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Resumen 
 

Las turbinas de gas son máquinas muy complejas y potencialmente poco fiables. Con el fin de 

reducir los costos de mantenimiento y mantener una alta confiabilidad, en las últimas décadas se 

han desarrollado muchos sistemas avanzados de monitoreo de condiciones y diagnóstico. El éxito 

de estos sistemas depende en gran medida de la perfección del software de diagnóstico, en 

particular, de la precisión de las decisiones diagnósticas. Esto se puede lograr a través de 

investigaciones continuas y la validación de diferentes algoritmos de diagnóstico. Siguiendo esta 

idea, el objetivo de la presente tesis es desarrollar y evaluar diferentes algoritmos aplicados al 

monitoreo y diagnóstico de turbinas de gas. Se desarrollan cuatro metodologías principales. La 

primera metodología trata de la creación de un algoritmo de monitoreo en línea basado en la 

estimación de variables de motor no medidas, como la eficiencia y la potencia del eje. La alta 

precisión de las estimaciones de cantidades no medidas y sus desviaciones para diversas fallas y 

condiciones de operación variables confirma que la metodología propuesta puede utilizarse en 

sistemas de monitoreo en línea reales. 

 

La segunda metodología está destinada a evaluar técnicas de diagnóstico en condiciones de falla 

variable. Para ese propósito, se propone un principio de clasificación de falla variable para mejorar 

la representación de escenarios de falla real. Los extensos cálculos de comparación revelan que 

cualquiera de las técnicas analizadas es una buena alternativa para la identificación de fallas en 

turbinas de gas. Sin embargo, se encuentra una gran influencia de las clasificaciones de fallas y el 

límite de severidad de fallas en el nivel de precisión de diagnóstico. La implementación de un 

nuevo límite para múltiples clases de fallas y errores reales en desviaciones hace que la precisión de 

diagnóstico del motor se acerque más a lo que ocurre en la práctica. 

 

La tercera metodología trata de una evaluación comparativa de un enfoque de diagnóstico de 

turbina de gas basado en datos a través de una plataforma especial llamada ProDiMES. La 

plataforma presenta un enfoque público, en el que diferentes investigadores pueden verificar y 

comparar sus algoritmos para las etapas de diagnóstico de extracción de características, detección 

de fallas e identificación de fallas. La comparación de las métricas de ProDiMES de diagnóstico 

final obtenidas bajo las condiciones óptimas seleccionadas con las métricas de otras soluciones de 

diagnóstico muestra que el algoritmo propuesto es una herramienta prometedora para los sistemas 

de diagnóstico de turbinas de gas. 

 

La última metodología compara dos enfoques de diagnóstico de turbinas de gas, basados en datos y 

basados en física. El diagnóstico para el primer enfoque se realiza en el espacio de desviaciones de 

las variables monitoreadas, mientras que para el segundo enfoque en el espacio de desviaciones de 

los parámetros de salud estimados. La metodología se centra en utilizar las condiciones de 

comparación correctas y considerar los casos de comparación múltiple de opciones de diagnóstico y 

posibles escenarios de fallas. Los resultados de todos los casos muestran que ambos enfoques 

reconocen igualmente bien cada una de las fallas del motor y que el rendimiento de diagnóstico 

promedio también es similar. Por lo tanto, desde el punto de vista de la precisión diagnóstica, la 

transformación al espacio de desviaciones de los parámetros de salud estimados no tiene ningún 

efecto y los enfoques son iguales. Para seleccionar un enfoque adecuado para un sistema de 

monitoreo de turbina de gas real, se deben considerar otros criterios. 
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Abstract 
 

Gas turbines are very complex and potentially unreliable machines. In order to reduce maintenance 

costs and maintain high reliability, many advanced condition monitoring and diagnostic systems 

have been developed in the past decades. The success of these systems strongly depends on the 

perfection of diagnostic software, particularly, on the accuracy of diagnostic decisions. This can be 

achieved through continuous investigations and validation of different diagnostic algorithms. 

Following this idea, the aim of the present thesis is to develop and evaluate different algorithms 

applied to gas turbine monitoring and diagnostics. Four main methodologies are developed. The 

first one deals with the creation of an online monitoring algorithm based on the estimation of 

unmeasured engine variables such as efficiencies and shaft power. The high accuracy of estimations 

of unmeasured quantities and their deviations for a diverse faults and varying operating conditions 

confirms that the proposed methodology can be utilized in real on-line monitoring systems. 

 

The second methodology is intended for evaluating diagnostic techniques under variable fault 

conditions. For that purpose, a principle of a variable fault classification is proposed to enhance the 

representation of real fault scenarios. Extensive comparison calculations reveal that any of the 

analyzed techniques is a good alternative for gas turbine fault identification. However, a great 

influence of fault classifications and fault severity boundary on the level of diagnostic accuracy is 

found. The implementation of a new boundary for multiple fault classes and real errors in deviations 

makes the engine diagnostic accuracy closer to what occurs in practice. 

 

The third methodology deals with a benchmarking analysis of a data-driven gas turbine diagnostic 

approach through a special platform called ProDiMES. The platform presents a public approach, at 

which different investigators can verify and compare their algorithms for the diagnostic stages of 

feature extraction, fault detection, and fault identification. The comparison of the final diagnostic 

ProDiMES metrics obtained under the selected optimal conditions with the metrics of other 

diagnostic solutions shows that the proposed algorithm is a promising tool for gas turbine diagnostic 

systems. 

 

The last methodology compares two gas turbine diagnostic approaches, data-driven and physics-

based. The diagnosis for the first approach is realized in the space of monitored variable deviations 

while for the second approach in the space of estimated health parameter deviations. The 

methodology focuses on using the correct comparison conditions and considering multiple 

comparison cases of diagnostic options and possible fault scenarios. The results of all the cases 

show that both approaches equally well recognize each of the engine faults and the average 

diagnostic performances are also similar. Thus, from the point of view of diagnostic accuracy, the 

transformation to the space of estimated health parameter deviations has no effect and the 

approaches are equal. To select a proper approach for a real gas turbine monitoring system, other 

criteria should be considered.  
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Preface 
 

The present work is an integrated article-based thesis embracing different peer-reviewed journal 

articles and conference papers (published or under review) related to the development and 

evaluation of algorithms in the areas of condition monitoring and diagnostics. The information of 

the articles was modified to have a consistent thesis structure. Permissions to reproduce copyrighted 

material can be found in Appendix 1.  

 

Chapter 3 is a modified version of the paper entitled “Estimation and Monitoring of Unmeasured 

Gas Turbine Variables” published in Transactions of the Canadian Society for Mechanical 

Engineering (in press). (https://doi.org/10.1139/tcsme-2017-0009). 

 

Chapter 4 is a modified version of the paper entitled “Evaluation of Gas Turbine Diagnostic 

Techniques under Variable Fault Conditions” published in Advances in Mechanical Engineering, 

Vol.9, Issue 10, 2017. (https://doi.org/10.1177/1687814017727471). 

 

Chapter 5 is a modified version of the paper entitled “A Benchmarking Analysis of a Data-Driven 

Gas Turbine Diagnostic Approach” published in ASME Turbo Expo 2018, Oslo, Norway. 

(https://doi:10.1115/GT2018-76887) 

 

Chapter 6 is a modified version of the paper entitled “Comparative analysis of two gas turbine 

diagnosis approaches” which has been submitted to ASME Turbo Expo 2019 and is under review. 

 

In all of the aforementioned works, the author of this thesis is a main contributor in the areas of 

methodology development, information analysis, software programming, and article writing and 

edition. 
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Figure 3.6 Estimation errors 2Ẑε  for faulty condition 03.0cG and filtered noise. ................................ 54 
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Chapter 1: State of Art and Research 

Objectives 
 

1.1 INTRODUCTION 

Gas turbines are very sophisticated and costly systems that have been used in the past decades for 

different industrial applications due to the capacity to produce great amount of energy and because 

of their high efficiencies [1]. However, due to the elevated complexity, gas turbines are considered 

potentially unreliable machines. They contain complex systems and subsystems and thousands of 

components, many of them exposed to high temperatures, pressures and rotations. For that reason, 

any gas turbine will experience degradation over its useful life. The mechanisms causing 

deterioration and potential fault events are: dirt deposits, fouling, corrosion and erosion of blade and 

vanes, foreign and domestic object damage (FOD/DOD), malfunction of inlet guide vanes (IGV) 

and variable guide vanes (VGV), tip clearance increase, filter clogging, plugged nozzles, cracked 

rotor disc or blade, cracking of liners, etc. [2,3]. Since gas turbine deterioration has a direct impact 

on fuel costs, it is essential that all the gas turbine systems and subsystems operate as efficient as 

possible. For example, in a gas turbine based combined cycle, the percent of life cycle costs for fuel 

(75%) is by far higher than rest (6% for operation and maintenance and 19% for capital costs). 

According to study [4], in the past decade the annual fuel costs of a 934 MW combined cycle plant 

and a 30 aircraft fleet could reach about 200 and 250 million USD, respectively. For the case of the 

combined cycle plant, this amount could easily reach 6 or 7 billion USD over the entire engine life 

cycle. Considering this, it is imperative to investigate and control all the forms of gas turbine 

deterioration.  

 

Over the last years, different studies have addressed the problem of gas turbine deterioration. 

Performance deterioration in industrial gas turbines is discussed in [5] and different causes of 

performance degradation in aircraft engines are addressed in [6]. Studies [7] and [8] give a detailed 

treatment on gas turbine deterioration. Meher-Homji and Bromley [9] provide a comprehensive 

practical treatment of the causes, effects, and control of compressor fouling as well as the 

compressor washing approaches and technologies. Burnes and Kurz [10] present a detailed study of 

degradation and its effects on overall gas turbine performance with an emphasis on recoverable and 

non-recoverable degradation. An extensive study of gas turbine performance deterioration given in 

[4] addresses the topics of recoverable and non-recoverable deterioration, effects of site conditions 

on gas turbine performance, mechanical deterioration, trending performance data and transient 

analysis for performance deterioration. 

 

According to Meher-Homji et al. [4], gas turbine performance deterioration (see Figure 1.1) can be 

classified as: 1) recoverable (the deterioration can be eliminated during the engine operation by 

taking actions such as compressor washing), 2) unrecoverable (the deterioration can be eliminated 

only if an overhaul is considered but not during engine operation), 3) permanent (the deterioration is 

still present despite major overhauls). Hanachi et al. [3] classify the causes of gas turbine 

performance deterioration into two groups: natural causes and physical deterioration (see Figure 
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1.2). The first type occurs when an engine operating condition deviates from the design point 

producing degradation no matter if the engine components are in a healthy state. This natural 

deterioration has a temporary effect that can be reverted when the engine returns to the operation of 

its design condition. The second type considers health condition degradation of the parts (structural 

and recoverable deterioration) and it cannot be reverted unless an action is taken. In any case, 

performance deterioration causes negative effects such as an increase of fuel consumption, elevated 

exhaust gas temperature, and a decrease of thermal efficiency and power. 

 

Table 1.1 lists common gas path degradations, their symptoms and effects on GT engine 

performance. 

 

 
Figure 1.1 Categories of GT performance deterioration (adapted from [4]). 

 

 

 
Figure 1.2 Causes of gas turbine performance degradation (adapted from [3]). 

 

GT deterioration can be also produced by mechanical problems and manufacturing variations [4]. 

Some factors of mechanical degradation include wear in bearings and seals, coupling problems, 

excessive vibration and noise, problems in the lube oil system, etc. Some sources of manufacturing 

deviations are related to excessive surface roughness and irregular coating, excessive radial 

clearance between blade tip and casing and between seal diameter of diaphragms and the disk seal 

land, reductions in blade chord and thickness, incorrect axial position, etc. 
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Table 1.1 Gas path degradations and their effects on engine performance [3] 

Section Fault mode Component level symptoms Effects on GT performance 

Intake -Filter clogging 
-Drop in filter differential 

pressure 

-Reduction of mass flow 

-Increase of EGT for a given 

load 

-Loss of power 

-Increase of heat rate 

Compressor 

-Compressor fouling 

-Blade/Vane erosion 

-Compressor 

corrosion 

-Decrease in pressure ratio 

-Loss of isentropic efficiency 

-Reduction of flow capacity 

-Elevation of discharge 

temperature 

-Reduction of surge margin -Increase of EGT for a given 

load 

-Loss of power 

-Loss of thrust 

-Increase of heat rate 

-Tip clearance 

increase 

-Decrease in pressure ratio 

-Loss of isentropic efficiency 

-Reduction of flow capacity 

-Leakage of the compressed air 

-Reduction of surge margin 

-IGV/VGV 

malfunction 

-Leakage of the compressed air 

-Loss of isentropic efficiency 

-Variation in the flow rate 

-Compressor stall and surge 

-FOD 

-Drop in pressure ratio 

-Loss of isentropic efficiency 

-Drop in the flow rate 

-Compressor stall and surge 

-Rise of EGT 

-Rotor acceleration 

-Loss of thrust 

-Increase of heat rate 

-Engine blowout 

Combustion 

chamber 

-Corrosion and 

cracking of liners 

-Drop in effectiveness of 

cooling air 

-Loss of combustor efficiency 

-Increase of EGT for a given 

load 

-Loss of power 

-Loss of thrust 

-Clogging of fuel 

injectors 

-Malfunction of fuel 

delivery system 

-Variation in fuel flow rate 

-Delayed or incomplete 

combustion 

-Loss of combustion efficiency 

-Variation of EGT 

-Non-uniform EGT profile 

-Loss of power 

-Loss of thrust 

-Increase of heat rate 

Turbine 

-Nozzle deflection 

-Turbine erosion 

-Drop in turbine pressure ratio 

-Increase of mass flow capacity 

-Loss of isentropic efficiency 

-Increase of EGT for a given 

load 

-Loss of power 

-Loss of thrust 

-Increase of heat rate 

-Increase of mass flow rate 

-Tip clearance 

increase 

-Seal clearance 

increase 

-Drop in pressure ratio 

-Increase in mass flow rate 

-Leakage of cooling air 

-Loss of isentropic efficiency 

-Turbine fouling 

-Turbine corrosion 

-Drop in turbine pressure ratio 

-Decrease in mass flow capacity 

-Loss of isentropic efficiency 

-Reduction of surge margin 

-Increase of EGT for a given 

load 

-Loss of power 

-Loss of thrust 

-Decrease of heat rate 

Exhaust 
-Surface 

erosion/corrosion 
-Increase of back pressure 

-Increase of EGT 

-Loss of power 

-Loss of thrust 
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The effect of manufacturing deviations on performance of axial flow compressor blading is 

addressed, for example, in [11]. Other sources of deterioration consider excessive drop in inlet filter 

differential pressure, increased mechanical losses, internal losses, stator nozzle plugging, and 

overboard leakage. 

 

Throughout the last decades, gas turbine maintenance programs have been created to solve the 

aforementioned problems. These programs have evolved from simplified to very complex 

strategies. Figure 1.3 presents these strategies that can be split into four categories: breakdown 

maintenance (BM), preventive maintenance (PM), condition-based maintenance (CBM) and 

prognostic health management (PHM) [12–14]. The BM strategy is the simplest one in which no 

actions are taken until the engine presents a failure and necessary corrections are implemented. This 

approach is based on empirical knowledge and does not guarantee the engine safety producing high 

risk, high maintenance costs and overtime. In the PM strategy, planned, coordinated and scheduled 

inspections and overhauls are carried out helping to prevent faults. The problems with this approach 

are the excessive overhauls, time consuming and low efficiency due to the neglect of actual engine 

health condition. Furthermore, considering the differences in operating environment and 

configuration of each gas turbine, it is difficult to determine the optimal maintenance interval 

[15,16]. 

 

 
Figure 1.3 The development of GT maintenance strategies (adapted from [12]). 

 

 

The CBM strategy collects, processes, and intelligently interprets the engine measurements 

obtained through sensors to assess the actual engine condition without interrupting the normal 

operation of the engine. Based on the engine condition, maintenance actions can be taken depending 

on the type and severity of the fault. The advantages of using CBM as a separate strategy or 

combined with PM are: the reduction of maintenance costs, an increase of system reliability, an 

enhanced condition monitoring and fault diagnostics, defect elimination, life extension of engine 

components, precision, work reduction. Different methodologies related to CBM have been 

developed using data-driven and physic-based modeling to improve gas turbine condition 

monitoring and diagnostics [17–19]. However, some drawbacks of the CBM are: the high 

installation costs, limited prognosis because the behavior of the engine cannot be predicted 

accurately by using limited field monitoring data, the systems need to be properly installed and 
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operated by trained staff, and the implementation of the systems increases the parts that require 

verification and maintenance [12,14].  

 

The PHM is a new maintenance strategy developed in the recent years intended to address the 

limitations of CBM. Figure 1.4 displays the CBM/PHM process. PHM involves the prediction of 

future engine behavior, including remaining useful life, in terms of current operating state and the 

scheduling of required maintenance actions to maintain the engine health [13]. PHM is viewed as an 

integrated process since it comprises the stages of anomaly detection, diagnosis and prognosis. An 

effective PHM system is expected to detect an anomaly condition of the engine in an early stage. 

Meanwhile, the detected incipient failure should be monitored and predicted to prevent the 

occurrence of a potential damage. 

 

 
Figure 1.4 The CBM/PHM process (adapted from [13]). 

 

 

1.2 GAS TURBINE CONDITION MONITORING AND DIAGNOSTICS: AN INSIGHT 

INTO THE AREAS OF RESEARCH 

Important aspects of gas turbines such as reliability, safety, maintenance and operating costs are 

strongly affected by failures and deterioration. To mitigate these problems, diagnostic systems 

based on CBM/PHM strategies are widely used [14]. These systems include different approaches 

such as thermography, boroscopy inspection, vibration and acoustic analysis, diagnostics of fuel 

and oil systems, wear debris analysis, and gas path analysis (GPA), which has been widely used in 

the field of gas turbine diagnostics. The systems based on GPA collect, filtrate, and intelligently 

analyze measured gas path variables (temperatures, pressures, rotation speeds, fuel flow rate, etc.) 

to monitor the engine health state, identify initial defects and predict future problems. The main 

advantage of GPA is that there is no need for shutdowns or engine disassembly since they can 

operate in real time.  

 

The stages of a complete diagnostic process include: data acquisition, data processing, feature 

extraction, monitoring (fault detection), detailed diagnosis (fault identification) and prognosis 

[13,20]. Each stage depends on independent, deep and complex algorithms that require years of 

work. However, the integration of each of them into a complete, efficient and reliable system is one 

of the most important goals of gas turbine diagnostics. When a diagnostic algorithm is developed, 

its structure and efficiency depends on the selection and interaction of many factors. An example of 

these factors can be seen in Figure 1.5. On the basis of accumulated knowledge and experience, 
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researchers choose adequate factors and develop their own diagnostic algorithm. To be optimal, an 

algorithm should take into account all peculiarities of a given engine, its application, and other 

diagnostic conditions. Thus, it is not likely that the algorithm be optimal for other engines and 

applications. As a result, every monitoring system needs the development of appropriate diagnostic 

algorithms [21].  

 

In many applications, especially in aviation, there are increasingly strict standards to develop 

reliable monitoring and diagnostic systems. This can be achieved by investigating and improving 

the algorithms related to such systems. Considering this necessity, the present thesis proposes the 

development and evaluation of algorithms related to different areas of condition monitoring and 

diagnostics. Each proposed algorithm is developed based on the selection of specific influence 

factors as illustrated in Figure 1.5. For example, an algorithm can address the stage of fault 

identification using physics-based models of a turbofan engine, single faults and multi-point 

diagnostic analysis. In later chapters, Figure 1.5 is repeated for each algorithm to specify their 

influence factors. 

 

The following subsections gives an insight into the areas of research to be addressed in this thesis 

that include diagnostic models, data-driven and physics-based approaches, diagnostics based on 

measured, and techniques employed for fault diagnostics. 

 

 

 
Figure 1.5 Factors that influence the development of diagnostic algorithms (adapted from [21]). 
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1.2.1 Data-driven and physics-based diagnostic approaches 

Gas turbine diagnostic methods can fall into two general approaches: physics-based and data-driven 

[3,20]. Book [13] by Vachtsevanos et al. covers multiple aspects of both approaches applied to 

engineering systems. A good theoretical analysis of this approach applied to gas turbine diagnosis 

can be found, for example, in study conducted by Volponi [22]. In the physics-based approach, 

system identification techniques employ engine thermodynamic models, which are widely used 

worldwide to estimate engine faults. Within this approach fault parameters are firstly estimated by 

system identification methods. These parameters allow us to determine a current engine state 

[23,24] because great values of the fault parameters point out the engine faulty components. In this 

way, final diagnostic decisions can be taken without the constraint of a pre-defined fault 

classification as with the data-driven approach. However, due to the inherent inaccuracy of engine 

physics-based models, considerable errors of estimated health parameters are observed [25]. Also, a 

thermodynamic model is not always available in practice. 

 

The data-driven diagnostic approach relies on direct engine measurements as inputs. In a feature 

extraction stage, the measurements are usually converted into deviations (a.k.a. deltas) and pattern 

recognition techniques are applied to identify a current engine health state [26–28]. The data-driven 

approach has the potential advantage of not depending on a physics-based (thermodynamic) model, 

thus avoiding the problem of model impact on final diagnostic decisions. Excluding the 

thermodynamic model does not mean a complete rejection of simulation. Nevertheless the models 

used are of a black-box type and do not need detailed information of engine components that 

usually is a manufacturer’s property. A disadvantage of this approach is the inability of black-box 

models to simulate engine faults. Since physical fault simulation on a test-bed is complex, 

expensive and even dangerous, the possibility to form an extensive real fault classification is 

questionable. Hence, a thermodynamic model is still used in investigations to generate the data of 

faulty engines, but in practice it can be easily substituted by real fault data if available. 

 

Multiple diagnostic algorithms belonging to the mentioned approaches have been widely utilized so 

far and comparative studies of these algorithms are known. Some particular recommendations on 

the selection of the best algorithm can be found, for example, in [26,29]. However, a side-to-side 

evaluation between both approaches has not been carried out before by researchers in the 

community of healthy engine management. A comparative study in the area of fault identification 

for example, can reveal if the level of fault diagnosis accuracy is similar or completely different in 

both approaches. 

 

1.2.2 Diagnostics based on measured gas path variables 

So far, diagnostic techniques embrace all the primary systems of GT, namely, gas path, 

transmission, measurement system, control system, fuel system, oil system, starting systems, etc. 

Among all these techniques, the algorithms that analyze gas path variables can be considered as 

essential [17,30]. They provide a deep insight into the performance of engine components such as 

compressors, burner and turbines and reveal different mechanisms of degradation. Some measured 

gas path variables, called operating conditions, are used to set an engine’s steady state operating 

point. The remaining measurements are available for engine monitoring and are typically called 

monitored variables. When the GTE components deteriorate, the monitored variables change 

accordingly. For this reason, these variables are used to detect and identify GTE faults, e.g., 

compressor fouling, erosion, foreign object damage, etc. as shown in Figure 1.6. The mechanisms 

and impact of the faults are described in [4].  

 

The use of measured variables for Gas Path Analysis (GPA) is well known. However, the analysis 

of unmeasured variables can improve the diagnostic accuracy by providing new input information 

that is not usually taken into account, thus making the diagnostic process more reliable. These 
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unmeasured variables can be handful for characterizing overall engine performance and detecting 

some degradation mechanisms and engine faults that can be hidden for a standard analysis based on 

the measured variables. Examples of computing and monitoring of these variables include, but are 

not limited to, engine power [31] or thrust [32,33], turbine inlet temperature [34], compressor and 

turbine efficiencies [35–37], and compressor air mass flow [7]. Knowledge of these parameters 

helps in monitoring of engine mission, integrity, and overall efficiency, and also allows a more 

detailed diagnosis of engine components.  

Table 1.2 lists typical measured and unmeasured variables used in different types of engines. 

 

A natural mode to compute unmeasured variables at steady states and transients consists in the 

application of the well-known GPA, described in detail in [38]. This approach relies on both 

nonlinear and linear gas path models. One of the latest examples of thermodynamic model-based 

estimation of unmeasured variables is given in [31]. In addition to model calibration 

(identification), the authors employ the Bayesian inference approach to separately estimate the 

power of a gas turbine and a steam turbine joined by a common shaft. A thermodynamic model 

needs detailed performance maps of all engine components, but these maps are the property of 

engine manufacturers and are not readily available to engine operators. Furthermore, the studies 

[31,35,39–41] show that a thermodynamic model and its identification procedure present complex 

software, which requires significant computer resources. Therefore, the thermodynamic model is 

not suitable for the real-time computing the unmeasured gas path variables within an online 

monitoring system. 

 

 
Figure 1.6 Gas turbine fault diagnostics approach (adapted from [42]). 

 

To meet the computational requirements, the GPA uses different linear models originating from the 

thermodynamic model. To find unknown fault parameters at steady states and transients, Kalman 

filter (KF) is often applied to linear models [38]. For computing unmeasured variables, two main 

linear models of the filter (system model and measurement model) are complemented by the model 

for these variables [43,44]. Studies [32,33] on turbofan engine thrust estimation present good 

examples of KF applications. Although intended for online application, the KF methodology has 

some limitations. First, in addition to the inadequacy of an original thermodynamic model, 

linearization and approximation errors affect the accuracy of the estimated parameters. Second, the 

implementation of this methodology requires prolonged development time and the efforts of 

qualified diagnosticians. Apart from a KF-based diagnostic algorithm needing to be developed and 

verified, a reliable thermodynamic model has to be developed first.  

 

Although many online diagnostic systems have been developed by gas turbine manufacturers, 

specialized laboratories, and universities, the use of these systems is not a standard practice for 

production engines. A probable explanation for this is that engine owners and operators do not rely 
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completely upon diagnostic decisions, do not believe in the system’s effectiveness, and, as a result, 

do not want to invest in a system. However, a wider use of diagnostic systems would allow the 

acquisition of new data about engine degradation and sensor malfunctions, resulting in improved 

diagnostic software.  

 

Table 1.2 Typical measured and unmeasured variables used in different types of engines [3]. 

Type of 

variable 
Performance parameter Unit Engine type 

M
ea

su
re

d
 

EGT °C All types 

Fuel flow kg/s All types 

High pressure spool speed rpm All types 

Low pressure spool speed rpm Two-spool GT 

Intermediate pressure spool speed rpm Three-spool GT 

Compressor discharge pressure kPa All types 

Compressor discharge temperature °C All types 

Turbine inlet temperature °C All types 

Torque Nm 
Turboshaft/ 

Turboprop 

U
n

m
e
a
su

re
d

 

Power kW 
Stationary/ 

APU 

Thrust kN Aero engine 

Specific fuel consumption kg/kJ Stationary 

Thrust specific fuel consumption g/(kN·s) Aero engine 

Air flow kg/s All types 

Exhaust gas flow kg/s All types 

Exhaust gas velocity m/s Aero engine 

Heat rate kJ/kWh Stationary 

Thermal efficiency % All types 

 

 

Given the above reasoning, an easy-to-develop reliable online system appears to be a desirable 

option. Since the 1970s, simple thermodynamic relationships for computing compressor and turbine 

efficiencies have attracted the attention of diagnosticians [35,36]. These relationships ideally meet 

the requirements of an online system, but can be used only for the efficiencies of the specific 

components. Additionally, the necessary component input and output parameters are not always 

available. Reference [37] provides another algorithm suitable for an online system. The authors 

estimate an unmeasured compressor air flow at steady states by means of measured parameters and 

a small set of nonlinear thermodynamic equations. The study [34] also follows the idea of 

simplified algorithms for an online system. In an effort to estimate a turbine blade lifetime, 

unmeasured boundary conditions (heating temperature and heat transfer coefficient) are determined 

at steady states, using thermodynamic relations and data-driven models. The study proves the 

accuracy of these conditions and the resulting lifetime estimates. The aforementioned studies only 

deal with unmeasured gas turbine variables. As they primarily depend on the engine operating 

conditions, and the degradation influence is smaller, features with a greater diagnostic value are 

required. The study [45] extends the feature (deviation) extraction on the unmeasured variables. 

First, to examine the proposal, unmeasured compressor and turbine efficiencies were calculated 

according to the known thermodynamic relationships like it is done in [35,36], and the turbine blade 

heating temperature was determined by the model developed in [34]. For these variables, the 

deviations were calculated then. After the validation of the deviation accuracy on simulated and real 

data, it was concluded that the new features can be used in a gas turbine monitoring system. 
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As shown above, the algorithms used in [34,45] for computing the unmeasured variables and their 

deviations are suitable for use in an online monitoring system because they compute useful 

diagnostic features and are accurate and simple. Nevertheless, one limitation remains: the variables 

are calculated by individual algorithms. This is because each algorithm comprises a specific set of 

thermodynamic (physics-based) equations. As mentioned before, these physics-based algorithms 

accurately describe the dependence of the unmeasured variables on measured ones at steady states. 

The question is whether this dependence can be adequately simulated by static data-driven models. 

 

Multiple diagnostic algorithms belonging to the mentioned approaches have been widely utilized so 

far and comparative studies of these algorithms are known. Some particular recommendations on 

the selection of the best algorithm can be found, for example, in [26,29]. Nevertheless, studies 

addressing a general comparison of both approaches are still missing in the literature. 

 

1.2.3 Techniques used for fault diagnostics 

As mentioned before, a total diagnostic process can be divided according to three principal and 

interrelated stages: (a) anomaly detection, (b) fault identification (isolation), and (c) prognosis. 

These stages are preceded by an additional stage of data validation and feature extraction. The stage 

of fault identification seems to be the most complex and developed [21]. In this stage, the necessary 

fault classes are constructed and a diagnostic decision is made in the space of deviations of the 

monitored variables. For constructing the classes, deviation vectors (patterns) corresponding to real 

faults can be used. So far available real information rarely suffices to form a representative 

classification, especially in the beginning of an engine life cycle. Hence, physics-based models are 

still frequently applied to simulate gas turbine fault scenarios. 

 

Many pattern classification techniques are applied to diagnose gas turbines, including Artificial 

Neural Networks (ANNs) [24,30,46–50], Genetic Algorithms [46,51], Fuzzy Logic [52–55] and 

Bayesian Approach [24,56,57]. Among the ANNs employed are Multilayer Perceptron (MLP) 

[23,50], which is most widespread, Probabilistic Neural Network (PNN) [21,47,58], Radial Basis 

Network (RBN) [46,50], etc. The MLP consists of a predefined set of input-target pairs and a 

backpropagation algorithm in the training stage that modifies all weight matrices and bias vectors in 

the hidden and output layers proportionally to the decreasing gradient of the error function. This 

update results in the network’s ability to learn relationships between the inputs and outputs. When a 

new input is presented, the outputs of the nearby learning input vectors determine the new output. 

The PNN utilizes the criterion of a fault probability to classify fault patterns; therefore every 

diagnosis is accompanied by a confidence probability. The RBN is formed by a layer with radial 

basis function (RBF) neurons and a layer that generates linear combinations of activations of the 

radial basis layer. The idea of the RBF neurons is to measure how close the input vector and a 

weight vector are from each other. In the training process, one neuron is iteratively added at a time 

to the radial basis layer. This new neuron is created by the input vector that obtains the smallest 

network error. The neuron addition is stopped when a network error decreases below an error goal 

or when a maximum neuron number has been reached. 

 

Another type of technique used for fault diagnostics in the past years is Support Vector Machines 

(SVM) [26,47]. SVM are supervised algorithms applied to classification and regression analysis 

[59,60]. Given training data as pattern vectors and their corresponding labels, the SVM algorithm 

maps the original input space into a higher-dimensional feature space through a kernel function to 

separate the data there with a maximum-margin hyperplane. Since perfect separation is not always 

possible, the method allows classification errors while a regularization parameter penalizes them. At 

prediction stage, all classifiers emit votes when a pattern vector is presented. The pattern is assigned 

to the class with the maximum number of votes. The use of SVMs in machine condition monitoring 
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[61,62], and especially in gas turbine diagnostics is well known. Qi-hua and Jun [63] apply a multi-

class SVM algorithm for aero-engine fault diagnostics. Seo et al. [64] and Lee et al. [65] propose 

hybrid SVM-ANN methods for defect diagnostics of gas turbines. Zhou et al. [66] develop a gas 

turbine diagnostic method based on SVM. 

 

Different studies demonstrate that ANNs are outperformed by SVMs in many aspects [59,67]. 

Some of them are: ANNs suffer from multiple local minima while the solution of SVMs is global 

and unique; ANNs are much more prone to overfitting than SVMs; SVMs have better 

generalization than ANNs for small number of samples; the geometric interpretation of SVMs is 

simpler and give sparse solutions; ANNs use empirical risk minimization whilst SVMs use 

structural risk minimization; and unlike of SVMs, the computational complexity of ANNs directly 

depends on the input space dimensionality. 

 

Since gas turbines are very complex machines and need to be monitored, exhaustive comparative 

studies and benchmarking analysis about diagnostic techniques can give solid recommendations on 

how to construct an effective monitoring system [23,26,68–70]. However, the theoretical accuracy 

results provided by different studies are still not sufficient to give a clearer idea to designers, 

diagnosticians and engineers on how accurate the diagnostic decisions will be for a wide range of 

gas turbine diagnostic conditions and how much these conditions affect the techniques employed. 

Besides, the necessity of considering engine fault representations closer to reality is essential in 

order to produce more truthful and reliable diagnostic assessments.  

 

Despite the advances in the research and development in the areas of engine health management 

(EHM), there are still inconsistency in defining and representing EHM problems [71]. Over the past 

years, different EHM solutions have been published but they are applied to different platforms, 

problems with diverse complexity and evaluations of performance with different metrics. This has 

created difficulties to correctly compare methodologies and to effectively develop algorithms [72]. 

To solve the above problems, a recent benchmarking platform called ProDiMES (Propulsion 

Diagnostic Method Evaluation Strategy) has been created by the NASA Glenn Research Center. 

The software simulates a fleet of commercial aircraft engines using a nonlinear physics-based 

steady state model. The simulated data present steady state gas path variables collected every flight 

(snapshots) for healthy and faulty engines under varying flight conditions. A user diagnostic 

solution treats the collected data producing diagnostic decisions, and then for this solution 

ProDiMES determines a set of accuracy performance metrics, which are reviewed in depth in [73]. 

To illustrate the benchmarking methodology, ProDiMES also includes an example diagnostic 

solution and its metrics. Thus, using the same input data and performance metrics, different users 

can validate and compare their developments. Some of the comparative studies based on the 

ProDiMES platform can be found in [26,29,68,70]. 

 

 

1.3 RESEARCH CENTERS/UNIVERSITIES WORKING IN THE FIELD OF GAS 

TURBINE DIAGNOSTICS 

Over the last decades, several research centers and universities worldwide have been involved in the 

areas of gas turbine condition monitoring and diagnostics. Table 1.3 presents some active 

institutions as well as their scientific publications. Like other centers, they play an important role in 

the research and development of advanced gas turbine diagnostic algorithms and systems. In 

Mexico, the area of monitoring and diagnosis of gas turbines is not well developed; however, 

research institutes such as Instituto Politecico Nacional (IPN), Centro de Investigación en Ingeniería 

y Ciencias Aplicadas (CIICAp) and Instituto Nacional de Electricidad y Energías Limpias (INEEL) 

have made some contributions to gas turbine diagnostics.  
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Table 1.3 Research centers and universities working in the field of gas turbine diagnostics. 

Research center/University Country 

NASA Glenn Research Center [29,68,72,74] USA 

Cranfield University [17,18,30,46,51,55,75] United Kingdom 

National Technical University of Athens [24,25,28,38,41,58,70,76] Greece 

Carleton University [3,77–80] Canada 

University of Liège [27,29,76,81–85] Belgium 

National Research Council of Canada [68,73,86–88] Canada 

Concordia University [89–93] Canada 

Qatar University [94–98] Qatar 

National Aerospace University (KhAI) [34,99–102] Ukraine 

Harbin Engineering University [103–106] China 

Nanjing University of Aeronautics and Astronautics [107–113] China 

Instituto Politécnico Nacional [19,21,45,114,115] Mexico  

  

 
1.4 RESEARCH OBJECTIVES 

Considering the analysis performed above and a general conclusion that effective diagnostic 

systems need the development and evaluation of different algorithms, the research objectives of the 

present thesis are: 

 

1. To present the foundations of nonlinear gas turbine performance simulation to gain a better 

understanding of diagnostic models as well as the software structure of a thermodynamic model. 

 

2. To develop a methodology for computing any necessary gas turbine unmeasured variables and 

their deviations by “light” data-driven algorithms that are not exigent for computational resources 

and can be used in online monitoring systems. 

 

3. To develop a procedure to assess different gas turbine diagnostic techniques and to perform the 

technique comparison under variable fault conditions. 

 

4. To develop and benchmark a data-driven gas turbine diagnostic algorithm through a platform that 

allows engine data generation, computation of performance metrics and comparison with other 

diagnostic solutions. 

 

5. To perform a comparative study between physics-based and data driven gas turbine diagnostic 

approaches in order to know whether they achieve the same level of diagnosis accuracy. 

 
 
1.5 THESIS OUTLINE 

The organization of this thesis is as follows: 

 

Chapter 2 firstly gives an overview of gas turbine diagnostic models. Next, the test case engines 

used throughout the thesis are briefly presented. The chapter also contains an example of a free 

turbine engine performance simulation and the software of its thermodynamic model. A qualitative 

analysis of model accuracy is finally addressed based on the comparison of two test case engines. 

 

Chapter 3 presents the development of an online monitoring algorithm based on unmeasured gas 

turbine variable estimations. Some principles of GTE diagnostics based on measured and 
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unmeasured variables are firstly introduced. Next, the chapter proposes three different variations of 

the algorithm for estimating unmeasured quantities under the conditions of simple engine faults. 

The algorithm with the best performance is finally selected to analyze the estimation of unmeasured 

quantities for more complex fault scenarios that validate the algorithm. 

 

Chapter 4 performs a comparative study of gas path diagnostic techniques using a principle of 

variable structure classification applied to cover possible fault scenarios in gas turbine maintenance. 

A foundation for each technique under analysis is firstly given in the chapter as well as the 

procedure for diagnostic technique evaluation. Then, different case studies are performed using the 

diagnostic procedure to compare the techniques and draw solid conclusions about the influence of 

variable fault conditions on the techniques. 

 

Chapter 5 introduces and validates a data-driven gas turbine diagnostic algorithm using the 

ProDiMES benchmarking software. In an initial section, the ProDiMES structure that includes a 

benchmarking process, engine fleet simulation and diagnostic performance metrics is described. 

Then, the proposed algorithm testing procedure is covered that includes the steps of fleet-average 

baseline modeling, pattern-based fault classification, validation process, tuning and comparison of 

the techniques. Finally, the best configuration of the algorithm is compared with other diagnostic 

solutions. 

 

Chapter 6 presents an algorithm for comparing physics-based and data-driven gas turbine diagnostic 

approaches. A general description of the methodology is given along with the foundation of each 

approach. Two test case engines with their comparison conditions and case studies are employed to 

evaluate the approaches. 

 

All the algorithms developed in the present thesis are implemented in Matlab that offers convenient 

toolboxes for different areas such as machine learning and pattern recognition assisting in effective 

algorithm development. 

 

Chapter 7 summarizes the proposed methodologies, their contributions to the areas of research and 

future works. 
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Chapter 2: Non-Linear Gas Turbine 

Performance Simulation 
 
2.1 AN OVERVIEW OF GAS TURBINE DIAGNOSTIC MODELS 

2.1.1 Thermodynamic non-linear model 

In the past, there have been unsuccessful attempts to implant mechanically damaged components in 

gas turbines to measure the resulting deterioration. This is clearly an extremely expensive method 

and it is not possible to implant faults due to the possibility of causing more serious damages. The 

only feasible method of systematically investigating the deterioration of gas turbines is by 

mathematical models (also called physics-based models) based on established non-linear 

thermodynamic relationships to describe engine stationary or dynamic states. These models must be 

validated with available field data. Since the studies carried out by Saravanamuttoo et al., especially 

[35,39], the application of the these mathematical models for stationary states has become a 

common practice by many researchers worldwide [23,24,72,77,116–119]. Reviews on gas turbine 

modeling techniques can be found, for example, in [86,120]. The most important feature of the 

models is the ability to implement controlled faults, where the efficiency and flow characteristics of 

the components can be modified to represent different levels of degradation. The model gives a 

complete and successive description of all principal gas path components (compressor, combustor, 

turbine, etc.). The model computes a  1m -vector Y


 of gas path monitored variables as a 

function of a vector U


 of steady state operating conditions (control variables and ambient 

conditions) as well as a -vector 


 of health parameters, which shift component operating 

maps in different directions simulating gradual deterioration mechanisms and faults of varying 

severity. When a fault in a determined component occurs, all the engine parameters change as well 

due to a non-linear dependence  


Y  between the measured and the health parameters. 

Consequently, the thermodynamic model can be presented by the following structured expression: 

 

 


,UfY                                                                 (2.1) 

                                                                   

There exist two manners to improve the accuracy of gas path mathematical models: 1) by 

specifying and deepening the description of the physical processes in the gas turbine, 2) by 

identifying the model with experimental data. The first way is very complex and slow. The second 

one, the identification of the non-linear model, means the search for such values of internal 

parameters of the model (for example, health parameters 


) which bring the model parameters 

closer to the measurement variables *Y


. Therefore, we can present the operation of the 

identification as the minimization of an objective function [17,19,121]: 

 

 UYY


,minarg
ˆ *                                                     (2.2) 

 1r
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where  is the norm of the vector. The procedure of identifying the nonlinear model forms the 

foundation of the most perfect and complex diagnostic algorithms. Paper [40] describes one of the 

first thermodynamic model identification procedures. Reference [41] provides the results of the 

procedure implementation in an integrated condition monitoring and diagnostic system. The 

minimization of the objective function presented in Eq. (2.2) is performed iteratively until obtaining 

the best estimated health parameter 
̂

 for real 


. For example, the minimization of the objective 

function using genetic algorithms (GA) is addressed in [17]. The GA have the advantage that any 

function (even non-smooth functions) can be optimized, a global search is employed to avoid local 

minimums, and probabilistic instead of deterministic transition rules are used to create the next 

generation of strings from the current one [122]. 

 

2.1.2 Linear model based methods 

The relationship between the dependent parameters in the gas path (pressures and temperatures, 

thrust, mass flow, etc.) and the independent parameters (pressure ratio, flow capacity and 

efficiencies) is non-linear [17]. However, the engine model presented in Eq. (2.1) can be simplified 

by linearizing the non-linear dependence  ΘY


 between measured and fault parameters at a certain 

operating point (such as maximum power or cruise) producing a static linear model given by: 

 




 HYδ                                                                 (2.3) 

 

It relates a vector 


 of small relative changes of the fault parameters to a vector Yδ


 of the 

corresponding relative deviations of the monitored variables by an influence coefficient matrix H . 

Since linearization errors are not too great, the linear model can be successfully applied for fault 

simulation at any fixed operating point. The matrix H  reflects the influence of each fault parameter 

on the measured variables and can be computed by means of the thermodynamic model. The gas 

path variables Y


 are firstly computed through the model for nominal (healthy state) fault 

parameters 0


. Then, small variations are introduced by turns in fault parameters and the 

calculation of the variables Y


 is repeated for each corrected parameter. Finally, for each pair iY  and 

j  the corresponding influence coefficient is obtained using the following expression: 
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                                          (2.4) 

 

With the assumption of Eq. (2.3), the first works using GPA were introduced by Urban in the late 

70’s [42,123] applied to gas turbine condition monitoring and diagnostics of single and 

simultaneous multiple engine faults. Since then, different studies have applied this GPA method. 

Studies carried out by Volponi et al. [23] and Ganguli [52,53,118] use a linear model for diagnosing 

a twin-spool turbofan engine. Studies [124,125] utilize a linear model of a two-spool turboshaft 

engine to create a variable and complex fault classification for diagnostics. Yu et al. [126] compare 

different linear models for gas turbine performance. Kamboukos and Mathioudakis [127] make a 

comparison of linear and non-linear for the purpose of condition monitoring and diagnostics. 

 

When health parameter deviations 

ˆ  are required, they can be estimated with Eq. (2.5) as direct 

solution of the linear system in Eq. (2.3) if the number of measurements equals the number of 
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health parameters, or with Eq. (2.6)  as the solution for the least-squares method (LSM) if the 

number of measurements is greater than the number of health parameters [128]. 

 

Y


 1ˆ H                                                              (2.5) 

  Y


 
 T1Tˆ HHH                                                      (2.6) 

 
2.1.3 Non-linear dynamic model 

It is common that the use of models for diagnostics at steady states is more frequent than those for 

transients. However, current studies demonstrate that there is a growing interest in GT diagnostics 

during dynamic operation [49,129]. A thermodynamic gas path model (dynamic model) is therefore 

in increasing demand. As distinct from the static model of Eq. (2.1), in the dynamic model a time 

variable t  is added to the argument set of the function Y


 and the vector  is given as a time 

function. Thus, a dynamic model has the following structure [19]: 

 

 ttUfY ,),( 


                                                      (2.7) 

 

A separate influence of time variable t  is explained by inertia nature of GT dynamic processes, in 

particular, by inertia moments of gas turbine rotors. The gas path parameters  of the model (2.4) 

are computed numerically as a solution of the system of differential equations in which the right 

parts are calculated from a system of algebraic equations reflecting the conditions of the 

components combined work at transients. These algebraic equations differ a little from the static 

model equations. For that reason, the numeric procedure of the algebraic equation system solution is 

conserved in the dynamic model. Therefore, the nonlinear dynamic model includes the most of 

static model subprograms. Thus, the nonlinear static and dynamic models tend to be united in a 

common complex program. 

 
2.2 TEST CASE ENGINES 

To develop the proposed gas turbine diagnostic algorithms, three test case engines are employed. 

Each of them is presented by a non-linear thermodynamic model with the same structure of Eq. 

(2.1) and they are briefly presented below. Engine variables such as operating conditions, monitored 

variables, and fault parameters are specified in more detail for each diagnostic algorithm in the 

subsequent chapters. 

  

2.2.1 Test case engine 1 

The first test case engine (GT1) is a turbo-shaft stationary power plant for natural gas-pumping. Its 

model was validated against the manufacturer data and identified with real engine data [100,121]. 

Figure 2.1 displays a general scheme of this engine. For diagnostic purposes, the main components 

under study correspond to inlet device (ID), compressor (C), combustion chamber (CC), high 

pressure turbine (HPT), and power turbine (PT).  

 

2.2.2 Test case engine 2 

The second test case engine (GT2) is a two-spool turboshaft engine for propulsion and power 

generation applications. Figure 2.2 shows the generalized engine scheme. Its model belongs to a 

complete gas turbine performance simulation software called GasTurb created by the company 

GasTurb GmbH [130]. GasTurb allows simulating the performance of a wide variety of gas turbines 

applied to aviation, power generation or propulsion. Studies using this software can be found, for 

example in [131,132].  

 

U


Y

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2.2.3 Test case engine 3  

The third engine under study (GT3) is a high-bypass turbofan engine presented by a steady state 

thermodynamic model called C-MAPSS (commercial modular aero-propulsion system simulation) 

created for diagnostics research [72,117]. C-MAPSS is part of the ProDiMES software and works 

with two spool speeds, fan and core speed. Figure 2.3 shows the station numbers, the modules and 

the simulated sensor variables of the engine that are described in more detail in Chapter 5. 

 

 

 
Figure 2.1 General scheme of GT1. 

 

 

 
Figure 2.2 General scheme of GT2. 
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Figure 2.3 General scheme of GT3. 

 
2.3 STRUCTURE OF A THEMODYNAMIC MODEL 

2.3.1 Performance simulation of a free turbine engine 

Any gas turbine is a collection of discrete components, each of which must be described in 

thermodynamic terms. Thus, a complete thermodynamic gas turbine model can be constructed by 

linking all component models [133]. Let us briefly present an example of gas turbine performance 

simulation for a free turbine engine. The below description was extracted from Saravanamuttoo and 

MacIsaac [39] (Eqs. 2.8-2.12) and from Kurz and Brun [7] (Eqs. 2.13-2.18). Figure 2.4 displays the 

main sections of the engine, which has the same configuration as GT1. 

 

 

 
Figure 2.4 Free turbine engine (adapted from [39]). 

 

Performance prediction methods depend on the application of physical laws and performance maps 

of each component. To achieve the steady-state engine operation, it is necessary to maintain the 

flow balance between each main component and a power balance between the compressor and its 

high pressure turbine, and also between the free power turbine and its load. Since the flow through 

each component is generally described by a set of empirically derived maps that, in turn, are 

expressed in a dimensionless way, it is convenient to define the equations that describe the steady 

state behavior of the gas turbine in a dimensionless manner. For example, if fuel and bleed flows 

are not available a flow balance between the compressor and the gas generator turbine would 

require that: 

 

13 WW                                                                (2.8) 
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where 1W  and 3W  are the compressor and high pressure turbine mass flows, respectively. In a 

dimensionless form, Eq. (2.8) is transformed to: 
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                                           (2.9) 

 

where: 

3

33

P

TW
 is the dimensionless high pressure turbine flow 

1

11

P

TW
 is the dimensionless compressor flow 

1

2

P

P
 is the compressor pressure ratio 

2

3

P

P
is the combustor pressure ratio 

1

3

T

T
is the dimensionless turbine temperature ratio 

 

For work compatibility between the compressor and its driving turbine: 

 

mpgpa TCWTCW 343121                                                (2.10) 

 

where m  is the mechanical efficiency; paC  and pgC  are specific heat capacities for air and 

exhaust gas, respectively. Hence, 

 

pa

mpg

CW

CW
TT

1

3
3412


                                                    (2.11) 

In a dimensionless form, since 13 WW  : 
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T

T

T
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
                                                    (2.12) 

 

In this way, Eq. (2.9) and Eq. (2.12) for 
1

3

T

T
 are obtained and the engine operating point that 

satisfies both must be found by trial and error, using data obtained from the non-linear component 

characteristics. The procedure by which this is performed is commonly called component matching.  

 

For the free power turbine of Figure 2.1, the flow compatibility with the power turbine and the gas 

generator must also be established and it the following structure:  
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Another condition is imposed by the flow capacity of the gas generator and power turbine. From a 

pressure balance, we get the identity 
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                                                            (2.14) 

 

where 23 PP  is determined by the pressure drop in the combustor. This means that for any 

compressor pressure ratio, the gas generator pressure ratio is fixed by the power turbine pressure 

ratio. In particular, if the power turbine is in choke, then the gas generator pressure ratio is a unique 

fixed value. Furthermore, the fuel flow is determined from: 

 

 

LHV

WTTC
W

pg
f

123 
                                                       (2.15) 

 

As mentioned before, any component of the engine can be represented by a performance map. In 

order to allow for small deviations from the design point, the dependency of operating parameters 

can be linearized, i.e. we do not necessarily need to model the entire performance map (Table 2.1). 

Even with these relatively simple relationships, the typical behavior of a two shaft engine can be 

simulated: the limitation by maximum speed at inlet temperatures below the match temperature, 

while being limited by maximum TIT at temperatures above the match temperature. The optimum 

speed of the power turbine will depend on the gas generator operating point. With 
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we derive the optimum power turbine speed from: 
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where ptN  is the power turbine speed and, Q  is the volumetric flow, axc  is the axial velocity and 

u  is the tip speed. The reduction in power turbine efficiency at off-optimum speeds can be 

approximated by 
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These conditions are sufficient to explain the behavior of gas turbines at off-design conditions, for 

example, at ambient temperatures different from the ‘‘match’’ temperature: At higher ambient 
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temperatures, the pressure ratio 12 PP  is reduced because the same head produces less pressure 

ratio, and the mass flow is reduced because the choked power turbine nozzle limits the flow 

(temperature topping). At lower ambient temperatures, gas generator speed limits override a limit in 

firing temperatures (speed topping). 

 

Increasing the power turbine nozzle flow area reduces the power turbine resistance (i.e., increases 

the flow capacity), allowing a higher portion of the overall pressure ratio across the gas generator 

turbine. The TIT needed for the gas generator turbine to drive the compressor is reduced. When an 

engine matched to give rated TIT at rated gas generator speed at, for example, 15°C (59°F) is 

operated at 49°C (120°F), the rated TIT occurs before the rated gas generator speed can be obtained. 

To increase the gas generator speed, the power turbine area would have to be increased. 

 

Table 2.1 Linearized operating parameters [7] 

Linearized parameter Depending on Equation 

Compressor pressure ratio Corrected gas generator speed 
gpcorrcprc NTTk   

Compressor flow function Corrected gas generator speed 
gpcorrcWc NWK   

Compressor efficiency Corrected gas generator speed 
gpcorrcc Nk    

Gas generator pressure ratio Compressor pressure ratio 
cgptgpt TTTTk   

Gas generator turbine efficiency Gas generator turbine speed  gpgptgpt NQk 3   

 

 

2.3.2 Software of the model 

Mathematically, a thermodynamic model is a system of non-linear algebraic equations that reflect 

the balance of mass, heat and energy for all components that operate under stationary conditions. 

The number of algebraic equations in the thermodynamic model can be more than fifteen and it 

presents complex software that includes dozens of subroutines as listed in  

Table 2.2 for GT1. Figure 2.5 and Figure 2.6 show the hierarchy level of each program and the 

principal subroutine “Dr” for computing the throttling, respectively. The rest of the subroutines 

employed in the software can be found in Appendix 2. Most of these subprograms are independent 

universal modules of a simulated gas turbine, thus simplifying the creation of a new engine model. 

 

Table 2.2 Main program and subroutines for GT1 thermodynamic model 

No. Identifier Description 

1 ATMOS.FOR Standard atmosphere parameters 

2 Atmosx.for Choosing the mode of input parameters definition 

3 BCN.FOR Rotation speed correction 

4 BG.FOR Air flow correction 

5 CLS.FOR Screen cleaning 

6 CPFT.FOR Thermodynamic properties calculation using temperature 

7 CRIT.FOR Critical parameters computation through temperature 

8 Dr.for Computation of the throttling 

9 DROSSL.FOR Throttle computation (supercharger in the circuit) 

10 DSIMQ.FOR Standard program of linear equations system solution by means of exclusion 

11 DSUM.FOR Sum calculation 

12 DSUM2.FOR Calculation of a sum of squares 

13 ETAG.FOR Combustion efficiency 

14 Gg1.for Gas generator computation 
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Table 2.2 Main program and subroutines for GT1 thermodynamic model (Continuation) 

15 Holder.for Computation holder 

16 INI90G.FOR Component performance initialization 

17 Inoutd.for Input from DATA.DAT, output to DATA.DAT 

18 INTCN.FOR Standard program of the interpolation of the function of two arguments 

19 KAMSG.FOR Combustion chamber computation 

20 KOMPR.FOR Compressor exit parameters computation 

21 LAM.FOR Velocity coefficient computation 

22 LINTX.FOR Interpolation of the function of one argument 

23 LINTXY.FOR Interpolation of the function of two arguments given by a table 

24 LINXYT.FOR Turbine performance interpolation 

25 NACHBL.FOR Initial block common for different calculations 

26 NAGNET.FOR Supercharger calculations 

27 Parreg.for Power set parameter calculation in dynamics 

28 PARVTS.FOR Air starter parameters 

29 Pdst1.for Independent variables and discrepancies for a free turbine engine with one spool 

gas generator 

30 POINT.FOR Determination a gas path parameter through its number in a common array 

31 Prntf.for Output of the parameters table to a file 

32 RDPAR.FOR Additional parameters calculation 

33 RDST1.FOR Calculation of a free turbine engine with a one spool gas generator 

34 RESET.FOR Screen reset 

35 RSUMN.FOR Standard program to solve a nonlinear system by the Newton method 

36 SEAR.FOR Searching the table interval where the given value is situated 

37 SEARCH.FOR Linear interpolation of a compressor performance 

38 SIGKS.FOR Combustion chamber pressure loss parameter 

39 SIGP4.FOR Pressure loss parameter in the channel between HPT and PT 

40 SIGS.FOR Nozzle pressure loss parameter 

41 SIGS1.FOR Internal gas path nozzle pressure loss parameter 

42 SIGST.FOR Pressure loss parameter in the volume after PT 

43 SIGVH.FOR Input device pressure loss parameter 

44 Sithar.for Program to expose not expected situations in component performance 

calculations 

45 Sitter.for Program to expose not expected situations in common thermodynamic 

calculations 

46 SOPLO.FOR Nozzle parameter calculations 

47 Stoil.for Standard hydro-carbonaceous fuel performances 

48 Table.for Forming the table for SITHAR messages 

49 TAUVD.FOR Air heating coefficient for the 2nd air bleeding point of the compressor 

50 TAUVD1.FOR Air heating coefficient for the 1st air bleeding point of the compressor 

51 TAUVD2.FOR Air heating coefficient for the air bypass point in the compressor 

52 TEXTIN.FOR Text line initialization 

53 TFI.FOR Thermodynamic properties calculation using the given enthalpy 

54 TFS.FOR Thermodynamic properties calculation using the given entropy 

55 TURBIN.FOR Turbine discharge parameters calculation 

56 WHIBLU.FOR White symbols, blue background 

57 WHIRED.FOR White symbols, red background 

58 XKVD.FOR Compressor parameters computation 

59 XNAGN.FOR Supercharger parameters computation 

60 XTND.FOR PT parameters computation 

61 XTVD.FOR HPT parameters computation 
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Figure 2.5 Main program and subroutines for GT1 thermodynamic model  

 

 
Figure 2.6 Main program “Dr” (computation of the throttling). 
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The software of the non-linear model is developed on the basis of the universal model and the 

generalized gas turbine scheme with necessary blocks (engine components) and sections as 

illustrated in Figure 2.7. The model allows executing several types of calculations. For example, the 

computation of the throttling allows determining the engine variables for the series of stationary 

regimes under the conditions of fixed environmental variables. Only the regime variable changes 

from one point to the other in the calculation. The calculation of a stationary regime includes as a 

basic part the successive computation of the gas path (in other words, the calculation of the 

components from the beginning: input, compressor, combustion chamber and so on). This 

calculation has a specialty: the arguments of the characteristics of components (compressors, 

turbines) are unknown at the time of use. Therefore, we form the following procedure. We include 

the arguments in the vector X


 of unknown variables. Before the computation, we give the variables 

initial values and calculate the gas path with the determined vector X


. However, the calculated 

variables in the gas path are not correct because of the use of inaccurate values of the vector X


. 

Therefore, we form the system of algebraic equations as follows. 

 

  0,, 


UXH                                                        (2.19) 

 

Each equation of this system reflects a joint working condition of the gas turbine components. For 

example, the following equivalence is the equation corresponding to the power balance of a rotor: 

 

1



TmecT

C
N

NN

N
H


                                             (2.20) 

 

where CN  and TN  correspond to the power of compressor and turbine. The system is solved by 

Newton's method that presents a cyclic procedure. At every new iteration i ,  the current solution 
1iX


 is given by the sum of the previous solution and the current correction:  

 

iii XXX


1
                                              (2.21) 

 

The correction iX


  is determined as the solution of the following linear system: 

 

iii XBN


                                                         (2.22) 

 

where the elements of matrix В (influence of X


 on H ) are computed according to the formula: 

 
i
l

i
qi

ql
X

H
B




                                                        (2.23) 

 

In the model, each component characteristic  21,fv   is written in the following parametric 

form: 





















 cbavv

2
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1
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0 1








                                    (2.24) 

 

where 0v  is the initial value of the characteristic; 1 , 2  and 10 , 20  are current and basic 

quantities of the arguments; 1 , 2  are the probable changes of the arguments 1  and 2 ; a ,b
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, c  are constant coefficients, the parameters of the characteristics of components (form the vector 


  

in the model). Such presentation of the characteristics allows automating the process of computation 

of the influence matrix H . 

 

 

 
Figure 2.7 Generalized gas turbine scheme with components and stations. 

 

 

2.4 QUALITATIVE ANALYSIS OF MODEL ACCURACY  

In order to have reliable monitoring and diagnostic systems based on GPA, it is necessary that non-

linear models describe the performance of gas turbines with a good level of accuracy. A simplified 

and easy form to verify the thermodynamic model accuracy is through a qualitative analysis of the 

curves of influence coefficients H  against operating conditions U . When the non-linear 

thermodynamic relationships are well described in a model, the behavior of these curves is smooth 

and without perturbations.  

 

To exemplify an accuracy model analysis, let us consider two engine models with the same 

structure, GT1 and GT2 to obtain plots of H versus U . Since coefficients H  can present high 

variations (produced by the inexactitude of linear models) in certain fault severity intervals, an 

analysis of H  versus   needs to be firstly performed to find an interval where the values of 

influence coefficients remain as invariable as possible. For that purpose, healthy and faulty engine 

data for various fault parameters and fault severity intervals are simulated. Table 2.3 lists six fault 

parameters with three intervals for each of them simulated by the GasTurb software (GT2). Figure 

2.8 displays the compressor map where each square point represents a shift in engine performance 

due to C  for a fixed relative gas generator spool speed. With the simulated data for different gas 

path monitored variables, deviations Y


  and influence matrices are computed using Eq. (2.4). As 

can be seen in Figure 2.9 for PTG , intervals 1 and 3 present considerable variations of influence 

coefficients (Δ between points A and B  0) for some monitored variables while Interval 2 shows 

almost invariable influence coefficients (Δ between points A and B  0).  
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Table 2.3 Fault parameters and severity intervals to analyze the behavior of influence coefficients 

for GT2. 

Fault parameter Interval Severity change 

-Delta compressor capacity CG  

-Delta compressor efficiency C  

-Delta HPT capacity HPTG  

-Delta HPT efficiency HPT  

-Delta PT capacity PTG  

-Delta PT efficiency PT  

1 

Start value = 0 (healthy engine) 

Step size = −0.001% 

Final value = −0.097% 

2 

Start value = −0.01% 

Step size = −0.01% 

Final value = −0.98% 

3 

Start value = −1% 

Step size = −0.1% 

Final value = −10% 

 

 
Figure 2.8 Engine performance shifts in the compressor map due to C  (GT2). 

 

A similar analysis of H  vs   for GT1 is also performed. After analyzing different intervals for 

both engines and considering the zones where there is not a considerable variation of coefficients H
, a value of −1% of severity for all fault parameters is selected. Using this fixed fault severity value, 

the behavior of influence coefficients against operating conditions is plotted. Figure 2.10 shows 

influence coefficients ( C =−1%) computed for different operating points set by the increase of 

gas generator spool speed and for both engines. It is visible that there is little impact of operating 

condition fluctuation on coefficients influence coefficients. However, the curves of GT2 are 

smoother than GT1. This indicates that the model from GasTurb captures the engine non-linear 

thermodynamic relationships with a better level of accuracy than GT1. This can be explained by the 

fact that the model of GT1 is based on traditional modeling. In a traditional gas turbine performance 

modeling process, the common method is to discretize component characteristic maps, stored them 

into the model in the form of arrays, and use a interpolation method to gain component off-design 

condition performance in the thermodynamic computation [134]. In this way, discretization and 

interpolation are key procedures of this traditional method. Due to the sparsity of gas turbine 

component characteristic maps, and discretization which will further reduce characteristic data, 
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component characteristic tables introduced into the thermodynamic model may lose too much 

information to represent the shape of characteristic map exactly. 

 

Therefore, the above simplified analysis gives place to a possible GT1 model enhancement by 

considering more optimal methods to describe the thermodynamic relationships without losing 

information in the modeling process. 

 

 
Figure 2.9 Variations of influence coefficients in three intervals of PTG  (GT2). 

 

 
Figure 2.10 Influence coefficients versus GG spool speed ( C =−1%) for GT1 and GT2. 
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Chapter 3: Development of an Online 

Monitoring Algorithm for Estimating 

Unmeasured Gas Turbine Variables 
 

3.1 OVERVIEW 

In this chapter we propose to compute any necessary unmeasured variables and their deviations by 

“light” data-driven algorithms that are not exigent for computational resources and can be used in 

on-line monitoring systems. The algorithms are examined on the data of GT1 for natural gas 

pumping units. Although the data are generated by a thermodynamic model, this model is not 

directly used in the algorithms. Instead, polynomial models that will operate on real data only are 

built and used. Within the implemented methodology, a baseline model for the unmeasured 

variables is firstly determined using the thermodynamic model data. Then, with the help of the 

thermodynamic model, faulty engine data are simulated and a model for the unmeasured variables 

is determined. Finally, the deviations between the values affected by faults and the baseline values 

are calculated and analyzed. In addition to this algorithm, the chapter analyzes two others that allow 

us to choose the best way to estimate unmeasured variables for more complex fault scenarios.  

 

Figure 3.1 displays in highlighted blocks all the influence factors that determine the main 

characteristics of the proposed diagnostic algorithm and its development in the chapter. The 

selection includes: a turboshaft engine for industrial application; gas path diagnostic systems; one-

point diagnostic analysis; the stage of data validation and feature extraction; the use of physics-

based, data-driven and non-linear models; a fault classification based on single and multiple faults; 

and the LSM as a method of system identification. 

 

3.2 DIAGNOSTICS BASED ON MEASURED VARIABLES 

To draw useful diagnostic information from raw recorded data, a total gas turbine diagnostic 

process usually includes a preliminary feature extraction procedure, in which deviations are 

computed [68,135]. A deviation is defined for a monitored variable Y  as a relative discrepancy 

between a gas path measured value 
*Y  and a baseline value 0Y . These discrepancies are analyzed 

instead of monitored variables themselves in order to avoid the influence engine operating 

conditions. 

 

As the baseline depends on the operating conditions and a vector 0


 corresponds to a healthy 

engine, a baseline model can be presented by: 

 

   UfUfY


 00 ,                                                     (3.1) 
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Therefore, deviations for variables miiY ,1,   are computed by the following equation: 

 

 
 UY

UYY
Y

i

ii
i 



0

0
* 

                                                       (3.2) 

 

Deviations consist of a systematic component induced by engine degradation or faults and a noise 

component that results from sensor errors and a baseline model inadequacy, which in turn depends 

on the mathematical techniques employed to create it. Loboda et al. [135] shows that complete 

second order polynomials are sufficiently accurate for baseline models. These polynomials 

adequately describe engine behavior, and the maximum error relatively to the thermodynamic 

model does not exceed 0.3% for all possible operating conditions 
 

 
Figure 3.1 Main characteristics of the proposed diagnostic algorithm in Chapter 3. 

 
3.3 DIAGNOSTICS BASED ON UNMEASURED VARIABLES  

As mentioned before, one of the monitoring system functions is to compute and monitor important 

unmeasured engine variables Z , for example, temperature after combustion chamber, compressor 

and turbine efficiencies, and engine power output. In addition to a thermodynamic model, a Kalman 

Filter approach can be applied to compute unmeasured variables [23]. Another option is to apply 

thermodynamic relations between them and measured quantities [31,99,101]. In this case, extensive 

investigations are needed to develop the best model for each unmeasured variable. We propose to 

compute all necessary unmeasured variables and their deviations through a universal data-driven 
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model. As in the case of measured quantities, baseline values of unmeasured variables only depend 

on operating conditions U


. Consequently, a baseline function can be presented by: 

 

   UfUfZ


 00 ,                                                       (3.3) 

                                                            

                                                            

Under faulty conditions, unmeasured variables also depend on fault parameters 


. Since the latter 

are not measurable, the use of measured quantities  UY


,  is proposed instead. Thus, the function 

to compute unmeasured variables is given by: 

 

 UYfZ


,                                                                (3.4) 

 

Since these variables are determined through measurements Y


 and U


, they can be called indirectly 

measured variables. Based on our previous experience, full second order polynomials are chosen to 

build the necessary models  UZ


0  and  UYZ


, . Unknown polynomial coefficients are determined 

by the Least-Squares Method (LSM). Similar to the variables Y


, the variables Z


 are strongly 

influenced by operating conditions and cannot be used as diagnostic features. To draw diagnostic 

information from indirectly measured variables, deviations are computed in the same way as with 

the measured variables resulting in: 

 

   
 UZ

UZUYZ
Z 



0

0, 
                                                        (3.5) 

 

Because variables Z


 determine principal engine performances and the integrity of engine 

components, their deviations δZ  will be valuable diagnostic features. 

 

 
3.4 SELECTED ENGINE VARIABLES 

To evaluate the proposed methodologies, GT1 is employed. The main components under analysis 

are the compressor (C), high pressure turbine (HPT), combustion chamber (CC), and power turbine 

(PT).  

Table 3.1 presents the measured variables used in the study, the operating conditions (ambient and 

control variables) used as baseline model input parameters as well as monitored gas path variables 

typically employed in engine diagnostics. The unmeasured variables chosen are listed in Table 3.2. 

All pressures and temperatures given in these tables correspond to a discharge section of the 

corresponding components. 

 

The fault parameters used to describe faulty scenarios in each component correspond to the 

performances of air or gas consumption ( G ) and isentropic efficiency ( ). Thirteen samples with 

healthy and different faulty conditions are generated based on these parameters as shown in Table 

3.3. The first sample (Sample 0) represents a healthy engine or no-fault scenario. Samples 1-6 

correspond to single faults of a specific severity. Samples 7-9 consider multiple faults based on the 

shift of two parameters in the same engine component. Samples 10-12 take into account the changes 

of four parameters in two engine components. Each sample contains the variables U


, Y


 and Z


 at 

the same 270 operating points. 
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To determine the influence of measurement errors on the results, three different noise schemes were 

studied and applied by turn to all samples under analysis: 

 

 “No noise”: original samples of simulated data with no noise added; 

 “Filtered noise”: the noise filtered by averaging 20 successive measurements is added; 

 “Full noise”: measurement noise without filtering is added. 

 

An individual level of measurement noise is chosen for each variable according to the 

recommendations made in previous studies [45]. Using the data described above, unmeasured 

variables and their deviations are determined as addressed in the following subsections. 

 

Table 3.1 Measured variables of GT1. 

No. Description Unit Symbol 

Operating conditions U


 

1 Ambient pressure Pa PH 

2 Inlet temperature K TH 

3 Power turbine rotation speed rpm nPT 

4 Fuel gas mass flow kg/h G 

Measured variables Y


 

1 Compressor pressure Pa PC 

2 Gas generator rotation speed 1/min nC 

3 
High pressure turbine temperature 

(Exhaust Gas Temperature-EGT) 
K THPT 

4 Compressor temperature K TC 

5 
High pressure turbine pressure 

(Exhaust Gas Pressure-EGP) 
Pa PHPT 

6 Power turbine temperature K TPT 

 

Table 3.2 Unmeasured variables (vector Z


) of GT1 

No. Description Unit Symbol 

1 Combustion chamber discharge pressure Pa  PCC 

2 Combustion chamber discharge temperature K  TCC 

3 Compressor efficiency - ηC 

4 High pressure turbine efficiency - ηHPT 

5 Power turbine efficiency - ηPT 

6 
High pressure turbine power output 

(GTE shaft power) 
W WHPT 

 

 

3.5 ALGORITHMS FOR ESTIMATING UNMEASURED QUANTITIES 

To ensure the most reliable estimation of unmeasured quantities, three algorithms are proposed. To 

make the analysis simpler, these algorithms are determined and tested on the data of the samples 

generated for healthy and single fault conditions (Samples 0-6). For each algorithm, the three noise 

schemes described above are considered. Algorithm 1 is based on the description given in 

Subsections 3.1 and 3.2. In Algorithm 2, the baseline models )(ˆ
0 UfY


  and )(ˆ

0 UfZ


  are firstly 

determined, and deviations Y  and δZ  are computed for all faults. On these data, function 

)(ˆ YfZδ


  is then determined. Finally, unmeasured variables Ẑ  is recovered using known 
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deviation Zδ ˆ . Algorithm 3 follows the same steps as Algorithm 2 with the difference that only the 

compressor faults (Samples 1 and 2) are considered when we determine the function )(ˆ YfZδ


 . 

To evaluate the effectiveness of the procedures, different estimation errors   are computed as 

differences between estimated quantities and true values that can be computed or directly obtained 

from the original samples. The schemes of the algorithms are presented in Figure 3.2 and the 

following subsections describe the algorithms in more detail. 

 

Table 3.3 Simulated healthy and faulty conditions of GT1. 

Sample Fault parameters and severity Description 

0 None No-fault 

Single faults 

1 03.0cG  Compressor air consumption decrease 

2 03.0c  Compressor efficiency decrease 

3 03.0hptG  High pressure turbine gas consumption decrease 

4 03.0hpt  High pressure turbine efficiency decrease 

5 03.0ptG  Power turbine gas consumption decrease 

6 03.0pt  Power turbine efficiency decrease 

Multiple faults (two parameters) 

7 015.0   ;025.0  ccG   Compressor fault 

8 015.0   ;025.0  hpthptG   High pressure turbine fault  

9 015.0   ;025.0  ptptG   Power turbine fault 

Multiple faults (four parameters) 

10 

01.0   ;015.0

01.0   ;015.0





hpthpt

cc

G

G




 

Compressor and high pressure turbine fault 

11 

01.0   ;015.0

01.0   ;015.0





ptpt

hpthpt

G

G




 

High pressure turbine and power turbine fault 

12 

01.0   ;015.0

01.0   ;015.0





ptpt

cc

G

G




 

Compressor and power turbine fault 

 

 

3.5.1 Algorithm 1 

Baseline model  UfZ0


ˆ  

Despite faulty and non-faulty engine states can be generated through the thermodynamic model of 

Engine 1, the direct use of such a model in the algorithms produces more complexity and high 

computational costs. In order to have “light” algorithms and overcome these problems, the 

thermodynamic model is only used as a source of the data for creating simple surrogate data-driven 

models for the algorithm.  
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Figure 3.2 Algorithms for estimating unmeasured quantities. 

 

Considering the above information, the initial step determines a baseline model  UfZ0


ˆ  using 

healthy engine data from Sample 0. For one unmeasured variable and four operating conditions U


, 

the complete second-order polynomial that simulates a healthy engine behavior has the following 

structure: 

 

 0 0 1 1 2 2 3 3 4 4 5 1 2 6 1 3 7 1 4 8 2 3

2 2 2 2

9 2 4 10 3 4 11 1 12 2 13 3 14 4

Ẑ U a a u a u a u a u a u u a u u a u u a u u

a u u a u u a u a u a u a u

         

    
                (3.6) 

 

Considering all unmeasured variables at n  operating points, baseline values are described by a 

linear system 0Z VA  and the solution for unknown coefficients ijâ  stored in a  rk  -matrix 

Â  is given by the LSM and expressed as: 

 

  0ZVVVA
T1Tˆ 

                                                     (3.7) 

 

where 0Z  is  rn -matrix of true values for r  unmeasured variables and V  is a  kn -matrix 

containing k  components (
2
4

2
321 ,,...,,,1 uuuu  ) from operating conditions. After finding the model 

coefficients ijâ , a baseline function estimation  UZ


0
ˆ  for all unmeasured variables can be now 

determined using Eq. (3.6). Also, a comparison between the estimates 0Ẑ  and true values 0Z  is 

available. Figure 3.3 shows baseline estimates 0Ẑ  of an important unmeasured variable 2Z  

(combustion chamber temperature TCC). The estimates were computed using the "Filtered noise" 

scheme.  
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Figure 3.3 Baseline estimates 02Ẑ  (combustion chamber discharge temperature TCC) for filtered 

noise 

 

A cyclic behavior of the plotted variables is explained by a mode to change operating conditions 

during generating the data samples. As the estimates and true values differ a little and will not be 

seen in Figure 3.3, the difference between them is plotted in Figure 3.4 in the form of a relative 

estimation error 
02

0202
02

ˆ
ˆ

Z

ZZ
Z


 . It is visible that most of errors are smaller than 0.1% and the 

maximum error 0.6% takes place only in one point. Table 3.4 shows the Root-Mean Square Errors 

(RMSE) of baseline estimates 0Ẑ  for all the unmeasured variables and the three noise schemes. 

For the "No noise" scheme, the input data is ideally accurate, and 0Ẑ  is an approximation error. It 

varies for different variables, but its level is comparable to the errors of the baseline for measured 

variables [69]. The error 04Ẑ  is very small (corresponds to a computer error) because the variable 

4Z  (high pressure turbine efficiency) is constant at baseline conditions. Comparing the results for 

the three schemes, the filtered noise influences a little. However, if the measurements are not 

averaged ("Full noise" scheme), the baseline errors are doubled (on average, from 0.0014 to 

0.0027). 

  

Figure 3.4 Baseline estimation errors 02Ẑ  for filtered noise 
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Table 3.4 RSME of baseline estimates 0Ẑ  (all noise schemes). 

Noise 

schemes 01Ẑε  02Ẑε  03Ẑε  04Ẑε  05Ẑε  06Ẑε  Average 

No noise 0.0011 8.6995e-04 0.0011 
1.8684e-

15 
0.0028 0.0011 0.0014 

Filtered 

noise 
0.0012 9.7631e-04 0.0011 

2.4357e-

16 
0.0028 0.0014 0.0015 

Full noise 0.0033 0.0023 0.0012 
1.6543e-

16 
0.0029 0.0041 0.0027 

 

 

Model )Y,Uf(Z


ˆ  for faulty conditions 

As in the case of a healthy engine behavior, estimated unmeasured values )Y,Uf(Z


ˆ  (under the 

influence of faulty conditions) can be computed using a full second-order polynomial. For each 

unmeasured variable, the polynomial now needs 66 coefficients and the function has the following 

structure: 

 

 
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2
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2
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2
261

2
160

2
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2
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2
257

2
15665553112211161022110 ......,ˆ
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uauayyauuauuayauauaaYUZ






    

(9) 

 

The coefficients for all variables are determined by the LSM in the same mode as for baseline 

model )U(Z


0
ˆ  . In this case, the coefficients are computed using a  rn -matrix Z  of true values 

in a concatenated form considering all operating points from Samples 0 to 6. As an example of the 

results, the plot of estimate 2Ẑ  (combustion chamber discharge temperature TCC) is shown in 

Figure 3.5. The faulty condition corresponds here to the fault parameter of compressor air 

consumption cG , and the random errors in input data are simulated according to the "Filtered 

noise" scheme. One can see that the behavior of estimate 2Ẑ  is similar to the behavior of the 

baseline estimate 02Ẑ  shown in Figure 3.3. In other words, the fault introduced does not have any 

visible influence on the unmeasured variables. This is one more illustration that unmeasured 

variables themselves are not pertinent fault indicators, and it is necessary to calculate their 

deviations.  

 

To have exact deviations, not only the baseline model must be adequate, but the current values Z


 

should be precisely estimated as well. Estimation errors Zε ˆ  for the unmeasured variable 2Z  are 

shown in Figure 3.6. It is visible that the estimating accuracy is sufficiently high: an average error 

of about 0.05% and a maximum error of 0.17%. 

 

Table 3.5 shows the RMSE of estimates Ẑ  computed for Samples 0-6, the "Filtered noise" scheme 

for all samples and all unmeasured variables. As observed, the errors are considerably small for all 

the variables excepting the variable 5Z  of power turbine efficiency. 
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For the three noise schemes, Table 3.6 presents the RMSE of estimates Ẑ  conserving the format of 

Table 3.4 for comparison purposes. As observed in Table 3.6 for the "No noise" scheme, 

approximation errors decrease significantly. The explanation is a greater flexibility of the function 

)Y,Uf(Z


ˆ  (66 unknown parameters in one polynomial against 15 parameters in the baseline 

function). Nevertheless, the impact of measurement noise on the accuracy of unmeasured variables 

is notable. On average, the error Ẑ  results in 0.0038 for the "Full noise" scheme and 0.0027 for 

the baseline. However, the scheme "Filtered noise" provides more acceptable results. As before, the 

variable 5Z  has the highest errors. 

 

After determining the models for unmeasured variables under healthy and faulty conditions, the 

final step consists in calculating the deviations. 

 

 
Figure 3.5 Estimates 2Ẑ  for faulty condition 03.0cG and filtered noise. 

 

 

Figure 3.6 Estimation errors 2Ẑε  for faulty condition 03.0cG and filtered noise. 
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Table 3.5 RMSE of estimates Ẑ  ("Filtered noise" scheme). 

Sample 1Ẑε
 2Ẑε  3Ẑε  4Ẑε  5Ẑε  6Ẑε  

Average 

0 4.404e-04 4.858e-04 9.925e-04 5.658e-04 0.0025 8.066e-04 0.0012 

1 4.283e-04 5.544e-04 0.0012 7.748e-04 0.0027 8.29e-04 0.0013 

2 4.636e-04 4.785e-04 0.0013 5.391e-04 0.0023 8.507e-04 0.0012 

3 5.198e-04 4.411 e-04 9.876e-04 4.517e-04 0.0023 0.0012 0.0012 

4 4.693e-04 4.221e-04 0.0015 0.0016 0.0027 0.0018 0.0016 

5 4.012e-04 4.775e-04 9.06e-04 5.476e-04 0.0025 0.0014 0.0013 

6 4.789e-04 4.543e-04 9.796e-04 4.925e-04 0.0031 8.374e-04 0.0014 

 

 

Table 3.6 RMSE of estimates Ẑ  (all noise schemes). 

Noise 

schemes 1Ẑε  2Ẑε  3Ẑε  4Ẑε  5Ẑε  6Ẑε  Average 

No noise 3.881e-05 2.026e-04 5.96e-04 3.817e-04 
8.152e-

04 
4.133e-04 

4.7939e-

04 

Filtered 

noise 
4.587e-04 4.75e-04 0.0011 8.134e-04 0.0025 0.0011 0.0013 

Full noise 0.0019 0.0015 0.0034 0.0024 0.0072 0.0036 0.0038 

 

 

Fault-induced deviations Zδ ˆ   

Once the baseline model )U(Z


0
ˆ  and the model )Y,Uf(Z


ˆ  are available, the computation of fault-

induced deviations Zδ


ˆ  is now available. According to Eq. (3.5), the deviation estimate is given by 

)(ˆ

)(ˆ),(ˆ
ˆ

0

0

UZ

UZYUZ
Zδ 




 . The final set of experiments consists in the comparison of these estimates 

Zδ ˆ  with true deviations δZ  obtained by direct use of the thermodynamic model data. To this end, 

estimated and true deviations for all the six unmeasured variables Z  were computed for the healthy 

and six faulty conditions (Samples 0-6). To illustrate the results, deviation estimates 2Ẑδ  induced 

by the fault 03.0cG  and estimation errors 2Ẑ  are plotted in Figure 3.7. These results 

correspond to the “Filtered noise” scheme. The plots show that the fault-induced deviations are by 

far greater than their errors. Thus, despite the errors in actual and baseline values of unmeasured 

variables, their deviations have acceptable accuracy and carry important diagnostic information. 

 

Table 3.7 presents the RMSE of deviation estimates Zδ ˆ  for Samples 0-6, “Filtered noise” scheme 

and all unmeasured variables. Observing these data, one can see that the errors are acceptably low 

for all variables (excepting the variable 5Z ), and the deviations of unmeasured variables can be 

used to diagnose real GTE. Table 3.8 contains the RMSE of deviation estimates Zδ ˆ  for all noise 

schemes. These errors allow drawing the following conclusions that are in accordance with the 

results of the errors of unmeasured variables themselves. Total errors for the “Full noise” scheme 
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(0.0039 on average) seem to be too great; however, the scheme “Filtered noise” results in 

acceptable total deviation errors (0.0018 on average). Thus, if a diagnostic system filters raw input 

data, the deviations computed for important unmeasured variables can be used in the system to 

extend its capabilities. Once more, the variable 5Z  of power turbine efficiency has the highest 

errors. The point is that this mayor element is a relatively independent component, and under given 

operating conditions, gas path variables excepting the power turbine output do not depend on the 

power turbine efficiency. 

 

To reduce the errors of estimated unmeasured quantities Z


ˆ  and Zδ


ˆ , another algorithm is proposed 

in the following subsection. 

 

 

Figure 3.7 Deviation estimates 2Ẑδ  and estimation errors 2Ẑ  (filtered noise). 

 

Table 3.7 RMSE of deviation estimates Zδ ˆ  (filtered noise). 

 

Sample 1Ẑ  2Ẑ  3Ẑ  4Ẑ  5Ẑ  6Ẑ  Average 

0 0.0012 0.0010 0.0016 
5.6589e-

04 
0.0037 0.0012 0.0018 

1 0.0012 0.0010
 

0.0017 
7.7482e-

04 
0.0037 0.0013 0.0019 

2 0.0012 0.0010 0.0017 
5.3919e-

04 
0.0035 0.0011 0.0018 

3 0.0013 
9.4205e-

04 
0.0015 

4.5174e-

04 
0.0035 

9.8323e-

04 
0.0017 

4 0.0011 
9.5001e-

04 
0.0020 0.0016 0.0038 0.0020 0.0021 

5 0.0011 0.0010 0.0016 
5.4767e-

04 
0.0038 0.0020 0.0020 

6 0.0012 
9.8818e-

04 
0.0016 

4.9254e-

04 
0.0039 0.0011 0.0019 



57 

 

Table 3.8 RMSE of deviation estimates Zδ ˆ  (all noise schemes). 

Noise 

schemes 1Ẑ  2Ẑ  3Ẑ  4Ẑ  5Ẑ  6Ẑ  Average 

No noise 0.0011 
9.0857e-

04 
0.0013 

3.8031e-

04 
0.0029 0.0011 0.0015 

Filtered 

noise 
0.0011 

9.9572e-

04 
0.0016 

7.9948e-

04 
0.0036 0.0014 0.0018 

Full noise 0.0022 0.0017 0.0035 0.0024 0.0073 0.0037 0.0039 

 

 

 

3.5.2 Algorithm 2 

In Algorithm 1, the function )Y,Uf(Z


ˆ  may have elevated errors because it includes 10 

arguments, most of them are interrelated, and their magnitudes are very different. To avoid these 

difficulties, we propose Algorithm 2 that is based on a simplified function )(ˆ YfZδ


 . The new 

function has only six arguments, and they do not depend on operating conditions. The algorithm 

includes four steps. 

 

Step 1. On the data of a healthy engine (Sample 0), two polynomial functions )(ˆ
0 UfY


  and 

)(ˆ
0 UfZ


  are determined in the same manner as in Algorithm 1. The former is a typical baseline 

model described in Section 2.2. It is quite accurate and widely used in gas turbine diagnostics. The 

latter has the same structure and therefore should also possess a high accuracy. The data of 

estimation errors in Table 3.4 confirm the accuracy of the function )(ˆ
0 UfZ


 . 

 

Step 2. Using known functions )(ˆ
0 UfY


  and )(ˆ

0 UfZ


  as well as faulty engine values Y 

and Z from Samples 1-6, deviations   )(ˆ/)(ˆ
00 UYUYYY


  and  0 0
ˆ ˆ( ) / ( )Z Z Z U Z U    are 

computed for both measured and unmeasured variables. 

 

Step 3. By approximating the deviations obtained in the previous step, deviations of 

unmeasured variables are determined as the following polynomial function of monitored variable 

deviations: 

 

)(ˆ YfZ


                                                               (3.8) 

 

Step 4. Finally, the unmeasured variables can be calculated by the expression: 

 

)ˆ1(ˆˆ
0 ZZZ                                                            (3.9) 

 

Figure 3.8 presents an example of deviations estimated by Eq. (3.8) as well as their estimation 

errors Ẑ  for filtered noise. Table 3.9 contains the RMSE of estimates Ẑ  for all noise schemes. 

Comparing Figure 3.7 and Figure 3.8, we can note some reduction of the errors 2Ẑ . According to 
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Table 3.8 and Table 3.9, this positive effect is about 10% on average for all noise schemes. In terms 

of average errors for all variables, the error reduction is even more considerable, about 18%. Thus, 

Algorithm 2 certainly yields more accurate estimates of deviations for unmeasured variables. 

 

Since deviations of both measured and unmeasured variables are induced by faults, the variability 

of faults conditions affects the accuracy of the model )(ˆ YfZ


   used in Algorithm 2. The next 

subsection describes Algorithm 3 that addresses this problem.  

 

 

Figure 3.8  Deviation estimates 2Ẑ  and estimation errors 2Ẑ  for filtered noise (Algorithm 2). 

 

Table 3.9 RMSE of deviation estimates Ẑ  (all noise schemes, Algorithm 2). 

Noise 

schemes 1Ẑ  2Ẑ  3Ẑ  4Ẑ  5Ẑ  6Ẑ  Average 

No 

noise 
0.0011 8.7563e-04 0.0013 2.5686e-04 0.0020 0.0012 0.0012 

Filtered 

noise 
0.0012 8.7412e-04 0.0015 5.8956e-04 0.0025 0.0014 0.0015 

Full 

noise 
0.0025 0.0015 0.0030 0.0018 0.0055 0.0033 0.0032 

 

 

 

3.5.3 Algorithm 3 

Since real engine deterioration corresponds to specific fault conditions, the idea arises to verify the 

algorithm of estimating unmeasured variables under such fault conditions, more narrow than the 

conditions analyzed before. This promises further enhancement of estimation accuracy. For 

stationary power plants as in the case of the engine under analysis, compressor fouling presents the 

principal deterioration mechanism. In a simplified form, the fouling can be represented by 

considering the information of Samples 1 and 2 individually generated by compressor air 

consumption and efficiency single faults respectively. In this way, in Algorithm 3 we repeat all the 

steps of Algorithm 2 with the exception that only these two samples are considered to form the 
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model )(ˆ YfZ


  . The resulting errors Ẑ  are presented in Figure 3.9 by the plots for a 

combustion chamber discharge temperature. Table 3.10 contains the RMSE of deviation estimates 

Ẑ  for all variables and noise schemes. It follows from the figure and the second column of Table 

3.10 that the level of errors has not changed for the combustion chamber discharge temperature. 

However, Table 3.10 also shows that averaged errors have reduced considerably: by 20% for the 

filtered noise and by 56% for the full noise. That is, the deviations computed for unmeasured 

variables are very accurate not only for filtered input data, but also for raw measured variables. 

Thus, from the point of accuracy, there are no limitations to use Algorithm 3 for computing 

important unmeasured variables and their deviations in real diagnostic systems.  

 

 

Figure 3.9 Deviation estimates 2Ẑ  and estimation errors 2Ẑ  for filtered noise (Algorithm 3). 

 

Table 3.10 RMSE of deviation estimates Ẑ  (all noise schemes, Algorithm 3). 

Noise 

schemes 1Ẑ  2Ẑ  3Ẑ  4Ẑ  5Ẑ  6Ẑ  Average 

No noise 0.0011 8.7467e-04 0.0012 
1.7786 e-

15 
0.0019 0.0011 0.0012 

Filtered 

noise 
0.0011 8.7837e-04 0.0013 1.1558e-04 0.0012 0.0010 0.0010 

Full noise 0.0017 0.0014 0.0022 4.2291e-04 
9.3095e-

04 
0.0013 0.0014 

 

3.6 ESTIMATION OF UNMEASURED QUANTITIES FOR MORE COMPLEX FAULT 

SCENARIOS  

In practice, GTE problems can have a multi-fault nature. In order to know if unmeasured quantities 

are correctly estimated under more complex scenarios, samples with multiple faults are included in 

the analysis. Based on the previous computations, Algorithm 2 has been chosen because it is more 

accurate than Algorithm 1 and more general than Algorithm 3. Two cases are considered:  
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-Case 1: Input data without division. Healthy and faulty engine scenarios, i.e. Samples 0-12 (see 

Table 3.3) are united in a total array used for both training and validation. 

 

-Case 2: Input data with division. Samples 0-12 united in a total array are randomly partitioned into 

two sets: training set of 90% and validation set of 10%, and a ten-fold cross validation is performed. 

 

For Case 1 and a filtered noise scheme, Figure 3.10 shows all the deviation estimates Ẑ  and 

estimation errors Ẑ  of variable 2Z . We can see that each of the 12 faulty scenarios (samples 1-

12) consisting of 270 operating points is well distinguishable here. For nine faults the deviations are 

by far greater than their errors, for one fault the deviations are still distinguishable against the 

errors, and for two faults the deviations and the errors are comparable. Bad visibility of these two 

faults is explained by their low influence on the specific variable 2Z , while the errors have 

practically the same low level as with other faults. Low visibility of the two faults for the variable 

2Z  does not mean that these faults cannot be diagnosed because the deviations can be much greater 

for the other variables as shown in Figure 3.11 and Figure 3.12. 

 

 

Table 3.11 presents the RMSE of deviation estimates Ẑ  for all unmeasured variables and noise 

schemes. Comparing  

Table 3.11 and Table 3.9, we can state that the error level has not increased because of adding new 

fault scenarios. Let us now analyze the results for Case 2 that can be considered as more reliable 

due to the cross validation use. 

 

For Case 2 the errors of the training and validation stages were firstly compared and it was found 

that they are practically equal. Let us now analyze the validation errors in more detail. Table 3.12 

contains the RMSE of deviation estimates Ẑ  for validation stage. Figure 3.13 shows deviation 

estimates Ẑ  and their estimations errors for validation stage using filtered noise. Because the 

order of faults and operating points is random here we cannot analyze particular faults. However, in 

general, most of deviations are clearly detectable and estimations errors Ẑ  remain small. 

Comparing Table 3.12 and  

Table 3.11, one can see that the differences are negligible. The similarity between Case 1 and Case 

2 and between the training and validation results within Case 2 confirms that all the calculations are 

correct and equally accurate. This also means that the results previously obtained in Section 4 are 

also valid despite the absence of a separate validation stage.  

 

We can conclude that the inclusion of multiple faults to the input data, which leads to a more 

complex fault scenario, does not affect the estimation of unmeasured quantities. The high accuracy 

is explained here by a great excess of input data relative to unknown quantities that is beneficial to 

the LSM accuracy. 
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Figure 3.10 Deviation estimates 2Ẑ  and estimation errors 2Ẑ   for Case 1 (filtered noise). 

 

Figure 3.11 Deviation estimates 5Ẑ  and estimation errors 5Ẑ   for Case 1 (filtered noise). 

 

 

 

Figure 3.12 Deviation estimates 6Ẑ  and estimation errors 6Ẑ   for Case 1 (filtered noise). 

 

Table 3.11 RMSE of deviation estimates Ẑ  for Case 1. 

Noise 

schemes 1Ẑ  2Ẑ  3Ẑ  4Ẑ  5Ẑ  6Ẑ  Average 

No noise 0.0010 0.0008 0.0013 0.0003 0.0019 0.0012 0.0012 

Filtered 

noise 
0.0013 0.0009 0.0016 0.0007 0.0024 0.0014 0.0015 

Full noise 0.0030 0.0017 0.0035 0.0024 0.0056 0.0033 0.0035 
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Table 3.12 RMSE of deviation estimates Ẑ  for Case 2 (validation stage). 

Noise 

schemes 1Ẑ  2Ẑ  3Ẑ  4Ẑ  5Ẑ  6Ẑ  Average 

No 

noise 

0.0010 0.0008 0.0013 0.0003 0.0019 0.0012 0.0012 

Filtered 

noise 

0.0013 0.0009 0.0016 0.0007 0.0023 0.0014 0.0015 

Full 

noise 

0.0030 0.0017 0.0034 0.0024 0.0055 0.0033 0.0034 

 

 

Figure 3.13 Deviation estimates 2Ẑ  and estimation errors 2Ẑ   for Case 2 and validation stage 

(filtered noise). 
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Chapter 4: Evaluation of Gas Turbine 

Diagnostic Techniques under 

Variable Fault Conditions 
 

4.1 OVERVIEW 

The present chapter proposes to an algorithm to evaluate different gas turbine diagnostic techniques 

under a principle of variable fault classification to study possible fault scenarios present in real gas 

turbine maintenance and create complex and realistic fault classifications. Through an adaptable 

algorithm, the variable classification makes it easy to set the type of class used, different fault 

parameters, class quantity, fault development directions, fault severity boundary type, engine 

components and scheme of deviation noise. Based on this principle, twelve classifications variations 

have been created for examining themselves and comparing the techniques. These classifications 

contain single or multiple classes as well as their mixtures. In addition, the chapter introduces and 

investigates a new boundary for fault severity. With this boundary, the fault class description 

becomes more realistic thus providing more confidence to diagnosis results. The chapter also 

addresses the influence of real deviation errors on operation of diagnostic techniques and final 

diagnosis accuracy. A special procedure is developed to compare diagnostic techniques and 

compute the probability of correct diagnosis (true positive rate), which is used as the evaluation 

criterion. Four comparative studies are considered. They analyze the influence of different pattern 

numbers, operating modes, multiple-class boundaries and deviation noise schemes. Within each 

comparative study, the techniques are evaluated for many classification variations. Such analysis 

allows drawing solid conclusions on techniques accuracy. 

 

Figure 4.1 shows all the influence factors (highlighted boxes) considered in the development of the 

algorithm and they involve: a turboshaft engine for industrial application; diagnosis of gas path and 

measurement systems; the stages of feature extraction and fault identification; the use of LSM to 

identify degraded models; one-point diagnostic analysis; the use of physics-based, data-driven, non-

linear and linear models; the use of MLP, RBN, PNN and SVM as fault recognition techniques; and 

the identification of both single and multiple faults. 

 

4.2 FOUNDATIONS OF ANN AND SVM 

As mentioned above, ANNs and SVMs have been chosen in the present chapter for gas turbine fault 

recognition. The following subsections briefly describe them. Additional information about these 

techniques can be found in the literature, for example in [59,60,136–139].
 

 

4.2.1 Multi-Layer Perceptron 

The MLP with a backpropagation algorithm is an artificial neural network consisting of a 

predefined set of input-target pairs that uses propagation-adaptation in the training stage. Let us 

consider two layers: a hidden layer and an output layer as shown in Figure 4.2.  
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Figure 4.1 Diagnostic algorithm influence factors used throughout Chapter 4. 

 

For the hidden layer, its input vector 1n  is given by the sum of an input pattern vector Z  multiplied 

by weights contained in the matrix 1W  plus a bias vector 1b . Then, 1n  is transformed using a 

differentiable transfer function producing the output vector 1a . For the output layer, the procedure 

is repeated using 1a  as an input to the layer and producing a network output vector 2a  by 

transforming a vector 2n . The intention of the training is to minimize a delta, which is the 

difference between the output vector 2a  and its target vector. The training algorithm uses an error 

function or a surface associated with the network that tries to find the stable state of minimum error 

through the descending path of the error surface. Therefore, it feeds back the system error to update 

all weights and biases in a proportional value to the decreasing gradient of the error function. This 

updating results in the network’s ability to learn relationships between the inputs and outputs. When 

a new input is presented, the outputs of the nearby learning input vectors determine the new output. 

In our study, the training is performed in a batch mode, i.e., a total error between all targets and 

network outputs of the learning set is computed and used to update weights in each iteration (also 

called epoch). 

 

4.2.2 Radial Basis Network 

The RBN receives its name because it includes a layer with radial basis function (RBF) neurons. 

The input n  to a radial basis transfer function is a Euclidean distance between a weight vector w  

and an input vector Z , multiplied by a bias 1b  (i.e., bn Zw  ), where σ is the spread that 

allows changing the RBF neuron influence area. The transfer function computes a neuron’s output 

as   2
exp na  . The idea of the RBF neurons is to measure how close the input vector Z  and a 
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weight vector are from each other. If 0a , they will be totally different but if 1a , they will be 

identical. Figure 4.3 shows the RBN containing two layers. The first one is a radial basis layer with 

1S  neurons. A vector 1n  of distances is created between one vector of an input weight matrix 1W  

and the input vector Z , multiplied by a bias vector 1b . Then, a radial basis transfer function 

converts 1n  into a hidden layer output vector 1a . The second layer is the output layer and it 

generates linear combinations of activations of the radial basis layer. A vector 2n  is formed 

multiplying the RBF output vector 1a  and a weight matrix 2W  plus a bias vector 2b . A linear 

transfer function transforms 2n  resulting in an output vector 2a  of 2S  elements. In an “exact 

design” of the RBN algorithm, every input vector of the training set forms a new RBF neuron. In an 

“efficient design” one neuron at a time is iteratively added to the radial basis layer. This new neuron 

is created by the input vector that obtains the smallest network error. The neuron addition is stopped 

when a network error decreases below an error goal or when a maximum neuron number has been 

reached. 

 

 
Figure 4.2 Structure of MLP (adapted from [139]). 

 

 
Figure 4.3. Structure of RBN (adapted from [139]). 

 

 

4.2.3 Probabilistic Neural Network 

The main characteristic of the PNN (Figure 4.4) is that its hidden layer works in the same manner as 

the layer of the RBN exact design. However, the output layer is different. Each output neuron 

corresponds to one class and is called a classification neuron. Each RBF neuron, which is based on 

one training pattern, is connected with only one classification neuron corresponding to the class to 

which the pattern belongs. The sum of all contributions 
j

a1  related to the training patterns of the 

class is a probability of this class. To compute an entire input vector for the classification layer, a 

matrix 2W  composed of 0’s and 1’s is multiplied by 1a  giving as a result a vector 2n  of 

probabilities of all classes. Finally, to classify an input vector Z , a competitive transfer function 
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selects the class with the maximum probability producing a 1 for this class and 0’s for the 

remaining thus forming an output vector 2a . 

 

 
Figure 4.4 Structure of PNN (adapted from [139]). 

 

 

4.2.4 Support Vector Machines 

Any hyperplane can be written in the space ℝ
P
 as the set of points Z satisfying: 

 

0T  bZw                                                                  (4.1) 

 

where w is a vector perpendicular to the hyperplane and b is the bias. Let us present training data of 

two classes as pattern vectors Zi ∈ ℝ
P
, i=1,…,N, and their corresponding labels yi ∈ (−1,1) indicating 

the class to which the pattern Zi belongs. If the training data are linearly separable, two parallel 

hyperplanes without points between them can be built to divide the data. The hyperplanes can be given 

by w
T
Zi+b=1 and w

T
Zi+b=−1. The margin is defined to be the distance between them and is equal to 

2/||w|| (Figure 4.5). Intuitively, it measures how good the separation between two classes is. The points 

divided in this manner satisfy the following constraint: 

 

  Niby ii 1,...,for       1T Zw                                                     (4.2) 

 

The basic idea of SVMs is to find the hyperplanes that produce the maximal margin. In this way, 

SVMs need to solve the following optimization problem: 
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Introducing the Karush-Kuhn-Tucker (KKT) multipliers αi≥0, Eq. (4.3) can be transformed into: 
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As can be seen, Eq. (4.4) depends on w, b and α. At the extremes we have: 
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Substituting Eq. (4.5) and (4.6) in Eq. (4.4), we obtain: 
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Eq. (4.7) can be also expressed in a simplified form as L=min ½ (α
T
Qα−1

T
α). Here, Q is the matrix of 

quadratic coefficients. This expression is minimized now only in function of α and the solution can be 

obtained by Quadratic Programming. After solving Eq. (4.7), the optimal w can be obtained from Eq. 

(4.5). Only the training examples Zi that have non-zero αi contribute to the solution and they are called 

support vectors. Finally, the decision function to classify a new pattern vector Z is: 
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Figure 4.5 Hyperplanes and margin of separation. 

 

When applications handle non-separable cases [60] and a complete separation between classes is not 

always possible [59], the optimization problem becomes: 
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subject to: 
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where Φ(Zi) maps Zi from original input space into a higher-dimensional feature space to separate data 

there with a maximum-margin hyperplane as shown in Figure 4.6, C is a penalty parameter and ξi 
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denotes non-negative slack variables to measure the degree of misclassification (Figure 4.7).  

The decision function is given by: 
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where K(Zi,Zj) is the kernel function related to the transformation Φ(Zi) by the equation: 
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Figure 4.6 Transformation of input data into a feature space. 

 

 
Figure 4.7 Misclassification errors and slack variables 𝜉𝑖. 

 

Some common kernels include polynomial kernel, RBF kernel, sigmoid kernel, etc. Although 

SVMs are intended for binary models, they can address multi-class problems. There are different 

strategies to solve them. For example, in the One-Versus-One (OVO) strategy (Figure 4.8), 

q(q−1)/2 classifiers are constructed (q is the class number) and each one uses data from two classes. 
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At prediction stage, all binary classifiers emit votes when a pattern vector Z is presented. The 

pattern is assigned to the class with the maximum number of votes. 

 
Figure 4.8 Multiclass problem using the OVO strategy. 

 
 
4.3 DIAGNOSTIC TECHNIQUE EVALUATION PROCEDURE 

To be evaluated, the recognition techniques are integrated into a stochastic evaluation procedure, 

which consists of the following main blocks: deviations, fault classification, training, validation, 

tuning and final diagnosis accuracy P  (Figure 4.9). The procedure is implemented in Matlab using 

machine learning toolboxes.  

 
Figure 4.9 Diagnostic technique evaluation procedure. 

 

4.3.1 Deviations 

For the proposed methodology, the simulated deviations take the form: 
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where  UY0  is the baseline model, a vector 0Θ  corresponds to a healthy engine whereas fault 

parameters Θ  consider fault influence. These model-based deviations present base points to 

compute deviations for any value and combination of fault parameters. The deviation computation 

for an arbitrary fault parameter value is performed by a piecewise-linear interpolation between the 

base points. The deviation corresponding to some fault parameters is determined by the sum of their 

individual influences. Simulated deviations can be more realistic adding a normally distributed 

random noise i . Additionally, to have a homogeneous diagnostic space, deviations are normalized 

resulting in: 
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where Yi  is the amplitude of possible random fluctuations in the original deviation iY . 

Normalized deviations of all monitored variables constitute an  1m -vector 
*Z  forming a 

diagnostic space where the fault classification is constructed. A pattern to be recognized represents 

a vector in this space. 

 

Although the use of simulated deviation measurement noise in gas turbine diagnostic algorithms is a 

common practice, real deviation errors can present different distributions that can affect the final 

diagnosis reliability. A procedure proposed to extract error components from deviations working 

with real data can be found in [140]. It is necessary a degraded engine model ),( tUY  obtained by 

the LSM and input data including multiple operating points with different degradation severity. 

Using this model, a real deviation error can be given by: 
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It is worth mentioning that each real deviation error needs to be matched with its corresponding 

simulated variable and only use the measurement errors contained in the same interval where the 

degraded model was created to avoid noise displacements when they are integrated into simulated 

fault developments. Figure 4.10 displays an example of real deviation errors Y  in an interval of 

2608 operating points for a specified monitored variable while Figure 4.11 displays these errors for 

two variables. 

 

 
Figure 4.10 Real deviation noise vs. operating points 
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Figure 4.11 Real deviation noise for two monitored variables 

 

4.3.2 Fault classification construction 

After generating the model-based normalized deviations, they are used to build fault classifications 

required for diagnostics. Given that faults vary significantly in practice, it is necessary to describe 

them using a limited number of classes. Each fault class is constructed from patterns, either with the 

change of one fault parameter (single fault class) or with the independent change of some fault 

parameters (multiple fault class). This last type of class can be explained by the fact that faults can 

simultaneously appear in different engine components. A uniform distribution of fault parameter 

values inside of interval (0, ±5%) is employed to describe random fault severity. The limit “0” gives 

the possibility to simulate no-fault states while the limit “±5%” corresponds to the maximal change 

of the component performances, at which gas turbines lose their operation capacity due to 

deterioration and faults [118]. To know if a current pattern 
*

Z  belongs to a specific class jD , the 

criterion  jj DRR ,*
Z , qj ,...,1  is applied. When all values jR  are obtained, a decision rule 

can be applied as: 

 qll RRRRdd ,...,,max  if  21                                         (4.16) 

 

where d  is a possible diagnosis corresponding to a correct classification. This subsection only 

introduces the general idea of fault classification construction. The principle of a variable structure 

classification and a new fault severity boundary are explained in detail in Section 4.5. 

 

4.3.3 Training and validation 

A learning set LZ  includes patterns of all classes and is employed to train the techniques under 

analysis. Every technique is trained on known entry pairs: the input pattern vector 
*

Z  and its target. 

Since it is not sufficient to achieve high accuracy in training, a common strategy is to have 

additional data for validation and pay attention to its accuracy. In this way, these new data called 

validation set VZ  are used to verify whether the technique can generalize the fault description. This 

set is created in the same way as LZ . The only exception is the use of different series of random 

numbers that are involved in the computation of fault severity and errors in the deviations. As in the 

case of the learning set, every pattern in the validation set belongs to a known class. 
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4.3.4 Evaluation criterion (diagnosis accuracy)  

In an effort to tune and compare all the techniques proposed, an averaged accuracy performance is 

determined for each of them. The technique analyzed classifies the patterns of the set VZ , 

producing the diagnosis jd . Comparing jd  with a known class lD  for all validation set patterns, a 

confusion matrix is formed whose diagonal contains a vector P  of correct pattern classification 

probabilities (a.k.a. true positive rates) for each fault class. A mean number P  of these probabilities 

determines the total accuracy of engine fault recognition. It is a criterion to tune and evaluate the 

techniques. By analyzing the confusion matrix no diagonal elements, the direct influence of each 

fault class on the recognition accuracy of the other classes becomes visible. 

 

4.3.5 Tuning 

In order to perform an adequate evaluation, internal parameters of each technique should be tailored 

to ensure the maximal probability P . For MLP, the principal parameters to tune are the number of 

iterations, the type of backpropagation training algorithm and the number of hidden layer neurons. 

In the case of RBN, the spread   and the number of hidden layer neurons are varied independently 

until the best combination producing the highest P  is selected. As for PNN, the only parameter to 

tailor is the spread  . Finally, SVMs use k-fold cross validation to improve the prediction 

accuracy. Since in the present work SVM uses the RBF kernel, the parameters to tune are   and the 

regularization parameter C . In the k-fold cross validation, the set LZ  is randomly partitioned into 

k subsets of equal size. One subset is used as validation data for testing the model trained on the 

remaining k−1 subsets. This process is repeated k iterations with each of the k subsets used exactly 

once as the validation data. The k results from the iterations can then be averaged to produce a 

single estimation. This procedure helps to prevent the overfitting problem. Commonly k=10 is 

recommended. It is not known with anticipation which C and σ are the most appropriate to 

accurately predict unknown data. In order to find these parameters, a grid-search with exponentially 

growing sequences of C and σ is applied. It allows finding the combination of parameters that yields 

the lowest generalization error giving the highest diagnosis accuracy. After finding the best 

parameters, users can repeat the learning on the entire training set and generate the final SVM 

model. A graphical example of the SVM tuning is depicted in Figure 4.12 and Figure 4.13. Since 

doing a complete grid-search for parameter selection is a time-consuming process, a general grid is 

recommended first (Figure 4.12). After identifying a better zone on the grid, a fine search on that 

region is conducted (Figure 4.13).  
 

 
Figure 4.12 General grid-search for SVM parameters. 
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Figure 4.13 Fine grid-search for SVM parameters. 

 

4.4 SELECTED ENGINE VARIABLES 

The non-linear thermodynamic model corresponding to GT1 is used to construct the necessary fault 

classification. To simulate gas path and measurement system faults, the eighteen fault parameters 

from Table 4.1 are employed. The selection and significance of these fault parameters is based on 

the fact that they are commonly used in real gas turbine condition monitoring systems (e.g. 

efficiencies and flow capacities) to diagnose engine component faults [72].  

 

Table 4.1 Parameters to simulate faults. 

No. Fault parameter description Symbol Severity 

 Gas path parameters   

1 Compressor air flow Gc 0 to −5% 

2 Compressor efficiency ηc 0 to −5% 

3 Compressor turbine gas flow Gt 0 to ±5% 

4 Compressor turbine efficiency ηt 0 to −5% 

5 Power turbine gas flow Gpt 0 to ±5% 

6 Power turbine efficiency ηpt 0 to −5% 

7 Combustion chamber pressure recovery factor σcc 0 to ±5% 

8 Combustion efficiency ηcc 0 to −5% 

9 Inlet pressure loses factor σin 0 to −5% 

 Sensor parameters   

10 Compressor pressure sensor Pc 0 to ±5% 

11 Compressor turbine pressure sensor Pt 0 to ±5% 

12 Compressor temperature sensor Tc 0 to ±5% 

13 Compressor turbine temperature sensor Tt 0 to ±5% 

14 Power turbine temperature sensor Tpt 0 to ±5% 

15 Fuel flow sensor Gf 0 to ±5% 

16 Inlet pressure sensor Pin 0 to ±5% 

17 Inlet temperature sensor Tin 0 to ±5% 

18 Compressor turbine speed sensor nhp 0 to ±3% 
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Table 4.2 shows three variables used as operating conditions (vector U


). The six gas path 

monitored variables of Table 4.3 are commonly used as input data for diagnosing the engine. They 

correspond to an engine standard measurement system. For purposes of simplifying the construction 

of the fault classification, a linear model ΘHΖ   is utilized. Table 4.4 presents the values of the 

normalized influence matrix H  for such a model. 

 

Table 4.2 Operating conditions (Vector ) 

No. Description Unit Symbol 

1 Ambient pressure kPa PH 

2 Inlet temperature K TH 

3 Gas generator rotation speed rpm nC 

 

 

Table 4.3 Gas path monitored variables (Vector Y


) 

No. Description Unit Symbol Y  

1 Compressor total pressure kPa PC 0.015 

2 High pressure turbine total pressure kPa PHPT 0.015 

3 Compressor total temperature K TC 0.025 

4 High pressure turbine total temperature K THPT 0.015 

5 Power turbine total temperature K TPT 0.020 

6 Fuel gas mass flow kg/hour Gf 0.020 

 

 

Table 4.4 Normalized influence matrix H  

ID Type Fault 
Monitored variables 

1 2 3 4 5 6 

1 Gas path Gc 80.2589 82.3136 13.6146 41.4010 19.4840 93.2054 

2 Gas path ηc -38.7440 -38.9984 -28.8398 -85.0133 -61.2900 -97.5788 

3 Gas path Gt -49.9866 17.2695 -8.22443 30.2896 21.1504 36.5676 

4 Gas path ηt -43.3746 -53.6576 -7.1372 -116.0066 -83.2026 -132.6212 

5 Gas path Gpt -24.8753 -97.3616 -4.0944 -66.6453 -35.9668 -76.1832 

6 Gas path ηpt 0.8955 3.3098 0.1474 2.1045 -15.7498 2.3448 

7 Gas path σcc -78.0856 -14.0003 -12.8417 -37.9824 -27.8890 -41.4072 

8 Gas path ηcc -0.4513 -0.8411 -0.0743 0.3002 0.0790 -52.1216 

9 Gas path σin 65.7392 67.7760 0.12607 1.7612 -9.7517 50.6790 

10 Sensor Pc 66.6666 0 0 0 0 0 

11 Sensor Pt 0 66.6666 0 0 0 0 

12 Sensor Tc 0 0 40 0 0 0 

13 Sensor Tt 0 0 0 66.6666 0 0 

14 Sensor Tpt 0 0 0 0 50 0 

15 Sensor Gf 0 0 0 0 0 50 

16 Sensor Pin 67.5466 70.4733 0.1640 2.6666 1.1950 52.9750 

17 Sensor Tin -174.9133 -174.0666 4.1200 -32.4200 3.9000 -173.4050 

18 Sensor nhp 137.0266 142.4333 37.9040 115.6333 68.6750 197.9950 

 

 

U

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4.5 FAULT CLASSIFICATION VARIATIONS 

Based on the idea that gas turbine fault classifications vary widely in practice, a principle of 

variable classification is proposed. For that purpose, an algorithm allows changing in a flexible and 

easy way the following elements: type of class used (single, multiple or mixed classes), pattern 

numbers, fault severity, class quantity, fault development directions (positive or negative changes), 

operating mode, noise scheme in deviations, type of boundary and engine components. Thus, the 

algorithm developed can work with more realistic fault classes. With the intention of studying the 

influence of classification structure on the final diagnostic accuracy of each technique, twelve fault 

classifications are introduced using this algorithm. These classifications are specified in Figure 4.14 

and briefly described below. The classifications plotted in the diagnostic space Z  present great 

differences in classification-to-classification pattern distributions. Thus, the recognition techniques 

will be evaluated under multiple and very different conditions. 

 

Figure 4.14 Fault classification variations. 

 
 

4.5.1 Single fault classifications 

As illustrated in Figure 4.15, a single fault class 1D  is formed by only one health parameter. The 

point “0” indicates an engine normal state. The line 0- 1L  or 1  reflects changes in deviations Z  

to a maximal fault severity limit 1L . The region 
*
1  contains random deviation noise produced by 

measurement errors. A multiple class 2D  is built by summing the influence of the independent 

variations of two or more parameters forming the regions 2  (without random errors) and 
*
2  

(with errors). 

 

As shown in Figure 4.14, Classification 1 consists of nine single faults. Each fault is created by 

varying one gas path fault parameter in the negative direction. Classification 2 considers erosion 

and burnouts of hot part elements that can cause the increase of their flow performances. For this 

reason, positive changes for flow parameters of the compressor turbine, power turbine, and 

combustion chamber are introduced. With these parameters, three new classes are formed and 

added to Classification 1 resulting in twelve classes. Due to the frequency of sensor malfunctions, 

they are recommended to be diagnosed along with gas path faults. Since great measurement biases 

are easy to identify, only hidden incipient sensor faults are considered (small bias interval of ±5%). 
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In this way, for six monitored variables, six corresponding single classes form Classification 3. 

Figure 4.16 shows these six sensor faults; however, only those coinciding with their monitored 

variables can be completely observed (green and yellow classes). Classification 4 joins 

Classifications 2 and 3 to build eighteen single classes representing gas path faults and sensor 

malfunctions. Also, sensor malfunctions of operating condition parameters are simulated to take 

into account their influence on all monitored variables. Three single classes of this sensor fault type 

are created and joined to the previous six sensor faults (monitored variables) forming nine classes 

for Classification 5. Classification 6 considers nine classes: one compressor airflow fault, four 

efficiency faults for all components, one inlet pressure loses factor fault and finally, three faults 

with double direction for compressor turbine, power turbine and combustion chamber. 

 

 
Figure 4.15 Single and multiple classes (adapted from [21]). 

 

 
Figure 4.16 Fault classification 3. 

 

 

4.5.2 Multiple fault classifications 

Classification 7 includes four multiple classes grouped by engine component: compressor, 

combustion chamber, compressor turbine, and power turbine (Figure 4.17). These classes are 

formed by independent variation of two fault parameters of the same component (See Figure 4.14).  
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Figure 4.17 Fault classification 7. 

 

Classification 8 contains seven classes formed by three multiple classes with positive changes for 

flow parameters and their respective efficiencies (Classification 2), and four classes from 

Classification 7. For Classification 9, four classes are formed as Classification 7 with the difference 

that flow parameters change in two directions for compressor turbine, power turbine and 

combustion chamber. Classification 10 contains six classes, each one created by four fault 

parameters (some of them with two fault development directions) of two engine components. It is 

formed by all possible combinations of compressor, combustion chamber, compressor turbine and 

power turbine (Figure 4.18). Classification 10 is closer to what really happens in a real gas turbine 

engine because it considers faults that can occur in two components at the same time. As for 

Classification 11, it is built in the same manner as the previous classification with the difference 

that the six classes include negative fault parameter changes (Figure 4.19). 

 

 

 
Figure 4.18 Fault classification 10. 
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Figure 4.19 Fault classification 11. 

 

 

4.5.3 Smooth fault severity boundary 

When multiple faults are simulated by summing the influence of each fault parameter, there is a risk 

that the simulated fault exceeds the severity limit of real faults. To better understand the problem, 

let us consider a multiple class 3D  created by two fault parameters represented by vectors 0- 1L  

and 0- 2L  as illustrated in Figure 4.20. The point “0” corresponds here to an engine normal state. 

Each of the vectors 0- 1L  and 0- 2L  reflects theoretical changes of one fault parameter. Fault 

severity increases to the engine health limit formed by points 1L , 2L  and vector lengths 1l  and 2l . 

It is clear that vectors Z  (without errors i ) in the dotted part of the parallelogram can be longer 

than base vectors 0- 1L  and 0- 2L  produced by a maximal change of the corresponding fault 

parameters. In other words, simulated faults can have higher severity than real ones. In order to 

avoid this and to make a class formation more realistic, a linear boundary 21LL  that restricts fault 

pattern vectors inside the triangle 0- 21LL  was previously used4. However, that boundary is too 

restrictive when the angle 12  increases. 

 

It seems to us that a more appropriate boundary would be a smooth curve. For this reason, a new 

multiple-class boundary based on the Archimedean spiral is proposed (Figure 4.20). It is formed by 

the vector (blue line) that moves from 1L  to 2L  and gradually changes its length l  from 1l  to 2l  

proportionally to the turning angle. Thus, this length can be expressed as:  

 

 
12

121


 illll                                                                   (4.17) 

 

where i  is the angle between the current vector and the first base vector for a random pattern i , 

and 12  is the angle between the two base vectors. Only the deviation vectors Z  that are inside the 

curve are accepted. The described boundary can be easily extended to three fault parameters. The 
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boundary vector of the length l  determined in the plane of the first and second fault parameters 

(blue line) now is considered as a base vector. The second base vector 0- 3L  is produced by a third 

fault parameter. The boundary is determined in the plane of these two base vectors and is created in 

the same way, with a vector (orange line) that gradually changes its length from 3l  to l . For the case 

of four and more fault parameters, the boundary is determined similarly. A restrictive condition of 

this boundary is great for small angles between base vectors and decreases along with the angle 

increase. 

 

 
Figure 4.20 Three boundaries for multiple classes. 

 

 

In order to determine the effect of the new boundary, the chapter analyzes the three boundaries 

described before. They are named as: “straight line” for the triangle area, “no boundary” for the 

parallelogram area and “Archimedean” for the new boundary. For all these boundaries, the 

corresponding classifications are constructed and the four mentioned techniques are applied 

 

4.5.4 Single and multiple fault classification 

Classification 12 works with thirteen classes formed with seven multiple classes from Classification 

8 and six single classes from Classification 3. The next subsection presents different boundaries 

used for multiple fault classifications. 

 

 

4.6 TECHNIQUE EVALUATION RESULTS 

The probability of correct diagnosis (diagnosis accuracy indicator) is used as a criterion to evaluate 

the performance of each technique in gas turbine fault recognition. Four comparative studies are 

considered. They are formed by varying:  

 

1. Pattern numbers 

2. Operating modes 

3. Fault boundaries 

4. Deviation noise schemes 
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Within each study, in addition to the varying factor, the fault classification changes as well. The 

variation of the conditions allows drawing solid conclusions about the best technique. The studies 

are shortly described below. 

 

4.6.1 Different pattern numbers 

The accuracy of fault classes’ description depends on the number of simulated patterns; 

nevertheless, sometimes it is not possible to obtain sufficient data to achieve it [141]. In order to 

address this hypothetical lack of information and analyze its effect on the diagnosis accuracy for 

each technique, ten pattern numbers are analyzed going from 100 to 1000 using four classification 

variations. Initially, calculations are based on 1 seed, which is a parameter for initiating a random 

number series (one calculation of P ). However, during experimentation, different seeds yield 

different probabilities of correct diagnosis. To reduce the error produced by this randomness, 

calculations with 100 seeds are performed and averaged. Figure 4.21 shows an example of 

comparison between the results obtained from 1 and 100 seeds for Classification 3 and two 

techniques. It is visible for MLP that for low numbers of patterns the difference between the two 

types of seed calculation is greater showing the inexactitude for 1-seed computation. For this 

reason, 1 seed calculations are only preliminary and are used to find the technique optimal 

parameters whereas 100 seed calculations are used in all comparison cases to draw more reliable 

results. 

 

 
Figure 4.21 Diagnosis accuracy for 1 and 100 seeds. 

 

 

Figure 4.22 and Table 4.5 show the results obtained for 100 seeds working with four classifications. 

The first impression is that RBN is the best technique in Classification 3; SVM in Classification 4; 

MLP and RBN in Classification 9; and MLP and SVM in Classification 10. Since this is not 

sufficient to select the best technique, total average probabilities considering all pattern numbers 

and all classification variations are obtained to know the overall fault recognition performance of 

each technique and shown in Table 4.6. The probabilities are: 0.7922 for MLP, 0.8039 for RBN, 

0.8001 for PNN and 0.8122 for SVM. As can be seen, the ANN techniques have very similar 

diagnosis probabilities (a difference of 1.17% between them); however, SVM is slightly better than 

all of them (2% over MLP, 0.83 % over RBN and 1.21 % over PNN). Also, total average 

probabilities for only 100 patterns and all classifications are obtained for all the techniques (Table 

4.6). The results are: 0.7612 for MLP, 0.7883 for RBN, 0.7739 for PNN and 0.7893 for SVM. 

Again, SVM obtained slightly better probabilities (2.81% over MLP, 0.1 % over RBN and 1.54 % 

over PNN). However, it is visible that the difference between SVMs and RBN is negligible. This is 

important because SVMs are generally claimed to have better generalization than ANNs when 

working with small samples. As a final remark, the increase of the pattern number influenced 

positively the resolution capability for all techniques (up to 9%). However, a drawback is that more 

execution time and computer memory are required. This is very notorious in parameter tuning stage 

because a lot of computations are performed before selecting the most appropriate model giving us 
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the highest probability P . For that reason, the pattern number is a compromise between diagnosis 

accuracy and computer requirements. 

 

 
Figure 4.22 Diagnosis accuracy comparison between ANNs and SVMs for different pattern 

numbers (100 seeds). 

 

Table 4.5 Diagnosis accuracy P  for different pattern numbers (100 seeds). 

Fault 

Classif. 
Method 

Number of patterns 
 

Average 

100 200 300 400 500 600 700 800 900 1000 

C3 

MLP 0.7382 0.7576 0.7763 0.7750 0.7807 0.7875 0.7887 0.7975 0.8015 0.7960 0.7799 

RBN 0.7973 0.8040 0.8068 0.8080 0.8076 0.8084 0.8083 0.8081 0.8081 0.8081 0.8065 

PNN 0.7897 0.7956 0.7991 0.7893 0.7978 0.8017 0.8024 0.8026 0.8034 0.8036 0.7985 

SVM 0.7859 0.7930 0.7903 0.7971 0.7982 0.7946 0.8018 0.7961 0.7964 0.8036 0.7957 

C4 

MLP 0.6446 0.6569 0.6630 0.6677 0.6692 0.6738 0.6850 0.6871 0.6848 0.6906 0.6722 

RBN 0.7049 0.6982 0.6888 0.7173 0.6954 0.7160 0.7161 0.7191 0.7179 0.7174 0.7091 

PNN 0.7154 0.7217 0.7289 0.7303 0.7316 0.7326 0.7339 0.7352 0.7350 0.7352 0.7300 

SVM 0.7250 0.7312 0.7359 0.7374 0.7381 0.7390 0.7398 0.7409 0.7403 0.7405 0.7368 

C9 

MLP 0.9135 0.9164 0.9249 0.9273 0.9287 0.9284 0.9284 0.9294 0.9297 0.9296 0.9256 

RBN 0.9117 0.9210 0.9240 0.9262 0.9280 0.9278 0.9290 0.9297 0.9300 0.9301 0.9258 

PNN 0.9054 0.9158 0.9150 0.9219 0.9213 0.9242 0.9251 0.9255 0.9265 0.9260 0.9207 

SVM 0.8939 0.9166 0.9225 0.9250 0.9263 0.9225 0.9279 0.9283 0.9297 0.9294 0.9222 

C10 

MLP 0.7486 0.7758 0.7874 0.7941 0.7978 0.7898 0.8022 0.8027 0.8048 0.8062 0.7909 

RBN 0.7395 0.7668 0.7735 0.7772 0.7786 0.7784 0.7790 0.7850 0.7845 0.7812 0.7744 

PNN 0.6852 0.7217 0.7398 0.7513 0.7569 0.7637 0.7688 0.7717 0.7753 0.7775 0.7512 

SVM 0.7526 0.7772 0.7904 0.7887 0.8002 0.8020 0.8049 0.8071 0.8084 0.8091 0.7941 

 

Table 4.6 Overall fault recognition of the techniques. 

Method 
All pattern numbers 

& all classifications 

100 patterns 

& all classifications 

MLP 0.7922 0.7612 

RBN 0.8039 0.7883 

PNN 0.8001 0.7739 

SVM 0.8122 0.7893 
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4.6.2 Different operating modes 

Two gas turbine operating modes, Mode 1 and Mode 2, are studied. They are close to engine 

maximal and idle regimes and are set by different high pressure rotor speeds under standard 

atmospheric conditions. The analysis considers all the classification variations. Based on the above 

results for pattern numbers, this comparative study only works with 1000 patterns to have more 

accurate results. The results obtained are presented in Figure 4.23, Figure 4.24 and Table 4.7. 

Considering both modes, SVM is slightly better with a total average probability of 0.8146. RBN is 

the second best technique (being the winner in some classifications) with 0.8099. PNN is in the 

third position with 0.8065 and MLP is the last technique with 0.8038 of performance. Nevertheless, 

the difference between all the techniques is not so great (1.08%). Another important observation is 

that for Mode 2, the probabilities are lower than Mode 1 for most of classifications. However, the 

averaged difference between both modes is small (about 0.0088). Besides, the probability behavior 

of the techniques is almost the same for the two modes through all classifications. Taking into 

account that the random errors in the stochastic simulation remain small due to the 100 seeds 

calculation, the results presented can be more reliable. Thus, we can conclude that the change of 

operating mode of the analyzed gas turbine does not affect the performance of techniques. 
 

 
Figure 4.23 Diagnosis accuracy comparison between ANNs and SVMs for operating mode 1 (100 

seeds). 

 

 
Figure 4.24 Diagnosis accuracy comparison between ANNs and SVMs for operating mode 2 (100 

seeds). 

 

4.6.3 Different fault boundaries 

Three boundary options are examined: no boundary (parallelogram area), straight line (triangle 

area), and Archimedean spiral. They are applied to multiple faults of classification variations 7 and 

11. For each boundary and variation, the four techniques are used by turn for computing diagnosis 

probabilities P  considering 100 seeds. Figure 4.25, Figure 4.26 and Table 4.8 contain all the results 

that help draw the following conclusions. First, the total average probability for each technique is 

0.8229 for MLP, 0.8222 for RBN, 0.8146 for PNN and 0.8248 for SVM. It is evident that the 

highest value is produced by SVM and the lowest one by PNN. However, the difference between 

the four recognition techniques remains small (1.02%). Second, the new boundary results in a 
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visible change of the probability P . This change can be greater (up to 25%) for particular cases, for 

example, the “Straight line” boundary in Classification 11 where probabilities are very low. Third, 

for all cases, the “Archimedean spiral” probability occupies an intermediate position between “No 

boundary” probability and “Straight line” probability. This is easily explained by the fact that the 

Archimedean spiral curve is situated between the straight line and the parallelogram sides. 

 

Table 4.7 Diagnosis accuracy P  for two operating modes (100 seeds). 

Fault  

Classification 

Mode 1 Mode 2 

MLP RBN PNN SVM MLP RBN PNN SVM 

C1 0.8172 0.8173 0.8115 0.8190 0.8044 0.8047 0.7983 0.8064 

C2 0.8100 0.8007 0.8049 0.8117 0.7974 0.7946 0.7923 0.7994 

C3 0.7960 0.8081 0.8036 0.8036 0.7947 0.8079 0.8047 0.8042 

C4 0.6906 0.7174 0.7352 0.7405 0.6876 0.7133 0.7254 0.7320 

C5 0.7813 0.7966 0.7921 0.7936 0.7702 0.7930 0.7892 0.7913 

C6 0.7818 0.8016 0.7942 0.8017 0.7702 0.7894 0.7808 0.7892 

C7 0.8756 0.8770 0.8720 0.8770 0.8684 0.8697 0.8635 0.8698 

C8 0.8507 0.8525 0.8474 0.8528 0.8420 0.8435 0.8378 0.8447 

C9 0.9296 0.9301 0.9260 0.9294 0.9248 0.9248 0.9185 0.9248 

C10 0.8062 0.7812 0.7775 0.8091 0.7897 0.7689 0.7635 0.7934 

C11 0.8193 0.8186 0.8076 0.8248 0.8090 0.8094 0.7986 0.8143 

C12 0.7482 0.7637 0.7607 0.7640 0.7273 0.7550 0.7518 0.7553 

Average 0.8089 0.8137 0.8111 0.8189 0.7988 0.8061 0.8020 0.8104 

Total Average MLP=0.8038;       RBN=0.8099;       PNN=0.8065;       SVM=0.8146 
 

 
Figure 4.25 Diagnosis accuracy for different boundaries (classification 7). 
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Figure 4.26 Diagnosis accuracy for different boundaries (classification 11). 

 

Table 4.8 Diagnosis accuracy P  for different boundaries (100 seeds). 

Fault 

Classif. 

Multiple-class 

Boundary 
MLP RBN PNN SVM 

C7 

Straight line 0.8756 0.8770 0.8720 0.8770 

No boundary 0.9174 0.9181 0.9140 0.9182 

Archimedean 0.9126 0.9130 0.9078 0.9110 

C11 

Straight line 0.5834 0.5839 0.5703 0.5875 

No boundary 0.8289 0.8223 0.8156 0.8301 

Archimedean 0.8193 0.8186 0.8076 0.8248 

 Total average 0.8229 0.8222 0.8146 0.8248 

 

 

4.6.4 Different deviation noise schemes 

Two schemes of deviation noise are studied: simulated and real noise. The real noise was extracted 

from deviations using real data recorded hourly at steady state operating points according to 

Subsection 4.3. The following elements are considered for the comparison: all the fault 

classifications, maximal operating mode and 1000 patterns. Table 4.9 shows the results for both 

error schemes. Figure 4.27 presents the results for real deviation errors. The results for the 

simulated scheme are the same as Figure 4.23 shown before. Comparing both error representations, 

one can see a significant increase of diagnosis accuracy for all the techniques (4.66% for MLP, 

1.33% for RBN, 2.87% for PNN, and 4.10 % for SVM). The total average probability of each 

technique is obtained as before by averaging both error schemes. The results are 0.8322 for MLP, 

0.8203 for RBN, 0.8255 for PNN and 0.8394 for SVM. Once more the highest value is produced by 

SVM. However, this time RBN is the lowest one and MLP has a much better performance than in 

the case of simulated noise. As mentioned before, the difference between techniques is not so great 

for simulated errors (about 1.07%) while for real errors is a little bit greater (about 3.29%). This can 

be proven by analyzing classification-to-classification probabilities. In classification 2, 4, 6 and 12 

there are evident differences between the highest value (SVM) and the lowest one (RBN). This 

means that the use of more realistic deviation noise representation does affect the performance of 

techniques. In contrast to simulated errors, where RBN is the second best technique, the use of real 

noise negatively affects the technique being the one with the lowest probability for that case. 

Besides, it requires more training time than usual. 
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Table 4.9 Diagnosis accuracy P  for simulated and real deviation noise (100 seeds). 

Fault 

Classif. 

Simulated noise Real noise 

MLP RBN PNN SVM MLP RBN PNN SVM 

C1 0.8172 0.8173 0.8115 0.8190 0.8911 0.8663 0.8755 0.8959 

C2 0.8100 0.8007 0.8049 0.8117 0.8765 0.8309 0.8694 0.8845 

C3 0.7960 0.8081 0.8036 0.8036 0.8637 0.8442 0.8590 0.8498 

C4 0.6906 0.7174 0.7352 0.7405 0.7704 0.7185 0.8057 0.8220 

C5 0.7813 0.7966 0.7921 0.7936 0.8526 0.8136 0.8409 0.8440 

C6 0.7818 0.8016 0.7942 0.8017 0.8603 0.8257 0.8549 0.8709 

C7 0.8756 0.8770 0.8720 0.8770 0.9263 0.9225 0.9084 0.9235 

C8 0.8507 0.8525 0.8474 0.8528 0.9162 0.8913 0.8973 0.9176 

C9 0.9296 0.9301 0.9260 0.9294 0.9405 0.9335 0.9151 0.9307 

C10 0.8062 0.7812 0.7775 0.8091 0.7738 0.7410 0.6984 0.7680 

C11 0.8193 0.8186 0.8076 0.8248 0.8020 0.7852 0.7578 0.8038 

C12 0.7482 0.7637 0.7607 0.7640 0.7923 0.7511 0.7959 0.8077 

Average 0.8089 0.8137 0.8111 0.8189 0.8555 0.8270 0.8398 0.8599 

Total 

Average 
MLP=0.8322;     RBN=0.8203;     PNN=0.8255;     SVM=0.8394 

 

 

 
Figure 4.27 Diagnosis accuracy comparison between ANNs and SVMs for real deviation errors 

(100 seeds). 
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Chapter 5: Development of a Data-

Driven Gas Turbine Diagnostic 

Algorithm Using the ProDiMES 

Software 
 

5.1 OVERVIEW 

The present chapter introduces and validates a  gas turbine diagnostic approach based on data-

driven models (polynomials) and recognition techniques (MLP, PNN, and SVM) using the 

ProDiMES software. The approach unites the diagnostic stages of feature extraction, anomaly 

detection, and fault identification resulting in an integrated algorithm. A complete benchmarking 

analysis of the proposed algorithm is made by using the two functionalities of ProDiMES: 1) 

independent development and evaluation and 2) blind test case side-by-side comparison. For the 

case of the independent development, engine fleet experimenting no-fault conditions, faults and 

degradation mechanisms are simulated through ProDiMES. A testing procedure that comprises 

many steps enables the tuning and comparison of the recognition techniques. The best configuration 

of the algorithm with the optimized feature extraction, fault detection and fault identification 

techniques is evaluated using the blind test case and compared with other diagnostic solutions on 

the basis of the ProDiMES metrics.  

 

Figure 5.1 illustrates in highlighted boxes the main characteristics of the algorithm to develop in 

Chapter 5. The selection includes: a turbofan engine for aviation application; fault diagnosis of gas 

path, measurement and control systems; one-point (cruise) and multi-point (take-off and cruise) 

diagnostic analysis;  an algorithm that works with feature extraction, monitoring and diagnosis as an 

integrated approach; the use of physics-based, data-driven and non-linear models; a fault 

classification based on single and multiple faults; recognition techniques such as MLP, PNN and 

SVM; and the LSM as a method for identifying baseline and degraded models. 

 

5.2 STRUCTURE OF THE PRODIMES SOFTWARE 

5.2.1 Benchmarking process 

The software ProDiMES enables the users to independently develop, evaluate and compare 

proposed aircraft diagnostic solutions. The ProDiMES benchmarking process as shown in Figure 

5.2 consists of two major functionalities: 1) independent development and evaluation and 2) blind 

test case side-by-side comparison. The top half of Figure 5.2 shows the capabilities of ProDiMES 

that allow users to independently develop and evaluate diagnostic solutions. Engine Fleet Simulator 

(EFS) generates snapshot measurement histories of an engine fleet over different flight intervals 

working with take-off and cruise operating points. Through an internal interface, it is possible to 

specify the total number of simulated engines and the number of flights per engine, the type and 

number of fault cases, the flight of fault initiation and the rate of fault evolution. The user’s 
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diagnostic solutions are used to interpret the engine histories and diagnose possible faults and the 

metrics enable the evaluation of the proposed diagnostic algorithms. This is achieved by the 

comparison of the diagnostic assessments and the engine ground-truth information (true fault/no 

fault condition). Finally, the results obtained from the metrics can be archived in a common format 

to ease their interpretation. After the independent development of the diagnostic solutions, users can 

apply their algorithms to a blind test case that is part of the ProDiMES software as shown in the 

bottom half of Figure 5.2. This test case allows the side-by-side comparison of diagnostic 

methodologies from other users. All the participants receive the same set of blind test case data but 

the corresponding ground-truth information is not provided. NASA receives the diagnostic 

assessment of each user, evaluates the results against the ground-truth, and returns the metrics along 

with the anonymous results of other researchers. 

 

 
Figure 5.1 Diagnostic algorithm influence factors used throughout Chapter 5. 

 
5.2.2 Engine fleet simulation 

ProDiMES includes an engine fleet simulation (EFS) that generates simulated measurement 

parameter histories for each engine of the fleet. To simulate real engine behavior, it works with a 

deterioration profile, noise level and operation mode (takeoff and cruise) unique for each engine. 

The EFS is implemented in Matlab and consists of a graphical user interface (GUI), a case 

generator and a C-MAPPS steady state engine model (GT3) as depicted in Figure 5.3. 

 

Graphical user interface (GUI): In the graphical user interface, the user can control the type and 

the number of faults occurring in the fleet of engines. The maximal number of possible simulated 

faults is 18 plus a no-fault case.  
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Figure 5.2. ProDiMES benchmarking process (adapted from [72]). 

 

 

 
Figure 5.3. Structure of EFS. 

 

Table 5.1 shows these faults and their magnitudes, within which the faults are distributed uniformly. 

Module faults (ID 1-5) corresponding to Fan, LPC, HPC, HPT and LPT are simulated by adjusting 

at the same time efficiency   and flow capacity   parameters. Actuator faults (ID 6-7) 

corresponding to VSV and VBV result from a mis-scheduling between the commanded and current 

actuator position. There are also 11 different sensor faults (ID 8-18) whose magnitudes are in units 

of average measurement noise standard deviation  . It is important to mention that EFS does not 

work with multiple faults. Instead, each individual engine only experiences a single fault type. The 

number of engines in the fleet is determined by the sum of the number of occurrences for each fault. 

Other aspects to consider are: the number of flights to generate the output data (the maximal 

number is 5000 flights per engine); the fault evolution type (abrupt or rapid); the flight of fault 

initiation (the 11th flight is the lowest value) and the sensor noise (on or off). The EFS works with 

eleven sensed variables. The seven measured variables shown in Table 5.2 are available for 

monitoring and are represented by a vector Y


. Table 5.3 shows four measured variables used as 

operating conditions represented by a vector U


. All the variables correspond to an engine standard 

measurement system. 
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Table 5.1. ProDiMES simulated faults. 

ID Fault description Fault Magnitude 

0 No-fault --- 

1 Fan fault 1 to 7% 

2 LPC fault 1 to 7% 

3 HPC fault 1 to 7% 

4 HPT fault 1 to 7% 

5 LPT fault 1 to 7% 

6 VSV fault 1 to 7% 

7 VBV fault 1 to 19% 

8 Nf sensor fault ± 1 to 10   

9 Nc sensor fault ± 1 to 10   

10 P24 sensor fault ± 1 to 10   

11 Ps30 sensor fault ± 1 to 10   

12 T24 sensor fault ± 1 to 10   

13 T30 sensor fault ± 1 to 10   

14 T48 sensor fault ± 1 to 10   

15 Wf sensor fault ± 1 to 10   

16 P2 sensor fault ± 1 to 10   

17 T2 sensor fault ± 1 to 10   

18 Pamb sensor fault ± 1 to 19   

*LPC=Low Pressure Compressor, HPC=High Pressure Compressor, HPT=High Pressure Turbine, 

LPT=Low Pressure Turbine, VSV= Variable Stator Vane, VBV=Variable Bleed Valve. 

 

Table 5.2. ProDiMES monitored variables. 

ID Variable Symbol 

1 Physical core speed Nc 

2 Total pressure at LPC outlet P24 

3 Static pressure at HPC outlet Ps30 

4 Total temperature at LPC outlet T24 

5 Total temperature at HPC outlet T30 

6 Total temperature at HPT outlet T48 

7 Fuel flow Wf 

 

Table 5.3  ProDiMES operating conditions. 

ID Variable Symbol 

1 Physical fan speed Nf 

2 Total pressure at fan inlet P2 

3 Total temperature at fan inlet T2 

4 Ambient pressure Pamb 

 
Case generator: The case generator produces the parameter histories after the user has selected the 

number and type of faults in the GUI stage. One important characteristic is the random generation 

of unique faults, degradation profiles and operating history for each engine in the fleet. This also 

includes the following assignations: the date when the collection of the engine data starts, the city 

pairs for the takeoffs of the engine, the ambient pressure, the atmospheric temperature, the Mach 

number and power setting parameters for takeoff and cruise. The level and rate of gradual 
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performance deterioration for each engine are also considered by the case generator. They emulate 

the degradation that an aircraft engine experiences during its lifetime due to different effects such as 

fouling, erosion, and corrosion of blades and vanes. The gradual deterioration is not considered a 

fault and its development is much slower than the produced by faults. 

 

C-MAPSS steady-state engine model: The commercial modular aero-propulsion system simulation 

(C-MAPSS) steady state is a high-bypass turbofan engine model created for diagnostics research. 

This model is run inside the EFS and receives the outputs from the case generator to produce the 

simulated measurement parameter histories for each engine, at takeoff and cruise of each flight. It 

works with two spool speeds (fan and core speed).  

 

5.2.3 Description of Evaluation Metrics 

The ProDiMES software assesses the overall detection and classification performance of candidate 

diagnostic methods through the following metrics [72]: 

 

 

1) True Positive Rate: Number of correct fault detections divided by the number of fault cases. 

2) False Negative Rate: Number of incorrect no fault detections divided by the number of fault 

cases. 

3) False Positive Rate: Number of incorrect fault detections divided by the number of no fault 

cases. 

4) True Negative Rate: Number of correct no fault detections divided by the number of no fault 

cases. 

5) Correct Classification Rate: Number of correct classifications of a fault divided by the number 

of cases of that fault. 

6) Misclassification Rate: Number of incorrect classifications of a fault divided by the number 

cases of that fault). 

7) Detection latency: The average number of flights a fault must persist prior to true positive 

detection by the diagnostic algorithm. 

8) Classification latency: The average number of flights a fault must persist prior to correct fault 

classification by the diagnostic algorithm. 

9) Kappa Coefficient: Provides a measure of an algorithm’s ability to correctly classify a fault, 

which takes into account the expected number of correct classifications occurring by chance. 

The Kappa Coefficient, denoted here as κ, is calculated from the elements of the un-normalized 

confusion matrix, C, as shown in the equation below. The two subscript indices represent the 

row and column corresponding to individual confusion matrix elements. 
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The detection metrics (1 through 4 in the above list) form the Anomaly Detection Matrix (Figure 

5.4), and the classification metrics (5 and 6 in the above list) form the Classification Confusion 

Matrix (Figure 5.5). It is worth noting that the elements of the anomaly detection matrix can be 

obtained from the confusion matrix as exemplified by each color of cells in Figure 5.4 and Figure 

5.5. In this way, the stages of anomaly detection and fault identification are realized together in the 

same algorithm. 

 

 
Figure 5.4. Example of an anomaly detection matrix 

 

 
Figure 5.5. Example of a Classification confusion matrix 

 
5.3 TESTING PROCEDURE 

As described before, the measurements are generated for cruise and takeoff steady state operating 

points of each flight. The case generator saves the measurements (snapshots) of an entire engine 

fleet in the file EFS_Output.mat (see Figure 5.2) while a fault condition history (“ground truth”) is 

recorded in the file EFS_fault_conditions.mat. In this subsection we use the cruise data for tuning 

and testing the proposed algorithm. Then, as required by the ProDiMES methodology, the algorithm 

is adapted to multipoint operation on cruise and takeoff measurements, and the blind test metrics are 

obtained for the adapted algorithm and compared with the metrics of other known diagnostic 

developments. As can be seen in Figure 5.2 for the independent development, the snapshot and the 

ground truth information presents input data for the testing procedure of the proposed diagnostic 

algorithm. The algorithm embraces determination of a baseline model, computation of measurement 

deviations using this model, fault classification formation from deviation vectors, and application of 

a pattern recognition technique for fault diagnosis. Within a testing procedure, the algorithm 

components are optimized and final diagnostic assessments made by the algorithm are written in the 

file DiagnosticAssessments.mat. This file and the file EFS_fault_conditions.mat are then directed to 

the ProDiMES program that computes performance metrics for the algorithm under analysis. 
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The testing procedure needs to be explained in more detail. Let us use the diagram drawn in Figure 

5.6 to gain better understanding of the procedure operation and interaction with the benchmarking 

platform. The procedure employs the data of three cases of engine fleet simulation by ProDiMES. 

Case 1 results in the no-fault data for baseline model determination and verification (file 

EFS_Output_1.mat). Case 2 data (files EFS_Output_2.mat and EFS_fault_conditions_2.mat) 

correspond to healthy and all faulty engine conditions and are used to form the classification for 

fault detection and identification at a learning stage. Case 3 data (EFS_Output_3.mat and 

EFS_fault_conditions_3.mat) are used to the same end at a validation stage. As shown in Figure 

5.6, the testing procedure is divided into eight main steps described below. To gain high adequacy 

of the baseline model and accuracy of the deviations, cycles of model adjustment are performed. 

This means the repetition of steps 1 and 2 for different variation of a reference sample and a 

verification sample. 

 
Figure 5.6. Steps of the testing procedure. 

 

Learning and validation data (steps 3 and 5 accordingly) present a common classification that unites 

all healthy and faulty engine conditions (classes) presented in  

Table 5.1. Using this classification (steps 4 and 6), a recognition technique determines the class 

(healthy or faulty) that is closest to a pattern (deviation vector) to be recognized. In this way, the 

same technique performs both fault detection and fault identification as one stage. Optimization of a 

diagnostic process is conducted by cycles of tuning (steps 4-7) in the following sequence. A set of 

candidate techniques is firstly determined. Each technique is then tailored to the diagnostic problem 

to solve. Finally, the techniques are compared. The best technique generates diagnostic assessments 

for the Performance Estimation Program (see Figure 5.2). The resulting performance metrics of the 

algorithm under analysis are eventually compared with the ProDiMES metrics of other diagnostic 
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developments. The same input data (case 3 data and blind test data) and the same accuracy criteria 

(metrics) allow objective benchmarking. 

 

5.3.1 Fleet-average baseline model 

This section describes the methodology used and the results obtained in steps 1 and 2 of the testing 

procedure. 

 

Fleet-average baseline model creation (Step 1) 

To extract useful diagnostic information from raw measurements, deviations are computed in the 

form of 
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where 151,..., aa  are the model coefficients calculated using the LSM for all monitored variables. 

 

Accuracy of the baseline model significantly depends on a reference sample used to determine its 

coefficients, and it is a challenging issue to compose a proper sample. The point is that, on the one 

hand, the reference sample must be large to satisfy approximation accuracy, on the other hand, the 

number of flights to collect data is limited to avoid a negative influence of engine deterioration.  

 

Three variations of the sample were created for cruise conditions and preliminary considered in 

[142]. Table 5.4 specifies their characteristics. To form these samples, the file EFS_Output_1.mat 

has been generated by the Case Generator for 300 no faulty engines. To minimize the influence of 

engine deterioration, the flights that correspond to the beginning of maintenance are included in 

samples 1 and 2. To exclude the deterioration effect in sample 3, a polynomial function for a 

deteriorated engine was firstly created, and the necessary baseline model was extracted then from 

this function. As a result of comparison, it was found that the model based on sample 3 had low 

accuracy while the models created with samples 1 and 2 were equally accurate. As sample 1 has a 

by far lower dimension, the model based on its data has been chosen for further analysis.  

 

Table 5.4 Baseline model variations 

Reference 

sample 

variation 

Number of 

engines 

Flights 

per engine 

1 100 90 

2 300 270 

3 1 5000 

 

Let us analyze the accuracy of the selected baseline model through the quality of the deviations 

calculated with this model. To clearly evaluate approximation capability of polynomials, the model 

was firstly determined on reference sample data generated by ProDiMES without noise. Figure 5.7 
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illustrates the deviations obtained on these data. The deviations of three monitored variables (P24 - 

total pressure at LPC outlet, Ps30 - static pressure at HPC outlet, and T24 - total temperature at LPC 

outlet) are plotted here against the first 500 flights of the sample. We can see that for all of the 

variables the random deviation variations (approximation noise) are quite small, just about ±0.0004. 

Thus, polynomial approximation accuracy is quite high. As a result, one can clearly distinguish the 

periods of slight gradual engine degradation during 90 flights of each engine and small shifts due to 

engine-to-engine differences. 
 

 
Figure 5.7. Reference sample deviations (noise-free Sample 1) 

 

Fleet-average baseline model verification (Step 2) 
Since the reference model is intended to diagnose the engine for the entire life of the engine, all 

5000 available flights were used to form a test sample. As an example, deviations of the same 

variables are plotted in Figure 5.8 against 5000 successive flights of an engine, including the first 90 

flights of the reference sample. The red lines here present the approximation of the noisy deviations 

(blue line) by fourth-order polynomial functions of a flight number. Therefore, the reading lines 

show a systematic influence of the deterioration, and the differences between the deviations and the 

approach line are considered as deviation noise. In Figure 5.8 it can be seen that, for at least two 

variables, the initially small noise for the reference flights grows gradually along with the increase 

in the deviations due to the deterioration of the engine. The explanation is that, for a deteriorated 

engine, the influence of the operating conditions on the monitored variables differs from the 

reference model, that is, the model becomes less accurate. This effect should be taken into account 

in a diagnostic algorithm. 

 

The next issue to analyze is measurement noise. It was firstly included in the reference set. As a 

result, the baseline model became less accurate and the noise in testing deviations doubled. Then 

the errors were also added to the testing sample. As seen in Figure 5.9 that illustrates the resulting 

testing deviations, the noise has a fixed level and is so significant that the varying approximation 

inaccuracy observable in Figure 5.8 is now completely hidden. The noise was found to be 10 times 

larger with respect to the no-noise case illustrated by Figure 5.8. In this way, measurement errors in 

current (testing) data are the primary cause of the deviation noise. The influence of measurement 
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errors of the data used to determine the baseline model is by far smaller, and inadequacy of 

polynomials presents the smallest error component. 

 
Figure 5.8. Deviations for noise-free testing data 

 

 
Figure 5.9. Deviations for testing data with measurement noise 

 
5.3.2 Pattern-based fault classification 

Having determined a baseline model, we are able now to compute deviations of monitored variables 

for different healthy and faulty conditions. The sets of deviation vectors (patterns) are employed for 

recognition techniques' learning and validation.  

 

Learning data (Step 3) 

The learning data are computed according to the below procedure using the files EFS_Output_2.mat 

and EFS_fault_conditions_2.mat as input information. Engines simulated by ProDiMES have an 

individual initial level of performances and an individual degradation severity. Thus, the deviations 

directly computed through the fleet average baseline model will be affected by the engine 

individuality and degradation effects in addition to the fault influence. To exclude these effects and 
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construct the fault classification from the patterns affected only by the faults, a simple correction is 

used. Since in ProDiMES the data generated for the first 10 flights of each engine are free of fault 

influence, it is proposed to use these data for computing an average correction coefficient. 
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for each monitored variable Yi. Then, for any flight, an individual baseline value  

 

0 0 ( )i i iYI K Y U


                                                             (5.4) 

 

is computed and then used to determine a deviation of the corresponding monitored variable  
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As operating conditions and monitored variables simulated by ProDiMES include measurement 

noise, the deviation induced by engine deterioration and faults also has random errors. A coefficient 

Yia  normalizes these errors, and, as a result, the deviations of all monitored variables have the same 

error span (-1, 1). These deviations form a diagnostic space and constitute a vector Z


 that is a 

pattern to be recognized. To have a representative fault classification, the files EFS_Output_2.mat 

and EFS_fault_conditions_2.mat were obtained for no-fault and all 18 faulty engine health 

conditions available in ProDiMES. Using these files, the 19 corresponding pattern-based classes are 

created from the patterns. To this end, the measurements from many engines and flights 

corresponding to each fault condition are transformed in a sample of patterns that is a representation 

of the corresponding class. In this way, a fault classification is a totality of these samples. It is used 

to learn a fault recognition technique and is called a learning set LZ . 

 

The following figures exemplify the fault class formation using patterns of LZ  in the space 

deviations: Figure 5.10 shows class 1 (no fault) and class 4 (HPC fault); Figure 5.11 shows faults 2-

8 including component and actuator faults; Figure 5.12 shows sensor faults 10-14. 

 

 
Figure 5.10. Class 1 (no fault) and class 4 (HPC fault) 
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Figure 5.11 Component and actuator faults 

  

 
Figure 5.12 ProDiMES sensor faults. 

 

Recognition technique learning (Step 4) 
In our previous studies SVM were found to be the most accurate diagnostic technique for an 

industrial power plant. However, the differences between the competing techniques were small, and 

to diagnose an aircraft engine within this study, two neural networks, MLP and PNN, have 

additionally been chosen. To create, learn, and simulate three techniques, the Matlab Neural 

Network Toolbox functions are used. Although each technique learned on the data of the set LZ  is 

ready to diagnose gas turbine faults, it should be examined on new data that allow to avoid 

overlearning and correctly estimate the techniques accuracy. The new data set is called a validation 

set VZ . 

 

Validation data (Step 5) 

The new set of patterns VZ  requires new input data, and new files EFS_Output_3.mat and 

EFS_fault_conditions_3.mat have been generated by ProDiMES. However, the set VZ  should have 

the same pattern distribution that the set LZ  has. Therefore, the settings used to generate learning 

parameters and equations (3-5) to transform them are conserved for the validation data. 

 

Details of learning and validation sets 

The ProDiMES software includes example files EFS_Output.mat and EFS_fault_conditions.mat. 

An example diagnostic solution employs these files as input information to diagnose a fleet of 
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engines with different fault, and a set of solution accuracy performance metrics is determined. In 

order to have comparable metrics, the examined diagnostic technique examined uses the same 

ProDiMES files as validation files EFS_Output_3.mat and EFS_fault_conditions_3.mat. The 

settings to generate these files are brought together in Table 5.5. 

 

Table 5.5 Settings for the validation files 

Setting name Setting value 

Number of engine health conditions 19 

Number of engines per health condition 10 

Number of flights per engine 50 

Fault initiation Random 

Minimum initiation flight 11 

Fault evolution Random 

Rapid fault evolution rate (minimum) 9 

Rapid fault evolution rate (maximum) 9 

Sensor noise On 

 

Since the first 10 flights of each engine are fault-free, the data of the subsequent 40 flights are 

employed to compute patterns Z


. In this way, a total number of validation patterns is 

19×10×40=7600. The learning files EFS_Output_2.mat and EFS_fault_conditions_2.mat were 

created using the same settings of Table 5.5 excepting the number of engines. An increased number 

100 was used to have a large learning set of 76000 patterns and learn better the diagnostic 

techniques.  As fault initiation is random, some flights since flight 11 may be free of faults. During 

forming the fault classification, the patterns of such flights for all 18 fault conditions were added to 

a no fault class increasing drastically its size. The no-fault class of great volume helps us to better 

adapt each recognition technique to this class. As a result, a probability of false alarms (false 

positive rate) goes down and approaches to the level of 0.001 exposed by the ProDiMES example 

solution. This is necessary to be able to compare other diagnostic performances. 

 
5.3.3 Validation process 

Validation of a fault recognition technique allows us to confirm its expected diagnostic 

performances. A validation process begins with the simulation of technique operation. 

 

Recognition technique simulation (Step 6) 

Each recognition technique, namely MLP, PNN, or SVM is simulated by employing the 

corresponding Matlab functions and the validation set patterns. For every pattern a diagnostic 

decision (classification decision) is taken. Using these decisions and ground truth information 

contained in the file EFS_fault_conditions_3.mat, a diagnostic performance, namely true 

classification rate, is determined. 

 

True classification rate (Step 7) 

The true classification rates are diagonal elements of a well-known confusion matrix and are 

probabilities of correct diagnosis of the patterns of corresponding classes. Since the classification 

includes healthy and faulty conditions, a probability P , mean value of the diagonal elements, is an 

accuracy indicator for both fault detection and fault identification. This probability is used as a 

criterion to tune each diagnostic technique and then compare it with the other techniques tuned. The 

tuning is an important stage of a total diagnostic process and is described in the below sections 

separately for each technique under analysis. 
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5.3.4 Tuning 

MLP 

The dimensions of the input and output layers are known, 7 (number of monitored variables) and 19 

(number of classes) respectively. The number of hidden layer neurons Nn determines network 

flexibility. This parameter as well as the number of learning cycles (epochs) Nepochs is determined 

during MLP tuning. Based on our previous experience, we began the tuning with the values Nn=24 

and Nepochs=200 that were optimal for the diagnosis of an industrial gas turbine by MLP. 

However, it soon became clear that the network was not completely learned with these values. In 

particular, some classes with a small fault magnitude had the true positive rate equal to zero. To 

cope with the problem and find the conditions of the best learning, a series of calculations have 

been conducted with a gradual increase of the parameters Nn and Nepochs. As initial values of 

weight coefficients are maintained random, all the learning process and the final probabilities P  are 

random as well. To reduce variations in the probabilities, each probability calculation with fixed 

settings Nn and Nepochs was repeated 10 times, and the corresponding values P  were averaged 

resulting in an average probability avP . Figure 5.13 illustrates this numeric experiment by plotting 

avP  against Nepochs for different Nn. As can be seen, the average probability still has a scatter 

about ±0.005. However, it does not hide a systematic influence of the parameters Nepochs and Nn: 

the probability avP  grows along with increasing these parameters. Such a trend has a natural 

explanation. A larger number of neurons means a higher network flexibility and better description 

of a complex fault classification. In its turn, a larger number Nn requires more epochs. On the basis 

of all the plots presented, an optimal values Nn=66 and Nepochs=5000 have been chosen for 

further use. 

 

 
Figure 5.13. MLP tuning. 

 

PNN 

From the beginning of the tuning, it became clear that a PNN function could not operate with all 

76000 learning patterns because of an evident lack of core memory. To proceed with the tuning, a 

reduced learning set of 30400 patterns that correspond to 40 engines per fault was created. The 

spread b is the unique parameter to tune PNN. The probability P  is used as a tuning criterion 

because it is a deterministic quantity and does not need averaging. Figure 5.14 illustrating a 

dependency P  = f(b) helps to choose the optimal value b = 0.2 used in further calculations. 

 

SVM 

Figure 5.15 illustrates the tuning performed for SVM. We can see here convergent lines of a 

constant classification error and the point of the minimum error 0.31 that gives us the optimal 

values of C and σ. Figure 5.16 shows an example of fault class construction using the learning set in 
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the space of two normalized deviations. Also, it is visible how SVMs work trying to separate both 

classes as much as possible using the support vectors obtained from the training to create the 

boundary of classification. 

 
Figure 5.14. PNN tuning 

 

 

 
Figure 5.15. SVM tuning 

 
Figure 5.16. Example of class separation with SVM. 
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5.3.5 Comparison of the techniques (Step 8) 

Comparison between the proposed candidate techniques 

Thus, the candidate techniques, MLP, PNN, and SVM, are tuned, and they can now be compared. 

Let us firstly compare these techniques with each other. As PNN was tuned for the case of the 

reduced learning set, the other two techniques were additionally tuned on the data of this set. The 

resulting probabilities P  (mean true classification rates) were placed in the first row of Table 5.6. It 

can be seen that SVM has the highest performance while PNN has the lowest one. Taking into 

account this negative rating and impossibility to use more perfect 100 engines-based learning set, 

from here we exclude PNN from the consideration. As shown in the second row for the case of 100 

engines, both MLP and SVM further enhanced the performances thus increasing their advantages 

over PNN. Since the example solution uses exponential smoothing to improve diagnostic 

performances, we have also applied this filtering to the deviations of each engine in the learning and 

validation sets. As can be seen in the third row, the probabilities of both techniques have increased 

once more, and we leave them for further comparison using the data from the ProDiMES software 

and user' guide. 

 

Table 5.6 Mean true classification rates P  for the candidate techniques 

Comparison 

Conditions 

MLP PNN SVM 

40 engines 0.6507 0.6466 0.6663 

100 engines 0.6660 - 0.6701 

100 engines+ 

Smoothing 

0.7075 - 0.7239 

 

Comparison with the ProDiMES data  

Since ProDiMES implies the use of both cruise and takeoff measurements to make one diagnosis, 

the diagnostic algorithm was adapted to this multipoint option. Additional requirement of 

ProDiMES consists in a drastic reduction of false alarms given by the condition TNR>0.999. To 

meet this condition, the number of no-fault patterns was significantly increased in the learning set 

selecting 5000 no-fault engines for MLP and 10000 no-fault engines for SVM. Figure 5.17 and 

Table 5.7 show some metrics for different numbers of healthy engines using SVM. The previous 

experience of algorithm testing on cruise data allowed us to rapidly optimize the multipoint 

algorithm. In particular, the optimal conditions for MLP are smoothing coefficient 0.35, neuron 

number Nn = 72, and Early Stopping option.  Two first rows of Table 5.8 show the general results 

obtained for the MLP- and SVM-based versions of the multipoint algorithm. We can see that MLP 

has slightly higher TPR, but SVM outperforms according the other metrics and in general.  

 

The third row presents the metrics of the ProDiMES example solution applied to the same 

validation data as with the proposed algorithm. Comparing these results with the previous ones, one 

can state that both proposed versions have by far higher performances. This statement cannot be 

considered as our great achievement. The statement only means that the algorithm meets minimal 

requirements because the example solution was not optimized and is given only to illustrate the 

benchmarking methodology. The data of the fourth row are the metrics presented in the author's 

guide [72]. We can see that these metrics and SVM ones have small differences. More detailed 

metrics are presented in Figure 5.18 and Figure 5.19. Comparing the metrics separately for abrupt 

and rapid faults, we can conclude that the differences between the diagnostic solutions are not too 

great. In general, the metrics of the SVM and from the author's guide can be considered 

comparable. However, it is a preliminary conclusion since the author' guide does not refer to the 

origin of the metrics, namely, diagnostic solution and the data to which it was applied. It also 
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follows from Figure 5.18 and Figure 5.19 that the probabilities of omitted faults (false negative rate) 

in the column "No Fault" are significant for both solutions. This can be explained by the following 

reasons. 

 

 
Figure 5.17. Metrics for different numbers of healthy engines using SVM. 

 

 

Table 5.7 Metrics for different numbers of healthy engines using SVM. 

Number of  

healthy engines 
Faults TPR TNR Latency Kappa Coefficient 

100 
Abrupt 0.7730 0.95625 1.6 0.73 

Rapid 0.6090 0.95625 4.2 0.62 

1000 
Abrupt 0.7260 0.98681 1.4 0.76 

Rapid 0.5610 0.98681 4.8 0.63 

5000 
Abrupt 0.6510 0.99757 1.4 0.74 

Rapid 0.4880 0.99757 5.7 0.59 

6000 
Abrupt 0.6600 0.99826 1.2 0.74 

Rapid 0.4700 0.99826 5.3 0.59 

7000 
Abrupt 0.6230 0.99757 1.4 0.72 

Rapid 0.4790 0.99757 5.5 0.58 

10000 
Abrupt 0.6100 0.99965 1.4 0.71 

Rapid 0.4620 0.99965 5.6 0.57 

11000 
Abrupt 0.6180 1 1.4 0.72 

Rapid 0.4540 1 5.7 0.56 

12000 
Abrupt 0.6160 1 1.4 0.72 

Rapid 0.4530 1 5.7 0.56 

14000 
Abrupt 0.6070 1 1.5 0.71 

Rapid 0.4450 1 5.7 0.56 

16000 
Abrupt 0.6050 1 1.5 0.71 

Rapid 0.4390 1 5.7 0.55 

18000 
Abrupt 0.6000 1 1.5 0.71 

Rapid 0.4390 1 5.6 0.55 
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Table 5.8 Performance metrics of the proposed method and from ProDiMES. 

Algorithm Faults TPR TNR 
Detection 

Latency 
Kappa 

1-MLP-based 

algorithm 

Abrupt 0.628 0.99931 1.8 0.69 

Rapid 0.466 0.99931 6.0 0.50 

2-SVM-based 

algorithm 

Abrupt 0.610 0.99965 1.4 0.71 

Rapid 0.462 0.99965 5.6 0.57 

3-Example solution 
Abrupt 0.505 0.99896 2.6 0.29 

Rapid 0.374 0.99896 7.0 0.21 

4-Author's guide metrics 
Abrupt 0.610 0.99997 2.5 0.73 

Rapid 0.419 0.99997 6.8 0.56 

 

 

First, the false negative rate and false positive rate (probability of false alarms) are interconnected. 

The lower the latter, the greater the former. Thus, high probabilities of omitted faults are partly 

explained by a low probability of false alarms (0<0.001). Second, probabilities of omitted faults for 

such sensor faults as "P2", "Pamb", "Nc", and "T24" are particularly great (up to 0.86) that 

significantly affects the total level of fault classification accuracy. The explanation is related to the 

mode to determine a sensor fault in ProDiMES. Its magnitude is set by 10 standard deviations of 

measurement noise of the considered variable (monitored variable or operating condition). 

However, the fault is diagnosed in the space of deviations against the background of deviation 

noise. The latter depends on measurement errors of both monitored variables and operating 

conditions. For the mentioned four faults, the magnitude is too small in comparison with the 

deviation noise, only about 3 standard deviations. As a result, these faults are hardly diagnosed. 

Third, a total number 19 of considered classes is greater than in the most of investigations that 

objectively leads to a lower classification accuracy indicator. Presence of these faults in ProDiMES 

is natural because it promotes better benchmarking diagnostic algorithms. However, it seems to us 

that this number should be shortened in a real situation at the expense of the exclusion of hardly 

distinguishable faults. Let us now turn to the comparison of the proposed algorithm with the 

solutions of other researchers using the blind test case. 

 

 
Figure 5.18. SVM-based algorithm metrics. 
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Figure 5.18 SVM-based algorithm metrics (continuation). 

 

 

 

 
Figure 5.19. ProDiMES author's guide metrics. 

 

  

5.4 BLIND TEST RESULTS 

Comparison with the diagnostic solutions published in papers 

Paper [29] provides the first results of employing ProDiMES. The authors compare four methods. 

To detect faults, algorithm #1 embraces trend analysis of the measurement deviations filtered by 

exponential moving average; to identify faults, the method involves a weighted least squares 

technique. Algorithm #2 differs from method 1 only by the fault identification stage that employs a 

Probabilistic Neural Network (PNN) instead of the least squares technique. Algorithm #3 includes a 

constant gain extended Kalman filter for detecting faults and regularized least squares for 



105 

 

identifying faults. Algorithm #4 presents a generalized observer used for both detection and 

identification.  

 

To meet the ProDiMES requirement TNR>0.999 in the blind test, we were forced to increase the 

number of no-fault engines in the learning data up to 14000 before comparing our results with other 

solutions. Figure 5.20 and Table 5.9 show the metrics obtained for different numbers of healthy 

engines. For the aforementioned algorithms, Table 5.10 contains the ProDiMES blind test results 

averaged for abrupt and rapid faults. The table also includes the corresponding averaged 

performances of the proposed SVM-based algorithm applied to the same blind test data. As can be 

seen in the table, the proposed algorithm outperforms all the other algorithms for all the metrics 

excepting the insignificant worsening of TNR.  

 

 
Figure 5.20. Metrics for different numbers of healthy engines using blind test set. 

 

Table 5.9 Metrics for different numbers of healthy engines using blind test set 

Number of  

healthy engines 
Faults TPR TNR Latency Kappa Coefficient 

10000 
Abrupt 0.6240 0.99870 1.2 0.74 

Rapid 0.4600 0.99870 5.3 0.60 

11000 
Abrupt 0.6150 0.99869 1.2 0.74 

Rapid 0.4530 0.99869 5.4 0.59 

12000 
Abrupt 0.6120 0.99887 1.2 0.73 

Rapid 0.4500 0.99887 5.4 0.59 

14000 
Abrupt 0.6050 0.99904 1.2 0.73 

Rapid 0.4450 0.99904 5.4 0.59 

16000 
Abrupt 0.5990 0.99918 1.2 0.73 

Rapid 0.4400 0.99918 5.5 0.58 

18000 
Abrupt 0.5930 0.99927 1.2 0.72 

Rapid 0.4360 0.99927 5.5 0.58 
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Table 5.10 Performance metrics of the proposed algorithm and the algorithms analyzed in paper 

[29] (blind test data averaged for abrupt and rapid faults) 

Algorithm TPR TNR Detection 

Latency 

Kappa 

SVM-based 

Algorithm 

0.525 0.99904 3.30 0.660 

Algorithm #1 0.447 0.99908 4.86 0.588 

 Algorithm #2 0.447 0.99908 4.86 0.590 

 Algorithm #3 0.509 0.99908 4.02 0.627 

 Algorithm #4 0.519 0.99906 4.24 0.617 

 

 

Paper [26] deals with five machine learning techniques: Naïve Bayes, Decision Tree (DT), K-

Nearest Neighbors (K-NN), linear Support Vector Machine (SVM), and nonlinear SVM. At the first 

comparison stage, the authors apply all of the techniques to a binary problem (two fault classes at 

each classification stage) and, using three probabilistic criteria, have selected three best techniques: 

DT, K-NN, and nonlinear SVM. The comparison at the second stage with a multi-class 

classification showed that the nonlinear SVM achieved the highest average accuracy. At the third 

stage, a variation HSVMkSIR of this technique that uses the dimension reduction of a classification 

space displayed further accuracy enhancement.  

 

To compute the ProDiMES metrics of the mentioned methods, the authors use a reduced fault 

classification of 10 items for which generate a proper set of simulated measurements. The metrics 

are determined separately for the cruise and takeoff regimes and are averaged for abrupt and rapid 

faults. These metrics for the best four methods as well as the corresponding metrics of the SVM-

based algorithm are presented in Table 5.11. Comparing all the algorithms, we can see that the 

proposed diagnostic solution excels the others in all the metrics excepting detection latency. Given 

that the performances of paper [26] will degrade when changing to the full classification of 19 

items, the superiority of the SVM-based algorithm seems to be most probable. 

 

Table 5.11 Performance metrics of the proposed algorithm and the algorithms analyzed in paper 

[26] (data are obtained on cruise regime measurements and are averaged for abrupt and rapid faults) 

Algorithm TPR TNR Detection 

latency 

TCR 

SVM-based 

algorithm 

0.601 0.945 3.9 0.699 

DT 0.372 0.924 - 0.388 

KNN 0.453 0.961 - 0.449 

NSVM 0.705 0.728 - 0.535 

HSVMkSIR - - 0.7 0.629 

 

The authors of paper [27] propose and validate an algorithm for extracting features and detecting 

faults using their own set of measurements simulated by ProDiMES. The following techniques 

constitute the detection algorithm: a) a polynomial baseline model of a fleet-average engine and an 

individual baseline model to calculate deviations induced by faults; b) exponential moving average 

applied to measurement "deltas" and recursive median filter of deltas residuals; c) fault detection by 

tolerance monitoring of the sum of square residuals.  

 

Table 5.12 shows the resulting metrics obtained on the cruise measurements for the fault detection 

algorithm and the proposed SVM-based one. The comparison results show that, the proposed 
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algorithm is generally superior. This conclusion is again preliminary because the techniques are 

compared on different sets of measurement data. 

 

Table 5.12 Performance metrics of the proposed algorithm and the detection algorithm analyzed in 

paper [27] (data are obtained on cruise regime measurements) 

Algorithm Faults TPR TNR Latency 

SVM-based 

Algorithm 

Abrupt 0.685 0.945 1.8 

Rapid 0.517 0.945 6.0 

2-Fault 

Detection 

Algorithm 

Abrupt 0.455 0.999 1.7 

Rapid 0.271 0.999 6.7 

 

As can be seen from the above comparison, some investigators generate by ProDiMES their own 

input data for the benchmarking and do not provide the blind test results. For this reason, a part of 

conclusions on the comparison of proposed diagnostic algorithm with such investigations are 

considered as preliminary. However, the conjunction of such positive preliminary conclusions and 

the conclusions made under correct comparison conditions makes sound the general statement about 

the algorithm's superiority. 
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Chapter 6: Comparative Study of 

Physics-Based and Data-Driven Gas 

Turbine Diagnostic Approaches 
 

6.1 OVERVIEW 

This chapter carries out a comparative study of two main gas turbine diagnostic approaches, 

physics-based and data-driven. They have the principal difference that the first approach performs 

engine diagnosis in the space of the deviations of measured variables Y  while the second 

approach in the space of health parameters deviations δ . In each space, the classification of 

engine faults is constructed and the multi-layer perceptron is applied to make a diagnostic decision. 

To verify whether the 


δ -space is beneficial to the diagnosis we repeat the diagnosis many times 

and compute a probability of correct diagnosis for each approach. The approaches are compared 

using this probability as a criterion. All necessary data to create the fault classification and test the 

diagnostic approaches come from the thermodynamic model of GT1 and GT2. Six comparison 

cases for GT1 and three for GT2 with different fault numbers, severity and complexity are 

considered to better evaluate and compare the approaches. 
 
Figure 6.1 presents in highlighted boxes the influence factors used to realize the diagnostic 

algorithm. The selection includes: a turboshaft engine for industrial application; gas path diagnostic 

systems; an integrated algorithm that considers the stages of feature extraction, monitoring and 

diagnosis; four types of models (physics-based, data-driven, non-linear and linear models); the use 

of LSM to identify baseline and degraded models; one-point and multi-point diagnostic analysis; 

MLP for fault recognition; and diagnosis of single and multiple faults. 
 
6.2. METHODOLOGY FOR COMPARING GAS TURBINE DIAGNOSTIC APPROACHES 

6.2.1 General description 

The methodology for comparing the two approaches is realized as an integrated algorithm shown in 

Figure 6.2. A description of the methodology steps for the approaches is given as follows. The first 

step deals with deviation generation. Here, a the non-linear engine model ),( 


UfY   of GT1, 

which allows the simulation of healthy and faulty engine scenarios, is transformed into a linear 

model 


 HYδ  to simplify the computation of deviation patterns that describe the actual engine 

health state and form fault classifications.  

 

Deviations *Y


  for the data-driven approach are computed first and then used to estimate health 

parameter deviations *̂


 for the physics-based approach. In the second step, learning sets are 

created and used in the third step to feed the networks so they can learn the fault classifications. In 

the fourth step, validation sets are built and introduced to the fifth step to evaluate if the trained 

networks can generalize the knowledge by correctly classifying unseen patterns. The network 
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outputs produced in this fifth step are called diagnoses. Based on the diagnoses obtained, the sixth 

step computes confusion matrices for each approach, and a final diagnosis accuracy indicator is 

obtained, which is the criterion of approach comparison. The methodology presented allows a fair 

comparison and the only difference between the two approaches relies in the estimation of health 

parameter deviations. 

 

6.2.2 Approach 1 (data-driven): diagnostics in Y


 -space  

The first approach is performed in the Y


 -space and includes six main steps described below. 

 

  

 
Figure 6.1 Diagnostic algorithm influence factors used throughout Chapter 6. 

 
 

Step 1: Deviation generation 

A gas turbine diagnostic process usually includes a preliminary procedure of computing deviations 

    UYUYYYi


00

**   between actual and baseline values of a monitored variable. Since real 

engine data to form representative fault classes are not available, simulated deviations with varying 

fault severities are computed instead through 


 HYδ . During the computations, random fault 

severities are inside predetermined fault limits (e.g. [0, −5%]) and are described by a uniform 

distribution. Considering deviation errors (noise), simulated deviations take the form: 

 

YYY  *                                                        (6.1) 
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The deviation noise is simulated using the normal distribution. The deviations computed for all of 

the monitored variables constitute a  1m  deviation vector *Y


  (pattern) that is an input to a fault 

recognition technique and, on the other hand, forms a diagnostic space called Y


 -space. 

 

Step 2: Pattern-based classification (learning data formation) 

A classification necessary for pattern recognition techniques can be now constituted by different 

engine fault classes presented by patterns *Y


 . In the classification, we consider two types of 

classes; single and multiple. The single type is formed when there is a change of one fault parameter 

from a healthy state to a maximal severity, while the multiple one corresponds to an independent 

variation of two or more fault parameters from the same or different engine components. To avoid 

the problem of exceeding a severity limit, the present investigation applies the Archimedean spiral 

introduced in [124].  

 

 
Figure 6.2 Methodology for comparing the two gas turbine diagnostic approaches. 
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From the constructed classes, a healthy class can be formed by all incipient faults, i.e. patterns not 

exceeding a fixed healthy engine boundary (e.g. a sphere of radius R=1) from each fault class. In 

this manner, we can address anomaly detection (motoring)  and fault identification (diagnosis) as an 

integrated process [115] and a unique recognition technique can realize both stages at the same 

time. A complete fault classification reunites deviation patterns 
*Y


  of different classes in a matrix 

LδY  called learning set employed to train the selected recognition technique. 

 

Step 3: Network learning 

The technique used for gas turbine fault recognition is the MLP. In the learning stage, all patterns of 

the learning set LδY  are introduced by turn to the network at each iteration (epoch) and a total error 

between network outputs and target vectors is computed. Unknown network’s weights and biases 

are corrected in the direction that reduces the error. After multiple epochs, the learning process 

comes to a minimum, and the network becomes ready to recognize new fault patterns. 

 

 

Step 4: Validation data formation 

To verify whether the trained technique correctly recognizes unseen fault patterns *Y


 , it is 

necessary the creation of another set VδY  called a validation set. It is built in the same manner as 

LδY  with the exception that a different seed (different series of random numbers) is utilized to 

determine random fault severity and deviation noise. 

 

Step 5: Network simulation 

When a validation pattern enters to the trained network, the network’s outputs show how close is 

this pattern to each fault class. Final diagnostic decision consists in choosing the closest class. 

 

Step 6: Diagnosis accuracy 

Each validation pattern belongs to a known fault class. Comparing a diagnosis ld  with a known 

class jD  for all validation patterns, probabilities )/( jllj DdPP   are computed. These probabilities 

are elements of a confusion matrix. In this matrix, the diagonal values corresponding to correct 

class recognition are true positive rates. An average YP  of the diagonal represents a probability 

that characterizes total engine diagnosis reliability.  

 

6.2.3 Approach 2 (physics-based): diagnostics in 


δ -space 

For the physics-based approach, the steps required for diagnostics are the same as those presented in 

the data-driven approach with the exception of Step 1. In this step, health parameter deviations 
*̂


 

(with deviation error component 


 included)  are additionally estimated with *1*ˆ Y


  H  if 

the number of monitored variables equals the number of health parameters, or 

  *T1T*ˆ Y


 


HHH  if the number of monitored variables is more than the number of health 

parameters [128]. In this way, the fault recognition can be carried out directly using the estimated 

health parameter deviations in a diagnostic space called 


δ -space. As before, data samples Lδθ  

(learning set) and Vδθ  (validation set) are created for the network training and network simulation 

steps, respectively. Finally, the indicator of diagnosis accuracy P  is computed. 
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6.3 COMPARISON OF APPROACHES USING GT1 

6.3.1 Comparison conditions 

Selected variables 

The vector U


 of operating conditions is specified in Table 6.1. Table 6.2 presents the six gas path 

monitored variables used to form deviations for both approaches and to diagnose the engine. Flow 

capacity (G) and isentropic efficiency (Ef) are the parameters used to describe engine faults in each 

component and correspond to health parameters commonly employed for gas turbine diagnostics 

[29,51]. These fault parameters per component are shown in Table 6.3. The fault severity interval 

for both fault parameters is [0, −5%]. 

 

For the purposes of the diagnostic analysis, six operating points are used. They are set by the gas 

generator rotor speeds (nC=10700, 10500, 10300, 10100, 9900, and 9700 rpm) and standard 

atmospheric conditions. To confirm that all these regimes do not vary significantly, Table 6.4 shows 

maximal and idle regimes. 

 

Table 6.1 Operating conditions (Vector U


) of GT1 

No. Description Unit Symbol 

1 Ambient pressure kPa 
HP  

2 Inlet temperature K 
HT  

3 Gas generator rotation speed rpm 
Cn  

 

Table 6.2 Monitored variables (Vector Y


) of GT1 

No. Description Symbol 

1 Compressor total pressure PC 

2 High pressure turbine total pressure PHPT 

3 Compressor total temperature TC 

4 High pressure turbine total temperature THPT 

5 Power turbine total temperature TPT 

6 Fuel gas mass flow Gf 

 

Table 6.3 Simulated fault parameters (Vector 


) of GT1 

No. Description Symbol 

Fault  

parameter 

 interval 

1 Compressor air flow capacity GC 0 to −5% 

2 Compressor efficiency EfC 0 to −5% 

3 High pressure turbine flow capacity GHPT 0 to −5% 

4 High pressure turbine efficiency EfHPT 0 to −5% 

5 Power turbine flow capacity GPT 0 to −5% 

6 Power turbine efficiency EfPT 0 to −5% 
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Table 6.4 Influence matrices for maximal and idle regimes (GT1). 

Regime 

(rpm) 

Monitored 

variables 

Fault parameters 

GC EfC GHPT EfHPT GPT EfPT 

10700 

PC 1.2036 -0.5815 -0.7631 -0.6494 -0.3772 0.0126 

PHPT 1.2415 -0.5857 0.2719 -0.8040 -1.5021 0.0492 

TC 0.3446 -0.7461 -0.2166 -0.1843 -0.1066 0.0035 

THPT 0.6371 -1.3212 0.4414 -1.7978 -1.0353 0.0334 

TPT 0.4021 -1.2753 0.4050 -1.7263 -0.7482 -0.3133 

Gf 1.8671 -2.0188 0.7294 -2.7443 -1.5769 0.0509 

9700 

PC 1.1464 -0.5652 -0.7752 -0.6278 -0.3135 0.0013 

PHPT 0.9967 -0.4974 0.2316 -0.6911 -1.2299 0.0051 

TC 0.2834 -0.6669 -0.1963 -0.1580 -0.0758 0.0003 

THPT 0.4372 -1.2537 0.4331 -1.7301 -0.8528 0.0035 

TPT 0.1975 -1.1799 0.3882 -1.6193 -0.5735 -0.2301 

Gf 1.6376 -2.0637 0.7618 -2.8411 -1.3990 0.0057 

 

 

Fault classifications 
We propose three fault classifications to be applied in the approach comparison. They are presented 

in Table 6.5. Classification 1 consists of six single fault classes. Each single class is built by the 

variation of one independent fault parameter (flow capacity or efficiency) in an engine component. 

Classification 2 uses the previous six single classes plus six multiple fault classes, resulting in 

twelve classes. In the first three multiple classes, each class is formed by independently changing 

both fault parameters (flow capacity and efficiency) in the same engine component. In the other 

three multiple classes, each class is constructed using independent shifts of four fault parameters 

from the combination of two components. However, more robust diagnostic algorithms are required 

that can diagnose faults in the background of more complex scenarios. Classification 3 uses the 

same structure of Classification 2 with the inclusion of the healthy class (no fault).  

 

For the two first fault classifications, the number of patterns per class is fixed to 1000 in both 

learning and validation sets because the use of this quantity has shown good recognition 

performance before [124]. However, for the third classification, the number of patterns is variable 

and depends on the healthy class boundary as mentioned before. 

 

Table 6.5 Fault classifications 

Fault 

Classif 

Fault classes and fault parameters 

D1 

δGC 

 

D2 

δηC 

 

D3 

δGHPT 

 

D4 

δηHPT 

 

D5 

δGPT 

 

D6 

δηPT 

 

D7 

δGC 

δηC 

D8 

δGHPT 

δηHPT 

D9 

δGPT 

δηPT 

D10 

δGC 

δηC 

δGHPT 

δηHPT 

D11 

δGC 

δηC 

δGPT 

δηPT 

D12 

δGHPT 

δηHPT 

δGPT 

δηPT 

D0 

No-

fault  

state 

1 + + + + + + − − − − − − − 

2 + + + + + + + + + + + + − 

3 + + + + + + + + + + + + + 

 

Network specifications 

Let us briefly present some network specifications employed in the diagnostic approaches using 

GT1. The two networks contain input, hidden and output layers. In the case of one-point diagnostic 

analysis, the network input layer size utilized in the Y


 -space correspond to the dimension of a 
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deviation pattern vector 
*Y


  (six gas path monitored variables) while for 


δ -space the number of 

input layer nodes equals the dimension of an estimated deviation vector *̂


 (six fault parameters). 

However, when multi-point diagnostics is used in the Y


 -space, the number of nodes in one-point 

is multiplied by the number of engine regimes (e.g. 6 basic nodes x 6 regimes=36 input nodes). The 

output layer size is the same for both networks and depends on the number of fault classes under 

analysis. The hidden layer nodes can be selected by user’s experience or by a trial and error. 

 

Common elements present in the networks are: an additional node in the input and output layers 

called bias vector with input value of one allowing the classifier to move the decision boundary; a 

cross-entropy function controlling the network performance by the training error minimization; a 

hyperbolic tangent sigmoid transfer function f1 working within an interval of [1, −1] for hidden 

layer neuron activations; an output layer softmax transfer function f2 (a generalization of logistic 

sigmoid function) working within an interval of [0, 1] to assign every input pattern to one of the 

given fault classes. More detailed information about neural network configurations can be found in 

[139]. 

 

6.3.2 Cases of comparative analysis 

Design of numerical experiments 

In order to draw solid conclusions about the diagnosis accuracy of both approaches and to make a 

fair comparison between them, five case studies are performed. They are formed by varying three 

principal characteristics: the fault classification, the type of diagnostic analysis (one-point or multi-

point), and the deviation noise scheme (simulated or real). These cases are specified in Table 6.6. 

 

Table 6.6 Cases studies proposed to evaluate both approaches using GT1. 

Case 

study 

Fault 

classification 

Diagnostic 

analysis 

Deviation  

noise 

1 1 One-point* Simulated 

2 2 One-point* Simulated 
3 2 Multi-point Simulated 
4 3 Multi-point Simulated 
5 3 Multi-point Real 

*Maximal engine regime (nC=10700 rpm) 

 

For an adequate approach comparison in all cases, the optimal network training scheme and the 

optimal network parameters need to be first determined. The training scheme refers to the use or not 

of an early stopping option. The network parameters refer to the number of epochs and the number 

of hidden layer neurons. For each training scheme, the optimal parameters are found. For that 

purpose, the network with different values of these parameters are trained and then tested on the 

validation data set. The values that provide the highest P  are chosen. Once the optimal parameters 

are determined, we select the training scheme with the best results. With the optimal network 

configuration, probabilities P  for 100 seeds are computed and averaged, resulting in a more precise 

estimation avP  that will allow better comparison of the approaches. 

 

The determination of optimal network configuration and final diagnosis accuracy of both 

approaches are presented for each case below. 

 

Case study 1 

Case 1 is formed using Classification 1 (6 single fault classes), one-point diagnosis at the maximal 

regime ( Cn =10700 rpm) and simulated deviation noise scheme. Table 6.7 shows the optimal 
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network configuration for both spaces and 1-seed computation. It can be seen that for Y


 -space and 




δ -space the best training option is “early stopping=0”. However, the differences in P  between 

both options remain small (0.25% for Y


 -space and 0.16% for 


δ -space). Figure 6.3 shows the 

search of optimal parameters for 


δ -space and “early stopping=0”. The highest value ( P

=0.8511) is marked with a circle for the optimal parameters (78 hidden neurons and 200 epochs). 

From the figure one tendency is clear in this case: increasing the number of epochs produces a 

decrease in the diagnosis accuracy. 

 

Table 6.7 Optimal network configuration for Case 1 (1 seed) 

Space 

Early 

stop=0 

Early 

stop=1 
Diff. 

Optimal 

Param. 
P  

Optimal 

Param. 
P  

Y


  
hn=48 

ep=400 
0.8558 hn=60 0.8533 0.0025 




δ  
hn=78 

ep=200 
0.8511 hn=48 0.8495 0.0016 

 

 

 
 

Figure 6.3 Search of optimal parameters for Case 1, 


δ -space and “early stopping=0”. 

 

Using the optimal network configuration for each approach, the probabilities P  of 100 seeds are 

computed and averaged to obtain the final diagnosis accuracy indicator avP . Table 6.8 presents this 

indicator as well as averaged true positive rates (vector avP


) corresponding to correct recognition of 

each fault class. It is visible that the percentage of total correct recognition for both approaches is 

almost the same. Despite the acceptable level of accuracy achieved in Table 6.8 for 


δ -space, it is 

worth analyzing the estimation errors in deviations *̂


. Figure 6.4 presents patterns *̂


 of a pair 

of single fault classes ( cĜ  and ptĜ ) as well as true values (solid lines) of each class that 

uniformly develop along their corresponding fault axes from 0 to the maximal severity limit (−5%). 
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As shown, the distribution of estimated deviation noise 


  presents an ellipsoid form for both 

classes due to estimation errors resulting in a scattered pattern distribution and exceeded severity 

limits. Since the monitored variables in deviation errors Y


 are uncorrelated, the estimation errors 

are produced by the correlation of some health parameters in deviation errors 


 (see Figure 6.5). 

 

Table 6.8 Averaged true classification rates and final accuracy indicator avP  for Case 1 (100 seeds). 

Space avP


 
avP  

D1 D2 D3 D4 D5 D6 

Y


  0.9115 0.7691 0.8802 0.7481 0.8808 0.8919 0.8469 




δ  0.9118 0.7756 0.8770 0.7493 0.8756 0.8760 0.8442 

 

 

Figure 6.4 Classes of estimated patterns *̂


 for Case 1. 

 

 
Figure 6.5 Correlation matrix of estimated deviation errors 


 for Case 1. 
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Case study 2 

Case 2 corresponds to Classification 2 (twelve fault classes), one-point diagnosis and simulated 

deviation noise. Table 6.9 contains the optimal network configuration parameters and results for the 

two approaches. The option “Early stopping=0” shows the best results and the difference between 

training options is 0.65% for Y


 -space and 1.27% for 


δ -space. For the best network 

configuration, Table 6.10 gives averaged true classification rates and final accuracy indicator for 

100 seeds. The final recognition avP  is around 72.5% for both diagnostic spaces.  

 

Table 6.9 Search of optimal network configuration for Case 2 (1 seed) 

Space 

Early 

stop=0 

Early 

stop=1 
Diff. 

Optimal 

Param. 
P  

Optimal 

Param. 
P  

Y


  
hn=30 

ep=1400 
0.7285 hn=51 0.7220 0.0065 




δ  
hn=30 

ep=3800 
0.7268 hn=90 0.7141 0.0127 

* hn=hidden neurons; ep=epochs 

 

Table 6.10 True classification rates avP


 and final diagnosis accuracies avP  for Case 2 (100 seeds). 

Space avP


 
avP  

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

Y


  0.8811 0.6923 0.8630 0.6827 0.6665 0.8818 0.6267 0.6281 0.5595 0.7588 0.7268 0.7434 0.7259 




δ  0.8710 0.6901 0.8581 0.6858 0.6761 0.8830 0.6297 0.6278 0.5417 0.7564 0.7233 0.7380 0.7234 

 

Case study 3 

Case 3 has the same structure as Case 2 (twelve classes from Classification 2 and simulated noise) 

but instead of one-point, we use a multi-point diagnosis. Table 6.11 shows the search of optimal 

network configuration. Once again, “Early stopping=0” presents the best results (with a difference 

between training schemes of 0.46% and 0.48% for Y


  and 


δ  spaces, respectively). Table 6.12 

shows averaged correct class recognition values contained in avP


 as well as the total diagnosis 

accuracy avP . The level of recognition for the data-driven approach is 86.15% while for the 

physics-based approach is 87%. It is visible that the probabilities for all classes have considerably 

improved compared to the previous case. 

 

Table 6.11 Search of optimal network configuration for Case 3 (1 seed) 

Space 

Early 

stop=0 

Early 

stop=1 
Diff. 

Optimal 

Param. 
P  

Optimal 

Param. 
P  

Y


  
hn=36 

ep=600 
0.8667 hn=78 0.8621 0.0046 




δ  
hn=36 

ep=4000 
0.8738 hn=57 0.8690 0.0048 

* hn=hidden neurons; ep=epochs 



118 

 

 

Table 6.12 Averaged true classification rates avP


 and final diagnosis accuracies avP  for Case 3 

(100 seeds). 

Space avP


 
avP  

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

Y


  0.9353 0.8559 0.9354 0.8526 0.7973 0.9273 0.8062 0.8161 0.7069 0.9051 0.8959 0.9036 0.8615 




δ  0.9325 0.8709 0.9397 0.8639 0.8343 0.9426 0.8210 0.8254 0.6880 0.9090 0.9042 0.9091 0.8700 

 

Case study 4 

In Case 4, the structure of Case 3 (multi-point and simulated noise) is utilized with the inclusion of 

a healthy class (Configuration 3). In this way, thirteen classes are considered. Table 6.13 contains 

the optimal network configuration where “early stopping=0” has the best results (there is a 

difference in training schemes of 0.71% and 0.64% for Y


  and 


δ  spaces, respectively).  

 

Table 6.13 Search of optimal network configuration for Case 4 (1 seed) 

Space 

Early 

stop=0 

Early 

stop=1 
Diff. 

Optimal 

Param. 
P  

Optimal 

Param. 
P  

Y


  
hn=33 

ep=400 
0.8720 hn=81 0.8649 0.0071 




δ  
hn=36 

ep=2400 
0.8800 hn=87 0.8736 0.0064 

* hn=hidden neurons; ep=epochs 

 

In Table 6.14, correct class recognition vectors avP


 and probabilities avP  are shown. For the data-

driven approach, the recognition is 86.6% while for the physics-based is 87.4%. Despite a new class 

was incorporated to the analysis, Case 4 maintains similar recognition level taking Case 3 as a 

reference. 

 

Table 6.14 Averaged true classification rates avP


 and final diagnosis accuracies avP  for Case 4 

(100 seeds). 

Space avP


 
avP  

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

Y


  0.8708 0.9581 0.8874 0.9633 0.8827 0.8214 0.7784 0.8101 0.8232 0.7277 0.9030 0.8952 0.9027 0.8664 




δ  0.8778 0.9544 0.8990 0.9661 0.8922 0.8563 0.7966 0.8261 0.8316 0.7080 0.9086 0.9039 0.9082 0.8740 

 

 

Although the correct class recognition in D6 is acceptable (77.8% and 79.6% for Y


  and 


δ  
spaces, respectively), there exist probabilities up to 20% wrongly assigned to the healthy class D0 

(see Table 6.15 showing the averaged confusion matrix with healthy class for Y


 -space). This 

incorrect classification can be explained as follows. The single class D6 is formed by the variation 

of EfPT fault parameter, which in turn has a small influence on almost all monitored variables as can 
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be seen in the values of the influence matrices. Due to this fact, and in spite of working with a 

maximal severity of −5%, the fault class D6 constructed in any diagnostic space is much smaller in 

the background than the rest of the fault classes. Therefore, patterns from classes D6 and D0 are 

contained in a very close area provoking an incorrect classification for D6. The risk of this type of 

problem related to EfPT is that the algorithm produces a “healthy state” diagnosis when in fact a 

fault is occurring. The problem related to EfPT is also visible in class D9 (with probabilities of 72.7% 

and 70.8% for Y


  and 


δ  spaces, respectively), which is formed by the union of EfPT and GPT, 

because incorrect diagnoses fall into single class D5 (built using GPT) with misclassification of 

21.7%. As commented before, due to the small influence of EfPT on monitored variables, D9 only 

receives the impact of GPT. For that reason, D5 and D9 are very similar, thus provoking elevated 

incorrect diagnoses (Note that Cases 2 and 3 present the same problem with class D9). For multiple 

classes D11 and D12 where EfPT is also present, the above problem is hidden due to the sum of other 

fault parameters. Despite the problems commented for EfPT and considering that Case 5 presents a 

complex fault classification, both approaches classify with a good level of accuracy this small class. 

 

Table 6.15 Averaged validation confusion matrix (100 seeds) for Case 4 in Y -space 
  True class 

  D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

D
ia

g
n

o
si

s 

d0 0.8708 0.0228 0.0175 0.0261 0.0141 0.0150 0.2012 0.0045 0.0029 0.0160 0.0001 0.0005 0.0001 

d1 0.0063 0.9581 0 0 0 0 0.0002 0.0638 0 0 0.0036 0.0024 0 

d2 0.0043 0 0.8874 0 0.0564 0.0061 0.0003 0.0657 0.0133 0.0033 0.0111 0.0126 0.0012 

d3 0.0156 0.0001 0 0.9633 0 0 0 0 0.0361 0 0.0024 0 0.0011 

d4 0.0019 0 0.0477 0 0.8827 0.0044 0 0.0048 0.0784 0.0031 0.0057 0.0018 0.0119 

d5 0.0076 0 0.0038 0 0.0037 0.8214 0 0.0001 0.0003 0.2174 0 0.0019 0.0034 

d6 0.0814 0.0004 0.0003 0 0.0003 0 0.7784 0.0004 0.0001 0.0241 0 0.0011 0.0003 

d7 0.0037 0.0178 0.0150 0 0.0027 0 0.0039 0.8101 0.0001 0.0002 0.0421 0.0581 0 

d8 0.0020 0 0.0105 0.0100 0.0262 0.0003 0.0003 0.0002 0.8232 0.0003 0.0275 0 0.0618 

d9 0.0058 0 0.0056 0 0.0062 0.1518 0.0129 0.0003 0.0004 0.7277 0 0.0178 0.0122 

d10 0.0005 0.0005 0.0054 0.0004 0.0017 0 0.0009 0.0216 0.0127 0 0.9030 0.0040 0.0018 

d11 0.0001 0.0003 0.0062 0 0.0015 0.0001 0.0016 0.0284 0.0001 0.0037 0.0036 0.8952 0.0037 

d12 0 0 0.0007 0.0002 0.0045 0.000 0.0001 0 0.0324 0.0042 0.0009 0.0047 0.9027 

avP


 
0.8708 0.9581 0.8874 0.9633 0.8827 0.8214 0.7784 0.8101 0.8232 0.7277 0.9030 0.8952 0.9027 

avP
=0.8664 

 

Case study 5 
Case 5 uses the same structure as Case 4 (thirteen classes and multi-point), but in order to have a 

more realistic scenario for both approaches, we included real monitored variable deviation errors 

Yi  in all simulated fault trajectories. Real noise is obtained from deviations based on real data 

with varying levels of degradation recorded as hourly steady-state snapshots from the same engine 

under analysis. First, engine deterioration is modeled through the expression ),( tUYi


 using the 

Least-Squares Method (LSM) or any linear or non-linear regression method. Then, relative 

differences between measured values *
iY  and degraded engine estimations are computed. Thus, real 

deviation errors are expressed by   ),(),(* tUYtUYY iiiYi


 . Table 6.16 shows the comparison 

between training schemes as well as their optimal parameters. Once more, “early stopping=0” is the 

winner. Table 6.17 presents the true classification rates avP


 and final diagnosis accuracy avP  for 

100 seeds. Taking into account the previous case, probabilities avP  considerably improved (up to 

94.5% and 94.1% for Y


  and 


δ  spaces, respectively). 
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Table 6.16 Search of optimal network configuration for Case 5 (1 seed) 

Space 

Early 

stop=0 

Early 

stop=1 
Diff. 

Optimal 

Param. 
P  

Optimal 

Param. 
P  

Y


  
hn=36 

ep=1000 
0.9468 hn=57 0.9415 0.0053 




δ  
hn=33 

ep=3200 
0.9411 hn=87 0.9366 0.0045 

* hn=hidden neurons; ep=epochs 

 

Table 6.17 Averaged true classification rates avP


 and final diagnosis accuracies avP  for Case 5 

(100 seeds). 

Space avP


 
avP  

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

Y


  0.9268 0.9578 0.9518 0.9844 0.9815 0.9635 0.9412 0.8653 0.9235 0.8892 0.9684 0.9703 0.9699 0.9455 




δ  0.9292 0.9551 0.9554 0.9831 0.9791 0.9616 0.9418 0.8567 0.9115 0.8638 0.9669 0.9696 0.9699 0.9414 

 

 

In accordance with the probabilities shown in Table 6.17 for 


δ -space, there is a positive change 

in the behavior of estimated health parameter deviations *̂


. Figure 6.6 shows patterns *̂


 of the 

same pair of single classes (GC and GPT) addressed in Figure 6.4 but with reduced estimation errors. 

Now the problems found before are reduced: the fault developments are more similar to the noise-

free trajectories, there is a clear reduction of error scatter, and the severity limit for the classes is 

better estimated. Therefore, the combined effect of using real noise distribution and considering 

more information for the estimation process in the form of multi-point operation lead to a 

significant reduction in estimation errors. 
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Figure 6.6 Classes of patterns *̂


 with reduced estimation errors (trajectories along the axes, less 

scattered noise, and adequate severity limits. 

Preliminary conclusions 

Let us give some explanations about the level of final accuracy obtained in each case study. Table 

6.18 reunites the results of final diagnosis accuracy avP  as well as the differences between 

approaches (diff= avP − YavP  ) for the five cases. As can be observed, in Case 1, probabilities in 

Y


 -space and 


δ -space are around 84.5%. This result is acceptable considering that there are six 

singular classes intersecting each other in the center. For Case 2, there is visible common reduction 

of about 12% (probabilities around 72.5%) taking Case 1 as a reference caused by the increase of 

fault classification complexity, leading to more intersections among all classes and making the fault 

recognition more difficult as a consequence. However, for Case 3, there exist a diagnosis accuracy 

increase up to 13.5% for Y


 -space (recognition of 86.15%) and 14.6% for 


δ -space (recognition 

of 87%) with respect to Case 2 despite maintaining the same structure of a complex classification. 

This probability increase that slightly favors more to 


δ -space in avP  can be explained by the use 

of multi-point diagnosis operation by integrating different gas turbine stationary operating points. 

For Case 4, probabilities avP  remain very similar to Case 3 (86.6% and 87.4% for Y


 and 


δ  

spaces, respectively) in spite of including a healthy scenario. Since the healthy class is built from 

actual incipient fault trajectories, the reason of this similarity is because the distribution of the entire 

fault classification is not modified. For Case 5, there is again an increase of 7.9% for Y


 -space 

(recognition of 94.5%) and 6.7% for 


δ -space (recognition of 94.1%) with respect to the previous 

case. Real noise scheme presents less scattered errors than the simulated ones improving 

probabilities avP  as a result. Besides, probabilities in Case 5 have an additional value because they 

give us a better idea about the level of diagnosis accuracy expected in practice in both approaches. 

 

In all cases, the scheme “early stopping=0” resulted to be the most adequate for training the 

networks. As a conclusion, the two approaches obtain almost the same recognition accuracy in all 

cases (there is only an averaged difference of 0.14%). 

 

Table 6.18 Final diagnosis accuracy avP  for both approaches and all case studies (100 seeds) 

Case  

study 

Space 
Diff 




δ  Y


  

1 0.8442 0.8469 −0.0027 

2 0.7234 0.7259 −0.0025 

3 0.8700 0.8615 0.0085 

4 0.8740 0.8664 0.0076 

5 0.9414 0.9455 −0.0041 

Averaged diff 0.0014 

 

Case study 6: full classification 
Case 6 deals with a full classification representing a hypothetical engine fleet with component faults 

of all kind. It represents a challenge in recognition for both approaches since it considers all 

possible combinations of classes with one and up to six fault parameters. The base classification 

contains sixty-three classes and it is formed by: 

 

 6 single classes of 1 parameter  

 15 multiple classes of 2 parameters 

 20 multiple classes of 3 parameters 
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 15 multiple classes of 4 parameters 

 6 multiple classes of 5 parameters 

 1 multiple class of 6 parameters 

Figure 6.7 gives an example of the full classification in the Y


 -space. Four variations of the full 

classification are performed and listed in Table 6.19 with their characteristics. As before, we 

analyze the influence of the fault classification, the type of diagnostic analysis (one-point or multi-

point), and the deviation noise scheme (simulated or real). 

 

 
Figure 6.7 Example of full classification (63 fault classes) in Y


 -space. 

 

 

Table 6.19 Variation of the full classification to evaluate both approaches. 

Variation 
Number of  

classes 

Healthy 

Class 

Diagnostic 

analysis 

Deviation  

noise 

1 63 No One-point* Simulated 

2 63 No Multi-point Simulated 
3 64 Yes Multi-point Simulated 
4 64 Yes Multi-point Real 

*Maximal engine regime (nC=10700) 

 

 

Table 6.20 contains the results of such variations. Due to the high complexity in the full 

classification, the training execution time increases significantly. For that reason, probabilities of 

only ten seeds are computed and averaged ( avP ) for all variations. Before computing avP , the 

optimal parameters using “early stopping=0” were determined for each network. For Variation 1, 

the probabilities for both spaces are very similar (around 30%). The level of recognition of this 

variation is totally normal since the networks cannot correctly classify the patterns because there is 

a great level of intersection between all classes, especially at the center (see Figure 6.7). For 

Variation 2, the probabilities increase about 19% for both approaches (a recognition value of 48.7% 

and 49.6% for Y


 and 


δ  spaces, respectively) as before due to the implementation of multi-point 

analysis. Variation 3 maintains similar level of accuracy with respect to Variation 2 despite the 

inclusion of the healthy class (49.4% for Y -space and 50.2% for 


δ -space). For variation 4, an 

important increase occurs: 25.2% for Y


 -space (a recognition level of 74.6%) and 21% for 


δ -
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space (a recognition level of 71.3%) with respect to Variation 3. This improvement is produced by 

the use of the real noise scheme as discussed before.  

 

Both approaches reach an acceptable accuracy despite the high complexity of the full classification. 

However, it is observable that there is a considerable difference of 3.3% between approaches for 

this last variation. Despite this fact, the averaged difference in all variations is just about −0.45%. 

 

 

Table 6.20 Final diagnosis accuracy avP  for both approaches and all variations of full classification 

(10 seeds). 

Variation 
Space 

Diff 



δ  Y


  

1 0.3066 0.3091 −0.0025 

2 0.4965 0.4870 0.0095 

3 0.5028 0.4948 0.0080 

4 0.7137 0.7468 −0.0331 

Averaged diff −0.0045 

 

 

6.4 COMPARISON OF APPROACHES USING GT2 

6.4.1 Comparison conditions 

Selected variables 

The process of comparison of the two approaches is repeated for GT2. The monitored variables and 

simulated fault parameters employed for diagnostics are listed in  

Table 6.21 and Table 6.22, respectively. Three operating points are used and set by the relative gas 

generator spool speeds (nCrel=1, 0.95 and 0.90) and standard atmospheric conditions. The influence 

matrices for these regimes are shown in Table 6.23. 

 

 

Table 6.21 Monitored variables (Vector Y


) of GT2. 

ID Description Symbol 

1 Compressor exit pressure P3 

2 Compressor exit temperature T3 

3 High pressure turbine exit pressure P44 

4 High pressure turbine exit temperature T44 

5 Power turbine exit pressure P5 

6 Power turbine exit temperature T5 

7 Fuel flow Gf 

 

Table 6.22 Simulated fault parameters (Vector 


) for GT2 

ID Description Symbol Severity  

1 Compressor flow capacity FCC 0 to −5% 

2 Compressor efficiency ηC 0 to −5% 

3 HPT flow capacity FCHPT 0 to −5% 

4 HPT efficiency ηHPT 0 to −5% 

5 PT flow capacity FCPT 0 to −5% 

6 PT efficiency ηPT 0 to −5% 
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6.4.2 Cases of comparative analysis 

Three case studies are proposed to compare the approaches and are specified in Table 6.24. As can 

be seen, all the cases include the healthy class, simulated noise scheme and multi-point diagnostic 

analysis. Figure 6.8 illustrates three fault classes of Case 1 in the 


δ -space. 
 

Table 6.23 Influence matrices for three regimes of GT2 

Relative GG 

spool speed 

Monitored 

variables 

Fault parameters 

FCC ηC FCHPT ηHPT FCPT ηPT 

1.00 

(38422.3 rpm) 

P3 1.3533 -0.8320 -0.8251 -0.8701 -0.3983 -0.0004 

T3 0.4054 -0.9109 -0.2347 -0.2475 -0.1131 -0.0001 

P44 1.3496 -0.9072 0.2338 -1.1434 -1.4567 -0.0015 

T44 0.7553 -1.8295 0.4119 -2.2975 -1.0499 -0.0012 

P5 0.1274 -0.0940 0.0212 -0.1167 -0.0477 -0.0107 

T5 0.5825 -1.8738 0.4047 -2.3491 -0.8822 -0.3118 

Gf 2.1330 -2.8234 0.6462 -3.5381 -1.6129 -0.0018 

0.95 

(36501.2 rpm) 

P3 1.3864 -0.8612 -0.7947 -0.9166 -0.4077 -0.0002 

T3 0.4137 -0.9016 -0.2323 -0.2680 -0.1190 -0.00006 

P44 1.3661 -0.9605 0.2550 -1.2174 -1.4552 -0.0007 

T44 0.8318 -2.0276 0.4049 -2.5487 -1.1269 -0.0005 

P5 0.1065 -0.0800 0.0207 -0.1014 -0.0363 -0.0114 

T5 0.6330 -2.0030 0.3857 -2.5127 -0.9119 -0.2864 

Gf 2.2717 -3.0971 0.6774 -3.8888 -1.7226 -0.0008 

0.90 

(34580.1 rpm) 

P3 1.3853 -0.8424 -0.7777 -0.9034 -0.3797 -0.0002 

T3 0.4142 -0.8881 -0.2378 -0.2764 -0.1160 -0.00008 

P44 1.3004 -0.8820 0.2499 -1.1265 -1.3531 -0.0010 

T44 0.8302 -2.0645 0.3607 -2.5995 -1.0889 -0.0008 

P5 0.0871 -0.0643 0.0169 -0.0818 -0.0279 -0.0085 

T5 0.6110 -2.0139 0.3299 -2.5298 -0.8534 -0.2581 

Gf 2.2726 -3.1468 0.6468 -3.9670 -1.6591 -0.0012 

 

Table 6.24 Cases studies proposed to evaluate both approaches using GT1. 

Case 

study 

Diagnostic 

analysis 

Deviation 

noise 
Fault classes 

1 Multi-point Simulated No-fault class δGC δηC δGHPT δηHPT δGPT δηPT 

2 Multi-point Simulated No-fault class 
δGC 

δηC 

δGHPT 

δηHPT 

δGPT 

δηPT 
 

3 Multi-point Simulated No-fault class + 63 fault classes 



125 

 

 
Figure 6.8 Three singular fault classes of Case 1 in 


δ -space (GT2) 

Tuning 

The tuning computations to search optimal parameters (hidden neurons and epochs) using the early 

stopping training option for all cases are shown in Table 6.25. Figure 6.9 and Figure 6.10 display 

the tuning in 


δ -space for Case 1 and Case 3, respectively. After finding the optimal parameters, 

averaged confusion matrices were computed for all cases working with 100 or 10 seeds. Table 6.26, 

Table 6.27 and Figure 6.11 show the true classification rates (diagonal elements of confusion 

matrix) for the three cases and both approaches. For Case 1, it is worth noting that the low 

probability of D6 is related to the small influence on all monitored variables because D6 and the no-

fault class are contained in a close region causing an incorrect classification for D6. For Case 3, the 

true classification rate of the classes with more complexity decreases (see the last classes in Figure 

6.11). Table 6.28 shows averaged probabilities avP  as well as the differences between approaches 

(diff= avP − YavP  ) for the three cases. The high probabilities for Case 1 and 2 are due to the use of 

simple fault classes and a multiple-point diagnostic analysis. Case 3 presents low recognition 

probabilities because of the high complexity of the full classification. However, the approaches 

obtain very similar recognition accuracy (a general difference of 0.38%) as in the case of GT1 

confirming that any approach is good option for diagnostics. 

 

Table 6.25 Results of tuning for all case studies (1 seed) 

Case 

study 
Diagnostic space 

Optimal 

Parameters 
P  

1 
Y


  
Neurons=36 

Epochs=200 
0.9213 




δ  
Neurons=42 

Epochs=200 
0.9260 

2 
Y


  
Neurons=45 

Epochs=200 
0.9733 




δ  
Neurons=78 

Epochs=200 
0.9766 

3 
Y


  
Neurons=70 

Epochs=6000 
0.4416 




δ  
Neurons=50 

Epochs=6000 
0.4465 
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Figure 6.9 Tuning for Case 1 ( 


δ -space) 

 

Figure 6.10 Tuning for Case 3 ( 


δ -space) 

 

Table 6.26 True classification rates for Case 1  (100 seeds) 

Space No-fault D1 D2 D3 D4 D5 D6 

Y


  0.9084 0.9857 0.8981 0.9675 0.8929 0.9630 0.4077 




δ  0.9212 0.9865 0.9058 0.9692 0.8977 0.9643 0.4083 

 

Table 6.27 True classification rates for Case 2  (100 seeds) 

Space No-fault D1 D2 D3 

Y


  0.5458 0.9784 0.9794 0.9737 




δ  0.5239 0.9803 0.9826 0.9810 
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Figure 6.11 True classification rates for Case 3 (10 seeds). 

 

 

Table 6.28 Final diagnosis accuracy avP  for both approaches and all case studies using GT2 (10 

seeds) 

Case study 
Space 

Diff 



δ  Y


  

1 0.9218 0.9167 0.0051 

2 0.9726 0.9690 0.0036 

3 0.4480 0.4452 0.0028 

Averaged diff 0.0038 
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Chapter 7: Thesis Summary, 

Contributions and Future Works 
 

7.1 DEVELOPMENT OF AN ONLINE MONITORING ALGORITHM FOR ESTIMATING 

UNMEASURED GAS TURBINE VARIABLES 

Chapter 3 proposed a new method to estimate important unmeasured GTE quantities (engine power 

or thrust, etc.) using for all of them a common data-driven approach. Each quantity was presented 

as a function of measured operating conditions and monitored variables. Such a function structure 

allowed taking into account possible engine performance deterioration and faults. It was also 

proposed to calculate and monitor the deviations of estimated quantities and to determine the 

necessary baseline model within the same data-driven approach. Healthy and faulty engine data to 

create the data-driven models of unmeasured variables were generated using a thermodynamic 

model at 270 operating points for healthy and 12 faulty engine conditions. The data-driven models 

were identified using these data and the least-squares method. These data-driven models enabled 

computing unmeasured quantities and their deviations through measured variables. For such tasks, 

three algorithms were proposed and tested. As shown in each algorithm, from the point of accuracy 

there are no limitations for using the estimations of unmeasured engine variables and their 

deviations for gas turbine diagnosis.  

 

Let us now discuss the issue of prospective use and utility of these quantities for an on-line 

monitoring system. Gas turbine diagnostics usually relies on physics-based models. However, such 

models have intrinsic errors, are not always available, or are not easy-to-use in an on-line 

monitoring system. To avoid these difficulties, a simple on-line monitoring system could be 

elaborated on the existing information without the physics-based models. For fault detection, for 

example, tracking the deviations of measured variables can be applied. For fault identification 

algorithms based on pattern classification, sensor fault classes are easily created without physics-

based simulation. However, a representative gas path fault classification cannot be built because 

only few gas path fault classes can be formed using real data for the deterioration mechanisms that 

frequently occur in practice, for instance, compressor fouling and inlet filter clogging for stationary 

power plants. Since the diagnostic capabilities of the on-line system built without the 

thermodynamic model are limited, it would be beneficial to use the estimates of important 

unmeasured variables to extend these capabilities. 

 

So far, GTE unmeasured variables are estimated by using physics-based models or other 

thermodynamics-based approaches that are individual for every variable. In contrast, the technique 

proposed in this chapter provides a universal and simple data-driven mode to compute these 

variables. The study involves the thermodynamic model only as a source of data to validate the 

technique; in future applications it is supposed to use only real data. In addition, the investigation 

proposes to compute and monitor the deviations of unmeasured variables using a baseline. When a 

number of real data-based classes and the components diagnosed are small, the use of compressor 

and turbine efficiency deviations drastically would extend the diagnostic capabilities of the 
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monitoring system because great deviation values indicate faulty components. The deviations of 

other important unmeasured variables, such as output power or thrust and a combustion chamber 

temperature could also be useful. They determine an engine capability to perform the required task, 

overall engine efficiency, and engine integrity. 

 

The main contribution of this investigation is to prove the accuracy of the developed algorithm and 

its suitability for on-line monitoring systems. The high accuracy of estimations of unmeasured GTE 

variables and their deviations has been proven for a wide range of engine fault scenarios and 

numerous differing operating conditions, thus confirming the readiness of the proposed 

methodology for the implementation in real on-line monitoring systems. 

 

7.2 EVALUATION OF GAS TURBINE DIAGNOSTIC TECHNIQUES UNDER VARIABLE 

FAULT CONDITIONS 

The aim of the methodology presented in Chapter 4 was to evaluate gas path diagnostic techniques 

using a principle of variable structure classification applied to cover possible fault scenarios in gas 

turbine maintenance. This principle allowed us to create more versatile and realistic fault conditions 

relative to existing studies such as complex fault classifications, a new boundary for fault severity 

and real deviation errors. The techniques analyzed were included into a special procedure that 

repeated a diagnostic process many times and computed for each fault class a probability of correct 

diagnosis. Using this probability averaged for all the classes as the evaluation criterion, the 

techniques were tested under the conditions of four comparative studies. The following 

explanations summarize the main contributions of Chapter 4:  

 

1) For variable gas turbine fault conditions, any technique presented in this investigation can be an 

efficient option. Although SVMs produced better results for all the comparative studies analyzed, 

the difference between all the techniques in terms of P  is not so great. Furthermore, the similar 

probabilities prove that the methods are near the theoretical accuracy levels intrinsically related to 

the engine and the type of fault classification studied and the four techniques are advanced enough 

to correctly perform the recognition task. Thus, no other technique will significantly increase the 

probability of correct classification.  

Since the evaluation criterion P  may not be sufficient to select an appropriate technique, there are 

other important aspects to take into consideration. In the case of MLP, the existence of local minima 

complicated considerably the training stage. Besides, it has more parameters to tune, for example, 

the number of hidden neurons, the number of iterations, the training goal and the parameters of the 

backpropagation method selected. The advantage of MLP is its easiness to implement. As for RBN, 

it only needs two parameters to be tuned; however, many calculations must be done. Furthermore, it 

requires much more computational resources and time for training making this technique the least 

recommended for real training stages. PNN is the simplest gas turbine fault recognition technique 

and only needs one parameter to tune ( ) resulting in a faster training stage. Also, it has the 

important advantage of providing confidence estimations for every diagnostic decision which make 

it a very good option for real monitoring systems. One disadvantage of PNN is the need of more 

computational resources to store the model when the number of patterns is increased. SVM is the 

technique that achieves slightly better results and only needs two parameters to be tuned (  and C). 

Also, it is not limited by the computational memory supporting more number of patterns. However, 

one disadvantage of SVM is that its training can be very slow compared to the rest of techniques 

when the data is increased. 

 

2) Based on the principle of variable classification, the results obtained for all the comparative 

studies confirm that there is a great influence of the fault classifications on the diagnosis accuracy 

levels. Thus, the study gives an idea on how the theoretical accuracy levels behave for different gas 
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turbine fault identification conditions, serving as a help in the decisions of real engine monitoring 

designers. The principle allows us to create different classifications with necessary totality of fault 

classes of different type and complexity. The formation of each new classification and change from 

one classification to another one is simple and do not need to reprogram the algorithm. In general, 

the diagnosis probabilities generated for all the classifications are acceptable taking into account 

that the classes are more complex. This complexity can be seen, for example in classification 4, 

where there are up to 18 classes and most of them intersect in the center. Also, the increasing 

number of fault parameters to form multiple classes and other characteristics such as the number of 

patterns per class, the fault development directions and the type of fault class complicate the 

recognition task for all the techniques.  

 

3) There is an important effect of fault severity boundary on the probabilities of correct diagnosis. 

With these results, the new boundary makes the simulation more realistic and allows determining 

more precisely the level of diagnostic accuracy. The fault severity limits of the multiple classes are 

smoother, which could be the behavior in real faulty conditions. For this reason, the new boundary 

is advisable for future works. 

 

4) The use of real deviation noise in fault class description provides more accurate simulation of a 

diagnostic process and provides more reliable level of diagnostic accuracy. This real noise scheme 

significantly changed the final diagnosis accuracy in all the fault classifications and all the 

techniques as well. 

 

Some proposed works in the near future may involve: new techniques based on extreme learning 

and spare representation for fault recognition [143,144]; analysis of measurement inaccuracy and 

deviation error reduction; novel signal processing approaches for gas turbine diagnostics; different 

distributions employed to describe random fault severity; and mixed data-driven and model based 

fault classification. 

 

7.3 DEVELOPMENT OF A DATA-DRIVEN GAS TURBINE DIAGNOSTIC ALGORITHM 

USING THE PRODIMES SOFTWARE 

The objective of Chapter 5 was to develop and examine a gas turbine diagnostic algorithm based on 

pattern recognition techniques through the ProDiMES software. The data generation using the 

ProDiMES allowed the simulation of healthy and faulty conditions of an engine fleet in an 

appropriate environment facilitating the diagnostic process. Before the final comparison with the 

ProDiMES example solution and other known diagnostic developments, all of the algorithm steps 

were carefully optimized. In particular, three pattern recognition techniques were tuned and 

compared. Optimization of the proposed diagnostic algorithm is a complex process not limited by 

tuning of the pattern recognition techniques employed. For the sake of higher algorithm 

performances, it was necessary to take into consideration all peculiarities of the ProDiMES 

methodology and optimize all algorithm steps, namely: 

 

 Choose a proper reference set to determine a baseline model; 

 Select the best variation of the baseline model; 

 Apply smoothing of measurement deviations from the baseline; 

 Optimize the structure of a fault classification constructed from the smoothed deviations 

(patterns); 

 Tune each of the pattern recognition technique; 

 Choose the best technique. 

 

As a result, a mean probability of correct classification increased in two times in comparison with 

other previous results [142], and the other diagnostic performances of the algorithm became higher 
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or comparable to those of known diagnostic solutions making the algorithm a promising tool for 

real gas turbine monitoring systems. In addition to pretty high accuracy performances, the algorithm 

has potential advantages of operating without a physics-based model and providing a confidence 

measure to every diagnostic decision. In general, the presented pattern recognition-based approach 

seems to be a promising tool for a gas turbine monitoring system. However, the studies have shown 

that the ProDiMES software allows further optimizing and extending this approach. 

 

As a future work we are going to address the following issues. First, for better algorithms 

comparison and in accordance with the ProDiMES manual, TNR should be increased up to 0.999 

by further algorithm's adjustment. Second, the algorithm under analysis includes three diagnostic 

stages: feature extraction, fault detection, and fault identification. Working with ProDiMES, we 

have found that the fourth stage of lifetime prediction can also be included in the algorithm and 

verified using this software. Third, as shown in Fig. 4, the deviations and their errors grow along 

with operating time because of normal engine deterioration. Hence, fault diagnosis on the basis of 

these deviations will worsen. In this way, we need to verify the algorithm during all the lifetime, i.e. 

develop and examine a '''moving'' algorithm. The ProDiMES software allows generating the data for 

such a complex examination. 

 

7.4 COMPARATIVE STUDY OF PHYSICS-BASED AND DATA-DRIVEN GAS TURBINE 

DIAGNOSTIC APPROACHES  

Chapter 6 proposed a methodology for comparing two diagnostic approaches: one based on the 

deviations of monitored variables (data-driven) and another one based on fault parameters deltas 

(physics-based). For comparison purposes, the deviations of both approaches were generated using 

the same data from two validated engine thermodynamic models. Each approach contained the 

same steps: network training stage using a learning set, network simulation using a validation set, 

and the computation of a probability of correct diagnosis for total engine diagnosability. This was a 

criterion for comparing the two approaches. 

 

The contribution of the study relies on the following points: 

 

 The performance of the two approaches in terms of diagnosis accuracy has not been compared 

before. 

 Different complex fault scenarios and conditions have been not tested yet for both approaches. 

 The use of estimated health parameter deviations in gas turbine fault recognition problems is not 

commonly found in the literature. 

 

The results showed that for the case studies proposed using two test case engines, the diagnostic 

approaches have very similar diagnosis accuracies despite increasing the fault classification 

complexity in each case. In this way, the two approaches adjusted to such scenarios and achieved 

competitive recognition accuracies. The use of multi-mode operation and real deviation errors 

reduce estimation errors and help to significantly increase the diagnosis accuracy in both 

approaches.  

 

According to the implemented procedure, there is only one step that is different in both approaches, 

i.e. the estimation of health parameter deviations. The rest is considered as fixed and common for 

the two methodologies. This allowed us to have a fair comparison and make more sound 

conclusions. Also, the results can give an idea on the level of diagnosis accuracy expected in 

practice.  

 

With the inclusion of a healthy class from current fault classes, the methodology has the advantage 

of working with both anomaly detection (monitoring) and fault identification (diagnostics) as a joint 
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process. Both stages are independent but the recognition technique employed, i.e. MLP, can 

compute diagnosis indices for incipient and developed faults at the same time. This characteristic 

can be exploited by designers of performance monitoring systems. 

 

It was analyzed that the procedure in both diagnostic approaches can also detect small faults that 

present low influence on monitored variables with a good level of diagnosis accuracy in the 

background of complex fault classification.  

 

The preliminary analysis of optimal network configurations in all cases ensured a correct and fair 

comparison of the approaches. The iterations used in the early stopping=1” scheme are not 

sufficient to completely avoid underfitting when fault classification becomes more complex. It is 

evident that for “early stopping=0” the training time required for optimizing and validating the 

network is elevated because two parameters (epochs and neurons) need to be adjusted instead of 

only one (neurons) when “early stopping=1” is used. However, a significant increase of nearly 1% 

in diagnosis accuracy can be achieved through “early stopping=0”. For that reason, this last option 

was the most adequate to compute the final recognition task in each case study and each diagnostic 

space. Although the training stage requires a considerable amount of time, the optimal network is 

trained once and can be stored to recognize further new fault scenarios. The “early stopping=1” 

scheme may be helpful only to compute preliminary results when simpler classifications are used 

and take advantage of its faster training time.  

 

The continuous algorithm improvements of artificial neural network algorithms toolboxes in Matlab 

are also of great consideration in our final recognition results. For example, the use of the recent 

implemented cross-entropy error function to control network training performance instead of the 

well-known mean squared error shows fewer misclassifications and thus an improvement in 

diagnosis accuracy [139]. For that reason, the employment of such enhanced ANN algorithms 

allows a more reliable gas turbine diagnostic algorithm development. 

 

Future works involve: the use of other techniques to estimate health parameter deviations such as 

Artificial Neural Networks and Genetic Algorithm; a testing of the proposed algorithm with 

ProDiMES by using the influence matrices available for take-off and cruise regimes; the use of 

recent hybrid advanced machine learning and pattern recognition techniques that can be easily 

implemented in the algorithms for diagnostics in both approaches.  
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Appendix 2: Subroutines of 

Thermodynamic Model Software 
 

 

 

 

 

 
Figure 0.1 Program “INOUTD” (Input from data.dat, output to data.dat). 

 

 

 
Figure 0.2 Program “NACHBL” (Initial block common for different calculations). 
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Figure 0.3 Program “ATMOSX” (Input parameters definition). 

 

 

 
Figure 0.4 Program “PDST1” (Left sides of a nonlinear equation system for a free turbine engine 

with one spool gas generator). 
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Figure 0.5 Program “RSUMN” (Standard program to solve the nonlinear system by the Newton 

method). 

 

 
Figure 0.6 Program “TEXTIN” (Text line initialization). 
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Figure 0.7 Program “PRNTF” (Output of the parameters table to a file). 

 

 

 
Figure 0.8 Program “INI90G” (Component performance initialization). 
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Figure 0.9 Program “DSUM2” (Calculation of a sum of squares). 

 

 
Figure 0.10 Program “ATMOS” (Standard atmosphere parameters). 

 

 
Figure 0.11 Program “DSIMQ” (Standard program of linear equations system solution by means of 

exclusion). 
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Figure 0.12 Program “POINT” (Determination of a gas path parameter through its number in a 

common array). 
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Figure 0.13 Program “STOIL” (Standard hydrocarbon fuel performances). 
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Figure 0.14 Program “RDST1” (Calculation of a free turbine engine with one spool gas generator). 
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Figure 0.15 Program “RDST1” (Continuation). 
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Figure 0.16 Program “NAGNET” (Supercharger calculations). 

 
 

 
Figure 0.17 Program “DROSSL” (Throttle computation, supercharger in the circuit). 

 
 

 
Figure 0.18 Program “SIGST” (Pressure recovery parameter in the volume after PT). 
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Figure 0.19 Program “Gg1” (Gas generator computation). 
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Figure 0.20 Program “Gg1” (Continuation). 
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Figure 0.21 Program “KOMPR” (Compressor exit parameters computation). 

 
 

 
Figure 0.22 Program “SIGS” (Nozzle pressure recovery parameter). 

 

 

 
Figure 0.23 Program “SIGS1” (Internal gas path nozzle pressure recovery parameter) 
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Figure 0.24 Program “TURBIN” (Turbine discharge parameters calculation) 

 
 
 

 
Figure 0.25 Program “SIGP4” (Pressure recovery parameter in the channel between HPT and PT). 
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Figure 0.26 Program “KAMSG” (Combustion chamber computation). 

 
 

 
Figure 0.27 Program “XNAGN” (Supercharger parameters computation). 
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Figure 0.28 Program “RDPAR” (Additional parameters calculation). 

 



158 

 

 
Figure 0.29 Program “SIGKS” (Combustion chamber pressure recovery parameter). 

 

 

 
Figure 0.30 Program “TAUVD” (Air heating coefficient for the 2

nd
 air bleeding point of HPC). 

 
 

 
Figure 0.31 Program “TAUVD1” (Air heating coefficient for the 1

st
 air bleeding point of HPC). 

 
 

 
Figure 0.32 Program “TAUVD2” (Air heating coefficient for the air bypass point in HPC). 

 
 

 
Figure 0.33 Program “SIGVH” (Input device pressure recovery parameter). 

 

 

 
 Figure 0.34 Program “PARVTS” (Air starter parameters). 
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Figure 0.35 Program “DSUM” (Sum calculation). 

 
 

 
Figure 0.36 Program “BCN” (Rotation speed correction). 

 
 

 
Figure 0.37 Program “ETAG” (Combustion efficiency). 

 

 

 
Figure 0.38 Program “XTVD” (HPT parameters computation). 
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Figure 0.39  Program “XKVD” (HPC parameters computation).  
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Figure 0.40 Program “XKVD” (Continuation). 
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Figure 0.41 Program “LINXYT” (Turbine performance interpolation). 

 
Figure 0.42 Program “LAM” (Velocity coefficient computation). 
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Figure 0.43 Program “TFI” (Thermodynamic properties calculation using the given enthalpy). 

 

 
Figure 0.44 Program “PARREG” (Power set parameter calculation in dynamics). 

 

 

 
Figure 0.45 Program “BG” (Air flow correction). 
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Figure 0.46 Program “TFS” (Thermodynamic properties calculation using the given entropy). 

 

 

 
Figure 0.47 Program “SITHAR” (Program to expose not expected situations). 
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Figure 0.48 Program “SEAR” (Searching the table interval where the given value is situated). 
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Figure 0.49 Program “LINTX” (Interpolation of the function of one argument). 

 

 

 

 
Figure 0.50 Program “HOLDER” (Computation holder). 

 

 

 

 

 
Figure 0.51 Program “RESET” (Screen reset). 

 

 

 

 

 
Figure 0.52 Program “WHIRED” (White symbols, red background). 

 

 

 

 
Figure 0.53 Program “CLS” (Screen cleaning). 
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Figure 0.54 Program “TABLE” (Forming the table for SITHAR messages). 
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Figure 0.55 Program “TABLE” (Continuation). 

 

 




