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GLOSSARY 

 

Consumption set 

Formally, the consumption set is a subset of the commodity space ,L
  denoted by 

,LX ⊂  whose elements are the consumption bundles that the individual can conceivably 

consume given the physical constraints imposed by his environment.  

 

Decision rule 

It is a specification of a procedure, which can be used to identify the best alternative in a 

any problem. For instance, return maximin rule establishes that the best alternative is one 

whose worst possible consequence is better than the worst possible consequence arising 

from any other alternative. 

 

Discount 

It is the value of each payment brought to present value trough an interest rate (mostly, a 

risk free rate). 

 

Distribution function  

The distribution function of a random variable X ⊂Ω  is the function ( ) { }XF x P X x= ≤  

defined for every x∈Ω . 

 

Expectation of a random variable 

A random variable X : Ω   is said integrable if  X d P


 < . Then E( ) =X Xd P
  

exists and it is called the expectation of X. 

 

Expected utility maximization problem 

It is the problem that faces the consumer (or a central planner) to choose the optimal 

consumption path. 
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Heterogeneous preferences 

Given a population, individuals are different among them by their preferences in tastes, 

risks, endowments, and so on. 

 

Homogeneous preferences 

Given a population, all individuals are exactly the same. 

 

Independence of a random variable 

Generally speaking, a family, finite or infinite, of random variables is said independent if 

any finite number of random variables of this family is independent. 

 

Optimal control theory 

This theory is complementary to the dynamic optimization problems, integrating variational 

calculus theory and the optimality principle to the Bellman equation. 

 

Optimal path 

When solving the expected utility maximization problem the solution, in terms of the 

parameters of the utility, usually consumption, is called optimal path. 

 

Present value 

This concept is used to referring for a careful deliberation preceding a decision making. 

Specifically, it concerns qualitative aspects of this decision. 

 

Random variable 

If X ⊂Ω  and (Ω, , P) is a probability space, then X is a random variable. 

 

Resource allocation 

It is the process of dividing available limited resources between different flows of the 

economy, such as consumption, capital, etc.  
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Risk 

This term means that further consequences of a given decision are unpredictable. 

 

Risk aversion 

It is a particular attitude of the consumer when facing uncertainty. He adopts this behavior 

to reduce the effects of that uncertainty. 

 

Risk free rate 

The rate without uncertainty is called a risk free rate. 

 

Subjective discount rate 

It is a measure of the anxiety for present and future consumption.  

 

Utility function 

A utility function :u X → represents the preference relation   if, for every ,x y X∈ , 

( ) ( ).x y u x u y⇔ ≥  

 
Welfare function 

It is the value of the objective function when substituting the variables involved in the 

maximization problem. 
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RESUMEN 
 
 

Esta tesis considera varios modelos donde una economía es poblada por individuos 

heterogéneos. La heterogeneidad se origina por dos variables aleatorias: la tasa subjetiva de 

descuenta y la tasa de aversión al riesgo. Esto es, los consumidores difieren en su nivel de 

ansiedad por el consumo presente y por su conducta frente al riesgo. La función de utilidad 

en todos los modelos es del tipo exponencial negativo. Se estudian los modelos sin 

variables aleatorias, modelos con una sola de estas variables aleatorias y modelos con 

distribución conjunta. La finalidad de esta investigación es proveer las diferentes 

trayectorias del consumo óptimo para cada modelo propuesto mediante una fórmula cerrada 

para dos planteamientos diferentes respecto al tiempo: horizonte a tiempo infinito y finito. 

Finalmente, se realizan algunos experimentos de estática comparativa. 
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ABSTRACT 
 
 

This thesis considers several models where an economy is populated by heterogeneous 

individuals. Heterogeneity is caused by two random variables: the subjective discount rate 

and the risk aversion rate. That is, consumers differ in their level of anxiety for present 

consumption and their behavior towards risk. The utility index is of the negative 

exponential type. Models without random variables, models with one of these random 

variables and models with join distribution are studied. The purpose of this research is to 

provide optimal consumptions paths for each model proposed using a closed formula for 

two different approaches over time: infinite and finite time horizon. Finally, some 

comparative statics experiments are carried out. 
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INTRODUCTION 

 

The subjective discount rate (or discount subjective factor) is a concept used frequently in 

the literature regarding the utility maximization problem of a rational agent to discount the 

satisfaction to bring to present value. This concept closely related to intertemporal choice 

has its origins in economists like John Rae (1834) by introducing psychological factors to 

explain the differences between the wealth of nations, see, eg, Frederick et al. (2002). Of 

course, the concept in its early years did not have a mathematical representation as it is 

known today through an exponential factor (in the continuous time case) with a rate that 

discounts all the time. Also, the same Frank P. Ramsey (1928) does not use a discount 

factor exponential or otherwise functional approach for the intertemporal decision problem. 

However, Adam Smith (1764) assumes in his research that the wealth of nations is due to 

the amount of work assigned to the production of capital. Rae noted in that explanation 

some drawbacks; in particular, Smith does not specify what the determinants for this 

assignment are. Rae's response, like that of von Böhm Bawerk (1889) of the Austrian 

school, proposed to be psychological factors on the desire for accumulation that determines 

the allowance, see Epstein and Hynes (1983). This implies that the designation of resources 

depends to some extent on subjective factors. 

Samuelson (1937) to take up the idea of the subjectivity in defining marginal utility 

proposes a model in which an individual maximizes the sum of all discounted future profits 

with respect to time, along with other assumptions. Moreover, Samuelson provides 

mathematical relationships that reflect the behavior of agents and introduces a discount 

parameter. He identifies a number of deficiencies in the model inherently has since 

discounted utility as would a certain amount of money, in spite of that, economists of the 

time accepted the proposal favorably for its ease of use and the advantages for 

mathematical calculations. Some empirical research that attempt to measure the level of 

impatience (or anxiety) of consumers for current consumption are in Booij and Van Praag, 

2003 and Epstein and Hynes, 1983. 

This thesis develops a model with an economy populated by heterogeneous agents. 

Heterogeneity refers to individuals with different preferences (or tastes) in two respects. 

First we assume that the parameter that represents the subjective discount rate is 
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exponentially distributed. Second parameter assumes the depth, i.e., the parameter in the 

utility function also has an exponential probability distribution, which is assumed negative 

exponential type. Therefore, consumers who populate the economy differ in their level of 

anxiety for present consumption and its utility function1

In other words, consumers have heterogeneous preferences. The heterogeneity has been 

studied from various angles, primarily in valuation of financial assets. Given the 

implausibility assuming that all asset returns are multivariate normal and a stochastic 

distribution of wealth among consumers Constantinides (1982) solves this problem by 

considering heterogeneous consumers, such that the proposed solution coincides in 

equilibrium with the central planner solution. Constantinides and Duffie (1996) reach 

equilibrium in an economy with heterogeneity in the form of uninsurable labor income 

shocks, persistent and heteroskedastic. 

. 

Chan and Kogan (2001) characterize the competitive equilibrium in an exchange economy 

in which individual agents have to update their preferences regarding the preferences of 

others, and differ only with respect to the curvature of their utility functions. For Judd et al 

(2003) heterogeneity is represented by a matrix in terms of the proportion of the wealth of 

individuals in different assets. In Basak’s model (2003) in addition to valuing the 

fundamental risk, the non fundamental risk is valued by the agent too, with a market price 

that represents a risk-tolerance weighted average of his extraneous disagreement with all 

remaining agents; in this case the heterogeneity is modeled through arbitrary utility 

functions. 

Luttmer and Marioti (2003) provide a convenient analytical approximation of continuous 

time and show how subjective rates of time preference affect risk-free rates but not 

instantaneous risk-return trade-offs. To Jouini and Napp (2007) the objective is to analyze 

the impact of heterogeneous beliefs in a complete competitive market economy, but 

standard otherwise. The construction of a consensus probability belief, and the consensus of 

consumers, is shown to be valid modulo an aggregation bias, which takes the form of a 

discount factor. This discount factor makes the heterogeneous beliefs setting fundamentally 

                                                 
1 Another paper dealing with different individuals, for example, age, disease, probability of survival or other 
factors are found in Li-Wei et al (2009). 
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different from the scenario of homogeneous beliefs, and is consistent with the interpretation 

of the heterogeneity of beliefs as a source of risk. 

Follmer et al (2005) presented a schema with switches in beliefs when individuals move 

from one period to another, heterogeneity is represented by a probability. On the other 

hand, the Lucas model of asset prices in an exchange economy is modified by Li (2007), 

who presents a new proposal, which is based on the modification of the homogeneous 

environment. In this model, all investors have logarithmic preferences and different 

subjective discount rates. This closed-form solution allows us to analyze the dynamics of 

stock prices and their volatility. 

Kuplow (2008) analyzes optimal policies when the preferences for commodities, public 

goods and externalities are heterogeneous; Shapiro (2008) studies the overvaluation of a 

risky asset in a framework with heterogeneous agents with non-rational expectations; Chen 

et al. (2008) consider heterogeneity in preferences over a local public good, human capital 

formation, and residential locations through an overlapping generation model; Fethke and 

Jagannathan (1996) examine the dynamics of consumption in a setting where imperfectly 

competitive producers face consumers with various intensities of rational habit persistence; 

Boswijk et al. (2007) estimate a dynamic asset pricing model characterized by 

heterogeneous bounded rational agents; Andersen (2007) analyzes an intertemporal general 

equilibrium model with heterogeneous labor markets; and Xiouros and Zapatero (2010) 

study economies populated with agents with heterogeneous risk aversion.  

This research focuses on the decision making process of the average consumer of an 

economy populated by individuals differing in their preferences. First, a finite horizon is 

analyzed. Later, the case of an infinite horizon is studied. Specifically, heterogeneity is 

introduced via a joint distribution function of the subjective discount rate and the risk 

aversion coefficient; both parameters being driven by the exponential distribution. We also 

suppose that individuals are endowed with a negative exponential utility function. This 

functional form is appropriate to be conjoined with the exponential density so that the 

discounted total utility of the average consumer can be analytically treated. One 

distinguishing feature of this research is that closed-form solutions for the optimal paths of 

consumption and capital, of the average consumer, are obtained in both frameworks. 

Furthermore, a closed form solution for the economic welfare of the average consumer is 
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derived for each case. Finally, several analytical and graphical experiments of comparative 

statics are accomplished. 
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CHAPTER 1. REVIEW OF PROBABILITY CONCEPTS 

 

Basic and fundamental concepts of probability theory are presented in this first chapter. To 

summarize topics are reviewed as probability, random variable, among others. These 

concepts are some of the foundations of the models developed through the thesis. Several 

references as Hernández-Lerma (2009), Shreve (2004), Chung (2001), Papoulis (1991), 

Billingsley (1986) and Boes et al (1974) were consulted to structure this review. 

 

1.1 Events and probability 

 

Let Ω be a nonempty set, and let  be a collection of subsets of Ω. Then, it is said that  is 

a -algebra provided that: 

(a) Ω  , 

(b) If A∈, then cA ∈, 

(c) If 1 2{ , , }A A   is a sequence of sets in , then nA ∈∪  . 

Condition (c) only applies to countable sequences, specifically to countable family of 

events, not to an arbitrary family of events .  Usually, the pair (Ω, ) is named as a 

measurable space because it is possible to define a measure over such set. If A is a set in , 

then it is said that A is -measurable. In probabilistic terms, Ω is the sample space, and 

every A   is called an event. The complement of Ω is named the empty set, ; condition 

(b) guarantees that    .  

 

Let  be a -algebra in Ω. A probability measure is a function P :   [0,1] such that: 

1) P(Ω) = 1; 

2) P(A)  0, A∈; 
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3) If ( )n nA   is a sequence of disjoint events (i.e. i jA A   for i  j, i,j  ) then it 

holds that P(
1 nn
A




 ) = 

1

( )n
n

P A



 . 

Incorporating P to a measurable space, as defined earlier, gives as a result a probability 

space, (Ω, , P). 

 

1.2 Random variables 

 

Let  be a -algebra in Ω, a function X : Ω   is said to be -measurable if {X  B}   

for every Borel set B  (), such that () represents the Borel -algebra, i.e., the -

algebra of the open sets of . If (Ω, , P) is a probability space, then X is a random 

variable. A -algebra generated by a random variable X, (X), consists of all the sets of the 

form {X  B}, where B is a Borel set in . Every random variable, X : Ω  , leads to a 

probability measure,  (B) B ,XP P X   in  defined over the -algebra of the Borel sets 

B  (). PX is called the distribution of X. The function FX :   [0,1] defined for 

F ( ) { }X x P X x   is called the distribution function of X.  

 

It is standard in probability theory to call a function a f :    as a Borel function if the 

inverse image 1(B)f   of any Borel set in  is also a Borel set. If there exists a Borel 

function fX :    such that for any Borel set B  ,  

B
{ B}= ( ) ,XP X f x dx   
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then X is a random variable with absolutely continuous distribution and fX is called the 

density of X. If there exists a sequence, finite or infinite, of distinct real numbers 1 2, ,x x   

such that for any Borel set B  , 

B

{ B} = { },
i

i
x

P X P X x


   

then X has discrete distribution with values 1 2, ,x x   and mass P{X = xi} in  .ix  

 

The joint distribution of several random variables 1, , nX X  is a probability measure 

1
 in 

n

n
X XP


  such that 
1 1(B) = {( )  B}

nX X nP P X X 


  for any Borel set B in n. If there 

exists a function 
1

 : 
n

n
X Xf


   such that 

11 1 1B
{( )  B}  ( )

nn X X n nP X X f X X d x d x   

    

for every Borel set in n, then 
1 nX Xf


 is called the joint density of 1, , .nX X  

 

A random variable X : Ω   is said integrable if  X d P


 < . Then E( ) =X Xd P
  

exists and it is called the expectation of X. In real analysis, a family of integrable random 

variables is denoted by L1 or, when ambiguity is possible, by L1 (Ω, , P). A random 

variable X : Ω   is called square integrable if 2 P .X d


 <  The variance of X can be 

defined as follows: 2Var( ) = ( E( )) P.X X X d


  The family of square integrable random 

variables is denoted by L2 or, when ambiguity is possible, by L2 (Ω, , P). 

 

1.3 Conditional probability and independence 

 

For any events A, B   such that P(B)  0 the conditional probability of A given B is 

defined by ( )( | B) = 
( )

P A BP A
P B
 . Two events A, B   are named independent if 
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( ) = ( ) ( )P A B P A P B  . In general, it is said that n events 1 2, , ,  i i ikA A A  are 

independents if 

1 2 1 2( )= ( ) ( ) ( )i i i k i i i kP A A A P A P A P A     

for any indexes 1 i1 <i2 < … < ik n. Two random variables X y Y are independents if for 

every Borel sets A, B  () the events {X  A} and {Y  B} are independents. In a 

similar form, n random variables 1 2 ,, , nX X X  are independents if  for every Borel set B1, 

B2, …, Bn  () the events {X 1  B1}, … , {X n  Bn}are independents.  

Generally speaking, a family, finite or infinite, of random variables is said independent if 

any finite number of random variables of this family is independent. If two integrable 

random variables 1, :X Y Ω→  are independents, then they are not correlated, i.e., 

E( ) = E( ) E( ), X Y X Y provided that XY is also integrable. If the random variables 

1 2 ,, , :nX X X Ω→   are independent, then 1 2 1 2E( ) = E( ) E( ) ( ), n nX X X X X E X 

whenever the product of the n random variables is integrable. Furthermore, two -algebras 

 and  contained in  are independents if any two events    A   and B   are 

independents. Similarly, any finite number of -algebras 1, … , n contained in  are 

independents if any n events A1  1, … , An  n are independents. Generally, a family, 

finite or infinite, of -algebras is said independent if every finite number of them is 

independent.  

 

1.4 Distribution and density function of a continuous random variable 

 

Let X be a subset of Ω = , then the elements of Ω that are contained in the event { }X x≤   

change as the number x takes various values. The probability { }P X x≤  is, therefore, a 

number that depends of x. This number is denoted by ( )XF x  and is called the (cumulative) 

distribution of the random variable X. So, the definition of a distribution function of the 
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random variable X is the function ( ) { }XF x P X x= ≤  defined for every x∈Ω . Usually, if 

there is no fear of ambiguity the subscript is omitted. 

 

Proposition 1.4.1 The distribution function has the following properties: 

1. i)  ( ) 1,F ∞ =  and ii) ( ) 0.F −∞ =  

Proof 

i)  ( ) { } { } 1.F P X P∞ = ≤∞ = Ω =  

ii) ( ) { } { } 0.F P X P−∞ = ≤ −∞ = ∅ =  

2. It is a non decreasing function of x: if 1 2,x x< then ( ) ( )1 2 .F x F x≤  

Proof 

It is obvious that{ } { }1 2 .X x X x⊆≤ ≤  Next, since by definition ( ) { },F x P X x= ≤  it follows 

that ( ) { } { } ( ){ } { } ( )2 2 1 2 1 1 1 .cx xF P X x P X x P X x X x P X x F= = + ∩ ≥ =≤ ≤ ≤ ≤ ≤  

3. If ( )0 0,F x =  then ( ) 0F x = for every 0.x x≤  

Proof 

Apply property 2. 

4. { } ( ).1P X x F x= −>  

Proof 

Since { } { }.X x X xΩ ≤ ∪ >=   then { } { } { }.1 P P X x P X xΩ ≤ + >= =  Considering the 

definition of a distribution function and rearranging the sum, { } ( ).1P X x F x= −>  

5. { } ( ) ( )1 2 2 1 .P x X x F x F x< ≤ −=  

Proof 

It is easy to verify that { }1 2x X x< ≤ and { }1X x≤  are disjoint events. Additionally, 

property 2 is applied in order to get an expression that relates the sets involved, like this 

{ } { } { }2 1 1 2 .P X x P X x P x X x= + <≤ ≤ ≤  Finally, following the definition of a 

distribution function, { } ( ) ( )1 2 2 1 .P x X x F x F x< ≤ −=  

6. The function ( )XF x  is continuous from the right 
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Proof 

As { }x X x h ↓∅< ≤ +  when 0,h↓  ( ) ( ) { } .0F x h F x P x X x h+ = +− < ≤ ↓  

7. { } ( ) ( ) ,P X x F x F x−= −=  with 0lim .x xε ε−
→= −  

Proof 

Set 2x x=  and 1 ,x x ε= −  then from property 5 it follows that 

{ } ( ) ( ) ,P x X x F x F xε ε− < ≤ − −=  and with 0ε →  property 7 holds. 

8. { } ( ) ( )1 2 12 .P x X x F x F x−≤ ≤ −=  

Proof 

It follows from property 5 and property 7, because{ }1 2x X x< ≤  and { }1X x=  are disjoint 

events.  

 

A random variable X is continuous if its distribution function ( )F x  is continuous. In this 

case, ( ) ( );F x F x− =  hence, { } 0P X x= =  for every x. The derivative of a continuous 

distribution function, ( ) ,F x  is called the density function 

( ) ( ) .d F x
f x d x=  

From the monotonicity of ( )F x  it follows that ( ) 0.f x >  Integrating the last derivative, it 

is obtained  

( ) ( ) .
x

F x f s d s
−∞

= ∫  

By property 1, the above yields  

( ) 1.f s d s
∞

−∞
=∫  

Consequently, from the definition of a distribution function of a continuous random 

variable it follows that 

( ) ( ) ( )2 1
2

1
.x

x
F x F x f s d s− = ∫  

Hence, 
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{ } ( )1 2
2

1
.x

x
P x X x f s d s< ≤ = ∫  

 

The present thesis proposes an environment with heterogeneity, which is produced by 

continuous random variables, all of them with exponential distribution function. If a 

random variable X has a density given by  

( ) ,x
Xf x e λλ −=  

where 0,λ >  then X is defined to have an exponential distribution. In order to prove that it 

is a distribution function it is necessary to integrate ( )Xf x  and verify that integrates up to 

1, 

0
0

1.x xe d x eλ λλ
∞

∞− −= − =∫  

Next, the expectation of this random is calculated as follows: 

[ ]
0

00 0

1 1 .x x x xE X xe d x xe e d x eλ λ λ λλ
λ λ

∞∞ ∞
∞− − − −= = − + = − =∫ ∫  

The second moment, 

2 2 2
2 20

0 0 0 0

2 2 22 .x x x x xE X x e d x x e xe d x xe d x eλ λ λ λ λλ λ
λ λ λ

∞∞ ∞ ∞
∞− − − − −  = = − + = = − =  ∫ ∫ ∫  

Finally, the variance 

[ ] [ ]( )22
2 2 2

2 1 1 .Var X E X E X
λ λ λ

 = − = − =   

 Usually, a compact notation to say that a random variable X is distributed exponential is as 

follows: ( )exp .X λ  

 

1.5 Fubini’s theorem 

 

In chapters 3 to 5 the different models have something in common: all of them need 

Fubini’s theorem to be solved, chapters 4 and 5 use it twice. This section is about what the 

theorem establishes. However, the proof of the theorem is not developed since the main 

topic of the models proposed in this thesis only requires it as a tool, which gives facility to 
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exchange the order of integration. Thus, it is possible to face a problem with simpler 

integrals, or at least not so difficult to solve taking into account that further maximization 

problems deal with two or three measures.  

Fubini’s Theorem. Let ( ) ,, ,i i iµΩ  i = 1, 2 be a -finite measure spaces and let

( )1
1 2 1 2 1 2 ., ,f L µ µ∈ Ω ×Ω × ×   Then there exist sets ,i iB ∈  i = 1, 2 such that 

i) ( ) 0i i iBµ Ω =  for i = 1, 2. 

ii) for ( ) ( )2
1

1 1 1 2 2, ,, ,,B f Lω ω µΩ∈ ∈⋅   

iii) the function 

( )
( ) ( )

2
1 2 2 2 1 1

1 1
1 1

,    for 

0                                      for c

f d B
g

B

ω ω µ ω ω
ω

ω
Ω







∈
≡

∈

∫  

is 1 -measurable and  

( )
1 1 2

1 1 1 2 ,g d f dµ µ µ
Ω Ω ×Ω

= ×∫ ∫  

iv) for ( ) ( )1
1

2 2 1 1 1, ,, ,,B f Lω ω µΩ∈ ∈⋅   

v) the function 

( )
( ) ( )

1
1 2 1 1 2 2

2 2
2 2

,    for 

0                                      for c

f d B
g

B

ω ω µ ω ω
ω

ω
Ω







∈
≡

∈

∫  

is 1 -measurable and  

( )
2 1 2

2 2 1 2 .g d f dµ µ µ
Ω Ω ×Ω

= ×∫ ∫  

For a complete proof of this theorem see Krishna and Soumendra (2008). 
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CHAPTER 2. ECONOMIC RATIONALITY 

 

This chapter is based on Microeconomic Theory (Green, 1995) and Advanced 

Microeconomic Theory (Jehle and Reny, 2001). This review begins by showing the study 

of the theory of decision making of an individual. The starting point for any decision 

problem of an individual is a set of possible alternatives (mutually exclusive), from which 

he must choose. Denote this set of alternatives as X. 

 

2.1 Preferences 

 

There are two different approaches to model choice behavior of an individual. The first is 

called the preference relation and the second approach, based on the axiom of revealed 

preference, is called choice rule. As the next chapter examines the issue of utility theory is 

appropriate to follow the approach of preference relations, since this theory is based on 

these relationships. The objectives of the decision maker are summarized in a preference 

relation, which we denote by  . Technically,   it is a binary relation on the set of 

alternatives X, allowing the comparison of alternative pairs , .x y X∈  The expression x   y  

is read as "x is at least as preferred as y". From  , we can derive two important relations 

on X. 

i) The strict preference relation,  , defined by  

x   y  x   y but not y   x 

and it is read as “x is strictly preferred to y”. 

ii) The indifference relation, , defined by  

x  y  x   y and y   x 

and it is read as “x is indifferent to y”. 

In most of microeconomic theory, individual preferences are assumed to be rational. The 

assumption of rationality is built on two basic assumptions about the preference relation, 

 : completeness and transitivity. 
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Definition 2.1.1: The preference relation   is rational if it possesses the following two 

properties: 

i) Completeness: for all , ,x y X∈  we have that x   y  or y   x (or both). 

ii) Transitivity: for all , , ,x y z X∈  if x   y y y   z, then x   z.  

The assumption that the preference relation is complete says that the individual has a well-

defined preference between any two possible alternatives. The completeness axiom 

establishes that the decision makers make only meditated choices.  The transitivity is also a 

strong assumption, and it goes to the heart of the concept of rationality. Transitivity implies 

that it is impossible to face the decision maker with a sequence of pairwise choices in 

which her preference appear to cycle. The assumption that the preference relation   is 

complete and transitive has implications for the strict preference and indifference relations. 

 

Proposition 2.1.1: If   is rational then: 

i)  is both irreflexive ( x x  never holds) and transitive (if x   y and y   z, then x   z). 

ii)  is reflexive (x  x for all x), transitive (if  x  y and y  z, then x  z) and symmetric 

(if x  y, then y  x).  

iii) if x   y   z, then x  z. 

Proof 

i) From the definition of   it follows that x   x  x   x but not x   x, which it is a 

contradiction, then x   x does not hold. To verify that transitivity does hold in the strict 

preference relation  take x, y, z  X, with x   y y y   z, then x   z. It follows from the 

definition of   that if x   y, then it is not possible that y   x, analogously with y   z, 

this implies that z   y does not hold; finally, the last relation follows by transitivity: x   y 

y y   z, therefore, x   z. 

ii) By definition of   and since   is rational, it follows that x   x and x   x, then x    x. 

Transitivity results to apply, once again, the definition of ~. Suppose that x, y, z  X, such 

that x   and y y   z, then x   z. On the other hand, x   y and y   x imply that x   y, 
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analogously y   z, so x   z. Symmetry is a consequence of rearranging the relations, i.e.,   

y   x and x   y, but this is the definition of the indifference relation, so y   x. 

iii) If x   y   z, then two things can happen. First, that y   z, and by transitivity, x   z. 

Second, y   z, whereby it follows that x   z. 

 

The last proposition is important, since the rationality of   implies that both relations,   

and  , are transitive. It can be seen that transitivity can be extended by combining the 

relations, as in case iii) of the previous proposition. As well as this combination there are 

other combinations, which rise from the definition of preference relation, strict preference 

relation and indifference relation. 

In addition to the assumptions mentioned earlier there are two more about the consumer 

preferences:  desirability and convexity. 

i) Desirability. Sometimes it is reasonable to assume that larger quantities of commodities 

are preferred to small quantities. This issue is captured by the monotonicity assumption. 

Suppose that consumption of large quantities of goods is feasible, this is, if x X∈ and y ≥ x, 

then .y X∈  

 

Definition 2.1.2: The preference relation   on X is monotone if x  X and y » x implies 

that y   x. It is strongly monotone if y ≥ x y y ≠ x implies that y   x. This assumption is 

satisfied as long as the commodities are goods, not bads. Note that if the preference is 

monotone, then indifference respect to an increase in the quantity of certain goods is likely 

to occur, but not in every good. In contrast, strict monotonicity says that if y is larger than x 

for a given commodity and it is not less for any other, then y is strictly preferred to x. 

However, most of the theory uses a weaker assumption of desirability known as locally 

nonsatiation. 

 

Definition 2.1.3: The preference relation   on X is locally nonsatiated if for every x  X 

and every  > 0, there exists y  X such that y x ε− ≤  and y   x. 
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ii) Convexity. An important second assumption deals with the convexity of the preference 

relation. That is, the exchange that the consumer is willing to make between the different 

goods. 

 

Definition 2.1.4: The preference relation on X is convex if for every x  X, the upper 

contour {   :    } y X y x∈   is convex; that is, if y   x and z   x, then  + (1- )  y z xα α   

for any 0,1 .α   ∈ Convexity is a central and strong hypothesis in economics. Convexity can 

be seen as the formal expression of a basic propensity of the economic agents for 

diversification. In fact, under convexity, if x is indifferent to y, then 0.5 x + 0.5 y, the half-

half mixture of x and y, it cannot be worse than both, x or y. Economic theory would be in 

serious difficulties if the propensity of this postulate for diversification would not have a 

meaningful descriptive content. In spite of this, there is no doubt that an individual can 

easily figure out choice cases where the postulated is violated.  

 

Definition 2.1.5: A preference relation on X is strictly convex if for every x the following 

happens,  ,y x  ,z x  and y ≠ z implies that  + (1- )  y z xα α   for any 0,1 .α   ∈  

 

2.2 Utility function 

 

In economics, frequently, preference relations are described by means of a utility function. 

A utility function u(x) assigns a numeric value to each element on X, ordering the elements 

of X accordingly to individual’s preferences. 

 

Definition 2.2.1: A function :u X → is a utility function that represents the preference 
relation ,  if for every , ,x y X∈  

( ) ( ).x y u x u y⇔ ≥  

Note that a utility function is not unique. For any function strictly increasing 

: ,  ( ) ( ( ))f v x f u x→ =   is a new utility function that represent the same preferences in 

u(·), only it matters the order. The utility function properties which are invariant to any 

strictly increasing transformation are called ordinals. Cardinal properties are those that do 
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not preserve the same order under these transformations. Thus, the preference relations 

associated with a utility function is an ordinal property. On the other hand, numerical 

values associated with alternatives on X, and therefore the magnitude of any difference in 

the utility measure among alternatives, are cardinal properties. 

  

Proposition 2.2.1: A preference relation   can be represented by a utility function only if 

it is rational. 

Proof: To prove this proposition it is shown that there exists a utility function that 

represents , and then    must be complete and transitive. 

Because ( )u  is a real-valued function defined on X, it must be that for any , ,x y X∈   

( ) ( )u x u y≥  or ( ) ( ).u y u x≥  But because ( )u   is a utility function representing  , this 

implies either that x   y  or y   x. Hence,   must be complete. 

Suppose that  x   y  and y   z. Because ( )u   is a function representing  , it must be that   

u(x) ≥ u(y) and u(y) ≥ u(z). Hence, u(x) ≥ u(z). Since ( )u   represents  , this implies that    

x   z.  Thus, this shows that x   y  and y   z implies x   z and the transitivity is 

established. 

 
Definition 2.2.2. The preference relation on X is continuous if it is preserved under limits. 

That is, for any sequence of pairs { } 1
( , )n n

n
x y

∞

=
 with xn   yn for any n, lim n

nx x→ ∞=  and 

lim n
ny y→ ∞= , it must be x   y. Continuity says that preference cannot exhibit jumps. In 

other words, the upper contour { y  X: y   x } and the inferior contour { y  X: x   y } 

are both closed. 

 

Proposition 2.2.2: Suppose that the rational preference relation   on X is continuous. 

Then there exist a utility function representing  . 

Proof. For the case LX +=   and a monotone preference relation, there exists a relatively 

simple and intuitive proof represented by means of the next graph. 
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Denote the diagonal ray in L
+  by Z. It will be convenient to let e designate the L-vector 

whose elements are all equal to 1. Then e Zα ∈  for all nonnegative scalars 0.α >  Note that 

for every Lx +∈ , monotonicity implies that x   0. Also note that for any α  such that 

,e xα   it must be that .e xα   Monotonicity and continuity can then be shown to 

imply that there is a unique value ( ) 0,xα α  ∈  such that ( ) .x e xα   

Take ( )xα  as our utility function, that is, assign a value of utility ( ) ( )u x xα= to every x. It 

is necessary to verify two properties of this function: first, that represents a preference 

relation  ; second, that it is a continuous function. 

By construction ( )xα  represents preferences. Finally, suppose that ( ) ( ).x yα α≥  By 

monotonicity, this implies that ( ) ( ) .x e y eα α  

 
Graph 2.1. Construction of a utility function. Source: Green (1995). 
 
Since ( )x x eα  and ( ) ,y y eα  then it follows that x   y. On the other hand, assume that 

x   y. Then ( ) ( ) ;x e x y y eα α   and by monotonicity, it must be that ( ) ( ).x yα α≥  

Hence, ( ) ( ) .x y x yα α ⇔≥   
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2.3 Competitive budget  

 

In addition to physical constraints embodied in the consumption set, the consumer faces a 

major economic constraint: his choice is limited to those commodity bundles he can afford. 

To formalize this restriction, two assumptions are introduced. First, it is assumed that the L 

commodities are all traded in the market at a given monetary unit prices that are publicly 

quoted. Formally, these prices are represented by a vector of prices. 

1

 ,
L

L
p

p
p

 
 =  
  

∈   

which gives the monetary unit cost for a unit of each of the L commodities. Observe there is 

nothing that logically requires prices to be positive. A negative price simply means that a 

buyer is actually paid to consume the commodity (which is not illogical for commodities 

that are bads, such as pollution). Nevertheless, for simplicity, it is assumed that 0;p  that 

is, 0lp >  for every l. 

Second, it is assumed that these prices are beyond the influence of the consumer. There is 

the so called price-taking assumption. Loosely speaking, this assumption is likely to be 

valid when the consumer’s for any commodity represents only a small fraction of the total 

demand for that good. 

The affordability of a consumption bundle depends on two things: the market prices 

( )1, , Lp p p=   and the consumer’s wealth level (in monetary units) w. The consumption 

bundle Lx +∈  is affordable if its total cost does not exceed the consumer’s wealth level w, 

that is, if  

1 1 .L Lp x p x p x w⋅ = + + ≤  

The economic-affordability constraint, when combined with the requirement that x lie in 

the consumption set L
+ , implies that the set of feasible consumption bundles consists of 

the elements of the set { }: .Lx p x w+∈ ⋅ ≤  This set is known as the Walrasian, or 

competitive budget set. 
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Definition 2.3.1: The Walrasian or competitive budget set { }, :L
p wB x p x w+= ∈ ⋅ ≤  is the 

set of all feasible consumption bundles for the consumer who faces market prices p and has 

wealth w. Then, the consumer´s problem, given prices p and wealth w, can thus be stated as 

follows: choose a consumption bundle x from ,p wB . 

The Walrasian budget set ,p wB  is a convex set: that is, if the bundles x and x′  are both 

elements of ,p wB , then the bundle x′′  = α x + (1- α) x′  is also an element of  ,p wB . Note 

that because both x and x′  are nonnegative, Lx +′′∈ . Further, every time that p x w⋅ ≤  and 

,p x w⋅ ′ ≤  it follows that ) (1 )( .p x p x p x wα α⋅ ′′ = ( ⋅ + − ⋅ ′) ≤  Therefore, 

{ }, : .L
p wx B x p x w+′′∈ = ∈ ⋅ ≤  

 

 

2.4 Utility maximization 

 

Under the previous assumptions the feasible set, total expenditure must not exceed income. 

Formally, the utility maximization problem is written 

x 0
Maximize     ( )

subject to     .

u x

p x w
≥

⋅ ≤
  

The solution of this problem consists that the consumer chooses a consumption bundle on 

the Walrasian budget set, { }, :L
p wB x p x w+= ∈ ⋅ ≤  to maximize his utility level. 

 
Proposición 2.4.1: If p » 0 and u(·) is continuous, then the maximization problema has a 

solution. 

Proof 

If p » 0, then the budget set { }, :L
p wB x p x w+= ∈ ⋅ ≤  is a compact set because it is both 

bounded [for any l = 1, …, L, we have l lx w p≤  for all x  ,p wB ] and closed. The result 

follows from the fact that a continuous function always has a maximum value on any 

compact set. 



17 
 

Throughout this thesis all models consider economies in continuous time. The theoretical 

foundations of each model lie in the definitions and propositions studied in the present 

chapter. The problem settings have special structures that generate optimal solutions for 

consumption and capital.   
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CHAPTER 3. CONVENTIONAL HOMOGENEOUS CONSUMPTION AND 
RANDOMIZATION OF ρ AND α. 

 

Chapter 3 presents the homogeneous case, based on a number of assumptions. In order to 

expose the results of this model it is useful introduce previous background. Firstly, the 

conventional nonrandomized problem is introduced. Secondly, the analysis focuses on the 

randomization of the subjective discount rate. Thirdly, the rate of risk aversion is 

considered a random variable. Furthermore, the first three sections analyze the infinite time 

horizon, whilst the last three sections deal with the finite time horizon. 

 

3.1 Conventional model: infinite time horizon (ITH) 

 

First, let us recall the conventional model of discounted utility, ( ) ,tu c  with infinite horizon 

and negative exponential utility function: ,   0.tce α α−− >  It is assumed that α is a known 

parameter. The reason to choose this function is because of its concavity property. The 

discounted utility maximization problem facing the consumer, with a subjective discount 

rate ρ, it is established in the next form:  

( )
0

0 0

Maximize   

subject to .                (3.1.1)

t
t

rt
t

u c e dt

k c e dt

ρ∞ −

∞ −=

∫
∫

 

Where 0k  is the initial endowment which in this case is constant and tc  is the consumption 

at time t; the restriction in (3.1.1) indicates that the endowment and the discounted 

consumption, with a real interest rate, are the same.  

Omitting the boundary conditions, Lagrangian is given by: 

( ) ( )0, tc t rt
t tc e e rk c eα ρλ λ− − −= − + −L  

where λ is a constant to be determined. Deriving with respect to ,tc  it follows that 

0.tc t rte e eα ρα λ− − −− =  

The above equation leads to  

( )1 1lntc r tα ρ
α λ α

 = − + − 
 

  (3.1.2) 
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The last expression shows only known parameters a priori, but λ, which is the Lagrange’s 

multiplier, and this must be isolated in order to obtain the optimal path through time. To 

find this value, the right hand side of the restriction in (3.1.1) is replaced by equation 

(3.1.2) and the integral is solved. Once the integral is solved, λ is isolated and is substituted 

into (3.1.2). The development of the math is shown in appendix A. 

The solution for this problem, i.e., the optimal consumption path is 

0
1 .t

rc rk t
r

ρ
α
−  = + −  

  
         (3.1.3) 

In (3.1.3) consumption is based on default parameters, but time, t, which is selected by the 

consumer. As it can be seen, the optimal consumption path depends on ρ. For this reason it 

is interesting to modify the assumption that requires that this parameter is constant. In later 

models, this assumption will be relaxed, so that leads to new optimal consumption 

expressions, and thus new interpretations of the optimal paths. In order that the trajectory 

(3.1.3) is meaningful we should ask for 

( ) 2
0            .                             (3.1.4)k r rρ α> −  

This last constraint states that from t = 0 the consumer has a positive consumption path. 

Otherwise, if this inequality were strictly negative, it would imply that the endowment is 

insufficient to meet consumption throughout the time horizon, if equality is fulfilled, then 

consumption would be zero. 

 
 
Graph 3.1. Consumption level of the conventional model as a function of r and t (Source: own elaboration). 
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Graph 3.1 shows the consumption path as a function of two parameters, r y t. For this 

example the following values are assigned: 0 100,k =  ρ = 0.2 y α = 0.1. While 0,1r∈    , 

where this interval represents a percentage scale; .0,2t∈      

 

3.2 Subjective discount rate randomized (ITH) 

 

Next, the parameter ρ is introduced in such a way that it has an a priori associated 

probability function, based on two arguments. The utility function is just as the previous 

model, negative exponential. Let assume that ρ is distributed exponentially. A first reason 

to choose this distribution is because describes an impatient behavior, i.e., the density 

function is biased to the origin. The second reason consists on its operative easiness when 

manipulating equations. 

( )
( )

; ,   0

,    0,    0 .

tc
tu c

f

e
e

α

βρ

θ α

ρ β β ρ

−

−
Ρ

= − > ;

= > ≥  
Then, the utility maximization problem is expressed as follows: 

  
 

 

 

Restriction conditions remain the same as the conventional model. The objective function is 

a double integral, where the outside integral corresponds in first instance to the values that 

can take ρ and the inner integral takes values that correspond to the time. The integral in 

brackets is nothing but the integral of the conventional model, the factor multiplying this 

integral corresponds to the exponential density function associated with the subjective 

discount rate. 

Rewriting the above approach to perform some simplifications, it can be seen as: 

                    

( )

0 0

0 0

Maximize   

subject to    .

tc t

rt
t

d dt

k c dt

e e

e

α ρ ββ ρ
∞ ∞ − − +

∞ −

−

=

∫ ∫
∫

          (3.2.1) 

This new set up allows to apply the Fubini’s Theorem, for an exchange of measures. Notice 

that it is possible to remove from the inner integral tce αβ −− , since it does not depend of ρ, 

( )0 0

0 0

Maximize   

subject to    .

t t

rt
t

dt d

k c dt

e e e

e

α ρ βρβ ρ
∞ ∞ − − −

∞ −

−

=

∫ ∫

∫
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and solve the integral of  ( )te ρ β− +  with respect to ρ. The whole development of these 

simplifications is shown in appendix B. 

Optimal consumption is obtained, again as before. It depends exclusively of known 

parameters for the consumer, 

( )0
1 1 1+ ln ln                       (3.2.2)

t+
1 r

tc rk rt C re β

α β α
    = + − +      

+ . 

This expression is more complex than (3.1.3), but it incorporates more information. As it 

was shown in the last section, the Lagrange multiplier is cleared with the purpose to 

determine it. Later, this value is substituted into the consumption function derived from the 

first order conditions. In (3.2.2) appears a Euler constant C, for more details about this 

number see Gradshteyn (2007). 

The following condition must be accomplished when t = 0:  

( ){ }0
1 1 ln ln .rk C r
r

e ββ
α

> + + +  

If the endowment is greater than the right hand side of inequality ensures that the consumer 

will have sufficient resources at every moment to reach her level of consumption. This 

model can be seen as a representative agent of a population where the number of 

individuals can change over time, but remains an exponential distribution representing her 

impatience with the current or future utility. 

 
Graph 3.2. The level of consumption in the subjective discount rate as a random variable model as a function 
of r and t (Source: own elaboration). 
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Graph 3.2 shows the consumption level in the subjective discount rate randomized model as 

a function of r y t, with values: 0 100,k =  β = 0.2 y α = 0.1, while r y t keep the same 

values as in the graph 3.1. 

 

3.3 Risk aversion rate randomized (ITH) 

 

In the present section the risk aversion rate is considered a random variable. Assumptions 

are similar in this model to those exposed in section 3.2. 

( )
( )

; ,   0

,    0.

tc
tu c

f

e
e

α

µα

θ α

α µ µ

−

−
Α

= − > ;

= >  
So, the utility maximization problem is formally expressed as follows: 

 
 

 

 

The inner integral coincides, again, with the objective function of the conventional model. 

It is necessary to include the density function of this variable into the problem since the risk 

aversion rate is considered randomized. Applying Fubini’s theorem allows reorganizing the 

integrals: 
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  (3.3.1) 

Through some calculations, which are available in appendix C, it is obtained the optimal 

trajectory of the consumption. 
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This equation is more complex than the conventional model, but it is less complicated than 

equation (3.2.2). Notice, once again, that the formula is closed and the parameters are all 

known. In order to prevent a negative value for the consumption is necessary that: 
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So, at the beginning of the time horizon the initial stock must be greater than: 

0
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r r
µ

ρ
 
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The last expression ensures that the consumer will be able to have enough resources at 

every point in time to satisfy her level of consumption. As in the previous model, the 

current section introduces the idea of an average consumer instead of a representative 

consumer. Heterogeneity is provided through the randomness of the risk aversion rate. This 

means that each member of the population assigns a different value for such rate, which is 

exponentially distributed. 

 

 
Graph 3.3. Consumption level in the risk aversion randomized model as a function of  r and t (Source: own 
elaboration). 
 

Graph 3.3 illustrates the trajectories of the consumption as a function of the real interest 

rate and time. In this example the next values are considered: 0 100,k =  μ = 0.1 y ρ = 0.1, 

0,1r   ∈  and 0,2 .t   ∈  
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3.4 Conventional model: finite time horizon (FTH) 

 

The set up for this model is similar to section 3.1, the only difference is time horizon, 

which in this case is finite. Therefore, the discounted utility maximization problem facing 

the consumer, with a subjective discount rate ρ, is as follows:  

( )
0

0 0

Maximize   

subject to .                (3.4.1)
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T rt
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∫
∫

 

Where 0k  is the initial endowment which in this case is constant and tc  is the consumption 

at time t; the restriction in (3.4.1) indicates that the endowment and the discounted 

consumption, with a real interest rate, are the same.  

Omitting the boundary conditions, Lagrangian is given by: 

( ) ( )0, t r t
t t

c tc rk c ee eα ρλ λ −− −= − + −L  

where λ is a constant to determine. Deriving with respect to ,tc  it follows that 

0.tc t rte e eα ρα λ− − −− =  

The above equation leads to  

( )1 1lntc r tα ρ
α λ α

 = − + − 
 

  (3.4.2) 

The last expression shows only known parameters a priori, but λ, which is the Lagrange’s 

multiplier, and this must be isolated in order to obtain the optimal path through time. To 

find this value, the right side of the restriction in (3.4.1)  is replaced by equation (3.4.2) is 

and the integral is solved. Once that the integral is solved λ is isolated and is substituted in 

(3.4.2). The development of the math is shown in appendix D. 

The solution for this problem, i.e., the optimal consumption path is 
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0
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t
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α α
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−
= − − − − + −          (3.4.3) 

In (3.4.3), since all cases, consumption is based on default parameters, but time, t, which is 

selected by the consumer. As can be seen, the optimal consumption path depends on ρ. For 

this reason it is interesting to modify the assumption that requires that this parameter is 

constant. In later models, this assumption will be relaxed, so that leads to new optimal 
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consumption expressions, and thus new interpretations of the optimal paths. For the 

trajectory in (3.4.3) is meaningful we should ask 

( )
0

1            1 .                             (3.4.4)rT rTr
k e Te

r r
ρ

α
− −−   > − −   

 

This last constraint states that from the time t = 0 the consumer has a positive consumption 

path. Otherwise, if this inequality were strictly negative, it would imply that the provision is 

insufficient to meet consumption throughout the time horizon, if equality is fulfilled, then 

consumption would be zero. 

 
Graph 3.4. Consumption level of the conventional model as a function of r and t (Source: own elaboration). 

 

Graph 3.4 shows the consumption path as a function of two parameters, r y t. For this 

example the following values are assigned: 0 100,k =  T = 2, ρ = 0.1 y α = 0.1. While 

,0,1r∈     where this interval represents a percentage scale; .0,2t∈     

 

3.5 Subjective discount rate randomized (FTH) 

 

Next, the parameter ρ is introduced in such a way that it has an a priori associated 

probability function. The utility function is just as the previous model, negative 

exponential. Let assume that ρ is distributed exponentially. The main reason to choose this 

distribution is merely because of its operative easiness when manipulating equations. 
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Then, the utility maximization problem is expressed as follows: 

  
 

 

 

Restriction conditions remain the same as the conventional model. The objective function is 

a double integral, where the outside integral corresponds in first instance to the values that 

can take ρ and the inner integral takes values that correspond to the time. The integral in 

brackets is nothing but the integral of the conventional model, the factor multiplying this 

integral corresponds to the exponential density function associated with the subjective 

discount rate. 

Rewriting the above approach to perform some simplifications, it can be seen as: 
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          (3.5.1) 

This new set up allows to apply the Fubini’s Theorem, for an exchange of measures. Notice 

that it is possible to remove from the inner integral tce αβ −− , since it does not depend of ρ, 

and solve the integral of  ( )te ρ β− +  with respect to ρ. The whole development of these 

simplifications is shown in appendix E. 

Optimal consumption is obtained, again as before. It depends exclusively of known 

parameters for the consumer, 

( ) ( ) ( ){ } ( ) 1
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. 

This expression is more complex than (3.5.3), but it incorporates more information. In 

order to get (3.5.2) a Lagrangian is proposed (see appendix 2). As it was shown in the last 

section, the Lagrange multiplier is cleared with the purpose to determine it. Later, this value 

is substituted in the consumption function derived from the first order conditions.  
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In equation (3.5.2) C represents the Euler constant. The following condition must be 

accomplished:  

( ) ( ) ( ) ( ){ }0
1 1 ln 1 1 ln ln .r TrT rT rk e e rT e C r T e
r

βββ β
α

− +− −   > + − − + − + + +     

If the endowment is greater than the right side of inequality ensures that the consumer will 

have sufficient resources at every moment to meet her level of consumption. This model 

can be seen as a representative agent of a population where the number of individuals can 

change over time, but remains an exponential distribution representing her impatience with 

the current or future utility. 

 
Graph 3.5. The level of consunption in the subjective discount rate as a random variable model as a function 
of r and t (Source: own elaboration). 
 

Graph 3.5 shows the consumption as a function of r y t. For this example the following 

values are assigned: 0 100,k =  T = 2, β = 0.2 y α = 0.1. While [ ]0.05,1r∈  and 0,2 .t   ∈  

 

3.6 Risk aversion rate randomized (FTH) 

 

This chapter finishes introducing the risk aversion rate as a random variable in a finite 

horizon set up. In this setting the assumptions are similar to those exposed earlier, for the 

other models developed so far in this chapter. So, once again the utility functions is 

exponential with a randomized parameter α, 
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Accordingly, the maximization problem of a decision maker is as follows: 
 

 
 

 

 

This looks like almost as the maximization problem in 3.3. However, a change in the time 

horizon modifies the solution, as it is expected. It is useful to do this exercise because if our 

result is true correct for the finite time horizon case, then taking the limit of T when it goes 

to an infinite number must give us the same solution obtained in section 3.3. In other 

words, solving the finite time horizon problem is equivalent to solve the infinite time 

horizon setting. Nevertheless, in terms of the details it is interesting to analyze both term 

structures. Proceeding as usual,  
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  (3.6.1) 

 

It is necessary to emphasize that without Fubini’s theorem our problem gets complicated. 

Fortunately, in every model proposed in this work is possible to apply it. When doing this 

is easier to deal with the integrals and this facilitates calculations. Obviously, the inner 

integral is solved and as a consequence the objective and the restriction have the same 

interval with respect to their respective integrals. The latter implies that the Lagrange’s 

method of optimization is suitable for solving this simple decision problem.  
1

2 2
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Details of the solution for the consumption path are available in the appendix F.  In 

equation (3.6.2) appears parameter T, this represents a difference when comparing with 
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(3.3.2). As before, the initial endowment of capital must be strictly larger than zero at the 

beginning of the time period, this means 
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r T rTk e e

r r
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This condition guarantees a positive consumption through the period established in the 

maximization problem. With this in mind, the decision maker has achieved a primary goal: 

consumers in this economy always consume something. This last result is meaningful 

because it says that in a population where individuals differ in their risk aversion rate an 

optimal consumption is attained in such a way that in every instant of time during the finite 

horizon consumers in this economy always consume, and this consumption is neither 

negative nor zero.  

 

 
Graph 3.6. The consumption level in the risk aversión rate as a random variable model as a function of r and t 
(Source: Own elaboration). 
 

Last paragraph could be understood by means of graph 3.6, which shows the trajectory of 

the level of consumption as a function r and t. Values assigned to the parameters are: 

0 100,k =  T = 2, μ = 0.1, ρ = 0.1, 0,1r   ∈  and 0,2 .t   ∈  
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CHAPTER 4. AVERAGE CONSUMER DECISIONS IN AN ECONOMY WITH 
HETEROGENEOUS SUBJECTIVE DISCOUNT RATES AND RISK AVERSION 

COEFFICIENTS: THE FINITE HORIZON CASE 
 

This chapter aims to study the behavior of the average rational consumer of an economy 

populated by heterogeneous agents in a finite horizon framework. Heterogeneity takes into 

account both the subjective discount rate and risk aversion coefficient. Closed-form 

solutions for the optimal paths of consumption and capital, of the average consumer, are 

derived. Moreover, a closed form solution for the economic welfare of the average 

consumer is obtained. Finally, several analytical and graphical exercises of comparative 

statics are carried out. 

 

4.1 Preference heterogeneity 

 

Consider an economy where individuals are rational consumers endowed with the negative 

exponential function. This economy consumes and produces a single perishable good, and 

is populated by heterogeneous agents. Heterogeneity is represented by two distribution 

functions. The first distribution ( ) ,    0,F F ρ ρ= >  is associated with the subjective discount 

rate, ρ, The second distribution ( ) ,    0,G G α α= >  is related to the parameter α appearing in 

the negative exponential utility function ( ); .tc
tu c e αα −= −  It is reasonable to assume 

stochastic independence between ρ  and α  since anxiety for present consumption is not 

related to risk aversion. In what follows, it will be assumed that ρ  and α  are both driven 

by the exponential distribution, that is to say, the parameters α and ρ have, respectively, 

densities ( ) , 0,g e αµα µ µ−= − >  and ( ) , 0,f e λρρ λ λ−= − >  where both µ and λ are known 

parameters. 

 

4.2 Resource allocation 

 

Next, it is assumed that resource allocation in the economy is given by the national income 

identity and not by a price system. For the sake of simplicity, it will be assumed a closed 
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economy without government, i.e., a closed autarky. Suppose also that the rate of 

depreciation of capital is zero, thus the per capita national income identity satisfies 

                                                          ( )t t tf k c k= +    

where tk  is capital, ( )tf k  is the production function, and tc  is consumption; all of them in 

per capita terms. 

 
4.3 Firms’ behavior 

 

It is assumed that production is carried out by a representative firm using an “Ak” 

technology, i.e., ( ) .t t ty f k Ak= =  The present value, PV, of the representative firm is given 

by: 

( )
0

d
T rt

t tPV Ak rk e t−= −∫  

where the difference in the integral is nothing more than the income of the firm less the 

payment to factor; in this case there is only payment to capital. It is worth noting that the 

above expression represents the benefits of the firm discounted with the real interest rate. 

The first order condition of the maximization problem of the representative firm leads to 

.r A= Thus, the marginal product of capital satisfies that the technological level is constant 

and equal to the real interest rate. Thus, after discounting and taking the present value of 

both sides of the per capita national income identity, and considering a finite transversality 

condition, it follows that 

00
0 d lim ,

T rs rt
s t T tc e s k e k− −

→= + −∫  

or 0 0
,d

T rs
sk c e s−= ∫ where 0k  is given. 

 

4.4 Central planner’s problem 

 

It is assumed that a central planner wishes to maximize the consumption satisfaction of the 

average agent. Specifically, the central planner wishes to solve 
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The necessary condition for the optimization problem stated in (1) is obtained as follows. 

Applying twice Fubini’s theorem to the objective function, it follows 
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Hence, the new optimization problem becomes: 
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In this case, the Lagrangian is given by 
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where   is the Lagrange multiplier. Differentiating now with respect to ,tc it follows that 
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And after solving for ,tc  it is obtained that 
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By substituting the above expression in the constraint, it is derived that 
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In the above equation, as usual, the Lagrange multiplier, ,β  is unknown. In order to find it, 

equation (2) is substituted into the constraint in (1). The optimal consumption path satisfies 

                              

( ) ( )( )
( )( ) ( )( )

2 0 1
.                      (3)

8

r t rT
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Ak eec
t A r T r

λ µ
µ

λ π λ λ

− − + − = − + Φ + −Φ    
where Φ  represents the cumulative distribution function of the standard normal random 

variable, and, as before,  r = A (computations are shown in Appendix G). Notice now that at 

time t = 0, 
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The left side of (4) is always positive, so tc  will also be positive for all t  [0,T]. In order to 

carry out a graphic comparative statics exercise, it is illustrated in Graph 4.1 the path of 

optimal consumption, for the average agent, as a function of A and t, with all other 

parameters remaining constant. In this case is was supposed that 0 100,k =  λ = 0.1, α = 

0.05, and (0,1r ∈ . It is worth pointing out that consumption increases when both r and t 

rise. 

 

 
Graph 4.1. The level of consumption as a function of r and t (Source: own elaboration). 
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Moreover, Graph 4.2 shows the behavior of the optimal path of consumption as a function 

of the risk aversion parameter and the subjective discount rate. In this case it was supposed 

that ( ]0,1λ ∈  and ( ]0,1µ ∈ . It is important to observe that consumption increases for very 

small values (less than 0.1) of the risk aversion parameter, after that value consumption 

decreases. 

 

 
Graph 4.2. The level of consumption as a function of the risk aversion parameter and the subjective discount 

rate (Source: own elaboration). 

Next, we carry out a comparative statics exercise by computing the derivatives of the 

consumption with respect to each parameter. Thus, 
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The sign of the latter partial derivative depends on the sign of the difference ( ) .8r t λ π+ −  

Moreover, the following partial derivatives have ambiguous signs 
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Finally, it readily follows that 
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Notice also that 0 0,tc k   that is, the level of consumption increases when the initial 

level of stock increases. Moreover, 0,tc     that is, an increase in the risk aversion rate 

parameter positively affects the level of consumption. It is important to point out that the 

sign of tc t   depends on the sign of the difference ( ) 8r t λ π+ − . Unfortunately, 

tc   and tc T   have ambiguous signs. Finally, 0,tc r    hence if the real interest 

rises, the level of consumption increases.  

On the other hand, by substituting optimal consumption of the average individual in the 

national income identity, it follows that (see Appendix H) 
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It is also interesting to compute the partial derivatives of capital. First, note that 

( )( ) ( )
( )( ) ( )0 0
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r t rk k
r T r

e
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Observe now that 
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Thus, the sign of the above partial derivative depends of the magnitude of the summands in 

the braces. Moreover, 
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has ambiguous sign. Finally, 

( )
( )( ) ( )

( )( ) ( )

( )
( )( ) ( )

0
0 2

02 2

1

1 1       0.
8

t
rTrt rt

r rtrT
rt

rkk k r t r
t r r r r T r

rk
r Tr T r

ee e

ee ee
λ

µµ λ λ
λ λ

µ

π λ λλ λ

−

−− −

 
     
          

   
   
   
     

+ −∂ = + − Φ + −Φ
∂ Φ + −Φ

+ −
− − >

+Φ + −Φ

  



37 
 

After computing the partial derivatives of tk with respect to other variables, it is observed 

that: 0 0,tk k    just as in the case of consumption, an increase in initial capital makes 

the level of capital increases; 0t tk k       when t T→ , this implies that neither 

the risk aversion parameter nor the subjective discount rate parameter affect the level of 

capital when t approaches to T; 0,tk t    this means that a change in t decreases the 

level of capital stock; and tk T   and tk r   have both ambiguous sign. 

 

Graph 4.3 illustrates the path of capital, for the average consumer, as a function of r and t; 

all other parameters remaining constant. For illustrative purposes, it is assumed that 

0 100,k = λ = 0.1, α = 0.05, and (0,1r ∈ . In this case, that capital increases when both r 

and t rise. 

 

 

 
Graph 4.3. The level of capital as a function of r and t (Source: own elaboration). 

Finally, Graph 4.4 shows the behavior of the optimal path of capital when ( ]0,1λ ∈  and 

( ]0,1µ ∈ . Notice, as expected, that capital increases when both the subjective discount 

rates and the risk aversion parameter.  
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Graph 4.4. The level of capital as a function of the risk aversion parameter and the subjective discount rate 

(Source: own elaboration). 

 

4.5 Economic welfare of the average consumer 

 
In what follows, the indirect utility or economic welfare function of the average consumer, 

W, will be computed. By substituting tc µ+  in the expected total utility in (1), it is found 

that  
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− =
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−
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∫∫

 

This is a closed formula when all the parameters are known (details are available in 

Appendix I). In this case, it can be shown that 

                      
0

0, 0, 0,  0,   and 0 or 0.W W W W W W
k T r r 

     
     

     
  

The first derivative is almost intuitive and it means that if the average consumer increased 

his/her initial stock of capital, then the welfare would increase. In a similar way, when the 
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time horizon is extended, t T , the welfare function augments its value. On the other 

hand, there exists a negative relation between the preference parameters and the welfare 

function. Finally, the relation between the risk free rate and the welfare function is 

ambiguous (see Appendix J). 
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CHAPTER 5. CONSUMPTION DECISIONS OF THE AVERAGE AGENT IN AN 
ECONOMY WITH HETEROGENEOUS PREFERENCES DEFINED BY A 

BIVARIATE DISTRIBUTION 
 

 

Chapter 5 considers an economy populated by heterogeneous individuals in two respects: 

both parameters representing the subjective discount and the risk aversion rates are 

supposed to have a joint distribution. That is, consumers differ in their level of anxiety for 

present consumption and their risk aversion rate. The utility index is of the negative 

exponential type. This research provides a closed-form optimal consumption path of the 

average infinite-lived agent. Finally, some comparative statics experiments are carried out. 

 

5.1 Assumptions of the economy 

 

Consider an economy where individuals are rational. This economy consumes and produces 

a single perishable good and is populated by heterogeneous agents in preferences. The 

heterogeneity in tastes of agents is represented by two distribution functions. The first 

function models the subjective discount rate as a random variable (the agents are indexed 

by the parameter ρ), i.e. ( ) ,    0.F F ρ ρ= >  

By the second distribution function, the depth parameter (or the level of learning, see 

Venegas (2000)) α of the negative exponential utility function is considered a random 

variable, ( ) ,    0.G G α α= >  

This model allows different agents are assigned the same values of the parameters 

mentioned above. Therefore, the probability of randomly choosing two consumer groups 

with indexes in the subsets of positive real numbers  and S Sρ α  are given respectively by

{ } ( )d
S

P S F
ρ

ρρ ρ∈ = ∫
 
and { } ( )d .

S

P S G
α

αα α∈ = ∫  

Independence between  and ρ α is assumed; this in addition to being reasonable as 

anxiety about present or future consumption is not related to learning in consumption, it 

also simplifies the algebraic development. 
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5.2 Problem of the central planner 
 
It is assumed then that there is a central planner who wishes to maximize the satisfaction of 

the average agent. Specifically, it is assumed that the center planner wishes to maximize the 

following objective function 

                                  
( ) ( ) ( )

0 0

   ; d d d ,t
t

t

U u c e t G Fρ

ρ α

α α ρ
∞ ∞ ∞

−

=

  
=      

∫ ∫ ∫
>0 >

                       (1) 

where ( );tu c α  is the utility function of a commodity of consumption per capita. It is also 

assumed that the functional form of the utility function is exponential negative, i.e. 

( ); ,   0.tc
tu c e αα α−= − >  

You can verify that this function is concave, meaning that 

0tc
cu e αα −= >  and 2 0.tc

ccu e αα −= − <  

Moreover, it is assumed that the distribution function of ρ is given by

( ) 1 ,   0,F e λρρ λ−= − >  

similarly define the distribution function for α as  

( ) 1 ,   0.G e αρα α−= − >  

Accordingly, ( )d d  F e λρρ λ ρ−= and ( )d d .G e µαα µ α−=  

 
5. 3 Behavior of firms 

 

It is assumed that the production is performed by representative firm using an Ak 

technology, i.e. 

( ) .t t ty f k Ak= =  

The present value, PV, of the representative firm is given by the following integral: 

( )
0

rt
t t

t

PV Ak rk e dt
∞

−

=

= −∫  

where the difference in the integral is nothing more than the income of the firm less 

payment to factor, in this case there is only the payment to capital. Note that the above 

expression represents the discounted benefits of the company with the real interest rate. The 

first order condition of the maximization problem of the representative firm leads to .A r=
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Thus, the marginal product of capital satisfies the technological level is constant and equal 

to the real interest rate. 

 

5.4 Resource allocation 

 

However, it is assumed that resource allocation is given by the national income identity (for 

a closed economy without government, i.e. autarky) and not by a price system, as in López-

Herrera et al (2012), except that the rate of depreciation of capital is zero. Thus, 

.t t trk c k= +   

Discounting and integrating both sides and considering the transversality condition, it 

follows that 

00
0 d lim .   rs rt

s t tc e s k e k
∞ − −

→∞= + −∫  

Therefore, 0 0
d . rs

sk c e s
∞ −= ∫  

For developmental outcome is regarded that the income is fixed. 

 

5.5 Optimal consumption paths of the average agent 

 

The average consumer has infinite life. The initial endowment of consumer is constant over 

time. In short, the problem facing the consumer is described as: 

( )( )0 0 0

0 0

Maximize   d d d

          subject to    d .

tc t

rt
t

e e t e e

k c e t

α ρ µα λρµ α λ ρ
∞ ∞ ∞ − − − −

∞ −

−

=

∫ ∫ ∫

∫
 

Note that the above expression is indeed the equation (1). Both µ and λ are known 

parameters, the first of the level of learning and the second of the subjective discount rate. 

Simplifying the problem statement, given the above assumptions, and applying Fubini's 

theorem, of the exchange of measures, it can be rewritten as follows: 

( )( )0

0 0

-Maximize   d

      subject to    d .

t

rt
t

t
t c

k c e t

µλ
λ µ

∞

∞ −

+ +

=

∫

∫
 

The Lagrangian for this approach is: 
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( ) ( )( ) ( ), .rt
t t

t

c y c e
t c

µλλ β
λ µ

−−
= + −

+ +
L  

Differentiating with respect to tc  

( )( )2 0
t

rt
c

t

e
t c

µλ β
λ µ

−= − =
+ +

L  

and solving for tc  

             ( )
.                                                           (2)

rt

t
ec

t
µλ µ
β λ

= −
+

 

From expression (2) is unknown as to what is the Lagrange multiplier, to find that value is 

replaced (2) in the restriction and integrates with respect to time. The complete 

development of the calculations is shown in the appendix. The solution for optimal 

consumption path is 

                                     

( )

( )( )
2

0 .                                        (3) 
8 1

r t

t
rkec

t r r

λ
µ µ

λ π λ

−  
 +

= − + −Φ 
   

where Φ  represents the accumulation function of a standard normal distribution function 

(see the appendix). Since A = r, recall section 3, r can be replaced by A, such that 

( )

( )( )
2

0 .
8 1

A t

t
Akec

t A A

λ
µ µ

λ π λ
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 +

= − + −Φ 
 

 

In both expressions all the parameters are known, since the consumer decides the moment 

of time when to consume, then t is also known. The solution is well defined for all time, t, 

provided 

               
( )( )

2
0 .                                          (4)

8 1

r

rke

r r

λ

µ µ
λ π λ
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 +

> 
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 

 

This result is due to assess the optimum consumption at time t = 0. Note that all factors in 

(4) are positive numbers. So, we have an expression valid for all t such that t  [0,).  One 

possible interpretation for (4) is that it is the average consumption of a population at time t, 
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i.e. the optimal consumption path is represented as an expected value. In other words, this 

is the average consumption of a representative agent. 

The following graph illustrates the trajectory of consumption as a function of two 

parameters, r and t, all other parameters behave as constants. For this example the values 

assigned are: 0 100,k = λ = 0.1 and α = 0.2. Whereas that ( ;0,1r ∈  this range represents a 

percent, with minimum at 0% and a maximum at 10%.  

 

 Graph 5.1. The level of consumption as a function of r and t (own elaboration source). 
 

Using this graph you can see that the level of consumption is increasing with respect to r 

and t. Moreover, also useful to observe the behavior of the trajectory of optimum 

consumption when r and t are fixed, whereas λ and α behave as variables that explain the 

different consumption levels. To show this case is considered an r = 5% and t = 10. The 

intervals associated with the subjective discount rate and the depth parameter take values 

( ]0,1λ ∈ and ( ]0,2µ ∈  respectively. Both intervals can be considered as rates expressed in 

percentages, as the real interest rate in graph 5.2. 
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Graph 5.2. Level of consumption as a function of the risk aversion rate ante the subjective discount rate. Own 

elaboration source. 

 

Consumption levels, as before, is increasing with respect to parameters of the random 

variables. To generate both graphs is expressed in the condition (4). 

 
Finally, by substituting optimal consumption of the average individual in the national 

income identity, it follows that  
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After some calculations, 
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5.6 The welfare function of the average consumer 

 

With some calculations it is possible to find the expression for welfare function, W. By 

substituting tc µ+  in the value function, it is found that 

( )( )

( )( ) ( ) [ ]( )( ){ }
1

211
22

0

0

1 8 1 1 .

d

   

t

r

W

e r r
rk

t
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µ

µλ
λ

∞
=

+

 − −Φ −Φ  +

−
+

=

∫
 

Fortunately, the expression above is a closed formula. 
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CONCLUSIONS 

 

 This research has focused upon the representation of a new alternative for the 

discounted utility model. Allowing both the intensity parameter for consumption and the 

risk aversion are random variables is a major challenge for the implementation of the 

problem, so for the solutions from it.  Despite this, what is lost in simplicity is offset by the 

possibility of modeling in better shape intertemporal decisions of consumers. Moreover, it 

has been achieved finding closed-form formulas for both: infinite horizon and finite 

horizon. 

 Through these models it has been possible to represent an average consumer when 

the economy is populated by consumers with different tastes and preferences, representing 

an advance with respect to previous literature, where only the homogeneous case is 

considered. Certain functions, both distribution and utility functions, have been considered 

by their mathematical goodness. So the modification of these, and other, aspects enrich the 

existing literature as to possibly allow a reinterpretation of the problems of intertemporal 

utility maximization.  

 Possible applications of these proposals include the statistical analysis of individual 

consumption; broader extensions, and direct employment for specific situations such as 

insurance, retirement pensions and so on. Consider the factors that influence the parameters 

of the random variables raised here, they represent a source of enrichment of the literature 

in economics, and possibly in finance, by means of this new proposed approach to the 

problem of utility maximization. 
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APPENDIX A. CONVENTIONAL MODEL WITH INFINTE HORIZON 

 

Next, the steps to get the result of the model are detailed: 

0

0 0

Maximize   
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It follows that, 
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Replacing the last expression into tc , 
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APPENDIX B. THE MODEL OF THE SUBJECTIVE DISCOUNT RATE AS 

RANDOM VARIABLE WITH INFINITE HORIZON 

 

For this setting the problem to solve is: 
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First, the inner integral is solved respect to the subjective discount rate. Then, the new 

problem is 
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Substituting tc  into the restriction, 
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r
r trt rt

e dt
r

rte dt
r

ee dt t e dt t e dt
t

β
β

αβ αβ
α λ α λ

α α

β β
α β α α

∞ −

∞ −

∞ ∞ ∞ − +− −

   =   
   

=

 
= − + = − + + 

∫

∫

∫ ∫ ∫
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The former integral requires a little trick. A new function, which integrates the same value, 

is proposed 

                                               

 

( ) ( ) ( ) ( )

( ) ( )

0

0

ln      if 0ln ,
0      otherwise

ln      if 0                                         ,
0      otherwise

                         

r
r tr

r t

r
r x

e t e dt te t e dt

e x e dx t x

β
ββ

β
β

β

β ββ αα

β
α

∞ − +
∞ − +

−

∞ −


− + + >− + = 


− + = >= 


∫∫

∫

[ ]ln        if 0                .
0      otherwise

re C r x
r

β

α


+ >= 


 

 See  [Gradshteyn, p. 571]. Thus,

 

 

( ) ( ) [ ]
0

ln ln .
r r

r te et e dt C r
r

β β
ββ

α α
∞ − +− + = +∫  

[ ]

[ ]

0

0

1 1ln ln ,

1 1ln ln .

r

r

ek C r
r r r

erk C r

β

β

αβ
α λ α α
αβ

α λ α α

 = + + + 
 

  = − + − 
 

 

Finally, replace the expression that contains the Lagrange’s multiplier into the consumption 

path  

( )0
1 1 1ln 1 ln .r

tc rk e C r rt
t

β

α α β
   = − + + + +    +  
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APPENDIX C. THE MODEL OF THE RISK AVERSION RATE AS RANDOM 

VARIABLE WITH INFINITE HORIZON 

 

The maximizations problem is: 
( )( )0 0

0 0

Maximize   

subject to    

tct

rt
t

e e d dt

k c e dt

α µρµ α
∞ ∞ − +−

∞ −

−

=

∫ ∫

∫  
So, first the inner integral is solved 

0

0 0

Maximize   

subject to     

t

t

rt
t

e dt
c

k c e dt

ρµ
µ

∞ −

∞ −

−
+

=

∫

∫
 

( ) ( )0

2

1
2

2

,
( )

0,            
( )

.

t

t
rt

t t
t

t
rt

c
t

r t

t

ec k c e
c

e e
c

c e

ρ

ρ

ρ

µλ λ
µ

µ λ
µ

µ µ
λ

−
−

−
−

−

−
= + −

+

= − =
+

 = −  



  

Next, replace this expression into the constraint and solve the integral 

 

1
2

2
0 0

1
2

0

,

2 .

r t rtk e e dt

k
r r

ρµ µ
λ

µ µ
ρ λ

−
∞ −
   = −    

   = −   +   

∫
 

Then,

 

 

2
0 2

r t

t
rc k e

r

ρµ ρ µ
−+   = + −     

. 
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APPENDIX D. CONVENTIONAL MODEL WITH FINTE HORIZON

 Since the set up is the same as A.1, but for the time horizon, the Lagrangeans coincide. This 

means that 

( )1 1ln .tc r tα ρ
α λ α

 
 
 

= + −

 

However, the interval of the integral is from 0 to T. 

( )

( )

( )

0 0

0 2

1

0

1 1ln ,

1 1ln 1 1 ,

1 1ln 1 1 .

T rt

rT rT rT

rT rT rT

k r t e dt

r Tk e e e
r r r

r
rk e Te e

r

α ρ
α λ α

ρα
α λ α

ρα
α λ α

−

− − −

−− − −

  = + −    
−      = − − + − + −         

−       − = − − − −           

∫

 

Replacing this value into the consumption,

 ( ) ( )
1

0
1 11 1 .rT rT rT

t
r

c rk e Te e r tr
ρ

ρ
α α

−− − −
              

−
= − − − − + −
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APPENDIX E. THE MODEL OF THE SUBJECTIVE DISCOUNT RATE AS 

RANDOM VARIABLE WITH FINITE HORIZON 
 

As it was mentioned before Lagrangians generate the same result, so  

1 1 1 1ln ln .tc rt
t

αβ
α λ α α β

  = + +   +   
 

Substituting tc  into the restriction, 

0 0

1 1 1 1ln ln .
T rtk rt e dt

t
αβ

α λ α α β
−   = + +    +    

∫  

The first two terms of the integral are easy to calculate. Nevertheless, the last term of this 

integral represents a major challenge: 

( ) ( ) ( ) ( ) ( ) ( )1

0 0 0

1 1 1ln ln ln .
T T r t ry Trt r rt e dt e t e dt e T y T e dyβ ββ ββ β β β

α α α
− + − +−− + = − + = − + +  ∫ ∫ ∫

 

Obviously, there is a change of variable, .ty T
β
β

+=
+

 It follows that 

( ) ( ) ( ) ( ) ( )( ) ( )1 1

0 0

1 1ln ln ln ,ry T ry Tr re T y T e dy e T T y e dyβ ββ ββ β β β
α α

− + − +− + + = − + + +  ∫ ∫  

where the first term is constant with respect to y and the second is solved according to 

[Gradshteyn, p. 571]. Then, the solution is 

 
( ) ( )( ) ( ) ( ) ( )

( )

1

0

1 1ln ln ln 1

1                                                                       ln ln .

ry T r Tr r

r

e T T y e dy e T e
r

e C r T
r

β ββ β

β

β β β
α α

β
α

− + − + − + + + = + − 

− + + +  

∫
 

Therefore, 

( ) ( ) ( )

( ) ( ) ( ){ } ( )

0

1

0

1 1 ln ln ln 1

1    ln 1 ,

1 ln 1 1 ln ln 1 .

r r
r TrT rT

rT

r TrT r rT

e ek e rTe C r T T e
r r r

e
r

r k e rT e C r T e e

β β
β

ββ

β β
α α α

αβ
α λ
αβ α β α

α λ

− +− −

−

−− +− −

  = − − + + + + + + −     

   + −    
      = − − + − + + + −       
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There is just one step left, replace the expression that contains the Lagrange’s multiplier 

into the consumption path  

( ) ( ) ( ){ } ( ) 1

0
1 1 1ln 1 1 ln ln 1 .r TrT r rT

tc rt r k e rT e C r T e e
t

ββα β α
α α β

−− +− −      = + + − − + − + + + −      + 
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APPENDIX F. THE MODEL OF THE RISK AVERSION RATE AS RANDOM 

VARIABLE WITH FINITE HORIZON 
 
 

Considering the maximization problem in this setting, we obtain that 
 

1
2

2 .
r t

tc e
ρµ µ

λ

− = −  
 

 
Then, the allocation resource restriction is as follows  

1
2

2
0 0

1
2

2
0

11
2

2
0

,

2 1 1 ,

21 1 .

rT t rt

r T rT

r TrT

k e e dt

k e e
r r

k e e
r r

ρ

ρ

ρ

µ µ
λ

µ µ
ρ λ

µ µ
λ ρ

−
−

−
− −

−−
−−

   = −    

      = − − −     +     

      = + − −       +      

∫

 

Therefore, 
 

1

2 2
0 1 1 .

2

r rT trT
t

rc k e e e
r

ρ ρµ ρ µ
−− −

−−  +   = + − − −         
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APPENDIX G. BIVARIATE MODEL (FTH) 

 

( )( )0 0 0

0 0

Maximize   

subject to    

t
T c t

T rt
t

e e dt e d e d

k c e dt

α ρ µα λρµ α λ ρ
∞ ∞ − − − −

−

−

=

∫ ∫ ∫

∫  
Applying twice the Fubini’s theorem to the objective function 

( ) ( )
0 0 0

Maximize   t
T c te e d d d tα µ ρ λµλ α ρ

∞ ∞ − + − +−∫ ∫ ∫  

Devoloping the inner integrals of the objective function. 

( ) ( )
( )

( ) ( )0 0 0 0 0 0
.t

tT T Tct

t t

ee e d d dt d dt dt
c t c

ρ λ
α µρ λ µλ µλµλ α ρ ρ

µ λ µ

− +
∞ ∞ ∞− +− + − −
− = =

+ + +∫ ∫ ∫ ∫ ∫ ∫  

Hence, we have now a new expression for the maximization problem: 

( )( )

( )
0

0 0

Maximize       

subject to            

T

t

T Trt rt
t t t

dt
t c

rk k e dt c e dt

µλ
λ µ

− −

−
+ +

− =

∫

∫ ∫

 

The Lagrangian is set up in this way: 

( ) ( )( ) ( ), rt
t t t t

t

c rk k c e
t c

µλλ β
λ µ

−−
= + − −

+ +
L  

Differentiating with respect to tc  

( )( )2 0
t

rt
c

t

e
t c

µλ β
λ µ

−= − =
+ +

L  

Isolating tc  

( )
rt

t
ec

t
µλ µ
β λ

= −
+

 

Substituting this expression in the restriction 

( )

( )
( )

0 0 0

2
0 10 2

,

1 1 ,

rtT Trt rt

rT t rT

ek e dt e dt
t

k e dt e
rt

µλ µ
β λ

µλ µ
β λ

− −

− −

= −
+

= − −
+

∫ ∫

∫
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( ) ( )

( )
( )

2 2
1 10 02 2

1
2

1
2

1 12
2

1sea ,    . Then,
2

r rT Tt t
e dt e dt

t t

z t dz dt
t

λ λ

λ
λ

− −
=

+ +

= + =
+

∫ ∫
 

changing once again the variable 

,   y r z dy rdz= =  

( ) ( )2 21 1
2 2 2 21 2 12 2

2

r rr T r Ty y

r r
e e dy e e dy

r r

λ λλ λ

λ λ

π
π

+ +− −
=∫ ∫  

( )( ) ( )2 22 .
r

e r T r
r

λ π λ λ = Φ + −Φ  
 

Next, 

( )( ) ( ) ( )2
0

22 1 .
r

rTk e r T r e
rr

λµλ π µλ λ
β

−   = Φ + −Φ − −       
 

The only unknown parameter is the Lagrange multiplier, so 

( )( )
( )( ) ( )2

1
.

8

rT

r

y e

re r T r
λ

µµλ
β

π λ λ

−+ −
=
  Φ + −Φ    

 

Therefore, 
( ) ( )( )

( )( ) ( )
2 0 1

.
8

r t
rT

t

rk eec
t r r T r

λ
µ

µ
λ π λ λ

−
−+ −

= −
 +  Φ + −Φ    
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APPENDIX H. CAPITAL PATH (FTH) 

 
After substituting the optimal consumption of the average individual in the constraint, the 

capital path satisfies 

 

( )( )
( )( ) ( )

( )

( )
0

0

2

0 10
28

1
d

rTrttrt rs

r s
trt

r

rk e
e ds s

r T r

e ek e e
s

λ

π

µ
µ

λ λ λ

−

−
− + 

 
 
      

+ −
−

Φ + −Φ
= +

+
∫ ∫  

( )( )
( )( ) ( ) ( )

0
2

2

0 1
2

1
1
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8

d .
rTr

rt rt rt

rs
trt

rk e
e e

r r r T r

ek e e e s
s

λ λ

λ

µµ

π λ λ λ

−
−−

−
+

 
 

−  
      

+ −
− −

Φ + −Φ
=

+
∫  

Now the following change of variable is used: 

( )
1
2sω λ= + , 

Hence, 

( )( )
( ) ( )
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( ) ( )

2

2
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0
2

0

0

2
1

2 d
8

1
2 d .

8
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rTr trt
t

rT r
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rrk e
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rk e
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k e k e

e k e

e

λ

λ
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λ

ω

µµ µ ω
π λ λ

µµ µ ω
π λ λ

 
 
 

+

−
+ −−

−
−

−
 
          
      

 
 

   
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=

∫

∫
 

Now, let 
2

2         d      and ,
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J rue
λ

λ

ω
ω ω
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π π λ λ
π

+ +− −  
  

= = = Φ + −Φ∫ ∫  

Hence, 
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  
 +   Φ −Φ      

= −
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∫

∫
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( )( ) ( )
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−  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 



60 
 

APPENDIX I. WELFARE FUNCTION (FTH) 
 

If the integral appearing in the welfare function is denoted by 
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2
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2

ds 
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T e

s
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+
= ∫  

 
and the following change of variable is used 
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2 d .
2

2

r r r
T T

r r
T

I e e e

e e
r

r

λ
ω λ ωλ λ
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APPENDIX J. DERIVATIVES OF THE WELFARE FUNCTION (FTH) 
 
In this section the partial derivates of the welfare function are computed. Notice that 
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If T is large enough, then the second term of the right-hand side of the above equation goes 

to zero exponentially. Thus, 0.W
T >∂
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 Moreover, 
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APPENDIX K. BIVARIATE MODEL (ITH) 
 

In this appendix the steps to obtain the results in the bivariate model of the infinite time 

horizon are shown: 
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Fubini’s theorem is applied twice to the objective, 
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Solving the inner integrals, 
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Thus, the objective function has changed and the decision maker faces the next 

maximization problem: 
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Later, a Lagrangian is formulated: 
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Sustituyendo esta expresión en la restricción 
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With a new change of variable 
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As usual, onlyβ  is unknown, so 
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