

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELECTRICA

UNIDAD CULHUACAN

TESINA

Seminario de Titulación: "Las tecnologías aplicadas en redes de computadoras" DES/ ESME-CU 5092005/09/2010

IMPLEMENTACIÓN DE FIBRA ÓPTICA EN UNA LAN

Que como prueba escrita de su exámen Profesional para obtener el Título de: Ingeniero en Comunicaciones y Electrónica

Presentan:

JAZMIN ALVARADO JAHUEY HUGO ARTURO DUEÑAS SÁNCHEZ ALINE KENIA MORALES BALZAMAR

México D.F.

Diciembre 2010.

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACAN TESINA

POR LA OPCIÓN DE

QUE PARA OBTENER EL TITULO DE

PRESENTAN:

SEMINARIO DE TITULACIÓN DES/ESIME-CUL/5092005/09/10 INGENIERO EN COMUNICACIONES Y ELECTRÓNICA

ALVARADO JAHUEYJAZMIN DUEŇASSÁNCHEZHUGO ARTURO MORALESBALZAMAR ALINE KENIA

IMPLEMENTACIÓN DE FIBRA ÓPTICA EN UNA LAN

DEBIDO AL CRECIMIENTO QUE HA TENIDO LA UVM CAMPUS COYOACÁN EN LOS ÚLTIMOS AÑOS, ES FUNDAMENTAL LA CREACIÓN DE UNA NUEVA ÁREA DE COMUNICACIONES DE RED. APROVECHANDO LA INFRAESTRUCTURA EXISTENTE DE FIBRA ÓPTICA SE PERMITE ESTE DESARROLLO. EL DISEÑO CUIDADOSO DE LA LAN, CONLLEVA A LA ELECCIÓN DE LOS DISPOSITIVOS DE RED MÁS CONVENIENTES DE ACUERDO AL RENDIMIENTO DE LOS EQUIPOS Y LAS PRESTACIONES DE LOS MEDIOS, ASÍ COMO LOS REQUERIMIENTOS QUE DEBE CUMPLIR EL CUARTO DE COMUNICACIONES QUE ALBERGARÁ LOS DISPOSITIVOS. GARANTIZANDO SERVICIOS DE VOZ Y DATOS, ACCESO A INTERNET, ADEMÁS COMPARTIR IMPRESORAS Y WIRELESS

Ing. Ignacio Monroy Ostria Jefe del Departamento de Ingeniería en Comunicaciones y Electrónica

A mi familia:

A mis padres, Teodoro y Macaria las personas más importantes de mi vida que a pesar de los desvelos y las fatigas siempre estuvieron conmigo en todas las etapas de mi educación, brindándome su apoyo, su cariño y su guía para que lograra cada una de mis metas, para que logre un futuro prometedor.

A mis hermanas Alicia, Claudia y Alma, les doy las gracias porque siempre me apoyaron y estuvieron conmigo en este camino lleno de tropiezos, pero que al final darán frutos.

A mis maestros

Los guías incondicionales, que forjaron los conocimientos y aprendizajes que aprovechare siempre, los que me dieron tantas lecciones de vida y pusieron el ejemplo de que todo lo que uno sueña se puede hacer realidad con esfuerzo y dedicación.

A Misael

A una de las personas más importantes de mi vida, con la que he compartido muchas experiencias gratas, la persona que me ha ayudado a salir adelante en los momentos de agobio y desesperación, a la persona que me a brindado su amor y confianza, gracias por apoyarme y ser otro guía más en mi camino.

A mis Amigos

A aquellos que siempre han estado ahí compartiendo conmigo todos mis logros, anhelos y que siempre me están apoyando, gracias.

Jazmín Alvarado Jahuey

A mi Madre

Raquel Sánchez García

Por todo su apoyo y amor, no tengo palabras para expresar lo que significas para mí.

Gracias.

A el Instituto Politécnico Nacional y sus fundadores.

Por ser la Institución que me ha dado la oportunidad de ser alguien en la vida, por ser parte fundamental en la vida de México mi hermoso país y porque lo Amo.

Hugo Arturo Dueñas Sánchez

Gracias a Dios por permitirme alcanzar las metas que he trazado en mi vida y llenarme de bendiciones. Agradezco a mis padres, Adelfo Morales Lozano e Isabel Balzamar Tolentino, por su amor incondicional y ejemplo constante de trabajo. A mis hermanos, Herman y Dorian, por la alegría que me da su compañía.

A mis profesores de seminario, que por su disposición y orientación, son dignos de nuestra gratitud. A la M. en C. Diana Salomé Vázquez Estrada, por darnos la oportunidad de concluir esta etapa.

A mis amigos, porque a través del tiempo que pasa, han sabido ganar mi afecto, con sus buenas cualidades y con la nobleza de su corazón.

A todos, ¡Muchas Gracias!

Aline Kenia Morales Balzamar

OBJETIVO

Implementar la utilización de Fibra Óptica dentro de la UVM campus Coyoacán en el edificio G para la infraestructura de comunicaciones de la misma.

JUSTIFICACIÓN

Este trabajo pretende mostrar el proceso completo que implica la creación de una nueva área basándose en la infraestructura previa. El crecimiento que ha tenido la universidad en los últimos años ha permitido ofertar carreras de medicina y veterinaria, por lo anterior, se tomó la decisión de adaptar el edificio G para impartir dichas carreras.

ÍNDICE

OBJETIVO	V
JUSTIFICACIÓN	v
INTRODUCCIÓN	1
CAPÍTULO 1 CONCEPTOS BÁSICOS	2
1.1 Introducción	3
1.2 Topología	4
1.3 Modos de transmisión	5
1.3.1 Simplex	5
1.3.2 Half duplex	5
1.3.3 Full duplex	5
1.4 Tipos de redes	6
1.4.1 Redes de área local	6
1.4.2 Redes de área metropolitana	6
1.4.3 Redes de área amplia	7
1.5 El Modelo OSI	7
1.6 Medios	9
1.7 Paneles de parcheo	10
1.8 Transceiver	12
1.9 Switch	13
1.9.1 Switching IP	14
1.10 Router	14
1.11 Firewall	14
1.11.1 Firewall de capa de red	15
1.11.2 Firewall de capa de aplicación	15
1.12 Rack	16

CAPÍTULO 2 FIBRA ÓPTICA	18
2.1 Introducción	19
2.2 Antecedentes	19
2.3 La luz	20
2.3.1 Naturaleza de la luz	21
2.3.2 Refracción de la luz	21
2.3.3 Reflexión de la luz	23
2.4 Fibra Óptica	23
2.4.1 Modos de propagación	24
2.4.2 Tamaño de la fibra	27
2.4.3 Composición del cable	28
2.4.4 Fuentes de luz diversas para los cables ópticos	29
2.4.5 Conectores para fibra óptica	29
CAPÍTULO 3 DISEÑO DE LA RED	31
3.1 Introducción	32
3.2 RDA	32
3.3 Larscom Terra Uno CSU/DSU	34
3.4 Router CISCO 2800	35
3.4.1 Configuración del router CISCO 2800	37
3.5 Firewall Netscreen-25	39
3.5.1 Configuración del Firewall Netscreen-25	41
3.6 Switch 3Com 7700	41
3.6.1 Configuración del Switch 3com 7700	42
3.7 Cuarto de comunicaciones (IDF)	45
3.8 Switch 3Com 4400	46
3.8.1 Switch 4400: detalle de la vista frontal	47
3.8.2 Switch 4400: detalle de la vista posterior	47
3.8.3 Configuración del Switch 3Com 4400	48
3.9 Usuarios (PC)	50

3.10 Licitación	52
CAPÍTULO 4 CARACTERÍSTICAS DEL EDIFICIO	56
4.1 Introducción	57
4.2 Fundamentos de los recintos de cableado	57
4.3 Tamaño del recinto de cableado	58
4.4 Especificación para el entorno	58
4.4.1 Paredes, suelos y techos	59
4.4.2 Temperatura y humedad	59
4.4.3 Instalación de la luz y de las tomas de corriente	60
4.4.4 Acceso a la sala y al equipo	60
4.4.5 Soporte y acceso del cable	60
4.5 Edificio	61
CAPÍTULO 5 ANÁLISIS COMPARATIVO DE COSTOS	64
5.1 Introducción	65
5.2 Adjudicación de contratos	65
5.3 Lista de precios materiales y dispositivos	66
5.4 Lista de precios: Mano de obra	67
CONCLUSIONES	69
BIBLIOGRAFÍA	71
GLOSARIO	73
ANEXOS	78

ÍNDICE DE IMÁGENES

CAPÍTULO 1.- CONCEPTOS BÁSICOS

1.1 Topologías Físicas	4
1.2 Comunicación half duplex	5
1.3 Comunicación full duplex	6
1.4 Las siete capas del modelo OSI	8
1.5 Paneles de parcheo montados en un rack de 19"	10
1.6 Los puertos RJ-45 están situados en el frente del panel de parcheo	11
1.7 Paneles de parcheo de la categoría 5e con cables de parcheo	11
1.8 Transceiver	12
1.9 Símbolo de un switch	13
1.10 El switch de capa 2 almacena las direcciones MAC	13
1.11 Símbolo de un router	14
1.12 Esquema de una red de computadoras que utiliza un firewall	15
1.13 Rack para servidores	17
1.14 Rack para paneles de parcheo	17

CAPÍTULO 2.- FIBRA ÓPTICA

2.1 Refracción de la luz	22
2.2 Ángulo crítico de la luz	22
2.3 Reflexión de la luz	23
2.4 Fibra Óptica	24
2.5 Modos de propagación	24
2.6 Fibra multimodo de índice escalonado	26
2.7 Fibra multimodo de índice gradual	26
2.8 Fibra monomodo	27
2.9 Composición física de la fibra óptica	28
2.10 Conectores para fibra óptica	30

CAPÍTULO 3.- DISEÑO DE LA RED

3.1 RDA	33
3.2 Fuente de alimentación del RDA	33
3.3 Entrega de enlaces de trabajo y respaldo	34
3.4 Larscom Terra Uno CSU/DSU	35
3.5 Vista frontal de un router CISCO 2800	36
3.6 Configuración router: escribimos yes para empezar la configuración	37
3.7 Configuración router: asignamos nombre de host para el router	37
3.8 Configuración router: asignamos contraseña de activación	37
3.9 Configuración router: asignamos contraseña de activación diferente	37
3.10 Configuración router: asignamos contraseña de terminal virtual	38
3.11 Configuración router 1	38
3.12 Configuración router: resumen de interfaces disponibles	38
3.13 Configuración router: seleccionamos una interfaz disponible	38
3.14 Configuración router 2	38
3.15 Configuración router 3	39
3.16 Configuración router: seleccionamos 2; para guardar la configuración	39
3.17 Configuración router 4	39
3.18 Vista frontal del firewall Netscreen-25	40
3.19 Cableado para redes 10/100 base-T	40
3.20 Ambiente gráfico del software Netscreen WebU	41
3.21 Switch 7700	42
3.22 Configuración de la nueva conexión	43
3.23 Ventana de configuración de propiedades	43
3.24 Ventana de configuración de puertos	44
3.25 Ventana de Hyperterminal	44
3.26 Pestañas de configuraciones	45
3.27 El MDF tiene una posición central en el campus	46
3.28 Switch 4400 (de 24 puertos): vista frontal	47
3.29 Switch 4400: vista posterior	48
3.30 Menú de nivel superior de la línea de comandos	49

3.31 Sesión de Internet Explorer	51
3.32 Sección Summary	51
3.33 Sección Device View	52
3.34 Empresas invitadas a la Licitación	53
3.35 Empresas que cumplen con los requisitos de la Licitación	53
3.36 Empresa ganadora de la Licitación	54
3.37 Diagrama de la implementación de Fibra óptica	55

CAPÍTULO 4 CARACTERÍSTICAS DEL EDIFICIO

4.1 Cableado debajo de suelo-falso	61	
4.2 Planta baja del Edificio G	62	
4.3 Primer nivel del Edificio G	63	

ÍNDICE DE TABLAS

CAPÍTULO 2 FIBRA ÓPTICA	
2.1 Tamaño de la fibra	27
CAPÍTULO 3 DISEÑO DE LA RED	
3.1 Velocidades de transmisión (E / Europea y T / Americana)	34
CAPÍTULO 5 ANÁLISIS COMPARATIVO DE COSTOS	
5.1 Lista de elementos utilizados en la implementación de red	66
5.2 Lista de precios para mano de obra	67

INTRODUCCIÓN

Sabemos que las redes de área local (LAN), son redes de datos con pocos errores y de alta velocidad que cubren una zona geográfica relativamente pequeña (unos pocos cientos de metros). Las LAN conectan estaciones de trabajo, periféricos, terminales y otros dispositivos en un edificio o en una zona geográfica limitada.

Para implementar una LAN, debemos entender el rendimiento de los equipos y las prestaciones de los medios. Cuando hablamos de medios nos estamos refiriendo a los distintos entornos físicos a través de los que pasa la señal de transmisión. Siendo la fibra óptica, el medio que ofrece velocidades de datos más altas que otros tipos de medios de red.

Cuanto mayor sea la red, más tráfico tendrá. De tal forma que, para cada capa del modelo de referencia OSI, existe un dispositivo que permite una administración óptima de la red. Además de los dispositivos de red, se debe tomar en cuenta los recintos de cableado para una LAN, estos deben contar con características específicas.

Es por ello que, el propósito de esta implementación radica en aprovechar la infraestructura del campus para la creación de un área de comunicaciones de red, que permita el crecimiento a medida que se va desarrollando esta.

1

CAPÍTULO 1 CONCEPTOS BÁSICOS

CAPÍTULO 1.- CONCEPTOS BÁSICOS

1.1 INTRODUCCIÓN

Debido al aumento en el número y tamaño de las redes, la Organización internacional de normalización (ISO), reconoció la necesidad de crear un modelo de red que pudiese ayudar a los diseñadores de redes a implementarlas y facilitar la comunicación entre ellas. Dando como resultado que en 1984 se lanzara el modelo OSI.

Si trabajamos con las capas del modelo de referencia OSI, se observa que los dispositivos operan por capas, mientras los paquetes de datos viajan a través de ellas desde el origen hasta el destino.

Aunque enviar datos a cada dispositivo de la red podría funcionar en una red relativamente pequeña, es de suponer que entre mayor sea la red, mayor tráfico tendrá. Al igual que las redes de computadoras crecen en tamaño y complejidad, lo hacen también los dispositivos que se utilizan para conectarlas. Los dispositivos de red pueden controlar la cantidad de tráfico de una red y pueden acelerar su flujo de datos.

En este capítulo se verán las topologías de red, los modos y medios de transmisión, así como los tipos de redes principales. Además se explicará el modelo de referencia OSI y las características de los dispositivos básicos de red.

3

1.2 TOPOLOGÍA

La topología define la estructura de la red. Siendo la topología física el diseño real del cableado, las que se utilizan más a menudo son las siguientes:

- *Topología en bus*: emplea un único segmento al que se conectan directamente todos los hosts.
- *Topología en anillo*: conecta un host al siguiente y el último host al primero, creando un anillo físico de cable.
- *Topología en estrella*: conecta todos los cables a un punto central de concentración. Este punto normalmente es un hub o un switch.
- *Topología en estrella extendida*: emplea la topología en estrella. Enlaza estrellas individuales enlazando sus hubs/switches.
- *Topología jerárquica*: los sistemas secundarios se enlazan a una computadora principal que controla el tráfico de la topología.
- Topología en malla: cada host tiene sus propias conexiones con todos los demás hosts. Se emplea cuando no puede haber una ruptura en la comunicación.

Figura 1.1 Topologías Físicas

1.3 MODOS DE TRANSMISIÓN

Según el sentido de la transmisión podemos encontrar tres tipos:

1.3.1 Simplex

En este caso el transmisor y el receptor están perfectamente definidos y la comunicación es unidireccional. Este tipo de comunicaciones se emplean usualmente en redes de radiodifusión, donde los receptores no necesitan enviar ningún tipo de dato al transmisor.

1.3.2 Half Duplex

En este caso, ambos extremos del sistema de comunicación cumplen funciones de transmisor y receptor, y los datos se desplazan en ambos sentidos pero no simultáneamente. Este tipo de comunicación se utiliza habitualmente en la interacción entre terminales y una computadora central.

Figura 1.2 Comunicación half duplex

1.3.3 Full Duplex

Este sistema es similar al half duplex, pero los datos se desplazan en ambos sentidos simultáneamente. Para ello ambos transmisores poseen diferentes frecuencias de transmisión o dos caminos de comunicación separados, mientras que la comunicación half-duplex necesita normalmente uno solo.

Figura 1.3 Comunicación full duplex

1.4 TIPOS DE REDES

El tipo de red se determina por su tamaño, propietario, distancia que cubre y su arquitectura física. Normalmente las LAN se encuentran ubicadas en un único edificio o campus y gestionan comunicaciones entre oficinas. Mientras que las WAN cubren una zona geográfica extensa y conectan ciudades y países.

1.4.1 Redes de Área Local

Las redes de área local (LAN) permiten a las empresas que emplean tecnología informática, compartir de forma eficiente elementos, tales como archivos e impresoras, y posibilitar las comunicaciones, como el correo electrónico. Unen entre sí datos, comunicaciones, computadoras y servidores de archivos. Las LAN están diseñadas para:

- Operar dentro de una zona geográfica limitada.
- Permitir a muchos usuarios acceder a medios de alto ancho de banda.
- Proporcionar conectividad a tiempo completo a los servicios locales.
- Conectar físicamente dispositivos adyacentes.

1.4.2 Redes de Área Metropolitana

Una red de área metropolitana (MAN) está diseñada para extenderse a lo largo de una ciudad entera. Puede ser una red única o interconectar un cierto número de LANs en una red mayor.

1.4.3 Redes de Área Amplia

En una red de área amplia (WAN) las computadoras, las impresoras y otros dispositivos, se pueden comunicar entre sí para compartir información y recursos, así como acceder a Internet. Algunas tecnologías WAN usuales son:

- Los módems analógicos.
- ISDN o RDSI.
- DSL.
- Frame Relay.
- ATM.
- Las series de portadora T (USA) y E (Europa).
- SONET.

1.5 EL MODELO OSI

El modelo de referencia OSI es el modelo principal para las comunicaciones de red. El objetivo principal de este modelo es acelerar el desarrollo de futuros productos de red.

El modelo de referencia OSI consiste de siete capas. Cada capa determina una función particular de la red. Esta separación de funciones de la red se conoce como *layering*. Dividir la red en estas siete capas proporciona las siguientes ventajas:

- Divide la comunicación de red en partes más pequeñas, sencillas y fáciles de desarrollar.
- Facilita la normalización de los componentes de la red, al permitir el desarrollo de múltiples fabricantes.

- Permite que diferentes tipos de hardware y software de red se comuniquen entre sí.
- Impide que los cambios en una capa afecten a las otras capas, por lo que se puede desarrollar más rápidamente.
- Divide la comunicación de la red en partes más pequeñas para hacer más fácil su comprensión y entendimiento.

El problema de mover información entre computadoras se divide en siete problemas pequeños y manejables con el modelo de referencia OSI. Cada uno de los siete problemas más pequeños se representa por su propia capa. Las siete capas del modelo OSI se muestran en la figura siguiente:

Figura 1.4 Las siete capas del modelo OSI

- 1. *Capa Física*: define las especificaciones eléctricas, mecánicas, procedimentales y funcionales para activar, mantener y desactivar el enlace físico entre sistemas finales.
- Capa de Enlace de Datos: proporciona el tránsito de datos a través de un enlace físico. Se encarga del direccionamiento físico de la topología de la red, del acceso del medio a la red y de la detección de errores.
- Capa de Red: proporciona conectividad y una selección de ruta entre dos sistemas host que pueden estar ubicados en redes geográficamente separadas.

- 4. *Capa de Transporte*: establece, mantiene y finaliza adecuadamente los circuitos orientados a la conexión.
- Capa de Sesión: establece, administra y finaliza las sesiones entre dos hosts. También sincroniza el diálogo entre las capas de presentación de los dos hosts y administra el intercambio de datos.
- Capa de Presentación: asegura que la información que se envía a la capa de aplicación de un sistema se va a poder leer por la capa de aplicación de otro sistema. También se encarga de la comprensión y el cifrado.
- Capa de Aplicación: es la capa OSI más cercana al usuario. Proporciona servicios de red. También sincroniza y establece un acuerdo con los procedimientos para la recuperación de errores e integridad en el control de datos.

1.6 MEDIOS

Cuando hablamos de los medios de una LAN nos estamos refiriendo a los distintos tipos de entornos físicos a través de los que pasa la señal de transmisión. Los medios de red se consideran componentes de capa 1 de las LAN. Se pueden emplear los siguientes tipos de cable para conectar computadoras:

- Cable de par trenzado apantallado.
- Cable de par trenzado sin apantallar.
- Cable coaxial.
- Cable de fibra óptica.

Por otro lado, la comunicación inalámbrica maneja ondas electromagnéticas que pueden viajar a través del espacio exterior o a través de un medio, como el aire de la atmósfera. Por tanto, no se necesitan medios de cable para señales inalámbricas. Los principales métodos de transmisión inalámbricos son:

- Ondas de radio
- Microondas
- Infrarrojo

1.7 PANELES DE PARCHEO

Los cables y los paneles de parcheo, así como otros componentes de interconexión, se consideran componentes pasivos de la capa 1, porque tan sólo proporcionan algún tipo de ruta de conducción.

Los paneles de parcheo (patch panels) son agrupaciones de jacks RJ-45. Los hay de 12, 24 y 48 puertos, y normalmente están montados en racks. Los lados frontales son jacks RJ-45; mientras que los lados posteriores son bloques de empuje que proporcionan rutas de conectividad o de conexión. Los estándares habitualmente usados son los paneles de las categorías 5e y 6.

Figura 1.5 Paneles de parcheo montados en un rack de 19"

En la parte frontal del panel, los puertos están señalados con marcaje numérico, además de contar con porta-etiquetas para completar el marcaje. En el lado posterior del panel, los contactos tienen un marcaje numérico y de colores.

Figura 1.6 Los puertos RJ-45 están situados en el frente del paneles de parcheo

En una red LAN, el panel de parcheo conecta entre si las computadoras de una red, y a su vez, a líneas salientes que habilitan la LAN para conectarse a Internet o a otra red WAN. Las conexiones se realizan con cables de parcheo (patch cords), que son los que interconectan los puertos de los paneles de parcheo con los diferentes equipos. El tipo de cable también puede variar, desde cable de par trenzado a coaxial y fibra óptica, dependiendo de los elementos que queramos interconectar.

Figura 1.7 Panel de parcheo de la categoría 5e con cables de parcheo

Los Patch Panel permiten hacer cambios de forma rápida y sencilla conectando y desconectando los cables de parcheo. Esta manipulación de los cables se hará habitualmente en la parte frontal, mientras que la parte posterior del panel tendrá los cables más permanentes y que van directamente a los equipos centrales (switches, routers, hubs, etc.).

1.8 TRANSCEIVER

Cuando un tipo de conector no coincide con el tipo de medio al que necesita conectarse, se emplea un transceiver (transceptor). Este convierte un tipo de señal y/o conector en otro; por ejemplo, para conectar una interfaz AUI de 15 pines con un conector RJ-45, o para convertir señales eléctricas en ópticas. Se considera un dispositivo de capa 1 porque solo se fija en los bits y deja fuera cualquier información de dirección o protocolo de nivel superior.

Para muchas redes de área local, el transceptor se incluye en la tarjeta de interfaz de red (NIC). Sin embargo, algunos tipos de tarjetas, requieren conectarse a un transceptor externo mediante un conector de interfaz de unidad de conexión (AUI). En Ethernet, un transmisor/receptor también recibe el nombre de Unidad de acceso al medio (MAU).

Figura 1.8 Transceiver

1.9 SWITCH

Un switch o conmutador es un dispositivo que opera en la capa 2 del modelo OSI. Su función es interconectar dos o más segmentos de red, pasando datos de un segmento a otro de acuerdo con la dirección MAC.

Figura 1.9 Símbolo de un switch

Los switches poseen la capacidad de almacenar las direcciones de red de nivel 2 (direcciones MAC) de los dispositivos alcanzables a través de cada uno de sus puertos. Esto permite que la información dirigida a un dispositivo vaya desde el puerto origen al puerto de destino.

Figura 1.10 El switch de capa 2 almacena las direcciones MAC

1.9.1 Switching IP

Una forma de switching se llama switching de capa 3 o switching de Protocolo de Internet (IP). Los switches de capa 3 son, esencialmente, un cruce entre switch LAN y un router. Cada puerto del switch es un puerto LAN separado, pero el motor que hace los envíos realmente calcula y almacena las rutas basándose en las direcciones IP, no en las MAC.

1.10 ROUTER

El propósito de un router es examinar los paquetes entrantes, elegir la mejor ruta para ellos a través de la red, y después, conmutarlos al mejor puerto de salida. Los routers son el dispositivo regulador de tráfico más importante en las redes grandes.

Figura 1.11 Símbolo de un router

Los routers utilizan direcciones de capa de red, también llamadas Protocolo Internet (IP), o direcciones lógicas, en lugar de las direcciones MAC. Los routers equiparan la información de la tabla de enrutamiento con las direcciones IP de destino de los datos, y envían los datos entrantes hacia la subred y el host correctos.

1.11 FIREWALL

Un firewall es simplemente un filtro que controla las comunicaciones, permitiendo o denegando las transmisiones de una red a otra. Se utiliza con frecuencia para evitar que los usuarios de Internet no autorizados tengan acceso a redes privadas conectadas a Internet.

Figura 1.12 Esquema de una red de computadoras que utiliza un firewall

Un firewall puede ser de tipo software, como un programa que se instala en una computadora conectada a Internet, filtrando las comunicaciones entre dicha computadora y el resto de la red; o bien, un dispositivo hardware conectado entre la red y el cable de la conexión a Internet. Un firewall correctamente configurado, añade una protección necesaria a la red, pero en ningún caso debe considerarse suficiente.

1.11.1 Firewall de Capa de Red

Funciona a nivel de red (capa 3 del modelo OSI) como filtro de paquetes IP. Toma decisiones según la dirección de origen, dirección de destino y puerto de cada uno de los paquetes IP. Un simple router es un ejemplo de firewall de nivel de red, con la deficiencia de que no pueden tomar decisiones sofisticadas.

1.11.2 Firewall de Capa de Aplicación

Trabaja en el nivel de aplicación (capa 7 del modelo OSI), de manera que los filtrados se pueden adaptar a características propias de los protocolos de este

nivel. Por ejemplo, si se trata de tráfico HTTP, se pueden realizar filtrados según la URL a la que se está intentando acceder.

Un firewall de nivel 7 de tráfico HTTP suele denominarse proxy, y permite que las computadoras de una organización entren a Internet de una forma controlada. Un proxy oculta de manera eficaz las verdaderas direcciones de red.

1.12 RACK

Un rack es un simple armazón metálico destinado a alojar equipamiento electrónico, informático y de comunicaciones. Cuenta con un ancho interno normalizado de 19 pulgadas, mientras que el alto y el fondo son variables para adaptarse a las distintas necesidades. Permitiendo la compatibilidad con equipamiento de cualquier fabricante.

El armazón cuenta con guías horizontales donde puede apoyarse el equipo, así como puntos de anclaje para los tornillos que fijan dicho equipamiento al armazón. También existen bandejas que permiten apoyar equipamiento no normalizado. Por ejemplo, un monitor y un teclado.

Los racks son muy útiles en un centro de proceso de datos, donde el espacio es escaso y se necesita alojar un gran número de dispositivos. Estos dispositivos suelen ser:

• Servidores, cuya carcasa ha sido diseñada para adaptarse al rack.

Figura 1.13 Rack para servidores

- Paneles de parcheo, que centralizan todo el cableado de la planta.
- Switches y routers de comunicaciones.
- Firewalls.

Figura 1.14 Rack para paneles de parcheo

CAPÍTULO 2 FIBRA ÓPTICA

CAPÍTULO 2.- FIBRA ÓPTICA

2.1 INTRODUCCIÓN

El descubrimiento de las propiedades de la luz y su manipulación, así como el desarrollo de la fibra óptica ha beneficiado al campo de las telecomunicaciones, entre otras áreas. Haciendo de esta, un medio propio de las redes de alta velocidad.

En este capítulo se pretende explicar las características de la luz que hacen posible que la fibra óptica, sea un medio de alta capacidad y fiabilidad para la transmisión de información. Así como, las dimensiones que debe tener cada tipo de fibra.

2.2 ANTECEDENTES

En 1884, el físico irlandés, John Tyndall, mostró que la luz que se propaga en un medio con alto índice de refracción no puede penetrar en un medio que tienen un índice más bajo, cuando esta luz llega con un ángulo suficientemente pequeño.

Más tarde, las fibras de plástico se utilizaron en medicina para alumbrar lugares de difícil acceso, pero eran poco efectivas.

A fines de 1950, se implemento la introducción de la fibra de una cubierta protectora de menor índice y la utilización de haces de fibras, permitiendo que esta tecnología evolucionara y llegara a aplicarse sobretodo en el campo de la medicina, la endoscopía fue el beneficio más grande.

En 1966, gracias a una publicación científica de K.C. Kao y G.Z. Hockham, se considero seriamente la posibilidad de utilizar fibras como canal de transmisión en las telecomunicaciones. Sin embargo, fueron necesarios progresos tecnológicos tanto en nivel de fibras (estructura) como de las fuentes de luz.

La primera fuente coherente de luz se inventó a principios de 1960, esta fue láser (Amplificación de luz por emisión estimulada de radiación (Light Amplification by Stimulated Emission of radiation).

Las características fueron:

- Muy voluminosos.
- Tiempo de vida corto.
- Longitud de onda de 0.95µm (micras), las fibras son poco transparentes.

En 1979, se perfeccionan las fuentes de luz mejorando su tiempo de vida, paralelamente la tecnología de las fibras tuvo un progreso considerable.

2.3 LA LUZ

Para tener un conocimiento de cómo funciona nuestra fibra óptica, tenemos que tener en cuenta como es que la luz nos ayuda a transmitir nuestra información, con lo cual se explicara como es que actúa.

2.3.1 Naturaleza de la Luz

La luz es una forma de energía electromagnética que alcanza su máxima velocidad en el vacío: 300,000 km/s (aproximadamente, 186,000 millas/seg). La velocidad de la luz depende del medio por el que se propaga (cuanto más alta es la densidad, más baja es la velocidad).

2.3.2 Refracción de la Luz

La luz se propaga en línea recta mientras se mueve a través de un única sustancia uniforme. Si un rayo de luz que se propaga a través de una sustancia entra de repente en otra (más o menos densa), su velocidad cambia abruptamente, causando que el rayo cambie de dirección. Esté cambio se denomina refracción.

La dirección en la que se refracta un rayo de luz depende del cambio de densidad que encuentre. Un rayo de luz que se mueva de una sustancia menos densa a un medio más denso se curva hacia el eje vertical *(*Figura 2.1*)*. Los dos ángulos formados por el rayo de luz en relación al eje vertical se denominan *Rayo incidente y Rayo refractado.*

Cuando la luz penetra en un medio más denso, el ángulo de incidencia es mayor que el ángulo de refracción; y cuando la luz penetra en un medio menos denso, el ángulo de incidencia es menor que el ángulo de refracción.

Ángulo crítico, una vez más tenemos un rayo de luz que se mueve de un medio más denso a otro menos denso. Sin embargo en la Figura 2.2 se incrementa gradualmente el ángulo de incidencia medido desde la vertical.

21

Figura. 2.1 Refracción de la luz

A medida que se incrementa el ángulo de incidencia, también lo hace el ángulo de refracción. Este se aleja igualmente del eje vertical y se hace cada vez más próximo a la horizontal.

Figura 2.2 Ángulo crítico de la Luz

En algún punto de este proceso, el cambio del ángulo de incidencia da como resultado un ángulo de refracción de 90°, de forma que el rayo refractado se mueve a lo largo de la horizontal. El ángulo de incidencia en este punto es el que se conoce como ángulo crítico.

2.3.3 Reflexión de la Luz

Cuando el ángulo de incidencia se hace mayor que el ángulo crítico, se produce un fenómeno denominado *reflexión* (Figura 2.3). En este caso, ya no pasa nada de luz al medio menos denso, porque el ángulo de incidencia es siempre igual al *ángulo de reflexión*.

Figura 2.3 Reflexión de la Luz

La Fibra óptica usa la reflexión para transmitir la luz a través de un canal. Un núcleo de cristal o plástico se rodea con una cobertura de cristal o plástico menos denso. La diferencia de densidad de ambos materiales debe ser tal que el rayo de luz que se mueve a través del núcleo sea reflejado por la cubierta en lugar de ser refractado por ella. La información se codifica dentro de un rayo de luz como series de destellos encendido-apagado que representan los bits uno y cero.

2.4 FIBRA ÓPTICA

La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.

Figura 2.4 Fibra Óptica

Las fibras (Figura 2.4) se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

2.4.1 Modos de propagación

La tecnología actual proporciona dos modos de propagación de luz a lo largo de canales ópticos, cada uno de los cuales necesita fibra con características distintas: multimodo y monomodo. A su vez, el multimodo se puede implementar de dos maneras: Índice escalonado o de índice gradual (Figura 2.5).

Figura 2.5 Modos de Propagación
Multimodo, se denomina así porque hay múltiples rayos de luz de una fuente luminosa que se mueven a través del núcleo por caminos distintos. Cómo se mueven estos rayos dentro del cable depende de la estructura del núcleo.

En la fibra *multimodo de índice escalonado*, la densidad del núcleo permanece constante dentro del centro hasta los bordes. Un rayo de luz se mueve a través de esta densidad constante en línea recta hasta que alcanza la interfaz del núcleo y la cubierta. En la interfaz, hay un cambio abrupto a una densidad más baja que altera el ángulo de movimiento del rayo. El término índice escalonado se refiere a la rapidez de este cambio.

La Figura 2.6 muestra varios haces (o rayos) que se propagan a través de una fibra de índice escalonado. Algunos rayos del centro viajan en línea recta a través del núcleo y alcanzan el destino sin reflejarse o refractarse. Algunos otros rayos golpean la interfaz del núcleo y se reflejan en un ángulo menor que el ángulo crítico; estos rayos penetran la cubierta y se pierden. Todavía quedan otros que golpean el borde del núcleo con ángulos mayores que el ángulo crítico y se vuelven a reflejar dentro del núcleo hasta el otro lado, balanceándose hacia delante y hacia atrás a lo largo del canal hasta que alcanza su destino.

Cada rayo se refleja fuera de la interfaz en un ángulo igual a su ángulo de incidencia. Cuanto mayor sea el ángulo de incidencia, más amplio es el ángulo de reflexión. Un rayo con un ángulo de incidencia menor necesitará más balanceos para viajar la misma distancia que un rayo con un ángulo de incidencia mayor. En consecuencia, el rayo con el ángulo de incidencia más pequeño debe viajar más rápido para alcanzar su destino. Esta diferencia en la longitud del camino significa que distintos rayos son recombinados en el receptor; el resultado es una señal que no es ya una réplica exacta de la señal que se retransmitió. Esta señal ha sido distorsionada por los retrasos de la propagación. Esta distorsión limita la tasa de datos disponibles y hace que el cable multimodo de índice escalonado sea inadecuado para ciertas aplicaciones precisas.

25

Figura 2.6 Fibra multimodo de índice escalonado

Hay un segundo tipo de fibra, denominado *Fibra multimodo de índice gradual,* que decrementa esta distorsión de la señal a través del cable. La palabra índice se refiere en este caso al índice de refracción. La fibra de índice gradual tiene densidad variable. La densidad es mayor en el centro del núcleo y decrece gradualmente hasta el borde. La Figura 2.7 muestra el impacto de esta densidad variable en la propagación de los rayos luminosos.

La señal se introduce en el centro del núcleo. A partir de este punto, solamente el rayo horizontal se mueve en línea recta a través de la zona central, de la densidad constante. Los rayos en otros ángulos se mueven a través de una serie de densidades que cambian constantemente. Cada diferencia de densidad hace que el rayo se refracte formando una curva. A demás, cambiar la refracción cambia la distancia de cada rayo que viajan en el mismo periodo de tiempo, dando como resultado que los rayos distintos se intersecan a intervalos regulares. Si se sitúa cuidadosamente el receptor en uno de estos intervalos se puede conseguir reconstruir la señal con precisión mucho mayor.

Figura 2.7 Fibra Multimodo de índice gradual

Monomodo, el monomodo usa fibra de índice escalonado y una fuente de luz muy enfocada que limita los rayos a un rango muy pequeño de ángulos, todos cerca de

la horizontal. La **fibra monomodo** (Figura 2.8) se fabrica con un diámetro mucho más pequeño que las fibras multimodo y con una densidad (índice de refracción) sustancialmente menor. El decrecimiento de densidad da como resultado un ángulo crítico que está muy cerca de los 90° grados para hacer que la propagación de los rayos sea casi horizontal. En este caso, la propagación de los distintos rayos es casi idéntica y los retrasos son despreciables. Todos los rayos llegan al destino (juntos) y se pueden recombinar sin distorsionar la señal.

Figura 2.8 Fibra monomodo

2.4.2 Tamaño de la fibra

Las fibras ópticas se definen por la relación entre el diámetro de su núcleo y el diámetro de su cubierta, ambas expresadas en micras (micrómetros). La Tabla 2.1 muestra los tamaños más frecuentes. El último tamaño de la tabla se usa únicamente para monomodo.

Tabla 2.1	Tamaño	de la	Fibra
-----------	--------	-------	-------

Tipo de Fibra	Núcleo (micras)	Cubierta (micras)
62,5/125	62,5	125
50/125	50,0	125
100/140	100,0	140
8,3/125	8,3	125

2.4.3 Composición del cable

La Figura 2.9 muestra la composición de un cable típico de fibra óptica. La fibra estás formada por un núcleo rodeado por una cubierta. En la mayoría de los casos, la fibra está cubierta por un nivel intermedio que lo protege de la contaminación. Finalmente, todo el cable está encerrado por una carcasa exterior.

Figura 2.9 Composición típica de la fibra óptica

Tanto el núcleo como la cubierta pueden estar hechos de cristal o plástico, pero deben ser de densidades distintas. A demás, el núcleo interior debe ser ultra puro y completamente regular en forma y tamaño. Las diferencias químicas del material, e incluso pequeñas variaciones del tamaño y la forma del canal, alteran el ángulo de reflexión y distorsionan la señal. Algunas aplicaciones pueden admitir cierta distorsión y sus cables pueden ser más baratos, pero otras dependen de que haya una uniformidad completa.

La cobertura exterior (o funda) se puede hacer con varios materiales, incluyendo un recubrimiento de teflón, plástico, plástico fibroso, tubería de metal y malla metálica. Cada uno de estos materiales sirve para un propósito distinto. Los plásticos son ligeros y baratos pero no proporcionan fuerza estructural y pueden emitir humos cuando se queman. La tubería de metal proporciona mayor fortaleza pero eleva los costes. El teflón es ligero y se puede usar al aire libre, pero es caro y no incrementa la robustez del cable. La elección del material depende del lugar de instalación del cable.

2.4.4 Fuentes de luz diversas para los cables ópticos

El objetivo del cable de fibra óptica es contener y dirigir rayos de luz del origen al destino. Para que haya transmisión, el dispositivo emisor debe estar equipado con una fuente luminosa y el dispositivo receptor con una célula fotosensible (denominada fotodiodo) capaz de traducir la luz recibida en corriente que pueda ser usada en una computadora. La fuente luminosa puede ser bien un *diodo emisor de luz (LED*, Light Emmitting Diode) o un diodo de inyección láser (*IDL*, lnjection Laser Diode). Los LED son la fuente más barata, pero proporcionan una luz desenfocada que incide en los extremos del canal con ángulos descontrolados y se difumina con la distancia. Por esta razón, el uso de los LED está limitado a distancias cortas.

Por otro lado, los *lásers* se pueden enfocar en un rango muy estrecho, permitiendo el control del ángulo de incidencia. Las señales láser conservan el carácter de la señal en distancias considerables.

2.4.5 Conectores para fibra óptica

Los conectores para el cable de fibra óptica deben ser tan precisos como el cable en sí mismo (Figura 2.10). Con medios metálicos, las conexiones no necesitan ser tan exactas siempre que ambos conductores estén en contacto físico. Por otro lado, con la fibra óptica cualquier desalineamiento o bien con otro segmento del núcleo o bien con un fotodiodo da como resultado que la señal se refleje hacia el emisor y cualquier diferencia en el tamaño de los dos canales conectados da como resultado una señal disipada; una conexión fuertemente presionada puede comprimir ambos núcleos y alterar el ángulo de reflexión.

Figura 2.10 Conectores para fibra óptica

Teniendo en cuenta estas restricciones, los fabricantes han desarrollado varios conectores que son precisos y fáciles de usar. Todos los conectores populares tienen forma de barril y conectores en versiones macho y hembra. El cable se equipa con un conector macho que se bloquea o conecta con un conector hembra asociado al dispositivo a conectar.

CAPÍTULO 3 DISEÑO DE LA RED

CAPÍTULO 3.- DISEÑO DE LA RED

3.1 INTRODUCCIÓN

En el capítulo anterior se daba una explicación de los dispositivos básicos que componen una red. Conforme se configura una red de área local (LAN), la elección de los equipos y medios, de acuerdo a su rendimiento y beneficios, es uno de los pasos más importantes.

A medida que un entorno de red se va desarrollando, el diseño cuidadoso de la red debe ser una prioridad para asegurar una red rápida y estable. Si no se diseña correctamente, se pueden presentar muchos problemas que pondrían en peligro el crecimiento de la red.

En este capítulo se presentarán los dispositivos de red que se utilizarán en la LAN, así como sus características y funciones dentro de ella.

3.2 RDA

Es el dispositivo que instala el proveedor de servicios de telecomunicaciones, en donde entrega los enlaces que se tengan contratados desde la central de zona, en este caso el proveedor es Telmex.

32

Figura 3.1 RDA

Telmex nos entrega 5 E1 a través de su red de fibra óptica, el RDA esta instalado en nuestro Site o MDF debido a la topología de nuestra red (estrella) y va acompañado de su fuente de alimentación la cual es instalada también por el proveedor.

Figura 3.2 Fuente de alimentación del RDA

Es importante recordar que el formato de la señal E1 lleva datos en una tasa de 2,048 millones de bits por segundo y puede llevar 32 canales de 64 Kbps cada uno, de los cuales 31 son canales activos simultáneos para voz o datos en SS7 (Sistema de Señalización Número 7). Telmex entrega enlaces de trabajo y respaldo es decir si por alguna razón falla el enlace de trabajo automáticamente entran los de respaldo lo que garantiza que nuestro servicio sea constante.

Figura 3.3 Entrega de enlaces de trabajo y respaldo

Ahora el siguiente paso es distribuir el servicio del RDA hacia nuestro router, pero para lograr esto se necesita un LARSCOM TERRA UNO CSU/DSU.

3.3 LARSCOM TERRA UNO CSU/DSU

Un *CSU/DSU* (Unidad de servicio de canal/Unidad de servicio de datos) es un dispositivo digital que proporciona servicios de acceso dedicado para los sistemas de transmisión digital de nivel uno E1/T1 (Tabla 3.1).

E1	2.048 Mbit/s	T1	1.544 Mbit/s
E2	8.448 Mbit/s	T2	6.312Mbit/s
E3	34.368 Mbit/s	Т3	44.436 Mbit/s – 32.064 Mbit/s
E4	139.264 Mbit/s	T4	139.264 Mbit/s – 97.728 Mbit/s

Tabla 3.1 Velocidades de transmisión (E / Europea y T / Americana)

Larscom Terra Uno cuenta con las siguientes características (para saber más vea anexos):

- Utiliza cable RJ45 para interconectar la línea E1 con el puerto de línea.
- Utiliza supresor de interferencia electromagnética.

Este dispositivo se conecta con el router.

Figura 3.4 Larscom Terra Uno CSU/DSU

3.4 ROUTER CISCO 2800

El router Cisco 2800 ofrece seguridad sobre servicios de datos, voz y video. Incorpora datos, seguridad y servicios de voz en un solo sistema de entrega rápido y escalable para aplicaciones de negocios. Además de que están diseñados especialmente para las pequeñas y medianas empresas, ofrecen las siguientes prestaciones destacadas: Servicios de seguridad integrados, rendimiento superior, la posibilidad de conectar hasta 96 teléfonos IP y una serie de nuevas ranuras para nuevos módulos y tarjetas de interfaz.

Tiene una gran cantidad de ranuras de ampliación que ofrece un rendimiento hasta cinco veces superior. En los servicios de seguridad y voz puede conseguirse incluso un rendimiento diez veces superior. El elevado número de ranuras garantiza una ampliación flexible del router con potentes módulos y tarjetas de interfaz. Este modelo de router tiene las opciones de ampliación que incluye dos tarjetas de interfaz WAN de alta velocidad (HWICs), una ranura para el módulo de datos de voz en paquetes (PVDM), dos ranuras para módulos de integración avanzada (AIM). De esta manera dispone de más de 90 módulos para configurar las funciones del router.

Las conexiones WAN rápidas son posibles a través de dos puertos Fast Ethernet 10/100 o dos puertos Gigabit Ethernet 10/100/1000.

Además, se pueden utilizar hasta 44 puertos de conmutación con alimentación integrada (PoE – Power over Ethernet).

Cuenta con una seguridad integrada ya que la encriptación basada en hardware está integrada en la placa base. De esta forma, la CPU no tiene que hacerse cargo de las tareas de encriptación, consiguiéndose así, en comparación con soluciones basadas en software, un considerable aumento del caudal de datos IPsec. Según sus requerimientos, puede insertar otros módulos de seguridad: módulos VPN, que aumenten el rendimiento y la cantidad de conexiones túnel, módulos de red de gestión de contenido para el filtrado de URLs no deseadas o módulos de red de prevención de intrusiones para aumentar la seguridad.

Asimismo puede elegir del conjunto de prestaciones de seguridad del software IOS de Cisco funciones tales como cortafuegos de inspección dinámica, Network Access Control (NAC), VPN con capacidad de voz y vídeo (V3VPN) o Dynamic Multipoint VPN (DMVPN).

Todo ello hace del router Cisco 2800 una de las opciones más seguras y fiables para PYMES y sucursales.

Se pueden integrar otros servicios gracias a la gran variedad de módulos de servicio adicionales que tiene, además de que se puede integrar en el router funciones adicionales, que de otra manera requerirían dispositivos separados.

Figura 3.5 Vista frontal de un router Cisco 2800

3.4.1 Configuración del Router CISCO 2800

Usando el comando *setup* se puede configurar el nombre de host para el router, definir contraseñas y configurar una interfaz para comunicarse con la red en gestión. Los siguientes mensajes aparecen al final de la secuencia de inicio:

--- System Configuration Dialog ---

At any point you may enter a question mark '?' for help. Use ctrl-c to abort configuration dialog at any prompt. Default settings are in square brackets '[]'.

Would you like to enter the initial configuration dialog? [yes/no]: yes

Figura 3.6 Configuración router: escribimos yes para empezar la configuración

Configuring global parameters:

Enter host name [Router]: Router

Figura 3.7 Configuración router: asignamos nombre de host para el router

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration. Enter enable secret: **xxxxxx**

Figura 3.8 Configuración router: asignamos contraseña de activación

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images. Enter enable password: **xxxxxx**

Figura 3.9 Configuración router: asignamos contraseña de activación diferente

Para mayor seguridad se deben de encriptar las contraseñas que se utilicen para que solo la persona autorizada pueda ingresar a ellas, para esto se debe ingresar al router, a la parte de configuración de router y realizar ese cambio. The virtual terminal password is used to protect access to the router over a network interface. Enter virtual terminal password: **xxxxxx**

Figura 3.10 Configuración router: asignamos contraseña de terminal virtual

La contraseña de terminal virtual, evita un acceso no autenticado al router mediante puertos que no sean el de la consola.

Configure SNMP Network Management? [yes]: Community string [public]:

Figura 3.11 Configuración router

Current interface summary Controller Timeslots D-Channel Configurable modes Status T1 0/0/0 24 23 pri/channelized Administratively up T1 0/0/1 24 23 pri/channelized Administratively up T1 0/2/0 24 23 pri/channelized Administratively up T1 0/2/1 24 23 pri/channelized Administratively up Any interface listed with OK? value "NO" does not have a valid configuration Interface IP-Address OK? Method Status Protocol GigabitEthernet0/0 20.0.0.40 YES DHCP up up GigabitEthernet0/1 unassigned NO unset up up GigabitEthernet0/3/0 unassigned NO unset up up

Figura 3.12 Configuración router: resumen de interfaces disponibles

Enter interface name used to connect to the management network from the above interface summary: fastethernet0/0

Figura 3.13 Configuración router: seleccionamos una interfaz disponible

Configuring interface FastEthernet0/0: Use the 100 Base-TX (RJ-45) connector? [yes]: yes Operate in full-duplex mode? [no]: no Configure IP on this interface? [yes]: yes IP address for this interface: 172.1.2.3 Subnet mask for this interface [255.255.0.0] : 255.255.0.0 Class B network is 172.1.0.0, 16 subnet bits; mask is /16

Figura 3.14 Configuración router

```
The following configuration command script was created:
hostname Router
enable secret 5 $1$D5P6$PYx41/lQIASK.HcSbf05q1
enable password xxxxxx
line vty 0 4
password xxxxxx
snmp-server community public
1
no ip routing
1
interface FastEthernet0/0
no shutdown
media-type 100BaseX
half-duplex
ip address 172.1.2.3 255.255.0.0
1
interface FastEthernet0/1
shutdown
no ip address
!
end
```

Figura 3.15 Configuración router

[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.
Enter your selection [2]: 2
Building configuration...

Use the enabled mode 'configure' command to modify this configuration. Figura 3.16 Configuración router: seleccionamos 2, para guardar la configuración

Press RETURN to get started! Router>

Figura 3.17 Configuración router

3.5 FIREWALL NETSCREEN-25

El Firewall Netscreen-25 de la marca Juniper Networks, ofrece seguridad para pequeñas y medianas empresas, ya que filtra las direcciones MAC y las

direcciones IP que se identifiquen como de alto riesgo, es decir que no sean conocidas por el usuario, dentro de estas podemos encontrar las direcciones IP que contengan virus como son troyanos, gusanos, Spyware, Adware, etc. Cuenta con puertos Ethernet 10/100 Base-T.

Figura 3.18 Vista frontal del Firewall Netscreen-25

Trabaja en dos modos:

- Transparente (capa 2): Las direcciones IP tanto para las zonas seguras como para las no seguras es 0.0.0.0; de esta forma el dispositivo es invisible a la red.
- Ruta (capa 3): Permite configurar cada interfaz usando una dirección IP y una máscara de subred.

Figura 3.19 Cableado para redes 10/100 Base-T

3.5.1 Configuración del Firewall Netscreen-25

- 1. Usando el explorador. En el campo de dirección URL, ingresar http://192.168.1.1 o http://ns.setup
- 2. Ingresamos un nombre de administrador y contraseña.
- 3. Seleccionamos el tipo de zona para cada interfaz. Puede ser Trust, de confianza; Untrust, de no confianza; DMZ,
- 4. Se asignan las direcciones IP y las máscaras de red.
- 5. Se asignan direcciones IP a los hosts de la red.

La dirección IP y máscara predeterminadas para la zona segura es 192.168.1.1/24. Esta puede ser cambiada para coincidir con la dirección IP de la red existente.

Figura 3.20 Ambiente gráfico del software Netscreen WebUI

3.6 SWITCH 3Com 7700

El Switch 7700 para LAN ofrece switching y enrutamiento de alto rendimiento, multi-capa (Capa 2/Capa 3), Gigabit y Fast Ethernet en un chasis escalable, flexible y modular. Está diseñado para manejar IP's en redes de área metropolitana (MAN), redes empresariales de gran tamaño así como campus.

La arquitectura redundante del chasis soporta ranuras de expansión, fuentes de alimentación, ventiladores y módulos de switching con tecnología hot-swap para una operación prácticamente continua.

El Switch 7700 con chasis de 4 ranuras contiene 3 ranuras de payload, switch fabric y un sub-módulo opcional para conexiones adicionales de Gigabit (puertos 1000BASE-T o 1000BASE-X GBIC).

El Switch 7700 soporta los siguientes servicios:

- Acceso a Internet de banda ancha.
- Implementaciones MAN y redes más grandes como empresas/campus.
- Multicast por medio de enrutamiento y soporta multicast para audio y video.

En la sección de anexos se resumen las funciones que admite el Switch 7700.

Figura 3.21 Switch 7700

3.6.1 Configuración del Switch 3com 7700

1. Abrir Inicio > Programas > Accesorios > Comunicaciones > HyperTerminal.

2. HyperTerminal despliega la ventana *Connection Description*, como se muestra en la Figura 3.22.

Connection Description ? 🔀
New Connection
Enter a name and choose an icon for the connection:
Name:
SW7700
lcon:
OK Cancel

Figura 3.22 Configuración de la nueva conexión

- 3. Asignamos un nombre a la nueva conexión. Aparecerá la ventana que se muestra en la Figura 3.23.
- 4. Seleccionamos uno de los puertos COM.

Connect To	? 🔀		
🌯 sw7700			
Enter details for the phone number that you want to dial:			
Country/region:	Mexico (52)		
Area code:	25000		
Phone number:			
Connect using:	COM1 💌		
	OK Cancel		

Figura 3.23 Ventana de configuración de propiedades

- 5. Para la ventana de propiedades del puerto (Figura 3.24), asignamos los siguientes parámetros:
 - Baud rate = 9600

- Data bit = 8
- Parity check = none
- Stopbit = 1
- Flor control = none

COM1 Properties	? 🔀
Port Settings	
Bits per second:	9600 💌
Data bits:	8
Parity:	None
Stop bits:	1
Flow control:	None
	Restore Defaults
	K Cancel Apply

Figura 3.24 Ventana de configuración de puerto

6. En la ventana de HyperTerminal, seleccionamos *Propiedades*.

Figura 3.25 Ventana de HyperTerminal

- 7. En la ventana de Propiedades, seleccionamos la pestaña Settings, como se muestra en la Figura 3.26.
- 8. Finalmente, asignamos el valor VT100 en el submenú Emulation.

SW7700 Properties ? 🔀				
Connect To Settings				
Function, arrow, and ctrl keys act as				
Terminal keys				
Backspace key sends				
O Ctrl+H ○ Del ○ Ctrl+H, Space, Ctrl+H				
Emulation:				
VT100 VT100 VT100				
Telnet terminal ID: VT100				
Backscroll buffer lines: 500				
Play sound when connecting or disconnecting				
Input Translation ASCII Setup				
OK Cancel				

Figura 3.26 Pestaña de configuraciones

3.7 CUARTO DE COMUNICACIONES (IDF)

Una de las decisiones que se toma en cuenta al planificar la red es la ubicación de los recintos de cableado, ya que es donde se van a instalar muchos de los cables y dispositivos de red.

No es raro que las grandes redes tengan más de un recinto de cableado. Habitualmente, cuando esto sucede, uno de ellos está diseñado como Instalación Principal de Distribución (MDF) mientras que todos los demás, las llamadas Instalaciones Intermedias de Distribución (IDF), son independientes de aquél. Una topología como esta recibe el nombre de topología en estrella extendida, como se muestra en la Figura 3.27.

Figura 3.27 El MDF tiene una posición central en el campus.

3.8 SWITCH 3Com 4400

El Switch 4400 es un dispositivo apilable de 10/100 Mbps y ofrece a los grupos de trabajo de alto rendimiento una conexión entre la red principal y el servidor. El Switch 4400 permite conexiones Cascade, Gigabit Ethernet o Fast Ethernet Fiber cuando se instalan los módulos de expansión en las ranuras de expansión de la parte posterior de la unidad.

Asimismo puede añadir el Switch 4400 a cualquier sistema SuperStack a medida que crezca la red.

En la sección de anexos se resumen las funciones de hardware y las funciones del software que admite el Switch 4400.

3.8.1 Switch 4400: detalle de la vista frontal

El Switch presenta 24 o 48 puertos 10BASE-T/100BASE-TX con negociación automática configurados como Auto MDIX (cruzado). Estos puertos proporcionan automáticamente la conexión adecuada.

Figura 3.28 Switch 4400 (de 24 puertos): vista frontal

Asimismo, puede configurar de forma manual estos puertos como half duplex 10BASE-T, full duplex 10BASE-T, half duplex 100BASE-TX o full duplex 100BASE-TX. La longitud máxima del segmento es de 100 m en el cableado de par trenzado de categoría 5.

En la sección de anexos se presenta una lista de los LEDs que pueden verse en la parte frontal del Switch y la forma de interpretar su estado en función del color.

3.8.2 Switch 4400: detalle de la vista posterior

El Switch ajusta automáticamente su valor de corriente a cualquier voltaje de entrada dentro del margen 90-260 V CA.

Figura 3.29. Switch 4400: vista posterior

Como medida de protección contra los posibles fallos de la fuente de alimentación interna, puede utilizar esta toma para conectar un Switch 4400 a un SuperStack 3 Advanced Redundant Power System (ARPS, Sistema avanzado de alimentación superflua).

El puerto de consola le permite conectar una terminal y llevar a cabo la administración remota o local fuera de banda. Este puerto utiliza un cable serie nulo estándar y se configura para detección automática de velocidad en baudios, 8 bits de datos, sin paridad y 1 bit de parada.

Puede utilizar estas ranuras para instalar módulos de expansión. Éstos permiten al Switch admitir diversas formas de conexión y añadir funciones adicionales a su Switch.

En la sección de anexos se muestran los valores predeterminados del Switch 4400:

3.8.3 Configuración del Switch 3Com 4400

1. Accedemos al software de emulación de terminal y configuramos los valores del puerto COM al cable que se haya conectado. Los valores deben

configurarse para que coincidan con la configuración predeterminada del Switch:

- 19.200 bauds
- 8 bits de datos
- sin paridad
- 1 bit de parada
- sin control de flujo del hardware
- La secuencia de inicio de sesión de la interfaz de línea de comandos comienza en cuanto el Switch detecta una conexión con el puerto de consola que le corresponde.
- En los indicadores de inicio de sesión y contraseña, introduzca admin como su nombre de usuario y pulse la tecla de *enter* en el indicador de contraseña. Aparecerá el menú de nivel superior de la interfaz de línea de comandos tal como se muestra en la Figura 3.30.

Menu options: bridge feature logout physicalInterface protocol security system trafficManagement	 Administer bridge-wide parameters Administer system features Administer system features Logout of the Command Line Interface Administer physical interfaces Administer protocols Administer security Administer system-level functions Administer traffic management
Type ? for help	(1)
Select menu option:	【 ■

Figura 3.30 Menú de nivel superior de la línea de comandos

4. En el indicador Select menu option, introducimos el comando protocol IP basicConfig. En el indicador Enter configuration method escribimos manual.

 Finalmente introducimos la dirección IP, la máscara de subred y la dirección IP de puerta de enlace del Switch. La pantalla muestra un resumen de la información introducida.

3.9 USUARIOS (PC)

¿Que son Usuarios? Son las personas que se van a ver beneficiadas al realizar este proyecto, es decir son los servicios que se ofrecerán gracias a la implementación de la fibra óptica en la LAN, los cuales son los siguientes:

- Internet
- Correo Electrónico
- Impresión
- Acceso a Aplicaciones (Base de datos)
- Telefonía
- Wireless (excepción)

La red tendrá dos segmentos uno académico y otro administrativo con direcciones 172.16.11.x para académico y 10.34.8.x para administrativo. La red Wireless preverá acceso a red académica.

Se configuraran los Switch para trabajar ambos segmentos por medio de VLAN. Estas son las imágenes de la configuración del Switch desde el Internet Explorer.

Se abre una sesión de Internet Explorer y se teclea la dirección IP del Switch para este ejemplo es 10.34.6.10.

Figura 3.31 Sesión de Internet Explorer

Se tienen 2 secciones Summary y Device View.

Figura 3.32 Sección Summary

🖉 3Com Web Management Interface - Window	s Internet Explore	r						_ 8 ×
💽 🕞 🗢 🙋 http://10.34.6.10/dev01/html/inde	ex.htnc			-	8 🛃 🕽	🖌 🔄 Bing		P •
Archivo Edición Ver Eavoritos Herramienta	is A <u>v</u> uda							
🔤 🙀 Favoritos 🛛 🝰 🏉 Sitios sugeridos 👻 🙋	Más complemen	tos 🔹 🙋 Hotmail gratuit	o) 🟠 • 🖾	- 📑 🖶 -	<u>P</u> ágina → _Seguridad →	Herramiențas 🕶	0 · 🕼 🚉 🚳
🔏 3Com Web Management Interface								
60				SUPER				
scom				STACK®	, ,			
Summary Device View				Help				
- Uni	it 1							-
B Suctom				···				
Bridge	******	£ =££££±££;	6 &&&±&&&	acom scom				
🗄 🗀 Physical Interface 🛛 🗠	00000 1 ±	0 <u>4000400</u>	<u> </u>	₩				
Protocol		Modula 2	Madula	1				
Security	—	=. 0						
				Console				
F	Polling Interval	Poll Now	Display Filter	Color Key				
_								
		Device Sum	mary : Unit 1					
Nam	ne							
Type	e	Switch 4400						
Son	ware Version	3.21						
	ddroee	10 34 6 10						
MAC		00-0f-ch-16-24-80						
Boo	t Version	2.21						
Proc	duct Number	3C17204						
Seri	al Number	L6EV3UB162480						
Up 1	Time	31 days 20 hours 3 mi	inutes					
								-
Listo						lnternet	4	• 🔍 100% • //

Figura 3.33 Sección Device View

Las entradas marcadas con verde son las que tienen conexión los menús del lado izquierdo son los que dan acceso a cada sección por configurar así por ejemplo en la sección Protocol podemos configurar DHCP si es que queremos que nuestro Switch trabaje con direcciones IP dinámicas o en Security podemos asignar usuarios con diferentes tipo de privilegios para entrar a la configuración del Switch así como asignar contraseñas para dichos usuarios.

3.10 LICITACIÓN

Ya que conocimos los elementos con los que contara nuestra red ahora llega el momento en que hay que instalarlos para poder brindarle el servicio adecuado a nuestros usuarios. Comenzaremos nuestra instalación tomando en cuenta que tenemos la fibra ya instalada en el edificio, se tomará esa fibra óptica y solo se instalara en el nuevo edificio.

Para poder lograr la instalación como se vio anteriormente se necesita un proveedor de servicios de telecomunicaciones, para esto se hace una licitación con empresas, con las que ya se cuenten antecedentes en el Área de Finanzas, esta licitación se realizó el 10 de enero del 2010 donde se les comunicó a dichas empresas sobre el concurso.

Figura 3.34 Empresas invitadas a la Licitación

Después de que las empresas son invitadas a la licitación, las empresas que cumplen con los requisitos se comunican con el Área de Finanzas para avisarle que le interesa el proyecto.

Figura 3.35 Empresas que cumplen con los requisitos de la Licitación

Ya que tenemos a las empresas interesadas, se les lleva al Departamento de Sistemas, el cual le informa a la empresa qué es lo que la escuela necesita, qué es lo que se debe realizar y en qué área, para que cada una de ellas haga un diseño del proyecto además de un análisis de costos el cual nos ayudará a determinar cuál es la mejor propuesta.

Cada empresa manda a Finanzas su propuesta final, la cual es analizada minuciosamente para tomar la decisión adecuada; después de analizar las propuestas, Finanzas da a conocer cuál es la empresa que se queda con la licitación.

Figura 3.36 Empresa ganadora de la Licitación

Ahora el siguiente paso es comenzar la instalación de la fibra óptica en los primeros 2 niveles del edificio G, esto se decidió debido a que son los primeros niveles en donde habrá actividades próximamente, los siguientes niveles se van a ir conectando dependiendo el uso que estos tengan.

El diagrama que se utilizó en la implementación de la fibra muestra la colocación de los materiales y dispositivos antes mencionados, ya que anteriormente fue mencionado el funcionamiento de los mismos.

El diagrama es el siguiente:

Figura 3.37 Diagrama de la Implementación de Fibra óptica

Debemos tener en cuenta que la fibra óptica que se utilizó en la implementación es de 62.5 micras, es decir, es una fibra multimodo, esta va conectada en el diagrama del Site al IDF por medio de los dispositivos, después de que llega al IDF, se utiliza cable UTP para que la instalación llegue a las computadoras de los usuarios a los que se les va a dar el servicio.

Así nos queda entonces nuestra implementación la cal nos permitirá ofrecerle al usuario los servicios propuestos en esta implementación.

CAPÍTULO 4 CARACTERÍSTICAS DEL EDIFICIO

CAPÍTULO 4 CARACTERÍSTICAS DEL EDIFICIO

4.1 INTRODUCCIÓN

Una vez se han elegido los dispositivos que se utilizarán en el cuarto de comunicaciones, es momento de ver los requerimientos del recinto. Los materiales y las condiciones de la habitación elegida para este propósito deben garantizar la seguridad y el buen funcionamiento de los equipos.

En este capítulo se verán los elementos a tomar en cuenta para elegir los recintos de cableado, desde normas y materiales que debe cubrir el edificio, hasta el entorno de la sala, incluyendo aspectos de seguridad.

4.2 FUNDAMENTOS DE LOS RECINTOS DE CABLEADO

Un recinto de cableado sirve como punto central de unión para el cableado y el equipamiento utilizados para conectar dispositivos en una LAN. Es el punto central de una topología en estrella. Un recinto de cableado puede ser una sala especialmente diseñadas para ello.

4.3 TAMAÑO DEL RECINTO DE CABLEADO

La TIA/EIA-568-A especifica que, en una LAN Ethernet, el cableado horizontal se debe conectar a un punto central en una topología estrella. Este punto central es el recinto de cableado, donde se deben instalar el panel de parcheo y el hub/switch. El recinto de cableado debe ser lo suficientemente grande como para acomodar en su interior todo el equipo y el cableado, teniendo en cuenta futuras ampliaciones. El tamaño del recinto variará con el tamaño de la LAN y los equipos necesarios para que funcione.

La TIA/EIA-569 especifica que cada piso debe tener como mínimo un recinto de cableado, y los adicionales deben estar situados cada 1000m², cuando el área del piso que se sirve exceda dicha superficie, o cuando la distancia del cableado horizontal sobrepase los 90 metros.

4.4 ESPECIFICACIÓN PARA EL ENTORNO

Cualquier ubicación que se seleccione para un recinto de cableado debe satisfacer ciertas necesidades del entorno, entre las que se encuentran: el suministro de corriente y lo relativo a la instalación de aire acondicionado. Además la ubicación debe ser segura, para impedir el acceso no autorizado, y deben aplicarse en todo el edificio las normas de seguridad.

Cualquier sala o armario que se elija para que sirva de recinto de cableado deben tomar en consideración los siguientes elementos:

- Materiales para paredes, suelos y techos.
- Temperatura y humedad.
- Ubicaciones y tipo de iluminación.
- Tomas de corriente.

- Acceso a la sala y al equipo.
- Soporte y acceso al cable.

4.4.1 Paredes, suelos y techos

El suelo sobre el que se encuentra el cuarto de comunicaciones, debe ser capaz de soportar la carga especificada por las instrucciones incluidas con en el equipo. Siempre que sea posible, la sala debe tener un suelo elevado para acomodar los cables horizontales entrantes que recorren la zona de trabajo. La cubierta del suelo debe ser de una superficie fina. De esta forma, se ayuda a controlar el polvo y minimizar la exposición de los equipos a la electricidad estática.

Además, en la construcción del recinto de cableado se deben utilizar materiales ignífugos para la prevención del fuego. Estas habitaciones no deben tener un techo falso.

4.4.2 Temperatura y humedad

El cuarto de comunicaciones debe incluir una instalación de aire acondicionado suficiente como para mantener la temperatura de la sala en, aproximadamente, 21°C cuando los equipos LAN están a pleno rendimiento. Ninguna tubería debe atravesar la sala, ni por encima ni por debajo, con la excepción de un sistema aspersor o supresor de oxígeno que puede que se necesite para prevenir incendios. La humedad relativa se debe mantener en un nivel de entre el 30 y el 50%. De fallar estas especificaciones se puede crear una corrosión en los hilos de cobre de los cables UTP y STP, que disminuirá la eficiencia en el funcionamiento de la red.

4.4.3 Instalación de la luz y de las tomas de corriente

Para un recinto de cableado, se debe tener como mínimo dos enchufes dobles para tomas de corriente eléctrica AC sin interruptor, y cada uno de ellos con un circuito separado. Se debe colocar junto a la puerta, un interruptor de pared que controle la luz principal de la sala.

4.4.4 Acceso a la sala y al equipo

Para poder tener un buen acceso a las salas, se deben de seguir ciertas recomendaciones, la puerta de un recinto de cableado debe tener, como mínimo, 0.9m de ancho, y debe abrir hacia el exterior del cuarto, facilitando la salida de los trabajadores. La cerradura debe permitir que cualquiera que esté en el interior salga cuando lo desee.

El encargado del área de sistemas es el responsable de autorizar el acceso a los cuartos de comunicaciones. La persona autorizada para ingresa a la sala debe realizar un reporte e informar al área de sistemas sobre las modificaciones que se realizaron a los equipos o a la sala, esto permite un control y facilita el soporte al cuarto de comunicaciones.

4.4.5 Soporte y acceso del cable

El recorrido del cableado debe ir protegido por un conducto. La cantidad necesaria está definida por la cantidad de fibra óptica y cables UTP y STP que se debe soportar en cada sala de comunicaciones.
Todo el cableado horizontal que recorre las zonas de trabajo de un recinto de cableado debe estar bajo un suelo-falso. Cualquier pared o suelo que esté abierto y que proporcione un acceso para los conductos, debe sellarse con materiales que retarden el humo y el fuego y que reúnan todas las normas aplicables.

Figura 4.1 Cableado debajo de suelo-falso

4.5 EDIFICIO

El edificio G consta de 3 niveles que son: planta baja, primer piso y segundo piso, los cuales cuentan con los siguientes espacios:

En la planta baja, se tienen 2 accesos, uno principal y otro secundario, donde podemos encontrar una recepción que servirá para que los alumnos de nuevo ingreso se orienten a la entrada del mismo. Se tiene la sala de computación 1 que dará servicio a los alumnos de las carreras de medicina y veterinaria. Se tiene el laboratorio de medicina, además de una biblioteca que permite el uso de computadoras para el acceso a Internet. Podemos encontrar también el Site, el cual nos permite monitorear nuestra red implementada. Y tenemos a los Ingenieros de sistemas que son los que cuidan el acceso al Site.

Figura 4.2 Planta baja del Edificio G

En la planta alta se ubica un auditorio. Además de una segunda sala de computación con acceso a Internet para el uso de profesores y alumnos. Tenemos el laboratorio de veterinaria y un salón de clases en donde los alumnos tomarán clases teóricas. El Área de Sistemas cuenta con un IDF en cada nivel, que le proporcionara servicio al laboratorio de computación.

Figura 4.3 Primer nivel del Edificio G

Se tiene un Segundo nivel el cual no se mencionara en este proyecto debido a que no esta en funcionamiento aún.

CAPÍTULO 5 ANÁLISIS COMPARATIVO DE COSTOS

CAPÍTULO 5 ANÁLISIS COMPARATIVO DE COSTOS

5.1 INTRODUCCIÓN

En la actualidad no se puede planear un proyecto sin antes considerar el factor *costo*, es decir, si nuestra inversión va a ser rentable pues, ninguna empresa gastaría en un proyecto que no le va a redituar en ganancias dentro de un periodo programado de tiempo. Como conclusión, para todo Proyecto, el factor costo siempre se debe considerar por parte de la empresa y este caso no es la excepción.

5.2 ADJUDICACIÓN DE CONTRATOS

El proceso de adjudicación del contrato para la venta de los dispositivos y realización de instalaciones es ajeno al área de sistemas, es decir, el área de Finazas convocó a un concurso para el cual se establecieron estándares y así poder participar. Aquellas empresas que cumplieron los requerimientos, se presentaron en el Campus para realizar su evaluación y generar sus cotizaciones, las cuales fueron enviadas al departamento de Finanzas y de esta forma, junto con la dirección General de Región, se eligiera al ganador.

5.3 LISTA DE PRECIOS MATERIALES Y DISPOSITIVOS

A continuación se listan los precios de materiales que su utilizaron para la implementación de la red en la nueva área: planta baja y primer piso.

Tahla 5 1	Lista da	alamantos	utilizados e	n la i	imnlaman	tación (har ah
Tabla 5. I	LISIA UE	elementos	utilizauos e	iiiai	Inplemen	lacion	Je reu.

Articulo	Precio Unitario USD	Tipo Cambio	Cantidad	Precio Unitario MN	Precio Total MN	Imagen
Caja UTP Cat 5	164.57	12.3	10	2024.211	20242.11	
Jack RJ45 Cat 5	5.45	12.3	73	67.035	4893.555	-
Switch 4400 48 Ptos	2900	12.3	2	35670	71340	
Rack	69	12.3	2	848.7	1697.4	
Panel de parcheo Fibra Óptica	159	12.3	2	1955.7	3911.4	28 28
Patch cord	419	12.3	146	5153.7	752440.2	
Patch cord Fibra Óptica	32	12.3	4	393.6	1574.4	11
Módulo Superstack	129	12.3	2	1586.7	3173.4	
Acces Point Lynksys	36.6	12.3	3	450.18	1350.54	
Tubería	10	12.3	37	123	4551	

Face plate de 2 y 4 puertos	1.95	12.3	37	23.985	887.445	**
Panel de parcheo RJ-45	2	12.3	2	24.6	49.2	- and -
		<u>.</u>	<u>.</u>	Total Materiales antes de IVA	866110.65	

La Fibra óptica no se menciona en esta tabla de costos debido a que ya se tenía instalada en los otros edificios así que no se tuvo que comprar nuevamente, pero para fines prácticos tenemos que el metro de la Fibra óptica tuvo un costo de \$2000 por metro.

5.4 LISTA DE PRECIOS: MANO DE OBRA

Por otra parte, también debemos considerar los precios de instalación de los dispositivos listados el la tabla anterior, la siguiente tabla describe dichos costos.

Mano de Obra	Precio Unitario	Cantidad	Precio Unitario	Subtotales MN
Instalación Cableado y Jack	26,681	1	26,681	26,681
Instalación Tubería	22,980	1	22,980	22,980
Instalación Rack y Paneles de Parcheo	6,453	2	12,906	12,906
			Total	62,567

Tabla 5.2 Lista de p	recios para m	ano de obra.
----------------------	---------------	--------------

Realizando la suma total de costos tendríamos que se esta realizando una inversión de \$ 928,667.65; lo que en apariencia es un costo elevado, sin embargo,

al considerar que la productividad del personal administrativo y académico mejorará al tener mejor conectividad, sin mencionar que los alumnos se beneficiaran directamente con ello, se considera que la inversión estaría recuperada en un periodo de un año.

CONCLUSIONES

Al surgir necesidades de crecimiento y actualización en una empresa, orilla a la misma a integrar las nuevas tecnologías para administrar aplicaciones actuales y futuras, es por ello que el presente trabajo tiene la función principal de mostrar la ampliación real de una red de área local aplicando fibra óptica.

Para empezar, es necesario comentar que el crecimiento, así como la actualización en cuanto a infraestructura de comunicaciones en una empresa, es muy frecuente, por lo cual es necesario realizar una ampliación y actualización en la red; esto trae como consecuencia nuevos tendidos de cableado, tanto de Fibra Óptica como de UTP, originando gastos económicos.

La fibra óptica se presenta como una solución a los problemas que una red con bajo rendimiento pudiera estar presentando. Aunque en apariencia representa una inversión fuerte, se puede justificar, siendo rentable y considerando lo beneficios que traerá a mediano y largo plazo; por ejemplo, tendremos mayor eficiencia en los servicios de voz, datos y video, los cuales podrán trabajar en el mismo cable y ya no en diferentes. Lo anterior constituye para la empresa un gran avance tecnológico y ahorro económico, ya que el costo de implementación se verá justificado.

Para diseñar la red de la nueva área, se tomaron en cuenta los siguientes factores:

- Número de usuarios administrativos.
- Número de alumnos inscritos para la carrera que se impartirá en esta nueva área.
- Servicios a ofrecer.
- Crecimiento a futuro.
- Presupuestos establecidos.

Podemos decir que, el presente trabajo muestra los aspectos fundamentales a considerar para la implementación de un nuevo segmento en una LAN, que ayudará a la empresa a brindar servicios que a mediano plazo generarán utilidad y todo gracias a la aplicación de nuevas tecnologías de comunicación.

BIBLIOGRAFÍA

Introducción a las Telecomunicaciones por Fibra Óptica Nérou, Jean Pierre Editorial Trillas México, 2001

Academia de networking de Cisco Systems: Guía del primer año Cisco Systems, Inc. Editorial Pearson Educación Segunda edición España, 2002

Transmisión de Datos y Redes de Comunicaciones Forouzan, Behrouz A. Editorial Mc Graw Hill Segunda edición España, 2002

Tecnología y Redes de Transmisión de Datos Herrera Pérez, Enrique Editorial Limusa Primera edición México, 2003

URL's

http://www.info-

ab.uselm.es/labelec/solar/comunicacion/redes/index_files/derecha.html

http://www.gestiopolis.com

http://esp.hyperlinesystems.com/catalog/cable/fo-zip-in.shtml

http://www.support.psi.com/support/common/csu/larscom/terrauno.html

http://www.cisco.com/application/pdf/en/us/guest/products/ps5854/c1616/ccmigrati on_09186a00802c35a2.pdf

http://support.3com.com/infodeli/tools/switches/7700/7700configgd.pdf

http://support.3com.com/infodeli/tools/switches/4400/duf1720_4aaa02_Spanish.pdf

GLOSARIO

- **10Base-T** Especificación Ethernet de banda base de 10Mbps que utiliza dos pares de cable de par trenzado (categoría 3, 4 ó 5): un par para transmisión de datos y otro para recibirlos.
- **100Base-T** Especificación Fast Ethernet de banda base de 100Mbps que utiliza cableado UTP. Envía impulsos de enlace a través de los segmentos de red cuando no se detecta tráfico.
- **BGP** (Border Gateway Protocol). Protocolo mediante el cual se intercambia información de enrutamiento entre sistemas autónomos.
- CSU (Channel Service Unit, unidad de servicio de canal).
 Dispositivo de interfaz digital que conecta el equipamiento del usuario final al bucle telefónico digital local.
- Dirección IP
 Direcciones de 32bits asignadas a los host que utilizan TCP/IP. Una dirección IP pertenece a una de cinco clases (A, B, C, D o E) y se escribe en forma de cuatro octetos separados por puntos (es decir, formato decimal con puntos). Cada dirección consiste en un número de red, un número opcional de subred y un número de host. Los números de red y de subred, unidos se usan para enrutar, y el número de host se utiliza para direccional a un host individual dentro de la red o subred. Se utiliza una máscara de subred para extraer información de red y subred de la dirección IP.
- **Dirección MAC** (Media Access Control) Es un identificador hexadecimal de 48bits que se corresponde de forma única con una tarjeta o

interfaz de red.

- DSL (Digital Subscriber Line, línea de abonado digital). Tecnología que provee una conexión digital sobre línea de abonado de la red telefónica básica o conmutada.
- DSU (Data Service Unit, unidad de servicio de datos). Dispositivo utilizado para la transmisión digital que adapta la interfaz física en un dispositivo DTE a una facilidad de transmisión como T1 o E1. DSU también es responsable de funciones como la temporización de la señal.
- DTE (Data Terminal Equipment, equipo terminal de datos).
 Dispositivo en el extremo del usuario de una interfaz de red de usuario que sirve como origen de datos, destino de datos o ambos.
- E1 Esquema de transmisión digital de área amplia utilizado especialmente en Europa que lleva datos a una velocidad de 2.048Mbps. Las líneas E1 se pueden dedicar al uso privado de portadoras comunes.
- EIA (Electronic Industries Association, asociación de industrias electrónicas). Grupo que especifica los estándares de transmisión eléctrica. La EIA y la TIA han desarrollado numerosos estándares de comunicación muy conocidos.
- Estándar Conjunto de reglas o procedimientos que se utilizan de forma generalizada o con carácter oficial.
- **Ethernet** Es un estándar de redes de computadoras de área local.

Ethernet define las características de cableado y señalización de nivel físico, además de los formatos de tramas de datos de nivel de enlace del modelo OSI.

Fast EthernetCualquiera de una serie de especificaciones Ethernet de
100Mbps. Fast Ehternet ofrece una velocidad 10 veces
superior a la de la especificación 10Base-T Ethernet.

Host Sistema de computadora en una red.

HWIC (High-Speed WAN Interface Cards) Para transmisión de datos.

IDF (Intermediate Distribution Facility, instalación intermedia de distribución). Sala de comunicaciones secundaria de un edificio. La IDF depende del MDF.

Interfaz En terminología de enrutamiento, conexión de red en el router. Límite entre capas adyacentes del modelo de referncia OSI.

MDF (Main Distribution Facility, instalación principal de distribución). Sala de comunicaciones primaria de un edificio. Es el punto central de una topología en estrella.

OSI (Open System Interconnection, interconexión de sistemas abiertos). Programa internacional de estandarización creado por la ISO y la ITU-T para desarrollar estándares de redes de datos que faciliten la interoperabilidad de equipos de varios fabricantes.

- OSPF (Open Shortest Path First, primero la ruta libre más corta).
 Protocolo de enrutamiento jerárquico para calcular la ruta más corta posible.
- Paquete Agrupación lógica de información que incluye una cabecera que contiene información de control y los datos del usuario.
 Los paquetes se utilizan casi siempre para hacer referencia a unidades de datos de la capa de red.
- Protocolo de red (Protocolo de red o protocolo de comunicación) Es el conjunto de reglas que especifican el intercambio de datos u órdenes durante la comunicación entre las entidades que forman parte de una red.
- **RDA** Red Digital de Acceso. Dispositivo de acceso a la red de servicios digitales contratados a un proveedor.
- **RDSI** (Integrated Services Digital Network, red digital de servicios integrados). Protocolo de comunicación ofrecido por las compañías telefónicas que permite que las redes transmitan datos, voz y tráfico de otro origen.
- Redundancia Es la duplicación de dispositivos, servicios o conexiones de forma que, en caso de fallo, los dispositivos, servicios o conexiones redundantes puedan realizar el trabajo de aquellos en los que se produce el fallo.
- RIP (Routing Information Protocol, protocolo de información de enrutamiento). Protocolo de puerta de enlace interna utilizado por los routers para intercambiar información acerca de redes IP.

- **STP** (Shielded Twisted Pair, par trenzado blindado). Tipo de cable utilizado en las telecomunicaciones.
- **TIA/EIA-568,569** Especificaciones de los cables para redes de computadoras, Categorías de los cables.
- T1Servicio de portadora WAN digital que transmite datos a1.544Mbps a través de la red telefónica conmutada.
- UTP (Unshielded Twisted Pair, par trenzado no blindado). Tipo de cable que se utiliza en las telecomunicaciones.
- VLAN LAN virtual. Grupo de dispositivos en una LAN configurados de modo que se pueden comunicar como si estuvieran conectados al mismo cable, cuando en realidad están situados en una serie de segmentos LAN distintos.
- VPN (Virtual Private Network, red privada virtual). Tecnología de red que permite una extensión de la red local sobre una red pública o no controlada, como por ejemplo Internet.
- VTY (Virtual Tributary, Tributario Virtual). Acceso Remoto, van del0 al 15 pero sólo se muestran las que están en uso.
- **WIC** Tarjeta de Interfaz WAN.

ANEXOS

LARSCOM TERRA UNO CSU/DSU

El Larscom Terra Uno es un CSU/DSU certificado para servicios de acceso dedicado E1/T1. La siguiente figura muestra los elementos que lo componen:

LED	COLOR	FUNCIÓN
	Verde	Modo E1
	Apagado	Modo T1
	Verde	Enviando patrón de prueba; patrón de sincronización, sin error
	Intermitente en Verde	Enviando patrón de; patrón de sincronización, error de bit
SELF IESI	Rojo	Enviando patrón de prueba; sin patrón de sincronización
	Apagado	Ningún patrón de prueba está siendo enviado
LOOP	Amarillo	Efecto de bucle dentro de TerraUno

CLOCK	-	Sin uso
	Verde	Operación normal en el puerto de datos
DATA(PORT) or (SPEED)	Rojo	No hay comunicación con el router u otro dispositivo en el puerto de datos
	Apagado	Todos los canales T1/E1 están desactivados
LINE(LEARN)	Verde	Recibiendo tramas de la línea T1/E1
	Amarillo	Recibiendo alerta de la línea T1/E1
	Rojo	No hay sincronización de tramas en la señal de la línea T1/E1
	Apagado	No hay señal en la línea T1/E1
UNIT(#)	Verde	Operación normal
	Intermitente en Rojo	Descarga de software en progreso
	Rojo	Reinicio en progreso si la falla en la unidad continúa

ROUTER CISCO 2800

Especificaciones del router

1	Slot 0 (VIC or VWIC, for voice only)	8	Auxiliary Power (AUX/PWR) LED
2	Slot 1 (WIC, VIC, VWIC, or HWIC)	9	Universal serial bus (USB) port
3	Slot 2 (WIC, VIC, or VWIC)	10	AIM/PVDM LEDs
4	Slot 3 (WIC, VIC, VWIC, or HWIC)	11	Auxiliary port
5	Console port	12	Compact flash (CF) LED
6	Fast Ethernet ports and LEDs	13	External CompactFlash memory card slot
7	System LEDs	14	Removable center card guides to allow double-wide HWIC-D installation

LED	Color	Indica						
Port and Mo	Port and Module LEDs							
A = ACT	Verde	La interfaz Ethernet está recibiendo paquetes.						
	Apagado	La interfaz Ethernet no está recibiendo paquetes.						
	Verde	El puerto Ethernet está operando en modo full- duplex.						
	Apagado	El puerto Ethernet está operando en modo half- duplex.						
S = Speed	Encendido	El puerto Ethernet está operando a 100Mbps						
	Apagado	El puerto Ethernet está operando a 10Mbps						
I=link	Verde	Enlace Ethernet activado.						
	Apagado	Enlace Ethernet desactivado.						
Packet Voice Data Modules								

LED	Color	Indica			
PVDM0	Verde	PVDM en las ranuras (0, 1, 2) está activado.			
	Ámbar	PVDM en las ranuras (0, 1, 2) falló al inicializar.			
	Apagado	PVDM no está instalado en las ranuras (0, 1, 2).			
Advanced Integration Modules					
AIMO	Verde	AIM en las ranuras (0, 1) está activado.			
AIM1	Ámbar	AIM en las ranuras (0, 1) falló al inicializar.			
	Apagado	AIM no está instalado en las ranuras (0, 1).			

FIREWALL NETSCREEN-25

Especificaciones:

Característica	NetScreen-25	
Número de interfaces	4 de 10/100 Mbps	
Número máximo de direcciones	Sin restricción	
IP en interfaces seguras		
Número máximo de sesiones	32,000	
Número máximo de VPNs	125	
Número máximo de VLANs	16	
Número máximo de zonas de	4	
seguridad	Т	
	OSPF (Open Shortest Path First)	
Protocolos de enrutamiento	BGP (Border Gateway Protocol)	
	RIP v1/v2 (Routing Information	
	Protocol)	
IPS (Intrusion Prevention	Sí	
Systems,)		
Anti-Spam integrado	Sí	
Filtro Web Integrated/Redirect	Sí / Sí	

SWITCH 7700

Funciones para switch 7700

Función	Switch 7700
	4096 VLANs (IEEE 802.1Q)
VLAN	GARP VLAN Registration Protocol (GVRP,
	Protocolo de registro GARP VLAN)
STD/DSTD	802.1D Spanning Tree PRotocol
31F/K31F	802.1w Rapid Spanning Tree Protocol
	IEEE 802.3x control de flujo (full-duplex)
Control de Tráfico	Control de flujo de back pressure (half-duplex)
	Soporta broadcast storm suppression para VLAN
	GARP Multicast Registration Protocol (GMRP)
Multicast	Internet Group Management Protocol (IGMP)
Wullicast	Protocol-Independent Multicast Dense/Sparse
	Mode (PIM DM/SM)
	64 interfaces IP
Enrutamionto IP	Routing Information Protocol (RIP) v1/v2
	Open Shortest Path First (OSPF, apertura del
	trayecto más corto primero)
Protocolo do Pod	Dynamic Host Configuration Protocol (DHCP)
	Relay
	Administración jerárquica y protección de
Soguridad	contraseñas para interfaz de administración
Segundad	Autentificación de usuario 802.1X
	Filtración de paquetes
Confishilidad	Virtual Redundancy Routing Protocol (VRRP,
Gomabilidad	protocolo virtual de redundancia de enrutador)
Quality of Service (QoS)	Perfiles basados en flujo

Función	Switch 7700
Calidad de Servicio	Control de ancho de banda
	Filas prioritarias por puerto
	Remarcación de paquetes en base a su prioridad
	Filas de estricta prioridad
	Configuración Command Line Interface (CLI)
	Configuración por medio del puerto de la consola
Configuración y	Configuración remota vía Telnet
administración del	Configuración remota vía marcado de módem
sistema	Configuración de sistema con SNMP
	System log
	Alarmas jerárquicas
	Actualización de software vía protocolo XModem
Actualización	Actualización de software vía File Transfer Protocol
	(FTP) y Trivial File Transfer Protocol (TFTP)
	Información detallada de alarmas y debugs
Mantenimiento	Soporta Ping y ruta de rastreo (Traceroute)
	Mantenimiento remoto vías Telnet y Módem

SWITCH 4400

Funciones que admite el hardware

Función	Switch 4400
Address	Se admiten hasta 8000
	Hasta 64 entradas permanentes
Auto-negotation	Se admite en todos los puertos
	MDI/MDI-X automático
Forward Mode	Store (Almacenar) y Forward (Reenviar)
Dunley Mode	Half duplex y full duplex en todos los
Duplex mode	puertos del panel frontal
Flow Control	Se admiten todos los puertos en modo full
Flow Control	duplex
Smart Auto-sensing	Se admite en todos los puertos
Traffic Prioritization	Se admite (IEEE 802.ID): 4 colas por cada
	puerto
Ethernet and Fast Ethernet	Negociación automática de puertos
Ports	10BASE-T/100BASE-TX
	Se conecta al SuperStack 3 Advanced
RPS Support	Redundant Power System (ARPS, Sistema
	avanzado de alimentación superflua)
	(3C16071B)
	Montaje en bastidor de 19 pulgadas o
Mounting	independiente

Funcionamiento de los LEDS

LED	Color	Indica
LED Port Status		
Packet Verde	Verde	No se está transmitiendo ni recibiendo ningún
	Verue	paquete full duplex en el puerto.
	Ámbar	No se está transmitiendo ni recibiendo ningún
		paquete half duplex en el puerto.
Apagado	Apagado	No se está transmitiendo ni recibiendo ningún
	Apagado	paquete en el puerto.
Status) (a cal a	Hay una conexión de alta velocidad (100 Mbps)
Status	VEIUE	y el puerto está activado.
	Intermitente en verde	Hay una conexión de alta velocidad (100 Mbps),
		pero el puerto está desactivado.
	Ámhar	Hay una conexión de baja velocidad (10 Mbps)
	Ambar	y el puerto está activado.
	Intermitente	Hay una conexión de baja velocidad (10 Mbps),
	en ámbar	pero el puerto está desactivado.
	Apagado	No hay ninguna conexión.
LED Mo	dule Packet	1
	Vordo	Se está recibiendo o transmitiendo actividad full
	verue	duplex.
		Se está recibiendo o transmitiendo actividad half
	Ampai	duplex.
	Apagado	Sin actividad.
LED Mo	dule Status	
		El módulo está instalado y es compatible. Se ha
	Verde	determinado el estado de la conexión y el puerto
		está activado.
	Intermitente en verde	El módulo está instalado y es compatible. Se ha

LED	Color	Indica
		determinado el estado de la conexión pero el
		puerto está desactivado.
	El módulo está instalado y es compatible. No se	
	Ámbar	ha determinado el estado de la conexión o no
	Ambai	existe ninguna conexión para un módulo de un
		puerto.
	Intermitente en ámbar	Hay un módulo instalado, pero no es
		compatible.
	Apagado	El módulo no está instalado.
LED Unit		
1–8 Verc	Verde	Cuando el Switch forma una pila con otras unidades Switch 4400, el LED indica la posición de la unidad en la pila y que existe una conexión. Cuando el Switch es independiente y no forma
		parte de una pila, LED 1 está encendido.
	Verde en sucesión	Cuando se lleva a cabo una actualización de software, los LED Unit de la unidad que se está actualizando se encienden y apagan de forma intermitente siguiendo esta secuencia: 1,2,4,6,8,7,5,3 (24 puertos)
		El Switch forma físicamente una pila con otras
		unidades Switch 4400, pero no puede
	Intermitente en verde	administrarse como parte de dicha pila hasta
		que todas las unidades se hayan actualizado a
		la versión 2.0 del software o posterior.
	Apagado	Se produjo un fallo.
LED Po	wer/Self Test	
	Verde	El Switch se ha encendido y funciona con
	veide	normalidad.
	Intermitente en verde	El Switch está descargando software o bien se
		está inicializando (lo que incluye la ejecución de

LED	Color	Indica
		Power On Self Test (test de arranque)).
	Ámbar	El Switch no ha superado el Power On Self
		Test.
	Anagada	El Switch no está recibiendo alimentación o hay
Apagado	un fallo en la Unidad de fuente de alimentación.	

Configuración predeterminada

Función	Switch 4400
Automatic IP Configuration	Activado
Port Speed	Los puertos 10/100 Mbps son de negociación
•	automática
Duplex Mode	Todos los puertos 10BASE-T y 100BASE-TX
	fijos son de negociación automática
Flow Control	Activado en half duplex
	De negociación automática en full duplex
Broadcast Storm Control	Activado
	Todos los puertos pertenecen a la LAN virtual
Virtual LANs (VLANs)	predeterminada sin etiqueta (VLAN 1) con
	aprendizaje 802.1Q activado
IP Multicast Filtering	Filtrado activado
	Activado
Rapid Spanning Tree	Inicio rápido:
Protocol	Activado en los puertos del panel frontal
	Desactivado en el puerto del panel trasero
	Todos los puertos dan prioridad al tráfico NBX
Quality of Service (QoS)	VoIP (LAN e IP).
	Todos los puertos están configurados como
	"optimizados" para los demás tipos de tráfico.