk,m − zcls(F(1k,m)) where dk,m = km + k(k − 1)/2 (c.f. Corollary 3.2). Corollary 3.15

below indicates that, for k and m fixed, the sequence of non-negative integers {G(k,m, s)}s≥2

is monotonically decreasing and, therefore, eventually constant. In fact, in the main result

of this section (Theorem 3.11 below), the monotonic phenomenon holds with a zero limiting
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value, lims 7→∞G(k,m, s) = 0, thus getting sharp results in this particular case.

Theorem 3.11. For positive integers e, k and s with e ≥ 1 + bk−1
2
c and k ≤ 3 ≤ s,

zcls(F(1k, 2e − k + 1)) = TCs(F(1k, 2e − k + 1)) = s dim(F(1k, 2e − k + 1)).

Theorem 3.11 is an immediate consequence of Eq. 3.18 and the inequality s dim(F(1k,

2e− k+ 1)) ≤ zcls(F(1k, 2e− k+ 1)), which will be established in Propositions 3.12 and 3.13

for k ≤ 3 ≤ s by identifying non-trivial products with suitably many s-th zero-divisors as

factors.

For 1 ≤ i ≤ s and 1 ≤ j ≤ k, let xi,j be the pullback class π∗i (xj) ∈ H∗(F(1k,m))⊗s

where πi : F(1k,m)s → F(1k,m) is the i-th projection (1 ≤ i ≤ s and 1 ≤ j ≤ k), and let

zi,j stand for the s-th zero-divisor x1,j + xi,j. We will deal with the basis of Eq. 3.2 and its

tensor product basis

s∏
i=1

xi(ni,1, . . . , ni,k), 0 ≤ ni,j ≤ m+ k − j, (3.19)

where xi(ni,1, . . . , ni,k) = π∗i (x(ni,1, . . . , ni,k)).

Proposition 3.12. For s ≥ 3 and e ≥ 1,

1. z2e+1−1
2,1 z2e+1

3,1 z2e

4,1 · · · z2e

s,1 is non-trivial in the cohomology ring H∗(F(1, 2e))⊗s.

2. (z2e+1−1
2,1 z2e+1−2

2,2 ) · (z2e−1
3,1 z2e+1

3,2 ) · (z2e

4,1z
2e−1
4,2 ) · · · (z2e

s,1z
2e−1
s,2 ) is non-trivial in the cohomology

ring H∗(F(12, 2e − 1))⊗s.

Proposition 3.13. For s ≥ 3 and e ≥ 2,

0 6= (z2e+1−1
2,1 z2e+1−2

2,2 z2e−1
2,3 ) · (z2e−1

3,1 z2e−1
3,2 z2e+1−3

3,3 ) ·
s∏
i=4

(z2e

i,1z
2e−1
i,2 z2e−2

i,3 )

in the cohomology ring H∗(F(13, 2e − 2))⊗s.

Remark 3.8. Note that the powers of the factors z2,j in the three products above coincide with

the relevant power(s) of the products in Eq. 3.9 with k = 1, Eq. 3.12 with k = 2, and Eq. 3.15

for k = 3. In the present case (s ≥ 3), the form of the powers of the factors z3,j is what

allows us to get sharp results. Also worth mentioning is the possibility that Theorem 3.11

could hold true by relaxing the restriction “k ≤ 3 ≤ s” to “k ≤ s” (see Remark 3.11 for

a more general possibility). The proof of such an assertion seems to require computational
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input (suggesting suitable generalizations of Propositions 3.12 and 3.13) that does not seem

to be currently available with today’s computer capabilities.

Lemma 3.14 below implies that it suffices to prove Propositions 3.12 and 3.13 for s = 3.

Lemma 3.14. For 2 ≤ i ≤ s, the expression in H∗(F(1k,m))⊗s of

zm+k−1
i,1 zm+k−2

i,2 · · · zm+1
i,k−1z

m
i,k + xi(m+ k − 1,m+ k − 2, · · · ,m+ 1,m)

in terms of the basis in Eq. 3.19 involves only basis elements of the form

x1(r1, . . . , rk) · xi(t1, . . . , tk)

with rj > 0 for some j ∈ {1, . . . , k} (so tj′ < m+ k − j′ for some j′ ∈ {1, . . . , k}).

Proof. Expand out zm+k−1
i,1 zm+k−2

i,2 · · · zm+1
i,k−1z

m
i,k and notice that all the resulting monomials

are basis elements. �

Corollary 3.15. For k,m ≥ 1, G(k,m, 2) ≥ G(k,m, 3) ≥ G(k,m, 4) ≥ · · · ≥ 0.

Proof. If z ∈ H∗(F(1k,m))⊗s is some non-trivial product of s-th zero-divisors, then Lemma 3.14

implies that z · zm+k−1
s+1,1 zm+k−2

s+1,2 · · · zm+1
s+1,k−1z

m
s+1,k ∈ H∗(F(1k,m))⊗(s+1) is non-trivial too. The

result then follows from the bare definition of the function G(k,m, s). �

Propositions 3.12 and 3.13 are proved by direct computation of the given products. In all

cases, advantage is taken of the fact that the products lie in the top dimension s(km+
(
k
2

)
) of

the relevant ring H∗(F(1k,m))⊗s, where the additive basis in Eq. 3.19 reduces to the single

element
s∏
i=1

xi(m+ k − 1,m+ k − 2, . . . ,m+ 1,m). (3.20)

Explicitly, we use the inductive process indicated in the proof of Proposition 3.1, except

that, since Eq. 3.20 is the only basis element we care about, the extended relations in Eq. 3.6

can be replaced by the relations

xm+k−j
i = xm+k−i

i ei−j(x1, . . . xi−1), for 0 ≤ j ≤ i ≤ k and i ≥ 1, (3.21)

coming from Proposition 3.4. Proof details for Proposition 3.12 are similar (and easier) than

those for Proposition 3.13, so we only focus on the latter case.
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Proof. [Proof of Proposition 3.13] By Lemma 3.14 (see also the proof of Corollary 3.15), we

only need to consider the case s = 3. We will show that for e ≥ 2,

(z2e+1−1
2,1 z2e+1−2

2,2 z2e−1
2,3 ) · (z2e−1

3,1 z2e−1
3,2 z2e+1−3

3,3 ) =
3∏
i=1

x2e

i,1x
2e−1
i,2 x2e−2

i,3 , (3.22)

the top basis element in H∗(F(13, 2e − 2))⊗3.

The mod-2 arithmetic of binomial coefficients, and the fact that x2e+1
i,j = 0 give

z2e+1−3
3,3 = (x1,3 + x3,3)2e+1−3 = x2e

1,3x
2e−3
3,3 + x2e−3

1,3 x2e

3,3 (3.23)

(of course, this uses the hypothesis e ≥ 2). Due to the form of the relations in Eq. 3.21

—or Eq.3.6 for that matter— and since x2e−3
3,3 is a basis element, the term x2e

1,3x
2e−3
3,3 above

cannot contribute to the top basis element. In other words, the considerations around Eq. 3.20

imply that the product of the term x2e

1,3x
2e−3
3,3 with the first five powers on the left of Eq. 3.22

vanishes. Such an argument will be used repeatedly in what follows, and will simply be

referred to by using a “≡” symbol. In these terms, the relations in Eq. 3.21 allow us to

extend Eq. 3.23 to z2e+1−3
3,3 = x2e

1,3x
2e−3
3,3 + x2e−3

1,3 x2e

3,3 ≡ x2e−3
1,3 x2e

3,3 ≡ x2e−3
1,3 x3,1x3,2 · x2e−2

3,3 ,

z2e−1
3,2 z2e+1−3

3,3 ≡ z2e−1
3,2 x2e−3

1,3 x3,1x3,2 · x2e−2
3,3

= (x1,2 + x3,2)2e−1x2e−3
1,3 x3,1x3,2 · x2e−2

3,3

≡ (x1,2x
2e−2
3,2 + x2e−1

3,2 )x2e−3
1,3 x3,1x3,2 · x2e−2

3,3

= x2e−3
1,3 x3,1(x1,2 + x3,1) · x2e−1

3,2 x2e−2
3,3 ,

and

z2e−1
3,1 z2e−1

3,2 z2e+1−3
3,3 ≡ (x1,1 + x3,1)2e−1x2e−3

1,3 x3,1(x1,2 + x3,1) · x2e−1
3,2 x2e−2

3,3

≡ x2e−3
1,3 (x1,1x

2e−2
3,1 + x2e−1

3,1 )x3,1(x1,2 + x3,1) · x2e−1
3,2 x2e−2

3,3

= x2e−3
1,3 (x1,1 + x1,2) · x2e

3,1x
2e−1
3,2 x2e−2

3,3 .

An entirely similar (and straightforward) calculation gives

z2e+1−1
2,1 z2e+1−2

2,2 z2e−1
2,3 ≡ (x2e

1,1x
2e−2
1,2 x1,3 + x2e−1

1,1 x2e

1,2) · x2e

2,1x
2e−1
2,2 x2e−2

2,3 ,

and the result then follows since an additional (and much simpler) such computation gives
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x2e−3
1,3 (x1,1 + x1,2) · (x2e

1,1x
2e−2
1,2 x1,3 + x2e−1

1,1 x2e

1,2) ≡ x2e

1,1x
2e−1
1,2 x2e−2

1,3 . �

The Serre spectral sequence method used in Section 3.1 could now be coupled with Propo-

sitions 3.12 and 3.13 to get an extension of Theorem 3.11 on the lines of Corollary 3.10.

However such a task would need to be done in a carefully selective way as, in some cases,

the direct computations in the previous proof give better results. In fact, as the following

example suggests (see also the proof of Proposition 3.16), best results can be obtained by a

suitable combination of both techniques.

Example 3.4. Proposition 3.12(1) and the Serre spectral sequence applied to the fibration

F(1, 2e)→ F(1, 1, 2e)→ F(1, 2e + 1) (with e ≥ 1) yield the non-triviality of

(z2e+1−1
2,1 z2e+1−1

2,2 ) · (z2e+1
3,1 z2e+1

3,2 ) · (z2e

4,1z
2e

4,2) · · · (z2e

s,1z
2e

s,2) ∈ H∗(F(1, 1, 2e))⊗s

for s ≥ 3. But one can do better. For instance, a direct argument (spelled out in Proposi-

tion 3.16 below) gives in fact the non-triviality of

(
z3

2,1z
3
2,2

)
·
(
z3

3,1z
3
3,2

)
·
(
z3

4,1z
2
4,2

)
· · ·
(
z3
s,1z

2
s,2

)
∈ H∗(F(1, 1, 2))⊗s (3.24)

for s ≥ 3, so that 5s − 3 ≤ TCs(F(1, 1, 2)) ≤ 5s. As a result we have that G(2, 2, s) ≤ 3

provided s ≥ 3 (recall from Corollary 3.6 that G(2, 2e, 2) = 4). In fact, extensive computer

computations (not given here) suggest that

G(2, 2, s) = 3 when s ≥ 3.

The key point then comes from the fact that Theorem 3.17 below gives the sharper result 2

G(2, 2e, s) ≤ 1 for s ≥ 3 and e ≥ 2.

Proposition 3.16. The element in Eq. 3.24 is non-zero.

Proof. The assertion for s = 3 has been observed in the first sentence of Example 3.4. The

case s ≥ 4 then follows from (the proof of) Corollary 3.15. �

As anticipated in Example 3.4, we also describe, for s ≥ 3 and e ≥ 2, an almost sharp

estimate for TCs(F(1, 1, 2e)).

2Computer calculations suggest that, in fact, G(2, 2e, s) = 1 for e ≥ 2 and s ≥ 3.



3. Motion Planning in Real Flag Manifolds 44

Theorem 3.17. For e ≥ 2 and s ≥ 3,

0 6=
(
z2e+1−1

2,1 z2e+1−1
2,2

)
·
(
z2e+1

3,1 z2e+3
3,2

)
·
(
z2e+1

4,1 z2e

4,2

)
· · ·
(
z2e+1
s,1 z2e

s,2

)
in H∗(F(1, 1, 2e))⊗s, consequently s(2e+1 + 1)− 1 ≤ TCs(F(1, 1, 2e)) ≤ s(2e+1 + 1).

Remark 3.9. Just as observed in Remark 3.8 in the case of Propositions 3.12 and 3.13, the

powers of the factors z2,j in the product element of Theorem 3.17 coincide with the relevant

powers of the product in Eq. 3.9 for k = 2. It is likely that such a phenomenon could shed

light on possible generalizations of Theorems 3.11 and 3.17.

Remark 3.10. Theorem 3.17 fails for e = 1, as z4
3,2 = x4

1,2 + x4
3,2, which vanishes in

H∗(F(1, 1, 2))⊗s in view of Eq. 3.7.

Proof. [Proof of Theorem 3.17] As in previous proofs, we can safely assume s = 3. Further,

although we should not focus now on the top dimensional basis element of Eq. 3.20, the

needed verifications are similar to those in the proof of Proposition 3.13. Indeed, this time

we indicate how, for e ≥ 2, the basis element x2e

1,1x
2e

1,2 · x2e+1
2,1 x2e

2,2 · x2e+1
3,1 x2e

3,2 appears in the

expression of (z2e+1−1
2,1 z2e+1−1

2,2 ) · (z2e+1
3,1 z2e+3

3,2 ) in terms of the tensor basis in Eq. 3.19. The

hypothesis e ≥ 2 is used for the analysis of the mod-2 arithmetic of binomial coefficients.

That being said, the calculation details can easily be carried out by the diligent reader. As

a guide, we note that the three key steps are

z2e+1
3,1 z2e+3

3,2 ≡ x1,1x
2
1,2 + x3

1,2 ,

z2e+1−1
2,1 z2e+1−1

2,2 ≡ x2e−1
1,1 x2e−2

1,2 + x2e−2
1,1 x2e−1

1,2 ,

and the easy fact that (x1,1x
2
1,2 + x3

1,2) · (x2e−1
1,1 x2e−2

1,2 + x2e−2
1,1 x2e−1

1,2 ) = x2e

1,1x
2e

1,2. �

Remark 3.11. The results in this section suggest that purely cohomological methods could

be used to give, for positive integers i and k, an estimate of the higher topological complexity

of F(1k, 2e − k + i) giving G(k, 2e − k + i, s) < i provided e is sufficiently large. An inter-

esting additional restriction of the form k + i − 1 ≤ s, which would be compatible with the

corresponding restrictions in Theorems 3.11 and 3.17 (as well as with computer calculations

not shown here), might also be needed.



Chapter 4
Projective Product Coverings and Sequential

Motion Planning Algorithms in Real Projective

Spaces

4.1 The Projective Product Covering

A main goal in this thesis is to generalize a classic result from Farber, Yuzvinsky and Tabach-

nikov about the relationship between TC(RPn) and Imm(RPn). In section 2.5 we reviewed

the principal results of [15], in order to generalize the equality

TC(RPn) = Imm(RPn).

Which holds for n 6= 1, 3, 7.

The calculation of immersion dimension for RPn is an open problem; despite it is well

known in many cases no general formula is known to work for n.

In section 2.2 we defined higher topological complexity. Recall that for s ≥ 2 the s-th

higher topological complexity of a path connected space X (TCs(X)), is defined as the reduced

Schwarz genus of the fibration:

es = eXs : X [0,1] → Xs;

es(γ) =

(
γ

(
0

s− 1

)
, γ

(
1

s− 1

)
, . . . , γ

(
s− 1

s− 1

))
.
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Thus, TCs(X) + 1 is the smallest cardinality of open covers {Ui}i of Xs so that es admits

a continuous section σi on each Ui. The open sets Ui of such an open covering are called

s-local domains. Corresponding sections σi are said to be the s-local rules, and the resulting

family of pairs {(Ui, σi)} is called an s-motion planning algorithm for X. We say that such

a family is an optimal s-motion planning algorithm if it has TCs(X) + 1 s-local domains.

If we have s-states in a robot with configuration space X, we may think that TCs(X)

gives instructions to do s-actions at same time, that is, if we have A1, · · · , As states from a

robot and the previous {(Ui, σi)}, then the algorithm sets as follows (Algorithm 3).

Algorithm 3: Higher Motion Planning Algorithm

Data: si, Ui for any i = 1, . . . , k
Result: si(A1, · · · , As)
begin

(A1, · · · , As)←− chosen ;
i←− smallest s.t. (A1, · · · , As) ∈ Ui;

end
return si(A1, · · · , As)

These ideas generalize the concept of topological complexity, introduced by Farber in [12],

as a model to study the continuity instabilities in the motion planning of an autonomous

systems (robots), whose space of configurations is X. The term higher arises by considering

the base space Xs of es as a serial of prescribed stages in the robot motion planning, while

Farber’s original case s = 2, deals only with the space X ×X of initial-final stages.

Remark 4.1. As we saw in the considerations following Definition 2.4, TCs(X) can equiv-

alently be defined as the genus of the evaluation map XΓs → Xs, γ 7→ (γ(v1), . . . , γ(vs)),

where Γs is (the underlying topological space of) a given connected graph, and v1, . . . , vs are s

distinct vertices of Γs. In the final section of this chapter, it will be convenient to take Γs to

be the graph with exactly s vertices v1, v2, . . . vs, and s− 1 edges (v1, vs), (v2, vs), . . . (vs−1, vs)

depicted as follows:

PP
PP

PP
PP

PP

XXX
XXX

XXX
X

• vs•v1

•vs−2

•
.
..

vs−1

Most of the existing methods to estimate the higher topological complexity of a space,

are cohomological in nature. One of the most successful such methods is a special case of

Proposition 4.1 below, which is easily proved on the lines of [32, Theorem 4 in page 73].
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Proposition 4.1. Let h∗ be a generalized cohomology theory with products. The sectional

category of a fibration π : E → B is no less than the cup length of elements in the kernel of

π∗ : h∗(B)→ h∗(E).

Here cup-length refers to the maximal number of elements in the indicated ideal having a

non-vanishing product. Later in this chapter, we will apply Proposition 4.1 to the (Z2)s−1-

covering space πs in (1.1). The covering space is explicitly defined and studied in this section.

Let the group (Z2)s−1, with obvious generators σi (1 ≤ i ≤ s− 1), act on (Sm)×s so that

σi · (x1, . . . , xs) = (x1, . . . , xi−1,−xi, xi+1, . . . , xs). (4.1)

Let Pms be the quotient of (Sm)×s by the involution δ · (x1, . . . , xs) = (−x1, . . . ,−xs). It is

elementary to check that the induced (Z2)s−1-action on Pms is principal and has orbit space

(RPm)×s. This defines the (Z2)s−1-principal bundle πs.

For a path γ in RPm, pick a lifting γ̃ through the projection Sm → RPm, and note that

the class of (
γ̃

(
0

s− 1

)
, γ̃

(
1

s− 1

)
, . . . , γ̃

(
s− 1

s− 1

))
in Pms does not depend on the chosen lifting γ̃. We get a map (RPm)[0,1] → Pms fitting in

the commutative diagram

(RPm)[0,1] //

es &&

Pms

πszz
(RPm)×s,

(4.2)

which readily yields (1.1).

The homotopy nature of πs is described through its classifying map as:

Proposition 4.2. For 1 ≤ i ≤ s let pi : (RPm)×s → RPm be the i-th projection, ξm → RPm

be the Hopf bundle over RPm, and µs : (RPm)×s → (RP∞)×(s−1) classify πs. Then, for

1 ≤ i ≤ s− 1, the i-th component µi,s of µs classifies p∗i (ξm)⊗ p∗s(ξm).

The conclusion of Proposition 4.2 can of course be stated by saying that µi,s is homotopic

to the composition of the projection pi,s : (RPm)×s → RPm×RPm onto the (i, s) coordinates,

the inclusion RPm×RPm ↪→ RP∞×RP∞, and the Hopf multiplication µ : RP∞×RP∞ →
RP∞.
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Proof. [Proof of Proposition 4.2] Recall δ stands for the involution

(x1, . . . , xs) 7→ (−x1, . . . ,−xs)

in (Sm)×s so, by definition, the corresponding orbit space is Pms . The total space Zi of the

Z2-principal bundle classified by the i-th component µi,s is the quotient of (Sm)×s by the

actions of δ and of those σ` (1 ≤ ` ≤ s − 1) with ` 6= i, and where the Z2-principal action

on Zi is induced by change of signs on the i-th coordinate. Let λi,j → RPm stand for the

restriction to the j-th axis of the latter double covering (axes are taken with respect to the

base point in RPm given by the class of 1 := (1, 0, . . . , 0) ∈ Sm).

Case j = s: Note that a class in λi,s has a unique representative of the form (1, . . . , 1, xs)

and, in these terms, the Z2-principal action on λi,s is given by

[
(1, . . . , 1, xs)

]
7→
[
(1, . . . , 1,

i

−1, 1, . . . , 1, xs)

]
=

[
(−1, . . . ,−1,

i

1,−1, . . . ,−1,−xs)
]

=

[
(1, . . . , 1,

i

1, 1, . . . , 1,−xs)
]
,

where the notation
b

a indicates that the number a appears in the b -th coordinate of the

s-tuple. Consequently, λi,s → RPm is homeomorphic to the Hopf projection Sm → RPm.

Case j = i: As above, a class in λi,i has a unique representative of the form

(1, . . . , 1,
i

xi, 1, . . . , 1)

and, now, the Z2-principal action on λi,i is antipodal on xi on the nose. Thus λi,i → RPm is

also homeomorphic to the Hopf projection Sm → RPm.

Case j 6∈ {i, s}: Classes in λi,j are represented by elements

(±1, . . . ,±1,
j

xj,±1, . . . ,±1,
i

±1,±1, . . . ,±1)

where, to fix ideas, we have assumed j < i < s —the case i < j < s works just as well.

Dividing out first by the action of δ and of the σ` with ` 6∈ {i, j} (and then by the action

of σj), we see that λi,j is given as the quotient of Sm × Z2 by the antipodal action on the

first coordinate and with Z2-principal action coming from the antipodal action on the second

coordinate. In other words, λi,j → RPm is the trivial Z2-bundle.

The conclusion follows. �
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4.2 Motion Planning Algorithms through Equivariant

Maps

Recall that the (k + 1)-iterated self join-power of a topological space X, Jk(X), is defined

inductively by Jk(X) := Jk−1(X) ∗ X (k ≥ 1) where J0(X) = X. Then, for a topological

group G, BkG := Jk(G)/G is the k-th stage in Milnor’s construction of the classifying space

BG := J∞(G)/G, where G acts diagonally on the vertices of J∞(G) :=
⋃
k≥0 Jk(G) —so

barycentric coordinates are preserved.

In what follows Gs stands for the (discrete) group (Z2)×(s−1). By [32, Theorem 9 in page

86], the classifying homotopy class µs in Proposition 4.2 has a representative factoring in the

form

(RPm)×s
βs−→ Bsecat(πs)(Gs) ↪→ B(Gs) ' (RP∞)×(s−1), (4.3)

where βs is covered by a Gs-equivariant map αs : Pms → Jsecat(πs)(Gs). Then, in terms of the

Gs-action defined in Eq.4.1, the composition of the canonical projection (Sm)×s → Pms with

αs yields a Gs-equivariant map φs : (Sm)×s → Jsecat(πs)(Gs) satisfying the condition

φs(x1, . . . , xs−1,−xs) = σ1 · · ·σs−1 ·φs(x1, . . . , xs−1, xs), for all (x1, · · · , xs) ∈ (Sm)×s. (4.4)

Conjecture 4.1. An s-motion planning algorithm for RPm with secat(πs) + 1 s-local rules

can be constructed out of a map φs as above. Consequently secat(πs) ≥ TCs(RPm), and

Eq. 1.1 becomes an equality for any s ≥ 2.

The conjecture is motivated in part by (the proof of) Proposition 2.25, which asserts that

the case s = 2 of Conjecture 4.1 holds true —see Proposition 4.4 and Remark 4.3 below.

Corollary 4.9 in the next section is meant to gather further evidence for the plausibility of

Conjecture 4.1.

Remark 4.2. One of our main interests in Conjecture 4.1 is the possibility of obtaining upper

bounds for TCs(RPm) from the construction of Gs-equivariant maps φs : (Sm)×s → Jk(Gs)

satisfying Eq. 4.4. Indeed, such a map covers a map βs as in Eq. 4.3, so that [32, Theorem 9

in page 86] implies k ≥ secat(πs), and so k ≥ TCs(RPm) if Conjecture 4.1 were to hold.

Given spaces X and Y , consider the open subspace U ⊂ X∗Y consisting of the barycentric

expressions t0x+ t1y with (x ∈ X, y ∈ Y , 0 ≤ ti, t0 + t1 = 1, and) t1 > 0. Observe that, if Y

is discrete, U is a topological disjoint union of open cones with base X (the cones are open
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in the sense that they are missing their base). In such terms, the following auxiliary result

becomes self-evident.

Lemma 4.3. For k ≥ 0, s ≥ 2, and 0 ≤ j ≤ k, consider the open set Uj ⊂ Jk(Gs) consisting

of the barycentric expressions
∑k

`=0 t`g` with tj > 0 (here, as usual, g` ∈ Gs, t` ≥ 0, and∑
t` = 1). Then Uj is closed under the action of Gs, and has 2s−1 connected components,

each of which is open in Uj and contractible (in itself). Further, the induced Gs-action on

the set of connected components of Uj has a single orbit.

Proposition 4.4. Let Ds = {(x1, . . . , xs) ∈ (Sm)×s : xi = xs for some i ∈ {1, . . . , s −
1}}. The conclusions in Conjecture 4.1 hold true if one starts with a Gs-equivariant map

φs : (Sm)×s → Jsecat(πs)(Gs) satisfying Eq. 4.4 together with one of the following conditions:

1. For every j ∈ {0, 1, . . . , secat(πs)}, φs(Ds) intersects at most a single component of Uj.

2. For some j0 ∈ {0, 1, . . . , secat(πs)}, φs(Ds) is fully contained in some component of

Uj0.

Remark 4.3. The easy fact that, for s = 2, there exist maps φ2 as that assumed in Proposi-

tion 4.4 was first noted in [15, Lemmas 5.3 and 5.7]. Explicitly, it is standard that the case

m = 1, 3, 7 can be accounted by using the multiplication in the complex, quaternion, and octo-

nion numbers, respectively. For m 6= 1, 3, 7, since the diagonal inclusion RPm ↪→ RPm×RPm

is a cofibration, any axial map α : RPm×RPm → RPsecat(π2), being nullhomotopic on the di-

agonal1, is homotopic to a map α′ : RPm×RPm → RPsecat(π2) which is (necessarily axial and)

actually constant on the diagonal. Then any map φ2 : Sm × Sm → Jsecat(π2)(Z2) = Ssecat(π2)

covering α′ is a fortiori constant on the diagonal. In particular, such maps φ2 satisfy both

conditions (1) and (2) in Proposition 4.4 for, obviously, the singleton φ2(D2) is fully con-

tained in some component of each Uj satisfying φ2(D2) ∩ Uj 6= ∅.

Proof. [Proof of Proposition 4.4] For 0 ≤ j ≤ secat(πs), set Vj = φ−1
s (Uj) ⊆ (Sm)×s, and

Wj = q(Vj) ⊆ (RPm)×s where q stands for the composition (Sm)×s → Pms → (RPm)s of

canonical projections. Note that the equality

Vj = q−1(Wj) (4.5)

1This uses the fact that secat(π2) > m, which in turn comes from the assumption m 6= 1, 3, 7 (compare
to Remark 4.4).
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holds since Vj is closed under the action of δ and of the σ` with 1 ≤ ` ≤ s − 1 (as the

Gs-equivariant map φs satisfies Eq. 4.4). Further, the sets W0, . . . ,Wsecat(πs) form an open

cover of (RPm)×s.

If condition (1) in the statement of the Proposition holds, we complete the proof by

constructing local sections ςj : Wj → (RPm)Γs (0 ≤ j ≤ secat(πs)) for the evaluation

map (RPm)Γs → (RPm)×s described at the end of Remark 4.1. Details follow. Fix j ∈
{0, 1, . . . , secat(πs)}. If φs(Ds) intersects Uj, let Uj,0 denote the component of Uj containing

φs(Ds) ∩ Uj; otherwise, choose any component Uj,0 of Uj. For (L1, . . . , Ls) ∈ Wj, the 2s

elements in q−1{(L1, . . . , Ls)} lie in Vj, in view of Eq. 4.5. Also, in view of Eq. 4.4 and the

final assertion in Lemma 4.3, exactly two elements in q−1(L1, . . . , Ls) have φs-image in Uj,0.

Indeed, if one of the latter elements is (x1, x2, . . . , xs), then the other is (−x1,−x2, . . . ,−xs).
Furthermore, in these conditions,

if Li = Ls for some 1 ≤ i < s, then in fact xi = xs, (4.6)

by construction (and in view of Lemma 4.3). Then ςj(L1, . . . , Ls) : Γs → RPm is defined

to be the map whose restriction to the (oriented) edge (vi, vs) describes the uniform-speed

motion in RPm from Li to Ls obtained by rotating Li toward Ls along the plane generated

by these two lines (no motion if Li = Ls), and in such a way that the corresponding rotation

from xi to xs is performed through an angle smaller than 180 degrees. As shown in the

picture below, the latter requirement holds independently of whether one uses (x1, . . . , xs) or

(−x1, . . . ,−xs), so that ςj(L1, . . . , Ls) is well defined.

�
�
�
�
�

�
�
�
�
�

• •

••

xi

−xixs

−xs

R

K

The resulting function ςj is clearly a section on Wj for the evaluation map (RPm)Γs →
(RPm)s. Lastly, the continuity of ςj follows from Eq. 4.6, and from the facts that Uj,0 is open,

that φs is continuous, and that q is a covering projection.

A minor modification of the above construction is needed in order to complete the proof

when condition (2) in the statement of the Proposition holds. Indeed, in the notation above,

the problematic q(Ds) is contained in W ′
j0

:= Wj0 , while condition (2) assures that the



4. Projective Product Spaces & Sequential Motion Planning 52

construction above yields the needed local section ζ ′j0 = ζj0 : W ′
j0
→ (RPm)Γs . For all other

j 6= j0 we set W ′
j := Wj − q(Ds) (so that the sets W ′

i with 0 ≤ i ≤ secat(πs) cover (RPm)×s),

which (is open and) vacuously avoids the possibility of the failure of Eq. 4.6, thus yielding

an obviously continuous local section ζ ′j : W ′
j → (RPm)Γs . �

Regarding a potential proof of Conjecture 4.1, it is possible that, for general s ≥ 2,

Proposition 4.2 would have to play a key role in proving the existence of a map φs as the one

assumed in Proposition 4.4. However, the problem seems to be much more subtle for s ≥ 3

than the rather straightforward instance s = 2. We close this section by pinpointing some

of the intricacies that are inherent to a potential proof of Conjecture 4.1 via Proposition 4.2

when s ≥ 3, and how this leads to a couple of interesting new challenges in the field (which

we hope to address elsewhere).

Remark 4.4. We start by discussing the relevance of the inequality

secat(πs : Pms → (RPm)×s) ≥ (s− 1)m, (4.7)

with strict inequality if m + 1 is not a power of 2 (obtained in Eq.4.8 and Remark 4.6

below) in a potential proof of Conjecture 4.1. Recall that the isomorphism class of the

Gs-principal bundle πs has been described in Proposition 4.2 via the homotopy type of its

classifying map µs : (RPm)s → (RP∞)×(s−1). Of course, the homotopy type of any map

βs : (RPm)s → Bsecat(πs)(Gs) fitting in the factorization Eq.4.3 does not have to be deter-

mined by that of µs. Nonetheless, as noted in Remark 4.3, a key fact in the proof of the s = 2

case of Conjecture 4.1 is that any such β2 remains being null homotopic on the diagonal when

m 6= 1, 3, 7, as secat(π2) > m for those values of m. (As explained in [15, Lemma 5.4], the

latter inequality turns out to be closely related to Adams’ solution of the Hopf invariant 1

problem.) Now, for s ≥ 3, the diagonal is replaced by the “pivoted” diagonal q(Ds) used at

the end of the proof of Proposition 4.4. Then, in order to understand the homotopy properties

of the restricted βs|Ds from the corresponding properties of the restricted µs|Ds (as in the case

s = 2), we would need to know that dim(Ds) is strictly smaller than the connectivity of the

inclusion Bsecat(πs)(Gs) ↪→ B∞(Gs) ' (RP∞)×(s−1). Such a condition is assured by Eq.4.7 if

m + 1 is not a power of 2, as the latter map is a secat(πs)-equivalence (its homotopy fiber

agrees with that for the (obviously) secat(πs)-equivalence Jsecat(πs) → ∗), while Ds is a union

of subcomplexes of (RPm)×s each homeomorphic to (RPm)×(s−1), so that dim(Ds) = (s−1)m.

Consequently, the first task to deal with in a proof of Conjecture 4.1 based on Proposition 4.4

is to decide whether Eq.4.7 can be improved to a strict inequality when m + 1 is a power
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of 2. As indicated in Example 4.1 below, Eq.4.7 is in fact an equality for m = 1, 3, 7, in

which case Eq.1.1 is an equality too. Thus, the real initial task is to decide whether Eq.4.7

actually improves to a strict inequality for m = 2e− 1 with e ≥ 4 —just as in the case s = 2.

A particularly interesting feature of such a challenge is to understand how a potential strict

inequality in Eq.4.7 would fit within (a possibly generalized form of) the Hopf invariant 1

problem.

Remark 4.5. In addition to the considerations in Remark 4.4, it should be noted that, unlike

the situation for s = 2, no map βs as above can be nullhomotopic on Ds when s ≥ 3 for,

in fact, µs evidently fails to be nullhomotopic on Ds. Consequently, unlike the situation for

s = 2 discussed in Remark 4.3, the issue of being able to “fix” a Gs-equivariant map φs as

in Eq.4.4 so to satisfy at least one of the two conditions in Proposition 4.4 requires handling

non-trivial homotopy information.

4.3 Cohomology Estimates

This section is devoted to estimating the sharpness of Eq.1.1 by means of cohomological

methods. In particular, we show equality for all even m when s is large enough. Explicitly,

an application of Proposition 4.1 to es, which is a fibrational replacement for the diagonal

∆s : X ↪→ X×s, yields the lower bound

TCs(X) ≥ zclh
∗

s (X),

where zclh
∗

s (X) is the h∗-cup-length of s-th zero-divisors in X, i.e. of elements in the kernel

of the induced map ∆∗s : h∗(X×s) → h∗(X) (see [2, Definition 3.8]). In this section we

show that, when X := RPm and h∗ := H∗ is singular cohomology with mod 2 coefficients,

zcls(RPm) := zclH
∗

s (RPm) is in fact a lower bound for the right hand-side in (1.1), which,

for m odd and s large enough, agrees with the well known upper bound sm ≥ TCs(RPm)

coming from [2, Theorem 3.9].

Recall that H∗((RPm)×s) = H∗(RPm)⊗s is the Z2-algebra generated by the classes xi =

p∗i (x) subject to the relations xm+1
i = 0, 1 ≤ i ≤ s, where x ∈ H1(RPm) is the first Stiefel-

Whitney class of ξm, and pi is defined in Proposition 4.2. We do not stress the dependence

of xi on s because, if s′ > s and πs,s′ : (RPm)×s
′ → (RPm)×s is the projection onto the first s

coordinates, then we think of the map induced in cohomology by πs,s′ as a honest inclusion.

The standard (graded) basis of H∗((RPm)×s) consists of all the monomials xa11 x
a2
2 · · ·xass with
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0 ≤ ai ≤ m . Note that each xi + xs (1 ≤ i ≤ s − 1) is an s-th zero-divisor, so it pulls back

trivially under the evaluation map e∗s. In fact:

Proposition 4.5. For 1 ≤ i ≤ s − 1, xi + xs pulls back trivially under the map πs on the

right of Eq.4.2.

Proof. The projection (Sm)×s → Sm × Sm onto the (i, s) axes induces a map from πs to π2

lying over pi,s. The conclusion then follows since x⊗ 1 + 1⊗ x ∈ H1(RPm×RPm), the mod

2 Euler class of the exterior product ξm ⊗ ξm, vanishes under π2, which is the sphere bundle

of ξm ⊗ ξm. �

Lemma 4.6. The ideal of s-th zero-divisors in H∗(RPm)⊗s is generated by the elements

xi + xs in Proposition 4.5.

Proof. Let
∑

(a1,...,as)
xa11 · · ·xass be the expression of an homogeneous s-th zero-divisor z in

terms of the standard basis. Note that the number of summands must be even if deg(z) ≤ m.

Thus, it suffices to prove that the following elements lie in the ideal Is generated by the

binomials xi + xs:

(1) The sum of any two basis elements in degree at most m.

(2) A basis element in degree greater than m.

Elements in (1) are easily dealt with by induction on the degree and on the number of

common factors. For instance

x1x2 + x3x4 = (x1x2 + x2x3) + (x2x3 + x3x4) = x2(x1 + x3) + x3(x2 + x4).

Elements in (2) are dealt with also by an inductive argument based on the fact that, for

i < j,

xaii x
ai+1

i+1 · · ·x
aj
j = (xi + xj) · xai−1

i x
ai+1

i+1 · · · x
aj
j + xai−1

i x
ai+1

i+1 · · ·x
aj−1

j−1 x
aj+1
j

≡ xai−1
i x

ai+1

i+1 · · ·x
aj−1

j−1 x
aj+1
j ,

where the congruence holds module Is. �

Thus (1.1) extends to

sm ≥ TCs(RPm) ≥ secat(πs) ≥ zcls(RPm). (4.8)
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Set G(m, s) = sm− zcls(RPm), so equality holds in (1.1) whenever G(m, s) = 0.

Lemma 4.7. G(m, 2) ≥ G(m, 3) ≥ G(m, 4) ≥ · · · ≥ 0.

Proof. Thinking in terms of the expression of elements as sums of the standard basis of

H∗(RPm)⊗s, we see that if z ∈ H∗((RPm)×s) is a non-zero product of s-th zero-divisors, then

z · (x1 + xs+1)m = z · (xms+1 + · · · ) 6= 0.

So, zcls+1(RPm) ≥ zcls(RPm) +m and the result follows. �

Remark 4.6. It is elementary to check that zcl2(RPm) = 2z(m)−1, where z(m) is the integral

part of log2(2m) (c.f. [15, Theorem 4.5]). The last line in the previous proof then implies

zcls(RPm) ≥ (s − 1)m with strict inequality if m + 1 is not a power of 2. The proof of

Theorem 4.8 below is based on a streamlined version of the previous inequality.

The monotonic sequence of non-negative integers in Lemma 4.7 stabilizes, and we denote

by G(m) the corresponding stable value.

Theorem 4.8. Assume m ≡ 2e − 1 mod 2e+1 with e ≥ 0. In other words, e is the length of

the block of consecutive ones ending the binary expansion of m. For instance, e = 0 if and

only if m is even. Then G(m) ≤ 2e − 1 with equality if m is even, or if m = 2e − 1. In fact,

G(m, s) ≤ 2e − 1 for s ≥ max{(m + 1)/2e, 2}. Specifically, if m > 2e − 1 and σ stands for

(m+ 1)/2e (so σ is an integer greater than 2), then the product of σ-th zero-divisors

(x1 + xσ)m+2e · · · (xσ−1 + xσ)m+2e ∈ H∗((RPm)σ)

is non-zero.

Conjecture 4.2. In Theorem 4.8, the equality2 G(m) = 2e − 1 holds without restriction on

e.

Example 4.1. For e ≥ 1 and s ≥ 2,

0 6= x2e−1
1 x2e−1

2 · · ·x2e−1
s−1 + · · ·

= (x1 + xs)
2e−1(x2 + xs)

2e−1 · · · (xs−1 + xs)
2e−1

∈ H∗((RP2e−1)×s),

2Conjecture 4.2 has recently been proved in [4, Theorem 3.3].



4. Projective Product Spaces & Sequential Motion Planning 56

which yields G(2e − 1, s) ≤ 2e − 1. The latter inequality is in fact an equality in view of

Lemma 4.6 and the fact that the 2e-th power of any element in H∗((RP2e−1)⊗s) vanishes. In

the case of the three Hopf spaces RP1, RP3, and RP7, the TCs(RPm)-contents of the assertion

G(2e − 1, s) = 2e − 1 is strengthened by [28, Theorem 1]: TCs(RPm) = m(s − 1) for all s

and m ∈ {1, 3, 7}. Thus, for all s ≥ 2 and m ∈ {1, 3, 7}, the last three terms in Eq. 4.8 are

all equal to m(s− 1).

Proof. [Proof of Theorem 4.8] The case m = 2e − 1 is accounted for in Example 4.1, so we

assume m > 2e − 1. The hypothesis on m and e implies that the binomial coefficient
(
m+2e

2e

)
is odd, so

(xi + xσ)m+2e = xmi x
2e

σ + terms involving powers xji with j < m

for 2 ≤ i ≤ σ. Therefore, ignoring basis elements xa11 · · ·xaσσ having ai < m for some

i ∈ {1, . . . , σ − 1}, the product of σ-th zero-divisors under consideration becomes

(xm1 x
2e

σ )(xm2 x
2e

σ ) · · · (xmσ−1x
2e

σ ) = xm1 x
m
2 · · · xmσ−1x

(σ−1)2e

σ ,

which is an element of the standard basis. �

Corollary 4.9 below, a direct consequence of Theorem 4.8, should be compared with the

final assertion in Example 4.1.

Corollary 4.9. If m is even and s > m, all inequalities in Eq. 4.8 are in fact equalities.

The hypothesis s > m can substantially be relaxed in many cases. For instance, [17,

Theorem 1.2] implies that the conclusion in Corollary 4.9 remains true for all s ≥ 3 if m is a

2-power. Other concrete instances follow from Propositions 4.2, 4.7 and 4.9–4.12 in [4].

4.4 Examples with TCs(RPm) = secat(πs : Pms → (RPm)×s)

In this brief closing section we summarize our knowledge of examples where Eq. 1.1 is either

an equality, or holds within one from being so. On the other hand, we are not aware of any

case where Eq. 1.1 actually fails to be an equality.

Since TCs(RP1) = s−1 ([2, Corollary 3.12]), Equations 4.7 and 4.8 force Eq. 1.1 to be an

equality for m = 1. In slightly more general terms, and as indicated in Example 4.1, equality

in Eq. 1.1 holds for m ∈ {1, 3, 7}. It would be interesting to give an explicit construction of

the corresponding (forced) Gs-maps φs : (Sm)×s → Js−1(Gs) satisfying Eq. 4.4. For instance,
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when s = 2 and m = 1, so that Js−1(Gs) = S1, the required map φ2 can be defined by

multiplication of complex numbers.

In the previous section we have discussed how Theorem 4.8 provides instances with equal-

ity in Eq. 1.1 when m is even. We now remark that the same arguments show that, in any

case, Eq. 1.1 fails from being an equality by at most a unit provided m ≡ 1 mod 4 and

s ≥ m+1
2

(as in the case of m even, the restriction imposed by the last inequality can usually

be relax substantially).
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Conclusions

Our main contributions in this thesis lie in two branches of topological complexity. The first

one is on the calculation of TCs(F(1k,m)), where we found nice bounds for case s = 2, and

we determine explicitly the value of TCs for some suitable cases for k and m (Theorems 3.8

and 3.11, Chapter 3). For those results we developed a good presentation of the cohomol-

ogy H∗(F(1k,m);Z2) as a polynomial ring with relations, which are both simple and easily

implementable on a computer. Additionally, we saw that when the value of s increases, a

stabilization phenomena holds, at least in case of flag manifolds, so it would be interesting

to find more examples for that stabilization. At this point, we only use the cohomology

mod -2 in our calculations, then it may be possible to use other theories of generalized co-

homology (others coefficients, K-theory, cobordism, etc.), and try to improve the bounds on

TCs(F(1k,m)), where the calculation of zcl
′
s can be done in those cohomologies.

On the other hand, we study the equality TCs(F(1k,m)) = Imm(RPm) when s = 2

and k = 1 in order to give a (partial) generalization. The classical result (s = 2, k = 1)

is due to Farber-Tabachnikov-Yuzvinsky, and it gives us other point of view on the prob-

lem of immersion of projective spaces. Here, we found some evidence to conjecture that

TCs(F (1,m)) equals secat(πs), where πs generalizes π : Sm ×Z2 S
m → RPm×RPm (of

course, the case s = 2 is worked out by FTY). Our first clue in this direction comes from

proving that it is possible to construct as many as secat(πs)+1, s-local rules provided there is

a Gs-equivariant map φs, satisfying Eq. 4.4 together with an additional geometric condition

described in 4.4. Other clue is Inequality 4.8, which says that in many cases it can be proved

that G(m, s) = sm − zcl(RPm) = 0, for several combinations of parameters, what makes

the conjecture true. Recently Don Davis gave an explicit expression for G(m, s), by using

explicit calculations based in 2-local cobordism. However it is still an open problem to find

G(m, s), which could be accomplished by using others theories of generalized cohomology as

the case TCs(F(1k,m)). In both cases there are elements to be developed at greater depth.

Finally, it is worth mentioning another branch of research that can be explored, namely

59
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the application of results on new concepts in topological complexity such as equivariant

versions of TC.
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