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Resumen

Implementamos y desarrollamos una Computadora Neural Diferenciable, estudiamos su arquitectura,
características y capacidades. Se realizaron pruebas mediante un conjunto de tareas algorítmicas bási-
cas y se llevó a cabo una comparación con su modelo predecesor; La Máquina de Turing Neuronal. Se
proporciona un marco teórico extenso sobre el funcionamiento de la Computadora Neural Diferen-
ciable. Los resultados preeliminares muestran el cómo la Computadora Neural Diferenciable es capáz
inferir algoritmos simples al igual que las Máquinas de Turing Neuronales pero de manera más eficaz
y eficiente, y también cómo este modelo tiene la capacidad de generalizar resultados sin la necesidad
de entrenarlo nuevamente.
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Abstract

We developed a Differentiable Neural Computer and studied its architecture, characteristics, and ca-
pabilities. We tested the DNC through a set of basic tasks and made a benchmark versus its predeces-
sor; The Neural Turing Machine. Also, we provide an extensive theoretical framework about how the
Differentiable Neural Computer works. Preliminary results show that Differentiable Neural Comput-
ers can infer simple algorithms like Neural Turing Machines but in a more efficient and efficacy way,
and also has the capability of generalizing results without retraining the model.

Keywords: Neural networks, Differentiable Neural Computer, Machine learning
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Chapter 1

Introduction

1.1 Introduction

Based on traditional computer architecture, in 2014, Alex Graves et. al. published an article called
”Neural Turing Machines” [1], where they introduced a neural network-based machine architecture
and how it works when solving complex and well-structured problems. The main idea was extending
the current neural network capability by an external memory expansion, this should be useful when
storing information in long-time periods. Alex Graves said that DNC’s architecture is similar to Von
Neumann classical computer architecture, with themain difference that Neural TuringMachine is fully
differentiable, which implies that it can be trained with any current neural network training method.

The Neural Turing Machine is, in general, a recurrent neural network. The main Neural Turing
Machine architecture component is the controller. The controller is a neural network that uses the
previous and current time-step information for producing an information vector, that posteriorly will
be used for calculating the current time-step output, and additionally, will be used for accomplishing
the memory interaction by generating the reading parameters and the writing parameters. What is
pretended with the Alex Graves’ investigation, is to demonstrate that a neural network can learn how
solving algorithmic tasks using examples as structured inputs, like Zaremba and Sutskever [2] did,
with the difference that Zaremba and Sutskever used Long-Short Term Memories and Alex Graves
proposed his own architecture. With this in mind, Alex Graves added an additional memory to a
neural network, with the confidence that it could work as a traditional computer memory unit, that is,
for storing variables through an algorithm execution, what could be useful for maintaining long-time
information and its dependencies.

In the original article, the Neural Turing Machine’s functionality isn’t good explained [1], but in 2017,
Omar Gutierrez [3] graded with a thesis where he proposed his own NTM’s components. Omar
Gutierrez’s components worked with two specific tasks proposed originally by Alex Graves [1].

In 2016, Alex Graves et.al. published another article called ”Hybrid computing using a neural net-
work with dynamic external memory” [4], where he showed the Neural Turing Machine’s evolution;
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1.2. PROBLEM

the Differentiable Neural Computer (DNC). DNC’s model was based on the same Neural Turing Ma-
chine’s principle: Extends a neural network with an external memory. The main differences between
Neural TuringMachine andDifferentiable Neural Computer are, thememory addressing access mech-
anisms, a secondary memory used when sequential memory readings, and memory usage efficiency.
DNC’s changes helped for accomplishing better results than previous models.

Differentiable Neural Computer showed its capability for understanding structured data, and for learn-
ing that data usage. Its performancewas goodwhen solving synthetic question answering, graphs paths,
and puzzle experiments when using small instances. They argue that for solving bigger problems, is
just needed to modify the external memory size. The input data was structured, which indicates the
model’s capability when understanding structured data. The memory usage and the information inter-
pretation is shown in the article videos.

Given that neural networks compose the state of art in many topics, is important to know all DNC’s
mechanisms for attacking those problems where the most studied models don’t work. The DNC’s ben-
efit is the full differentiation, it means, that the model can be trained using backpropagation algorithm,
only by feeding it with examples(in supervised learning), so, for the proposed Alex Graves’ tasks the
model can learn how solving them by itself. Now, Differentiable Neural Computer was only tested
with simple algorithms, but getting the DNC’s mechanisms knowledge will help us to understand it
better, and adapt it for solving new problems.

1.2 Problem

In traditional computers, the computing is done by the processor, using a directional memory, this al-
lows storing information as variables during the execution. Variables have a very important role when
collecting and storing information: preserves data in a registers table, storing previous calculus infor-
mation for its future use, and storing individual information that must be globally available through
the application [5]. By contrast, with a computer, in neural networks, that information is mixed in
neural network’s weights and in the neuron functionality, so, while the task memory demand increase,
neural networks cannot store new information dynamically, neither the learning algorithms can act
independently of generated tasks values. Despite the utility of neural networks when learning tasks,
these are limited in variables representation, structured data understanding, and storing information
over long time periods [4].

In order to attack this problem, Alex Graves introduced a model named Differentiable Neural Com-
puter [4], that is in general, a neural network with logical mechanisms and an extended external mem-
ory, which helps when solving harder problems than a classical neural network. The extended DNC’s
memory helps the model for long time periods information storing(such as a computer does), which
increases the data ’s model storing capability, useful for interpreting structured inputs and examples-
based algorithmic tasks learning. It’s important to understand the DNC, its mechanisms, how they
work and test its capabilities, with the aim of attacking different problems varieties that current neural

CHAPTER 1. INTRODUCTION 2
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network models can’t.

1.3 Goals

Understand and explain the ideas behind Differentiable Neural Computers. In particular, we want to
study the way in which DNC’s interact with an external memory unit.

1.3.1 Subgoals

• Study the main Neural Turing Machine’s architectural components.

• Implement the Neural Turing Machine.

• Use the Neural Turing Machine for testing a set of basic tasks, including the ”associative recall”
and the ”copy” tasks.

• Study the main Differentiable Neural Computers’ architectural components.

• Implement the Differentiable Neural Computer.

• Use theDifferentiable Neural Computer for testing a set of basic tasks, including the ”associative
recall” and the ”copy” tasks.

• Compare Neural Turing Machine’s and Differentiable Neural Computer’s performance when
training and testing the basic tasks.

• Use the Differentiable Neural Computer in a basic task for validating generalization.

1.4 Justification

Neural networks are important in sensorial processing, sequential learning, and reinforcement learning
fields, but despite its potential, they have limited capability when storing useful information and data
interpretation in long time-scales [4].

Algorithmic solutions are used in many tasks, despite whether they are efficient or not, but in order
to solve our problem, we must use them. NP problems lay here. NP is the set of problems where
exists an efficient certifier [6], that means, they can be efficiently checked independently whether they
can be solved efficiently or not. The most common approaches for tackling NP-hard problems are,
using approximation algorithms and general meta-heuristics. While approximation algorithms pro-
vide rigorous approximation factors, by exploiting relevant problem structures, meta-heuristics move

CHAPTER 1. INTRODUCTION 3



1.5. CONTRIBUTIONS

in the problem solutions space by following analogies from nature or other places (like neural net-
works). These techniques have been evaluated experimentally and have demonstrated their usefulness
for solving practical problems [7].

Given that neural networks are meta-heuristics models, they are useful for solving NP problems and
other problems’ variety because of their approximation solutions capabilities. Also, neural networks
are an important study and research topic, but they don’t have the representing structured data and long
timescales storing capability. This problem was treated by Alex Graves when he introduced Neural
Turing Machines and two years later its evolution: Differentiable Neural Computer. The limitation
of neural networks memory was tackled with an external memory, which also includes differentiable
mechanisms for managing it. These features gave a powerful differentiable model, and in consequence
trainable [4]. Given the metaheuristics models importance in many areas, especially neural networks
importance, study Alex Graves’ architecture becomes important in order to attack tasks that requires
algorithmic methods, and in consequence, an extense memory.

So, could a DNC solve problems that current methods cannot? In order to answer this question, we
will get you the knowledge that Differentiable Neural Computer involves and will evaluate whether it
could become a metaheuristics solutions powerful and a principal tool.

1.5 Contributions

The contributions that are pretended to cover with this study are:

• A Differentiable Neural Computer detailed description and how it works based on existent in-
formation and experimental results, going from general to particular aspects.

• A task test set of different sizes used when evaluating the model’s performance.

• An own Differentiable Neural Computer implementation, free and well explained, with the aim
of strengthen the knowledge for those interested people on use, modify or study it.

1.6 Organization

This thesis is separated into six chapters. The first chapter contains the abstract, goals, and justification.
It is the first Differentiable Neural Computer approach.

In the second chapter, the theoretical framework can be found. There we explain the necessary theo-
retical bases.

The third chapter was written for explaining all about Differentiable Neural Computer: model, mech-
anisms, memory functionality, etc. All information is divided according to the explained functionality,
like, memory writing, memory reading, output generation, etc.

CHAPTER 1. INTRODUCTION 4



1.6. ORGANIZATION

The fourth chapter shows how DNC was developed. To get or explore the full code, you can access
the next repository https://github.com/cobu93/DNC.

In the fifth chapter, all tested tasks are described. Also, the comparison between NTM’s and DNC’s
tests are explained, and the results are exposed. Also, some DNC’s features are tested.

Finally, the last chapter includes the conclusion about this thesis, the final contributions, and future
work.

CHAPTER 1. INTRODUCTION 5
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Chapter 2

Theoretical Framework

2.1 Neural Networks

The neurocomputing beginning is considered with McCulloch y Pitts’ published article [8] in 1943.
There they showed how the neurons work in function of arithmetical and logical functions. They in-
troduced the term ”neuron net” and found that all networks work under the same principle. Combined
with specific learning Hebb’s theory [9], used in neurons synapses, we can explain the neural

Artificial neural networks are computing models, biological neural networks inspired. These artificial
neural networks are designed for learning such as biological models do; with reverberatory activity
persistence or repetition [9], that means, that if we provide enough certain activity’s information to a
neural network, it will learn how to develop that task.

2.1.1 Feedforward network

Basic neural networkmodels are called feedforward neural networks, ormultilayer perceptrons(MLPs),
are the quintessential deep learning models. The feedforward network’s goal is approximating some
function f ∗. A feedforward network defines a mapping y = f(x;w) and learns the parameters values
w, what results in the best approximation function. These models are called feedforward because the
information flows through the function being evaluated from x, after, the intermediate computations
used for defining f , and finally, to the output y. There are no feedback connections to itself [10].

Feedforward neural networks are called networks because they are typically represented by composing
together many different functions. The model is associated with a directed acyclic graph, describing
how the functions are composed together.

Specifically, they can be described as a functional transformations combination [11]. First, we con-
structM linear inputs variables combinations x = (x1, · · · , xD)

T as next:

6



2.1. NEURAL NETWORKS

a
(1)
j =

D∑
i=1

w
(1)
ji xi + w

(1)
j0

where j = 1, · · · ,M , and the superscript (1) indicates the first layer network parameters. We shall
refer to wji parameters as weights and wj0 ones as biases. Each one is then transformed using a
differentiable, and usually, nonlinear activation function f (1)(·) to get

z
(1)
j = f (1)

(
a
(1)
j

)
Where z(1) = (z1, · · · , zM) is used as the next layer input, which in context is called hidden layer,
and output is used for the next layer and so on.

So, it is written as a generalized function

a
(l)
k =

N∑
j=1

w
(l)
kj z

(l)
j + w

(l)
k0

z
(l)
k = f (l)

(
a
(l)
k

)
Figure 2.1 shows a feedforward neural network graphic model, just as we said, it has a directed acyclic
graph representation.

Figure 2.1: A feedforward neural network graphical model.
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2.1. NEURAL NETWORKS

2.1.2 Activation functions

Feedforward networks have introduced the hidden layer concept, and this requires to choose the acti-
vation functions that will be used for computing the hidden layer values [10]. Below, some activation
functions are introduced. These functions will be used through all document.

2.1.2.1 Hyperbolic tangent

The hyperbolic tangent definition is

tanh(x) =
ex − e−x

ex + e−x

Domain: R
Image: (−1, 1)

Figure 2.2 shows a function plot

Figure 2.2: The hyperbolic tangent plot.

2.1.2.2 Oneplus

The oneplus function definition is
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oneplus(x) = 1 + log(1 + ex)

Domain: R
Image: (1,∞)

The figure 2.3 shows a function plot

Figure 2.3: The oneplus function plot.

2.1.2.3 Sigmoid

The sigmoid function definition is

σ(x) =
1

1 + e−x

Domain: R
Image: (0, 1)

The figure 2.4 shows a function plot
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Figure 2.4: The sigmoid function plot.

2.1.2.4 Softplus

The softplus definition function is

sofplus(x) = log(1 + ex)

Domain: R
Image: (0,∞)

The figure 2.5 shows a function plot

The softmax function can be described as a probability function, where the output is a normalized
vector.

softmax(x)j =
exj∑K
k=1 e

xk

Domain: {x = (x1, · · · , xK) ∈ RK}
Image: {z = (z1, · · · , zK) ∈ RK :

∑K
j=1 zj = 1, zj ≥ 0,∀j}

In this document, we will use next softmax notation
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Figure 2.5: The softplus function plot.

SN =

{
z ∈ RN : zi ∈ [0, 1],

N∑
i=1

zi = 1

}

2.1.3 Recurrent neural networks

The recurrent neural networks(RNN) are a neural networks family used for sequential processing
data [10]. A recurrent neural network looks like a feedforward neural network, with the exception
that they contain backward pointing connections [12].

The figure 2.6 shows an RNN basic architecture. RNN backward connections can be appreciated in
the left part of figure 2.6. Also, a recurrent neural network can be imagined as a feedforward network
unrolled it over the time, just as in the right part of the figure.

The RNN’s parameters and activation functions are shared along the time, that is, for all inputs, the
same updating rule is applied, and depending on fed sequential data(past and present data), the weights
will be updating. This shared information and the sequential data use allows maintaining dependencies
over some time-steps and give us information about future behavior depending on past behavior.

Given that the current output depends on present and past input data, and updating rule, we can express
current output as
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Figure 2.6: The Recurrent Neural Network architecture.

ht = g(ht−1,xt;θ)

where all learnable parameters are expressed by θ.

The RNN’s simple output can be expressed by the last-time output, and the last time output depends
on the previous one and so on, so, that behavior equation is expressed below

ht = yt = f(Wxxt +Whht−1 + b)

More complexmodels can be designed, despite that themodel shown here is a very simple RNNmodel,
for example, making different ht from yt, and applying one or more stacked activation functions, that
is, stacking more cells over the recurrent cell output, we can get results like shown in figure 2.7

Figure 2.7: The Recurrent Neural Network: yt 6= ht.
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Its equations are different, so, for that model, we can consider these two equations

ht = f (1)(Wxxt +Whht−1 + b)

yt = f (n)
(
Wf (n)f (n−1)

(
· · · f (2)(Wf (2)ht + b

(2))
)
+ b(n)

)
The backward connections can be applied in whatever layer. The output from an RNN can be obtained
in different ways. The first way is to simultaneously take an inputs sequence and produce an outputs
sequence(figure 2.8 top-left network). This retrieve type is useful, for example, for predicting time
series such as stock prices. You feed the network with the last N days prices and the output will be
the predicted ones.

Alternatively, you could feed the networkwith an inputs sequence, and ignore all outputs except the last
one(figure 2.8 top-right network). To get a movie sentimental score, a words sequence, corresponding
to a movie review, can be fed to the neural network (e.g., from −1 [hate] to +1 [love]).

The third method is when you feed the network with a single input, at the first time-step (and zeros
for all other time steps), and recover the full output sequence (figure 2.8 bottom-left network). This
is a vector-to-sequence network. The input could be an image and its caption will be the output.

Lastly, you could have a sequence-to-vector network, called an encoder, followed by a vector-to-
sequence network, called a decoder (figure 2.8 bottom-right network). This method can be used for
translating a sentence from one language to another. You feed the network with a sentence in one
language, then the encoder converts this sentence into a single vector representation. and finally. the
decoder converts this vector into another language sentence [12].

2.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) cell can be considered as a black box. It can be used as a
basic RNN cell, with the exception, that it will perform much better, what means that the training will
converge faster and the long-term data dependencies will be detected [12].

To talk of an LSTMas an RNNbasic cell means that it can be considered as an activation function, with
the difference that it is a more complex mechanism that includes multiple operations. The information
is kept in this cell over a long time-step unlike a simple RNN because the information is stored only
in shared weights.

The figure 2.9 shows how an LSTM cell looks like. One of the differences is that two headers are
kept by this cells’ type, ht and ct, where the short-term state and long-term state are represented. The
mechanism can be thought as [12]:
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Figure 2.8: The Recurrent Neural Network outputs.

• The control of what long-term state part should be erased lay in the forget gate(ft).

• The control of what gt part should be added to the long-term state lay on the input gate(it ).
This is why we said that it was only ”partially stored”.

• Finally, the control of what long-term state parts should be read and outputted at this time-step
is the output gate(ot) job.

The LSTM cell equations is below

it = σ
(
W T

xixt +W T
hiht−1 + bi

)
f t = σ

(
W T

xfxt +W T
hfht−1 + bf

)
ot = σ

(
W T

xoxt +W T
hoht−1 + bo

)
gt = tanh

(
W T

xgxt +W T
hght−1 + bg

)
ct = f t ⊗ ct−1 + it ⊗ gt
yt = ht = ot + tanh (ct)

The figure 2.10 shows a high-level basic LSTM diagram used in an example. For get the LSTM
output, we can use those simple RNN methods showed before, so, the LSTM cell is just an RNN cell
modification which provides more ”memory”.
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Figure 2.9: A Long Short-Term Memory cell

Figure 2.10: A Long Short-Term Memory basic usage.
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2.3 Neural Turing Machine

The Neural Turing Machine was the first Alex Graves proposed mode, this was in 2014 [1]. A Neural
Turing Machine (NTM) is a machine learning model that includes a neural network with a joined
external dynamic memory that can be accessed by differentiable addressing mechanisms, so, it can
be trained. For representing and handling complex structured data, NTM can learn how managing its
memory like a computer, with the main difference that it does use examples [3].

The Neural Turing Machine’s principal features are:

• It is a full differentiable model.

• Can be trained using gradient descent and backpropagation algorithms.

• Instead of using deterministic methods, the NTM can learn how managing the memory.

• Merge neural network and programmable computer capabilities.

• It has finite memory.

An NTM has two basic components: A neural network that works as a controller(neural controller)
and a memory(memory matrix). The neural controller interacts with the environment via the input
and output vectors, but either decide where reading or writing content in the memory through attention
processes.

Figure 2.11: The Neural Turing Machine’s architecture.

In Alex Graves’ article [1] isn’t well specified how Neural Turing Machine works, he only gave an
overview, but, Omar Gutierrez’s thesis [3] shows an option for developing it and how it possibly works.

Omar Gutierrez provided a high level diagram (figure 2.12) and proposed next elements:

• Neural controller.
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• Output layer.

• Write header.

• Read header.

• Write addressing mechanism.

• Read addressing mechanism.

• Write operation.

• Read operation.

• Memory.

Taking figure 2.12 as reference, on each time step t, the proposed functionality is:

1. The neural controller receives the input xt and the read vector rt.

2. The controller generates the vector state ht.

3. The output layer uses ht for generating Y t.

4. The header receives ht for generating k̂t, β̂t, ĝt, ŝt and γ̂t (If it is a write header, additionally
generates êt and ât,).

5. Different layers processes the parameters for specified rules adjusting. Finally the head emits
kt, βt, gt, st and γt (If it is a write header additionally generates et and at).

6. The addressing mechanism(reading or writing) uses they own parameters kt, βt, gt, st, γt and
some last time vectors; Mt−1 and ww

t−1 if it is writing addressing, or wr
t−1 if it is a reading

mechanism, for generating ww
t and wr

t respectively.

7. The writing operation takes ww
t , et, at and Mt−1 for obtaining the newmemory matrix state

Mt.

8. The reading operation getsMt and wr
t for emitting rt
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Figure 2.12: Omar Gutierrez’s Neural Turing Machine diagram
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Chapter 3

Differentiable Neural Computer

3.1 Introduction

In 2016, Alex Graves published an article [4] where he proposed a new architecture for neural net-
works, it was taken as the evolution of the Neural TuringMachine and the new architecture was named
Differentiable Neural Computer (DNC), which consists of a neural network that can read from and
write to an external memory matrix, analogous to a conventional computer random-access memory.
Like a conventional computer, it can use its memory for representing and manipulating complex data
structures, but, like a neural network, it can learn how to do so from data.

Alex Graves and his colleagues demonstrated that the DNC is able for solving multiple problems, as
answering synthetic questions, find the shortest path between two specified points in a directed graph,
inferring missed links in randomly generated graphs and complete puzzles. Their results demonstrate
that DNCs have the capability for solving complex, and well-structured tasks, that are inaccessible for
neural networks without an external readable-writeable memory.

The principal model’s characteristic is that it is analogous to a classical computer, that is, the compu-
tation and the memory are modularly separated. The computation is performed by a processor, which
in order to bring operands in and out of play uses an addressable memory conferring two important
benefits: the use of extensible storage to write the new information and the ability to treat the contents
of memory as variables. The variables are critical to an algorithm generality: To perform the same
procedure on the data invariantly to the content and the algorithm only has to change the address it
reads from.

In contrast to the computers, the computational and the memory resources of artificial neural networks
are mixed together in the network weights and the neuron activity. This is a major liability: as the task
memory demands increase, storage cannot be allocated dynamically for this networks, nor easily learn
algorithms that act independently of the values realized by the task variables. The neural networks
are limited in their ability to represent variables and data structures as well as to store data over long
timescales without interference.
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Alex Graves’ model aims to combine the advantages of neural and computational processing by pro-
viding a neural network with an external memory. Is important to mention that the whole system is
differentiable, and can, therefore, be trained end-to-end with gradient descent, allowing to the network
to learn how to operate and organize the memory in a goal-directed manner.

3.2 Architecture

The Differentiable Neural Computer is a model that aims to couple an external memory and a neural
network. The behavior of the network and the memory size are independent as long as the memory
is not filled to capacity, which is why the memory is considered as external.

While we considered the external memory as a random-access memory the neural network referred
to as the controller can be thought as a differentiable CPU whose operations are learned by training
methods.

Whereas the conventional computers use unique addresses for accessing memory contents, the DNC
uses differentiable attention mechanisms for defining distributions over the memory rows in a memory
matrix. These distributions, called weightings, represent the degree to which each location is involved
in a reading or writing operations.

Below, the process involved in each DNC’s operation will be described for explaining completely how
mechanisms were developed in for generating a functional model.

3.2.1 Controller

The controller is a neural network that is analogous to a CPU, that is, it manages the memory ac-
cess, but, the main idea, is that neural network should achieve that only with examples (in supervised
learning) or by the environment information(reinforcement learning).

LetN the controller, at every time-step t it receives a vector xt ∈ RX from the dataset or the environ-
ment and produces an output vector yt ∈ RY that parameterizes either a predictive distribution for a
target vector zt ∈ RY (supervised learning) or an action distribution (reinforcement learning). Ad-
ditionally, the controller also receives a set of R read vectors r1t−1, r

2
t−1, · · · , rRt−1 where rit−1 ∈ RN

represents the rows in the memory matrixM ∈ RN×W obtained via read-heads on the previous time-
step. It then emits an interface vector ξt that defines its interactions with the memory at the current
time-step via reading, writing and addressing operations.

For notational convenience, the read and the input vectors are concatenated for generating a single
controller input vector χt = [xt; r

1
t−1; · · · ; rRt−1]. The controller can be any type of neural network

as we mention later. Next equations models the Alex Graves proposed controller:
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ilt = σ
(
W l

i [χt;h
l
t−1;h

l−1
t ] + bli

)
f l

t = σ
(
W l

f [χt;h
l
t−1;h

l−1
t ] + blf

)
olt = σ

(
W l

o[χt;h
l
t−1;h

l−1
t ] + blo

)
glt = tanh

(
W l

g[χt;h
l
t−1;h

l−1
t ] + blg

)
clt = f

l
tc

l
t−1 + i

l
tgt

hl
t = o

l
t + tanh

(
clt
)

Whereh0
t = 0 for all t andhl

0 = s
l
0 = 0 for all l. TheW indicates the learnable weights (for example,

W l
i symbolizes the weights matrix going into the layer-l input gates) and b denotes the learnable biases.

Almost all our tests used a feedforward neural controller, but the LSTM controller was not discarded.
Also, a one-layer LSTM controller was used, and the figure 3.2 shows how it is. The next equations
are followed by our feedforward controller:

ht = tanh (Whχt + bh) = tanh
(
Wh[xt; r

1
t−1; · · · ; rRt−1] + bh

)
Where, as in LSTM controller,Wh indicates the learnable weights matrix and bh denotes the learnable
biases vector. The ht vector initialization is defined by h0 = 0.

Figure 3.1: A graphic model for a feed forward neural network controller.

The model suggests that at each time-step, despite the controller type, an output vector υt ∈ RY and
an interface vector ξt ∈ R(W×R)+3W+5R+3 must be emitted. For an LSTM those vectors are defined
as:
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Figure 3.2: A graphic model for an one layer LSTM controller.

υt = Wy[h
1
t ; · · · ;hl

t]

ξt = Wξ[h
1
t ; · · · ;hl

t]

The output can be taken as a function of the complete history (υt, ξt) = N ([χ1; · · · ;χt];θ) in case
of a recurrent controller, or a function of the last-time state in case of the feed-forward controller
(υt, ξt) = N (χt;θ), where θ defines the set of trainable parameters. Finally, the sum of the υt

vector and the concatenation of the current read vectors [r1t ; · · · ; rRt ] multiplied by the RW × ​Y
weight matrixWr defines the output vector yt.

yt = υt +Wr[r
1
t ; · · · ; rRt ]

This arrangement allows the DNC for conditioning its output decisions on memory that has just been
read, so, the only way to pass information back to the controller is creating a cycle in the process, used
for generating the υt+1 vector.

3.2.2 Interface parameters

The controller generates the interface parameters vector ξt. The dimensionality ξt ∈ R(W×R)+3W+5R+3

is because it must be divided as follows (The parameters dimensions are shown in table 3.1):

ξt =
[
kr,1
t ; · · · ;kr,R

t ; β̂r,1
t ; · · · ; β̂r,R

t ;kw
t ; β̂

w
t ; êt;vt; f̂

1
t ; · · · ; f̂R

t ; ĝ
a
t ; ĝ

w
t ; π̂

1
t ; · · · ; π̂R

t

]
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To ensure that each one of these pieces lies in the correct domain, they are processed in order for
getting the next parameters:

Parameter Preprocessed parameter Final parameter Dimension Domain
R read keys kr,i

t ; 1 ≤ i ≤ R kr,i
t W ×R kr,i

t ∈ RW

R read strengths β̂r,i
t ; 1 ≤ i ≤ R βr,i

t = oneplus(β̂r,i
t ) R βr,i

t ∈ [1,∞)
A write key kw

t kw
t W kw

t ∈ RW

A write strength β̂w
t βw

t = oneplus(β̂w
t ) 1 βw

t ∈ [1,∞)
An erase vector êt et = σ(êt) W et ∈ [0, 1]W

A write vector vt vt W vt ∈ RW

R free gates f̂ i
t ; 1 ≤ i ≤ R f i

t = σ(f̂ i
t ) R f i

t ∈ [0, 1]
An allocation gate ĝat gat = σ(ĝat ) 1 gat ∈ [0, 1]
A write gate ĝwt gwt = σ(ĝwt ) 1 gat ∈ [0, 1]

R read modes π̂i
t; 1 ≤ i ≤ R πi

t = softmax(π̂i
t) 3×R πi

t ∈ S3

Table 3.1: The interface parameters processing.

In our propossed model, the parameters are not generated as controller information purely extracted,
what we do is to extract an ht vector(showed in last section) interpreted as main information from
reading vectors, then that vector is passed as to multiple neural networks for getting desired parame-
ters. Figure 3.3 shows a graphical model of how this is done.

Figure 3.3: A representative model of the interface parameters generation.

In following sections, how these parameters are used is explained.

3.2.3 Memory Addressing
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The model uses a combination of content-based addressing and dynamic memory allocation for de-
termining where to write in memory, and a combination of content-based addressing and temporal
memory linkage for determining where to read. These mechanisms, all of which are parameterized
by the interface parameters obtained from the vector ξt which was emitted by the controller.

3.2.3.1 Content-based addressing

The content lookup(for reading or writing) on memoryM ∈ RN×W use the following function:

C(M,k, β)[i] =
eD(k,M [i,·])β∑
j e

D(k,M [j,·])β

where k ∈ RW is a lookup key obtained via interface parameters vector either write or read operation,
β ∈ [1,∞) is a scalar representing a key strength also obtained by the interface parameters vector
either read or write operation,M [i, ·],M [j, ·] ∈ RW represents the ith and jth rows of memory matrix
respectively, and finally, D is the cosine similarity defined by:

D(u,v) =
u · v

||u||||v||

The weighting C(M,k, β) ∈ SN defines a normalized probability distribution over the memory loca-
tions.

Figure 3.4 represents graphically how content-based addressing works. The cosine similarity is a
similitude measure, then, when we compare the key k with each memory row the closer rows are the
third and the fifth, the other rows are almost orthogonal, so, the similitude is low, that is the reason
because the probability distribution represented by the content vector c is more concentrated in the
third and the fifth slots. The intensity factor β functionality is for increasing the difference between
the most similar vectors and the less ones.

Figure 3.4: A graphic model for the DNC content-based addressing.
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3.2.3.2 Dynamic memory allocation

The dynamic memory allocation is an operation used exclusively for writing weights. It allow the
controller for free and allocate memory as needed, this is by developing an analogous of the ”free list”
method, it is, to keep the information in those slots where the information is accesed constinuously
and free(erase) information on those where information is less accessed. Letut ∈ [0, 1]N the memory
usage vector at time t, and define u0 = 0.

When the controller emits the interface parameters vector, it includes a free gates f i
t set, one per

reading head, that determines whether the most recently read locations can be freed. The free gates
are used for defining the retention vector ψt ∈ [0, 1]N that represents by how many each location will
not be freed, and it is defined by:

ψt =
R∏
i=1

(
1− f i

tw
r,i
t−1

)
Where additionally, the ith last time read weights vector is wr,i

t−1.

Figure 3.5 shows the memory retention vector generation. Here, the free gates f are represented in
three values, the first(f 1

t ) is high, the second(f i
t ) is medium and the third(fR

t ) is low. The read weights
are equal for simplicity. The forget gates and the read weighting product means how much the read
weighting vector will be forgotten, and its complement represents how much they will be maintained.
That causes that the first complement (1− f 1

tw
r,1
t−1[j]) is low, the second one is medium and the third

is high. When these values are multiplied the retention vector will be obtained. Here the retention
vector has medium values because at least, one read weighting slot uses the ith space. The retention
vector means by how much each memory matrix column slot will be kept.

Once defined and obtained the memory retention vector ψt we can define the usage vector ut as:

ut =
(
ut−1 +w

w
t−1 − ut−1 �ww

t−1

)
�ψt

Where the element-wise product is denoted by�. The informationwill bemore retainedwhileψt[i] ≈
1. The operations inside the parentheses can be interpreted as how much each location was used in
the last time-step. The multiplication defines that those locations with more usage must be retained.
The usage of each location will increase up to a maximum of 1 with every writing and can only be
subsequently decreased to a minimum of 0 using the free gates. The ut vector elements are therefore
bounded in the range [0, 1].

Figure 3.6 shows a graphical model of how usage vector is generated. The first done operation(ut−1�
ww

t−1 ∈ [0, 1]N ) indicates a direct proportionality between how much was used a memory row slot(a
memory column) in the last time-step and how much we want to write in there. If we were using a
slot and we want to write in the same memory slot then the value will be high, if we were not using a
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Figure 3.5: A graphic model for the DNC memory retention vector generation.

memory slot and we want to write on it, and vice-versa, the value will be medium, finally, if we were
not using a memory slot and we do not want to write in there the value will be low. All combinations
are represented in the orange vector. Is important mentioning that given the usage vector domain
and the write weighting domain w ∈ ∆N this operation follows the restriction (ut−1 �ww

t−1)[j] ≤
ut−1,w

w
t−1.

The second operation (ww
t−1−ut−1�ww

t−1) indicates, in general terms, how much I can write where
I want to write in each memory slot. This attenuates the write weighting and can be considered as
a writing verification because it validates if is necessary depending on the previous use. The brown
vector indicates this operation. All combinations are included because of the write weighting ww

t−1

dependence.

The third operation (ut−1 +w
w
t−1 − ut−1 �ww

t−1) gives meaning to all these calculations. It can be
interpreted as the memory use increase depending on if we want to write in a memory slot.

Finally, the last operation will increase the difference between the low and high values in the third
operation, depending on if themodel decides to keep the information or not. This makes sense because
if a memory slot does not need to be retained, it has no use and vice-versa.

Onceut has been determined, the free listφt ∈ ZN is defined by sorting the memory locations indices
in ascending order of usage, where the least used location is in the φt[1] index. Then the allocation
weighting vector at ∈ ∆N is defined by:
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Figure 3.6: A graphic model for the DNC memory usage vector generation.

at[φt[j]] = (1− ut[φt[j]])

j−1∏
i=1

ut[φt[i]]

And it is used to provide new allocations for writing. While all usages are 1, then at = ​0 and the
controller can no longer allocate memory without first freeing used locations. ∆N is the non-negative
orthant of RN with the unit simplex as boundary and it is defined as:

∆N =

{
α ∈ RN : αi ∈ [0, 1],

N∑
i=1

αi ≤ 1

}

Figure 3.7 shows a graphic representation of allocation weighting vector calculation. In the left figure
part, we can look what the free listφ is doing, it is only sorting the data in ascending order. After that,
the complement 1 − ut[φt[j]] means that we can use that space for new data storing and when it is
multiplied by the product

∏j−1
i=1 ut[φt[i]] it will be attenuated, this is, while more using has a location

is less probable that we can write in there because exists slots with less use. The allocation vector â
means that we can use that memory space for information storing. Finally, the allocation vector is
sorted again to put it back in the original order.

3.2.3.3 Write weighting and writing memory

Write weighting is associated with a vector generation that will be used to write in memory. A mech-
anism can write to newly allocated locations, or to locations addressed by content, or it can choose
not to write at all. First, a write content weighting cwt ∈ SN is constructed using the write key kw

t

and the write strength βw
t (The controller generates these parameters and are included in the interface

parameters):
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Figure 3.7: A graphic model for the DNC allocation weighting generation.

cwt = C(Mt−1,k
w
t , β

w
t )

Then cwt is interpolated with the allocation weighting at to determine the write weightingww
t ∈ ∆N .

ww
t = gwt [gat at + (1− gat )c

w
t ]

Where gat ∈ [0, 1] is the write gate obtained from the interface parameters. If the write gate is 0, then
nothing is written, regardless of the other write parameters; it can, therefore, be used to protect the
memory from unnecessary modifications. The operation inside parenthesis can be interpreted as the
total content that allocation weighting or content lookup will maintain.

Figure 3.8 shows the write weighting generation. Here, the interpretation is simple, the weight weight-
ing generation decides how much will write from the content vector c and how much from the alloca-
tion vector a via the allocation gate ga. In the figure, we can see that the allocation gate was set near
to 1 for ignoring almost all the content vector. If it is set near to 0 then the allocation vector will be
the ignored. Finally, how much importance has the sum of both vectors is decided by the write gate
gw, to add that to the write weightingww, that will decide in which memory slot is better to write. In
this case, the allocation weighting has more importance, so the write weighting is more similar to it.

Finally, the next operation produces the next time-step memory state:

Mt = Mt−1 ⊗ (E −ww
t e

T
t ) +w

w
t v

T
t

Where ⊗ denotes the element-wise product and E is an N ×W ones matrix. This operation makes
sense if we interpret it as how much we will erase, with the erasing vector e, of the current memory
Mt and how much we will add, with the write weighting v, depending on the write weighting ww.
The first operation Mt−1 ⊗ (E −ww

t e
T
t ) will delete the slots that are not needed and the adding of
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Figure 3.8: A graphic model for the DNC write weighting generation.

ww
t v

T
t will ad the new content.

3.2.3.4 Temporal memory linkage

The temporal memory linkage is defined as a multiple ”calls” association from memory locations to
an order in which those were called. It can be taken as the memory location storage sorting. This
information is useful in many situations, for example when an instructions sequence must be recorded
and retrieved in order.

With that target, the model uses a temporal link matrixLt ∈ [0, 1]N×N to keep consecutively modified
memory locations tracking.

Lt[i, j] represents the degree of which location i was the location written after the location j, and each
Lt row and column defines the location weighting: Lt[i, ·] ∈ ∆N and Lt[·, j] ∈ ​∆N for all i, j and
t. To define Lt, a precedence weighting pt ∈ ∆N is required, where the element pt[i] represents the
degree of which location iwas the last one written. The next recurrence relation defines the precedence
pt vector:

p0 = 0

pt =

(
1−

∑
i

ww
t [i]

)
pt−1 +w

w
t

Where ww
t is the write weighting.
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The first operation
∑

iw
w
t [i] indicates, in general, how much the memory was written, then, the com-

plement is obtained and can be interpreted as how much was not written. Once the complement was
obtained the last time-step precedence vector is multiplied, this is because if a lot of new content will
be written then the current precedence will have less value because all the new content will dominate
over the last content, so, the precedence vector needs to be attenuated a lot, and vice-versa. Finally, to
each precedence vector slot will be added the same write weighting index slot, this, to indicate by how
much each memory row has changed and which one can be considered the last one written. When the
last operation is done the memory changes over the time-steps are mixed in the precedence vector, it
is the reason for its name.

The precedence vector generation is shown in figure 3.9. The write weighting was set with low values,
so, after the sum complement, the obtained value will be near to 1 which causes almost the same prece-
dence vector after the product. Finally, the precedence vector incrementation will be homogeneous
because all write weightings locations are increased in the same quantity.

Figure 3.9: A graphic model for the DNC precedence vector calculation.

At every time-step a location is modified, the link matrix is updated to remove old links to and from
that location. Then the new links from the last-written location are added. To implement that logic
the following recurrence relation is defined:

L0[i, j] = 0; ∀i, j

Lt[i, i] = 0; ∀i

Lt[i, j] = (1−ww
t [i]−ww

t [j])Lt−1[i, j] +w
w
t [i]pt−1[j]
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3.2. ARCHITECTURE

First, this operation (1 − ww
t [i] − ww

t [j])Lt−1[i, j] = (1 − (ww
t [i] + w

w
t [j]))Lt−1[i, j] means the

same as in the precedence vector. It is a linkage memory slot information attenuation. If the position
(i,j) will be written by the write weighting the linkage memory will be attenuated a lot because the
new information is which will have more importance than the old because a lot of information in that
position was the last-written. Finally, the ww

t [i]pt−1[j] addition is the operation that generates the
strength in the linkage between the previous steps and the current one.

Figure 3.10 shows how the linkage memory is updated. The write weighting ww wants to write in
the first and the fifth slots, so there a lot of new content will be written, that is the reason because
in the linkage matrix L the probability in the spaces (1, 5) and (5, 1) will be lower; Is not possible
that one precedes to another if both were written in the same time-step. Also, the first and fifth
rows and columns have low probabilities too because there is no precedence on that spaces and much
information will be written. In consequence, the last column has the higher probabilities, that is
because the precedence vector indicates that this slot precedes the current operation.

|

Figure 3.10: A graphic model for the DNC linkage memory updating.

The self-links are excluded (the link matrix diagonal) because it is unclear how to follow a transition
from a location to itself. The Lt rows and columns represent the weights of the temporal links going
into and out from particular memory slots, respectively. Given Lt, the backward weighting bit ∈ ∆N

and forward weighting f i
t ∈ ∆N for the read head i are defined as:

f i
t = Ltw

r,i
t−1

bit = LT
t w

r,i
t−1
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Where wr,i
t is the ith previous time-step read weighting and those vectors can be interpreted as how

are related those memory slots from i to j and vice-versa.

3.2.3.5 Read weighting and reading memory

To read from the memory is needed to define the read weighting. R read weighting vectors are needed
for sending to the next time-step and they will define how much the content lookup can read backward
memory or forward memory slots usage. By first, the read key kr,i

t ∈ RW is used to compute each
read head i content weighting cr,it ∈ ∆N :

cr,it = C(Mt,k
r,i
t , βr,i

t )

Where each kr,i
t , βr,i

t were generated by controller via interface parameters. Each read head also
receives a read mode vector πi

t ∈ S3, which is also taken from interface parameters, and interpolates
among the backward weighting bit, the forward weighting f

i
t and the content read weighting c

r,i
t ,

thereby determining the read weighting wr,i
t ∈ S3

wr,i
t = πi

t[1]b
i
t + π

i
t[2]c

r,i
t + πi

t[3]f
i
t

If πi
t[2] dominates the read mode, then the weighting reverts to content lookup using k

r,i
t . If πi

t[3]
dominates, then the read head iterates through memory locations in the order they were written, ig-
noring the read key. If πi

t[1] dominates, then the read head iterates in the reverse order.

Figure 3.11 shows the read weighting generation. It is simple, depending on which read mode domi-
nates is from where the most content will be extracted. In the example, the dominating read mode is
the first, so, the backward reading will predominate.

With those read weighting vectors, we obtain R next time-step read vectors using:

rit = MTwr,i
t

Each one of the generated read vectors is appended to controller input at the next time-step, giving
access to the memory contents and creating the recurrence in the Differentiable Neural Computer.
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Figure 3.11: A graphic model for DNC read weighting generation.
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Chapter 4

The Differentiable Neural Computer implementation

4.1 Introduction

For developing our Differentiable Neural Computer, Python was used as the programming language
and Tensorflow as the machine learning framework. Each component was developed as a Differen-
tiable Neural Computer module, this for generating independence among each component, just in
case of replacing, do it independently.

Maybe, you want to experiment with this architecture by testing it with the different showed examples,
or create your own model by combining different components, so, next is a free access link for our
development https://github.com/cobu93/DNC.

In the next sections, I am explaining, part by part, how each component was programmed, and the
most representative code parts. If you want to download or check the code it is available in the previous
paragraph link.

4.2 General

First, for generating any feedforward network, a simple code was developed. By specifying the de-
scription of layers a feedforward neural network is built.

class FeedForwardNN():

def __init__(self, layers_desc , scope):
self.layers = layers_desc
self.scope = scope
self.h = {}
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def run_feed_forward_nn(self, inputs):
self.h.clear()

with tf.variable_scope(self.scope):

for i in range(0, len(self.layers)):

if self.layers[i].is_input:
self.h[i] = inputs

else:
with tf.variable_scope(self.layers[i].name):
self.h[i] = self.layers[i].activation(

Utility._linear(
self.h[i − 1],
self.layers[i].size,
self.layers[i].has_bias
)
)

return self.h[len(self.layers) − 1]

Here Utility._linear is a well-known function that used to be in the Tensorflow framework and
was removed. This function automatically creates linear combinations, define the learnable weights
matrices and biases, making the feedforward networks definition easier. We defined the Utility
class for using it for all not-related Differentiable Neural Computers logic but necessary functionality.

4.3 Controller

The controller is a feed forward network defined by

self.controller = FeedForwardController(
layers_desc = [
InputLayerDescription(’input_header’),
OutputLayerDescription(self.hsize, ’header’, tf.nn.tanh)
],
name=’controller’
)

where FeedForwardController class is an interface for creating a feedforward network. Here,
the controller is defined as a neural network that receives an input vector, sends it through a tanh
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activation function, and outputs an hsize size vector. hsize is a configurable parameter that is useful
for generating more or less representative information. It is util for generating interface parameters
and the DNC’s output.

4.4 Output layer

For generating the DNC’s output, the output layer is defined. The next description layers define it:
self.output_layer = DNCOutputLayer(
layers_desc = [
InputLayerDescription(’input_y’),
OutputLayerDescription(self.osize,
’output’,
tf.nn.tanh, has_bias=False
)
],
name=’dnc_output’
)

The DNCOutputLayer generates a feedforward network that receives the header and read vectors as
the input. Then it generates the output from the passed header vector through the defined layer(of size
osize) and summing the concatenated read vectors and a bias for generating the current time-step
DNC output.

The DNCOutputLayer developed operations represent the next model equation:

yt = υt +Wr[r
1
t ; · · · ; rRt ]

4.5 Interface parameters

The interface parameters vector were not obtained from a simple neural network. Each param-
eter was obtained and processed by a different feedforward neural network. To realize this the
InterfaceParameters class was defined. Multiple feedforward networks were defined, passing the
layers descriptions, for generating the different parameters using the FeedForwardNN class. Once all
description layers definitions were determined, the only class use is for running the neural networks.

The layers description code is the next:

self.interface_parameters = InterfaceParameters(
key_w_layers_desc=[
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InputLayerDescription(’input_key’),
OutputLayerDescription(
self.mcolumns ,
’write_key’,
tf.nn.tanh
)

],

intensity_w_layers_desc=[
InputLayerDescription(’input_intensity’),
OutputLayerDescription(
self.SCALAR_SIZE ,
’write_intensity’,
tf.nn.softplus
)

],

erase_layers_desc=[
InputLayerDescription(’input_erase’),
OutputLayerDescription(
self.mcolumns ,
’erase’,
tf.nn.sigmoid
)

],

add_layers_desc=[
InputLayerDescription(’input_add’),
OutputLayerDescription(
self.mcolumns ,
’add’,
tf.nn.tanh
)

],

allocation_layers_desc=[
InputLayerDescription(’input_allocation’),
OutputLayerDescription(
self.SCALAR_SIZE ,
’allocation’,
tf.nn.sigmoid
)
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],

write_gate_layers_desc=[
InputLayerDescription(’input_write_gate’),
OutputLayerDescription(
self.SCALAR_SIZE ,
’write_gate’,
tf.nn.sigmoid
)

],

free_gate_layers_desc=[
InputLayerDescription(’input_free_gates’),
OutputLayerDescription(
self.SCALAR_SIZE * self.rvectors ,
’free_gates’,
tf.nn.sigmoid
)

],

key_r_layers_desc=[
InputLayerDescription(’input_key’),
OutputLayerDescription(
self.mcolumns * self.rvectors ,
’read_keys’,
tf.nn.tanh
)

],

intensity_r_layers_desc=[
InputLayerDescription(’input_intensity’),
OutputLayerDescription(
self.SCALAR_SIZE * self.rvectors ,
’read_intensity’,
lambda x: 1 + tf.log(1 + tf.exp(x))
)

],

read_mode_layers_desc=[
InputLayerDescription(’input_read_mode’),
OutputLayerDescription(
3 * self.rvectors ,
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’read_mode’,
tf.nn.softmax
)

],

name=’interface_parameters’

)

An important feature is that a simple output vector is returned from each feedforward neural network,
so, for those multiple-vectors parameters, a linearization is applied for generating a single output
vector via reshaping operation. This is the read modes and read keys case, where the linearization is
performed by:

r_modes = tf.reshape(r_modes, [self.rvectors , 3])
r_keys = tf.reshape(r_keys, [self.rvectors , self.mcolumns])

After done, all parameters can be used for writing and reading in memory.

4.6 Write weighting and writing memory

First, the needed operations are those where we need to write in the memory. Here new information
is generated, that is, the next time-step memory state, the next time-step write weighting and the next
time-step usage vector. The class Writer is defined for achieving this.

First, inside the Writer class, the content vector is generated.

content_vector = ContentAddressing.address(
key=w_key,
intensity=w_intensity ,
memory=memory,
epsilon=epsilon
)

After obtaining the content vector, as was mentioned before, for writing, is necessary to allocate
memory dynamically. While the allocating memory operation is performed, the allocation weighting
and the usage vector are created.

allocation_weights , usage_vec = DynamicAllocation.allocate(
free_gates=r_free_gates ,
last_read_weights=r_weights ,
last_usage_vector=usage_vector ,
last_write_weights=w_weights
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)

For generating the write weighting vector and the next time-step memory the next operations are done,
each one according to an operation mentioned before. The model equations are included above each
code.

ww
t = gwt [g

a
t at + (1− gat )c

w
t ]

write_weights = tf.multiply(
write_gate ,
tf.multiply(allocation_gate , allocation_weights) +

tf.multiply(1 − allocation_gate , content_vector)
)

Mt = Mt−1 ⊗ (E −ww
t e

T
t ) +w

w
t v

T
t

n_memory = tf.multiply(
memory,
tf.ones(tf.shape(memory)) −
tf.matmul(tf.transpose(write_weights), erase_vector)
) +
tf.matmul(tf.transpose(write_weights), add_vector)

Finally, we return the new time-step parameters
return write_weights , usage_vec , n_memory

4.7 Read weigthing and reading memory

Finally, is necessary to read the memory. Here, the new information generated is the next time-step
read weighting, the next time-step read vectors, the next time-step precedence vector, and the next
time-step linkage memory. The class Reader is defined for achieving this.

Inside the Reader class, the content vector is generated.
content_vector = ContentAddressing.address(
key=r_keys,
intensity=r_intensities ,
memory=memory,
epsilon=epsilon
)
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Next, as we mentioned before, is necessary to generate the temporal linkage matrix.

n_precedence , n_linkage_matrix , forward_weights , backward_weights =
TemporalLinkage.link(
w_weights=n_w_weights ,
last_precedence=precedence_vector ,
last_linkage_matrix=linkage_matrix ,
last_r_weights=r_weights
)

Also, the new precedence vector is generated.

After, the next operations are done for getting the read weighting, and the next time-step read vec-
tors(fed back to the controller). Finally, the information is returned.

wr,i
t = πi

t[1]b
i
t + π

i
t[2]c

r,i
t + πi

t[3]f
i
t

rit = MTwr,i
t

r_weights = tf.multiply(
tf.transpose([read_mode_vector[:, 0]]), backward_weights) +
tf.multiply(tf.transpose([read_mode_vector[:, 1]]), content_vector) +
tf.multiply(tf.transpose([read_mode_vector[:, 2]]), forward_weights)

r_vecs = tf.transpose(
tf.matmul(tf.transpose(memory), tf.transpose(r_weights))
)

return r_weights , r_vecs, n_precedence , n_linkage_matrix
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Chapter 5

Testing

Here we showed the evaluating results of this architecture over multiple tests. Principally, we compare
theDNCversus its predecessor; TheNeural TuringMachine. Is important tomention that bothmodels
are those developed by me, but guided in other documents [4] [3].

Both models implementations, tests parameters, plots, and descriptions are in the next URLs https:
//github.com/cobu93/DNC and https://github.com/cobu93/NTM.

5.1 Generalities

Here, two algorithmic tasks were tested in the DNC and the NTM models: the copy sequences and
the associative recall. Both models were trained in the same conditions:

1. The controller was feedforward, with the representative information size of 100, that is, it has
100 output neurons.

2. The controller has a single layer.

3. The memory size is 50× 20.

4. The used activation function, for generating the representative information, was tanh.

5. The sigmoid function is the activation function for both models. Despite this, the DNC performs
extra operations on this output.

6. The used cost function was the mean squared error(MSE) for the DNC and the cross-entropy
for the NTM because of the output domain.

7. RMSProp was the used learning algorithm.

8. For both models, the learning rate was set to 0.0001, the decay and the momentum were set to
0.9.
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5.2 Copy task

5.2.1 Goal

Prove that DNC is able for copying an input sequence, given in multiple steps, to the output.

5.2.2 Justification

Since the NTM can recover and store information, is necessary to test if the DNC, which is the NTM’s
evolution, can perform the same task, and compare its performance versus the NTM.

5.2.3 Input

The inputs are random binary vectors sequences, followed by a delimiter flag that indicates the input
end. After this, the same vectors number as the input vectors, of the same size, is zero-filled and
appended at the end, that is, for representing the time-steps task duration when recovering the input,
and additionally, is where the output will be written.

For example, a 3× 5 input sequence (3 vectors of 5 bits each one) will be:



0 1 1 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


The first 3 rows (from up to bottom) are those vectors that will be copied. The extra zero-column at
right will be used, in the fourth row, for putting the delimiter flag. The last 3 zero-rows is where the
output will be written.

The tested inputs in this document were:

• Small instances: 3× 5 sequences.

• Medium instances: 5× 5 sequences.

• Large instances: 10× 5 sequences.
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5.2.4 Output

The expected output is very similar to the input, but in this case, the extra column is deleted. Also,
the input vectors are set to zero and the recovered information will be set in the last rows.

For example, the expected output for the above proposed input is:



0 1 1 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0


5.3 Details

For the NTM and the DNC, the next table shows the trainable parameters (weights and biases).

Model Input size Parameters

Differentiable Neural Computer
3× 5

406885× 5
10× 5

Neural Turing Machine
3× 5

219865× 5
10× 5

Table 5.1: The input sequences parameters.

The parameters number doesn’t variate because the difference isn’t between bits but in the vectors
number, that is, the input width won’t increment and the parameters total will be kept in both models.

The training for all sequences sizes, was done while 100000 epochs with exploration finality, that is,
the overfitting, a faster converge, and precision.

5.4 Results

For first sequences size(3 × 5), the DNC model shows a faster convergence. In 20000 epochs the
DNC’s testing error was 2.397(10−3) and the training error was 1.4003(10−3), while in the same step
the NTM’s testing error was 0.09632 and for training was 0.9505. The epochs number where the NTM
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reaches an error near to the DNC error(1.293(10−3)) was in 569500, also the NTM’s error variation
between training and testing changes abruptly beside the DNC, which looks more stable. Figure 5.1
shows both models training error plots and their details. With exploration finality, the full training was
done during 100000 epochs.

Figure 5.1: Copy task learning error plot for a 3× 5 size sequence.
Neural Turing Machine test. Neural Turing Machine train. Differentiable Neural Computer test.

Differentiable Neural Computer train.

In second sequences size(5 × 5), the DNC shows a faster convergence but both models error were
not enough low. After the full training, the DNC’s testing error was 0.03952, and the training error
was 0.03964 while in the same step the NTM’s testing error was 0.1919 and the training error was
0.1901. Here, the NTM’s training error and NTM’s testing error variation also change abruptly beside
the DNCs errors, which looks more stable. Figure 5.2 shows both models training errors plots.

Finally, the third sequences size(10× 5), the DNC shows a faster convergence but both models error
were not enough low. After the full training, the DNC’s testing error was 0.08057 and the training
error was 0.07063, while in the same step the NTM’s testing error was 0.3214 and the training error
was 0.3081. Here, the NTM’s training and NTM’s testing error variation were not different from the
previous input sequence size, here, the DNC looks more stable too. Figure 5.3 shows both models
training errors plots.

5.5 Conclusion

Despite the Neural Turing Machine parameters are lower than the Differentiable Neural Computer
ones, the NTM convergence time is longer and its stability is too. Also, is important to examine the
learning performance because the input size was the only variation among experiments, that means,
that the learning performance can be considered as a meta parameters’(learning rate, decay, etc.)
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Figure 5.2: Both models copy task learning error plot for a 5× 5 size sequence.
Neural Turing Machine test. Neural Turing Machine train. Differentiable Neural Computer test.

Differentiable Neural Computer train.

Figure 5.3: Both models copy task learning error plot for a 10× 5 size sequence.
Neural Turing Machine test. Neural Turing Machine train. Differentiable Neural Computer test.

Differentiable Neural Computer train.
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function, or, in the other hand a model parameters’ function(memory size, information vector size,
etc.). If we make a learning performance prediction using the figures 5.2 and 5.3 the extrapolation
could match with the figure 5.1, indicating that meta parameters are important for obtaining a faster
convergence, but in order for getting a small error, the model parameters are what really cares.

5.6 Associative recall task

5.6.1 Goal

Prove that DNC can recover a vector, from a vectors sequence, based on the requested one.

5.6.2 Justification

Since the NTM can recover a vector, from a given vectors sequence, is necessary to test if DNC,
which is the evolution of the NTM, is also able to do the same task and measure how well it is done
versus the NTM.

5.6.3 Input

The inputs are sequences of random binary vectors followed by a delimiter flag, that will mark the
input end. The delimiter row always will contain the recovered vector index. The recovering index is
indicated by the next way: The first bit(from left to right) indicates that first vector(from up to bottom)
will be recovered, the second bit indicates that the recovered vector is the second one and so on. After
this, a one filled-zero vector is appended for representig the time-steps task duration when recovering
the requested vector, and additionally, is where the output will be written.

For example, a 3× 3 input sequence (3 vectors of 5 bits each one) will be:


1 0 0 0
1 0 1 0
0 1 0 0
X X X 1
0 0 0 0


The first 3 rows(from up to bottom) represents the input vectors. A right extra-zero is added because
that column will be used to put the delimiter flag in the fourth row. The X represents zero for those
ignored vectors and one for desired recovering vector. The last row, the zero vector appended, is
where the output will be set.

The tested inputs in this document are:
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• Small instances: 3× 3 sequences.

• Medium instances: 5× 5 sequences.

• Large instances: 10× 10 sequences.

5.6.4 Output

A recovered vector is the expected output. The extra column is deleted. Also, the input vectors are
set to zero and the recovered information will be set in the last row.

Some examples are:


1 0 0 0
1 0 1 0
0 1 0 0
1 0 0 1
0 0 0 0

 output−−−−→


0 0 0
0 0 0
0 0 0
0 0 0
1 0 0




1 0 0 0
1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 0

 output−−−−→


0 0 0
0 0 0
0 0 0
0 0 0
0 1 0


5.7 Details

For the NTM model and the DNC model, the next table shows the trainable parameters (weights and
biases).

Model Input size Parameters

Differentiable Neural Computer
3× 3 40088
5× 5 40688
10× 10 42188

Neural Turing Machine
3× 3 21586
5× 5 21986
10× 10 22986

Table 5.2: The input sequences parameters.

The training for all sequences sizes was done during 100000 epochs.

CHAPTER 5. TESTING 48



5.8. RESULTS

5.8 Results

For first sequences size(3 × 3), we can observe that the DNC and the NTM stability was not really
well, but, by the end of the training epochs, the DNC shows more stability and a lower error. At the
training end, the DNC testing error was 2.5354(10−3) and the DNC training error was 3.9231(10−4),
while the NTM reports a testing error of 2.9052(10−3), and a training error of 0.07504. Figure 5.4
shows the error plots for training phase of both models and its details.

Figure 5.4: Both models associative recall task learning error plot for a 3× 3 size sequence.
Neural Turing Machine test. Neural Turing Machine train. Differentiable Neural Computer test.

Differentiable Neural Computer train.

For the second sequences size(5× 5), we can observe that the NTM and the DNC stability isn’t really
well, but, by the end of training epochs the DNC shows more stability and a lower error. At the end of
training, the DNC testing error was 8.7321(10−3) and the training error was 0.02914 while the NTM
reports a testing error of 0.0967 and a training error of 0.1164. Figure 5.5 shows the DNC and the
NTM training phase error plots and its details.

For last sequences size(10 × 10), the stability looks better and at the training end, the DNC shows
more stability and a lower error. At the training end, the DNC’s testing error was 0.02122, and the
training error was 0.02079, while the NTM reports a testing error of 0.05838, and a training error of
0.05706. Figure 5.6 shows the training phase error’s plots of both models and its details.

5.9 Conclusion

As in the last experiment, the NTM parameters are lower than DNC parameters but the last one has,
apparently, more stability and its convergence is faster. As before, despite the learning parameters, the
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Figure 5.5: Both models associative recall task learning error plot for a 5× 5 size sequence.
Neural Turing Machine test. Neural Turing Machine train. Differentiable Neural Computer test.

Differentiable Neural Computer train.

Figure 5.6: Both models associative recall task learning error plot for a 10× 10 size sequence.
Neural Turing Machine test. Neural Turing Machine train. Differentiable Neural Computer test.

Differentiable Neural Computer train.
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DNC’s performance is much better, maybe modifying the model parameters the performance will be
better, and the error will be lower, but is clear that the DNC’s performance is better than the NTM’s
performance, so, in conclusion, the NTM improvements made for developing the DNC model were
satisfactory.

5.10 Generalization with a feedforward controller

5.10.1 Goal

Prove that the DNC can generalize in the copy task, that is, if a bigger input is given, talking on vectors
number, it still generating results with a low error rate.

5.10.2 Justification

One of the most important DNC’s feature showed in Alex Graves’ paper is the DNC’s capability for
generalizing results without retraining the full model. It is a very important result because a neural
network can take a long training time, but if the DNC can generalize, cheaper resources are needed,
and for solving big problems we can use smaller instances, what gives us a perfect model for solving
a big problems variety.

5.10.3 Input

The inputs follow the same rules described before(in the copy task), but after training, in order to test
the generalization, the inputs’ size will be variated.

For copy task the tested inputs in this document are:

• Original instances: 5× 5 sequences.

• Smaller instances: 3× 5 sequences.

• Larger instances: 10× 5 sequences.

The associative recall task cannot be generalized because while more vectors are needed either more
bits.

5.10.4 Output
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The expected output is the same as in the copy task.

5.11 Details

First, we trained a model for sequences of size 5 × 5, the learning rate was set to 1(10−4), and the
momentum and decay were set to 0.9. The parameters number is 67348. The information vector size
was 100 and the memory size was 100× 40.

The training was done during 100000 epochs to get a low error rate.

5.12 Results

First, the training error was 0.01318 and the testing error was 6.4049(10−3). Figure 5.7 shows a
training error plot.

Figure 5.7: The copy task learning error plot for a 5× 5 size sequence.
Differentiable Neural Computer test. Differentiable Neural Computer train.

The first tested sequences were those of the size 5 × 5. I ran 1000 examples and of those tests, the
obtained error was 0.011737. A rounded output example is:

CHAPTER 5. TESTING 52



5.12. RESULTS



1 1 0 0 1 0
1 1 1 1 0 0
0 0 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



target−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 1
1 1 1 1 0
0 0 0 0 0
1 0 1 0 0
1 0 0 1 0



output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 1
1 1 1 1 0
0 0 0 0 0
1 0 1 0 0
1 0 0 1 0


As we can observe, compared with what we want to obtain, the output is really close.

The next proved sequences were of size 3 × 5, where from 1000 examples, the obtained error was
0.213543. The error was too high but taking a look in the output it’s easy to know why.



1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


target−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
0 1 0 0 0
1 1 1 1 1


output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 0 0


The observed phenomena in this example(and what happens in almost all examples) is the out of phase
output, that is, the zero padding is the same as in the original size(5) what causes a displaced output,
it is, the vector that should be in the fourth row is now in the sixth one.

Now, proving the last sequences of size 10 × 5, with a sample of 1000 examples, we get an error of
0.356087. The error increases but a similar out of phase is observed.
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

0 0 0 0 1 0
1 1 0 1 1 0
0 1 0 0 0 0
1 1 1 1 1 0
1 0 1 0 1 0
0 1 0 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



target−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 1 1 1 1
1 0 1 0 1
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 1 1 1



output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 1 0 1
0 0 1 1 0
0 1 1 1 1
0 1 1 1 1
0 1 0 0 0
0 0 1 1 1
0 0 1 1 0
1 0 1 1 1
0 −1 1 1 1
0 −1 1 1 1
0 −1 1 1 1


In this case, the zero-padding continues as in the original output, what shows a displaced output but
there isn’t less information, so, we can adjust the padding for showing the needed output, being as
below:
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

0 0 0 0 1 0
1 1 0 1 1 0
0 1 0 0 0 0
1 1 1 1 1 0
1 0 1 0 1 0
0 1 0 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



target−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 1 1 1 1
1 0 1 0 1
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 1 1 1



output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 1 0 1
0 0 1 1 0
0 1 1 1 1
0 1 1 1 1
0 1 0 0 0
0 0 1 1 1


Here we can appreciate the similitude between the target and the output, which is not the same but is
an approximation. The error reduces, and the new error rate obtained is 0.123861.

5.13 Conclusion

The generalization is one of the most important model’s feature, so, if we try to get it with a feedfor-
ward controller, the generalization is not well performed. The generalization gives a high error and a
bad approximation. Maybe could be a good option if the solution accuracy is not very important, but
maybe, using another controller type, or a more complex one, it could be better.

5.14 Generalization with an LSTM controller

5.14.1 Goal

Prove that the DNC’s generalization is equal or better when using a Long Short-Term Memory con-
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troller instead of a feedforward controller.

5.14.2 Justification

As mentioned before, the generalization is an important DNC’s model feature, so, for getting a better
performance, given that in the last test we did not obtain the expected result, it’s necessary developing
the original Alex Graves’ proposed model [4]. This will verify the model generalization, what can
be useful for considering this model as an important tool when solving larger problems using small
instances.

5.14.3 Input

The inputs follow the same rules described before(in the copy task), but after training, in order to test
the generalization, the inputs’ size will be variated.

For copy task the tested inputs in this document are:

• Original instances: 5× 5 sequences.

• Smaller instances: 3× 5 sequences.

• Larger instances: 10× 5 sequences.

The associative recall task cannot be generalized because while more vectors are needed either more
bits.

5.14.4 Output

The expected output is the same as in the copy task.

5.15 Details

First, we trained a model for sequences of size 5 × 5, the learning rate was set to 1(10−4), and the
momentum and decay were set to 0.9. The parameters number is 786960. The information vector
size was 100 and the memory size was 100× 40.

The training was done for 100000 epochs to get a low error rate.

5.16 Results
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First, the training error was 4.5965(10−6), and the testing error was 4.493(10−6). Figure 5.8 shows a
training error plot.

Figure 5.8: The copy task learning error plot for sequences of 5× 5 size .
Differentiable Neural Computer test. Differentiable Neural Computer train.

We can appreciate, that the convergence was much faster than feedforward controller, and the error
is lower.

The first tested sequences were those of size 5×5. I ran 1000 examples and of those tests, the obtained
error was 5.798107(10−6). I used the last test examples in order to get a good comparison between
the feedforward and the LSTM controller. The first example output was the same in both controllers.

The next tested sequences were of size 3 × 10, where from 1000 examples the obtained error was
0.188272. The error was too high but if we take a look at the outputs structure, it is easy to observe
why. The error was lower than using a feedforward controller but we can observe the same feedforward
controller phenomena: The zero-padding is from the original size, so, some information was lost. The
output is similar to the feedforward controller one.

Now, proving the last sequences of size 10 × 5, with a sample of 1000 examples, we get an error of
0.268362. The error increases but a similar out of phase is sxhowed.
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

0 0 0 0 1 0
1 1 0 1 1 0
0 1 0 0 0 0
1 1 1 1 1 0
1 0 1 0 1 0
0 1 0 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



target−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 1 1 1 1
1 0 1 0 1
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 1 1 1



output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 1
0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 1 1 1
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0


In this case, the zero-padding continues as in the original output, what produces a displaced output,
but there isn’t less information, so, we can adjust the padding to show the needed output, being as
below:
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

0 0 0 0 1 0
1 1 0 1 1 0
0 1 0 0 0 0
1 1 1 1 1 0
1 0 1 0 1 0
0 1 0 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
1 0 0 0 0 0
1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



target−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 1 1 1 1
1 0 1 0 1
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 1 1 1



output−−−−→



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 1
0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 1 1 1


Here we can appreciate the similitude between the target and the output, which is a really well approx-
imation. Here, the lost information is lower than in the feedforward controller. Despite the error, what
in part was caused by the incorrect padding, the approximation is very precise. The error reduces and
the new error rate obtained is 0.036332.

5.17 Conclusion

The generalization is a really useful property and a powerful one, depending, in a big part, in the
controller type or the controller capabilities. When using an LSTM controller the model capabilities
increases beside the feedforward controller, so, the controller can be considered as a really important
model’s part, but it is more complex, then depending on our goal, the controller must be selected
carefully. Finally, about the generalization, is easy to observe that it can be obtained by selecting
carefully the model parameters and the model modules, and despite it is a very unprecise output, it
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approximates really good when using the LSTM controller.

5.18 Stability

5.18.1 Goal

Prove the DNC’s stability over multiple training instances.

5.18.2 Justification

The stability is an important feature of any machine learning model, given that it warranties that won’t
care how many times we train or test the model on a specific problem, the result will be consistent.

5.18.3 Details

Using the copy task with the input sequences of 3 × 5 size, and the feedforward controller and the
LSTM controller, we will test the model’s stability by training it three times.

5.19 Results

Using the feedforward controller we get the plot shown in figure 5.9. There, we can observe that the
error shown on the three training times, is close one of each other, so, using a feedforward controller
will provide us stable results.

Figure 5.9: Feed-forward controller model’s error trained three times with sequences of 3× 5 size.

As second test, we proved the LSTM controller, the results are shown in figure 5.10. There, we
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can observe that the error on three training times, is close one of each other, a faster convergence is
maintained, then we can conclude that using an LSTM controller will provide us stable results also.

Figure 5.10: LSTM controller model’s error trained three times with sequences of 3× 5 size.

5.20 Conclusion

The stability in this model is not a problem because the results showed before provide us a strong
confidence on the consistence of its results. Given that, we can also conclude, no matter how many
times we run previous test, they are trustworthy.
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Conclusion

In 2016 Alex Graves’ article was published [4], there, he introduces a model that supposed to be very
powerful and with new features. It was his previous model, Neural Turing Machine, evolution; the
Differentiable Neural Computer. It is a neural network model extended with an external memory, and
using designed methods, the model can learn how to use it for running algorithmic tasks.

In this thesis, we verify the main DNC’s properties presented in Alex Graves’ article.

Here we test the model’s features over multiple tasks. In order to do this, we implemented a Differen-
tiable Neural Computer(available in https://github.com/cobu93/DNC). After multiple tests, we
conclude that all claimed features are applicable, and choosing the correct model’s configuration and
meta-parameters, good results were obtained.

The main feature is that all used modules can be interchanged depending on what we want to do. We
can adapt the addressing mechanisms, the controller, the output function, etcetera because the main
idea is offering a general architecture and not a strict model for solving problems. With this principle,
is important to choose the correct controller because, our tests showed, that big differences occur when
variating this component.

The LSTM controller gave us the most important model’s feature: Generalization. Generalization
means that once we had trained the model with specific inputs and outputs, we can solve similar
problems with different inputs and outputs sizes without retraining. It is here where it’s important
to choose the correct components depending on our problem. Additionally, when this controller is
selected, the convergence was much faster.

So, this showed us that all claimed characteristics are ascertainable, and how we expected, is neces-
sary a correct model’s configuration in order to get the desired results. The DNC is a very powerful
model, it can be used for algorithmic tasks or reinforcement learning, the added memory is very useful
for maintaining information in long time periods and the addressing mechanisms were well adapted
because they made an easier understanding.

62

https://github.com/cobu93/DNC


6.1. CONTRIBUTION

6.1 Contribution

The contributions done with this study were:

• A detailed description of Differentiable Neural Computer, and how it works based on existent
given information and experimental results.

• A comparison between DNC and NTM.

• A task set of different sizes used for evaluating the model performance.

• An own Neural Turing Machine implementation.

• A demonstration of DNC functionality when solving algorithmic tasks.

• An own Differentiable Neural Computer implementation using Python and Tensorflow.

• A DNC’s feedforward and LSTM controller comparison.

• A proof of DNC generalization.

6.2 Future work

An interesting and discussed architecture future work, is its modular use when solving bigger prob-
lems, especially in those problems where a deterministic solution is hard or impossible. Imagine the
generalization applied on those problems where their solving complexity increases exponentially with
the input size; Could be enough training the model using small instances and get solutions for bigger
ones! It would be very nice.

In addition, the DNC’s model was tested on multiple tasks using structured inputs. The obtained
results demonstrate, the architecture success when storing and managing structured inputs, so, for
those problems that can be expressed in a general structure, it is a great advantage because it is enough
training the model with a simple problem and applies the solution in equivalent problems.

Finally, a free implementation was provided. Everybody is free for testing, modifying or contributing
in the given code!.
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