

Instituto Politécnico Nacional Escuela Superior de Ingeniería Química e Industrias Extractivas

SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

Medición de los Equilibrios Líquido - Líquido y Densidades en la Saturación y en Fase Homogénea del Sistema Etano + 1-Propanol Mediante la Técnica de Densimetría de Tubo Vibrante

ΤΕSIS

QUE PARA OBTENER EL GRADO DE **MAESTRO EN CIENCIAS** CON ESPECIALIDAD EN INGENIERÍA QUÍMICA

PRESENTA

Mariana Bárcenas Castañeda

Director: Dr. Christian Bouchot

MÉXICO, D.F.,

DICIEMBRE 2004

INSTITUTO POLITECNICO NACIONAL COORDINACION GENERAL DE POSGRADO E INVESTIGACION

ACTA DE REVISION DE TESIS

 En la Ciudad de Noviembre
 México, D. F.
 siendo las
 12:00
 horas del día
 04
 del mes de

 Noviembre
 2004
 se reunieron los miembros de la Comisión Revisora de Tesis designada

 Por el Colegio de
 Profesores de Estudios de Posgrado e Investigación de
 la ESIQIE

 para examinar la tesis de grado titulada:

"MEDICIÓN DE LOS EQUILIBRIOS LÍQUIDO-LÍQUIDO Y DENSIDADES EN LA SATURACIÓN

Y EN FASE HOMOGÉNEA DEL SISTEMA ETANO+ 1-PROPANOL MEDIANTE LA TÉCNICA

DE DENSIMETRI	A DE TUBO	VIBRANTE'
---------------	-----------	-----------

Presentada por el alumno:

	BÁRCENAS	CASTAÑEDA	MARIAN	A						
6 - S.	Apellido paterno	materno	nombre(s)						
		2	Con registro: A	0	2	0	1	2	1	j

Aspirante al grado de:

MAESTRO EN CIENCIAS CON ESPECIALIDAD EN INGENIERIA QUÍMICA

Después de intercambiar opiniones los miembros de la Comisión manifestaron *SU APROBACION DE LA TESIS*, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

	LA COMISION	REVISORA
	Director de Tesis	Adra !.
D	R. CHRISTIAN BOUCHOT	DR. LUIS ALEJANDRO GALICIA LUNA
-	D. N. POLITECNICO	
DF	R. RICARDO MACIAS SALINAS	OR. JOSÉ JAVIER CASTRO ARELLANO
	Tel Hora	
<u>IVI.</u>	en C. ABEL ZUNIGA MORENU	ST. PERIVANDO GARCIA SANCHEZ
	EL PRESIDENTE	Define COLEGIO
	OUIMICA E INDUSTRIAS 5%	RAC DAS
	DR. ROBERTO UMA	S BALLESTEROS
RLB*III		

1.1274

CGPI-14

COORDINACION GENERAL DE POSGRADO E INVESTIGACION

CARTA DE CESION DE DERECHOS

En la Ciudad de México, D.F, el día 26 del mes de Noviembre del año 2004 el (la) que suscribe Mariana Bárcenas Castañeda alumno(a) del Programa de Maestría en Ciencias con Especialidad en Ingeniería Química con número de registro A020121 adscrito a Sección de Estudios de Posgrado e Investigación manifiesta que es autor(a) intelectual del presente trabajo de tesis bajo la dirección de Dr. Christian Bouchot y ceden los derechos del trabajo intitulado Medición de los Equilibrios Líquido - Líquido y Densidades en la Saturación y en Fase Homogénea del Sistema Etano + 1-Propanol Mediante la Técnica de Densimetría de Tubo Vibrante al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso de autor y del director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección: Laboratorio de Termodinámica Edif. Z Secc. 6 ler. Piso UPALM Lindavista CP 07738 México D.F., México, mbcasta@imp.mx, cbouchot@ipn.mx. Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Mariana Bárcenas Castañeda

A MI HIJA ZYANYA

Agradecimientos

Se agradecen los apoyos, tanto financieros como de formación, proporcionados por el Instituto Politécnico Nacional a través del departamento de Ingeniería Química de la ESIQIE del Programa Institucional de Formación de Investigadores y de la Coordinación General de Posgrado e Investigación por su apoyo al proyecto CGPI20030721, así como por el CONACyT.

Un agradecimiento especial al Dr. Christian Bouchot por su apoyo durante mi estancia en el Instituto Politécnico Nacional para la culminación de este trabajo; en especial, por su paciencia y por todo lo que aprendí de él, tanto en lo academico como en lo personal.

Agradezco a mi familia por su apoyo durante toda mi vida y en especial en esta etapa de mi formación profesional.

Un agradecimiento a mis amigos Andres y Silvia por toda su ayuda y apoyo; en especial por su amistad.

Resumen

En la presente tesis, se exploró experimentalmente la posibilidad de llevar a cabo la detección de transiciones líquido – líquido, mediante la técnica de densimetría por tubo vibrante usando un solo densímetro, a través de mediciones $P - \rho - T$ del sistema binario etano + 1-propanol. Se detallan los procedimientos de mediciones y el análisis de los resultados obtenidos.

El sistema elegido pertenece al tipo V de los diagramas de fases globales, según van Konynenburg y Scott, y presenta equilibrios líquido – vapor, líquido – líquido y líquido – líquido – vapor. Se determinaron experimentalmente los comportamientos $P - \rho - T - z$ isopléticos, P - T - xy isotérmicos y $P|T \rho - xy$, en regiones donde coexisten dos fases líquidas principalmente, una fase líquida rica en alcohol (pesada) y una fase gas, así como una fase líquida rica en etano (ligera) y una fase gas.

Se determinaron experimentalmente las densidades de la mezcla etano + 1propanol de 40 isotermas en un intervalo de temperatura de 313 a 320 K, a diversas composiciones. El intervalo de medición en presión cubre desde 400 bar hasta el punto de saturación en fase líquida, detectando éste con una discontinuidad que presenta cada isoterma en la transición de la fase homogénea a una fase no homogénea.

Para esto, fueron medidos datos de densidades en la parte incipiente de la zona no homogénea, las cuales no son analizadas por no contar con la información de la composición que les corresponde. Sin embargo, estas mediciones y el análisis correspondiente de la transición, son la clave para tener acceso a la información simultánea de la presión y de la densidad en un punto de saturación a cada temperatura y composición global.

El intervalo de composición explorado es de $x_{etano} = 0.718$ hasta $x_{etano} = 0.936$, el cual se definió de tal manera que incluyera la región de inmiscibilidad de la mezcla considerada a todas las temperaturas. Con base a una modelación previa, usando la ecuación de estado (EdE) de Patel– Teja y reglas de tipo *Wong–Sandler*, se estimaron las presiones de saturación antes de la exploración experimental, así como presiones

en fase homogénea mayores a la presión de saturación, para establecer un criterio de inicio a la fase de mediciones en flujo continuo que permite tener acceso a la región de saturación.

Los datos experimentales $P - \rho - T$ y P - T - xy se tabularon y se modelaron usando la EdE de Patel–Teja mencionada, mediante cálculos de presión de burbuja, acompañados por una comprobación sistemática de la estabilidad de las fases, mediante el denominado *criterio del plano tangente* de Gibbs, aplicado al tipo de cálculos de equilibrio efectuados.

Abstract

In this work, the possibility to detect liquid – liquid transitions is explored experimentally by means of the vibrating tube densitometry technique using a single vibrating tube. This is done through $P - \rho - T$ measurements on the binary system ethane + 1-propan-ol. The measurement procedures and data analysis are detailed.

The selected system belongs to the type V in the global phase diagram classification of van Konynenburg y Scott. It displays liquid – vapor, liquid – liquid and liquid – liquid – vapor equilibria. The experimental behavior $P - \rho - T - z$ along isopleths, P - T - xy along isotherms and P or T, $\rho - xy$, were obtained experimentally in regions where mainly coexist two liquid phases, one alcohol-rich (heavy) liquid phase and a gas phase, and one ethane-rich (light) liquid phase and a gas phase.

The densities of ethane + 1-propanol mixtures were measured experimentally along 40 isotherms, within a temperature range from 313 to 320 K at various compositions. The measured pressures span a range of 400 bar down to the liquid phase saturation pressure. The saturation point is detected by observing the discontinuity displayed by each isotherm in the transition from the homogeneous phase to an inhomogeneous one.

To reach this, densities were measured in the incipient part of the inhomogeneous region. These densities cannot be analyzed for the information of their corresponding composition is not available. However, these measurements and the corresponding analysis of the transition locus are the key points to get the simultaneous information of the saturation pressure and saturated densities at each studied temperature and global composition.

The explored composition range is from $x_{ethane} = 0.718$ to $x_{ethane} = 0.936$, which was defined so that it included the immiscibility window of the considered mixture at every temperature. Based on a previous modeling by means of the Patel – Teja EoS and Wong – Sandler type mixing rules, the saturation pressures were estimated before the experimental exploration so as reasonable pressures to set an initialization criterion to the continuous flow rate measurement step that allows to reach the saturation locus and the mentioned detection.

The $P - \rho - T$ and P - T - xy experimental data are tabulated and modeled by means of the mentioned Patel–Teja EoS, through isothermal bubble pressure calculations along with a systematic check of the phase stability based on the so called Gibb's *tangent plane criterion* adapted to the current kind of calculus.

Índice general

Re	esum	en	\mathbf{v}
Ał	ostra	\mathbf{ct}	VII
No	omen	clatura	XI
In	trodı	ıcción	1
1.	$\mathbf{Ant}_{1 \ 1}$	ecedentes Ceneralidades	3 3
	1.1.	 1.1.1. Equilibrio líquido – líquido a presión o temperatura constante 1.1.2. Equilibrio líquido – líquido en diagramas P – T	3 5 11
	1.2. 1.3. 1.4.	Técnicas experimentales para EL(L)V y PVT	15 19 24
2 .	Mét	odo experimental	27
	 2.1. 2.2. 	Diseño Experimental	27 27 30 32 35 38 41 42 47 50
3.	Res	ultados	59
	 3.1. 3.2. 3.3. 3.4. 	Definición de los experimentos	59 61 64 68

3.4.1. Procedimientos	68
3.4.2. Datos en la saturación $\ldots \ldots \ldots \ldots \ldots \ldots$	68
3.4.3. Datos en fase homogénea	
3.4.4. Modelación \ldots	91
Conclusiones	99
Recomendaciones	99
Bibliografía	107
A. Tablas de Datos Experimentales	109
B. Implementación del Criterio del Plano Tangente	125
C. Reglas de Mezclado para la EdE de Patel – Teja	129
D. Resultados de las modelaciones	133
E. Datos en la Saturación y Topología de las Transiciones	137
F. Etano + 1-propanol: P, ρ , T a \mathbf{x}_{etano} Constante	149
G. Etano + 1-propanol: P, ρ , \mathbf{x}_{etano} a T Constante	155

Índice de figuras

1.1.	a) Temperatura en función de la Composición. UCST: Temperatura	
	Crítica Consoluta (o de solución) Superior LCST: Temperatura Críti-	
	ca Consoluta (o de solución) Inferior; b) Presión en función de la com-	
	posición. UCSP: Presión Crítica Consoluta (o de solución) Superior	
	LCSP: Presión Crítica Consoluta (o de solución) Inferior.	4
1.2.	a) Temperatura en función de la Composición. LCST: Temperatura	
	Crítica Consoluta (o de solución) Inferior; b) Presión en función de la	
	Composición. UCSP: Presión Crítica Consoluta (o de solución) Superior.	4
1.3.	a) Temperatura en función de la Composición. UCST: Temperatura	
	Crítica Consoluta (o de solución) Superior b)Presión en función de la	
	Composición. LCSP: Presión Crítica Consoluta (o de solución) Inferior.	5
1.4.	Temperatura en función de la Composición. UCST: Temperatura Críti-	
	ca Consoluta (o de solución) Superior LCST: Temperatura Crítica	
	Consoluta (o de solución) Inferior	6
1.5.	Diagrama de Fase de Tipo I	6
1.6.	Diagrama de Fases de Tipo II	7
1.7.	Diagrama de Fases de Tipo III	7
1.8.	Diagrama de Fase de Tipo IV	8
1.9.	Diagrama de Fase de Tipo V	9
1.10.	. Sistema bióxido de carbono + isopentano;• Datos Experimentales a	
	377.65 K. Ver [9] p.: 527. El punto crítico se encuentra en el máximo	
	en presión de la curva.	9
1.11.	. Sistema binario: etano + metanol a 298.15 K [12]. \ldots \ldots \ldots	11
1.12.	. Sistema binario: etano + etanol a 311.15 K [13]. \ldots \ldots \ldots	12
1.13.	. Presión en función del Periodo de vibración (τ) en un punto de rocío. [63]	22
1.14.	. Presión en función del Periodo de vibración (τ) en un punto de bur-	
	buja, [63]	23
9.1	Arrorlo experimental Penneducido con autorización del autor [27]	<u> </u>
2.1. 2.2	Residuos respecto a la presión de referencia en la calibración del trans	20
2.2.	ductor TBP1	34
9 2	Residuos con respecto a la presión de referencia en la calibración del	94
4.0.	transductor TRP2	34
2.4	Incertidumbre absoluta en ρ_{1}	37
		<u> </u>

2.5.	Incertidumbre relativa en ρ
2.6.	Composición, de las mezclas etano $+$ 1-propanol preparadas, en fun-
	ción de las masas de los componentes
2.7.	Incertidumbre en x_{etano}
2.8.	Esquema de variación de la Temperatura en función del tiempo
2.9.	Variaciones del periodo a vacío, τ_0 , en función de la temperatura, en
	régimen térmico dinámico y estático.
2.10.	Periodo a vacío, τ_0 , en función de la temperatura, en regimen térmico dinámico y estático alrededor de 362 K
9 1 1	Configuración para alcanzar la modición de un punto de hurbuia
2.11. 2.12	Configuración para alcanzar la medición de un punto de rocío
2.12.	Diagrama de fluio para los cálculos de equilibrios
2.10. 2 14	Presión en función de la Composición utilizando la EdE de Patel – Teia
2.17.	ajustada a los datos de Suzuki et al [74] a 313 15 y 333 4 K
2.15	Fauilibrio (P x y) EdE: Peng - Robinson Presión en función de la
2.10.	Composición.
2.16	Propiedades volumétricas $(P.\rho_T, \rho_V)$. EdE: Peng - Robinson. Presión
	en función de la densidad. $\dots \dots \dots$
2.17.	Equilibrio (P.x.x.v). EdE: Patel - Teja. Presión en función de la Com-
	posición
2.18.	Propiedades Volumétricas (P, ρ_L, ρ_V) , EdE: Patel - Teja. Presión en
	función de la densidad.
2.19.	Equilibrio (P,x,x,y), EdE: Patel - Teja. Región LLV – LLG
2.20.	Curva crítica del sistema etano $+$ 1-propanol según [28]
2.21.	Curva crítica del sistema etano $+ 1$ -propanol según [28]. Acercamiento
	en la región del ELLG.
2.22.	Proyección de la curva de la región de tres fases según [40] y datos
	calculados a 314.15 K. (Las líneas LLG calculadas a 314.15 K se desfa-
	saron ligeramente en temperatura respecto a los datos experimentales
	para la legibilidad de la figura)
9 1	Condicionas de los amonimentos realizados y la solización de la región
J.1.	do tros fasos para la mozela etano + 1 propanol sogún [40]
30	The first lases para la mezcia etano $+$ 1-propanoi segun [40]
0.2.	EFFOR Absoluto en p_{agua} calculada con la EdE de Tim [75] y el modelo FPMC
33	Detección del ELL mediante el DTV $(r_{\pm} - 0.8303, 314.15 \text{ K})$
3.4	Detección del ELV mediante el DTV $(r_{etano} = 0.0005, 514.10 \text{ K})$.
3.5	Detección del ELL mediante el DTV $(x_{etano} = 0.8741, 314.15 \text{ K})$
3.6	P. o. x. y isotérmico del sistema etano + 1-propanol según Kodama et
5.0.	a). [29].
3.7.	Puntos experimentales estables de τ
3.8	Detección del quiebre a $x_{etano} = 0.9356$ v 312.99 K.
3.9.	Detección del quiebre a $x_{etano} = 0.9356$ v 317.01 K.
	1 ····································

3.10. Transición $L_P - G$ a 314.16 K y 315.01 K	76
3.11. Transición L _P – G a 317.00 K y 320.00 K	76
3.12. Transición L _P – L _L a 314.16 K y 315.00 K	77
3.13. Transición L _P – G a 317.00 K y 320.01 K	77
3.14. Transición L _P – L _L a 314.15 K y 315.01 K	78
3.15. Transición L _P – G a 317.01 K y 320.01 K	78
3.16. Transición L _L – L _P a 314.15 K y 315.00 K	79
3.17. Transición G – L _P a 317.00 K y 320.00 K	79
3.18. Transición L _L – G a 314.16 K y L _L – (L _P - G) a 315.00 K	80
3.19. Transición G – L _P a 317.00 K y 320.00 K	80
3.20. Comportamiento $x_{etano} - P_{Sat.}$ en la saturación de la mezcla etano +	
1-propanol	82
3.21. Comportamiento $\rho_{Sat.} - P_{Sat.}$ en la saturación de la mezcla etano +	
1-propanol	82
3.22. Comportamiento esquemático P-x-T de una mezcla de tipo V en la	
región de tres fases.	83
3.23. Densidades en la saturación del sistema etano + 1-propanol a 313.00	0.4
y 314.15 K, junto con los datos reportados por Kodama et al. [29].	84
3.24. Densidades en la saturación del sistema etano $+$ 1-propanol en función	05
de la composición junto con los datos reportados por Kodama et al. [29]. 2.25 a D del sistema stano ± 1 proponel m $= 0.8547$	80 86
5.25. $\rho - P$ del sistema etano + 1-propanol. $x_{etano} = 0.8547$. Derién de los	00
5.20. $\rho - P$ del sistema etano + 1-propanoi. $x_{etano} = 0.8547$. Region de los	87
3.27 Isotormas y región do transición do fasos a y $= 0.0054$	01
3.28. $a = P$ dol sistema otano ± 1 propanol a 314.15 K	80
3.20. $p = T$ del sistema etano ± 1 -propanol a 314.15 K. Acercamiento a los	09
5.29. $p-1$ del sistema etano + 1-propanor a 514.19 K. Acercamiento a los puntos de saturación	90
3.30 Bepresentación de los datos en la saturación del sistema etano ± 1 -	50
propanol a 313.00 K.	92
3.31. Representación de los datos en la saturación del sistema etano ± 1 -	- 0
propanol a 314.15 K	93
3.32. Representación de los datos en la saturación del sistema etano $+1$ -	
propanol a 315.00 K	94
3.33. Representación de los datos en la saturación del sistema etano $+1$ -	
propanol a 317.00 K	95
3.34. Representación de los datos en la saturación del sistema etano $+$ 1-	
propanol a 320.00 K	96
P.1. Distancia en función de la composición Configuración estable en en	
D.1. Distancia en funcion de la composición. Configuración estable en un Fauilibrio líquido das	າເ
B2 Distancia on función de la composición Conferención estable en un	.20
Equilibrio de tres fases líquido - líquido - gas	97
$\Box_{\text{quinterior}} = \alpha \circ \alpha$. 4

B.3.	Distancia en función de la composición. Punto estable de un Equilibrio	
	líquido-líquido.	127
B.4.	Distancia en función de la composición. Punto Inestable	128
E.1.	Transición L _P – G a 313.00 K y 314.16 K, $x_{etano} = 0.7188$	141
E.2.	Transición L _P – G a 315.01 K y 317.00 K, $x_{etano} = 0.7188$	141
E.3.	Transición $L_P - G$ a 320.00 K, $x_{etano} = 0.7188$ y 312.00 K, $x_{etano} = 0.7607$	149
\mathbf{E} \mathbf{A}	Transición $L_{p} = G_{2} 313.01 \text{ K} \text{ y}_{-} = -0.7767 \text{ y}_{-}313.50 \text{ g}_{-}313.50 $	174
ш.т.	0.7607	142
E 5	Transición $L_{P} - G$ a 314 18 K x-targ = 0 7767 v 314 56 K x-targ =	112
ц.о.	0.7607	142
E.6.	Transición $L_P - G$ a 315.00 K. $x_{otarra} = 0.7767$ v 317.00 K. $x_{otarra} =$	1 1 -
2.0.	0.7607	143
E.7.	Transición $L_P - G$ a 320.00 K. $x_{stano} = 0.7607$ v $L_P - L_I$ a 313.00 K.	
	$\mathbf{x}_{etano} = 0.7910$	143
E.8.	Transición $L_P - L_I$ a 314.16 K v 315.00 K. $x_{etano} = 0.8303$	143
E.9.	Transición $L_P - G$ a 317.00 K v 320.01 K, $x_{etano} = 0.8303$	144
E.10	Transición $L_P - L_I$ a 313.51 K v 314.15 K. $x_{stand} = 0.8547$	144
E.11	. Transición $L_P - L_I$ a 315.01 K v $L_P - G$ a 317.01 K. $x_{stano} = 0.8547$.	144
E.12	Transición $L_P - G$ a 320.01 K. $x_{stano} = 0.8547$ v $L_I - L_P$ a 313.00 K.	
	$\mathbf{x}_{etano} = 0.8741$	145
E.13	. Transición $L_L - L_P$ a 314.15 K v 315.00 K, $x_{etano} = 0.8741$	145
E.14	. Transición $L_L - G$ a 317.00 K v 320.00 K, $x_{etano} = 0.8741$	145
E.15	. Transición $L_L - L_P$ a 313.01 K v 314.16 K. $x_{stano} = 0.9054$	146
E.16	. Transición $L_P - G$ a 314.51 K v 315.00 K, $x_{etano} = 0.9054$	146
E.17	. Transición $L_P - G$ a 315.50 K v 317.00 K, $x_{etano} = 0.9054$	146
E.18	. Transición $L_P - G$ a 320.00 K, $x_{etano} = 0.9054$ v 312.99 K, $x_{etano} =$	
	0.9356	147
E.19	. Transición $L_P - G$ a 314.15 K y 315.50 K, $x_{etano} = 0.9356$	147
E.20	. Transición $L_P - G$ a 317.01 K y 320.00 K, $x_{etano} = 0.9356$	147
F.1.	Isotermas y región de transición de fases a $x_{etano} = 0.7187$	150
F.2.	Isotermas y región de transición de fases a $x_{etano} = 0.7607$	150
F.3.	Isotermas y región de transición de fases a $x_{etano} = 0.7767$	151
F.4.	Isotermas y región de transición de fases a $x_{etano} = 0.8303$	151
F.5.	Isotermas y región de transición de fases a $x_{etano} = 0.8547$	152
F.6.	Isotermas y región de transición de fases a $x_{etano} = 0.8741$	152
F.7.	Isotermas y región de transición de fases a $x_{etano} = 0.9054$	153
F.8.	Isotermas y región de transición de fases a $x_{etano} = 0.9356$	153
G.1.	Isotermas y región de transición de fases a 313.00 K	156
G.2.	Isotermas y región de transición de fases a 314.15 K	157
G.3.	Isotermas y región de transición de fases a 315.00 K	158

G.4.	Isotermas y reg	ión de trans	ición de fase	s a 317.00	Κ.	 	 	159
G.5.	Isotermas y reg	ión de trans	ición de fase	s a 320.00	К.	 	 	160

Índice de tablas

2.1.	Ejemplo de un archivo generado por el programa de adquisición de	20
2.2	Eiemplo de archivo generado por el programa de adquisición de datos	25
2.2.	de calibración de los transductores	33
2.3	Parámetros de calibración de los transductores	33
2.4.	Parámetros optimizados para el sistema binario etano + 1-propanol. Ajuste sobre 4 datos de ELV [29], T, P, x, y, ρ a 314.15 K. Presiones entre 16.07 bar v 54.87 bar.	50
2.5.	Porcentaje de error para la representación del sistema etano + 1- propanol a 333.4 K [74], con los parámetros obtenidos a 314.15 K. No se reportan datos de densidad	54
2.6.	Presiones críticas del LL experimentales y calculadas con las EdEs de Patel - Teja y Peng - Robinson	55
3.1.	Plan experimental de las mediciones del sistema $etano + 1 - propanol$: 40 isotermas; x_{etano} es la fracción molar del etano para las mezclas sintetizadas. Las temperaturas son nominales: son las que se previeron alconzar	60
<u>ว</u> ก	Depératres del modele EDMC de 12 celibraciones del DTV	61
ე.∠. ვვ	Palación entre T	01
0.0.	$relation entre T_{calibración} y T_{medición}$. Las temperaturas estan indicadas	63
3 /	Datos en la Saturación de la mezcla etano \pm 1-propanol	60
3.5.	Parámetros para el sistema binario etano + 1-propanol	91
A.1.	Datos P, ρ , T del sistema etano + 1-propanol	.11
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	12
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	.13
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	.14
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	15
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua 1	16
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua 1	17
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua 1	.18
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua 1	19
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua 1	20

A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	121
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	122
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - continua	123
A.1.	Datos P, ρ , T del sistema etano + 1-propanol - fin	124
D.1.	Resultados de los cálculos ELV con 4 datos de [29] a 314.15 K y la	
	EdE de Peng – Robinson.	134
D.2.	Resultados de los cálculos ELV con 4 datos de [29] a 314.15 K y la	
	EdE de Patel – Teja	134
D.3.	Resultados de los cálculos ELV con 6 datos de [74] a 333.40 K y la	
	EdE de Peng – Robinson.	135
D.4.	Resultados de los cálculos ELV con 6 datos de [74] a 333.40 K y la	
	EdE de Patel – Teja	135
E.1.	Resultados de los ajustes de $p_1(\tau)$, $p_2(\tau) \neq \hat{p}(\tau)$. NP/P _i : Numero de	
	puntos utilizados en la correlación, DESVEST: Desviación estándar	
	de los residuos (absolutos en bar).	138
E.2.	Resultados de los ajustes de $p_1(\tau)$, $p_2(\tau) \ge \hat{p}(\tau)$. Parámetros obtenidos	
	de los ajustes locales. (Continua).	139
E.2.	Resultados de los ajustes de $p_1(\tau)$, $p_2(\tau) \ge \hat{p}(\tau)$. Parámetros obtenidos	
	de los ajustes locales, (Fin).	140

Nomenclatura

a	Parámetro energético en las ecuaciones de estado cúbicas,
	función de T, parámetro en las fórmulas de calibración de
	los transductores de presión.
a_i	a para el compuesto i .
a_k	Coeficientes de polinomios en las correlaciones 3.1.
A^E_{∞}	Energía de Helmholtz en Exceso a presión infinita
b_k	Coeficientes de polinomios en las correlaciones 3.2.
b	Covolumen en las ecuaciones de estado, parámetro en las fórmulas
	de calibración de los transductores de presión.
В	Segundo coeficiente virial, función de T.
с	Parámetro volumétrico en las ecuaciones de estado.
C	Parámetro en las fórmulas de calibración de los transductores
	de presión.
d, d_i	Función en la ecuación C.5, misma para el componente i .
$D^x(y)$	Distancia entre la energía de Gibbs y su hiperplano tangente en x
(0)	evaluada a alguna composición y , ecuación 2.11.
E	Función exponencial modificada, ecuación 3.5.
f_i	Fugacidad de un compuesto i , ecuación 2.11.
F_0, F_{100}	Valores de presiones de referencia a 1 y 100 bar en las ecuaciones
	de calibración de los transductores de presión, ecuación 2.1.
$F_{\infty}, F_{\infty,i}$	Función en las ecuaciones C.3, C.12, misma para un compuesto i .
g	Número de fases en una mezcla.
G^E_{γ}	Energía total de Gibbs en Exceso dada por un modelo de solución.
h	Incremento numérico en el algoritmo de equilibrio.
k_{ij}	Parámetro de interacción binaria en las reglas de mezclado sobre a.
K, K_0	Rigidez y Rigidez a vacío del tubo vibrante (calibración del densímetro, ecuación 2.2).
m, m^*	Masa (kg), masa aparente (ecuación 1.2).
m_S, m_D, m_{VAC}	Masa de una esfera, masa de un disco, masa a vacío.
M_0	Masa del tubo vibrante Vacío, ecuación 2.2.
M_0/L_{00}	Fracción de la masa a vacío entre la longitud de referencia a 298.15 ${\rm K}$
-,	y 1 bar, parámetro de calibración del tubo vibrante, ecuación 2.2.
n, n_i	Número total de moles, número de moles del componente i .
n_c	Número de componentes en una mezcla.
p_1, p_2, \hat{p}	Polinomios para la correlación de datos P $-\tau$ al rededor de un
	punto de saturación, ecuación 3.3.
P	Presión (bar).
P_0, P_{100}	Valores reales de presiones de referencia al rededor de 1 y 100 bar en
	las ecuaciones de calibración de los transductores de presión.

R	Constante molar de los gases: $R = 8.314472 \text{ J mol}^{-1} \text{ K}^{-1}$.
T	Temperatura (K).
U_0, U_{100}	Valores de la tensión a la salida de los transductores de presión (mV),
	a 1 y 100 bar.
U_{TRPxxx}	Tensión a la salida del TRP (mV) con intervalo de medición xxx
	(xxx = 138 o 698 bar).
v, v_k^s	Volumen molar, volumen molar en la saturación y en la fase k .
V, V_S, V_D	Volumen total, volumen total de una esfera, volumen total de un disco.
V_k	Volumen total de una fase k .
V_i	Volumen interno del tubo vibrante, ecuación 2.2.
W	Masa molecular.
$x, x_i, x_{i,k}$	Fracción mol en fase(s) líquida(s), fracción mol de un compuesto i ,
	misma en una fase k .
X_1, x_2	Fracción mol de una fase líquida 1 o 2.
y	Fracción mol en fase vapor o gas.
y^*, y_k^*	Composición de una fase incipiente supuesta, el k -ésimo valor de esta
	composición (algoritmo).
z	Fracción mol, composición global.

Letras griegas

α	Parámetro en el modelo NRTL.
Δ	Operador de diferencias.
γ_t	Coeficiente de expansión isotérmico (calibración del densímetro).
γ_2	Coeficiente de contribución en P en la expansión isotérmica.
	(calibración del densímetro).
Γ	Función en la ecuación C.12.
$\phi, \phi_i, \phi_i^L, \phi_i^V$	Coeficientes de fugacidad, para un compuesto i ,
	para este compuesto en la fase L o V.
ϕ_i	Función en las ecuaciones C.8, C.12.
ρ	Densidad (kg m $^{-3}$).
σ	Prefijo de desviación estándar.
$\sigma^+, \sigma^-, \sigma^\pm$	Función escalón en la ecuación 3.4.
$ au, au_0$	Periodo de vibración (ms), periodo de vibración a vacío.
$ au_{ij}$	Parámetro del modelo NRTL por pares de componentes i,j (J mol^-1).

Índices

c Calibración cel	Propiedades críticas. Referente a / condiciones de, una calibración. Referente a la ceda descarga, ecuación 2.6
etano	Referente al etano, C_2H_6 .
Н	En fase Homogénea.
In	En fase no homogénea.
L, LL, LV, V	Referente a propiedad medida a saturación del líquido, del líquido en presencia de otro líquido, del líquido en presencia de un vapor, de un vapor.
Max.	Condiciones Máximas.
Medición	Referente a / condiciones de, una medición.
Min.	Condiciones mínimas.
PQ	Referente a un Punto de Quiebre.
Sat.	Dato evaluado a saturación.
0	Condiciones de referencia $P = 1$ bar.
00	Condiciones de referencia en dos variables T = 298.15 K y P = 1 bar.

Abreviaciones

DESVEST	Desviación Estándar.
DTV	Densímetro de Tubo Vibrante.
EdE	Ecuación de Estado.
EIT	Echelle Internationale de Température.
	Tr.: Escala Internacional de Temperatura.
ELL	Equilibrio líquido – líquido.
ELLG	Equilibrio líquido – líquido – gas.
ELLV	Equilibrio líquido – líquido – vapor.
ELG	Equilibrio líquido – gas.
ELV	Equilibrio líquido – vapor.
ESIQIE	Escuela Superior de Ingeniería Química e Industrias Extractivas.
ESG	Equilibrio sólido – gas.
FPMC	(Model), Forced Path Mechanical Calibration.
	Tr.: (modelo de), Calibración de rutas mecánicas forzadas.
HPLC	High Pressure Liquid Chromatography.
IPN	Instituto Politécnico Nacional.
LCEP	Lower Critical End Point.
	Tr.: Punto Crítico Terminal Inferior.
LCSP	Lower Critical Solución Pressure.
	Tr.: Presión Crítica Consoluta Inferior.
LCST	Lower Critical Solución Temperature.
	Tr.: Temperatura Crítica Consoluta Inferior.
LG	Referente al ELG.
LL	Referente al ELL.
LLG	Referente al ELLG.
LLV	Referente al ELLV.
LV	Referente al ELV.
L_P	Líquido Pesado, composición rica en el compuesto menos volátil.
L_L	Líquido Ligero, composición rica en el compuesto más volátil.
NIST	National Institute of Science and Technology.
	Gaithersburg (EUA), anteriormente National Bureau of Standards.
NRTL	(Modelo de solución), Non Random Two Liquids. Tr.:
	Arreglo No Aleatorio de Dos líquidos.
\mathbf{PR}	(Ecuación de Estado), Peng – Robinson.
PVT	Presión – Volumen – Temperatura.
RKS	(Ecuación de Estado), Redlich – Kwong – Soave.
SEPI	Sección de Estudios de Posgrado e Investigación.
$\mathrm{TRP}(\mathrm{S})$	Transductore(s) de Presión.
UCEP	Upper Critical End Point.
	Tr.: Punto Crítico Terminal Superior.
UCST	Upper Critical Solución Temperature.
	Tr.: Temperatura Crítica Consoluta Superior.
UCSP	Upper Critical Solución Pressure.
	Tr.: Presión Crítica Consoluta Superior.
WS	(Reglas de mezclado), Wong – Sandler.

Introducción

La existencia de datos experimentales de la región del equilibrio líquido – líquido de mezclas binarias es de suma importancia para entender el funcionamiento de una gran variedad de procesos (por ejemplo destilación y extracción), que operan en base a esos equilibrios. La no idealidad de esas mezclas de fluidos, hace que tanto los métodos experimentales, que tienen como objetivo proporcionar información científica básica de sus propiedades termodinámicas, como las ecuaciones de estado, que tienen como propósito racionalizar la información experimental para su uso directo en ingeniería, son de difícil manejo, en particular a altas presiones, para ese tipo de mezclas. Muchos modelos de uso común en ingeniería, tales como las ecuaciones de estado, no son capaces de representar dicha región con una precisión correcta, sobre todo con respecto a las propiedades volumétricas ($P - \rho - T$) donde estos modelos fallan notablemente. La complejidad de los diagramas de fases que presentan ciertos sistemas binarios han justificado investigaciones, tanto experimentales como teóricas, desde hace más de un siglo.

Sin embargo, para el desarrollo de nuevos modelos, o simplemente para la exploración de las capacidades de algunos existentes, es necesario contar con datos experimentales. Por esas razones, en este trabajo, se plantea generar experimentalmente el comportamiento $P - \rho - T$ y P - T - xy de un sistema particular: etano + 1-propanol. Es un sistema binario altamente no ideal, debido a la presencia de tres tipos de equilibrios: ELV, ELL y ELLV en su comportamiento de fases, y que corresponde al tipo V de la clasificación de los diagramas de fases global según van Konynenburg y Scott [1,2].

El sistema binario de estudio se eligió principalmente por la factibilidad de alcanzar sus condiciones de separación de fases en la región de tres fases en un instrumento de medición disponible basado en la técnica de *densimetría de tubo vibrante* (DTV). Así, se pretende poder explorar la posibilidad de detectar los equilibrios presentes en este sistema *in situ*. La determinación y medición de las condiciones de equilibrio líquido – líquido (ELL), en ciertas mezclas, se hace comúnmente mediante técnicas de medición directas, ya sean estáticas o dinámicas. Técnicas indirectas acopladas también han sido utilizadas, para determinar los ELL usando la técnica de densimetría de tubo vibrante, pero con un arreglo de tres densímetros donde se recirculan las fases presentes. Uno de los objetivos de este trabajo es detectar el ELL usando un arreglo experimental que comprende solo un densímetro, extendiendo así la capacidad de medición de estos instrumentos, y, teniendo la ventaja de poder obtener simultáneamente la condiciones de presión y temperatura del equilibrio, así como las densidades de las fases saturadas.

Para el efecto de la detección del ELL, o de cualquier otro tipo de equilibrio, se requiere definir procedimientos de medición que establezcan las condiciones adecuadas de estabilidad y de equilibrio termodinámico. Teniendo estos procedimientos definidos, se pueden plantear estudios completos y medir el comportamiento $P - \rho - T$ de la mezcla; etano + 1-propanol en este caso. Se reportaran datos en un intervalo de temperatura de 313 a 320K, en presión hasta 400 bar y composiciones de $x_{etano} = 0.718$ a $x_{etano} = 0.936$ en fracción molar. El presente estudio forma parte de un proyecto de investigación, IPN-CGPI 20030721, cuyo objetivo general consiste en caracterizar, en términos de propiedades volumétricas y de equilibrio, a una serie de mezclas a base de etano + alcoholes de cadenas cortas (metanol hasta 1-propanol).

Para demostrar el cumplimiento de los objetivos planteados, el presente trabajo se ha distribuido en tres capítulos. En el primer capítulo, se establece la importancia de generar nuevos datos experimentales, así como la de contar con técnicas de medición de propiedades $P - \rho - T$ precisas.

En el segundo capítulo, se describe el arreglo experimental utilizado, así como los procedimientos experimentales que se tuvieron que elaborar para detectar los equilibrios ELL mediante la técnica de densimetría. Se establecen también los procedimientos modificados que se usaron para llevar a cabo las mediciones relativas a las calibraciones de los transductores de presión y del densímetro.

En el tercer capítulo, se reportan y analizan los resultados de las mediciones sobre el sistema de estudio. Así mismo, se reportan los resultados de la modelación de los datos experimentales determinados en este trabajo.

Por último se presentan las conclusiones derivadas del presente trabajo, así como algunas recomendaciones que podrán servir como guía hacia trabajos posteriores. Una serie de apéndices contiene los datos tabulados, series de gráficas de consulta que permiten apreciar los comportamientos observados, así como notas sobre algunos puntos de detalle relacionados con la problemática de la modelación del sistema.

Capítulo 1

Antecedentes

1.1. Generalidades

1.1.1. Equilibrio líquido – líquido a presión o temperatura constante

Al poner en contacto dos especies químicas dentro de ciertos límites de composición y si se separan en dos fases líquidas, las cuales están en equilibrio; a este fenómeno se le llama Equilibrio líquido-líquido (ELL) [3]. El ELL puede representarse en diagramas de temperatura o presión en función de la composición.

En algunos casos las dos fases pueden estar constituidas por mezclas de los componentes involucrados. Entonces, se dice que los componentes son parcialmente miscibles. Sin embargo, en ocasiones, estas fases pueden estar conformadas por compuestos puros cada una: a este fenómeno se le denomina inmiscibilidad [4].

Cuando los componentes de un sistema binario son parcialmente miscibles, el sistema puede presentar cuatro diferentes comportamientos [3–5]:

1. Las fases líquidas forman una isla (Figura 1.1):

Los puntos consolutos son análogos a los críticos [3] de un compuesto puro. Estos puntos corresponden a estados limitantes del equilibrio de dos fases para los cuales todas las propiedades en equilibrio son idénticas.

Por debajo del punto UCST y por arriba del punto LCST los dos componentes son completamente miscibles y forman una sola fase líquida. Este tipo de comportamiento se observa con poca frecuencia.

2. El sistema sólo presenta el punto LCST (Figura 1.2).

Este comportamiento se debe a que una línea de unión de la región $L_1 + L_2$ se junta a una línea de unión de la región de dos fases L + G [4], lo cual provoca que el punto UCST no se presente.

Figura 1.1: a) Temperatura en función de la Composición. UCST: Temperatura Crítica Consoluta (o de solución) Superior LCST: Temperatura Crítica Consoluta (o de solución) Inferior; b) Presión en función de la composición. UCSP: Presión Crítica Consoluta (o de solución) Superior LCSP: Presión Crítica Consoluta (o de solución) Inferior.

Figura 1.2: a) Temperatura en función de la Composición. LCST: Temperatura Crítica Consoluta (o de solución) Inferior; b) Presión en función de la Composición. UCSP: Presión Crítica Consoluta (o de solución) Superior.

Es muy común, en la práctica, que, al estudiar el ELG o ELL, se presente una unión de este tipo la cual corresponde a un equilibrio de tres fases de tipo líquido – líquido – gas (ELLG). En la referencia [6], al estudiar el equilibrio del sistema binario etano + eicoseno a presión atmosférica y de 304 a 310 K, se reporta un comportamiento como el que se describió.

3. Sólo existe la presencia del punto UCST: esto indica que se juntan líneas de unión de las regiones $L_1 + L_2$ y S + G, por lo que se pierde el punto LCST (ver Figura 1.3). Existen sistemas binarios en los cuales, a temperaturas no muy bajas, se juntan las curvas del ELL y del ESG. Tal es el caso del sistema agua + clorofenol, estudiado en la referencia [7], en el cual se encuentra sólo el punto UCST, a una temperatura menor de 250 K - 270 K, dependiendo del clorofenol utilizado.

Figura 1.3: a) Temperatura en función de la Composición. UCST: Temperatura Crítica Consoluta (o de solución) Superior b)Presión en función de la Composición. LCSP: Presión Crítica Consoluta (o de solución) Inferior.

4. Presencia de dos límites consolutos sin formar una isla: el último de los comportamientos, que puede presentar el sistema binario en el ELL, es la presencia de los dos límites consolutos (UCST y LCST), pero sin formar una isla como en el primer caso. Existe una unión, de la sección formada por el $L_1 + L_2$ con las curvas L + G y S + G, lo que provoca una bifurcación de la isla y el diagrama de equilibrio se presenta como en la Figura 1.4.

Este tipo de comportamiento se presenta comúnmente en sistemas que involucran polímeros. En la referencia [8], se estudiaron diferentes sistemas, polímero + solvente, y todos ellos presentan una tendencia hacia este comportamiento.

De acuerdo con el análisis anterior de los diferentes comportamientos que presentan equilibrios líquido-líquido en sistemas binarios, en general, puede verse que los cambios entre los diagramas depende de los intervalos de presión y temperatura considerados. Es decir, un sistema binario determinado puede presentar diferentes comportamientos, en el diagrama de fase, al someterlo a diferentes presiones y temperaturas respectivamente.

1.1.2. Equilibrio líquido – líquido en diagramas P - T

Es posible generalizar el análisis antes expuesto mediante los diagramas de fases, o diagramas P - T, complementarios de los diagramas P o T - xy considerados hasta

Figura 1.4: Temperatura en función de la Composición. UCST: Temperatura Crítica Consoluta (o de solución) Superior LCST: Temperatura Crítica Consoluta (o de solución) Inferior.

ese punto. Los diagramas de fases globales para fases fluidas pueden ser clasificados de acuerdo a un tipo ([5]), en referencia al trabajo inicial y a la clasificación denominada de van Konynenburg y Scott [2]. Estos diagramas presentan la ventaja, respecto a los anteriores, de dar a conocer la evolución de un sistema con respecto a la temperatura y a la presión simultáneamente. Esto es particularmente útil para apreciar las condiciones de equilibrio de los sistemas a relativamente alta presión, > 1 bar, y entender como se desplazan estos equilibrios en función de la presión y de la temperatura, más que en función de la composición.

Figura 1.5: Diagrama de Fase de Tipo I.

1. Tipo I: En esta categoría, se observa que la línea crítica inicia en el punto

crítico del componente puro 1 (C1) y, conforme la mezcla se enriquece en el componente 2, la línea se desliza suavemente del punto crítico 1 al punto crítico 2 (C2) (ver Figura 1.5). Por ejemplo, la mezcla *bióxido de carbono*+ propano presenta este comportamiento así como la mezcla *bióxido de carbono*+ etanol. En general, las mezclas binarias conformadas por un fluido polar y un fluido no polar presentan este comportamiento (los fluidos son completamente miscibles a cualquier composición). Sin embargo, hay excepciones como es el caso de la mezcla etano + 1-propanol (de interés en este trabajo) que presenta un diagrama de tipo V.

Figura 1.6: Diagrama de Fases de Tipo II.

Figura 1.7: Diagrama de Fases de Tipo III.

2. Tipo II: En este comportamiento se presentan dos líneas críticas: una de puntos críticos líquido – vapor, idéntica al tipo I, y otra que inicia en un punto crítico terminal superior de equilibrio líquido – líquido – vapor (UCEP: *Upper Critical End Point*) a bajas temperaturas y presiones, y continua, con puntos críticos terminales líquido-líquido, a relativamente bajas temperaturas y hasta muy altas presiones (ver Figura 1.6).

Figura 1.8: Diagrama de Fase de Tipo IV.

- 3. Tipo III: al igual que el tipo II, este comportamiento presenta dos líneas críticas. Se encuentra una línea crítica que inicia en el punto crítico 2 y continua con puntos críticos líquido – gas o gas – gas, dependiendo de la forma que adopta dicha línea crítica, al aumentar la presión y disminuir la temperatura. La otra línea inicia en el punto crítico 1 y continua con puntos críticos líquido – vapor hasta un punto terminal superior del equilibrio de tres fases (UCEP) a temperatura mayor que la temperatura crítica en C1 (ver Figura 1.7). Ciertas mezclas agua + alcano y la mezcla etano + metanol, por ejemplo, presentan diagramas de fases de este tipo.
- 4. Tipo IV: este tipo presenta un comportamiento similar al tipo V, con la diferencia de que a temperaturas más bajas que la del LCEP, existe una línea de tres fases (LLV), desconectada de la que aparece en el tipo V, con otro UCEP del cual inicia una línea de puntos críticos líquido – líquido, semejante a la que presenta el diagrama tipo II. Esta curva crítica puede existir hasta altas presiones (ver Figura 1.8).
- 5. Tipo V: este comportamiento es similar al tipo III, con excepción de que la línea crítica que inicia en el punto crítico 2 termina en un punto crítico terminal inferior de equilibrio LCEP (*Lower Critical End Point*), ver Figura 1.9.

Figura 1.9: Diagrama de Fase de Tipo V.

El sistema de estudio en este trabajo, etano + 1-propanol, pertenece a este tipo de diagrama. La región de equilibrio líquido - líquido, que se va a estudiar, está restringida por los puntos terminales UCEP y LCEP a temperaturas cercanas a la temperatura crítica del etano.

Figura 1.10: Sistema bióxido de carbono + isopentano;• Datos Experimentales a 377.65 K. Ver [9] p.: 527. El punto crítico se encuentra en el máximo en presión de la curva.

De manera general, se debe pensar en donde se encuentran este tipo de comportamientos. Es posible encontrarlos en sistemas binarios de uso común. Con respecto al tipo I (el comportamiento más sencillo) los sistemas *bióxido de carbono*+ propano y *bióxido de carbono*+ metano, presentan un comportamiento de este tipo y son sistemas que han suscitado mucho interés en la industria petrolera; en especial para el diseño, control y optimización, de la recuperación del gas natural [10]. En lo que se refiere al tipo II, algunos sistemas binarios comunes que corresponden a este tipo son el agua +*bióxido de carbono*, n-octano +*bióxido de carbono* y el n-hexano + nitrobenceno [11].

Es posible pensar que la presencia de comportamientos más complejos como son los del tipo III, IV y V son más inusuales que los del tipo I y II. Sin embargo, existen sistemas binarios, que son de uso común, y se comportan así. Por ejemplo, el sistema binario etano + etanol es un sistema que presenta un comportamiento del tipo V y el sistema metano + n-hexano pertenece a un diagrama de tipo IV.

En general, para diagramas del tipo I se esperan comportamientos P-xy de la forma que muestra la Figura 1.10 a temperaturas arriba del punto crítico del componente más volátil. Es relativamente fácil predecir sus comportamientos, o bien representarlos mediante ecuaciones de estado, haciendo uso de reglas de mezclado apropiadas. Desde el punto de vista práctico, los fluidos con este comportamiento de equilibrio, en todo el intervalo de temperatura entre los puntos críticos de los componentes. Tratándose de una mezcla utilizada como solvente supercrítico, solvente + co-solvente, se sabe que se tendrá siempre una transición líquido – gas, a temperaturas cercanas y superiores al punto crítico del solvente, es decir a las condiciones de operaciones usuales de esos fluidos (ver Figura 1.10).

Sin embargo, en sistemas binarios que presentan comportamientos más complejos, tipos III hasta V, los diagramas P-xy se presentan en las Figuras 1.11 [12] y 1.12 [13] a ciertas temperaturas. La diferencia entre ellos sólo se puede apreciar si se tiene una idea de como evolucionan estos diagramas isotérmicos en función de la temperatura. Estos sistemas presentan una situación más complicada ya que, a una temperatura dada, sólo existe un equilibrio líquido-vapor a presión relativamente baja. A presión más alta, se tiene una región donde se presentan simultáneamente equilibrios líquido – vapor y líquido – líquido dependiendo de la composición. A una sola presión y a temperatura dada se presenta el equilibrio entre tres fases simultáneamente: líquido – líquido – vapor. A esa presión se tiene una frontera entre dos comportamientos diferentes.

Para estos comportamientos (tipo IV o V), tomando como ejemplo el caso de un solvente supercrítico, resulta difícil ubicar las condiciones adecuadas de temperatura de operación por ejemplo para una separación. En las Figuras 1.11 y 1.12, en un pequeño intervalo de temperatura, ocurren transiciones entre fases, de varias naturalezas, las cuales suelen tener características volumétricas diferentes, que no son forzosamente las deseadas si lo que se busca es el comportamiento volumétrico típico

Figura 1.11: Sistema binario: etano + metanol a 298.15 K [12].

de un fluido supercrítico, es decir, fuertes variaciones de la densidad con pequeños cambios de presión. Si durante una compresión, o descompresión isotérmica, el fluido pasa por una zona de inmisibilidad, la densidad de la mezcla deja de tener el comportamiento deseado de un fluido supercrítico (alta compresibilidad y alta selectividad) y presenta las características de un líquido. Asimismo, es importante poder caracterizar las fronteras y condiciones donde ocurren tales cambios. Esto resalta el interés que existe, entre otros, en el estudio de las propiedades de equilibrio de mezclas de solvente + co-solvente, aun si estos fluidos se utilizan normalmente en condiciones supercríticas.

1.1.3. Relevancia de los diagramas de fases a alta presión

El interés en el estudio de los equilibrios, en particular líquido – líquido a relativamente altas presiones, en el ámbito de la ingeniería de procesos químicos, [14, 15], radica principalmente en encontrar condiciones de operación (temperatura, presión y composición) que permitan llevar a cabo las extracciones, destilaciones, etcétera usando fluidos de trabajo, ya sean solventes o acarreadores, que proporcionen características fisicoquímicas adecuadas para lograr la separación. Las propiedades de interés son por ejemplo, la selectividad, puntos de ebullición, capacidad calorífica, densidad, viscosidad, etcétera. Se tienen que considerar también los aspectos ambientales, económicos y la seguridad. Sin embargo, los criterios aquí conciernen, sobre todo, a la naturaleza química de los compuestos y no tanto a sus características físicas.

Actualmente, los sistemas que más se estudian para las operaciones mencionadas,

Figura 1.12: Sistema binario: etano + etanol a 311.15 K [13].

son bióxido de carbono + alcohol (extracción supercrítica) [16–18], bióxido de carbono + alcano (industria petrolera, en la recuperación del gas natural) [19], alcano + alcohol (extracción y separación de los alcoholes del agua) [18,20], agua + alcano (remediación de suelos en y recuperación del pétroleo), bióxido de carbono o alcanos ligeros + productos naturales (extracción supercrítica).

La necesidad de contar con datos P - T - xy experimentales de esos sistemas altamente no ideales, para determinar sus comportamientos en extendidos intervalos de temperatura y presión, es una consecuencia de la búsqueda de las condiciones de operaciones óptimas. Para el diseño de los procesos que funcionan en base a las variaciones de la selectividad, y de la solubilidad controlada por la densidad del solvente, se requieren las propiedades volumétricas de las mezclas involucradas así como de las propiedades de transporte como la viscosidad dinámica. En consecuencia, la información $P - T - \rho - xy$ experimental es muy necesaria.

Algunos estudios interesantes para la justificación de este trabajo, concierne a la extracción de aceites cítricos [21–23]. Para remover sus altos contenidos de hidrocarburos, se estudiaron diferentes solventes supercríticos distintos al bióxido de carbono, con el fin de sustituirlo en la operación de extracción. Tales solventes deben ser no tóxicos, y sus temperaturas críticas deben ser baja, con el fin de evitar la degradación térmica de esos materiales biológicos. Entre estos solventes de estudio se seleccionó el etano, ya que cubre las características suficientes para reemplazar al bióxido de carbono aún si no se ha reportado nada referente a la flamabilidad del etano como una limitante de su uso.

El etano como fluido supercrítico se está estudiando para su posible aplicación en

la extracción de productos farmacéuticos, cosméticos y relacionados con la industria alimenticia [24]. El etano puede sustituir al bióxido de carbono con grandes ventajas como son: no generar residuos tóxicos, se alcanzan sus propiedades críticas a condiciones de operación más accesibles (principalmente en presión, $P_c(etano)=48.8$ bar contra $P_c(bióxido de carbono)=73.8$ a $T_c(etano) - T_c(bióxido de carbono)=1.25$ K según [11]). En la cuestión económica, a pesar de que el etano es un fluido más caro, su presión crítica siendo notablemente menor a la del bióxido de carbono, se reduce la cantidad de energía requerida para alcanzar las condiciones de operación. En el ámbito de los procesos de extracción supercrítica, se ha estudiado el etano en comparación con el bióxido de carbono como solventes en particular en la extracción de cafeína, teobromina y mantequilla de cacao de la semilla de cacao [24, 25]. En este estudio, se utilizó etano a 152 bar y 248 bar, y bióxido de carbono a 200 y 400 bar a 343.2 K. Se concluyó que el etano tiene una mayor eficiencia que el bióxido de carbono, para la extracción de los tres componentes mencionados, en base a la fracción entre la masa de extracto y la masa del solvente.

Se ha encontrado que el etano supercrítico puede usarse también en el área de catálisis (básicamente en la etapa de hidrogenación de compuestos orgánicos) donde se busca optimizar las reacciones químicas. Resulta importante destacar que durante la reacción de hidrogenación, por ejemplo en la hidrogenación de etil–piruvato [26], se presentan equilibrios de tres fases, equilibrio líquido – vapor y líquido – líquido, dependiendo de las condiciones de operación.

De lo anterior, es posible destacar la necesidad de generar datos sobre sistemas que involucren al etano a altas presiones, en especial mezclado con los cosolventes comunes como son los alcoholes de cadena corta (C1 hasta C4) utilizados como arrastradores o modificadores por su fuerte polaridad, y de conocer el comportamiento de estas mezclas con respecto a la presión y temperatura. Las composiciones en alcohol usualmente no rebasan el 5% en fracción molar y las condiciones de las mezclas utilizadas como solventes se encuentran en la región crítica y crítica extendida (gas denso comprimido) de estado.

La mayor diferencia que existe entre las mezclas solventes de un alcohol + bióxido de carbono o etano supercríticos, es que los dos tipos de mezclas no pertenecen al mismo tipo de diagramas de fases. Ocurren inmiscibilidades en las mezclas etano + alcohol que se encuentran, en las mezclas con bióxido de carbono (ver [27]), sólo con alcoholes de alto peso molecular (a partir del hexanol). La pesencia de esas inmiscibilidades en las mezclas con etano + alcohol, desde el metanol (ver [28]), son un fenómeno que merece atención.

Existen pocos sistemas caracterizados de esta índole, debido a que los estudios de los equilibrios líquido – líquido, frecuentemente, han sido efectuados a presión y temperatura estándar y, sólo en algunos casos, con variación de la temperatura. El estudio de los equilibrios líquido – líquido a altas presiones se realiza no muy frecuentemente. Además, se involucran presiones muy altas (por arriba de 1000 bar) en sistemas de tipo II, III o IV. La existencia de datos es limitada a unos cuantos

sistemas. Para sistemas en los cuales la inmiscibilidad es más restringida, tanto en términos de temperatura como en términos de presión, se cuenta, por ejemplo, con las mezclas etano + 1-propanol [29], etano + metanol [12], agua + 1,1-difluoroetano [30], entre otros, que han sido estudiadas a una sola temperatura. Son contribuciones al conocimiento de los comportamientos experimentales que, muchas veces, no son suficientes para establecer correctamente un modelo de estado y permitir el acceso a las propiedades en otras condiciones que las reportadas. Es en general necesario contar con datos experimentales repartidos adecuadamente en el espacio de estado, para este tipo de sistemas no ideales, con el fin de cubrir la carencia de información en las modelaciones. En ese ámbito, en el Laboratorio de Termodinámica de la ESIQIE-IPN (entre algunos otros), se están generando bases de datos de equilibrio y volumétricos va ampliamente reportados en las referencias [31-39]. Hasta ahora, se han estudiado de manera sistemática mezclas de bióxido de carbono con alcoholes. Estos sistemas son básicamente del tipo I o II, y no han sido estudiados en la región del equilibrio líquido – líquido en el caso del tipo II. Las mezclas de etano con alcohol pertenecen, según [28] y [40] a los tipos III, IV y V. En estos sistemas, la región de miscibilidad parcial entre dos líquidos se encuentra generalmente cerca del punto crítico del etano lo cual hace necesario su estudio, en especial si se pretende utilizar tales mezclas cómo un solvente.

Los estudios volumétricos sobre mezclas, tan solo binarias, son muy restringidos. El laboratorio contribuyó (ver [33], [36], [37]) en la caracterización volumétrica de algunos sistemas en amplios intervalos de presión y temperatura; sin embargo, la gran mayoría de la literatura disponible, sobre este tipo de mediciones, se encuentra en intervalos de presión y temperatura a veces muy reducidos. Por ejemplo, el sistema etano + metanol que se estudió solo a la temperatura de 298 K [12]. En el caso de las mezclas etano + alcohol no se cuenta en la actualidad con comportamientos volumétricos experimentales en función de T y P.

Desde un punto de vista teórico se requieren también modelos para representar estos comportamientos, y para predecirlos, ya que es imposible llevar a cabo todos los experimentos deseados por razones tanto económicas como de factibilidad. Ya existen algunos modelos (ecuaciones de estado) para el objetivo mencionado, los cuales cuentan con reglas de mezclado adecuadas para poder modelar las transiciones líquido – líquido a altas presiones. Los sistemas a los que se ha hecho referencia exhiben comportamientos altamente no ideales y, por muy moderna que sea la ecuación de estado, no se logra una representación ni tan solo cualitativa de sus comportamientos; en especial en el caso de la mezcla etano + 1-propanol (ver [29]). Para mejorar o validar un modelo con el objetivo de que su representación y predicción del comportamiento de los sistemas sea más eficiente, es necesario contar con datos de equilibrio $P - T - \rho - xy$ y datos volumétricos P - T - xy que presenten características de confiabilidad y que sean lo suficientemente representativos del sistema.

Ante la necesidad de obtener información experimental, se tienen que contemplar cuales son las técnicas experimentales disponibles.

1.2. Técnicas experimentales para EL(L)V y PVT

Los datos de equilibrio entre fases pueden describirse completamente por la determinación, tanto de propiedades P - T - xy, como por propiedades volumétricas $(P - \rho - T)$. Estos dos tipos de propiedades pueden ser obtenidos independientemente. Existen técnicas experimentales distintas para determinarlas y el caso de los equilibrios líquido – líquido es sólo un caso particular [15, 41, 42]. Sin embargo, las particularidades de estos equilibrios hacen que no cualquier técnica experimental pueda servir. También existen técnicas para medir los conjuntos de propiedades mencionados simultáneamente. Son muy pocas y, en general, son técnicas acopladas donde se determinan, por una parte, los datos de equilibrio entre fases (temperatura, presión, composición) y, por otra parte, las propiedades volumétricas ya sea por medición directa del volumen de las fases, o *ex-situ*, por métodos gravimétricos, o de manera indirecta.

En general, los equilibrios entre fases pueden determinarse mediante métodos estáticos analíticos o dinámicos. Se definen a los métodos estáticos analíticos como aquellos en los cuales los fluidos de estudio permanecen en una celda donde alcanzan su estado de equilibrio. El análisis se hace mediante un muestreo de las fases que se manda a un equipo de análisis (por ejemplo, un cromatógrafo de gases). En cambio, en los métodos dinámicos, los fluidos de estudio son puestos en condiciones de equilibrio entre fases y recirculados continuamente fuera de la celda. El análisis se hace, en estas condiciones, tomando muestras directamente en las líneas de recirculación. Dependiendo de cual es el instrumento de análisis, este tipo de método se presta a un acoplamiento con instrumentos que permiten tener acceso a las propiedades volumétricas de las fases. Un ejemplo de tales instrumentos, frecuentemente utilizado, es el densímetro de tubo vibrante. Para esas técnicas ver [29,31,32,36,39] entre otros.

Los métodos para determinar propiedades PVT pueden ser directos o indirectos:

- En los métodos directos se realiza una medición directa de alguna de las propiedades termodinámicas; por ejemplo, la densidad o volumen de una fase homogénea, fijando a las otras propiedades, por ejemplo la temperatura, presión y composición de la mezcla (método sintético, o recirculación de fases en equilibrio).
- En los métodos indirectos, se determinan propiedades termodinámicas a partir de la medición de una cantidad relacionada por algún principio físico; las demás propiedades manteniéndose. Por ejemplo, se fijan temperatura, presión y composición, y la densidad se determina mediante la medición del periodo de vibración de un tubo lleno del fluido de estudio: es el principio del tubo vibrante.

En la actualidad, para la determinación de datos PVT de un fluido líquido, se utilizan diferentes métodos, o diversas modificaciones de algunos de ellos, dependiendo de las condiciones de operación (P-T) a las cuales se requiere medir. Las características y complejidad de los dispositivos experimentales dependen de estas condiciones de operación.

1. Métodos utilizados a condiciones isotérmicas: altas presiones y temperatura constante.

Para la determinación de los equilibrios a altas presiones, se utilizan comúnmente dos métodos: el método estático analítico, [31,39], y el método dinámico con recirculación de fases, ver [12,13] etcétera. Por ejemplo, un estudio realizado mediante el método estático a altas presiones fue la determinación de datos de equilibrio de los sistemas de bióxido de carbono + etanol y bióxido de carbono + 1-propanol, llevado a cabo en la referencia [39]. La toma de muestras se lleva a cabo mediante un tubo capilar móvil y las muestras se envían automáticamente, para su análisis, a un cromatógrafo de gases. En la referencia [30] se usa el método estático para el estudio de equilibrios líquido – líquido a altas presiones y condiciones isotérmicas. El error en los análisis de composición por cromatografía de gases es generalmente entre 0.02 y 0.07 % molar en fase líquida, dependiendo de los sistemas estudiados.

2. Métodos de determinación simultánea de datos de equilibrio y datos volumétricos

a) En el método de volumen variable (ver [43]), el equilibrio entre fases se lleva a cabo en una celda de zafiro transparente de volumen variable, o en una celda de volumen variable que cuente con una ventana para determinar ópticamente los volúmenes de las fases presentes en el equilibrio (método directo). Posteriormente, a partir del número total de moles de cada componente determinado por pesadas sucesivas a una presión y temperatura dada, y de los volúmenes totales de cada fase en equilibrio, pueden determinarse las composiciones, así como los volúmenes molares saturados, mediante un balance de masa para cada compuesto (ecuación 1.1)

$$n_i = \sum_{1}^{g} x_{ik} \left(\frac{V_k}{v_k^s}\right) \tag{1.1}$$

 x_{ik} : fracciones mol desconocidas;

 v_k^s : volúmenes molares en la saturación para la fase k;

 $V_k:$ volúmenes de cada fase

El arreglo de la referencia [44], consta de una celda de volumen variable de zafiro para las mediciones de equilibrio de fases, acoplada a un densímetro de tubo vibrante para realizar mediciones de densidad en la fase líquida homogénea. Se concluye, en este trabajo, que la técnica es adecuada para obtener simultáneamente mediciones en la saturación y en fase homogénea líquida, y se obtienen incertidumbres de $0.1-0.5\,\%$ en las densidades.

Recientemente se cuenta con un estudio, [36], donde el densímetro de tubo vibrante ha sido empleado para obtener la densidad, cerca de la saturación de la fase líquida, en transiciones sólido –líquido en el momento de la precipitación del sólido en la mezcla. Las condiciones de equilibrio para mezclas sintéticas (en particular la presión de precipitación) se obtienen dentro de una celda visual de volumen variable a la cual está acoplado el densímetro.

b) Otros Métodos

En la referencia [45] se realizaró un estudio del equilibrio líquido – líquido – vapor de sistemas hidrocarburo + bióxido de carbono. Se utilizó un aparato PVT sintético isotérmico visual de volumen variable con dos celdas: una donde se lleva a cabo el equilibrio y otra donde se almacena el fluido después del análisis. El análisis de composición se lleva a cabo mediante un cromatógrafo de gas usando un diseño especial para el muestreo de las fases en equilibrio. La transferencia de las fases entre las dos celdas se hace a presión constante. El volumen de cada fase se determina visualmente a través de una ventana, con la que cuenta la celda, y un catetómetro. El estudio se llevó a cabo hasta 270 bar y temperaturas hasta 500 K. La incertidumbre que se alcanzó en lo que respecta a los datos de equilibrio fue de ± 1 % para las constantes de equilibrio, y ± 5 % para las densidades.

En un estudio, llevado a cabo en la referencia [46], del sistema bióxido de carbono + nitrógeno para determinar datos P, ρ , T, se utilizó un aparato sintético isocórico acoplado a un picnómetro. El aparato mide P y T de fluidos no corrosivos en un intervalo de presión y temperatura de 70 bar hasta 1005 bar y de 100 K hasta 450 K, respectivamente. A partir de los datos de P y T medidos, se puede calcular el volumen, en función de un volumen de referencia, mediante el cual, finalmente, se pueden obtener datos de ρ , en función de una densidad de referencia determinada con un picnómetro pesado continuamente.

En la referencia [47], se diseñó un equipo para determinar composiciones de fases en equilibrio y densidades. El equipo consta de una celda PVT de volumen variable acoplada a un densímetro de tubo vibrante y a una celda de medición de tensión interfacial (IFT). El equilibrio se lleva a cabo en la celda y las composiciones se determinan con un cromatógrafo de gas. Las densidades se determinan mediante un densímetro de tubo vibrante (DMA-512 en este caso). Para realizar las determinaciones anteriores, primero se deja que se alcancen las condiciones del equilibrio, y entonces, por recirculación de las fases en el densímetro, se miden las densidades. Posteriormente, se toman muestras para determinar la composición de las fases, y se envian las muestras a un cromatógrafo de gases mediante válvulas de muestreo.

Kodama. et al. [29] realizaron un estudio del equilibrio líquido – líquido del sistema etano + 1-propanol a altas presiones con una incertidumbre en la densidad experimental de $\pm 0.7 \ kg m^{-3}$. Se uso un arreglo experimental del tipo dinámico con recirculación de las fases de la referencia [48], que consta de tres densímetros de tubo vibrante, Antón Paar DMA 512S, donde las fases son continuamente recirculadas. El arreglo puede operar a presión y temperatura hasta 200 bar y 400 K respectivamente.

- 3. Métodos de determinación de datos volumétricos
 - a) Técnica de densimetría de tubo vibrante:

Como se puede observar, en los métodos descritos en la sección anterior, muchos de los equipos en los cuales se llevan a cabo mediciones de equilibrio y PVT simultáneamente, hacen uso de densímetros de tubo vibrante acoplados con una celda de equilibrio. La utilización común del densímetro de tubo vibrante se encuentra en estudios en fase líquida homogénea de compuestos puros o mezclas, por ejemplo en [33,49–57], entre muchos otros.

El densímetro de tubo vibrante se ha utilizado como instrumento principal para llevar a cabo mediciones simultáneas de datos PVT y equilibrio líquido – vapor para algunas mezclas sintéticas de refrigerantes, ver [58]. Anteriormente, en la referencia [59], se ha descrito un método de detección para medir presiones de saturación de soluciones salinas mediante un densímetro. En ambos casos se efectua la detección de las condiciones de equilibrio directamente dentro del mismo instrumento, aúnque bajo príncipios diferentes. El método de medición de densidades por medio del densímetro de tubo vibrante, como tema central en este trabajo, se detallará adelante en la sección 1.3.

b) Otro Método:

En la referencia [60] se realizaron mediciones de densidades, de una mezcla binaria y una ternaria, haciendo uso de un equipo cuyo elemento central para las mediciones de la densidad es una microbalanza de suspensión magnética; la cual realiza determinaciones directas de la masa mediante hundidores (dispositivos de hundimiento basados en el príncipio de Arquímedes). En la referencia [61], también, se desarrolló un densímetro capaz de medir las densidades de gases y líquidos homogéneos en amplios intervalos de presión y temperatura mediante el método de los hundidores duales. Esos hundidores tienen la misma masa y área superficial. Sin embargo, tienen un volumen diferente. La superficie de ambos es del mismo material: oro. Uno tiene forma esférica ($V_S = 24.5 \text{ cm}^3, m_S = 54 \text{ g}$) y el otro tiene la forma de un disco ($V_D = 2.8 \ cm^3$, $m_D = 54$ g). Ambos hundidores se encuentran dentro de una celda de medición. Para la medición de la densidad uno de los hundidores se coloca sobre un elevador y el otro sobre un soporte que se conecta a una balanza analítica por medio de una suspensión magnética. Cuando la celda se llena con un fluido, a través de la suspensión magnética, se registra una diferencia de masa entre los dos hundidores (Δm^*). De esta diferencia de masa puede evaluarse la densidad como lo expresa la ecuación 1.2:

$$\rho = \frac{(\Delta m^*) - (\Delta m_{VAC})}{(V_S - V_D)} \tag{1.2}$$

donde: $\Delta m_{VAC} = (m_D - m_S)$, es la diferencia de masa entre los hundidores cuando la celda esta vacía.

En la referencia [60], se estudiaron dos mezclas: primero metano + propano para la cual se obtuvieron incertidumbres en la medición de la densidad del vapor de: $\pm 0.036 \%$, $\pm 0.013 kg m^{-3}$, y luego la mezcla metano + propano + hexano para la cual las incertidumbres en las mediciones de densidad del vapor son de $\pm 0.058 \%$. Estas incertidumbres ubican este método para las determinaciones de densidades de gases a un nivel claramente superior al densímetro de tubo vibrante que, por un límite en sensibilidad, sólo puede medir densidades de vapor con un error absoluto fijo, provocando incertidumbres muy altas en fase gas a baja presión (del orden de 10 a 30 % a 1.0 kg m⁻³).

Una revisión actual de los métodos que permiten tener acceso a las propiedades de fluidos en fases homogéneas, en especial las densidades, se encuentra ampliamente documentada en las referencias [42] y [61].

En los párrafos anteriores, se han descrito técnicas relevantes de uso actual. No se pretendió hacer una revisión extensiva de las técnicas que se pueden emplear para los propósitos considerados, sino ubicar la técnica de densimetría por tubo vibrante como una técnica de gran importancia en el área de las mediciones experimentales en termodinámica a altas presiones actualmente.

1.3. Densimetría de tubo vibrante

El principio de la densimetría se basa en la relación que existe entre el periodo de vibración (o resonancia) de un tubo hueco y la masa del fluido que se encuentra dentro. La diferencia que existe entre el densímetro de tubo vibrante (DTV) y otros métodos de medición de propiedades PVT, radica en que, en el DTV, varía la masa del fluido de estudio y no su volumen. La densimetría por tubo vibrante se considera como un método indirecto, ya que se mide una propiedad física, el periodo de vibración del tubo a una presión y temperatura dada, y a partir de ella, y a través de principios básicos de mecánica de vibraciones, es posible determinar la propiedad termodinámica de interés: la densidad. La relación que existe entre el periodo de vibración y la densidad esta dada mediante una expresión matemática llamada *modelo de calibración* como en la ecuación 1.3:

$$\tau^2 = \frac{4\pi^2 V_i}{K} \rho + \frac{4\pi^2 M_0}{K} \tag{1.3}$$

donde M_0 , K y V_i son parámetros característicos del instrumento, de los cuales K y V_i dependen de la presión y de la temperatura (debido a las propiedades mecánicas del instrumento), así como la densidad ρ (debido a las propiedades de los fluidos). Esto hace que el periodo de vibración τ dependa también de la presión y de la temperatura: $\tau = \tau(P, T, \rho)$.

Para establecer el modelo de calibración, se requiere estimar algunos parámetros intrínsecos del instrumento a cada temperatura y presión. La determinación de los parámetros se hace mediante una calibración con uno o varios fluidos de referencia de densidad conocida a las condiciones de T y P de interés. La calibración del DTV puede realizarse de diversas formas [62] [56]. La forma más común es el método clásico que consiste en utilizar dos fluidos de referencia, con densidades conocidas a las condiciones de temperatura y presión a las cuales se va a estudiar el fluido de interés. Un ejemplo de dos fluidos de referencia, comúnmente utilizados en algunos estudios, son el agua y el nitrógeno [33]. Otra forma de calibración son los métodos que toman como referencia el tubo vacío o modelos de calibración continuos de trayectorias mecánicas forzadas (FPMC) [56] tomando diferentes consideraciones en cuanto a la física del tubo vibrante. Con cualquier modelo, o método, de calibración se tienen incertidumbres debido a los procedimientos y errores generados por dicha calibración. En general esta incertidumbre es del orden de 0.1 a 0.5 $kq m^{-3}$. Si no fuera por estos errores, el método es capaz de proporcionar densidades precisas hasta de una parte por millón.

El uso del densímetro de tubo vibrante, actualmente, se ha extendido para realizar estudios a altas presiones y diferentes temperaturas, generalmente para sistemas líquido – vapor, con diferentes arreglos de equipos experimentales. Algunos arreglos, como se ha comentado, involucran al DTV o a varios DTVs acoplados con otra técnica [29]. Otros arreglos contemplan sólo el DTV y, en estos casos, se ha buscado extender sus posibilidades de medición. El presente trabajo es una contribución en ese sentido.

En este ámbito, se ha logrado caracterizar, con un solo instrumento, zonas de importancia del estado termodinámico de los sistemas como, por ejemplo, mediciones de densidades de fluidos comprimidos en la cercanía de la zona crítica de fluidos puros y mezclas, o datos simultáneos de densidades y presiones de saturación de fluidos puros y mezclas que presentan equilibrios del tipo líquido – vapor o líquido – sólido. En el caso de los equilibrios líquido – vapor, la determinación de los datos de densidad a la presión de saturación se hace mediante una detección *in situ* de las condiciones de equilibrio aprovechando una metodología *casi* continua de medición y la posibilidad de detectar cambios apreciables del comportamiento vibratorio del instrumento en estas situaciones. Aún así, el DTV tiene limitación en lo que se refiere a su intervalo de temperatura de operación, de 253 a 423 K, y presión, hasta 400 bar o 700 bar, dependiendo del tubo vibrante que se utilice.

Aun con estas limitaciones, el DTV tiene ciertas ventajas sobre algunos otros métodos. Por ejemplo, el DTV utiliza un volumen de muestra pequeño (alrededor de $1.8 \ cm^3$). Esto es de interés en varios aspectos: uno es que, si se trata de un componente de alto costo o de síntesis delicada, se reduce el gasto del mismo. También, si se está estudiando un fluido de naturaleza peligrosa, lo mejor es utilizar la menor cantidad posible además de los cuidados usuales.

En el laboratorio de termodinámica de la SEPI ESIQIE–IPN existen dos arreglos experimentales disponibles basados en un densímetro de tubo vibrante. El primero es acoplado con una celda de volumen variable [36] y el segundo consta de un densímetro solo [57], como el utilizado en la referencia [58], pero de un modelo diferente para alcanzar presiones hasta 700 bar. El segundo arreglo experimental es el que se utiliza en el presente trabajo, el cual ha sido utilizado para desarrollar estudios PVT de mezclas en fase homogénea para diversos sistemas binarios [37]. El principal objetivo de utilizar dicho equipo es nuevamente extender la técnica para estudiar la detección del equilibrio entre fases en el caso de mezclas que presentan un equilibrio líquido – líquido y así obtener la información simultánea de las densidades de las fases líquidas coexistentes y de las condiciones de presión de saturación de los líquidos en equilibrio.

Actualmente, el DTV se ha utilizado extensamente en estudios para describir el comportamiento PVT de sistemas homogéneos. En cuanto a la obtención de datos de equilibrio líquido-vapor, algunos estudios han utilizado esta técnica para determinar simultáneamente la curva de saturación (presión de burbuja, presión de rocío) y densidades de líquido y vapor saturados [63–65], mediante una detección directa de las condiciones de equilibrio dentro del densímetros de tubo vibrante. Actualmente, la determinación de equilibrios mediante esta técnica sólo existe para el caso del equilibrio líquido-vapor.

La detección y medición del equilibrio líquido-vapor mediante la técnica de densimetría de tubo vibrante para un punto de rocío, se presenta como en la Figura 1.13. La Figura 1.13 muestra los datos experimentales de una fase vapor, la cual se mide partiendo de una baja presión hasta la presión de saturación. Como se puede observar, se presenta un comportamiento creciente del periodo de vibración conforme aumenta la presión.

Existe un quiebre característico del comportamiento el cual indica que se inicia la etapa de transición de fase donde coexisten una fase líquida formándose en una fase

Figura 1.13: Presión en función del Periodo de vibración (τ) en un punto de rocío. [63]

vapor. El quiebre es un indicador del inicio de la transición y, por lo tanto, de las condiciones del equilibrio. Con lo anterior, es posible determinar el punto de rocío que se localiza en la intersección de la curva de una correlación $P(\tau)$, ligeramente extrapolada, y la línea de transición estimada por una correlación local de algunos datos pertenecientes a una fase no homogénea. Los datos registrados en fase no homogénea son muy inestables y sus composiciones no se conocen. Por lo tanto, el comportamiento aquí no corresponde a un comportamiento físico cuantificable. Lo único que se busca es tener una idea razonable de que existe un cambio en el comportamiento $P(\tau)$. Lo que provoca una pendiente en la línea de transición, es que, en una mezcla, existe usualmente una diferencia entre la presión de rocío y la presión de burbuja. Una vez que se alcanza el punto de rocío, en la región de transición, la composición se modifica al elevar la presión por condensación preferencial de los compuestos pesados; de manera que esta pendiente no es representativa del cambio de presión entre rocío y burbuja a temperatura constante y no corresponde a una isoterma a la composición definida de la mezcla.

A diferencia del punto de rocío, la medición de un punto de burbuja se inicia con una presión mayor a la saturación. Se inicia un decremento hasta el punto de saturación, por lo cual la detección del equilibrio se manifiesta como en la Figura 1.14 de la referencia [63].

Al igual que en el caso del punto de rocío, el punto de burbuja se detecta experimentalmente mediante un quiebre en la isoterma que se está midiendo. El punto de burbuja se localiza en la intersección de la curva con el principio de la línea de

Figura 1.14: Presión en función del Periodo de vibración (τ) en un punto de burbuja, [63]

transición líquido \rightarrow vapor. En este caso, debido a la formación de burbujas de vapor dentro del líquido, el fenómeno de transición es muy notable, por lo que se deben obtener puntos experimentales en la zona de transición muy cercanos al comportamiento homogéneo (para evitar inestabilidades fuertes de la presión). La tendencia decreciente en la región no homogénea, en este caso, no se puede observar de manera confiable.

La Figura 1.14 muestra un comportamiento muy local, alrededor del punto de saturación, en el cual no es posible observar una tendencia regular; se encuentran fuertes fluctuaciones de la presión y del periodo, y hasta se nota un ligero subenfriamiento del líquido.

En general, el quiebre que se presenta en la curva $P(\tau)$ es la característica que permite la detección del equilibrio líquido – vapor en la técnica de densimetría de tubo vibrante. De manera similar, en la referencia [66] se detecta el equilibrio L – V en curvas isotérmicas de Presión en función del Volumen (P–V). La curva P(V) presenta un quiebre en un punto de separación de las fases (equilibrio) localizado en su intersección con la línea de transición de las fases. A diferencia del tubo vibrante, el arreglo experimental utilizado en la referencia [66] (método estático de volumen variable) permite medir la presión en la etapa de transición, manteniendo la composición de la mezcla, y entonces se puede observar el comportamiento lineal decreciente real que se espera entre la presión de burbuja y de rocío a composición y temperatura constante. En el caso del tubo vibrante, que no es exactamente estático porque su principio (vibración del tubo) es dinámico, no es posible mantener el sistema en equilibrio termodinámico estático en la región de dos fases. En la región homogénea, este equilibrio se puede obtener considerando que la vibración es estable y uniforme. En la región de dos fases, no hay manera de saber donde se encuentra la interfase en cualquier momento; la dinámica del tubo se vuelve inestable.

La implicación que eso tiene en la detección con el tubo vibrante es que, al contrario del método empleado en la referencia [66], la detección tiene que ser dinámica. Es decir, llevar a cabo mediciones en flujo continuo, a partir de una cierta presión de la fase homogénea, hasta que se pueda observar, dinámicamente, un cambio en el comportamiento. Una implicación fuerte de eso es la necesidad de contar con una adquisición automática de datos lo suficientemente rápida para poder capturar localmente el fenómeno de cambio esperado.

1.4. Síntesis y planteamiento del problema

Resumiendo la información anterior a partir de las diversas refencias bibliográficas indicadas, los sistemas que presentan equilibrios líquido – líquido son estudiados desde varias perspectivas, notablemente en el ámbito de los procesos de extracción. Los diagramas de fases han sido, y continúan siendo, determinados experimentalmente, sobre todo en las condiciones de operación de los procesos donde se utilizan y, más que todo, en función de T a presión baja.

Con la aparición de procesos u operaciones de extracción a más altas presiones, los estudios de los diagramas de fases a altas presiones parecen necesarios para entender el comportamiento complejo de ciertas mezclas y, también, para poder establecer modelos termodinámicos capaces de predecir sus propiedades. Los estudios de las propiedades de estas mezclas, que presentan inmiscibilidades parciales relativamente importantes en sus comportamientos de equilibrio, involucran muchas veces presiones muy altas. Esto no facilita ni la experimentación ni la modelación. Pues las interacciones entre líquidos son más bien conocidas a presión baja y poco se sabe de como les afectan las presiones elevadas. Los temas de experimentación y de modelación para esos sistemas son entonces inseparables y el presente trabajo los contempla.

En las cuestiones de experimentación, existen técnicas que permiten, con más o menos dificultades, determinar las condiciones de equilibrio multifásico de las mezclas consideradas o sus propiedades volumétricas. Algunas veces estas técnicas permiten obtener ambas informaciones de manera simultánea.

Dentro de esas técnicas, la técnica de *densimetría de tubo vibrante* es un método sencillo, que actualmente llama la atención porque es económica y, sobre todo, precisa y sencilla de utilización. Esta técnica es para determinar densidades de fases homogéneas y, pocas veces, ha sido utilizada para medir condiciones de equilibrio. La razón de esto es que el funcionamiento del instrumento con fases no homogéneas es altamente inestable.

El presente trabajo se apoya sobre estudios previos (estudio LV de mezclas de refrigerantes) en los cuales se muestra que es posible detectar, directamente dentro del instrumento, los límites de funcionamiento cuantificables del mismo, y así relacionar este límite con la aparición de una fase no homogénea. Es decir, se detecta una falla (cambio) del comportamiento del instrumento la cual se relaciona con condiciones de equilibrio entre fases en el fluido. La ventaja de la técnica es que se obtienen, para mezclas sintéticas, las presiones y las densidades en la saturación simultáneamente, con un sólo instrumento. Las transiciones estudiadas *in situ*, hasta ahora con esta técnica, son transiciones: vapor – líquido y líquido – vapor. El reto de este trabajo es, por consiguiente, explorar si es posible detectar en un densímetro de tubo vibrante, transiciones de fases, las cuales no presentan propiedades volumétricas muy diferentes entre ellas como, por ejemplo, las que ocurren cuando dos líquidos están en equilibrio. La hipótesis es que el instrumento es lo suficiente sensible a cambios muy leves en el estado termodinámico del fluido como para poder detectar la aparición de una gota de líquido más ligero en un líquido menos ligero y viceversa.

Se aprovecha lo anterior para llevar a cabo la detección *in situ* de varios tipos de equilibrios líquido – líquido (y en dados casos líquido – vapor) en un densímetro de tubo vibrante y la determinación simultánea de los datos $PT - \rho_{LL}$, z o $PT - \rho_{LV}$, z y P - T - z en condiciones de equilibrio de un sistema binario de interés. El estudio está enfocado al sistema etano + 1-propanol, tomado como sistema de prueba, porque se sabe que este sistema es de tipo V y presenta características que permiten pensar que se puede estudiar en el densímetro. Por otra parte, se eligió también este sistema por el interés que presenta técnicamente, como se comentó en este capítulo de antecedentes.

En el siguiente capítulo se presenta el método experimental que se estableció para este trabajo, con consideraciones sobre las metodologías empleadas y los procedimientos utilizados y desarrollados.

Capítulo 2

Método experimental

2.1. Diseño Experimental

2.1.1. Equipo Experimental

El equipo en el cual se llevaron a cabo las mediciones para la obtención de datos experimentales del equilibrio líquido – líquido, es básicamente el mismo que se desarrolló y utilizó para las mediciones de densidades en fases homogéneas de diversos sistemas binarios [37] y fluidos puros [62]; trabajos en los cuales se describe a detalle el equipo a utilizar.

La presente descripción volverá a dar algunas bases del método experimental y se enfocará en las modificaciones de metodología aportadas en este trabajo.

La herramienta básica del equipo es un tubo vibrante modelo Anton Paar DMA-512P, que puede operar en un intervalo de temperatura de 263 K hasta 423 K y presiones de 0 hasta 700 bar. El arreglo experimental se muestra en la Figura 2.1. El equipo consta de tres partes principales que son:

- 1. Una línea de carga y presurización,
- 2. La celda Anton Paar DMA-512P,
- 3. Circuito de medición de presión y relevo.

La línea de carga y presurización consta de dos partes principales: la *celda de carga* y un *generador de presión hidráulico* (ver Figura 2.1). En la celda se llevan a cabo dos funciones básicas para iniciar la medición de cualquier sistema. Primero, la celda se utiliza para preparar mezclas mediante la técnica de pesadas sucesivas [37,50]. La segunda función es presurizar la mezcla hasta una presión dada mediante un piston interno que aisla el agua de presurización del fluido de estudio y el generador de presión hidráulico. La celda soporta como límite de presión 800 bar.

Figura 2.1: Arreglo experimental. Reproducido con autorización del autor [37].

La celda Anton Paar DMA-512P se puede considerar como la parte central del equipo. En ella, se mide el periodo de vibración a ciertas condiciones de presión y temperatura.

El circuito de medición de presión se encarga básicamente de medir las condiciones de presión y temperatura que existen en el DTV. La presión se mide utilizando dos transductores de presión DRUCK PMP 4060; uno con un intervalo de medición de 0 a 138 bar (TRP1) y otro con un intervalo de medición de 0 a 687 bar (TRP2) (estos transductores se calibran antes de empezar las mediciones), ambos con una exactitud de ± 0.04 % en plena escala según el fabricante; mientras que la temperatura se mide mediante una sonda de resistencia de platino la cual fue calibrada de acuerdo a la *EIT90* con certificado referido al NIST, con una incertidumbre de ± 0.005 K. La sonda esta conectada a un termometro (F250 A Σ L) con una incertidumbre porpia de ± 0.015 K. La incertidubre total sobre la temperatura es de ± 0.02 K.

Estos medidores (de presión y temperatura) están conectados a una interfaz de adquisición de datos mediante la cual se registran datos de presión, temperatura,

periodo de vibración, tiempo y número de dato. El programa de adquisición regresa archivos de la forma que se muestra en la Tabla 2.1.

No. Dato	Temperatura (°C)	au(ms)	Tiempo (s)	Presión (bar)
1	39.007	4.0419354	19.09	398.090
2	38.997	4.0419146	22.55	397.915
3	38.990	4.0418984	25.94	397.754
•				
1330	38.851	4.0385444	4814.58	299.824
1331	38.851	4.0385435	4818.28	299.826
1332	38.851	4.0385439	4821.99	299.827

Tabla 2.1: Ejemplo de un archivo generado por el programa de adquisición de datos.

Es importante que el programa de adquisición devuelva las variables con el número de dígitos necesarios para el tratamiento númerico posterior de los datos. El número de dígitos en los datos de la Tabla 2.1, corresponde al limite de la estabilidad de las variables T y P durante las mediciones.

La temperatura T se registra con 3 dígitos porque el (mK) corresponde al nivel de fluctuación de T por la regulación térmica. Es 10 veces menor que el nivel de incertidumbre en temperatura, pero, lo interesante aquí es aprovechar la sensibilidad de la sonda de resistencia de platino más que su exactitud. Se recueda que es necesario tener fluctuaciones del orden del (mK) para obtener una estabilidad del orden de 10^{-6} ms en los periodos de vibración.

La incertidumbre sobre las presiones son del orden de la centécima de bar, en especial para el transductor de escala 138 bar. Se registran datos con 3 dígitos para evitar errores de redondeo más allá de la precisión de los instrumentos en los tratamientos de datos posteriores.

La estabilidad de las mediciones de periodos cuando T y P son mantenidas estables (con fluctuaciones del orden del *mbar* en presión y del *mK* en temperatura) es del orden de 10^{-6} ms. La séptima decimal se registra para poder redondear la sexta y saber donde exactamente se encuentra el nivel de fluctuaciones en condiciones definidas. Se puede mostrar que las fluctuaciones del orden de 10^{-6} ms son producidas por fluctuaciones de 1 mbar en la presión de un líquido alrededor de 60 bar, por ejemplo en las regiones donde las mediciones de periodo se efectuan en régimen de flujo continuo. Se puede imaginar un líquido que localmente tiene un comportamiento tal que $P \propto \rho$. El modelo de calibración del densímetro permite evaluar en estas condiciones la influencia de una fluctuación de presión a temperatura perfectamente estable, debida, por ejemplo, a un flujo de materia controlado en el circuito: $P \propto (\tau^2 - \tau_0^2)$, donde la proporcionalidad depende de la estabilidad térmica del instrumento. En términos de error la ecuación anterior se puede escribir en la forma: $\delta \tau \approx (\tau^2 - \tau_0^2)/(4\tau) (\delta P/P)$.

Las siguientes condiciones numéricas son típicas de las mediciones y fueron tomadas en un punto cercano a las condiciones de saturación a $x_{etano} = 0.7607$: T= 313.504 K ± 0.0008 K, P= 57.991 ± 0.017 bar, $\tau = 4.0229346 \pm 0.000004$ ms, τ_0 = 3.9249457 ± 0.0000004 ms. Las desviaciones mencionadas aquí no son las incertidumbres sobre los datos sino las dispersiones que presentan en una población de mas de 200 puntos tomados a condiciones estables de temperarura, es decir, cuando la temperatura no se aleja de mas de 1 mK de su valor promedio en la población. El resultado del calculo para una variación de 1 mbar produce $\delta \tau \approx 8.3 \times 10^{-7}$ ms.

2.1.2. Procedimiento experimental general

El procedimiento general de medición para la obtención de densidades en fase homogénea de mezclas es básicamente el mismo que el utilizado por De la Cruz de Dios [37]. Dicho procedimiento es isotérmico y consta de los siguientes pasos:

- 1. Se fija la temperatura en el DTV, a la cual se va a llevar la medición, y se regula mediante un baño termostático con recirculación de trietilenglicol en una chaqueta aislada térmicamente alrededor del tubo vibrante.
- 2. Se calibra el densímetro de tubo vibrante a la temperatura de medición utilizando como fluido de referencia al agua y el modelo de FPMC [62] con referencia a vació (ver más adelante).
- 3. Preparación de la mezcla binaria deseada a una composición establecida mediante el método de pesadas sucesivas [37,50] en la celda de carga y presurización (ver adelante).
- 4. Se coloca la celda de carga y presurización en el circuito experimental, posteriormente se presuriza la mezcla a una presión dada.
- 5. Se hace vació al circuito experimental, con el fin de asegurar que éste no contenga aire o alguna sustancia que pueda contaminar la mezcla (la válvula que conecta la celda de carga al circuito debe permanecer cerrada – V4 en la Figura 2.1).
- 6. Se alimenta la mezcla desde la celda de carga y presurización hacia el DTV a una presión determinada P1 (un poco menor de 138 bar para no rebasar el límite del TRP1). Esto se hace abriendo la válvula de la celda de carga –V3–, posteriormente se abre la válvula de entrada al DTV – V4 – y se mantiene cerrada la válvula que conecta la celda de desfogue – V7A–. Se determina que el DTV esta lleno una vez que la presión desde la celda de carga se mantiene estable a P1. Sin embargo, como el llenado se hace desde el vacío, la mezcla que

se encuentra en ese momento en el circuito presenta una separación de fases; la composición de las fases no es la misma que en la celda de reserva.

- 7. Fase de rehomogeneización. Se genera un flujo estacionario a la salida del tubo vibrante, abriendo ligeramente la válvula de la celda de desfogue V7A y V8 –, manteniendo la presión en la celda de carga y presurización (la presión se regula con el generador de presión hidráulico); hasta que se logra tener una mezcla homogénea dentro del DTV, lo cual se determina observando continuamente la estabilidad del periodo de vibración alrededor de la presión de alimentación (≈ P1). Al tener una mezcla homogénea en el DTV; es decir, que a presión constante, manteniendo el flujo a la salida del circuito no se observan fluctuaciones del periodo de vibración más allá de sus fluctuaciones normales, se cierra la válvula de conexión a la celda de descarga V7A –. Como el fluido fresco, a la composición inicial, ha recorrido varias veces el circuito durante esta operación, obtener la estabilidad del periodo de vibración indica que el fluido fresco ocupa ahora todo el circuito de medición.
- 8. Se cierra la válvula del TRP1.
- 9. Se incrementa y establece la presión a la cual se va a iniciar la medición en el DTV (para este trabajo, a 400 bar). Esta presión es mucho mas alta que la presión donde se tiene estimado (mediante la modelación como se explicará en la sección 2.2.3) la presión de saturación de la mezcla a la temperatura de medición.
- 10. Se deja que se estabilice la presión y temperatura en el DTV. Una vez que se tienen condiciones de medición estables, se adquiere una serie de datos estables (usualmente entre 100 y 200 datos a cada presión establecida) mediante el programa de adquisición de datos.
- 11. Se procede a tomar el siguiente punto, el cual se establece a una presión menor que en el punto anterior. Para llegar a dicho punto, se depresuriza el DTV a través de la celda de descarga mediante un flujo de materia a través de las válvulas V7A y V8; y se repite el paso anterior.
- 12. Se repite el paso de depresurización (paso 11) deteniendo el flujo en los puntos de interés fijados (permitiendo que cada punto se estabilice), hasta alcanzar un punto a aproximadamente 10 bar arriba de la presión estimada de saturación. Esto termina el procedimiento para los datos en fase homogénea.
- 13. Para alcanzar la presión de saturación a partir del último punto, la metodología cambia a mediciones continuas según ciertas características que de detallarán en la sección 3.3.

2.1.3. Calibración de los transductores de presión

Como se mencionó en le párrafo anterior, los transductores de presión deben calibrarse. No existe un periodo de tiempo determinado en el cual deban calibrarse, sin embargo, la calibración de éstos se lleva a cabo al menos una vez cada seis meses o cada vez que se observa una variación a presiones de referencia establecidas. El comportamiento de los transductores se vigila continuamente. La calibración se hace utilizando una balanza de pesos muertos Desgranges & Huot modelo 5304 clase S2, la cual tiene una precisión de ± 0.0054 %. Durante la calibración, se compara la presión real con la señal de salida de los transductores. El transductor TRP1, se calibra aumentando la masa en la balanza, mientras que la calibración del transductor TRP2 se hace empezando con una masa de 50 kg y se va disminuyendo esta masa [37].

Para comparar la presión real P con respecto a la señal de salida de los TRPs (U_{TRPxxx}) , se ajusta, usualmente, una función polinomial de segundo orden para establecer una presión $P_{calc.}$ que será la indicación del transductor a los datos obtenidos U_{TRPxxx} en mV.

En este trabajo, se establece una forma de cálculo distinta, con el fin de tomar menos puntos de referencia durante la calibración y, lo más importante, lograr empatar las mediciones de los dos TRPs a dos puntos en común en sus escalas con el fin de asegurar una consistencia entre las calibraciones de cada transductor y permitir una comparación directa de la estabilidad de esas calibraciones con base a datos de referencia del TRP1. Esto se hizo fijando dos presiones comunes a las escalas de los TRPs: alrededor de 1 bar y alrededor de 100 bar; donde el voltaje correspondiente de cada TRP se midió a un mismo tiempo, es decir, se registró simultáneamente la señal de los dos transductores durante la calibración.

Para obtener el voltaje de los TRPs de forma simultánea, se elaboró un nuevo programa de adquisición de datos, que genera archivos con datos de tiempo, voltaje del TRP1, voltaje del TRP2 y presión real P de la calibración, como se muestra en la Tabla 2.2.

Tomando como referencia a los dos puntos de presión establecidos, para igualar la medición de los dos transductores se genera una expresión en función de dos parámetros ajustables y los datos de los puntos de referencia (ver ecuación 2.1).

$$P_{cal} = \frac{F_0 U_{100} - F_{100} U_0}{U_{100} - U_0} + \left[\frac{F_{100} - F_0}{U_{100} - U_0}\right] U_{TRPxxx} + C U_{TRPxxx}^2 + D U_{TRPxxx}^3$$
(2.1)

donde:

- U_{TRPxxx} : Voltaje de salida del TRP1 o TRP2 a cualquier presión P
- U_0 : Voltaje de salida a $P = P_{atm.} \approx 0.78$ bar
- U_{100} : Voltaje de salida a $P_{ref.} \approx 83$ bar

Tiempo (s)	U_{TRP2}, mV	U_{TRP1}, mV	P_{REAL}, bar
65.39	0.7250	3.5754	99.798
66.30	0.7249	3.5759	99.798
67.09	0.7251	3.5757	99.798
•			
•			
•			
85.84	0.7251	3.5756	99.798
86.63	0.7250	3.5761	99.798
87.43	0.7249	3.5753	99.798

Tabla 2.2: Ejemplo de archivo generado por el programa de adquisición de datos de calibración de los transductores.

- C, D: Parámetros ajustables para cada transductor
- $F_0 = P_0 C U_0^2 D U_0^3$ donde P_0 es la presión real correspondiente a la medición a $P_{atm.}$
- $F_{100} = P_{100} C U_{100}^2 D U_{100}^3$ donde P_{100} es la presión real correspondiente a la medición a $P_{ref.}$

Tabla 2.3: Parámetros de calibración de los transductores.

Fecha	Transductor	a	b	С	D
Oct.,2003	138 bar	0.95602	0.027662	-5.15×10^{-9}	0.0
Oct.,2003	687 bar	-0.3307	0.138215	-8.57×10^{-8}	1.75×10^{-11}

Los últimos parámetros obtenidos de la calibración de los transductores se muestran en la Tabla 2.3. Donde se definió $a = (F_0 U_{100} - F_{100} U_0)/(U_{100} - U_0)$ y $b = (F_{100} - F_0)/(U_{100} - U_0)$.

Se nota, en la Tabla 2.3, que los valores de C y D, para una de las últimas calibraciones, son muy pequeños lo que revela que la curvatura de la curva de calibración es casi nula; sin embargo se toma en cuenta. Se pueden usar pocos puntos de calibración a posteriori sabiendo que el comportamiento de los transductores es *casi* lineal. Los datos a $P_{atm.}$ ¹ y a $P_{ref.}$ sirven para la recalibración de los dos transductores y para verificar, en continuo, que sus indicaciones no varían y son coherentes. Sólo algunos puntos adicionales de referencia, en el medio y extremo de la escala de medición, son necesarios para recalcular el valor de C y D. Usualmente, los puntos de calibración,

 $^{^1 {\}rm La}$ presión atmosférica se mide mediante un barometro dígital DRUCK DPI 140 con una precisión de \pm 0.01 % de la lectura.

Figura 2.2: Residuos respecto a la presión de referencia en la calibración del transductor TRP1.

Figura 2.3: Residuos con respecto a la presión de referencia en la calibración del transductor TRP2.

en terminos de masa utilizada en la balanza de pesos muertos y la presión correspondiente, son: 0 kg ($\approx P_{atm}$), 2 kg (≈ 28 bar), 4 kg (≈ 56 bar), 6 kg (≈ 83 bar) y 10 kg (≈ 138 bar) para el TRP1 y 0 kg ($\approx P_{atm}$, 6 kg (≈ 86 bar), 16 kg (≈ 221 bar), 36 kg (≈ 495 bar) y 50 kg (≈ 687 bar) bar para el TRP2.

En las Figuras 2.2 y 2.3 se muestran las desviaciones de la presión calculada respecto a la presión de referencia dada por la balanza. Los valores de C y D se ajustan sobre los puntos de calibración. Las Figuras 2.2 y 2.3 corresponden a tres calibraciones para cada transductor respectivamente, tomando 17 puntos de referencia para el TRP1 y 13 para el TRP2, dentro de los cuales están los de referencia. Los datos adicionales fueron tomados para averiguar la consistencia de las correlaciones. Los *puntos medios*, que aparecen en estas figuras, corresponden al centro estadístico de toda una serie de datos, tomados en cada punto de calibración. La posición de estos puntos toma en cuenta la dispersión de la indicación de los transductores, sobre un tiempo del orden de una hora, debido a los límites de sensibilidades de los multímetros (HP34401A) que miden sus respuestas: ± 2 a ± 4 μV . Las calibraciones pasan adecuadamente por estos puntos.

La incertidumbre del TRP1 es del orden de ± 0.01 bar y la desviación relativa se encuentra entre 0.5 % a 1 bar y 0.014 % de la escala completa. La dispersión del TRP2 es del orden de \pm 0.12 bar y la desviación relativa se encuentra entre 0.05 % a 80 bar (presión mínima a la cual se utiliza este transductor) y 0.03 % de la escala completa. Estos datos son conformes con lo especificado, en plena escala, por el fabricante: \pm 0.04 %, incluso un poco mejor por la ligera no linealidad que se toma en cuenta en el modelo adoptado.

2.1.4. Calibración del DTV

Con el equipo experimental se obtienen datos de temperatura, presión y periodo de vibración. A partir del periodo de vibración se obtiene la densidad, a una temperatura y presión dadas, mediante un modelo físico de calibración llamado FPMC (ecuación 2.2) [56,62].

$$\rho = \frac{M_0}{V_i} \left[\frac{K}{K_0} \frac{\tau^2}{\tau_0^2} - 1 \right]$$
(2.2)

En la ecuación 2.2, los parámetros son γ_t y γ_2 que son contribuciones a la variación relativa de longitud del tubo vibrante, L, debido a una variación de P (ver [62]) expresada por:

$$L = L_{00} \exp\left[\int_{T_0}^T \alpha(T) \,\mathrm{d}T + \gamma_t \left(P - P_0\right) + \frac{\gamma_2}{2} \left(P^2 - P_0^2\right)\right]$$
(2.3)

 L_{00} es la longitud del tubo a condiciones de referencia T_0 y P_0 , y $\alpha(T)$ es el coeficiente de dilatación térmica del acero del tubo vibrante, que no involucra más

parámetros ajustables, para un instrumento dado. Poniendo:

$$\frac{M_0}{V_i} = \frac{M_0}{L_{00}} \left(\frac{L_{00}}{V_i}\right)$$
(2.4)

se demuestra, ver [62], que L_{00}/V_i no depende de L_{00} . Así, el tercer parámetro a determinar es la fracción M_0/L_{00} . Para llevar a cabo la calibración del densímetro [62], se necesita sólo un fluido de referencia el cual se trata experimentalmente de forma análoga al fluido de estudio en fase homogénea líquida:

- Con el TRP1, se toman 5 puntos a aproximadamente 1, 20, 50, 100 y 140 bar de la siguiente forma:
 - 1. Se establece la temperatura a la cual se va a calibrar y se hace el vació al circuito experimental,
 - 2. Se carga el DTV con el fluido de calibración: en este caso agua destilada pura para análisis,
 - 3. Se establece la presión del primer punto de calibración (≈ 1 bar),
 - 4. Se deja que se estabilice la presión y temperatura, y se toma una serie de datos,
 - 5. Posteriormente, se incrementa la presión en el DTV hasta el siguiente punto de calibración, y se repite el paso anterior,
 - 6. Se repite el paso anterior hasta medir todos los puntos de calibración establecidos para este transductor (TRP1).
- Con el TRP2, se toman 6 puntos a aproximadamente 700², 500, 300, 200, 100 y 50 bar. El procedimiento de medición es el mismo que para el TRP1, con excepción que se inicia en el punto de mayor presión (700 bar) y se despresuriza el DTV para pasar de un punto de calibración a otro.

En este trabajo se utiliza agua pura de grado análisis (MERK®) como fluido de referencia, lo cual permite determinar los coeficientes que dependen de la temperatura y de la presión en el modelo de calibración (ecuación 2.2), ver la referencia [62] para los detalles.

La incertidumbre en las densidades se obtiene de la propagación de las incertidumbres en la presión, temperatura y periodo de vibración, en la Ecuación 2.2. El cálculo de la incertidumbre en la densidad se puede hacer utilizando una formula de propagación (ver [37]) o mediante una aproximación de la diferencial de la densidad dada por la Ecuación 2.2. En este trabajo, las incertidumbres en ρ se estimaron con el segundo método.

²El TRP2, PMP4060 de DRUCK®, admite 40 % de sobrecarga en presión respecto a su escala de medición (≈ 687 bar). Una medición a 700 bar representa una sobrevarga de sólo 1.6 % de la escala completa.

Figura 2.4: Incertidumbre absoluta en ρ .

Figura 2.5: Incertidumbre relativa en ρ .

A partir del trabajo de la referencia [62], la incertidumbre en ρ se puede aproximar mediante:

$$\delta\rho \le \delta \left[\frac{M_0}{V_i}\right] + \delta \left[\frac{M_0}{V_i}\right] \frac{K}{K_0} \frac{\tau^2}{\tau_0^2} + \frac{M_0}{V_i} \delta \left[\frac{K}{K_0}\right] \frac{\tau^2}{\tau_0^2} + \frac{M_0}{V_i} \frac{K}{K_0} \delta \left[\frac{\tau^2}{\tau_0^2}\right]$$
(2.5)

donde los términos $\delta[-]$ se evaluan a partir de las expresiones de [62]. Para esto se necesitan las incertidumbres en los parámetros del modelo FPMC, que se obtienen de los resultados de su ajuste a los datos de densidad de referencia del agua. En este caso, se tomaron valores promedios de los parámetros, a partir de la Tabla 3.2, y sus incertidumbres respectivas son los valores de sus varianzas que se obtienen en el ajuste del modelo (error asintótico). Los valores son: $M_0/L_{00} = 0.331107$ (g m⁻¹) $\pm 0.00002, \gamma_t = 1.00153 \times 10^{-6} \text{ (bar}^{-1)} \pm 0.01 \times 10^{-6} \text{ y } \gamma_2 = 3.45 \times 10^{-11} \text{ (bar}^{-2)} \pm 10^{-11} \text{ (bar}^{-2)}$ $= 0.1 \times 10^{-11}$. Las incertidumbres en los parámetros de estado son: $\delta T = \pm 0.02$ K, $\delta P = \pm 0.01$ bar para P < 140bar y $\delta P = \pm 0.12$ bar para 140 < P < 400bar. La incertidumbre en los periodos de vibración es $\delta \tau = \delta \tau_0 = \pm 5 \times 10^{-6}$ ms. Con estos datos, la mayoría de los términos de la Ecuación 2.5 se pueden calcular, aparte las incertidumbres en los radios interno y externo del tubo vibrante que intervienen en el término $\delta [K/K_0]$. Estas incertidumbres se evaluaron numericamente, calculando la diferencia de esos radios, a las condiciones $T \pm \delta T$ y $P \pm \delta P$. Esto es valido porque se sabe que los radios aumentan simultáneamente con aumentos de la presión y de la temperatura, [62].

La Figura 2.4 muestra el resultado de los cálculos, en valor absoluto, para 7 isotermas alrededor de 315 K y de aproximadamente 50 bar hasta 400 bar. La Figura 2.5 muestra los mismos resultados en términos de incertidumbre relativa en la densidad. En todo el intervalo de medición, contemplado en este trabajo, la incertidumbre absoluta en densidad se encuentra inferior a $\pm 0.25 \ kg m^{-3}$ y la incertidumbre relativa no rebasa $\pm 0.05 \%$.

2.1.5. Preparación de Mezclas

La preparación de las mezclas se lleva a cabo en la celda de carga y presurización, mediante el método de pesadas sucesivas [50,67], utilizando una balanza analítica modelo Sartorius LCI201S que tiene una precisión de 0.1 mg para masas hasta 1.2 kg. Este método implica que debe alimentarse primero el compuesto más pesado (de menor presión de saturación). La preparación de una mezcla consiste en lo siguiente:

- 1. Pesar la celda una vez que este a vacío,
- 2. Alimentar la cantidad de masa m_2 , estimada a partir del volumen total de la celda (expresión 2.6 [37]), del compuesto mas pesado. Cuando se trata de un líquido, se calcula el volumen necesario, que corresponde a la masa deseada a partir de su densidad a temperatura ambiente:

$$m_2 = \rho_1 V_{cel} / \left[\frac{W_1}{W_2} \frac{x_1}{x_2} + \frac{\rho_1}{\rho_2} \right]$$
(2.6)

 m_2 : Masa del compuesto pesado,

2. Método experimental

 W_1 : Peso molecular del compuesto ligero,

 W_2 : Peso molecular del compuesto pesado,

 x_1 ; Fracción molar del compuesto ligero,

 x_2 ; Fracción molar del compuesto pesado,

 ρ_1 : Densidad del compuesto ligero (a temperatura de carga),

 ρ_2 : Densidad del compuesto pesado (a temperatura ambiente),

 V_{cel} : Volumen de la celda: estimado a partir de una calibración con agua.

3. Alimentar el compuesto ligero (hasta que la celda se llene). Cuando este compuesto (el más ligero) es un gas condensable (es el caso del etano), es necesario condensarlo para alimentarlo a la celda. Esto se logra disminuyendo la temperatura de la celda, enfriándola, hasta una temperatura menor a la de ebullición del líquido, a la presión de la reserva, antes de alimentarlo a la celda. Al momento de la alimentación, se debe mantener la celda a baja temperatura con el fin de contrarestar el calor de mezclado y alimentar al gas, en estado líquido, hasta que la celda se llene.

Con este procedimiento es posible conocer la composición real de la mezcla sintetizada en la celda de carga mediante las expresiones 2.7.

$$x_i = \frac{n_i}{n} = \frac{m_i/W_i}{\sum_{j=1}^{n_c} m_j/W_j} \quad i = 1, 2, \dots, n_c$$
(2.7)

donde:

 n_i : número de moles del compuesto i,

 n_c : número de compuestos,

n: número de moles totales $(\sum_{i=1}^{n_c} n_i)$.

En el caso de la mezcla etano + 1-propanol, la incertidumbre en x_i , donde *i* representa alguno de los dos componentes, se determina mediante:

$$\delta(x_i) \le 2 \frac{\delta(M)}{W_i} \left[\frac{\sum_j (m_i + m_j) / W_j}{\left(\sum_j (m_j / W_j)\right)^2} \right]$$
(2.8)

donde $\delta(M)$ es la incetidumbre en cualquier medición de masa mediante la balanza analítica. Dicha balanza tiene una precisión de \pm 0.0001 g. La incertidumbre, en promedio en una medición, se estimó a \pm 0.0003 g. En este trabajo, las masas de los

Figura 2.6: Composición, de las mezclas etano+1-propanol preparadas, en función de las masas de los componentes.

Figura 2.7: Incertidumbre en x_{etano} .

componentes de la mezcla etano+1-propanol se determinaron con una desviación estándar entre $0.00015~{\rm g}$ y $0.0009~{\rm g}.$

La Figura 2.6 muestra las composiciones de las mezclas preparadas, en término de la fracción molar del etano, en función de la masa de los componentes cargados a la celda de presurización. La Figura 2.7 muestra la incertidumbre en la composición del etano (calculada mediante la Ecuación 2.8) como una función de las masas de cada compuesto alimentado a la celda, para cada una de las composiciones de las mezclas preparadas en este trabajo. Como se puede notar, la máxima incertidumbre en las composiciones del etano está entre 7×10^{-5} y 9×10^{-5} en fracción molar: es decir, $\lesssim 1 \times 10^{-4}$ molar.

2.2. Procedimiento de Medición

Para establecer el procedimiento de medición adecuado para la detección del equilibrio líquido – líquido y la medición de las densidades en fase homogénea simultáneamente, se estableció lo siguiente:

- Para alcanzar el equilibrio, y detectar los cambios que provoca en el funcionamiento del instrumento de medición, se necesita un procedimiento continuo de medición de los periodos.
- Se necesita estudiar la configuración térmica del equipo en función del diagrama de fase supuesto que presenta el sistema de estudio.
- Simultáneamente a la experimentación, se requieren herramientas de modelación para representar o predecir el comportamiento de equilibrio de fases, para el caso de estudio³.

Para establecer un procedimiento de medición continuo, se requiere conocer el comportamiento del sistema de interés, con respecto a la temperatura y a la presión, así como el del tubo vibrante, con respecto a las mismas variables, y cuales son las condiciones de estabilidad del periodo de vibración ante las fluctuaciones de estas variables.

Con los requisitos anteriores y lo que se sabe del comportamiento del tubo vibrante en las mediciones de equilibrio líquido - vapor [58], se definió el tipo de mediciones que se pueden alcanzar para ciertas configuraciones de equilibrio líquido - líquido. Este punto se detallará en el Capítulo 3. En las siguientes secciones se explica la relación que existe entre el comportamiento teórico del fluido y los procedimientos de medición.

³Este punto es útil pero no fundamental. Si no se tiene, para una mezcla dada, niguna información experimental ni la posibilidad de estimar su comportamiento mediante modelos de estado, sólo queda la opción de hacer pruebas en blanco para estimar a qué condiciones ocurren los fenómenos que se desean caracterizar. Esto implica un incremento consecuente de tiempo en el estudio de una mezcla y en el gasto de reactivos.

2.2.1. Configuración Térmica del Equipo

Generalidades

Se analizaron dos situaciones para las mediciones previstas de equilibrios líquido – líquido mediante un procedimiento continuo, tomando como base los antecedentes sobre los equilibrios líquido – vapor:

- Procedimiento de medición isotérmico,
- Procedimiento de medición isobárico.

De acuerdo a la experiencia en la medición de equilibrios líquido - vapor, el equipo disponible permite alcanzar un punto de equilibrio a temperatura constante variando la presión o a presión constante variando la temperatura. Con el procedimiento de medición isotérmico, se conoce cual es el máximo intervalo de variación de la presión entre dos puntos de mediciones consecutivos que asegure que el periodo de vibración se estabilice en el menor intervalo de tiempo. Por ejemplo, a temperatura constante (con fluctuaciones del orden de ± 0.002 K) el periodo de vibración se establece a un valor estable (con fluctuaciones del orden de $\pm 2 \times 10^{-6}$ ms) en un tiempo del orden de 30 s, después de una descompresión isotérmica de 0.04 bar s⁻¹. La estabilización es un fenómeno rápido mientras se trata de un líquido o gas comprimido. Cerca de un punto crítico el tiempo de estabilización del periodo en las mismas condiciones puede llegar a ≈ 5 min o más. En estas regiones, el régimen de descompresión tiene que ser mucho más lento: ≈ 0.002 bar s⁻¹.

Sin embargo, cuando se hace variar la temperatura a presión constante, el régimen de estabilización del periodo de vibración es mucho más lento. Para conocer este fenomeno y no tener que estabilizar la presión se hicieron pruebas a vació (P = 0.0) midiendo, en continuo y en un intervalo de temperatura dado, las variaciones de los periodos del tubo vació y los regímenes de estabilización de los mismos.

Se hicieron varias pruebas entre 303 y 362 K, estabilizando la temperatura a un valor e incrementándola, o disminuyendola, con intervalos de 20 K. El propósito de estas pruebas fué observar la respuesta del instrumento en amplias variaciones de la temperatura. La Figura 2.8 muestra el esquema de variación de la temperatura. En total, el tiempo de medición es de 137 horas, durante las cuales, se efectuaron estabilizaciones de la temperatura, aumentos y disminuciones de la misma a partir de puntos estables.

Estas pruebas dieron información sobre la histéresis y la relajación térmica del instrumento, en términos del periodo de vibración del DTV, cómo lo muestra la Figura 2.9. Esta figura corresponde a las diferencias en el periodo de vibración respecto a una correlación polinomial de segundo orden de los datos experimentales $\tau_0(T)$: $\tau_{calc.}(T) = 1,90547 \times 10^{-7}(T - 273,15)^2 + 0,000508(T - 273,15) + 3,9041257$. Los puntos estables del periodo a vacío se indican por círculos llenos.

Figura 2.8: Esquema de variación de la Temperatura en función del tiempo.

Figura 2.9: Variaciones del periodo a vacío, τ_0 , en función de la temperatura, en régimen térmico dinámico y estático.

Para poder plantear procedimientos isobáricos, en intervalos relativamente importantes de variación de la temperatura se necesitaría, por lo menos, tener una reproducibilidad de la medición del periodo después de algunas variaciones de T. Se observó que el tiempo que se requiere para que la temperatura, y en consecuencia el periodo de vibración, se estabilicen es de hasta ≈ 60000 s ≈ 16.5 h, después de un cambio de 20 K; es decir se tiene que esperar aproximadamente 1 h por cada grado de variación de la temperatura. El periodo de vibración no se estabiliza hasta que la temperatura esté estable. Aparte, se observó histéresis en el comportamiento del periodo de vibración cuando, en régimen dinámico de variación de T en el DTV, la temperatura empieza a bajar o a subir. Está histéresis es de 10 veces el orden de magnitud de la incetidumbre sobre los periodos de vibración: $\approx \pm 5 \times 10^{-5}$ ms. Esta histeresis, en régimen de variación de temperatura se nota, de manera particularmente clara, en las mediciones a temperaturas cercanas a 362 K en la Figura 2.10.

Figura 2.10: Periodo a vacío, τ_0 , en función de la temperatura, en regimen térmico dinámico y estático alrededor de 362 K.

Esto se debe a los tiempos de relajación térmica del instrumento de medición (tubo vibrante y sus aditamientos: las masas adicionales de los impulsores electromagnéticos). El fenómeno puede atribuirse a las variaciones de las propiedades de los diferentes materiales que constituyen el instrumento, con respecto al tiempo, y a cómo se reacomodan los aditamientos del tubo vibrante después de una variación de temperatura. Esto se debe a dilataciones propias del instrumento puesto que, como se está midiendo a vacío, no existe un fluido en el tubo al cual pueden atribuirse estos fenómenos. Los fenómenos descritos son continuos y hay que tomarlos en cuenta en cualquier medición. Entonces, por los tiempos involucrados, es poco aconsejable tener variaciones grandes de la temperatura de medición a presión constante.

Este análisis muestra que operar en régimen variable de temperatura involucra una histéresis en τ en régimen térmico dinámico, y tiempos demasiados largos de estabilización (relajación), incompatibles con un procedimiento continuo de mediciones. Entonces se abandonó la opción de llevar a cabo mediciones isobáricas con variación de la temperatura para el acercamiento continuo a las condiciones de equilibrio. Como se verá en lo que sigue, ésto genera una limitación en cuanto al tipo de sistemas que se pueden estudiar con esta técnica en la configuración en que se encuentra actualmente.

Configuración actual para mediciones isotérmicas

Figura 2.11: Configuración para alcanzar la medición de un punto de burbuja.

La configuración térmica del equipo experimental, actualmente, puede representarse como en las Figuras 2.11 y 2.12 para la medición de un equilibrio líquido - vapor en un sistema de tipo I. Para medir un punto de burbuja, se inicia una descompresión continua desde una presión mayor a la de burbuja estimada. Para lograrlo, se requiere que la temperatura de las tuberías, que contienen el fluido al exterior del tubo vibrante, sea menor que la temperatura del densímetro. Actualmente, no se cuenta con un sistema de enfriamiento de las tuberías externas. Por lo tanto, el intervalo de temperatura que se puede considerar es a temperaturas mayores a la temperatura ambiente.

Figura 2.12: Configuración para alcanzar la medición de un punto de rocío.

Para un punto de roció el procedimiento es análogo; sólo que se inicia la medición a una presión menor que la de roció y se eleva la presión hasta el punto de saturación. Esto requiere que la temperatura de la tubería sea mayor que la del densímetro y así se evita una transición de fase espontánea de la mezcla fuera del tubo vibrante. En la configuración actual sólo se podrían medir puntos de rocío a temperaturas inferiores a la ambiente.

Estos procedimientos son válidos para medir una presión de burbuja mientras, a una composición dada, la presión de burbuja aumenta con la temperatura. Para saber hasta qué temperatura se pueden utilizar estos procedimientos, es necesario tener una idea relativamente precisa del comportamiento de fases de la mezcla de estudio; en particular, un diagrama de las curvas críticas en el plano P–T es muy útil. Por lo menos se tiene que saber qué tipo de diagrama de fases presenta el sistema.

El sistema binario que se pretende estudiar pertenece a la clasificación de los diagramas de fases de tipo V (Figura 1.9). Para un tipo V, a una temperatura (requerida en el densímetro) menor que la temperatura crítica que corresponde al máximo de presión en el plano P–T y mayor a la temperatura ambiente, mediciones isotérmicas con la configuración experimental actual son factibles; es decir, no se corre el riesgo de que la mezcla se separe espontáneamente en las tuberías externas al tubo vibrante durante una descompresión.

La siguiente sección aclarará los comentarios anteriores con un ejemplo práctico del comportamiento del sistema de tipo V seleccionado: etano + 1-propanol.

2.2.2. Modelación previa

Una vez que se determinó qué tipo de sistemas podían medirse con la configuración experimental actual, se tuvo la necesidad de saber si era factible la medición del sistema etano + 1-propanol en la región donde presenta un equilibrio líquido – líquido ya que hasta el momento se llevó a cabo la discusión sobre comportamientos de tipo líquido – gas.

Otro punto que justifica una modelación previa, es que se encuentran pocos datos de equilibrio disponibles, a tres temperaturas, y relativamente inconsistentes como se mostrará adelante (ver sección 2.2.3). En lo que concierne a datos de equilibrio líquido – líquido solo se cuenta con 2 datos $TPx_1, x_2 - \rho$ de Kodama et al. [29] muy cercanos a la presión de la región de tres fases, a presiones muy cercanas uno del otro y a una sola temperatura de 314.15 K. La modelación, en estas circunstancias, es particularmente difícil, porque prácticamente cualquier juego de parámetros de alguna ecuación de estado correlaciona los datos. Sin embargo, extrapolando los resultados, no cualquiera de ellos proporciona una representación conforme con el tipo de la mezcla.

Se llevó a cabo la modelación de este sistema binario con dos objetivos principales:

- Tener una idea real de su comportamiento a diferentes temperaturas, y verificar que la modelación sea capaz de predecir el tipo V de los diagramas de fases globales al cual pertenece.
- Establecer un procedimiento experimental, con base a una estimación razonable de las presiones de saturación y de sus variaciones en función de la temperatura a composición constante, localmente, en la región de la separación de los líquidos. En especial, se quería averiguar que esas variaciones de las presiones de saturación en función de T a composición constante siguen un comportamiento similar al que se presenta en la región del equilibrio líquido gas (es decir que la presión sube con la temperatura) y en qué intervalo de composición. Sólo así era factible utilizar el equipo de medición, en la configuración actual en todo el intervalo de composición, en la zona del equilibrio de tres fases.

Para llevar a cabo la modelación previa del sistema etano + 1-propanol se eligieron dos ecuaciones de estado (EdE):

• Ecuación de Peng – Robinson [68]:

$$P = \frac{RT}{(v-b)} - \frac{a(T)}{v(v+b) + b(v-b)}$$
(2.9)

• Ecuación de Patel – Teja [69]:

$$P = \frac{RT}{(v-b)} - \frac{a(T)}{v(v+b) + c(v-b)}$$
(2.10)
La EdE de Patel – Teja se eligió con base a su mejor representación de las densidades en fase líquida para fluidos puros. La EdE de Peng – Robinson se utilizó como comparativa ya que, en el articulo publicado por Kodama et al. [29], se muestra como se modelan los datos reportados utilizando la ecuación de Redlich – Kwong – Soave (RKS) y una ecuación *pseudo cúbica* [29]. Así, se tendrá una idea de cómo 4 ecuaciones de estado pueden representar este sistema.

Ambas ecuaciones de estado fueron implementadas con las reglas de mezclado de Wong – Sandler (WS) [9], incluyendo el modelo de solución NRTL [70], debido a que el sistema etano + 1-propanol exhibe condiciones altamente no ideales de equilibrio líquido-líquido-vapor. Por esta razón, es necesario que las reglas de mezclado que se utilicen representen mejor que las reglas de van der Waals la no idealidad del sistema.

Para resolver el problema de equilibrio entre fases se utilizó el método conocido como ϕ - ϕ que consiste en igualar las fugacidades calculadas por la ecuación de estado de las fases en equilibrio para cada compuesto. Esto produce un sistema de ecuaciones no lineales que fue resuelto con el método de Broyden [71].

Se utilizó un cálculo de presiones de burbuja (o presiones de saturación en fase líquida) para llevar a cabo los calculos del equilibrio de fases. Debido a que el sistema de estudio presenta tres tipos de equilibrios: líquido – vapor, líquido – líquido – vapor, líquido – líquido, y que, por lo tanto, existe el riesgo de calcular equilibrios metaestables, en particular a presiones cercanas a la región de tres fases, se implementó al código una versión del *Criterio del Plano Tangente* [72] para cálculos de presiones de burbuja (ver apéndice B). Esto permitió saber, de manera sistemática, si los equilibrios calculados eran estables o no. Esta versión del criterio del plano tangente consiste en "medir" sistematicamente la distancia que existe entre la superficie de la energía de Gibbs de las fases en equilibrio para cada calculo de equilibrio. Para calcular esta distancia se utilizó la expresión 2.11 desarrollada en la referencia [73]:

$$D^{x}(y, P, T) = \sum_{i=1}^{n_{c}} y_{i} \ln \left[f_{i}(y, P, T) / f_{i}(x, P, T) \right]$$
(2.11)

Cuando la distancia es cero en dos composiciones de una fase 1 y de una fase 2 donde converge el cálculo de equilibrio y que, además, a cualquier otra composición la distancia es positiva, se trata de dos fases en equilibrio estable. Si la distancia es negativa en alguna composición, diferente a las del equilibrio, en todo el intervalo de composiciones, se está calculando un equilibrio metaestable (ver Anexo B). Cuando sólo existen dos fases a presiones relativamente bajas respecto a la presión a la cual se presenta el equilibrio de tres fases, la expresión 2.11 se cumple automáticamente, y entonces no es útil. Por lo tanto, con la modelación se generaron diagramas isotérmicos, P-xy o P-xx del equilibrio, conformados sólo por puntos estables. Un diagrama de flujo del algoritmo empleado se presenta en la Figura 2.13.

En cuanto a las reglas de mezclado, se desarrolló una técnica para implementar las reglas de Wong – Sandler, o cualquier otra regla involucrando la energía de

Figura 2.13: Diagrama de flujo para los cálculos de equilibrios.

Helmhotz y de Gibbs en exceso (Modelo de Solución), en la EdE de Patel – Teja sin recurrir a ninguna aproximación. Las reglas sobre los parámetros b y c se obtienen analíticamente e independientemente. La regla sobre c es arbitraria. En este trabajo, se consideró una regla lineal en composición para c. En el caso de b, éste se obtiene en función de a y del segundo coeficiente virial [9]. El parámetro a se obtiene numéricamente, mediante unas cuantas iteraciones de Newton – Raphson, apropiadamente inicializadas, con la precisión de la maquina. Las derivadas de a con respecto a las fracciones molares son explicitas (ver Apéndice C), lo cual es importante porque esas derivadas intervienen en el calculo del coeficiente de fugacidad. Siendo analíticas, estas derivadas no provocan ninguna iteración más que las usuales dentro de la resolución del problema de equilibrio y los errores en los cálculos son debidos solamente a la propagación de los redondeos en los límites del punto flotante.

2.2.3. Resultados de la Modelación

Los parámetros optimizados que requieren las reglas de mezclado: ($\tau_{12} (J mol^{-1})$, τ_{21}, k_{ij}), se calcularon a partir de los datos experimentales de equilibrio líquido – vapor (cuatro datos) reportados por Kodama et al. [29] a la temperatura de 314.15 K (ver Tabla 2.4). El apéndice D presenta el detalle de los resultados en las Tablas D.1 y D.2.

Tabla 2.4: Parámetros optimizados para el sistema binario etano + 1-propanol. Ajuste sobre 4 datos de ELV [29], T, P, x, y, ρ a 314.15 K. Presiones entre 16.07 bar y 54.87 bar.

	EdE		k_{ij}	$ au_{12} \ J mol^{-1}$	$\tau_{21} J mol^{-1}$		α	
	Peng-Robinson		0.3609	2582.686	225.3405		0.47	
	Patel-Teja		0.3470	2582.686	225.3405		0.47	
		% Err. Prom. P		% Err. Prom	n. y _{etano}	% E	2rr. Pro	om. $\rho_{Liq.}$
Peng-Robinson		3.50		0.28		5.96		5
Patel-Teja		1.12		0.29		5.41		L

Cabe mencionar que se cuenta con datos experimentales de equilibrio líquido – vapor a dos temperaturas (313.4 y 333.4 K) reportados por Suzuki et al. [74]. Se intentó obtener los parametros utilizando las tres series de datos (los reportados por Suzuki et al. y los reportados por Kodama et al.), pero se observó una inconsistencia entre los datos de ambos autores: las presiones a 313.4 K de Suzuki et al. son mas altas que las presiones a 314.15 K de Kodama et al. Utilizando ambas series de datos no se pueden calcular comportamientos coherentes.

Como segunda opción, se ajustaron los parametros sobre los datos experimentales reportados por Suzuki et al. [74] (a las dos temperaturas mencionadas) y se encontró una serie de parametros que representa los datos experimentales congruentemente; con un error promedio en P de 2.9% y de 1.5% en composición. Sin embargo, cuando se modela el sistema de interés a diferentes temperaturas con las dos ecuaciones de estado (Patel – Teja y Peng – Robinson), se observa que estos parámetros representan al sistema como si correspondiera al tipo IV (tal como se muestra en la Figura 2.14 para Patel–Teja), pero se sabe que el sistema etano + 1-propanol corresponde a un diagrama de fase de tipo V.

Debido a esta situación, se procedió a representar el sistema de interés con los modelos ajustados sobre los cuatro datos de ELV de Kodama et al. [29] (ver Tabla 2.4) a 314.15 K y se abandonaron los datos de Suzuki et al. [74].

Fue imposible incluir, en el ajuste, los datos de Kodama reportados en la región de tres fases y del ELL. Sin embargo, los parámetros obtenidos proporcionan una representación conforme con el tipo V con base al ajuste a una sola temperatura. La

Figura 2.14: Presión en función de la Composición utilizando la EdE de Patel –Teja ajustada a los datos de Suzuki et al. [74] a 313.15 y 333.4 K.

estrategia de ajuste fue determinar primero el valor de k_{ij} a partir de los 3 datos a mas baja presión de Kodama et al. [29], con valores fijos de los parámetros τ_{ij} del modelo de solución. Estos parámetros se obtuvieron de una aproximación del cálculo de la energía de Gibbs en exceso por el modelo NRTL a su predicción mediante UNIFAC [9] para el sistema considerado.

Luego, manteniendo fijo el parámetro k_{ij} obtenido, se ajustaron los parámetros τ_{ij} del modelo de solución NRTL dentro de la EdE sobre los 4 datos de ELV hasta obtener una localización cuantitativa (< 10% de error en presión) de la presión de la región de tres fases. Finalmente, se volvieron a ajustar simultáneamente los tres parámetros sobre los 4 datos considerados. El valor de α del modelo NRTL se fijó siempre al valor de 0.47 recomendado por Renon y Prausnitz [70]. Los resultados se muestran en las Figuras 2.15 hasta 2.18.

A una de las dos temperaturas reportadas por Suzuki et al. (333.4 K) [74] la predicción se logra con el error reportado en la Tabla 2.5 (ver Figura 2.17). Los resultados detallados se encuentran en el apéndice D, Tablas D.3 y D.4.

Las presiones de burbuja no fueron representadas adecuadamente en magnitud al igual que el comportamiento en función de la composición (ver Figuras 2.17 y 2.15). Esto muestra que la opción, de sólo tomar en cuenta unos cuantos datos de Kodama et al., es eficiente y los resultados demuestran la inconsistencia que existe entre los

Figura 2.15: Equilibrio (P,x,y), EdE: Peng - Robinson. Presión en función de la Composición.

Figura 2.16: Propiedades volumétricas (P, ρ_L , ρ_V), EdE: Peng - Robinson. Presión en función de la densidad.

Figura 2.17: Equilibrio (P,x,x,y), EdE: Patel - Teja. Presión en función de la Composición.

Figura 2.18: Propiedades Volumétricas (P, ρ_L , ρ_V), EdE: Patel - Teja. Presión en función de la densidad.

Tabla 2.5: Porcentaje de error para la representación del sistema etano + 1-propanol a 333.4 K [74], con los parámetros obtenidos a 314.15 K. No se reportan datos de densidad.

EdE.	% Err. Prom. P	% Err. Prom. y_{etano}	
Peng-Robinson	10.82	0.56	
Patel-Teja	8.21	0.47	

dos conjuntos de datos. De lo anterior se obtiene el comportamiento del sistema binario elegido, con respecto a la temperatura, como se muestra en las Figuras 2.17 hasta 2.16.

La Figura 2.19 muestra un acercamiento a los cálculos en la región de composiciones en etano de $x_{etano} \ge 0.90$. Se observa como la parte del ELG tiende a desaparecer conforme aumenta la temperatura. El domo LG debería de desaparecer completamente en un punto del tipo UCEP que según Lam et al. [40] se encuentra a 315.7 K. A la temperatura de 303 K, el domo de ELL debería de haber desaparecido como se comentará adelante.

Figura 2.19: Equilibrio (P,x,x,y), EdE: Patel - Teja. Región LLV – LLG.

Haciendo un análisis de los resultados obtenidos con los parametros de la Tabla 2.4, la EdE de Patel – Teja como la ecuación de Peng – Robinson, representa al sistema etano + 1-propanol como un sistema de tipo V si se considera el conjunto adecuado para la modelación. Esta situación muestra cuanto son necesarios datos confiables y coherentes tan sólo para poder obtener cualitativamente los comportamientos que se sabe que son los correctos. En esta sección se sacrificó el aspecto cuantitativo de la modelación para obtener, de alguna manera, el comportamiento de tipo V requerido; ya que el objetivo es estimar las presiones de saturación a composiciones definidas o por lo menos tener una idea de las presiones que se van a manejar experimentalmente en la región de la saturación. Esta modelación aunque no cuantitativa sirve ese propósito.

Las dos representaciones anteriores son muy parecidas y cualquiera de las dos EdEs proporciona básicamente los mismos resultados. En lo que sigue se considerará más bien a la ecuación de Patel – Teja ya que representa las densidades de la fase líquida en la saturación ligeramente mejor que la EdE de Peng – Robinson.

Temperatura	Brunner	Peng-Robinson	Patel-Teja	
(K)	Presión Crítica LL	Presión Crítica LL	Presión Crítica LL	
	(bar)	(bar)	(bar)	
333.4	≈ 80.0	≈ 87.1	≈ 86.8	
314.15	≈ 55.0	≈ 71.6	≈ 74.0	
303.4	No Aplica	≈ 64.9	≈ 69.6	

Tabla 2.6: Presiones críticas del LL experimentales y calculadas con las EdEs de Patel - Teja y Peng - Robinson

Las predicciones se llevaron a cabo en un intervalo relativamente amplio de temperatura alrededor de 314.15 K (de 313.00 a 333.40 K). Se predijieron los datos de equilibrio a la temperatura de 303.4 K (a la cual el etano es sub-crítico), para saber realmente si esta modelación previa es conforme con la información disponible sobre la localización de los puntos LCEP y UCEP de [40] y [28], ver Figuras 2.20 y 2.21. Se sigue presentando una inmiscibilidad LL a 303.4 K. Esto indica que ambas ecuaciones colocan el LCEP a temperatura muy abajo de lo esperado; pues, según la referencia [40], éste se encuentra, para este sistema, alrededor de 313.5 K.

A partir de los datos de la referencia [28] se hizo el análisis sobre los puntos críticos del ELL, evaluados a partir de los cálculos anteriores, como se muestra en la Tabla 2.6 y las Figuras 2.20 y 2.21. Los puntos críticos se extrapolaron, en la región de los máximos de las curvas P(x) isotérmicas, en un intervalo de composición del orden de 10^{-3} en fracción molar. A partir de los datos de la referencia [40], se hizo también la comparación, del comportamiento de la región de tres fases calculado con el reportado en, como se ve en la Figura 2.22.

La Tabla 2.6 muestra que los puntos críticos del LL; es decir, las mas altas presiones a las cuales se pueden esperar la aparición de equilibrios entre fases a composición dada, se obtienen a presiones mucho mayores a las reportadas por [28]. Esta situación se debe a que el punto LCEP se encuentra a demasiada baja presión.

Figura 2.20: Curva crítica del sistema etano + 1-propanol según [28].

El hecho que el punto crítico calculado a 333.4 K se encuentra más cerca de los datos de [28], indica que probablemente el punto UCEP no se predice tan mal.

Así, basarse sobre las presiones calculadas para estimar de manera conservativa las presiones de saturación a una composición dada es válido. Fijar límites entre 65 bar, a composiciones en la región ELG, y 75 bar, en la región ELL, como valores a partir de las cuales se podrán empezar a buscar alcanzar los puntos experimentales de saturación, por medio de descompresiones en flujo continuo, se justifica.

En cuanto a los intervalos de composición que se pueden considerar en la experimentación, la Figura 2.22 muestra que un intervalo comprendido entre $x_{etano} = 0.7$ y 0.95 es apropiado para observar todos los fenómenos de transición que pueden ocurrir en la mezcla considerada. Se nota también que a $x_{etano} > 0.90$, la predicción de las composiciones del equilibrio de tres fases no es tan alejada de los datos de [40]. Esto permite contar con la modelación para estimar los comportamientos en esa región durante la experimentación.

A composiciones mayores a $x_{etano} = 0.98$ la Figura 2.19 muestra comportamientos suficientemente cercanos a los de los datos experimentales disponibles para concluir que debido a la cercanía de los puntos críticos LG y ciertas inversiones de comportamientos térmicos que se observan, no será factible utilizar el equipo para detectar saturaciones en esa región. Por esa razón se planearon mediciones a $x_{etano} < 0.95$ para tener la oportunidad de explorar el comportamiento del instrumento de medición en la región del ELG a altas composiciones molares en etano sin acercarse demasiado a los puntos críticos de la mezcla en esta región.

En las siguientes secciones se encontrará que una de las composiciones estudiadas, alrededor de 93 % en etano, se encuentra bastante cercana a los puntos críticos en el intervalo de temperatura considerado.

Figura 2.21: Curva crítica del sistema etano + 1-propanol según [28]. Acercamiento en la región del ELLG.

Figura 2.22: Proyección de la curva de la región de tres fases según [40] y datos calculados a 314.15 K. (Las líneas LLG calculadas a 314.15 K se desfasaron ligeramente en temperatura respecto a los datos experimentales para la legibilidad de la figura).

Capítulo 3

Resultados

En esta sección se presentan resultados mediante los cuales se cumplen dos metas primordiales de este trabajo:

- Demostrar la factibilidad de la detección de varios tipos de equilibrios líquido – líquido usando la técnica de densimetría de tubo vibrante en el arreglo experimental disponible, tomando como ejemplo el sistema binario etano + 1-propanol.
- Presentar las mediciones que se llevaron a cabo del sistema binario etano + 1propanol a diferentes temperaturas (de 313 hasta 320 K), en un amplio intervalo de presión (hasta 400 bar) y composiciones selectas entre $x_{etano} \approx 0.71$ hasta $x_{etano} \approx 0.93$.

Las tres primeras secciones que siguen exponen brevemente el plan experimental adoptado para el sistema considerado, consideraciones especificas sobre la calibración del densímetro en este trabajo y notas generales sobre la problemática de detección de los equilibrios. La sección de resultados experimentales, Sección 3.4, se divide en cuatro partes; la primera trata de los procedimientos y metodología empleada en general, luego se presentan y discuten los datos obtenidos a saturación. Posteriormente se presentan y discuten los datos obtenidos en fase homogénea líquida comprimida y finalmente se presenta una modelación que involucre los nuevos datos de equilibrio entre fases utilizando la ecuación de estado de Patel – Teja.

3.1. Definición de los experimentos

Se elaboró un plan experimental (ver Tabla 3.1) a partir de los resultados obtenidos en la modelación previa (Sección 2.2.3) y de la literatura discutida, en el cual se establecen siete composiciones y siete temperaturas distintas, con el fin de obtener el comportamiento $P - \rho - Tx$, (x, y) de la mezcla en la zona donde se presentan los equilibrios líquido – líquido o líquido – gas.

Tabla 3.1: Plan experimental de las mediciones del sistema $etano + 1 - propanol$:
40 isotermas; x_{etano} es la fracción molar del etano para las mezclas sintetizadas. Las
temperaturas son nominales: son las que se previeron alcanzar.

x_{etano}	$T_1(K)$	$T_2(K)$	$T_3(K)$	$T_4(K)$	$T_5(K)$	$T_6(K)$	$T_7(K)$
0.7187	313.00	314.15	315.00	317.00	320.00		
0.7767	313.00	314.15	315.00				
0.7607	312.00	313.50	314.50	317.00	320.00		
0.7910	313.00						
0.8303		314.15	315.00	317.00	320.00		
0.8547	313.50	314.15	315.00	317.00	320.00		
0.8741	313.00	314.15	315.00	317.00	320.00		
0.9054	313.00	314.15	314.50	315.00	315.50	317.00	320.00
0.9356	313.00	314.15	315.50	317.00	320.00		

Este plan experimental cubre la región del equilibrio de tres fases (L - L - V) reportada por [40] para el sistema considerado así como el intervalo de composición donde se encuentra la separación LL de acuerdo a las representaciones anteriores. Dichas representaciones muestran una apertura de la separación LL desde composiciones en etano de 0.6 molar en el intervalo de 314 a 320 K.

Figura 3.1: Condiciones de los experimentos realizados y localización de la región de tres fases para la mezcla etano + 1-propanol según [40].

La Figura 3.1 muestra, junto con la localización de la región de tres fases según [40], las condiciones a las cuales se efectuaron los experimentos en este trabajo. No fue necesario medir a composiciones inferiores a 0.7, ya que los experimentos mostraron

que a esa composición los equilibrios son claramente entre un líquido y un gas.

3.2. Calibración del DTV

Además de las mediciones planteadas, se procedió a la calibración del DTV con agua para análisis (Grado HPLC) midiendo 13 isotermas para este propósito entre 313 y 320 K. A diferencia de otros trabajos [37], no se calibró a todas las temperaturas a las cuales se estudió la mezcla. Los datos experimentales de densidad a una temperatura dada se obtuvieron con los parametros del modelo FPMC [62] calculados a una temperatura ligeramente distinta. El dato de recalibración empleado en cada isoterma fue el valor del periodo a vació, evaluado o medido de manera sistemática.

Se calibró el DTV después de cada cambio de composición, y a algunas temperaturas intermedias para verificar la estabilidad de los parámetros de calibración. Se calibró primero a 313 K, posteriormente se estudió el sistema a la primera composición y todas las isotermas planteadas para ésta. Al finalizar se calibró a 320 K. Así se hizo sucesivamente a las diferentes composiciones planteadas de acuerdo a la Tabla 3.1.

FPMC	Т	M_0/L_{00}	γ_t	γ_2
Fecha	(K)	kgm^{-1}	$\times 10^{-6} bar^{-1}$	$\times 10^{-10} bar^{-2}$
08-10-03	313.00	0.33068	1.01	0.10
09-10-03	315.00	0.33073	1.00	0.36
10-10-03	320.00	0.33074	0.99	1.30
15-12-03	312.00	0.33089	1.01	0.07
22-01-04	313.00	0.33068	1.01	0.20
29-01-04	314.15	0.33115	0.98	0.72
11-02-04	320.00	0.33098	1.01	0.25
12-02-04	317.00	0.33088	1.00	0.30
18-02-04	313.00	0.33150	1.00	0.33
27-02-04	320.00	0.33100	1.00	0.31
08-03-04	313.00	0.33192	1.00	0.18
17-03-04	320.00	0.33123	1.01	0.09
01-04-04	313.00	0.33202	1.00	0.28

Tabla 3.2: Parámetros del modelo FPMC de 13 calibraciones del DTV.

Usando el modelo FPMC [62], se obtuvieron por ajuste del modelo a los datos de referencia del agua (Ecuación de estado de Hill [75]), los parámetros M_O/L_{00} , γ_t y γ_2 para cada temperatura (Tabla 3.2) anotándose variaciones en el tiempo (en especial de M_0/L_{00} , el parámetro mas sensible) que justifican plenamente esas calibraciones periódicas.

Se calibró de esta forma debido a que se determinó que es posible calcular las densidades de un fluido a una temperatura, usando los parámetros del modelo FPMC a una temperatura relativamente distinta (no mayor de 5 K). El análisis correspondiente se basa en las conclusiones de un trabajo anterior [62] y a las mediciones específicas que se llevaron a cabo en este trabajo. El interés de este análisis es que disminuye sensiblemente la parte experimental relacionada con la calibración del densímetro.

Con lo anterior, se planeó calcular las densidades de la mezcla estudiada eligiendo la calibración adecuada de acuerdo con la diferencia entre la temperatura de calibración y la temperatura de medición, así como con la cercanía de la fecha entre medición y calibración. La planeación se muestra en la Tabla 3.3

Figura 3.2: Error Absoluto en ρ_{agua} calculada con la Ed
E de Hill [75] y el modelo FPMC.

Las diferencias de las densidades calculadas del agua con respecto a las densidades de referencia se muestran en la Figura 3.2 para todas las calibraciones. Se puede observar que el error producido por el modelo en el calculo de la densidad del agua (y supuestamente para los fluidos parecidos en términos de variaciones de la densidad con respecto a la presión) es de $\pm 0.05 \ kg m^{-3}$.

Fecha de	T(K)	x_{etano}	Fecha de	T(K)
$\operatorname{calibración}$	calibración		medición	medición
08-03-04	313.00	0.7187	10-03-04	313.00
08-03-04	313.00	0.7187	11-03-04	314.15
17-03-04	320.00	0.7187	12-03-04	315.00
17-03-04	320.00	0.7187	15-03-04	317.00
17-03-04	320.00	0.7187	16-03-04	320.00
08-10-03	313.00	0.7767	18-11-03	313.00
09-10-03	315.00	0.7767	24-11-03	314.15
09-10-03	315.00	0.7767	27-11-03	315.00
15-12-43	312.00	0.7607	12-12-03	312.00
15-12-03	312.00	0.7607	11-12-03	313.50
15-12-03	312.00	0.7607	10-12-03	314.50
09-10-03	315.00	0.7607	05-12-03	317.00
10-10-03	320.00	0.7607	09-12-03	320.00
22-01-04	313.00	0.7910	27-01-04	313.00
29-01-04	314.15	0.8303	02-02-04	314.15
29-01-04	314.15	0.8303	03-02-04	315.00
11-02-04	317.00	0.8303	04-02-04	317.00
11-02-04	320.00	0.8303	09-02-04	320.00
18-02-04	313.00	0.8543	12-02-04	313.50
18-02-04	313.00	0.8543	13-02-04	314.15
11-02-04	317.00	0.8543	14-02-04	315.00
11-02-04	317.00	0.8543	16-02-04	317.00
11-02-04	320.00	0.8543	17-02-04	320.00
08-03-04	313.00	0.8741	05-03-04	313.00
08-03-04	313.00	0.8741	04-03-04	314.15
08-03-04	313.00	0.8741	03-03-04	315.00
27-02-04	320.00	0.8741	02-03-04	317.00
27 - 02 - 04	320.00	0.8741	01-03-04	320.00
18-02-04	313.00	0.9054	19-02-04	313.00
18-02-04	313.00	0.9054	20-02-04	314.15
18-02-04	313.00	0.9054	23-02-04	314.50
18-02-04	313.00	0.9054	24-02-04	315.00
18-02-04	313.00	0.9054	24-02-04	315.50
27-02-04	320.00	0.9054	25-02-04	317.00
27-02-04	320.00	0.9054	26-02-04	320.00
01-04-04	313.00	0.9356	24-03-04	313.00
01-04-04	313.00	0.9356	23-03-04	314.15
01-04-04	313.00	0.9356	22-03-04	315.50
17-03-04	320.00	0.9356	20-03-04	317.00
17-03-04	320.00	0.9356	19-03-04	320.00

Tabla 3.3: Relación entre $T_{calibración}$ y $T_{medición}.$ Las temperaturas están indicadas en valor nominal.

3.3. Detección experimental del ELL

Uno de los retos de este trabajo era determinar la factibilidad de detectar un ELL, mediante la técnica de densimetría de tubo vibrante, usando el arreglo experimental con el que se cuenta.

Se planteó, de manera general, para todas las temperaturas y composiciones medir en un intervalo de presión entre el punto de saturación y 400 bar. La presión de saturación a una composición y temperatura dada se estimó mediante la modelación previa de los datos experimentales de Kodama et al. [29] (Sección 2.2.3), por lo que se tenía una idea aunque aproximada sobre a qué valor se encontraría la presión de saturación antes de empezar las experimentaciones. Esto es muy importante para el establecimiento de un procedimiento de mediciones en la cercanía de un punto de saturación que permita describir precisamente los comportamientos esperados.

La metodología de medición establecida para encontrar un punto de saturación fue disminuyendo la presión desde un valor inicial preestablecido entre 75 bar y 65 bar, dependiendo de la composición y temperatura de la mezcla. La temperatura de las tuberías y conexiones externas al densímetro se mantienen a temperatura ambiente; es decir, siempre más frías que el densímetro regulado aparte. La estabilidad de las condiciones ambientales se logra mediante un acondicionador de aire disponible en el local cerrado donde se encuentra el equipo experimental.

Desde la presión inicial se establece una descompresión continua muy pequeña de aproximadamente 0.002 bar s⁻¹. Esto permite mantener un régimen estacionario del fluido durante la descompresión preservando, en cada punto, un estado casi estático (en equilibrio termodinámico global). La descompresión de 0.002 bar s⁻¹ se estableció con base a la apreciación de la estabilidad del periodo de vibración (cuidando que éste no se moviera más allá de sus fluctuaciones normales de 2×10^{-6} ms) conforme disminuye la presión. Asimismo, se buscó que la temperatura no sufriera variaciones drásticas (ya que el periodo de vibración también es dependiente de esta variable) y que ésta se mantuviera estable: fluctuando en milésimas de Kelvin, debido a la regulación local del densímetro en periodos de tiempo donde las condiciones ambientales son estables. Para composiciones cercanas a la crítica $(0.875 < x_{etano} < 0.95)$, aun con el flujo establecido fue difícil estabilizar el sistema (en especial el comportamiento P – τ cuando P varía). Además, se observó que un mayor flujo provoca una fuerte inestabilidad del periodo de vibración y de la temperatura (mucho más allá de sus fluctuaciones normales). Todo esto se observa visualmente en las gráficas de periodo de vibración con respecto a la presión y temperatura con respecto al tiempo, generadas continuamente por la adquisición de datos.

Mediante el régimen continuo casi estático de descompresión, se debe apreciar visualmente el momento en el cual se encuentra el punto de saturación mediante la observación de un cambio local en la morfología de las isotermas. En un príncipio, para una composición correspondiente a la saturación de un líquido pesado (lado derecho de la campana $P - x_{etano}$) se esperaba un quiebre análogo al que presenta un

ELV, pero menos pronunciado debido a que en un ELV la formación de una burbuja de vapor dentro del líquido provoca un cambio muy drástico en la dinámica del tubo, lo cual se ve reflejado en el periodo de vibración.

Figura 3.3: Detección del ELL mediante el DTV, $(x_{etano} = 0.8303, 314.15 \text{ K})$.

Figura 3.4: Detección del ELV mediante el DTV. ($x_{etano} = 0.7187, 313.00$ K).

Sin embargo, para un ELL, el cambio de densidad entre las dos fases a saturación es mucho menor que en un ELV por lo cual se esperaba que el quiebre fuera mucho más suave. Esta es una razón más por la cual se estableció un régimen de flujo tan pequeño, pues se desconocía la forma en que se presentaría la característica que indicara la separación de las fases. Con la metodología planteada, se logró observar visualmente, en las mediciones del periodo en función de la presión, un quiebre característico (Figura 3.3), el cual indica un punto de saturación de acuerdo a la experiencia que se tiene sobre la medición y caracterización de ELV [58] mediante esta técnica.

Figura 3.5: Detección del ELL mediante el DTV, $(x_{etano} = 0.8741, 314.15 \text{ K})$

Este quiebre representa básicamente un fuerte cambio en el periodo de vibración con respecto a la presión (puede observarse visualmente). Este cambio en el periodo de vibración (densidad) se interpreta como un cambio de fase ya sea de una fase pesada a una más ligera o viceversa. A esta composición, el quiebre es de hecho muy parecido en forma al que se presenta en un típico ELV (ver Figura 3.4).

Sin embargo, cuando se estudió una composición correspondiente a la saturación de un líquido ligero, se esperaba que el quiebre característico del equilibrio fuera opuesto al comportamiento descrito anteriormente; es decir, se esperaba que el cambio en el periodo de vibración al disminuir la presión fuera en un sentido creciente (un aumento en el periodo de vibración) a partir del punto de saturación como es el caso cuando se condensa un vapor (ver Figura 1.13). Experimentalmente no se encontró esta característica, al contrario, en una gráfica $\tau - P$ se observó un quiebre en el mismo sentido al generado por una composición de un líquido pesado (ver Figura 3.5).

En este caso la morfología del quiebre es sensiblemente diferente en comparación a la del ELV. Se pueden comparar las Figuras 3.3 para una transición líquido pesado – líquido ligero; la Figura 3.5 para una transición líquido ligero – líquido pesado y la Figura 3.4 para una transición líquido (pesado) – vapor. La transición líquido ligero – líquido pesado es menos evidente que las otras y se parecería a una transición en la región crítica (LV o LG) si no fuera que el comportamiento de la fase homogénea siga pareciéndose al de un líquido relativamente incompresible. Para ver el comportamiento de una transición líquido – gas se tienen ejemplos en el Apéndice E a partir de la Figura E.18.

Estos resultados, en especial el sentido del quiebre en la transición líquido ligero – líquido pesado, causaron en primer instancia desconcierto por lo cual se hizó un análisis sobre un diagrama $P - x_1x_2 - \rho$ y se encontró que el quiebre como se presentaba experimentalmente es correcto y característico para un ELL. Esto es, la densidad efectivamente disminuye cuando se descomprime a composición constante por la curvatura negativa que presenta el diagrama $x_1x_2 - \rho$ (ver Figura 3.6). Al llegar al punto de saturación, la variación de la composición debido a la separación instantánea es muy pequeña en comparación a la variación de la presión, debido a que la transferencia de masa dentro del tubo es más lenta; siendo dos líquidos los que transitan a flujo muy lento dentro del tubo vibrante (de diámetro del orden de 2 mm). Esto provoca que se siga el comportamiento como si la composición fuera constante y no como si se estabilizara la presión y siguiera el camino de una línea de unión.

Figura 3.6: P, ρ, x, y isotérmico del sistema etano + 1-propanol según Kodama et al. [29].

En la Sección 3.4.2 se detallarán cómo se comportan los quiebres de transición de fase con respecto a la temperatura y sobre todo a la composición. También se detallará el tratamiento que se hace a los datos registrados casi continuamente para estimar adecuadamente el *punto de quiebre*. Este punto es el que se reporta como el dato de saturación a una temperatura composición y presión dada. La densidad en

este punto, como en cualquier otro punto de estado, se obtiene de la conversión del periodo de vibración a las condiciones establecidas de estado.

3.4. Resultados experimentales

3.4.1. Procedimientos

El estudio del sistema etano+1-propanol se llevó a cabo en fase líquida, siguiendo el procedimiento experimental detallado en la Sección 2.1.2, cuidando que siempre existiera en el DTV una mezcla homogénea.

Se lleva la mezcla (dentro del DTV) a la presión de interés más alta (400 bar) después de la rehomogeneización de la mezcla, y se espera a que se estabilice la temperatura y la presión. Una vez que ambas variables se encuentran estables, se procede a tomar los datos de periodos de vibración a estas condiciones. Se prosigue disminuyendo la presión de acuerdo con los siguientes intervalos:

- Un cambio de 20 bar para una presión entre 400 bar y 160 bar
- Un cambio de 10 bar entre 140 bar y 80 bar
- Un cambio de 5 bar entre 80 bar y 75 bar o 65 bar
- A partir de 75 bar o 65 bar flujo continuo (≈ 0.002 bar s⁻¹)

y se repite, en cada punto donde se estabiliza la mezcla, la misma metodología que a 400 bar.

Los periodos de vibración que se toman, para cada presión, forman una nube estable de puntos como lo muestra la Figura 3.7, con una desviación estándar para el periodo de vibración $\sigma \tau \leq 10^{-5} ms$, para todos los puntos medidos antes de establecer un flujo continuo.

Esta desviación del periodo de vibración, proporciona densidades con incertidumbre de $\pm 0.1 \ kg \ m^{-3}$, propio del modelo FPMC; el periodo de vibración es una variable muy sensible con respecto la temperatura, la cual se mide con una incertidumbre de ± 0.02 K y se regula con fluctuaciones locales del orden de ± 0.002 K, lo cual permite tomar puntos lo suficientemente estables, como lo muestra la Figura 3.7. El procedimiento a seguir hasta obtener la fase de saturación, se describió en la sección 3.3.

3.4.2. Datos en la saturación

Los resultados de las mediciones de los puntos de saturación con respecto a la temperatura y presión se reportan en la Tabla 3.4. Para las fases se indica por G a la fase gas, L_P designa una fase líquida *pesada*, rica en 1-propanol y L_L designa una fase líquida *ligera*, rica en etano.

T(K)	x_{etano}	Transición	$P_{Sat.}(bar)$	$ ho kg m^{-3}$	
313.001	0.7187	$L_P \to G$	54.653	490.031	
314.157	"	$L_P \to G$	56.612	485.906	
315.006	"	$L_P \to G$	57.869	484.001	
317.000	"	$L_P \to G$	60.894	481.305	
320.004	"	$L_P \to G$	65.396	477.566	
313.010	0.7767	$L_P \to G$	54.675	449.509	
314.184	"	$L_P \to G$	56.587	447.441	
315.004	"	$L_P \to G$	57.929	445.311	
312.004	0.7607	$L_P \to G$	53.524	460.351	
313.504	77	$L_P \to G$	55.727	458.749	
314.555	77	$L_P \to G$	57.248	456.767	
317.002	77	$L_P \to G$	60.605	454.113	
319.998	"	$L_P \to G$	65.073	449.393	
313.004	0.7910	$L_P \to L_L$	54.644	428.672	
314.155	0.8303	$L_P \to L_L$	57.164	410.032	
315.003	"	$L_P \to L_L$	58.537	408.971	
317.002	"	$L_P \to G$	61.608	405.759	
320.007	"	$L_P \to G$	65.882	401.299	
313.509	0.8547	$L_P \to L_L$	58.144	396.864	
314.152	"	$L_P \to L_L$	59.229	396.147	
315.005	"	$L_P \to L_L$	60.709	394.253	
317.006	"	$L_P \to G$	63.880	391.775	
320.005	"	$L_P \to G$	68.495	387.425	
313.001	0.8741	$L_L \to L_P$	57.564	383.704	
314.150	"	$L_L \to L_P$	59.067	381.453	
314.997	"	$L_L \to L_P$	60.360	380.406	
316.998	"	$L_L \to G$	63.122	376.070	
319.998	"	$L_L \to G$	67.269	371.339	
313.012	0.9054	$L_L \to L_P$	54.962	351.610	
314.158	"	$L_L \to L_P$	56.807	350.096	
314.506	"	$L_L \to G$	57.451	350.102	
315.001	"	$L_L \to G$	58.489	350.070	
315.503	"	$L_L \to G$	59.399	349.890	
317.001	"	$L_L \to G$	61.798	348.116	
319.996	"	$L_L \to G$	66.124	343.428	
312.988	0.9356	$L_L \to G$	56.590	324.197	
314.148	"	$L_L \to G$	58.180	322.370	
315.499	"	$L_L \to G$	60.130	321.155	
317.005	"	$L_L \to G$	61.470	311.574	
320.002	"	$L_L \to G$	65.400	306.232	

Tabla 3.4: Datos en la Saturación de la mezcla etano + 1-propanol.

Figura 3.7: Puntos experimentales estables de τ

Los datos de saturación de la Tabla 3.4, se obtuvieron de un análisis gráfico – analítico de los datos medidos en flujo continuo. Para localizarlos, se ajustó a los datos una función, intencionalmente discontinua en un punto indefinido, y compuesta de dos polinomios de grado uno (en general para los datos en la zona no homogénea) o dos (en algunos casos hasta grado tres, para la zona homogénea). La discontinuidad está representada por una curva sigmoidal centrada en el periodo esperado para el quiebre. Mediante estimaciones iniciales adecuadas obtenidas del análisis gráfico de los datos experimentales $\tau - P - T$, la función se ajusta de manera que la discontinuidad se coloque justo en el punto de quiebre y en la región ocupada por los datos experimentales, no afuera de la curva experimental (esto es una estrategia de rastreo de un punto de quiebre, conocido también como *break – point tracking*).

El formalismo matemático empleado se describe a continuación. La posición del punto de quiebre (PQ) para cada isoterma, se estima gráficamente y se definen valores de $\tau_{PQ} \simeq \tau_{Sat.}$ y $p_{PQ} \simeq p_{Sat.}$ Dos puntos adicionales se seleccionan en la serie de datos en la fase homogénea: uno a aproximadamente 1 o 2 bar arriba del supuesto quiebre: $\tau_{H,max}$, $p_{H,max.}$, y otro cerca del quiebre pero todavía en la región homogénea: $\tau_{H,min}$, $p_{H,min.}$ En la fase no homogénea un cuarto punto se define; $\tau_{In,min.}$, $p_{In,min.}$ para limitar el intervalo de periodos considerados en esta región.

Con esas referencias, se construyen dos curvas, una para cada porción de la isoterma. Una describe la región homogénea:

$$p_1(\tau) = p_{H,min.} + \sum_{k=1}^{k=d.p.H.} a_k (\tau - \tau_{H,min})^k$$
(3.1)

donde d.p.H. es un grado de polinomio adecuado; $2 \leq d.p.H$. ≤ 4 dependiendo de la curvatura de la isoterma y del intervalo de presión considerado en esta región y definido por la diferencia entre $p_{H,max}$. y $p_{H,min}$. Otra curva se construye en la región no homogénea:

$$p_2(\tau) = p_{In,min.} + \sum_{k=1}^{k=d.p.In.} b_k (\tau - \tau_{In,min})^k$$
(3.2)

donde d.p.In. =1 o 2 dependiendo de la topología de la región de transición de fases. No existe razón alguna para seleccionar polinomios de mayor grado en esta región.

En una primera etapa, las dos curvas se ajustan a los datos en las regiones respectivas: de τ_{PQ} , p_{PQ} a $\tau_{H,max.}$, $p_{H,max.}$ para $p_1(\tau)$ y de $\tau_{In,min.}$, $p_{In,min.}$ a τ_{PQ} , p_{PQ} para $p_2(\tau)$. Del ajuste resulta usualmente que p_1 y p_2 interceptan cerca del punto de quiebre supuesto τ_{PQ} , p_{PQ} pero no necesariamente dentro del conjunto de datos experimentales donde se busca el punto de quiebre real. Entonces se construye una función continua por partes a partir de las dos anteriores que presenta un brinco a las coordenadas del punto de quiebre buscado: τ_{PQ}^* , p_{PQ}^* . La función correspondiente es:

$$\hat{p}(\tau) = p_1(\tau)\sigma^+(\tau, \tau_{PQ}^*) + p_2(\tau)\sigma^-(\tau, \tau_{PQ}^*)$$
(3.3)

donde

$$\sigma^{\pm}(\tau, \tau_{PQ}^{*}) = \frac{1}{1 + E\left(\mp 10^{7} \left[\tau - \tau_{PQ}^{*}\right]\right)}$$
(3.4)

y E es una Exponencial *numéricamente segura* (nunca rebasa el punto flotante de la máquina) definida por:

$$\forall x \in \mathbb{R}, \quad E(x) = \begin{cases} \exp(x) & si \ x \le 10^2 \\ 10^{60} & si \ x > 10^2 \end{cases}$$
(3.5)

Esta función se puede ajustar a los datos, en un intervalo limitado de periodos alrededor del punto de quiebre estimado, desde $\tau_{In,min.} + (\tau_{PQ} - \tau_{In,min.}/2)$ hasta $\tau_{H,min.}$, considerando τ_{PQ}^* como un nuevo parámetro a determinar además de a_k y b_k . La función $\sigma^{\pm}(-)$ proporciona un salto continuo y muy estrecho centrado sobre τ_{PQ}^* con un ancho de aproximadamente una décima de la amplitud de las fluctuaciones experimentales de τ . El ajuste del salto proporciona una localización del punto de quiebre exactamente dentro del conjuntos de datos experimentales disponibles y un valor de τ_{PQ}^* . La presión que corresponde a este periodo se obtiene de $\hat{p}(\tau_{PQ}^*)$.

En la mayoría de los casos la estrategia utilizada funcionó, en particular cuando el quiebre es notable en los datos experimentales. Cuando el quiebre no es notable visualmente en los datos experimentales, sino que se encuentra en un cambio de la pendiente del comportamiento (como sucedió en el caso de los datos a $x_{etano} \approx 0.935$) la estrategia descrita requiere algunos refinamientos. En particular, los datos a esta composición se obtuvieron con la misma metodología pero construyendo la función $\hat{p}(\tau_{PQ}^*)$ con un cambio en su pendiente y no en su expresión directa.

En el caso de las isotermas a $x_{etano} = 0.9356$, los quiebres en las curvas $P(\tau)$ no existen o no se aprecian visualmente directamente. Estas curvas son continuas, sus derivadas también, pero se tienen discontinuidades de segundo orden. Un análisis detallado de los datos muestra que estos quiebres se pueden encontrar en una discontinuidad en la curvatura de las curvas $P(\tau)$ es decir que el quiebre solo se puede observar sobre la curva $dP/d\tau(\tau)$.

Dos ejemplos se presentan adelante para dos casos particularmente difíciles a las temperaturas de 312.99 K y de 317.01 K, ver Figuras 3.8 y 3.9. En esta situación los polinomios locales p_1 y p_2 se modificaron de tal manera que se tenga la opción de detectar una discontinuidad en la curvatura de los datos sin tener que aproximar la pendiente por medio de diferenciación numérica lo cual resulta demasiado impreciso en el presente contexto.

La función que describe la región no homogénea es ahora:

$$p_2(\tau) = p_{In,min.} + \sum_{k=1}^{k=2} b_k (\tau - \tau_{In,min})^k$$
(3.6)

y en la región homogénea:

$$p_1(\tau) = p_2(\tau) + \sum_{k=1}^{k=2} a_k (\tau - \tau_{PQ}^*)^k / k!$$
(3.7)

con la posibilidad de fijar $a_1 = b_1$, lo cual forza la continuidad de la pendiente entre las dos regiones. Solo a la temperatura de 315.50 K, se mantuvó $a_1 \neq b_1$ porque el quiebre en este caso es (aunque no muy aparente) sobre de la curva $P(\tau)$. La formulación de la función global $\hat{p}(\tau)$ sigue siendo la misma y está dada por la ecuación 3.3.

La pendiente de la curva global $\hat{p}(\tau)$ se calcula a partir de:

$$\frac{d\sigma^{\pm}}{d\tau} = \pm \frac{10^7 E(\mp 10^7 [\tau - \tau_{PQ}^*])}{\left(1 + E(\mp 10^7 [\tau - \tau_{PQ}^*])\right)^2}$$
(3.8)

у

$$\frac{d\hat{p}}{d\tau} = (p_1 - p_2)\frac{d\sigma^+}{d\tau} + p_2\frac{d\sigma^-}{d\tau} + \frac{d(p_1 - p_2)}{d\tau}\sigma^+ + \frac{dp_2}{d\tau}\sigma^-$$
(3.9)

La Figura 3.8 muestra la topología del quiebre a $x_{etano}=0.9356$ y 312.98 K. Es notorio que la presión no muestra un quiebre claro a través de la correlación $\hat{p}(\tau)$, sin embargo es notorio también que la curvatura presenta una discontinuidad. Esa discontinuidad se presenta por un quiebre de la pendiente. Los datos experimentales

Figura 3.8: Detección del quiebre a $x_{etano} = 0.9356$ y 312.99 K.

 $P(\tau)$ son suficientes y suficientemente continuos para poder obtener por diferenciación numérica (mediante un método de diferencias finitas centradas de paso variable) una idea de la pendiente *experimental*. Esa pendiente experimental es, sin embargo, muy imprecisa y correlacionarla directamente es muy impráctico. La correlación propuesta tiene la ventaja no solamente de representar la pendiente de los datos experimentales convenientemente sino de detectar su quiebre. Esto se hace sin derivación numérica, sólo a partir de la correlación \hat{p} .

La Figura 3.9 muestra otro caso a a $x_{etano}=0.9356$ y 317.01 K que presenta un comportamiento todavía mas crítico en el sentido que existe aún menos diferencia entre la pendiente en la región no homogénea y la pendiente en la región homogénea. El método empleado para correlacionar estos efectos sigue sin embargo proporcionando una imagen clara del quiebre en la pendiente que sería muy difícil de ubicar sólo con la información experimental.

Para obtener la densidad correspondiente a las condiciones del quiebre, se usó el tratamiento estándar con el modelo de calibración FPMC (ver [56,62]) con los datos $\tau_{PQ}^*, \hat{p}_{PQ}^*, T$ considerados como un punto pseudo-experimental. Las incertidumbres en un punto de quiebre se consideran como siendo las mismas que en cualquier otro dato experimental a condiciones estables de estado aparte, tal vez, para las isotermas a $x_{etano} \approx 0.935$. En el caso de estas isotermas, la indeterminación sobre la posición del periodo de vibración en la saturación por el procedimiento de rastreo del punto de quiebre es del orden de $\pm 3 \times 10^{-5}$ ms. Además, tomando en cuenta la incertidumbre

Figura 3.9: Detección del quiebre a $x_{etano} = 0.9356$ y 317.01 K.

sobre la presión, la incertidumbre sobre la densidad puede llegar hasta 3 $kg m^{-3}$.

Los resultados de las correlaciones, sus parámetros y las desviaciones de las presiones en cada uno de los cuarenta puntos de saturación obtenidos se encuentran resumidos en tablas en el Apéndice E.

La siguiente serie de Figuras (de 3.10 a 3.19) ilustra la topología de los datos experimentales obtenidos en flujo continuo a varias condiciones seleccionadas dentro de las 40 isotermas descritas. En el Apéndice E se encuentran las cuarenta figuras correspondientes. A cada composición y a cada temperatura, se presenta una gráfica centrada en el punto de quiebre detectado. Los intervalos de escala en periodo de vibración τ y en presión P son los mismos para cada figura; solo los valores absolutos difieren. La escala de τ está construida alrededor del valor de la saturación $\pm 5 \times 10^{-4}$ ms y la escala de P es de -0.2 bar hasta ± 0.7 bar con respecto a la presión de la saturación. Una única excepción, en el Apéndice E concierne las figuras para $x_{etano} \approx 0.935$ para las cuales la escala de P es ± 0.3 bar arriba de la presión de saturación (ver Figuras E.18 a E.20). Estas representaciones permiten mostrar la evolución de los comportamientos sobre una misma base, que en este caso es la posición del punto de saturación. Más adelante se mostrarán los datos en el espacio T, P, ρ , x. Las curvas, C_{Gen} , corresponden a la función $\hat{p}(\tau)$. Los puntos marcado $P_{sat.} - \tau_{sat.}$ son los puntos de quiebre a las coordenadas ($\tau_{PO}^*, \hat{p}_{PO}^*, T$).

Con las escalas comunes, se pueden apreciar comparativamente los comportamientos de las fases homogéneas y cómo las pendientes cambian dependiendo de cual tipo de fluido está presente en el tubo. Por ejemplo, las pendientes muy pronunciadas en las Figuras 3.10 y 3.11 denotan la presencia de un líquido relativamente pesado y una transición hacia una fase gas. En las Figuras 3.12 y 3.13, la compresibilidad del líquido pesado aumenta (las pendientes son menores) y la transición es más suave y corresponde a una transición de un líquido pesado hacia un líquido ligero o a una fase gas densa, dependiendo de la temperatura. Estos líquidos están probablemente saturando a una presión ligeramente superior a la presión del equilibrio de tres fases.

En las Figuras 3.14, 3.15 y 3.16, 3.17 los comportamientos de las fases homogéneas son similares. Esto es porque ambos fluidos se acercan a un punto crítico líquido – líquido a composiciones ligeramente diferentes en cada figura. A composiciones mayores o menores se ve como disminuye la presión de saturación; es decir, se tiene un máximo cerca de esta composición y los puntos críticos están colocados donde $(\partial p/\partial x_i)_{T,x_j} = 0$. Las transiciones de fases son sensiblemente diferentes porque las primeras conciernen transiciones $L_P - L_L$ (o gas denso) y las siguientes dos son para una transición L_L (o gas denso) – L_P .

Figura 3.11: Transición $L_P - G$ a 317.00 K y 320.00 K.

Figura 3.13: Transición $L_P - G$ a 317.00 K y 320.01 K.

Figura 3.15: Transición $L_P - G$ a 317.01 K y 320.01 K.

Figura 3.17: Transición G – L_P a 317.00 K y 320.00 K.

Figura 3.19: Transición G – L_P a 317.00 K y 320.00 K.

Las dos ultimas Figuras 3.18 y 3.19 son sorprendentes, a primera vista, porque mientras la temperatura aumenta, la compresibilidad del fluido parece aumentar (las pendientes disminuyen). La razón de eso es que a esta composición de 0.935 en fracción molar de etano, se tienen varios tipos de transiciones. A 314.15 K el fluido presenta una transición $L_L - G$ en un estado cercano al punto crítico L-G de la mezcla y cerca del punto crítico del etano. Esto explica las pendientes tan pronunciadas y las transiciones suaves debidas a la aparición de una fase gas en un líquido ligero.

A 315 K, de acuerdo con los datos de [40], la cantidad de líquido ligero en la mezcla es mayor y la transición ocurre cerca de la linea de tres fases. La fase líquida es más densa, menos compresible y la transición muestra un comportamiento menos definido, el cual sugiere que existe una competencia entre la aparición de una fase líquida densa y de una fase líquida ligera en la fase líquida homogénea de la mezcla. A 317 y 320 K, el tipo de transición cambia y concierne una transición de una fase gas densa a una *parecida a un líquido* hacia un L_P , similar a lo que ocurre en el caso de las Figuras 3.16 y 3.17 pero con un líquido menos denso.

El hecho de que el fluido a 320 K parece menos compresible que a 317 K indica que este fluido se esta alejando del punto crítico $L_P - G$ y que la composición crítica de la mezcla en fracción molar de etano está disminuyendo, mientras que la temperatura aumenta en esta región. No hay composiciones críticas reportadas en la literatura para el sistema considerado, pero esto es conforme con lo que sucede en un fluido de tipo V.

Las Figuras 3.20 y 3.21 representan el comportamiento de la mezcla de estudio, etano + 1-propanol, con respecto a sus puntos de saturación. Las curvas en las figuras corresponden a lineas que suavizan los datos. No tienen sentido físico pero pretenden mostrar cómo interpretar el comportamiento de los datos. En esas figuras se muestran los datos reportados por Kodama et al. [29] a 314.15 K.

A las temperaturas más bajas, a la composición $x_{etano} \leq 0.9356$, se ve un aumento en la presión de saturación con respecto a la composición anterior; $x_{etano} = 0.9054$. Esto es un comportamiento típico en un sistema binario de tipo V, cuando la temperatura se encuentra entre el LCEP y el UCEP, y la composición entre la del equilibrio de tres fases y la composición crítica sobre la curva que inicia en el punto crítico del etano.

Otra característica de la topología de un diagrama de fase tipo V, que se encuentra en el comportamiento global del sistema a la composición de $x_{etano} = 0.9356$, es la evolución de la presión con respecto a la temperatura en comparación con la composición $x_{etano} = 0.9054$. Conforme aumenta la temperatura, se observa como la diferencia entre las presiones de saturación disminuye, pasando de valores positivos a negativos. Esto se debe a que el EL_LG que se forma simultáneamente al EL_PL_L , va desapareciendo conforme se incrementa la temperatura, hasta que se unifican estas zonas en un punto UCEP y sólo se observa un EL_PG .

Figura 3.20: Comportamiento $x_{etano} - P_{Sat.}$ en la saturación de la mezcla etano + 1-propanol.

Figura 3.21: Comportamiento $\rho_{Sat.} - P_{Sat.}$ en la saturación de la mezcla etano + 1-propanol.

A las composiciones y temperaturas más bajas ($x_{etano} \leq 0.75$) la presión se mide muy cercana a la presión del equilibrio de tres fases (líquido-líquido-vapor) y es normal que la variación en la presión de saturación entre una composición y otra sea casi imperceptible. Las curvas P-x isotérmicas en estas regiones, presentan un aplanamiento característico de la cercanía a la separación de las fases líquidas. A temperaturas más bajas que las medidas; es decir abajo del LCEP, estos comportamientos, con ligeros aumentos de la presión seguirían hasta llegar al punto crítico de la mezcla formando el comportamiento clásico conocido como *pico de pájaro (Bird Beak*). La Figura 3.22 ilustra en un esquema en tres dimensiones el tipo de topología, conforme con el tipo V que se acaba de describir.

Figura 3.22: Comportamiento esquemático P-x-T de una mezcla de tipo V en la región de tres fases.

Finalmente, puede establecerse que la topología del comportamiento del sistema que se describe a partir de los datos experimentales es congruente ya que los datos experimentales obtenidos en este trabajo describen claramente al sistema binario etano + 1-propanol como un tipo V, y que se pueden deducir de ellos las mas relevantes características de este tipo de diagrama.

Asimismo, el comportamiento descrito en los párrafos anteriores, se puede encontrar en los datos experimentales publicados por Kodama et al. [29]. Las composiciones a las cuales se localiza la región de ELL a 314.15 K son similares a las que se pueden interpolar de los datos obtenidos en este trabajo; sin embargo se nota inmediatamente que los datos de Kodama et al. a 314.15 K corresponden mas bien a la isoterma
de este trabajo a 313 K, aparte a $x_{etano} > 0.95$ donde las presiones difieren radicalmente si se toman en cuenta los comportamientos descritos por los datos de este trabajo. Un aspecto interesante, que ya se comentó, es que los datos de Kodama et al. también se acercan mas a los datos de Suzuki et al. a 313.4 K (ver comentarios en la Sección 2.2.2).

Si se comparan las presiones medidas por Kodama et al. [29] y las de este trabajo en magnitud, y considerando que las temperaturas son correctas, tal como lo muestra la Figura 3.20 a la temperatura de 314.15 K, se observa una diferencia del orden de ≈ 1.7 bar hasta ≈ 1.9 bar para las presiones de saturación entre ambas series de datos.

De igual forma que para las presiones de saturación, se encuentra que las densidades de saturación están desfasadas en magnitud (alrededor de $\approx 20 \ kg m^{-3}$ en la región cercana al equilibrio de tres fases) como lo muestra la Figura 3.23. El comportamiento reportado por Kodama et al., es también sensiblemente diferente al que se obtiene en este trabajo.

Figura 3.23: Densidades en la saturación del sistema etano + 1-propanol a 313.00 y 314.15 K, junto con los datos reportados por Kodama et al. [29].

Estas diferencias entre ambas series de datos pueden tener diferentes explicaciones. Una, tomando en cuenta la inconsistencia de los datos de Kodama et al. y los de Suzuki et al., es alguna equivocación en las temperaturas reportadas. Sin embargo, esto sólo podría en parte explicar las diferencias en presión pero no explica completamente las diferencias entre los comportamientos en densidad. Otra posibilidad es la pureza de los reactivos que se utilizaron; en el caso de Kodama et al., se usó etano con pureza de 99.9%, mientras que en este trabajo el etano utilizado tiene una pureza del 99.999%. El 1-propanol fue de grado reactivo con pureza 99.5% en el trabajo de Kodama et al. (no se menciona si fue seco o no) y en este trabajo se uso 1-propanol con Pureza de 99.7%, anhídro (cantidad de agua < 0.005%).

Otro aspecto interesante con respecto a las densidades, es que, vistas en otro plano: ρ -x como en la Figura 3.24, las densidades obtenidas en este trabajo presentan un comportamiento congruente con el de los datos de la literatura [29] aunque desfasados como se ha mencionado anteriormente. La consistencia de los datos de este trabajo en términos de la temperatura es muy buena. Se puede notar que un punto medido a una composición de 79% en fracción molar de etano es el que permite deducir cúal es la topología de las isotermas en esta representación. La presencia del doble (*Plait*) correspondiente al equilibrio líquido – líquido en estas curvas es clara, aúnque es menos pronunciado que el descrito por Kodama et al.

Figura 3.24: Densidades en la saturación del sistema etano + 1-propanol en función de la composición junto con los datos reportados por Kodama et al. [29].

Cabe mencionar también las incertidumbres experimentales entre ambos trabajos. Un aspecto interesante es la temperatura, que Kodama et al. reportan con una incertidumbre experimental de \pm 0.1 K. En este trabajo, se tiene una incertidumbre en la temperatura de \pm 0.02 K. El comportamiento del sistema con respecto a la temperatura es importante, ya que se ha podido observar que puede cambiar notablemente la topología del sistema con esta variable. A pesar de que puede considerarse que una incertidumbre de \pm 0.1 K es muy pequeña, puede generar un cambio en la presión de saturación del orden de \pm 0.2 bar de acuerdo con los datos de este trabajo a diversas temperaturas (ver Figura 3.20). Aunque se considere que esta variación de la presión de saturación con la temperatura es una variación relativamente pequeña, si se añade a la posibles variaciones debido a las diferencias en las purezas de los reactivos utilizados en ambos trabajos, en conjunto, ambas variables pueden provocar las desviaciones que se observan entre los datos medidos en este trabajo y los reportados por Kodama et al.

Por otra parte, Kodama et al. solo midieron a una temperatura de 314.15K y 9 diferentes composiciones ($0.134 \le x_{etano} \le 0.982$ [29]), lo cual no permite dar lugar a una discusión sobre la congruencia térmica de sus datos. En cambio, en este trabajo, se presenta un barrido en temperatura y composición para este sistema binario, cuyo comportamiento global se ha discutido en los párrafos anteriores y se nota, y se demuestra, por el análisis de los comportamientos que se obtuvó una congruencia de los datos experimentales muy buena, en especial comparando los comportamientos isotérmicos entre ellos.

Figura 3.25: $\rho - P$ del sistema etano + 1-propanol. $x_{etano} = 0.8547$.

Ante esas diferencias, una manera de determinar cual es la razón de ellas, sería confirmar los datos mediante el uso de otro método de medición independiente del presente trabajo. Por ejemplo, el método estático – analítico, disponible en el Laboratorio de Termodinámica de la SEPI ESIQIE, se podría usar para medir directamente

algunos puntos de equilibrio del sistema en el intervalo de composiciones en etano considerado aquí. A la fecha, tales mediciones están contempladas.

A través de una modelación mediante modelos de estado consistentes con la termodinámica, también puede aclararse si los comportamientos descritos son razonables o no. Este punto se tocará al final de este capítulo.

En la siguiente sección, se presentan los datos $P - \rho -T$, x obtenidos en fase homogénea para la mezcla estudiada. A la fecha, ningún dato volumétrico de este sistema es disponible en la literatura abierta.

3.4.3. Datos en fase homogénea

Los datos obtenidos en este trabajo están tabulados en el Apéndice A. Estas tablas contienen, por cada isoterma, los datos en fase homogénea medidos de manera estática, algunos datos seleccionados a intervalos regulares dentro del conjunto de experimentos llevados a cabo en régimen de flujo continuo casi estático, así como el dato en la saturación a cada temperatura.

Figura 3.26: $\rho - P$ del sistema etano + 1-propanol. $x_{etano} = 0.8547$. Región de los puntos de saturación.

Las Figuras 3.25 y 3.26, muestran el comportamiento isotérmico e isoplético de la mezcla a $x_{etano} = 0.8547$ y varias temperaturas, desde la presión de saturación hasta 400 bar. Estas figuras son una muestra de las que se encuentran en el Apéndice F donde se encuentran las figuras relativas a las 40 isotermas que se determinaron en este trabajo en fase homogénea, a las demás composiciones.

A composición constante, una mezcla se comporta en fase homogénea como si fuera un fluido puro y por lo mismo se espera un comportamiento global similar; es decir isotermas regularmente espaciadas en función de la temperatura, sin cruzarse entre sí y con una curvatura congruente con la naturaleza del fluido. Al observar las Figuras 3.25 y 3.26 y las del apéndice F; de la Figura F.1 hasta la Figura F.8, se observa, en la secuencia de esas figuras, que la composición del etano en estos fluidos no tiene mucha influencia sobre la compresibilidad. Las curvaturas de las isotermas son globalmente muy parecidas de una composición a otra y corresponden más a un fluido cerca de un punto crítico (alta compresibilidad), que a líquidos relativamente incompresibles, donde esas isotermas serían más "rectas". Lo que si cambia es la densidad, la cual va disminuyendo progresivamente a una presión dada conforme aumenta la composición del etano en la mezcla.

Figura 3.27: Isotermas y región de transición de fases a $x_{etano} = 0.9054$.

Cada isopléta en el Apéndice F, como en la Figuras 3.25, termina en el punto de saturación detectado y se completa por un acercamiento a la región de saturación como se ejemplifica en la Figura 3.26. En esos acercamientos se ve como la topología cambia con respecto a la composición y se aleja de la topología que se presenta en un fluido puro donde las únicas transiciones de fases presentes conciernen a los equilibrios líquido – vapor.

El caso de la Figura 3.26 muestra todavía una topología cerca de la saturación conforme con lo que se espera del comportamiento de un fluido puro. Sin embargo, la Figura 3.27 (misma que la Figura F.7 en el Apéndice F), muestra un comportamiento bastante diferente de lo que puede suceder en un fluido puro.

Figura 3.28: $\rho - P$ del sistema etano + 1-propanol a 314.15 K.

Las diferencias notables entre cada temperatura en los comportamientos isotérmicos se encuentran mas bien en una región comprendida entre los puntos de saturación y una presión promedio de 100 bar. Las gráficas del tipo de la Figura 3.26 o 3.27 son en realidad vistas locales de la Figura 3.21 a composición constante y conteniendo los datos obtenidos en fases homogénea y en régimen continuo.

Cuando la composición de etano se encuentra muy cercana a la crítica, a cualquier temperatura, en las regiones donde se encuentran equilibrios $L_P - G$, (líquido pesado con menor cantidad de etano) o $L_L - G$ (líquido ligero con mayor cantidad de etano), el comportamiento de las isotermas en fase homogénea se caracteriza por sus fuertes curvaturas, donde un pequeño cambio en la presión provoca que la densidad varíe notablemente en magnitud. En las regiones donde las isotermas terminan en equilibrios entre dos fases líquidas, $L_P - L_L$ o $L_L - L_P$; es decir, para $0.83 \le x_{etano} \le$ 0.90 (a las más altas temperaturas para $x_{etano} \approx 0.90$), la topología de las isotermas es mas bien típica de fluidos de tipo líquido con una compresibilidad relativamente baja. Al acercarse al punto crítico LL para $0.85 \le x_{etano} \le 0.875$ las compresibilidades tienden a aumentar sensiblemente pero no se comparan con lo que sucede en el caso de un ELG.

En el Apéndice G se proporciona otra vista al comportamiento del sistema etano + 1-propanol en el plano P – ρ para varias composiciones a T constante (ver Figuras de G.1 hasta G.5). Los comportamientos mostrados aquí son isotérmicos. Un ejemplo de esas representaciones se encuentra en las Figuras 3.28 y 3.29. Es importante notar que las isoplétas en esta representación nunca se cruzan entre sí como es el caso de

otros sistemas como bióxido de carbono + propano o etanol [37,57]. El cruzamiento de las isotermas en el plano P – ρ isotérmico en función de la composición denota en realidad un efecto del co-solvente sobre la compresibilidad relativa de la mezcla conforme varía la presión. A ciertas presiones, las mezclas de composición diferentes llegan a tener densidades muy parecidas pero compresibilidades muy diferentes lo que hace parecer que se cruzan.

Este efecto se produce en el sistema bióxido de carbono + propano alrededor de 100 bar, en una región cercana a la saturación de la mezcla. En el caso del sistemas bióxido de carbono + etanol el cruce ocurre entre 300 bar y más de 500 bar dependiendo de la temperatura (ver [37]. En el caso del sistema estudiado aquí, no se notan tales tendencias por lo menos en el intervalo de estudiado de 400 bar. En este trabajo, el 1-propanol no afecta suficientemente la compresibilidad de la mezcla para que tales efectos se presenten. Sería interesante estudiar la mezcla etano + metanol o etanol para saber si esas especies intervienen más en la compresibilidad y, tal vez, inferir resultados sobre el comportamiento de los alcoholes de diversas longitudes de cadena como cosolventes sobre el aspecto volumétrico de las mezclas.

Figura 3.29: $\rho - P$ del sistema etano + 1-propanol a 314.15 K. Acercamiento a los puntos de saturación.

Para terminar este capítulo, y apoyándose en la herramienta matemática disponible desarrollada en esta tesis que concierne la modelación previa (ver Sección 2.2.2) se retomó la modelación del sistema caracterizado en un intento de buscar una mejor representación mediante la ecuación de Patel – Teja, con base a los nuevos datos de equilibrio ante todo, que la que se pudo obtener a partir de los datos de Kodama et al. o de Suzuki et al.

3.4.4. Modelación

La modelación de los datos experimentales obtenidos en este trabajo, tiene la finalidad de extender la discusión presentada en la sección anterior y sustentar desde otro punto de vista la congruencia del comportamiento experimental del sistema binario de estudio, con respecto a las variables de interés: $P - T - \rho$, x, y. Se intentó encontrar un juego de parámetros que correlacionara los datos obtenidos con el fin de dar un enfoque analítico a la interpretación de los comportamientos en la saturación, y a su vez aprovechar las herramientas de modelación desarrolladas en la sección 2.2.2. Además, se trata de mostrar que tan eficiente o insuficiente puede estar la EdE considerada, Patel – Teja al representar este tipo de datos experimentales, especificamente en la zona del ELL.

Para llevar a cabo la modelación de los datos experimentales, se utilizó la EdE de Patel-Teja con reglas de mezclado de Wong-Sandler involucrando el modelo de solución NRTL y usando el criterio del plano tangente para la estabilidad de las fases. Las bases se comentaron en la Sección 2.2.2.

Se modelaron los datos de saturación con los parámetros expuestos en la Tabla 3.5. Estos parametros se obtuvieron a partir de los datos experimentales de este trabajo con una técnica de correlación y no de ajuste. La razón de esto es que no fue posible encontrar inicializaciones correctas de los parámetros para que los procedimientos de ajuste funcionen adecuadamente.

EdE	k_{ij}	$\tau_{12} \; [J mol^-1]$	$\tau_{21} \; [J mol^- 1]$	α
Patel-Teja	0.340	2100.40	556.670	0.47

Tabla 3.5: Parámetros para el sistema binario etano + 1-propanol.

El comportamiento del sistema con respecto a la presión a cinco temperaturas distintas se observa en las Figuras 3.30 hasta 3.34. En estas figuras se puede observar la evolución del comportamiento del sistema para las dos regiones de interés (ELL y ELG) con respecto a la temperatura. En la región de ELL, conforme aumenta la temperatura, se observa el aumento de la presión y el aumento del intervalo de composición donde existe la inmiscibilidad de los líquidos. La región de ELG que se forma simultáneamente entre un líquido ligero y el gas, es más pronunciada a baja temperatura, y tiende a desaparecer conforme aumenta la temperatura. Hasta un punto en que ambas regiones (ELL y ELG) se unen, la zona ELG desaparece totalmente. A partir de este punto la región ELL también desaparece para convertirse en una de ELG entre un líquido pesado y el gas.

Figura 3.30: Representación de los datos en la saturación del sistema etano + 1-propanol a 313.00 K.

La representación con la EdE de Patel – Teja es deficiente en el aspecto cuantitativo, para los datos en la región del ELL. En composición, se predicen composiciones desfasadas hacia el lado del compuesto pesado del sistema (composiciones en 1-propanol relativamente altas). En presión, el equilibrio de tres fases se predice a presiones relativamente bajas, así como los puntos críticos LL. En las Figuras 3.30 y siguientes, se ven claramente estos defasamientos. Sin embargo, desde el punto de vista cualitativo, los comportamientos de los datos experimentales y de la representación por el modelo son análogos.

Figura 3.31: Representación de los datos en la saturación del sistema etano + 1-propanol a 314.15 K.

Esto es importante porque muestra que la EdE tiene la posibilidad de representar adecuadamente, por lo menos con las magnitudes correctas tales comportamientos. Se sabe que estas ecuaciones de la familia de van der Waals son capaces de contemplar la representación de diagramas de tipo V [2]. Lo que cualitativamente se puede notar es la congruencia que existe, entre las curvas calculadas y los datos, en lo que se refiere a su forma en general en función de la temperatura.

Figura 3.32: Representación de los datos en la saturación del sistema etano+ 1-propanol a 315.00 K.

En densidad, las observaciones son semejantes, además de que el defasamiento en magnitud de la densidad puede atribuirse al defasamiento que presenta la presión. La congruencia entre los comportamientos conforme varía la temperatura es buena, y demuestra que los comportamientos experimentales que se encontraron en función de la temperatura, son congruentes con las teorías involucradas en un modelo de estado.

Figura 3.33: Representación de los datos en la saturación del sistema etano + 1-propanol a 317.00 K.

Si se analiza la temperatura de 320 K, se encuentra un comportamiento interesante entre lo generado en la modelación y lo que se obtuvo experimentalmente: ver Figuras 3.34 en la región del ELG. Como se mencionó, los datos experimentales con respecto a la temperatura dejan ver que esta pequeña zona va desapareciendo conforme la temperatura aumenta hacía el UCEP. Esto es particularmente obvio, a la composición $x_{etano} = 0.9356$, y a las distintas temperaturas. La modelación es capaz de representar este comportamiento. A 320 K se observa claramente un "aplanamiento" (en cuanto a la presión) en las curvas calculadas, lo que lleva a pensar que la zona del ELG está por desaparecer.

Figura 3.34: Representación de los datos en la saturación del sistema etano + 1-propanol a 320.00 K.

Lo interesante es ver que la modelación propuesta, al contrario de las reportadas en [29] y a lo que se obtuvo en la modelación previa (sección 2.2.2), representa mejor las condiciones del UCEP aunque todavía a una temperatura demasiado alta.

La modelación de los datos permite ver que la EdE cúbica considerada puede lograr representar un comportamiento global congruente y razonablemente cualitativo para el sistema de tipo V del etano + 1-propanol. Se estima que esta representación puede mejorarse si se logra encontrar los parámetros adecuados para la EdE. Probablemente se necesitarían más datos en la región del ELG, a mas baja presión, y a varias temperaturas para poder optimizar más adecuadamente el modelo.

Conclusiones

Se demostró que, con un arreglo experimental utilizado en este trabajo, involucrando un solo densímetro de tubo vibrante, puede detectarse la presencia de varios tipos de equilibrios. Se estableció que es posible determinar equilibrios entre fases líquidas (ELL) para sistemas de tipo V usando esta técnica y mediante procedimientos de medición de los periodos de vibración en flujo continuo casi estático. En estos procedimientos es fundamental que los flujos sean muy lentos para preservar la estabilidad del sistema y obtener una información muy precisa en la cercanía de los puntos de saturación. En términos de descompresión, se recomienda no rebasar $0.002 \ bar \ s^{-1}$.

La detección de un equilibrio en el tubo vibrante se lleva a cabo mediante la observación de un quiebre característico en las curvas $P(\tau)$. Como se discutió en la sección de resultados experimentales, la topología del quiebre depende de la temperatura y de la composición de la mezcla. En este trabajo se detectaron diversos tipos de equilibrios, ELG o ELL, y sus variantes: $L_L \to G, L_P \to G, L_L \to L_P$ y $L_P \to L_L$, en el comportamiento de equilibrio de la mezcla etano + 1-propanol.

El quiebre que presenta un ELL en la curva $P(\tau)$ es ligeramente distinto a un quiebre observado en un ELG. En un ELG el quiebre es en general pronunciado, a excepción de la región cercana a un punto critico LG. Las transiciones de un líquido pesado a un líquido ligero tienen una topología muy semejante al ELG.

Cuando se habla de una transición de un líquido ligero a un líquido pesado, o gas a líquido pesado, la topología cambia notablemente. El comportamiento de la fase homogénea es semejante a el de una fase líquida, relativamente poco compresible, pero la transición a la fase no homogénea presenta una topología similar a la que presenta un ELG cerca de un punto crítico; es decir un quiebre con una pendiente positiva relativamente pronunciada en la región no homogénea.

En la cercanía de un punto crítico LL, en transiciones de líquido pesado a líquido ligero, la topología es diferente a las transiciones de un ELG cerca de un punto crítico LG. Los quiebres son muy notables, pero el cambio de pendiente entre la fase homogénea y no homogénea es relativamente pequeño.

Para obtener los datos de saturación a partir de datos experimentales medidos en régimen de flujo continuo, se utilizó una metodología analítica de *rastreo de punto de quiebre*. En todos los casos, dicha metodología funcionó adecuadamente aunque

con cierta dificultad en transiciones en la cercanía de la región crítica LG, donde el quiebre se encuentra en la derivada de las curvas $P(\tau)$ y no en ellas mismas. La técnica de rastreo no es general en el sentido de que se tiene que adaptar, caso a caso, de acuerdo con la topología de los datos experimentales medidos. En ciertos casos, se tiene que buscar un quiebre en la curva $P(\tau)$ y en otros en su derivada. Sin embargo, para cada clase de quiebre, el formalismo de las funciones, la metodología de tratamiento de datos y la técnica de correlación son generales.

A lo largo de la discusión que se ha presentado de las mediciones experimentales del sistema etano + 1-propanol y de la modelación, se estableció la congruencia termodinámica interna de los datos obtenidos, en el sentido de la coherencia del comportamiento global de equilibrio con respecto a la temperatura, presión y densidad. La comparación con los datos existentes en la literatura muestra que diversos factores, como la pureza de los componentes de la mezcla, pueden tener efectos apreciables sobre las condiciones de equilibrio. No se puede concluir mas allá, para determinar cuales son los mejores datos, sin llevar a cabo nuevas mediciones independientes de este trabajo.

Se proporciona una serie de datos experimentales $(P - \rho - T)$ del sistema en fase homogénea, hasta 400 bar, y los datos correspondientes en la saturación en un intervalo de temperatura que cubre la región del equilibrio de tres fases. Se contribuye así a la generación de bases de datos básicos de propiedades termodinámicas para fluidos de potencial interés en aplicaciones, pero más que todo de interés para la termodinámica básica y la comprensión de los comportamientos de los fluidos y sus mezclas.

En cuanto a la modelación, se comprobó que las ecuaciones de estado cúbicas, son efectivamente capaces de representar cualitativamente el comportamiento de tipo V estudiado. En el aspecto cuantitativo se sabe que no son capaces de proporcionar información precisa con los datos disponibles en la literatura. Posteriormente, con los datos obtenidos en este trabajo, tampoco fueron capaces de representar mucho mejor el comportamiento experimental obtenido.

Debido a las diferencias que hay entre las series de datos experimentales disponibles, no es posible concluir que la ecuación de estado utilizada (Patel – Teja) es incapaz de reproducir el comportamiento mejor, aunque no de manera cuantitativa. Sólo se puede concluir que no se logró encontrar una serie de parámetros adecuados. La razón de eso es que: o no existen, o la cantidad de datos disponibles sigue todavía insuficiente para encontrarlos.

Es la primera vez que se obtienen datos de equilibrio líquido – líquido, empleando un solo densímetro de tubo vibrante. Esto da proyecciones interesantes hacía el uso del densímetro de tubo vibrante, en particular en el estudio de otros tipos de transiciones. Debido a la excelente sensibilidad de este instrumento y la versatilidad en su manejo, en especial debido a la forma en qué se calibró en este trabajo, es posible llevar a cabo estudios precisos y locales del estado de los fluidos. Esto es interesante desde el punto de vista de la investigación básica sobre el comportamiento de los fluidos, y de su utilización para el desarrollo de modelos de estado.

Recomendaciones

Una primera recomendación concierne al equipo experimental, con respecto a su adaptación para medir datos de equilibrio de sistemas binarios del tipo III o IV. Esto puede lograrse implementando la posibilidad de invertir la configuración térmica entre las tuberías externas y el tubo vibrante; es decir, poder trabajar con el tubo a una temperatura menor que las tuberías. y tener la opción de cambiar la configuración en cualquier momento.

En el aspecto de la generación de datos experimentales, sería interesante completar la caracterización del sistema etano + 1-propanol en el intervalo de fracción molar de etano entre 0.87 y 0.95, donde se han detectado cambios iteresantes en el comportamiento volumétrico en particular en la cercanía del UCEP. También, es importante seguir explorando las características de tales sistemas, eventualmente con otras técnicas experimentales, para confortar los resultados obtenidos.

Finalmente sería conveniente para el sistema estudiado, probar ecuaciones de estado que puedan tomar en cuenta la auto asociación del alcohol en esta mezcla, por ejemplo los modelos basados en la teoría SAFT como PC-SAFT entre otros, en la esperanza que estos modelos puedan representar los comportamientos descritos de manera más cuantitativa.

Bibliografía

- R. L. Scott & P. van Konynenburg: Static properties of solutions. Van der Waals and related models for hydrocarbon mixtures. *Faraday Discuss. Chem. Soc.*, 49: 87–97 (1970).
- [2] P. H. van Konynenburg & R. K. Scott: Critical lines and phase equilibria in binary van der Waals mixtures. *Philos. Trans. R. Soc. London, Ser. A*, 298: 495–540 (1980).
- [3] J. M. Smith, H. C. Van Ness & M. M. Abbot: Introducción a la termodinámica en la ingeniería química. Mc Graw Hill, 6a Edición, Español (2003).
- [4] J. W. Tester & M. Modell: Thermodynamics and its applications. Prentice Hall, 3a Edición (1996).
- [5] J. M. Prausnitz, R. Lichtenthaler & E. Gomes de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall. (1999).
- [6] J. Gregorowicz & T. W. de Loos: Prediction of liquid liquid vapor equilibria in asymmetric hydrocarbon mixtures. *Ind. Eng. Chem. Res.*, 40: 444–451 (2001).
- [7] M. Jaovi, M. Luszczyk & M. Rogalski: Liquid liquid and liquid solid equilibria of systems containing water and selected chlorophenols. J. Chem. Eng. Data, 44: 1296–1272 (1999).
- [8] G. D. Pappa, E. C. Voutsas & D. P. Tassios: Liquid liquid phase equilibrium in polymer - solvent systems: Correlation and prediction of the polymer molecular weight and the pressure effect. *Ind. Eng. Chem. Res.*, 40: 4654–4663 (2001).
- [9] S. I. Sandler: Chemical and Engineering Thermodynamics. John Wiley & Sons, 3a Edición (1999).
- [10] L. A. Webster & A. J. Kidnay: Vapor liquid equilibria for the methane propane - carbon dioxide systems at 230 and 270 K. J. Chem. Eng. Data, 46: 759–764 (2001).
- [11] G. Brunner: *Gas Extraction*. Steinkopff Darmstadt (1994).

- [12] K. Ishihara, H. Tanaka & M. Kato: Phase equilibrium properties of ethane + methanol system at 298.15 K. Fluid Phase Equilibria, 144: 131–136 (1998).
- [13] M. Kato, H. Tanaka & H. Yoshikawa: High pressure phase equilibrium for ethane + ethanol at 311.15 K. J. Chem. Eng. Data, 44: 116–117 (1999).
- [14] J. D. Seader & E. J. Henley: Separation Process Principles. J. Wiley & Sons, Inc. (1998).
- [15] D. Raal & A. L. Mühlbauer: *Phase Equilibria*. Tylor & Francis (2000).
- [16] T. Suzuki, N. Tsuge & K. Nagahama: Solubilities of ethanol, 1-propanol, 2propanol and 1-butanol in supercritical carbon dioxide at 313 K and 333 K. *Fluid Phase Equilibria*, 67: 213–226 (1991).
- [17] M. Radosz: Vapor liquid equilibrium for 2-propanol and carbon dioxide. J. Chem. Eng. Data, 31: 43–45 (1986).
- [18] H. J. Dai, K. D. Heath, H. D. Cochran & J. M. Simonson: Density measurements of 2-propanol solutions in supercritical CO₂. J. Chem. Eng. Data, 46: 873–874 (2001).
- [19] D. E. Diller, L. J. Van Poolen & F. V. dos Santos: Measurements of the viscosities of compressed fluid and liquid carbon dioxide + ethane mixtures. J. Chem. Eng. Data, 33: 460–464 (1988).
- [20] M. Budich & G. Brunner: Supercritical fluid extraction of ethanol from aqueous solutions. J. of Supercritical Fluids, 25: 45–55 (2003).
- [21] S. Raeissi & C. J. Peters: Double retrograde vaporization in the binary system ethane + linalool. J. of Supercritical Fluids, 23(1): 1 – 9 (2002).
- [22] S. Raeissi & C. J. Peters: Phase behaviour of the binary system ethane+limonene. J. of Supercritical Fluids, 22(2): 93 – 102 (2002).
- [23] S. Raeissi, J. C. Asensi & C. J. Peters: Phase behavior of the binary system ethane+linalool. J. of Supercritical Fluids, 24(2): 111 121 (2002).
- [24] R. S. Mohamed, M. D. A. Saldaña, P. Mazzafera, C. Zetzl & G. Brunner: Extraction of caffeine, theobromine and cocoa butter from brazilian cocoa beans using supercritical CO₂ and ethane. *Ind. Eng. Chem. Res.*, 41(26): 6751–6758 (2002).
- [25] S. Espinosa, S. Díaz & E. A. Brignole: High pressure extraction with alternative supercritical fluids. Thermodynamic modeling and process optimization. *Chem. Eng. Trans.*, 3: 419–424 (2003).

- [26] R. Wandeler, N. Künzle, M. S. Schneider & T. A. Baiker: Continuous platinum - catalyzed enantioselective hydrogenation in supercritical solvents. *Chem. Commun.*, 673 – 674 (2001).
- [27] D. H. Lam, A. Jangkamolkulchai & K. D. Luks.: Liquid liquid vapor phase equilibrium behavior of certain binary carbon dioxide + n-alkanol mixtures. *Fluid Phase Equilibria*, 60: 131–141 (1990).
- [28] E. Brunner: Fluid mixtures at high pressures II. Phase separation and critical phenomena of (ethane + an n-alkanol) and of (ehtene + methanol) and (propane + methanol). J. Chem. Thermodynamics., 17: 871–885 (1985).
- [29] D. Kodama, H. Tanaka & M. Kato: High presure phase equilibrium for ethane + 1-propanol at 314.15 K. J. Chem. Eng. Data, 46: 1280–1282 (2001).
- [30] N. Takashi & H. S. Hiroshi: High pressure liquid liquid equilibria for the system of water, ethanol and 1,1-difluoroethane at 323.2 K. *Fluid Phase Equilibria*, 38: 109–127 (1987).
- [31] J. L. Mendoza de la Cruz: Equilibrio Liquido Vapor de las mezclas binarias CH₂+ etanol y CH₂+ 1-propanol en el intervalo de 322.36 a 391.96 K hasta 14.6 MPa. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE. (1998).
- [32] A. Ortega Rodríguez: Equilibrio Liquido-Vapor de Los Sistemas CO₂ + Etanol y CO₂ + 2-Propanol en el Intervalo de 333.45 K a 398 K. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE (1998).
- [33] A. Zuñiga Moreno & L. A. Galicia Luna: Densities of 1-propanol an 2-propanol via a vibrating tube densimeter from 313 to 363 K and up to 25 MPa. J. Chem. Eng. Data, 47: 155 – 160 (2002).
- [34] G. Silva Oliver, L. A. Galicia Luna & S. I. Sandler: Vapor-liquid equilibria and critical points for the carbon dioxide + 1-pentanol and carbon dioxide + 2pentanol systems at temperatures from 332 to 432 K. *Fluid Phase Equilibria*, 200: 161–172 (2002).
- [35] G. Silva Oliver & L. A. Galicia Luna: Vapor-liquid equilibria near critical point and critical points for CO₂+1-butanol and CO₂+ 2-butanol systems at temperatures from 324 to 432 K. *Fluid Phase Equilibria*, 182: 145–156 (2001).
- [36] L. E. Camacho Camacho: Determinación experimental de densidades y solubilidades de sólidos en dióxido de carbono supercrítico. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE. (2003).
- [37] J. De la Cruz de Dios: Determinación de datos PρT de las mezclas CO₂ etanol y CO₂ - Propano hasta 70 MPa y ente 293 K y 403 K, a composiciones cercanas

a las críticas por la técnica de densimetría de tubo vibrante. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE. (2002).

- [38] C. Durán Valencia, L. A. Galicia Luna & D. Richon: Phase equilibrium dara for the binary system N,N-dimethylformamide + ethylene and + ethane at several temperatures up to 18 MPa. *Fluid Phase Equilibria*, 203: 295–307 (2002).
- [39] L. A. Galicia Luna & A. Ortega Rodríguez: New aparatus for the fast determination of high-pressure vapor-liquid equilibria of mixtures and of accurate critical pressures. J. Chem. Eng. Data, 45: 265–271 (2000).
- [40] D. H. Lam, A. Jangkamolkulchai & K. D. Luks.: Liquid-liquid vapor phase equilibrium behavior of certain binary ethane + n-alkanol mixtures. *Fluid Phase Equilibria*, 59: 263–277 (1990).
- [41] D. Richon: Thermodynamique experimentale: Classification of experimental methods of measuring equilibrium between phases. *Centre Réacteurs et Proces*sus Ecole des Mines A.R.M.I.N.E.S. (1989).
- [42] A. Goodwin, K. N. Marsh & W. A. Wakeham: Measurement of the Thermodynamic Properties of Single Phases. Elsevier. (2003).
- [43] S. Laugier, D. Richon & H. Renon: Simultaneous determination of vapor-liquid equilibria and volumetric propierties of ternary systems with a new experimental apparatus. *Fluid Phase Equilibria*, 54: 19–34 (1990).
- [44] G. Morrison & D. K. Ward: Thermodynamic properties of two alternative refrigerants: 1,1-dichoro-2,2,2-trifluoroethane (R123) and 1,1,1,2-tetrafluoroethane (R134a). Fluid Phase Equilibria, 62: 65–86 (1991).
- [45] M. Barrufet & S. Rahman: Simultaneous determination of phase equilibria compositions and phase molar densities of hydrocarbon + CO_2 systems. J. Chem. Eng. Data, 42(1): 120–123 (1997).
- [46] H. Duarte Garza, J. Holste & K. Marsh: Isochoric PVT and phase equilibrium measurements for carbon dioxide + nitrogen. J. Chem. Eng. Data, 40: 704–711 (1995).
- [47] J. Hsu, N. Nagarajan & L. Robinson: Equilibrium phase compositions, phase densities, and interfacial tensions for CO₂+ hydrocarbon systems. J. Chem. Eng. Data, 30: 485–491 (1995).
- [48] H. Tanaka & M. Kato: Vapor liquid liquid equilibrium properties of carbon dioxide + ethanol mixture at high pressures. *Chem. Eng. Jpn.*, 28: 263–266 (1995).

- [49] A. T. Sousa, P. S. Fialho, C. A. Nieto de Castro, R. Tufeu & B. Le Neindre: Density of CFC142b and of its mixture with HCFC22. *Fluid Phase Equilibria*, 80: 213–225 (1992).
- [50] L. A. Galicia-Luna, D. Richon & H. Renon: New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the Carbon Dioxide-Methanol-Propane system. J. Chem. Eng. Data, 39: 424 – 431 (1994).
- [51] V. G. Niesen: (Vapor + liquid) equilibria and coexisting densities of (Carbon Dioxide + n-butane) at 311 to 395 K. J. Chem. Thermodynamics, 21: 915–923 (1989).
- [52] B. Lagourette, C. Boned, H. Saint-Guirons, P. Xans & H. Zhou: Densimeter calibration method versus temperature and pressure. *Meas. Sci. Technol.*, 3: 699–703 (1992).
- [53] H. Pöhler & E. Kiran: Volumetric properties of carbon dioxide + ethanol at high pressures. J. Chem. Eng. Data, 42: 384–388 (1997).
- [54] V. Hynek & I. Cibulka: A new design of a vibrating-tube densimeter and partial molar volumes of phenol (aq) at temperatures from 298 K to 573 K. J. Chem. Thermodynamics, 29: 1237–1252 (1997).
- [55] C. D. Holcomb & S. L. Outcalt: A theoretically-based calibration and evaluation procedure for vibrating tubes densimeters. *Fluid Phase Equilibria*, 150-151: 815– 827 (1998).
- [56] C. Bouchot & D. Richon: An enhanced method to calibrate vibrating tube densimeters. *Fluid Phase Equilibria*, 191: 189–208 (2001).
- [57] J. De la Cruz de Dios, C. Bouchot & L. A. Galicia Luna: New p- ρ -T measurements up to 70 MPa for the system CO₂ + propane between 298 and 343 K at near critical compositions. *Fluid Phase Equilibria*, 210: 175–197 (2003).
- [58] C. Bouchot & D. Richon: Direct pressure volume temperature and vaporliquid equilibrium measurements with a single equipment using a vibrating tube densimeter up to 393 K and 40 MPa; description of the original apparatus and new data. *Ind. Eng. Chem. Res.*, 37: 3295–3304 (1998).
- [59] R. Crovetto & R. H. Wood: New detection method for determining phase boundaries. *Fluid Phase Equilibria*, 65: 253–261 (1991).
- [60] M. F. Eric & M. C. Reid: Densities and dew points of vapor mixtures of methane + propane and methane + propane + hexane using a dual sinker densimeter. J. Chem. Eng. Data, 46: 1160–1166 (2001).

- [61] W. Wagner & R. Kleinrahm: Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density. *Metrologia*, 41: S24–S39 (2004).
- [62] E. De la Rosa Vidal: Nuevo Modelo de calibración de una celda de densimetría DMA-512P, mediante la caracterización PρT del CO₂, N₂, C₃H₈ y R-134a hasta 70 MPa y cerca del punto crítico. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE. (2002).
- [63] C. Bouchot & D. Richon: Vapor-liquid equilibria and densities of a chlorodifluoromethane (R 22) +1-chloro-1,2,2,2,-tetrafluroethane (R 124)+ 1-chloro-1, 1-difluoroethane (R 142b) mixture (R 409A) at temperatures between 253 K and 333 K and pressures up to 15.5 MPa (8010 data points). International Electronic Journal of Physico-Chemical Data, 4: 89–98 (1998).
- [64] C. Bouchot & D. Richon: Use of an original apparatus. Simultaneous P.V.T. and V.L.E. Measurements on alternative refrigerants. New data between 253 and 333 K to 15 MPa. The Fourth Asian Thermophysical Propierties Conference, 319–322 (1995).
- [65] C. Bouchot & D. Richon: Simultaneous measurements of phase equilibrium and volumetric propierties by vibrating tube densimetry: Apparatus and results involving HFC. Proceedings of the international conference, CFCs the day after, 517–524 (1994).
- [66] M. Meskel-Lesavre, D. Richon & H. Renon: Bubble pressures and saturated liquid molar volumes of trichlorofluoromethane + chlorodifluoromethane mixtures. Representation of refrigerant mixtures vapor + liquid equilibrium data by a modified form of the peng-robinson equation of state. *Fluid Phase Equilibria*, 8(1): 37–53 (1982).
- [67] A. Zuñiga Moreno: Propiedades Volumétricas de Fluidos Puros y Mezclas Por el Método de Tubo Vibrante. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE. (1999).
- [68] D. Peng & D. B. Robinson: A new two-constant equation of state. Ind. Eng. Chem. Fundam., 15: 59–. (1976).
- [69] N. C. Patel & A. S. Teja: A new cubic equation of state for fluids and fluid mixtures. *Chem. Eng. Sci.*, 37: 463–473 (1982).
- [70] H. Renon & J. M. Prausnitz: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J., 141(1): 135–144 (1968).
- [71] R. L. Burden & J. D. Faires: Análisis Numérico. Grupo Editorial Iberoamérica, tercera edición (1985).

- [72] M. L. Michelsen: The isothermal flash problem. I. Stability. Fluid Phase Equilibria, 9: 1–19 (1982).
- [73] L. X. Nghiem, Y.-K. Li & R. A. Heidemann: Application of the tangent plane criterion to saturation pressure and temperature computations. *Fluid Phase Equilibria*, 21: 39–60 (1985).
- [74] K. Suzuki & H. Sue: Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide - methanol, carbon dioxide - ethanol, carbon dioxide - 1 propanol, methane - ethanol, methane - 1 propanol, ethane - ethanol, and ethane - 1 propanol systems. J. Chem. Eng. Data, 35: 63–66 (1990).
- [75] P. G. Hill: A unified fundamental equation for thermodynamic properties of H₂O. J. Phys. Chem. Ref. Data, 19: 1233–1271 (1990).
- [76] S. López Ramírez: Nueva Regla de Mezclado para la Ecuación Cúbica de Patel-Teja. Tesis de maestría, Instituto Politécnico Nacional, ESIQIE. (1996).

Apéndice A

Tablas de Datos Experimentales

Los datos presentados en este apéndice, son los datos procesados según los procedimientos descritos en el texto. Las tablas son organizadas por orden de composiciones del etano en fracción molar en la mezcla. Para cada composición se encuentran las isotermas en orden creciente relativas. Cada subtabla, para cada una de las 40 isotermas descritas se conforma de 3 partes.

Una primera parte contiene los datos de temperatura local, presión local y densidad local en puntos estables de estado. Cada punto estable, según explicado en el texto, es el resultado del análisis estadístico de cientos de datos registrados en estados estables. La temperatura local en estos puntos es la indicada ± 0.002 K en promedio de dispersión en el conjunto de datos básicos correspondientes debido a las fluctuaciones de la regulación de temperatura. Es la razón porque se mantuvieron 3 decimales en T. La presión local es la indicada ± 0.005 bar abajo de 100 bar y ± 0.04 arriba de 100 bar en promedio de dispersión en el mismo conjunto. La densidad local es la indicada $\pm 0.014 \ kg m^{-3}$ [57] en promedio de dispersión en el mismo conjunto. Se mantuvieron 3 decimales en las densidades para facilitar eventuales interpolaciones.

La segunda parte de las tablas, titulada F.C., contiene un subconjunto de los datos medidos en régimen de flujo casi estático continuo hacia la saturación. Estos datos se consideran con las mismas características que los anteriores, y han sido seleccionados dentro de los archivos de adquisición para cubrir el intervalo de presión de estas mediciones a intervalos regulares de presión cuando la compresibilidad no es muy fuerte y a intervalos regulares de densidad cuando las isotermas se encuentran cerca de condiciones críticas como sucede a $x_{etano} = 0.9356$.

La tercera parte de las tablas, titulada P.S., contiene el dato obtenido a la saturación mediante los procedimientos explicados en el texto. La incertidumbre en densidad en estos puntos es del mismo orden que en el caso de los datos en fase homogénea a parte a la composición $x_{etano} = 0.9356$ a la cual los problemas de detección son tales que es difícil asegurar una certeza inferior a $\pm 3 \ kg \ m^{-3}$.

Se vuelve aquí a mencionar que las fluctuaciones mencionadas no son las incertidumbres experimentales sino una estimación de la precisión experimental incluyendo en cierta medida la reproducibilidad. Las incertidumbres experimentales en los datos tabulados son de ± 0.02 K para la temperatura, ± 0.02 bar abajo de 140 bar y ± 0.1 de 140 bar hasta 400 bar. La incertidumbre estimada en las densidades se obtiene de la propagación de esas incertidumbres, de las incertidumbre en las densidades del agua utilizada como fluido de referencia en la calibración del densímetro y de las fluctuaciones de los periodos de vibración, tanto a vacío como a las condiciones de las mediciones, en la expresión que convierte los datos de periodos en densidades. Los valores que se obtienen dependen de las magnitudes de todas las variables involucradas y entonces varían tanto con la presión que con la temperatura. En promedio, sin embargo, esta incertidumbre es usualmente acotada entre ± 0.15 kg m⁻³ y ± 0.25 kg m⁻³.

Т	Р	ho	1 1	Т	Р	ρ]	Т	Р	ρ
Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	\mathbf{bar}	${ m kg}~{ m m}^{-3}$
x_E	$t_{ano} = 0.7$	187		x_E	$_{tano} = 0.7$	187		x_E	$_{tano} = 0.7$	187
312.999	400.68	573.567		314.149	403.31	571.169		315.000	401.05	568.795
312.999	379.62	570.755		314.149	379.64	567.986		314.999	379.82	565.920
313.002	359.75	567.985		314.151	360.04	565.227		315.000	359.93	563.110
313.009	340.85	565.239		314.154	339.80	562.248		315.002	340.05	560.182
313.001	319.99	562.104		314.149	319.97	559.224		315.003	320.18	557.140
313.000	300.02	558.961		314.151	299.34	555.918		315.000	300.13	553.937
313.005	279.55	555.576		314.147	280.16	552.699		314.997	260.28	547.065
313.003	259.86	552.155		314.148	259.78	549.094		314.999	239.57	543.180
313.006	239.70	548.446		314.149	240.10	545.418		315.002	219.91	539.253
313.006	219.98	544.597		314.151	219.93	541.406		315.002	200.06	535.028
313.011	199.57	540.340		314.155	199.68	537.102		314.997	180.03	530.422
313.001	179.69	535.897		314.151	179.91	532.592		314.999	159.76	525.346
313.003	159.86	531.079		314.148	159.78	527.585		315.006	138.59	519.609
313.004	139.52	525.792		314.153	138.85	521.898		315.002	129.89	517.001
313.003	130.23	523.108		314.149	129.90	519.229		315.004	119.99	513.834
313.004	120.23	520.044		314.154	119.82	516.028		315.003	110.06	510.436
313.001	110.12	516.736		314.150	109.98	512.690		314.997	99.93	506.687
312.999	100.06	513.198		314.152	100.07	509.059		314.998	90.12	502.688
313.002	90.09	509.362	1	314.148	90.07	505.054	1	315.006	79.99	498.052
313.002	80.17	505.129		314.153	79.95	500.515		314.997	74.99	495.530
313.003	70.18	500.257		314.150	70.00	495.361		315.001	70.15	492.843
312.999	65.00	497.389		314.154	65.04	492.389		315.003	65.00	489.646
312.998	60.11	494.312		314.149	60.00	488.879		315.001	60.00	485.935
313.004	55.15	490.455		314.152	57.11	486.371			F.C.	
	F.C.		1		F.C.		1	315.005	59.91	485.889
312.999	55.11	490.461		314.155	57.10	486.361		315.006	59.81	485.806
312.999	55.06	490.409		314.154	57.05	486.331		315.002	59.71	485.724
312.999	55.01	490.379		314.153	57.00	486.278		315.005	59.61	485.639
312.999	54.96	490.330		314.153	56.95	486.231		315.004	59.51	485.541
312.999	54.91	490.289		314.153	56.90	486.182		315.008	59.42	485.467
313.000	54.86	490.226		314.154	56.85	486.132		315.008	59.31	485.370
313.000	54.81	490.193		314.153	56.80	486.081		315.004	59.21	485.300
312.998	54.76	490.150		314.153	56.75	486.052		315.001	59.11	485.215
312.999	54.71	490.098	1	314.154	56.70	485.999]]	315.000	59.01	485.126
	P.S.		1	314.155	56.65	485.938		314.997	58.91	485.041
313.001	54.65	490.031	1		P.S.		1	314.996	58.81	484.960
-				314.157	56.61	485.906	1	314.997	58.71	484.855
							-	315.001	58.61	484.757
								315.000	58.51	484.667

Tabla A.1: Datos P, $\rho,$ T del sistema etano+1-propanol

58.41

58.31

58.21

58.11

58.00 57.91 P.S. 57.87

 $315.000 \\ 315.000$

315.002

315.001

315.000315.003

315.006

484.572

484.476

 $\frac{484.367}{484.276}$

 $\frac{484.162}{484.048}$

484.001

							_			
Т	Р	ρ		Т	Р	ρ		Т	Р	ρ
K	\mathbf{bar}	${ m kg}~{ m m}^{-3}$		Κ	\mathbf{bar}	${ m kg}~{ m m}^{-3}$		Κ	\mathbf{bar}	$\rm kg \ m^{-}$
x_E	$t_{tano} = 0.7$	187		x_E	$t_{tano} = 0.7$	187		x_E	$t_{tano} = 0.7$	606
317.000	401.30	566.869	32	0.003	407.01	564.847		311.995	395.60	552.90
317.005	380.45	564.031	31	9.999	380.70	561.194		311.996	380.52	550.80
316.999	360.29	561.168	32	0.005	360.17	558.190		312.005	360.51	547.91
317.003	340.52	558.234	32	0.000	340.34	555.183		312.002	340.24	544.88
317.003	320.43	555.108	32	0.006	320.39	552.000		312.000	320.04	541.72
317.000	300.64	551.904	31	9.999	300.31	548.665		312.000	300.04	538.44
317.005	280.60	548.477	31	9.996	280.15	545.133		312.005	280.30	534.98
317.005	260.15	544.804	32	0.005	260.09	541.401	1	312.004	260.21	531.33
316.998	239.82	540.934	31	9.998	240.02	537.465		312.007	240.13	527.46
316.998	219.94	536.891	32	0.004	219.83	533.222		312.008	219.87	523.29
317.005	200.37	532.627	32	0.000	199.81	528.715		312.008	199.94	518.90
316.999	180.33	527.916	32	0.000	179.69	523.795		312.007	179.97	514.15
317.007	159.90	522.673	32	0.004	159.64	518.423		312.007	159.84	508.91
317.000	139.27	516.885	31	9.999	139.11	512.455	1	312.007	138.79	502.92
317.001	130.17	514.062	32	0.003	129.96	509.461	1	312.009	129.96	500.13
317.004	120.08	510.722	32	0.005	120.20	506.055	1	312.010	120.13	496.84
317.001	110.26	507.231	32	0.000	109.98	502.221	1	312.005	110.08	493.23
317.001	100.06	503.287	31	9.998	100.02	498.101		312.004	99.99	489.29
316.999	90.17	499.060	32	0.003	90.00	493.481	-	312.006	89.97	484.95
316.996	80.10	494.191	31	9.999	80.09	488.218		312.007	80.12	480.18
316.997	75.01	491.413	32	0.000	74.98	485.078		312.005	70.05	474.53
316.995	70.03	488.418	32	0.004	70.05	481.600		312.002	65.03	471.24
317.000	65.01	484.900	32	0.001	66.99	479.052		312.004	60.01	467.43
317.000	62.03	482.382			F.C.			312.003	55.11	462.67
	F.C:		31	9.996	66.91	479.024			F.C.	
317.005	62.09	482.443	31	9.995	66.82	478.970		312.000	55.05	462.61
317.003	61.98	482.345	31	9.994	66.72	478.876		312.001	54.90	462.43
317.000	61.89	482.296	31	9.997	66.62	478.784		312.005	54.80	462.30
316.999	61.78	482.193	32	0.001	66.52	478.671		312.006	54.70	462.17
316.999	61.68	482.098	32	0.001	66.35	478.528		312.004	54.60	462.04
316.996	61.58	482.007	32	0.002	66.29	478.451		312.002	54.49	461.91
316.998	61.48	481.913	32	0.004	66.21	478.388	1	312.003	54.40	461.78
316.998	61.38	481.804	32	0.000	66.11	478.292	1	312.004	54.29	461.63
317.003	61.28	481.714	32	0.000	66.02	478.214	1	312.004	54.20	461.49
317.002	61.19	481.614	32	0.000	65.91	478.101	1	312.003	54.10	461.35
317.003	61.03	481.443	31	9.999	65.81	478.024	1	312.003	54.05	461.28
317.000	60.93	481.331	32	0.000	65.70	477.900	1	312.005	53.95	461.10
	P.S.		32	0.002	65.61	477.819	1	312.008	53.85	460.94
317.000	60.89	481.305	32	0.003	65.51	477.705	1	312.008	53.80	460.86
·					P.S.	-	1	312.007	53.75	460.77
			32	0.004	65.39	477.566	1	312.006	53.69	460.67
					-		-	312.005	53.65	460.59
								312.005	53.59	460.50
								312.005	53.55	460.40
									P.S.	

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano + 1-propanol - continua -.

-

312.004

53.524

460.351

т	D	-	Т	D	-	٦	т	D	2
K I	г MPa	$p_{\rm kcm^{-3}}$	I K	г bar	$p_{\rm kg m^{-3}}$		I K	г MPa	$p_{\rm kcm^{-3}}$
	-0.7	767	IX .		7606	_			767
313 010	402.99	546 930	313 50	404.86	553.096		$\frac{x_E}{314,162}$	$401\ 17$	545 032
313.007	380.53	543 762	313.50	8 380.66	549 741	-	314 168	380.58	542 103
313.004	360.81	540.869	313.50	$\frac{360.59}{4}$	546.837	-	314.167	360.60	539,150
313.008	340.74	537.794	313.50	3 340.38	543.782	-	314.176	340.56	536.051
313.004	320.68	534.587	313.50	6 320.28	540.600		314.173	320.26	532.774
313.008	300.66	531.218	313.50	5 300.40	537.306	-	314.173	300.25	529.377
313.005	280.00	527.570	313.50	6 280.13	533.767	-	314.173	280.28	525.807
313.009	240.06	519.861	313.50	6 260.11	530.079	1	314.173	260.17	522.002
313.009	219.96	515.598	313.50	6 240.02	526.150	-	314.170	240.16	517.980
313.012	199.97	511.038	313.50	4 220.07	521.994		314.175	220.03	513.647
313.012	179.96	506.090	313.50	3 199.96	517.488	-	314.165	199.87	508.988
313.004	159.92	500.613	313.50	4 179.90	512.620		314.158	179.98	503.997
313.009	140.04	494.571	313.50	0 159.81	507.298		314.160	159.94	498.469
313.007	119.16	487.439	313.50	5 138.88	501.182		314.178	138.13	491.988
312.998	100.06	479.833	313.50	8 130.08	498.338		314.180	130.17	489.300
313.008	90.07	475.209	313.50	6 120.16	494.928		314.177	120.14	485.691
313.012	80.12	469.977	313.50	7 110.00	491.166		314.179	110.13	481.783
313.012	75.07	467.007	313.50	5 100.08	487.160	1	314.177	100.15	477.528
313.011	70.07	463.768	313.50	4 90.02	482.664		314.178	90.02	472.716
313.009	65.12	460.158	313.50	3 80.02	477.611		314.180	80.12	467.359
313.010	59.04	455.283	313.50	2 69.90	471.590		314.182	75.06	464.277
	F.C.		313.50	5 65.11	468.201		314.182	70.06	460.888
313.006	57.99	454.282	313.50	4 60.01	463.929		314.184	65.10	457.041
313.007	57.69	453.946	313.50	4 57.99	461.856		314.179	60.12	452.364
313.007	57.39	453.599		F.C.				F.C.	
313.006	57.09	453.248	313.50	4 57.43	461.223		314.182	59.86	452.178
313.008	56.79	452.889	313.50	6 57.08	460.782		314.183	59.66	451.953
313.009	56.49	452.511	313.50	3 56.88	460.537	_	314.180	59.46	451.737
313.007	56.19	452.122	313.50	4 56.68	460.269	_	314.179	59.26	451.504
313.011	55.89	451.711	313.50	5 56.48	459.992	_	314.181	59.05	451.234
313.013	55.59	451.258	313.50	2 56.28	459.702		314.184	58.86	451.021
313.011	55.29	450.767	313.50	7 56.08	459.361	_	314.179	58.66	450.781
313.010	55.03	450.297	313.50	2 55.93	459.120	4	314.182	58.46	450.518
313.012	54.84	449.919	313.50	2 55.88	459.030	_	314.182	58.26	450.256
313.010	54.74	449.685	313.50	2 55.83	458.933	4	314.181	58.06	449.988
010.010	P.S.	140 500	313.50	<u>3 55.77</u>	458.831	4	314.183	57.86	449.711
313.010	54.67	449.509	010 50	P.S.		4	314.182	57.66	449.421
			313.50	4 55.73	458.749		314.183	57.46	449.111
							314.181	57.26	448.799
							314.183	57.06	448.450

Tabla A.1: Datos P, $\rho,$ T del sistema et ano + 1-propanol - continua -.

314.186

314.184 314.184 314.184 56.86

56.66 56.61 P.S. 56.59 448.076

447.634 447.502

447.441

Т	Р	ρ	Т	Р	ρ	ן ר	Т	Р	ρ
Κ	bar	${\rm kg~m^{-3}}$	Κ	MPa	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$
x_E	$t_{ano} = 0.7$	606	x_E	$_{tano} = 0.7$	767	1	x_E	$_{tano} = 0.7$	606
314.555	410.25	552.230	315.010	409.75	544.982		317.007	400.94	548.715
314.556	381.18	548.191	315.005	380.70	540.873		317.002	380.90	545.844
314.559	360.52	545.171	315.006	360.56	537.883		317.003	360.50	542.814
314.558	340.54	542.128	315.007	340.39	534.745		317.000	340.30	539.673
314.557	320.34	538.907	315.006	320.36	531.485		317.002	320.21	536.401
314.558	300.42	535.580	315.006	300.18	528.035		317.003	300.27	532.996
314.559	280.21	532.025	315.005	280.10	524.416		317.002	280.26	529.401
314.555	260.14	528.293	315.008	260.11	520.601		317.000	259.95	525.537
314.556	240.14	524.345	315.004	239.95	516.524		317.005	240.19	521.566
314.557	220.17	520.135	315.000	219.82	512.157		317.003	219.97	517.201
314.555	199.99	515.571	315.004	199.99	507.520		317.003	199.96	512.550
314.558	179.90	510.630	315.006	179.84	502.402] [317.004	179.92	507.492
314.555	158.97	504.993	315.005	159.68	496.775		317.003	160.12	502.006
314.554	138.71	498.983	$3\overline{15.001}$	140.04	490.726] [317.006	139.31	495.695
314.554	130.06	496.140	315.008	129.97	487.269] [317.006	130.05	492.553
314.555	120.02	492.626	315.001	119.99	483.630		317.001	120.10	488.941
314.552	109.91	488.807	315.003	109.99	479.637		317.004	110.04	484.967
314.553	100.14	484.767	315.003	100.06	475.304] [317.004	100.10	480.666
314.552	90.07	480.160	315.002	90.06	470.442		317.007	90.13	475.845
314.553	80.00	474.909	315.001	80.06	464.863	ר ר	317.004	80.05	470.262
314.551	74.99	471.971	315.004	75.01	461.673] [317.003	74.99	467.042
314.555	70.02	468.733	315.001	70.01	458.164	1 [F.C.	
314.554	65.03	465.029	315.002	60.07	448.867		317.005	73.98	466.363
314.554	60.03	460.464		F.C.] [317.008	72.03	464.988
	F.C.		315.000	59.79	448.598] [317.005	71.02	464.259
314.560	59.81	460.248	315.000	59.58	448.313] [317.005	70.03	463.519
314.559	59.48	459.969	315.001	59.35	448.007] [317.003	69.02	462.748
314.558	59.28	459.745	315.001	59.16	447.730] [317.006	68.02	461.930
314.559	59.09	459.527	315.000	58.97	447.466] [317.006	67.04	461.147
314.556	58.87	459.187	314.999	58.73	447.100		317.001	66.02	460.234
314.558	58.67	458.946	315.007	58.54	446.802		317.002	65.01	459.330
314.556	58.47	458.677	314.997	58.41	446.532		317.001	64.03	458.406
314.558	58.27	458.400	314.996	58.36	446.432		316.999	63.48	457.854
314.559	58.11	458.183	314.997	58.30	446.324		317.002	63.02	457.363
314.560	57.97	457.968	314.998	58.25	446.195	ļ[317.000	62.93	457.263
314.561	57.87	457.811	315.000	58.20	446.086] [317.001	62.77	457.102
$314.\overline{558}$	57.66	457.500	315.000	58.15	445.965] [317.003	62.63	456.938
314.556	57.52	457.268	315.000	58.10	445.839] [317.006	62.48	456.764
314.555	57.42	457.095	315.000	58.05	445.721] [317.004	62.23	456.474
314.555	57.32	456.902	315.001	58.01	445.576	ļ	317.002	62.03	456.240
	P.S.		315.002	57.95	445.454] [317.003	61.82	455.981
314.555	57.25	456.767		P.S.			317.002	61.67	455.797
			315.004	57.93	445.311	J	317.000	61.52	455.603
						[317.001	61.37	455.385
						[317.002	61.17	455.081
						ſ	317.002	60.97	454.769

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano + 1-propanol - continua -.

454.769 454.420

454.113

60.9760.77 P.S.

60.60

317.001 317.002

Т	Р	0	Г	Т	Р	0	1 Г	Т	Р	0
ĸ	bar	$kg m^{-3}$		ĸ	bar	$kg m^{-3}$		ĸ	bar	$kg m^{-3}$
<i>T T T T</i>	= 0.7	7606	-	11 7 E	= 0.7	909	1		$\frac{1}{4} = 0.8$	303
320.005	401.17	546.050		313.000	395.51	533.379		314.149	411.72	524.119
320.007	380.33	543.019	-	313.002	380.43	531.175		314.151	380.42	519.458
320.006	360.29	539.977	-	313.001	360.23	528.127		314.154	360.27	516.313
320.002	340.18	536.796		313.000	340.21	524.955	1	314.152	340.35	513.038
320.002	320.13	533.464	-	313.004	319.97	521.595	-	314.152	320.27	509.576
320.002	300.11	529.966	-	313.003	300.14	518.162	-	314.152	300.17	505.927
320.003	279.98	526.251	F	313.002	279.90	514.443	1	314.151	280.01	502.063
320.002	259.89	522.322		313.005	260.29	510.626	1	314.152	260.08	498.011
320.003	239.79	518.127		313.005	240.07	506.440	1 1	314.151	239.96	493.635
320.002	220.02	513.713		313.005	220.01	501.991		314.153	219.93	488.946
320.002	199.80	508.839		313.005	199.96	497.189	1	314.152	199.90	483.870
320.000	179.84	503.592	-	313.005	179.41	491.835	1 1	314.151	179.76	478.288
320.003	159.77	497.760		313.003	159.62	486.148		314.149	159.77	472.150
320.007	139.17	491.115		313.004	138.02	479.252	1	314.154	139.42	465.227
320.002	129.98	487.816		313.002	130.01	476.419		314.150	130.02	461.633
320.003	120.11	483.993	-	313.003	119.94	472.601	1	314.151	119.90	457.453
320.003	109.92	479.687		313.002	110.03	468.529	1	314.153	109.94	452.944
320.003	100.09	475.090		313.002	100.04	464.019	1	314.151	100.08	448.012
320.003	90.07	469.778		313.003	90.08	459.007	1 1	314.155	90.02	442.307
320.002	80.05	463.546		313.003	80.03	453.211	1	314.153	80.03	435.701
320.002	75.02	459.869		313.003	69.97	446.285	1 [314.155	75.07	431.923
320.000	70.02	455.546		313.003	65.01	442.194		314.153	70.04	427.603
	F.C.		Γ	313.002	60.00	437.202	1 [314.153	65.10	422.597
320.001	69.57	455.194			F.C.		1	314.152	60.08	416.040
320.000	69.08	454.677		313.004	59.68	436.880	1		F.C.	
320.000	68.59	454.161		313.004	59.27	436.418	1	314.151	59.77	415.769
319.999	68.24	453.790		313.005	58.87	435.934		314.151	59.58	415.463
319.999	67.95	453.462		313.004	58.47	435.447		314.151	59.34	415.067
319.999	67.69	453.169		313.004	58.07	434.934		314.151	59.03	414.517
319.999	67.39	452.817		313.006	57.67	434.402		314.152	58.78	414.052
320.000	67.04	452.401		313.004	57.27	433.867		314.150	58.48	413.467
319.999	66.79	452.080		313.003	56.87	433.287	Į	314.152	58.17	412.831
319.997	66.49	451.701		$313.\overline{004}$	56.46	432.682	[314.152	57.87	412.143
319.998	66.14	451.209		313.005	56.07	432.013	[314.151	57.68	411.660
319.999	65.89	450.837		313.005	55.77	431.488		314.152	57.48	411.113
319.998	65.59	450.363	L	313.005	55.47	430.916		314.154	57.38	410.801
319.997	65.29	449.849		313.004	55.27	430.499		314.155	57.27	410.450
319.996	65.19	449.628		313.003	55.07	430.039		314.154	57.17	410.040
319.997	65.14	449.538	L	313.005	54.87	429.505			P.S.	
	P.S.			313.004	54.77	429.191	1 1	314.155	57.16	410.032
319.998	65.073	449.393		313.004	54.72	429.017				
					P.S.					
				313.004	54.64	428.672				

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano+ 1-propanol - continua -.

						-			
Т	Р	ρ	Т	Р	ρ		Т	Р	ρ
K	\mathbf{bar}	${ m kg}~{ m m}^{-3}$	K	bar	${ m kg}~{ m m}^{-3}$		K	\mathbf{bar}	$kg m^{-3}$
x_E	$t_{ano} = 0.8$	303	x_{j}	Etano = 0.8	3303		x_E	tano = 0.8	303
315.003	401.39	521.667	317.011	403.14	519.302		320.009	408.75	517.416
315.004	380.51	518.514	317.012	380.42	515.826		320.007	380.56	513.027
315.005	360.23	515.300	317.008	360.27	512.605		320.005	360.49	509.736
315.005	338.73	511.726	317.002	340.14	509.227		320.007	340.12	506.226
315.005	320.63	508.572	317.004	320.34	505.730		320.007	320.05	502.592
315.002	300.21	504.833	317.004	300.35	502.006		320.001	300.32	498.827
315.002	280.23	500.958	317.004	280.09	498.018		320.007	280.14	494.731
314.998	260.32	496.861	317.003	259.95	493.798		320.005	259.75	490.333
315.000	240.22	492.435	317.005	240.02	489.333		320.009	239.94	485.739
315.005	219.95	487.639	317.003	219.82	484.458		320.005	220.02	480.771
315.003	199.68	482.442	317.005	199.61	479.142		320.006	200.12	475.350
315.001	179.76	476.849	317.004	179.74	473.420		320.007	179.83	469.262
315.001	159.81	470.626	317.003	160.02	467.115		320.007	159.72	462.509
315.001	139.00	463.391	317.012	138.71	459.429		320.006	138.25	454.322
315.001	130.07	459.891	317.008	129.93	455.889		320.007	129.95	450.729
315.002	119.88	455.584	317.007	119.82	451.441		320.007	119.79	445.966
315.001	109.78	450.902	317.007	110.05	446.737		320.003	109.99	440.875
315.001	99.97	445.839	317.006	99.95	441.284		320.006	99.95	434.988
315.002	89.86	439.924	317.008	89.88	435.048		320.006	89.90	428.146
314.999	79.96	433.151	317.004	79.99	427.777		320.002	80.04	420.306
314.999	70.64	425.295	317.004	70.07	418.458		320.007	75.05	415.496
315.000	64.98	419.281	316.998	64.70	412.183		320.016	70.02	409.41
315.005	60.08	412.673		F.C.				F.C.	
	F.C.		316.998	64.31	411.614		320.008	69.55	408.80
315.006	59.81	412.379	316.997	63.96	411.032		320.007	69.14	408.200
315.003	59.59	411.962	316.998	63.66	410.507		320.007	68.73	407.561
315.001	59.39	411.554	316.998	63.36	409.975		320.006	68.33	406.897
315.006	59.19	411.071	316.996	63.06	409.406		320.006	67.85	406.028
315.005	59.00	410.582	317.000	62.76	408.789		320.007	67.46	405.280
315.004	58.79	410.000	316.997	62.56	408.362		320.006	67.04	404.423
315.004	58.74	409.846	316.999	62.36	407.899	1	320.006	66.75	403.786
315.004	58.69	409.689	317.001	62.16	407.421	1	320.008	66.53	403.236
315.004	58.65	409.529	316.998	61.96	406.911	1	320.008	66.35	402.775
315.004	58.59	409.326	316.999	61.81	406.468	1	320.008	66.20	402.371
	P.S.		316.999	61.76	406.315	1	320.008	66.15	402.214
315.003	58.54	408.971	317.001	61.71	406.142	1	320.008	66.04	401.853
			317.002	61.66	405.950	1	320.008	65.95	401.544
				P.S.		1	320.007	65.89	401.308
			317.002	61.61	405.759	1		P.S.	
						-	320.007	65.88	401.299

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano+ 1-propanol - continua -.

Т	Р	ρ]	Т	Р	ρ]	Т	Р	ρ
Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	\mathbf{bar}	${ m kg}~{ m m}^{-3}$
x_E	$t_{ano} = 0.8$	547	1	x_E	$_{tano} = 0.8$	547	1	x_E	tano = 0.8	547
313.505	401.77	513.349		314.156	408.92	513.689		314.990	399.78	510.514
313.507	380.39	510.074		314.155	380.97	509.420		314.992	380.68	507.545
313.504	360.84	506.949		314.155	359.62	505.977		314.991	360.56	504.292
313.502	340.64	503.567		314.156	340.12	502.678		314.990	340.24	500.852
313.502	320.12	499.940		314.158	320.19	499.134		314.988	320.14	497.300
313.505	300.19	496.228		314.157	299.57	495.277		314.988	299.77	493.464
313.506	280.05	492.265]	314.153	280.30	491.456]	314.984	279.91	489.518
313.509	259.90	488.058		314.151	258.53	486.853		314.984	260.02	485.301
313.507	239.43	483.472		314.152	240.00	482.654		314.993	240.15	480.786
313.505	218.89	478.518		314.152	220.05	477.808		314.993	219.97	475.844
313.506	200.20	473.617		314.153	199.86	472.475		314.986	199.91	470.518
313.504	179.97	467.824		314.152	180.10	466.751		314.997	179.64	464.556
313.503	159.63	461.330		314.154	159.53	460.107		315.003	159.95	458.117
313.505	138.22	453.605		314.150	139.39	452.819		314.998	138.88	450.342
313.503	129.85	450.121		314.152	129.93	448.946		314.999	129.95	446.632
313.503	120.12	445.883		314.150	119.70	444.411		315.005	119.88	442.080
313.504	109.90	440.983		314.154	109.85	439.597		315.003	109.98	437.167
313.506	100.17	435.783		314.153	99.73	434.089		315.006	99.93	431.567
313.504	90.21	429.743		314.156	89.93	427.979		315.001	90.00	425.245
313.502	80.19	422.624		314.152	79.62	420.398		315.006	79.92	417.587
313.506	75.06	418.369		314.155	75.00	416.416		315.008	75.01	413.220
313.506	70.04	413.629		314.153	70.00	411.564		315.000	70.01	408.113
313.508	65.04	407.997		314.154	65.01	405.760		315.003	65.04	401.864
313.508	60.05	400.855			F.C.				F.C.	
	F.C.	100.000		314.152	64.64	405.321		315.001	64.73	401.491
313.508	59.75	400.363		314.152	64.24	404.788		315.007	64.48	401.111
313.509	59.49	399.903		314.152	63.84	404.242		315.000	64.17	400.687
313.510	59.35	399.598		314.153	63.44	403.647		315.004	63.87	400.206
313.509	59.15	399.022		314.152	63.09	403.118		315.005	63.57	399.740
313.509	58.99	398.875		314.151	02.04	402.421		315.007	62.97	398.750
313.308	00.70 E0 EE	398.300		314.134	61.80	401.801		313.002	62.08	396.209
313.308	00.00 E0.0E	397.900		314.152 214.159	61.40	401.218		314.997	62.07	397.703
313.311	58.00	397.398	ł	314.132 214.152	61.04	400.373	ł	215.003	61.77	206 611
$\frac{313.312}{213.511}$	58.25	397.209		314.155	60.75	399.037		315.004	61.77	306.011
313 510	58.20	397.134		314.154	60.73	308 604		315.002	61.18	395.012
515.510	D0.20	537.011		314.155	60.19	398.206		315.005	60.97	394 915
313 500	58.14	396 864		314.155	50.80	397.604		315.005	60.82	394.515
010.003	00.14	000.004	J	314 153	59.59	396 981		315.008	60.77	394 412
				314 153	50.30	396 520		315.006	60.72	394 273
				314 154	59.29	396 295		010.000	P.S.	004.210
				314 152	59.23	396 147		315 005	60.71	394 253
				0111102	P.S	000111	1	510.000	00.11	0011200
				314.152	59.23	396.147	ł			

Tabla A.1: Datos P, $\rho,$ T del sistema etano + 1-propanol - continua -.

Т	P	ρ		Т	P	ρ_{-3}		Т	P	ρ_{-3}
K	bar	kg m ⁻³		K	bar	kg m ⁻³		K	bar	$kg m^{-3}$
x_{E}	$t_{ano} = 0.8$	547		x_E	$t_{ano} = 0.8$	547		x_E	$t_{ano} = 0.8$	741
317.007	404.73	509.031	Ì	320.000	400.89	505.400	-	313.000	406.05	506.301
317.009	380.90	505.305		320.007	380.23	502.067		312.999	380.62	502.348
317.006	360.41	501.968		320.010	359.84	498.636		312.996	360.36	499.036
317.005	340.73	498.585		320.006	340.34	495.193		312.999	340.28	495.599
317.005	320.24	494.884		320.002	320.24	491.445		313.002	319.76	491.892
317.007	299.93	490.989		320.003	300.03	487.464		313.000	299.82	488.102
317.008	279.77	486.889		320.005	280.05	483.275		312.999	280.36	484.183
317.007	260.19	482.657		320.006	260.13	478.816		313.001	260.09	479.835
317.009	239.03	477.746		320.009	240.03	473.980		313.001	239.68	475.144
316.997	219.90	472.967		320.006	219.75	468.697		312.999	219.69	470.190
317.003	199.85	467.495		320.004	199.85	463.043		313.004	199.83	464.837
317.008	179.75	461.422		319.999	179.55	456.548		312.999	179.61	458.842
317.008	159.45	454.580		320.001	159.91	449.603		312.996	159.48	452.186
317.002	139.56	447.006		320.005	139.05	441.252		312.999	138.61	444.455
317.005	129.79	442.789		320.005	129.98	437.089		312.997	130.21	440.937
317.003	119.74	438.060		320.008	119.86	432.003		312.999	120.21	436.402
317.007	110.08	433.025		320.004	110.08	426.522		312.996	110.07	431.340
317.007	99.93	427.070		320.007	100.06	420.118		313.001	100.02	425.709
317.010	89.62	420.027		320.008	90.02	412.563		313.001	90.10	419.377
317.007	79.59	411.739	İ	320.006	80.05	403.469		313.000	80.24	411.958
317.012	75.08	407.449		320.010	74.96	397.712		312.999	75.02	407.385
317.005	70.05	401.623	i i	320.005	71.94	393.586		312.997	70.14	402.479
317.002	65.01	394.240	İ		F.C.			313.002	65.13	396.498
	F.C.		i i	320.005	71.65	393.199		312.998	60.03	388.879
317.001	64.88	394.003	i i	320.003	71.35	392.730			F.C.	
317.005	64.68	393.584	i i	320.004	71.05	392.253		312.997	59.77	388.401
317.003	64.48	393.181	i i	320.007	70.75	391.763		313.002	59.47	387.825
317.005	64.29	392.746	i i	320.008	70.45	391.260		313.000	59.17	387.264
317.005	64.18	392.517	i i	320.009	70.15	390.749		313.001	58.87	386.640
317.004	64.08	392.289	i i	320.006	69.80	390.135		313.000	58.57	386.028
317.005	64.03	392.170	i i	320.007	69.50	389.570		313.004	58.27	385.335
317.006	63.98	392.043	i İ	320.006	69.25	389.082	1	313.001	58.07	384.904
317.008	63.94	391.915	Ì	320.007	69.05	388.660		312.999	57.92	384.566
317.006	63.88	391.767	Ì	320.003	68.89	388.351		312.999	57.82	384.310
	P.S.			320.004	68.79	388.131	1	312.999	57.72	384.095
317.006	63.88	391.775		320.005	68.69	387.907	1	312.999	57.66	383.911
			'	320.005	68.65	387.792	1	313.002	57.57	383.620
				320.005	68.60	387.688	1		P.S.	
				320.005	68.55	387.555	1	313.001	57.56	383.704
					P.S.		1 '			
				320.005	68.49	387.425	1			

Tabla A.1: Datos P, $\rho,$ T del sistema etano + 1-propanol - continua -.

1	Т	Р	ho		Т	Р	ρ		Т	Р	ho
	Κ	\mathbf{bar}	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$
	x_E	$t_{ano} = 0.8$	741		x_E	$_{tano} = 0.8$	741		x_E	$_{tano} = 0.8$	741
	314.151	401.07	504.341		315.000	403.89	504.014		316.999	404.54	500.713
	314.151	380.53	501.115		315.002	380.50	500.323		316.994	380.61	496.905
	314.156	360.22	497.755		315.002	360.20	496.953		317.000	360.72	493.561
	314.151	340.41	494.338		315.001	340.32	493.490		316.999	340.31	489.970
	314.154	320.33	490.687		315.000	320.46	489.857		316.995	319.66	486.121
	314.151	300.36	486.850		315.002	300.34	485.964		316.999	300.35	482.330
	314.149	280.36	482.797		315.003	279.85	481.764		317.004	280.28	478.150
	314.157	259.90	478.344		315.003	259.93	477.401		317.004	260.31	473.713
	314.150	240.03	473.734		315.003	240.18	472.777		317.008	239.84	468.821
	314.154	220.24	468.772		315.005	220.06	467.682		317.002	220.07	463.726
	314.158	199.83	463.192		315.004	199.87	462.093		317.003	199.91	458.044
	314.153	180.17	457.346		315.004	179.76	455.981		317.004	179.82	451.786
	314.150	159.64	450.461		315.000	159.89	449.238		317.004	159.88	444.829
	314.147	138.83	442.563		315.004	138.45	440.959		317.002	140.05	436.894
	314.147	130.15	438.843		315.005	129.99	437.264		317.007	130.04	432.380
	314.151	120.12	434.161		315.001	120.06	432.567		317.003	120.11	427.504
	314.147	110.12	429.032		315.005	110.05	427.312		317.003	109.84	421.860
	314.147	99.99	423.190		315.007	100.05	421.414		317.002	99.89	415.656
	314.149	90.17	416.685		315.003	90.12	414.682		316.999	89.82	408.357
	314.145	80.07	408.744		314.999	80.07	406.438		317.000	79.98	399.720
	314.144	75.10	404.145		314.999	74.99	401.543		316.998	75.03	394.483
	314.147	70.99	399.816		315.001	70.21	396.255		316.999	70.05	388.445
	314.152	64.94	392.302		315.001	65.07	389.343		317.000	65.11	380.547
	314.150	61.83	387.420		315.001	62.19	384.428			F.C.	
		F.C.				F.C.			317.001	64.74	379.837
	314.152	61.65	387.111		314.998	62.02	384.147		317.005	64.43	379.162
	314.151	61.35	386.551		314.998	61.82	383.720		316.998	64.19	378.658
	314.148	61.15	386.179		314.997	61.62	383.325		317.001	63.98	378.179
	314.152	60.85	385.569		315.000	61.42	382.882		317.001	63.84	377.835
	314.149	60.55	384.975		314.998	61.23	382.484		317.000	63.74	377.611
	314.153	60.25	384.323		314.998	61.07	382.132		316.997	63.64	377.385
	314.153	60.05	383.870		314.998	60.82	381.563		316.998	63.54	377.135
	314.151	59.85	383.432	Į	315.000	60.72	381.312		317.000	63.44	376.864
	314.151	59.75	383.193		315.001	60.67	381.168		316.997	63.34	376.634
	314.151	59.65	382.953		315.000	60.62	381.053		316.998	63.24	376.372
	314.152	59.55	382.702		314.999	60.57	380.953		316.999	63.19	376.240
	314.152	59.45	382.455		314.997	60.52	380.843		316.997	63.14	376.100
	314.150	59.35	382.208	l	314.998	60.47	380.705		212.005	P.S.	0.000
	314.148	59.25	381.973	l	315.000	60.41	380.538		316.998	63.12	376.070
	314.150	59.20	381.832		315.000	60.38	380.474				
	314.151	59.15	381.691		011555	P.S.	000 101				
	314.150	59.09	381.525	l	314.997	60.36	380.406	J			
ļ		P.S.		Į							
	314.150	59.07	381.453	1							

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano + 1-propanol - continua -.
Т	Р	ρ	Г	Т	Р	ρ	1	Т	Р	ρ
ĸ	bar	$kg m^{-3}$		Κ	MPa	$kg m^{-3}$		K	MPa	$kg m^{-3}$
x_E	$t_{ano} = 0.8$	741	F	x_E	$t_{ano} = 0.9$	054		x_E	$t_{ano} = 0.9$	054
320.001	400.54	497.119		312.999	404.17	491.417		314.142	406.57	490.613
320.003	380.66	493.857		313.000	379.74	487.535		314.149	380.06	486.355
320.004	361.39	490.569		313.004	360.43	484.310		314.152	360.03	482.965
320.003	340.36	486.772		313.006	340.37	480.786		314.154	339.90	479.394
320.005	320.15	482.912		313.006	320.00	477.015		314.155	319.59	475.589
320.003	300.24	478.933		313.003	299.80	473.057		314.156	299.78	471.663
320.008	280.13	474.596		313.006	279.88	468.919		314.155	279.94	467.490
320.001	260.29	470.088		313.005	260.26	464.583		314.158	259.86	462.981
320.002	239.90	465.073		313.003	239.91	459.742		314.157	239.73	458.128
320.007	219.92	459.706		313.005	219.78	454.544		314.155	220.05	452.986
320.003	199.86	453.864		313.002	199.79	448.933		314.159	199.79	447.205
319.999	180.09	447.623		313.004	179.57	442.666		314.155	179.89	440.929
320.002	159.89	440.241		313.007	159.36	435.619		314.157	159.88	433.845
320.008	138.96	431.149		313.007	138.16	427.227		314.149	141.31	426.308
320.003	129.95	426.819		313.004	130.09	423.621		314.152	130.02	421.176
320.003	120.08	421.611		313.005	120.08	418.747		314.152	120.14	416.229
319.998	110.08	415.713		313.001	109.75	413.173		314.156	110.05	410.584
320.002	100.01	408.886		313.009	99.60	406.934		314.156	99.94	404.229
320.003	90.05	400.911		313.000	90.00	400.207		314.153	90.09	397.044
320.000	80.03	391.085	_	313.000	79.93	391.751		314.158	80.14	388.318
319.999	74.92	384.922	_	313.007	75.07	386.928		314.156	75.01	382.976
319.998	69.94	377.195	_	313.005	70.10	381.285		314.156	69.99	376.850
810.007	F.C.	250 500	_	313.003	65.09	374.489		314.155	65.16	369.880
319.997	69.66	376.702	_	313.005	59.89	365.645	ļ	314.157	60.10 D.C	360.166
320.002	69.35	376.078	_	010.000	F.C.	205 024		014 154	F.C.	250 120
319.996	69.05	375.511	_	313.006	59.57	365.034		314.154	59.77	359.432
319.999	68.75	374.868	_	313.007	59.27	364.388		314.157	59.46	358.652
320.000	68.45	3/4.22/	_	313.005	58.97	363.733		314.150	59.16	357.870
319.994	08.10 67.95	373.013	_	313.007	58.07	303.052		314.158	28.87	357.000
319.997	67.71	372.903	_	212.007	58.07	261 641		014.100 014.150	58.07	255 276
319.990	67.60	272.040	_	212.007	57.77	260.016		014.102 014.151	57.07	254 454
319.997	67.50	372.211		313.005	57.77	360.146		314.151	57.67	353 458
319.997	67.41	372.023	_	313.007	57.47	350 330		314.155	57.07	352 300
320.004	67.35	371 595	-	313.008	56.87	358 / 99	ł	314.155	57.17	351.626
320.002	67.30	371.595	_	313.008	56.57	357 630		314.157	57.01	351.020
320.000	P.S	511.455	-	313.000	56.27	356 686		314.157	56.97	350.821
319 998	67.27	371 339	_	313.008	55.97	355 704		314 161	56.92	350 593
010.000	01.21	011.000	-	313.006	55.67	354 640		314.160	56.87	350 373
			_	313 010	55.37	353 450		314 159	56.82	350 131
			-	313.007	55.27	353.042		011.100	P.S.	000.101
				313.008	55.17	352.597	1	314,158	56.81	350.096
			⊢	313.010	55.12	352.394		511.100	00.01	300.000
			⊢	313.009	55.07	352.148				
			⊢	313.010	55.02	351.899	1			
			⊢		P.S.					
			F	313.012	54.96	351.610				
					-	-	1			

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano + 1-propanol - continua -.

Т	Р	ρ		Т	Р	ρ	1	Т	Р	ρ
К	MPa	$kg m^{-3}$		Κ	MPa	$kg m^{-3}$		Κ	MPa	$kg m^{-3}$
x_E	tano = 0.9	054		x_E	$_{tano} = 0.9$	054		x_E	$c_{tano} = 0.9$	0054
314.506	402.52	489.647	31	4.996	403.10	489.202		315.509	138.04	422.183
314.505	380.54	486.102	31	4.999	379.99	485.475		315.503	130.06	418.433
314.498	360.32	482.688	31	5.002	360.26	482.108		315.508	120.01	413.220
314.503	340.30	479.127	31	.5.007	340.74	478.613		315.502	110.04	407.480
314.502	320.29	475.379	31	5.008	320.55	474.816		315.509	100.09	400.921
314.507	300.12	471.376	31	5.006	300.57	470.838		315.509	89.96	393.161
314.502	280.33	467.218	31	.5.007	280.31	466.553		315.499	80.00	383.892
314.508	259.93	462.623	31	.5.009	260.05	461.964		315.505	74.86	378.082
314.501	239.98	457.806	31	.5.005	240.21	457.142		315.503	69.98	371.748
314.503	220.31	452.653	31	.5.004	219.97	451.808		315.505	65.06	363.730
314.507	199.80	446.773	31	.5.013	199.99	446.029		315.510	61.18	355.145
314.503	179.94	440.487	31	4.998	179.90	439.640			F.C.	
314.504	159.74	433.294	31	.5.003	159.79	432.414		315.508	60.95	354.5839
314.506	139.13	424.930	31	.5.003	138.44	423.639		315.507	60.75	354.0712
314.503	129.98	420.713	31	.5.006	130.10	419.727		315.511	60.55	353.5161
314.507	119.80	415.560	31	4.997	120.04	414.545		315.515	60.35	352.9311
314.505	109.76	409.921	31	5.002	110.06	408.857		315.509	60.25	352.6638
314.507	100.04	403.725	31	.5.003	100.06	402.387		315.506	60.15	352.3908
314.502	89.97	396.296	31	5.003	90.12	394.918		315.505	60.05	352.1099
314.506	79.90	387.269	31	5.005	79.98	385.645		315.505	59.95	351.8129
314.502	75.02	382.060	31	.5.004	75.14	380.344		315.508	59.85	351.4706
314.508	70.05	375.852	31	5.003	70.19	374.006		315.507	59.80	351.3103
314.499	64.98	368.354	31	5.005	64.97	365.770		315.508	59.75	351.1403
314.500	60.05	358.298	31	5.003	60.20	355.519		315.506	59.69	350.9765
	F.C.				F.C.			315.508	59.65	350.8096
314.502	59.72	357.466	31	.5.003	60.03	355.107		315.507	59.60	350.6334
314.498	59.47	356.809	31	5.003	59.83	354.513		315.507	59.55	350.4508
314.501	59.16	355.960	3.	.5.000	59.58	353.766		315.506	59.50	350.2748
314.502	58.87	355.088	31	4.999	59.43	353.304			P.S.	0.10.000
41.358	58.57	354.135	3	.5.001	59.13	352.323		315.503	59.40	349.890
314.505	58.27	353.159	31	5.004	58.98	351.771	ļ			
314.499	58.06	352.513	3	5.000	58.83	351.286				
314.497	57.92	352.000	31	.5.000	58.73	350.938	-			
314.498	57.82	351.644	3	4.999	58.63	350.586				
314.500	57.72	351.239	3	5.002	58.58	350.400				
314.501	57.62	350.849	3	4.998	58.53	350.222	-			
314.500	57.56	350.640	3	.9.000	58.48	350.008	-			
314.503	57.51 DC	350.411		F 001	P.S.	250 070	-			
214 500	P.S.	250 102	3	.9.001	58.49	350.070	J			
314.506	57.45	350.102								

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano+ 1-propanol - continua -.

m	D			n	D		-	m	D	
T	P MD-	ρ		[` '7	P MD-	ρ		T	P	ρ
K	MPa	kg m °		1	MPa	kg m °	_	n	bar	kg m °
x_E	$t_{ano} = 0.9$	004 497 100	220	x_E	$t_{ano} = 0.8$	1004		212 000	$t_{ano} = 0.9$	300
317.001	380.47	482 635	320	006	380.43	405.505	-	313.000	380.46	478.017
317.009	360.41	432.033	320	006	360.40	476 180	=	312 005	360.40	474.030
317.000	340.45	475.567	320	005	340.47	470.180		313.006	340.59	467 620
317.004	320.17	471.669	320	003	320.54	468 569		312 994	320.33	463 759
317.001	300.49	467 707	320	007	300.34	464 367	-	312.004	300.01	459 632
317.006	280.14	463 309	320	006	280.37	459 937		312 999	280.26	455 357
316.999	260.41	458.769	320	.009	260.36	455.183		312.997	260.41	450.783
317.003	240.21	453.760	320	.006	239.83	449.932		313.001	240.41	445.808
317.001	220.07	448.347	320	.007	220.03	444.398		312.999	220.12	440.343
317.002	200.00	442.434	320	.005	199.93	438.214		313.007	199.74	434.294
317.002	180.05	435.905	320	.006	179.41	431.170		312.997	179.97	427.820
316.999	159.99	428.515	320	.006	159.99	423.610		313.000	159.81	420.352
317.008	138.85	419.496	320	.008	139.02	414.168		313.003	139.39	411.784
317.001	129.74	415.063	320	.007	130.01	409.490		313.001	130.27	407.395
317.001	120.06	409.898	320	.008	120.06	403.802		313.001	120.17	402.037
317.007	109.85	403.751	320	.007	110.08	397.333		313.003	110.06	396.024
317.001	100.05	397.077	320	.005	99.48	389.351		313.001	99.88	389.146
317.003	90.02	389.118	320	.002	90.02	380.797		313.001	89.96	381.274
317.000	80.00	379.352	320	.004	80.22	369.625		313.002	79.90	371.508
317.006	74.82	373.008	320	.001	74.97	362.249		313.000	75.11	365.922
317.004	70.03	366.101	320	.012	70.10	353.577		313.002	69.88	358.702
317.009	65.06	356.919			F.C.			313.001	64.52	349.517
	F.C.		320	.012	69.78	352.927		312.995	59.19	336.793
317.013	65.03	356.858	320	.012	69.48	352.260			F.C.	
317.004	64.78	356.335	320	.008	69.19	351.589		312.993	58.79	335.566
316.999	64.48	355.675	320	.006	68.89	350.906		312.994	58.39	334.199
316.999	64.17	354.950	320	.007	68.59	350.147		312.992	58.09	333.142
316.999	63.88	354.203	320	.004	68.28	349.437		312.992	57.99	332.773
316.998	63.58	353.432	320	.001	67.99	348.728		312.994	57.89	332.344
317.001	63.22	352.460	320	.000	67.68	347.950		312.999	57.79	331.862
317.003	62.98	351.765	320	.001	67.38	347.127		312.995	57.69	331.499
317.000	62.68	350.942	319	.999	67.19	346.600		312.995	57.59	331.107
317.000	62.48	350.351	319	.998	66.99	346.049		312.997	57.49	330.574
315.999	62.37	350.051	319	.996	66.79	345.773		312.994	57.39	330.100
317.002	62.28	349.737	319	.990	00.78	345.487	-	312.991	57.29	329.057
317.000	62.18	349.423	319	.990	00.08	343.171		312.995	57.18	328.921
317.002	62.08	249.091	319	.990	66.49	044.878 244.567	-	312.994	57.09	020.400 200.114
317.002	61.00	340.928	319	.997	66.20	344.007	-	312.994	56.00	320.114
217.001	61.02	240.700	319	.990	66.29	344.277		212.990	56 70	226.020
517.001	01.93	340.011	319	.993	66.19	343.909 242.6F2	-	212.993	56.67	225.062
317.001	F.S. 61 70	3/8 116	319	.990	66 12	343.003	-	512.990	00.07 D C	323.002
317.001	01.79	340.110	519	.990	DC 00.13	040.400		312 089	F.J.	394 107
			210	006	г.з. 66 19	343 499	4	512.900	00.09	524.197
			519	.330	00.12	040.420	1			

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano + 1-propanol - continua -.

Т	Р	ρ	1	Т	Р	ρ		Т	Р	ρ
Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$		Κ	bar	${ m kg}~{ m m}^{-3}$
x_E	$E_{tano} = 0.9$	356		x_E	$_{tano} = 0.9$	356		x_E	$_{tano} = 0.9$	356
314.148	402.52	477.243		315.496	400.92	475.728		316.993	402.79	473.417
314.148	380.44	473.575		315.501	380.41	472.266		317.004	380.43	469.619
314.147	360.74	470.151		315.498	360.11	468.697		317.001	360.35	466.052
314.153	340.30	466.403		315.501	340.39	465.042		316.990	340.17	462.310
314.148	320.09	462.494		315.503	320.29	461.108		316.996	320.08	458.325
314.145	300.49	458.490	Į	315.503	300.20	456.942		317.001	300.32	454.171
314.152	280.21	454.053		315.503	280.19	452.516		316.999	280.34	449.717
314.150	260.28	449.400		315.504	260.30	447.805		316.998	260.01	444.837
314.153	239.94	444.281		315.504	240.08	442.650		316.999	239.91	439.636
314.147	220.22	438.901		315.498	220.02	437.078		316.998	220.10	434.048
314.150	200.78	433.069		315.502	199.93	430.930		316.997	199.90	427.779
314.147	180.19	426.231		315.503	180.27	424.257		316.998	180.01	420.901
314.150	160.05	418.649		315.504	159.86	416.404		316.998	159.89	412.998
314.150	138.48	409.330		315.502	139.22	407.276		317.002	138.88	403.543
314.154	130.19	405.203		315.501	130.23	402.697		317.002	130.15	398.965
314.152	120.10	399.716		315.499	120.13	397.017		316.998	119.64	392.839
314.154	110.29	393.724		315.503	110.24	390.760		317.002	110.02	386.484
314.153	100.19	386.674		315.500	100.19	383.445		317.002	100.29	379.097
314.154	90.12	378.395		315.501	90.18	374.810		317.002	90.15	369.895
314.153	80.22	368.366		315.504	80.05	363.885		317.006	80.07	358.387
314.154	74.97	361.864		315.502	75.30	357.682		317.004	74.96	351.107
314.149	69.91	354.364		315.502	70.15	349.526		317.000	70.03	342.427
314.149	65.25	345.951		315.500	63.15	334.011		317.010	63.26	324.771
314.145	61.14	335.988			F.C.				F.C.	
	F.C.			315.503	62.88	333.265		317.006	63.09	324.211
314.148	60.82	335.053		315.503	62.58	332.340		317.004	62.84	323.103
314.152	60.52	334.048		315.503	62.28	331.381		317.005	62.64	322.095
314.146	60.22	333.109		315.503	61.98	330.390		317.003	62.44	320.952
314.152	59.92	332.042		315.504	61.68	329.343		317.003	62.24	319.530
314.150	59.62	330.975		315.502	61.38	328.255		317.002	62.14	318.726
314.148	59.42	330.191		315.506	61.08	327.014		317.000	62.04	317.861
314.145	59.22	329.361		315.508	60.88	326.032		317.000	61.95	316.947
314.150	59.02	328.342		315.510	60.68	324.973		316.999	61.89	316.419
314.147	58.82	327.319		315.501	60.48	323.844		317.001	61.84	315.868
314.146	58.62	326.059		315.498	60.38	323.185		317.003	61.79	315.350
314.144	58.52	325.331		215.498	60.33	322.812		317.002	61.67	314.082
314.146	58.47	325.003		315.001	60.28	322.396		317.003	61.56	312.793
314.145	58.42	324.629		315.501	60.23	321.991		317.004	61.49	311.820
314.146	58.37	324.240		315.499	60.18 D.C	321.593		917 005	P.S.	011 551
314.146	58.32	323.842		915 400	P.S.	901 155		317.005	61.47	311.574
314.146	58.27	323.372		315.499	60.13	321.155	J			
314.148	58.21 D.C	322.807								
914 140	P.S.	200.070	ļ							
314.148	58.18	322.370	J							

Tabla A.1: Datos P, $\rho,$ T del sistema etano + 1-propanol - continua -.

	ρ			
K bar kg m ^{-3}				
$x_{Etano} = 0.9356$				
320.003 402.51 470.460				
319.999 380.14 466.598				
320.001 360.02 462.930	1			
320.001 340.42 459.154	:			
320.007 320.33 455.062	1			
320.007 300.06 450.695				
320.000 280.46 446.183				
320.000 260.00 441.133				
320.002 239.77 435.718				
320.002 219.89 429.894	:			
320.002 200.01 423.467				
319.999 179.83 416.157				
319.997 159.88 407.901				
319.996 139.19 397.932	1			
320.001 130.05 392.781				
320.003 119.65 386.240	1			
320.001 109.97 379.290	1			
319.997 100.01 370.946				
319.999 90.05 360.752	1			
319.997 80.10 347.645				
319.994 74.13 337.146	i			
319.991 68.17 322.294	:			
F.C.				
319.995 67.87 321.352	1			
319.997 67.57 320.293				
320.000 67.27 319.189	1			
320.002 66.97 318.037	,			
320.000 66.77 317.108				
320.002 66.57 316.052	1			
320.004 66.47 315.496				
320.004 66.37 314.866				
320.008 66.27 314.135				
320.008 66.17 313.550	1			
320.007 66.12 313.211				
320.005 66.07 312.808				
320.006 66.02 312.386				
320.001 65.88 311.026				
320.004 65.77 310.029	1			
320.002 65.66 309.121				
320.003 65.56 308.124	:			
320.002 65.47 307.056				
P.S.				
320.002 65.40 306.232				

Tabla A.1: Datos P, $\rho,$ T del sistema et
ano+ 1-propanol - fin -.

Apéndice B

Implementación del *Criterio del Plano Tangente*

El criterio del plano tangente, se utilizó como una alternativa para asegurar el calculo de puntos de equilibrio estables, ya que la presencia de distintos tipos de equilibrios (ELV, ELL y ELLV) a una temperatura dada, puede regresar en los cálculos puntos de equilibrio metaestables o inestables. Por ejemplo, un punto de equilibrio inestable puede encontrarse cuando el algoritmo de equilibrio converge entre un líquido pesado y un gas que está en equilibrio no proporciona forzosamente la combinación de menor energía de Gibbs; las dos otras opciones, liquido ligero en equilibrio con el gas y liquido pesado en equilibrio con el liquido ligero son de menor energía y la naturaleza les favorece. El criterio mencionado tiene como propósito detectar la posibilidad de equilibrios de menor energías en la situación anterior y a su vez indicar a qué composiciones se encuentran el, o los, equilibrios alternativos, a partir de una misma composición inicial. En el presente caso, esta información se utiliza a posteriori en un calculo de equilibrio, y sirve para reubicar los calculos en un punto dado en una configuración estable.

Cómo se mencionó en la sección 2.2.2, se utilizó la expresión en un punto de burbuja proporcionada por Nghiem et al. [73] (ecn. B.1):

$$D^{x}(y, P, T) = \sum_{i=1}^{n_{c}} y_{i} \ln \left[f_{i}(y, P, T) / f_{i}(x, P, T) \right]$$
(B.1)

para evaluar la distancia entre el hiperplano tangente a la energía de Gibbs y la misma energía, en cualquier punto, en la dirección de la fase incipiente a temperatura y presión constante.

Para implementar el criterio al código de cálculo de presiones de burbuja y composición incipiente, se ideó hacer un barrido sistemático con un paso del orden de 0.001 en fracción molar empezando a una distancia razonable de la inicialización $(\approx x - 20\%)$ hasta 1.0. Se calcula la distancia $D^x(y)$ en cada punto a intervalos definidos.

Se generaron, a partir de esta información, diagramas que devuelven equilibrios estables e inestables, y mediante su análisis se seleccionan solamente a puntos estables, la posición de los cuales está devuelta, con la precisión que corresponde al paso de incremento en y, por el algoritmo. Algunas de las topologías que se pueden encontrar durante los cálculos de equilibrio se encuentran en las Figuras B.1, B.2, B.3 y B.4. En estas figuras, se menciona en el título la composición inicial de los cálculos de equilibrio.

Figura B.1: Distancia en función de la composición. Configuración estable en un Equilibrio líquido - gas.

A baja presión, o ligeramente abajo en presión de una línea de tres fases, la topología mas común de la distancia D^x se muestra en la Figura B.1 que corresponde a una presión de aproximadamente 51 bar y 314.15 K con la EdE de Patel – Teja establecida en la modelación previa. El hecho que se presenta un mínimo adicional en distancias positivas en la energía de Gibbs no tiene implicación en el equilibrio alcanzado pero denota la cercanía al equilibrio de tres fases. Esta topología no proporciona más información para el equilibrio considerado; sólo se concluye que es estable.

En la Figura B.2, alrededor de 51.95 bar y 314.15 K con la misma ecuación, se encuentra la topología de un equilibrio de tres fases. Las tres composiciones donde la energía de Gibbs toca su plano tangente $(D^x=0)$, son las composiciones de las tres fases simultáneamente en equilibrio estable.

En la Figura B.3 a una presión arriba del punto crítico LG a 314.15 K, solo existe un equilibrio estable entre dos fases líquidas a las composiciones dadas por los

mínimos de la curva.

Figura B.2: Distancia en función de la composición. Configuración estable en un Equilibrio de tres fases líquido - líquido - gas.

Figura B.3: Distancia en función de la composición. Punto estable de un Equilibrio líquido-líquido.

La Figura B.4, muestra un equilibrio inestable entre un líquido y un vapor a una presión ligeramente superior a la presión del equilibrio de tres fases. Se observa que existen dos possibilidades de equilibrios estables de menor energía que el presente a esa presión. Un equilibrio líquido - líquido a composiciones entre la del primer mínimo a una composición a la izquierda del segundo y un equilibrio líquido - gas independiente entre una composición a la derecha del segundo mínimo y la composiciones del tercer mínimo.

Figura B.4: Distancia en función de la composición. Punto Inestable.

Durante el barrido de composiciones, el algoritmo devuelve al usuario la posición de los mínimos y cambios de signos en D^x , lo cual permite retroalimentar el cálculo de equilibrio con dos nuevas inicializaciones en este caso.

Apéndice C

Reglas de Mezclado para la EdE de Patel – Teja

En éste apéndice, se reportan algunas consideraciones generales sobre el método empleado para incluir las reglas de tipo Wong – Sandler en la ecuación de Patel – Teja, para los propósitos de este trabajo.

La energía de Helmholtz en exceso a presión infinita para la EdE de Patel – Teja se puede poner en la forma [9,76]:

$$\frac{A_{\infty}^E}{RT} = \frac{-a}{2dRT} ln(F_{\infty}) + \sum_{i=1}^{n_c} \frac{x_i a_i}{2d_i RT} ln(F_{\infty,i})$$
(C.1)

donde $F_{\infty,i}$ y F_{∞} son funciones de los parámetros de compuestos puros *i* y de los parámetros de mezcla respectivamente, y *d* es una función de *b* y *c*. F_{∞} es una función relativamente no-lineal de los parámetros de la mezcla que impide que estos se puedan obtener fácilmente de manera independiente y analítica.

Las definiciones de F_{∞} y d se inspiran de [76]:

$$F_{\infty,i} = \frac{3b_i + c_i + 2d_i}{3b_i + c_i - 2d_i}$$
(C.2)

$$F_{\infty} = \frac{3b+c+2d}{3b+c-2d} \tag{C.3}$$

con:

$$d_i = \frac{1}{2}\sqrt{4b_i c_i + (b_i + c_i)^2}$$
(C.4)

у

$$d = \frac{1}{2}\sqrt{4bc + (b+c)^2}$$
(C.5)

La condición teórica sobre la dependencia del segundo coeficiente virial con la composición para la EdE considerada [9] es:

$$B(T) = b - \frac{a}{RT} \tag{C.6}$$

En este trabajo se propone derivar la regla de mezclado sobre a directamente a partir de la resolución del sistema de ecuaciones no-lineales formado por las anteriores (ecuación C.1 y C.6):

$$\begin{cases} \frac{A_{\infty}^{E}}{RT} = \frac{-a}{2dRT} ln(F_{\infty}) + \sum_{i=1}^{n_{c}} \frac{x_{i}a_{i}}{2d_{i}RT} ln(F_{\infty,i}) \\ B(T) = b - \frac{a}{RT} \end{cases}$$
(C.7)

En el caso de la reglas de Wong – Sandler, definiendo,

$$\Phi_i = \frac{x_i a_i}{2d_i RT} ln(F_{\infty,i}) \tag{C.8}$$

y recordando que despreciendo el volumen en exceso a presión baja y la influencia de la presión sobre la energía de Helmholtz [9]:

$$G_{\gamma}^{E} = A_{BP}^{E} + PV_{BP}^{E} \approx A_{BP}^{E} \approx A_{\infty}^{E} \tag{C.9}$$

la primera ecuación de C.7 se puede poner en la forma:

$$\frac{A_{\infty}^E}{RT} - \sum_{i=1}^{n_c} \Phi_i \approx \frac{G_{\gamma}^E}{RT} - \sum_{i=1}^{n_c} \Phi_i = \Gamma$$
(C.10)

 Γ contiene entonces solo parámetros de componentes puros a través de Φ_i , una función de los parámetros de los componentes puros en la mezcla, y del formalismo de algún modelo de solución evaluado a baja presión en términos de energía de Gibbs en exceso G_{γ}^E .

Finalmente queda, para esta ecuación, en el caso de la EdE de Patel – Teja con reglas de tipo *Wong – Sandler* un sistema de ecuaciones parcialmente no lineal:

$$\begin{cases} \frac{A_{\infty}^E}{RT} - \sum_{i=1}^{n_c} \Phi_i - \Gamma = 0\\ b = B(T) + \frac{a}{RT} \end{cases}$$
(C.11)

equivalente a:

$$\begin{cases} \frac{a}{2dRT}ln(F_{\infty}) - \Gamma = 0\\ b = B(T) + \frac{a}{RT} \end{cases}$$
(C.12)

que se puede resolver de manera frontal con un algoritmo de gradiente conjugado, o de Newton – Raphson o, de manera todavía mas simple, mediante un algoritmo de Newton – Raphson monodimensional después de una sustitución de variables en el sistema y después de una inicialización adecuada. La regla sobre c se puede escoger arbitrariamente.

En todos los cálculos efectuados en este trabajo, con las reglas así implementadas, no se han encontrado fallas en el procedimiento a cualquier condiciones de estado consideradas. La resolución del sistema anterior ocupa menos de 10 iteraciones en cualquiera de las dos opciones de resolución y devuelve la solución para a con la misma precisión que en un cálculo analítico. Además, se puede mostrar fácilmente que las derivadas respecto a los números de moles de los parámetros a y b se derivan analíticamente. A continuación, se dan las expresiones de estas derivadas.

Se definen las siguientes funciones:

$$B^* = \frac{1}{n} \frac{\partial n^2 B(T)}{\partial n_i} \tag{C.13}$$

la derivada del segundo coeficiente virial de la mezcla,

$$\Gamma^* = \frac{\partial n\Gamma}{\partial n_i} = \ln(\gamma_i^{sol.}) - \frac{\Phi_i}{x_i}$$
(C.14)

donde $\gamma_i^{sol.}$ es el coeficiente de actividad que deriva del modelo de solución empleado en la ecuación de estado (NRTL en este caso),

$$\mathbb{A} = RT(\Gamma^* + \Gamma) + \frac{ac^*}{2d^2} - \ln(F_{\infty}) \left[\frac{ac^*}{8d^3} (3b+c) - \frac{a}{2d} \right]$$
(C.15)

donde:

$$c^* = \frac{\partial nc}{\partial n_i} \tag{C.16}$$

es la derivada respecto a n_i de la regla elegida para c. En el presente trabajo: $c^* = c_i$.

Definiendo además:

$$\mathbb{D} = \frac{a\left[(3c+b)(3b+c) - 12d^2\right]}{2d^2\left[(3b+c)^2 - 4d^2\right]} - \ln(F_{\infty})\left[\frac{a(3c+b)}{8d^3}\right]$$
(C.17)

у

$$\mathbb{E} = \frac{\ln(F_{\infty})}{2d} \tag{C.18}$$

las expresiones de las derivadas de $a \ge b$ son finalmente:

$$a^* = \frac{1}{n} \frac{\partial n^2 a}{\partial n_i} = -\frac{(B^* - RTb)\mathbb{D} + RT\mathbb{A}}{RT\mathbb{E} + \mathbb{D}}$$
(C.19)

у

$$b^* = \frac{\partial nb}{\partial n_i} = \frac{(B^* - RTb)\mathbb{E} - \mathbb{A}}{RT\mathbb{E} + \mathbb{D}}$$
(C.20)

Apéndice D

Resultados de las modelaciones

El presente apéndice contiene las tablas de los resultados completos de las modelaciones de los datos experimentales de ELV de Kodama et al. [29] y de Suzuki et al. [74] presentadas en la sección 2.2.2.

Las Tablas D.1 y D.2 presentan la correlación de los datos de [29] a 314.15 K mediante las EdE de Peng – Robinson y Patel – Teja respectivamente. Las Tablas D.3 y D.4 presentan las correlaciones de los datos de [74] a 333.40 K mediante las mismas ecuaciones de estado.

ECUAC	ECUACIÓN DE ESTADO: PENG - ROBINSON, datos ELV de [29].												
Isoterm	Isoterma = 314.15 K												
Т	$\mathbf{P}_{exp.}$	$P_{calc.}$	$\Delta P/P$	$\mathbf{x}_{etano}^{exp.}$	$\mathbf{y}_{etano}^{exp.}$	$\mathbf{y}_{etano}^{calc.}$	$\Delta y/y$	$\rho_{exp.}^{V}$	$\rho_{calc.}^{V}$	$\rho_{exp.}^{L}$	$\rho_{calc.}^{L}$	$\Delta \rho / \rho$	
(K)	(bar)	(bar)	%	(molar)	(molar)	(molar)	%	$kg m^{-3}$	$kg m^{-3}$	$kg m^{-3}$	$kg m^{-3}$	%	
314.15	16.09	15.39	4.35	0.134	0.991	0.992	0.14	21.4	20.2	750.8	753.6	0.4	
314.15	33.17	32.03	3.42	0.300	0.993	0.994	0.15	54.1	50.7	697.5	724.5	3.9	
314.15	45.50	44.43	2.35	0.457	0.993	0.994	0.07	90.3	88.0	639.1	686.3	7.4	
314.15	54.87	52.73	3.88	0.782	0.975	0.982	0.78	184.2	203.5	475.4	533.5	12.2	
Error p	romedio	en presi	$i \circ n = 3.50$)%									
Error p	Error promedio en y = 0.28%												
Error p	Error promedio en $\rho_L = 5.96\%$												
Error p	romedio	en ρ_V =	= -0.99%										

Tabla D.1: Resultados de los cálculos ELV con 4 datos de [29] a 314.15 K y la EdE de Peng – Robinson.

Tabla D.2: Resultados de los cálculos ELV con 4 datos de [29] a 314.15 K y la EdE de Patel – Teja.

E B G T T L G	ECHACIÓN DE ESTADO, DATEL TELA datas ELV da [20]												
ECUAC	TON D	E ESTA	DO: PAT	EL - TEJA	A, datos E	LV de [29]	•						
Isoterm	a = 314	.15 K											
Т	$\mathbf{P}_{exp.}$	$P_{calc.}$	$\Delta P/P$	$\mathbf{x}_{etano}^{exp.}$	$\mathbf{y}_{etano}^{exp.}$	$\mathbf{y}_{etano}^{calc.}$	$\Delta y/y$	$\rho_{exp.}^{V}$	$\rho_{calc.}^{V}$	$\rho_{exp.}^{L}$	$\rho_{calc.}^{L}$	$\Delta \rho / \rho$	
(K)	(bar)	(bar)	%	(molar)	(molar)	(molar)	%	$kg m^{-3}$	$kg m^{-3}$	$kg m^{-3}$	$kg m^{-3}$	%	
314.15	16.09	16.09	0.02	0.134	0.991	0.993	0.23	21.4	21.2	750.8	765.6	1.9	
314.15	33.17	33.18	0.03	0.300	0.993	0.995	0.18	54.1	52.7	697.5	728.2	4.3	
314.15	45.50	45.49	0.01	0.457	0.993	0.994	0.07	90.3	91.0	639.1	681.9	6.7	
314.15	54.87	52.43	4.44	0.782	0.975	0.982	0.67	184.2	202.8	475.4	516.1	8.5	
Error p	romedio	en presi	$i \circ n = 1.12$	2%									
Error p	romedio	en y =	0.29%										
Error p	Error promedio en $\rho_L = 5.41 \%$												
Error p	romedio	en ρ_V =	= 1.84 %										

ECUAC	CIÓN DI	E ESTA	DO: PEN	G - ROBI	NSON							
Datos F	LV de [74]										
Isoterma = 333.40 K												
T $P_{exp.}$ $P_{calc.}$ $\Delta P/P$ $x_{etano}^{exp.}$ $y_{etano}^{exp.}$ $y_{etano}^{calc.}$ $\Delta y/y$												
(K)	(bar)	(bar)	%	(molar)	(molar)	(molar)	%					
333.40	13.56	11.69	13.7	0.080	0.984	0.976	0.78					
333.40	28.11	24.58	12.5	0.174	0.990	0.985	0.44					
333.40	42.16	37.33	11.4	0.273	0.991	0.987	0.36					
333.40	50.36	44.79	11.0	0.335	0.991	0.987	0.39					
333.40	59.67	54.37	8.8	0.421	0.989	0.985	0.37					
333.40	67.42	62.55	7.2	0.503	0.971	0.981	1.03					
Error promedio en presión = 10.82%												
Error p	romedio	en y $=$	0.56%									

Tabla D.3: Resultados de los cálculos ELV con 6 datos de [74] a 333.40 K y la EdE de Peng- Robinson.

Tabla D.4: Resultados de los cálculos ELV con 6 datos de [74] a 333.40 K y la EdE de Patel – Teja.

ECUAC	CIÓN DI	E ESTAI	DO: PAT	EL - TEJA	1							
Datos F	LV de [74]										
Isoterma = 333.40 K												
Т	$\mathbf{P}_{exp.}$	$P_{calc.}$	$\Delta P/P$	$\mathbf{x}_{etano}^{exp.}$	$\mathbf{y}_{etano}^{exp.}$	$\mathbf{y}_{etano}^{calc.}$	$\Delta y/y$					
(K)	(bar)	(bar)	%	(molar)	(molar)	(molar)	%					
333.40 13.56 12.18 10.1 0.080 0.984 0.979 0.53												
333.40	28.11	25.52	9.2	0.174	0.990	0.987	0.33					
333.40	42.16	38.54	8.5	0.273	0.991	0.988	0.31					
333.40	50.36	46.05	8.5	0.335	0.991	0.987	0.36					
333.40	59.67	55.54	6.9	0.421	0.989	0.985	0.38					
333.40	67.42	63.48	5.8	0.503	0.971	0.980	0.94					
Error promedio en presión $= 8.21\%$												
Error p	romedio	en y =	0.47%									

Apéndice E

Datos en la Saturación y Topología de las Transiciones

Los resultados de las 120 correlaciones, de p_1 , p_2 y \hat{p} , alrededor de los 40 puntos de saturación determinados en este trabajo se presentan en las Tablas E.1 y E.2. En la Tabla E.1, cuando $NP/P < (NP/P_1 + NP/P_2)$, es que se redujo el intervalo de ajuste de la ultima correlación ($\hat{p}(\tau)$). Esa reducción del numero de datos involucrados fue para restaurar localmente la sensibilidad del ajuste de la ecuación \hat{p} al parámetro τ_{PQ}^* . Prácticamente esto corresponde a un mejor acercamiento del punto de quiebre utilizando valores experimentales mas cercanas a τ_{PQ}^* para $\tau_{In,min.}$ y $\tau_{H,min.}$.

En la gráficas que se presentan alrededor de los puntos de quiebre en las Figura desde E.1 hasta E.20, se mestran los datos experimentales obtenido en condiciones de flujo continuo, el punto de quiebre a las coordenadas $P_{sat.}$ y $\tau_{sat.}$, así como la correlación general $\hat{p}(\tau)$ nombrada C_{gen} . en las leyendas de las figuras. En varias figuras, la correlación general presenta un comportamiento cuadrático que se aleja sensiblemente del comportamiento experimental. Esto se debe a que, en estos casos, solo una cantidad limitada de datos cerca del punto de quiebre han sido tomado en cuenta en la correlación (ver Tabla E.1) del lado de la fase no homogénea. Los datos seleccionados en esta fase son siempre ubicado inmediatamente a la izquierda del punto de quiebre y se seleccionaron únicamente los que presentan un comportamiento regular. Su comportamiento local no es forzosamente el comportamiento aparente que presenta el conjunto completo de datos obtenidos en esta región lo que explica porque, frecuentemente, la correlación diverge a partir de alguna distancia a la izquierda del punto de quiebre.

		Corre	elación	Cor	relación	Correlación	
Т	X_{etano}	NP/P_1	P_1	NP/P_2	P_2	NP/P	Р
			DESVEST		DESVEST		DESVEST
(K)	(molar)		(bar)		(bar)		(bar)
313.001	0.7187	188	0.006	15	0.001	203	0.005
314.157	0.7187	206	0.006	33	0.001	239	0.006
315.006	0.7187	379	0.006	19	0.001	398	0.006
317.000	0.7187	360	0.008	28	0.003	388	0.008
320.004	0.7187	126	0.008	25	0.003	151	0.008
312.004	0.7607	168	0.004	5	0.000	173	0.004
313.010	0.7767	139	0.002	16	0.001	155	0.002
313.504	0.7607	131	0.005	7	0.001	138	0.005
314.184	0.7767	208	0.005	19	0.001	227	0.005
314.555	0.7607	236	0.010	6	0.000	242	0.010
315.004	0.7767	225	0.007	18	0.002	243	0.007
317.002	0.7607	210	0.003	11	0.000	221	0.003
319.998	0.7607	74	0.006	6	0.000	80	0.006
313.004	0.7910	141	0.003	0	0.002	147	0.003
314.155	0.8303	91	0.004	10	0.004	210	0.004
315.003	0.8303	200	0.017	44	0.002	310	0.010
317.002	0.8303	429	0.013	24 8	0.002	455	0.013
313 500	0.8547	144	0.003	14	0.003	152	0.003
314 152	0.8547	598	0.003	48	0.002	646	0.003
315.005	0.8547	251	0.003	41	0.002	292	0.003
317.006	0.8547	478	0.003	51	0.001	529	0.003
320.005	0.8547	1469	0.004	70	0.002	998	0.003
313.001	0.8741	708	0.005	112	0.002	146	0.003
314.150	0.8741	885	0.006	68	0.002	83	0.004
314.997	0.8741	961	0.005	151	0.007	204	0.007
316.998	0.8741	726	0.004	71	0.002	119	0.003
319.998	0.8741	900	0.005	95	0.003	194	0.005
313.012	0.9054	292	0.002	42	0.001	334	0.001
314.158	0.9054	447	0.002	146	0.001	593	0.002
314.506	0.9054	642	0.003	126	0.001	766	0.003
315.001	0.9054	696	0.004	65	0.001	761	0.004
315.503	0.9054	2024	0.004	64	0.001	2087	0.003
317.001	0.9054	977	0.004	53	0.001	1030	0.003
319.996	0.9054	1509	0.006	148	0.002	1657	0.006
312.988	0.9356	137	0.002	1611	0.013	30	0.003
314.148	0.9356	198	0.002	62	0.003	42	0.002
315.499	0.9356	305 192	0.002	209	0.004	57	0.002
317.005	0.9356	123	0.002	243 470	0.007	24	0.001
320.002	0.9390	111 D ''	0.003	419	0.022	14	0.001
		Promedio	0.005		0.002		0.005
		Max	0.017		0.013		0.016
		Min	0.002		0.000		0.001

Tabla E.1: Resultados de los ajustes de $p_1(\tau)$, $p_2(\tau)$ y $\hat{p}(\tau)$. NP/P_i: Numero de puntos utilizados en la correlación, DESVEST: Desviación estándar de los residuos (absolutos en bar).

Nota: DESVEST= $\sum (R-\bar{R})^2/(NP-1)$, donde \bar{R} es el promedio de los residuos $R = p-p_{exp}$. $\bar{R} = \sum R/NP$. Para todas las correlaciones de la tabla, \bar{R} es del orden de 10⁻⁵ – 10⁻⁴ bar.

				Parámet	tros de P_1		Parámetros de P_2		
Т	Xetano	τ^*_{PO}	a_1	a_2	a_3	a_4	b_1	b_2	
(K)	(Molar)	(ms)	$(bar ms^{-1})$	$(bar ms^{-2})$	$(bar ms^{-3})$	$(bar ms^{-4})$	$(bar ms^{-1})$	$(bar ms^{-2})$	
313.001	0.7187	4.028310	6055.22	8.0659E + 06	Nc(1)	Nc	137.75	4.4030E + 05	
314.157	0.7187	4.028070	5254.17	1.2337E+06	Nc	Nc	-86.83	1.2011E + 06	
315.006	0.7187	4.028350	5509.35	2.0907E + 06	Nc	Nc	28.72	1.3183E + 06	
317.000	0.7187	4.028850	5502.43	2.3399E+06	Nc	Nc	-15.35	1.0327E + 06	
320.004	0.7187	4.029690	5472.91	1.0221E + 07	Nc	Nc	-72.22	1.6951E + 06	
312.004	0.7607	4.021890	4209.26	1.9134E + 06	Nc	Nc	213.96	6.5874E + 05	
313.010	0.7767	4.020080	2606.25	2.8555E + 06	Nc	Nc	65.37	1.0030E + 06	
313.504	0.7607	4.022280	4037.70	1.4839E + 06	Nc	Nc	-23.08	2.0032E + 06	
314.184	0.7767	4.020410	2806.84	3.0588E + 06	Nc	Nc	52.87	2.4352E + 05	
314.555	0.7607	4.022570	4675.59	1.4206E + 06	Nc	Nc	Nc	Nc	
315.004	0.7767	4.020520	4307.81	2.5396E + 06	1.8006E + 09	1.3360E + 12	-65.34	6.6360E + 05	
317.002	0.7607	4.023440	3315.44	8.2147E + 06	Nc	Nc	75.46	5.1202E + 06	
319.998	0.7607	4.023850	3665.36	1.3415E + 06	Nc	Nc	-0.43	1.7542E + 06	
313.004	0.7910	4.015720	2557.66	3.2707E + 05	-1.0154E+09	Nc	42.68	2.4911E + 05	
314.155	0.8303	4.012380	2463.84	4.7007E+05	-2.4100E+08	Nc	68.78	2.6594E + 05	
315.003	0.8303	4.012620	2393.55	2.5187E + 05	-6.3675E+08	Nc	72.32	2.6816E + 04	
317.002	0.8303	4.013120	3195.08	9.4798E + 05	4.7961E + 08	$2.0623E{+}11$	85.30	1.1057E + 05	
320.007	0.8303	4.013800	3470.73	7.6377E + 05	1.9538E + 08	6.6638E + 10	116.92	1.0903E + 05	
313.509	0.8547	4.009200	2785.63	6.5298E + 05	3.8634E + 07	Nc	248.89	3.9376E + 05	
314.152	0.8547	4.009400	2433.15	-4.7381E + 04	-6.5669E + 08	Nc	616.45	Nc	
315.005	0.8547	4.009630	2488.18	3.0291E + 05	-3.9462E+08	Nc	399.36	1.7696E + 06	
317.006	0.8547	4.010220	2339.32	1.2546E + 05	-7.5897E+08	Nc	407.26	2.4825E + 06	
320.005	0.8547	4.010940	2836.34	4.2422E + 05	-1.2608E+08	-4.1136E+10	609.36	4.2241E + 05	
313.001	0.8741	4.006080	1744.45	1.1855E + 06	-1.4050E+09	7.4457E + 11	221.61	1.3488E+06	
314.150	0.8741	4.006220	1822.50	5.4183E + 05	-2.9842E+08	$1.3710E{+}11$	326.20	6.1561E + 05	
314.997	0.8741	4.006440	1888.16	3.1307E + 05	6.7989E + 06	Nc	474.33	9.4623E + 05	
316.998	0.8741	4.006810	1850.71	4.4572E + 05	-3.4997E+08	$2.2509E{+}11$	484.32	1.9283E + 06	
319.998	0.8741	4.007400	1696.21	6.0061E + 05	-2.6925E+07	-1.4961E+11	139.67	1.0976E + 06	

Tabla E.2: Resultados de los ajustes de $p_1(\tau)$, $p_2(\tau)$ y $\hat{p}(\tau)$. Parámetros obtenidos de los ajustes locales. (Continua).

				Parámet	ros de P_1		Parámet	tros de P_2
Т	x_{etano}	$ au_{PQ}^*$	a_1	a_2	a_3	a_4	b_1	b_2
(K)	(Molar)	(ms)	$(bar ms^{-1})$	$(bar ms^{-2})$	$(bar ms^{-3})$	$(bar ms^{-4})$	$(bar ms^{-1})$	$(bar ms^{-2})$
313.012	0.9054	3.999480	1413.76	4.3525E + 05	3.8098E + 08	2.3590E + 11	225.83	5.1696E + 05
314.158	0.9054	3.999760	1506.97	2.7949E + 05	1.2972E + 08	9.4608E + 10	182.95	4.3236E + 05
314.506	0.9054	3.999950	1640.50	4.2856E + 05	4.7541E + 08	2.6732E+11	563.03	4.6132E + 05
315.001	0.9054	4.000200	1831.94	5.8893E + 05	3.7221E + 08	1.0686E + 11	371.04	1.4633E + 06
315.503	0.9054	4.000430	1906.73	3.1753E + 05	1.6228E + 08	1.1618E + 11	652.84	Nc
317.001	0.9054	4.000960	1898.53	3.5935E + 05	3.1909E + 08	1.5155E+11	691.09	-6.6259E + 05
319.996	0.9054	4.001550	2208.23	2.1628E + 05	5.2297E + 07	1.5164E + 10	859.39	1.6584E + 04
312.988	0.9356	3.993610	373.41	4.7773E + 05	Nc	Nc	373.41	Nc
314.148	0.9356	3.993830	382.54	6.7523E + 05	Nc	Nc	382.54	Nc
315.499	0.9356	3.994280	543.39	3.8613E + 05	Nc	Nc	330.66	3.5384E + 04
317.005	0.9356	3.993200	353.29	1.8728E + 05	Nc	Nc	353.29	Nc
320.002	0.9356	3.993630	369.05	2.5230E + 05	Nc	Nc	369.05	Nc
$(^{1}): Nc =$	= No calcul	ado; el pará	metro no ha sic	do necesario o r	no mejora el aju	iste de las curva	as.	

Tabla E.2: Resultados de los ajustes de $p_1(\tau)$, $p_2(\tau)$ y $\hat{p}(\tau)$. Parámetros obtenidos de los ajustes locales, (Fin).

Gráficas P- τ alrededor de los puntos de quiebre.

Figura E.1: Transición L_P – G a 313.00 K y 314.16 K, $x_{etano} = 0.7188$

Figura E.2: Transición L
P– G a 315.01 K y 317.00 K, \mathbf{x}{etano} = 0.7188

Figura E.3: Transición $L_P - G$ a 320.00 K, $x_{etano} = 0.7188$ y 312.00 K, $x_{etano} = 0.7607$

Figura E.4: Transición L_P – G a 313.01 K, $x_{etano} = 0.7767$ y 313.50 K, $x_{etano} = 0.7607$

Figura E.5: Transición L_P – G a 314.18 K, $x_{etano} = 0.7767$ y 314.56 K, $x_{etano} = 0.7607$

Figura E.6: Transición $L_P - G$ a 315.00 K, $x_{etano} = 0.7767$ y 317.00 K, $x_{etano} = 0.7607$

Figura E.7: Transición L_P – G a 320.00 K, x_{etano} = 0.7607 y L_P – L_L a 313.00 K, x_{etano} = 0.7910

Figura E.8: Transición $\mathcal{L}_P - \mathcal{L}_L$ a 314.16 K y 315.00 K, \mathbf{x}_{etano} = 0.8303

Figura E.9: Transición \mathcal{L}_P – G a 317.00 K y 320.01 K, \mathcal{x}_{etano} = 0.8303

Figura E.10: Transición $\mathcal{L}_P - \mathcal{L}_L$ a 313.51 K y 314.15 K, $\mathbf{x}_{etano} = 0.8547$

Figura E.11: Transición L
_P– L_La 315.01 K y L $_P$ – G a 317.01 K,
x_{etano} = 0.8547

Figura E.12: Transición L
P– G a 320.01 K, x ${etano} = 0.8547$ y L
_L– L
P a 313.00 K, x ${etano} = 0.8741$

Figura E.13: Transición L_L – L_P a 314.15 K y 315.00 K, $x_{etano} = 0.8741$

Figura E.14: Transición \mathcal{L}_L – G a 317.00 K y 320.00 K, \mathbf{x}_{etano} = 0.8741

Figura E.15: Transición \mathcal{L}_L – \mathcal{L}_P a 313.01 K y 314.16 K, \mathbf{x}_{etano} = 0.9054

Figura E.16: Transición \mathcal{L}_P – G a 314.51 K y 315.00 K, \mathbf{x}_{etano} = 0.9054

Figura E.17: Transición \mathcal{L}_P – G a 315.50 K y 317.00 K, \mathbf{x}_{etano} = 0.9054

Figura E.18: Transición \mathcal{L}_P – G a 320.00 K, $\mathcal{x}_{etano}=0.9054$ y 312.99 K, $\mathcal{x}_{etano}=0.9356$

Figura E.19: Transición \mathcal{L}_P – G a 314.15 K y 315.50 K, \mathcal{x}_{etano} = 0.9356

Figura E.20: Transición \mathcal{L}_P – G a 317.01 K y 320.00 K, \mathbf{x}_{etano} = 0.9356

Apéndice F

Etano + 1-propanol: P, ρ , T a \mathbf{x}_{etano} Constante

Se presentan aquí las gráficas de los datos experimentales obtenidos para el sistema etano + 1-propanol en el plano P – ρ a composición constante de la mezcla. Las gráficas muestran todo el intervalo de presión, desde los puntos de saturación hasta aproximadamente 400 bar (figuras a la izquierda), y un acercamiento, a cada composición, en la región de las transiciones de fases (figuras a la derecha).

Figura F.2: Isotermas y región de transición de fases a $\mathbf{x}_{etano}=0.7607$

Figura F.4: Isotermas y región de transición de fases a $\mathbf{x}_{etano} = 0.8303$

Figura F.5: Isotermas y región de transición de fases a $\mathbf{x}_{etano}=0.8547$

Figura F.6: Isotermas y región de transición de fases a $\mathbf{x}_{etano} = 0.8741$

Figura F.7: Isotermas y región de transición de fases a $x_{etano} = 0.9054$

Figura F.8: Isotermas y región de transición de fases a $\mathbf{x}_{etano} = 0.9356$

Apéndice G

Etano + 1-propanol: P, ρ , \mathbf{x}_{etano} a T Constante

Las temperaturas indicadas en los pies de figuras son nominales. Corresponden al promedio de las temperaturas de todas las isotermas presentadas. En los títulos de las figuras se indica de cuanto fluctúa la temperatura alrededor del promedio para todas las isotermas. Por ejemplo: 313.00 K \pm 0.02 K significa que el promedio de temperatura en la gráfica es de 313.00 K con un intervalo de variación de \pm 0.02 K.

Isotermas a 313.00 K \pm 0.02 K

Figura G.1: Isotermas y región de transición de fases a 313.00 K

Isotermas a 314.15 K \pm 0.03 K

Figura G.2: Isotermas y región de transición de fases a 314.15 K

Isotermas a 315.00 K \pm 0.02 K

Figura G.3: Isotermas y región de transición de fases a 315.00 K

Isotermas a 317.00 K \pm 0.02 K

Figura G.4: Isotermas y región de transición de fases a 317.00 K

Isotermas a 320.00 K \pm 0.01 K

Figura G.5: Isotermas y región de transición de fases a 320.00 K

IPN, 2004