INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA

MECÁNICA Y ELÉCTRICA

UNIDAD PROFESIONAL "ADOLFO LÓPEZ MATEOS"

SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

CONFIGURACIÓN DINÁMICA DE LOS CIRCUITOS EN MEDIA TENSIÓN PARA MINIMIZAR LAS PÉRDIDAS ELÉCTRICAS

TESIS

QUE PARA OBTENER EL GRADO DE:

Maestro en Ciencias en Ingeniería Eléctrica

Presenta:

Ing. Francisco Javier Castillo Martínez

Director de Tesis

Dr. David Romero Romero

México D.F; octubre de 2018

Resumen

Las pérdidas eléctricas en media tensión, se presentan como una condición natural de los alimentadores en su propósito de enviar la energía eléctrica desde la fuente a los sitios de consumo. Varios métodos se encuentran establecidos para disminuir la cantidad de energía eléctrica perdida en los conductores, como son: la instalación de bancos de capacitores, el cambio de conductor por calibres mayores, el cambio de trayectorias de los circuitos o el incremento en el nivel de tensión de los mismos.

Esta tesis estudia las características de los perfiles de demanda que tienen los circuitos de distribución y aprovecha las diferencias en las formas de los mismos, de acuerdo al tipo de clientes que alimentan, para minimizar las perdidas eléctricas en media tensión mediante la repartición de la carga en diferentes horarios.

Se propone un método detallado aplicable a dos alimentadores de distribución con configuración en anillo en operación radial, para calcular la reducción de sus pérdidas eléctricas en media tensión; cuando presentan diferencias notables en las formas de sus perfiles de carga y se utilizan diversas configuraciones a lo largo del día.

Los sistemas informáticos que se utilizan como herramientas para llegar a los resultados, son SynerGEE para obtener los valores de las pérdidas eléctricas de acuerdo con los modelos de los circuitos, mediante la realización de corridas de flujo y MATLAB para llevar a cabo el análisis de los datos obtenidos por el primero, para identificar los seccionamientos que aportan reducción de pérdidas eléctricas, los horarios de conmutación y el valor de las pérdidas mínimas encontradas.

Se realizaron pruebas del método en dos pares de circuitos de la zona Xalapa de la división Oriente de la empresa Comisión Federal de Electricidad en México y se encontró disminución en las pérdidas eléctricas de media tensión en configuración estática y reducciones adicionales en configuración dinámica. El resultado indica cuáles seccionamientos se ven involucrados, los horarios en los que deben ser conmutados y el valor de pérdidas eléctricas que se ahorran.

Se incluyen recomendaciones y condiciones que deben cumplirse, en relación a la operación de la red general de distribución y referentes también a la seguridad para el personal, que deben ser identificadas para una exitosa implementación, en conjunto con los procedimientos y reglamentos establecidos.

Abstract

The medium voltage electrical losses, are presented as a natural condition of the feeders in their purpose of sending electrical energy from the source to the consumption sites. Several methods are established to reduce the amount of electrical energy lost in conductors, such as: the installation of capacitor banks, the change of conductor for larger calibers, the change of trajectories of the feeders or the increase in the voltage level.

This thesis studies the characteristics of the demand profiles of the distribution feeders and takes advantage of the differences in their shapes, according to the type of customers they feed, in order to minimize the electrical losses in medium voltage through the share out the load at different hours.

A detailed method is proposed applicable to a pair of distribution feeders with ring configuration in radial operation, to calculate the reduction of their electrical losses in medium voltage, when they show notable differences in the shapes of their load profiles and different configurations are used throughout the day

The computer systems that are used as tools to reach the results are SynerGEE to obtain the values of the electrical losses according to the models of the feeders by performing load flows and MATLAB to carry out the analysis of the data thrown by the first, to identify the sectionings that provide reduction of electrical losses, switching schedules and the value of the minimum losses found.

The method was tested in two pairs of feeders in the Xalapa area of the East Division of Comisión Federal de Electricidad company in Mexico, and there was a decrease in medium voltage electrical losses in static configuration, and additional reductions in dynamic configuration. The result indicates which sectionings are involved, the hours in which they must be switched and the value of electrical losses that are saved.

Recommendations and conditions must be complied with, are included concerning to the operation of the general distribution network and in relation also, of safety for the staff; which must be identified for a successful implementation, in conjunction with the established procedures and regulations.

Dedicatoria

Esta tesis está dedicada a mis Padres, Francisco Castillo Cuevas y Daría Martínez López; a mi esposa, Carla Oriana Rodríguez Pérez y a mis hijos, Carla Abigail, Francisco Javier y Carlos Gabriel. ¡Los amo a todos!

Agradecimientos

Este proyecto ha sido concluido gracias a la ayuda de muchas personas. Cada vez que fue necesario, estuvieron presentes para brindarme sus conocimientos, su motivación, su apoyo y su respaldo. No quiero desaprovechar la oportunidad para expresarles mis más humildes agradecimientos:

A mi Padre, Francisco Castillo Cuevas. Estoy muy orgulloso de ser tu hijo, te agradezco todo lo que me has enseñado a lo largo de la vida. Te reconozco el esfuerzo que has hecho para con sus hijos, eso no tiene precio.

A mi madre, Daría Martínez López. Eres una mujer excepcional que ha entregado su vida a la familia, estoy muy orgulloso de ti. Tu amor y comprensión han sido mi guía, tus valores y tu tenacidad tienen mi absoluto respeto.

A mi esposa, Carla Oriana Rodríguez Pérez. Gracias por el esfuerzo diario que realizas por tu familia. Cada una de las cosas que haces por mí, y por nuestros hijos; son invaluables. Tus palabras de motivación en los momentos difíciles me dan la fortaleza que es requerida.

A mis hijos Carla Abigail, Francisco Javier y Carlos Gabriel. Gracias por hacerme tan feliz y por haberse dejado robar un poco de tiempo para realizar este proyecto. Son la luz en mi camino.

A mis hermanas Diana, Ana Luisa y Patricia. Siempre he contado con ustedes, ¡Las quiero mucho!

A mis suegros, Juan Rodríguez Libreros y Magdalena Ramírez Pérez[†]. Su apoyo ha sido fundamental para mi familia, de la misma forma Berenice y Kathia.

A mi prima Ana Lilia Aranda Martínez. Muchas gracias por tus consejos llenos de sabiduría, optimismo y alegría. También por tu constante motivación para siempre dar pasos hacia adelante.

Al Dr. David Romero Romero. Gracias por compartir sus conocimientos para que este trabajo viera la luz. Todos sus consejos han sido de gran ayuda. Asimismo, gracias por su paciencia y motivación, principalmente en los primeros meses del desarrollo de esta tesis.

A los miembros que conforman el honorable jurado evaluador de esta tesis y que se conforma por el Dr. David Romero Romero, Dr. Ricardo Octavio A. Mota Palomino, Dr. Mohamed Badaoui, Dr. Jaime Robles García, Dr. Raúl Cortés Mateos, Dr. David Sebastián Baltazar. Agradezco enormemente sus comentarios, observaciones y correcciones siempre atinadas, efectivas e indispensables para lograr un trabajo de calidad. Quiero resaltar que, durante las clases en la maestría, mostraron un pleno interés en transmitir sus conocimientos e inyectar en sus alumnos esa inquietud de ir más allá. Se siente un gran honor ser parte la institución que dirigen.

A los ingenieros Raúl Usla López y Luis Bernabé Ibáñez Garduño por tener confianza en mí y permitirme dedicar espacios considerables de tiempo a este proyecto. Es muy importante contar con su apoyo como líderes.

Al ing. Manuel Alejandro Aguilar Aguilar. Te agradezco sinceramente la confianza que has tenido en mí, tus consejos y guía han sido muy importantes. Asimismo, gracias por la infinidad de facilidades que me has otorgado para trabajar en este proyecto.

A nuestras autoridades de CFE en el corporativo y al IPN, por haberse tomado el tiempo de visualizar que la capacitación para quienes colaboramos en *CFE Distribución*, es de gran valor.

Al ing. Andrés Ramírez Hernández. Gracias por tu colaboración técnica, profesional, por tu gran apoyo y amistad.

Al ing. Omar Francisco Hernández Rincón, por compartir sus conocimientos y experiencia en el área de planeación con un servidor. Gente como tú lleva esta empresa a otro nivel.

A mis compañeros de la maestría siempre con una gran disposición para el trabajo en equipo, en especial los ingenieros María Laura de la Luz García Castro y Cesar Xavier de los Santos Hernández, por su apoyo incondicional durante este proceso.

A todos, espero corresponderles de la manera que se merecen.

Contenido

Acta de	examenI
Carta d	le cesión de derechosIl
Resum	en III
Abstrac	ctIV
Dedica	toriaV
Agrade	cimientosVI
Conten	idoVIII
Índice o	de figurasXII
Índice o	de tablasXV
Simbol	ogíaXVI
Capítul	o 1. Introducción1
1.1	Antecedentes1
1.2	Objetivo general2
1.3	Objetivos específicos2
1.4	Planteamiento del problema2
1.5	Justificación3
1.6	Estado del arte4
1.7	Aportaciones5
1.8	Limitaciones5
1.9	Estructura de la tesis6
Capítul	o 2. Perfiles de demanda eléctrica7
2.1	Introducción7
2.2	Clasificación de los perfiles de demanda7
2.3	Características del perfil de demanda residencial10
2.4	Modelado de un perfil de demanda residencial13
2.5	Modelo simplificado del perfil de demanda residencial
2.6	Perfil de demanda comercial17
2.7	Perfil de demanda industrial19
2.8 dinár	Selección de circuitos candidatos para determinar una configuración nica20

2.9	9	Rep	partición de la carga	21
Capí de lo	tulc s ci	o 3. ircui	Condiciones y consideraciones físicas y eléctricas para la operaci	ón 23
3.1	1	Intr	oducción	23
3.2	2	Par	ámetros eléctricos	23
	3.2.	1	Frecuencia	23
	3.2.	2	Tensión	25
	3.2.	3	Secuencia de fases y desfasamiento	25
3.3	3	Cor	ndiciones físicas de los circuitos	28
3.4	1	Efe	cto de los bancos de capacitores	29
3.5	5	Efe	cto de los equipos reguladores de tensión	30
3.6	6	Efe	ctos de las protecciones eléctricas	30
3.7	7	Asp	pectos de seguridad	31
3.8	3	Cos	stos	32
Capí de de	tulc os c	94. circu	Metodología para aplicar la configuración dinámica en un sister itos	na 34
4.1	1	Intr	oducción	34
4.2 do	2 s ci	Pro rcui	cedimiento para aplicar la configuración dinámica en un sistema	de 34
4.3	3	Cla	sificación de los circuitos por su tipo de perfil de demanda	36
4.4	1	Sel	ección de un par de circuitos	37
4.5	5	Aná	alisis de las mediciones	37
4.6	5	Ver	ificación del modelo del circuito	39
4.7 en	7 ca	Cál da h	culo de las pérdidas para cada seccionamiento exclusivamente abien norario del día seleccionado	rto 39
4	4.7.	1	Modelo matemático a utilizar	40
4.8	3	Aná	alisis de los resultados de las combinaciones de las configuraciones.	43
4.9	9	Cor	nsideraciones adicionales	44
4	4.9	1	Derivaciones y ramales	44
4	4.9	2	Clientes con cargas altas	45
4	4.9	3	Perfiles similares	45
	4.9.	4	Semanas, meses y temporadas	46

Capítul	o 5.	Pruebas y resultados	47
5.1	Intro	oducción	47
5.2	Car	acterísticas del sistema de prueba	47
5.3	Pru	eba 1: Sistema formado por los circuitos JLD 4020 y JLD 4070	48
5.3	.1	Selección del primer circuito	48
5.3	.2	Condiciones técnicas y geográficas	48
5.3	.3	Mediciones de los circuitos JLD 4020 y JLD 4070	50
5.3	.4	Análisis de los datos	51
5.3	.5	Modelos de los circuitos	53
5.3	.6	Utilización del método matemático	54
5.3	.7	Distribución de la carga	55
5.4	Res	sultados de la prueba 1	58
5.4	.1	Selección de los seccionamientos que generan la menor pérdida	58
5.4 car	.2 ga y	Pruebas en diferentes casos de combinaciones de transferencia sus resultados	de 58
5.4	.3	Selección del grupo de seccionamientos y sus resultados	59
5.5	Res	sultados de la prueba 1 utilizando MATLAB	62
5.6	Pru	eba 2: Sistema formado por los circuitos CEO 4000 y CEO 4040	66
5.6	.1	Selección de los dos circuitos	66
5.6	.2	Ubicación de los seccionamientos dinámicos	68
5.6	.3	Rango de aplicación del método	69
5.7	Res	sultados de la prueba 2	71
5.7	.1	Análisis de los resultados	71
5.8	Res	sultados de la prueba 2 utilizando MATLAB	74
5.9	Cor	nparación entre los resultados	75
Capítul	o 6.	Conclusiones, aportaciones y trabajos futuros	76
6.1	Cor	nclusiones	76
6.2	Арс	ortaciones	77
6.3	Tra	bajos futuros	77
REFER	ENC	CIAS	79
Apendio	ce A.	Manejo básico del sistema SynerGEE	82
A.1	Car	gar el modelo	82

A.2 Ingresar demanda activa y reactiva de un circuito8	33
A.3 Distribución de la carga8	33
A.4 Corrida de flujos8	34
A.5 Seccionamientos óptimos8	34
Apendice B. Parámetros eléctricos de los circuitos para reproducir los modelos8	36
B.1 Elementos de los diagramas8	36
B.2 Datos básicos de cada elemento de los circuitos10)1
Apendice C. Tablas de mediciones eléctricas de los circuitos11	9
C.1 Mediciones de los circuitos JLD 4020 y JLD 407011	9
C.2 Mediciones de los circuitos CEO 4000 y CEO 404012	22
Apendice D. Código utilizado en MATLAB para realizar las pruebas12	25
D.1 Programa principal12	25
D.2 Función "desplegar"12	25
D.3 Función "reduce"12	26
D.4 Función "desplegar2"12	27
D.5 Función "desplegar3"12	28
D.6 Datos de HS para la prueba 112	29
D.7 Datos de HS para la prueba 213	30
Apendice E. Diagrama unifilar de telecontrol13	32
ndice alfabético	33

Índice de figuras

Figura 1.1 Sectores de ventas de energía durante el año 2016 en GWh 1
Figura 2.1: Ejemplo del perfil de demanda requerida por un conjunto de lámparas
de alumbrado público, cuvo consumo es de 1000 W. Se encienden al atardecer v
se apagan al amanecer
Figura 2.2. Ejemplo de la rutina de un cliente con hábitos de consumo para tres
cargas la gráfica de total muestra un perfil de uso de potencia eléctrica
Figura 2.3. Ejemplo de perfil de demanda resultante de combinar los perfiles de
cinco clientes
Figura 2.4 [°] Perfil de demanda de todo el mes de noviembre de 2017 para el
circuito ELC 4030 "El castillo 4030" cuva carga predominante es la doméstica
semiurbana v rural
Figure 2.5 Pagine web del Electric Power Research Institute que permite
visualizar diferentes tinos de perfiles de demanda
http://loadshape.epri.com/enduse.
Figura 2.6: Porfil do domanda residencial tino en la Zona Valana
Figura 2.0. Ferni de demanda residencial tipo en la zona Adiapa
similitudos y diferencias entre los mismos
Figure 2.9: Derfil de demende extreíde de la publicación de Drice y que es cimilar
rigura 2.0. Ferni de demanda extraido de la publicación de Frice y que es similar
zono Veleno
Zona Aalapa
rigura 2.9. Parametros mínimos recomendados por Price, imagen extraida de su
publicación
rigura 2.10 Propiedades del perili de demanda residencial que se utiliza en esta
Tesis
Figura 2.11 Se puede formar un modelo simplificado en terminos de tres
escalones de acuerdo a la demanda
Figura 2.12: Una vez que se encuentra la demanda por horario, se tiene una
grafica simplificada correspondiente a la ecuación 2.1.
Figura 2.13: Grafica de demanda comercial comun en la zona Xalapa
Figura 2.14: Perfil de demanda del circuito TRN 4040 con un contenido del 90% de
carga comercial
Figura 2.15: Demanda tipo industrial cuya forma depende del proceso que se
mide, el turno principal es comúnmente de 8:00 a 16:00 Horas
Figura 2.16: Perfil de demanda del circuito COP 4070, cuya carga predominante
es industrial

Figura 2.17: Al combinar dos circuitos que tienen diferente perfil, puede aprovecharse el área de oportunidad marcada en amarillo para repartir carga con otra configuración a la de la demanda punta......21 Figura 2.18: La demanda promedio entre los dos circuitos descritos anteriormente, puede orientar hacia dónde conviene desplazar la carga de cada uno de los Figura 2.19: Estas son las curvas esperadas para cada uno de los circuitos al Figura 3.1: Dos circuitos con capacidad de transferencia de carga mediante la configuración en anillo con operación radial......24 Figura 3.2: Sincronizador para los generadores que se encuentran en la central hidroeléctrica Texolo. La sincronización se realiza en los tableros de la central...25 Figura 3.3: Medidor de voltaje que se maneja mediante pértigas aisladas, con él se Figura 3.4: Placa de datos de un transformador de media tensión a media tensión que genera una etapa intermedia de transformación y a su vez 30 grados de desfase (por su conexión) con sus circuitos vecinos que no cuentan con esa etapa intermedia de transformación.....27 Figura 3.5: Equipo tele controlado con posibilidad de ajuste de protecciones...... 31 Figura 4.1: Diagrama de flujo que muestra la metodología para aplicar la configuración dinámica en un sistema de dos circuitos......35 Figura 4.2: Gráfica que ayuda a clasificar los circuitos en residencial y comercial Figura 4.3: Gráfica que muestra la demanda total de los circuitos TRN 4060 y TDD 4050 en estudio. Esta gráfica sirve para identificar el día con mayor demanda. Es resaltable que los dos días que presentan mayor demanda son el 17 y 03 de abril Figura 4.4: Gráfica del perfil de demanda conjunta presentada el día 17 de abril de 2018, en la que se muestra que existió una transferencia 10:50 a las 14:10 horas, Figura 4.5: Disposición geográfica de los circuitos TRN 4060 y TDD 4050 de la Figura 4.6: Derivaciones sobre los circuitos que limitan la región de transferencia dinámica......45 Figura 4.7: Demanda eléctrica que proveen los circuitos TRN 4060 y TDD 4050 Figura 5.1: Perfil de demanda del circuito JLD 4020, que se ajusta a un perfil de Figura 5.2: Perfil de demanda de varios días del circuito JLD 4070, con

Figura 5.3: Disposición geográfica de los circuitos JLD 4020 y JLD 4070, su fuente se encuentra en la parte inferior izquierda y su punto de enlace actual, en la parte superior central
Figura 5.5: Perfiles de demanda activa y demanda reactiva del circuito JI D 4070 el
día 22 de febrero de 2018
Figura 5.6: Gráficas de las demandas activas de los circuitos. ILD 4020 y ILD
4070 para observar el área de oportunidad en borarios de demanda intermedia 52
Figura 5.7: Seccionamientos virtuales agregados sobre el anillo entre los circuitos
11 D 4020 y $11 D 4070$
Figura 5.8: Medidor del modelo correspondiente al circuito II D 4020 55
Figura 5.9. Comportamiento de las pérdidas eléctricas de ambos circuitos de
acuerdo con el seccionamiento exclusivo abierto para $t = 19:00 h$
Figura 5.10: Selección de seccionamientos que minimizan la función de pérdidas
conjuntas para cada hora del día
Figura 5.11: Resumen de pérdidas totales mínimas con relación a los
seccionamientos que se involucran
Figura 5.12: Resumen de pérdidas que se ahorran respecto a las condiciones
iniciales del circuito
Figura 5.13: Perfil de demanda para el circuito CEO 4000 el día 10 de abril de
2018
Figura 5.14: Perfil de demanda para el circuito CEO 4040 el día 10 de abril de
2018
Figura 5.15:Comparación de los perfiles de carga de los circuitos CEO 4000 y
CEO 4040
Figura 5.16: Condiciones de operación actual de los circuitos CEO 4000 y CEO
4040
Figura 5.17: Ubicación de los conmutadores virtuales para el desarrollo de la
prueba 2
Figura 5.18: Seccionamiento óptimo más cercano al "C00"70
Figura 5.19: Seccionamiento óptimo más alejado del "C00"70
Figura 5.20: Selección de seccionamientos que generan las pérdidas mínimas en
media tensión por cada hora del día72
Figura 5.21: Resumen de pérdidas totales mínimas con relación a los
73 seccionamientos que se involucran
Figura 5.22: Resumen de pérdidas que se ahorran respecto a las condiciones
iniciales del circuito

Índice de tablas

Tabla 2.1: Valores de amplitud y de desfase utilizados para el ejemplo de cada
cliente con el objeto de reproducir la figura 2.3
Tabla 4.1: Clasificación de los circuitos de la zona de distribución Xalapa. 37
Tabla 5.1: Clasificación de cada circuito de la zona Xalapa
Tabla 5.2: Datos por hora a utilizar en el modelo para la prueba 1
Tabla 5.3: Cálculo de las pérdidas para todos los casos de un seccionamiento
abierto a la vez para t = 19:00 Horas56
Tabla 5.4: Resumen de pérdidas horarias por cada uno de los seccionamientos
cuando están normalmente abiertos $t = 0$ a 23:00 horas e $i = 0$ a 17, Matriz HS57
Tabla 5.5: Pérdidas al día. Se considera la configuración con el seccionamiento
indicado, abierto59
Tabla 5.6: Secuencia de maniobras que se deberán realizar cuando se instalan 5
seccionadores
Tabla 5.7: Secuencia de maniobras que se deberán realizar cuando se instalan 4
seccionadores60
Tabla 5.8: Secuencia de maniobras que se deberán realizar cuando se instalan 3
seccionadores60
Tabla 5.9: Secuencia de maniobras que se deberán realizar cuando se instalan 2
seccionadores61
Tabla 5.10: Pérdidas en kW que se generan cuando el seccionamiento "C", se
encuentra abierto en cada horario (únicamente se muestran resultados hasta el
seccionamiento C20)69
Tabla 5.11: Perdidas en configuración estática. Se considera cada seccionamiento
exclusivamente abierto durante todo el día71
Tabla 5.12: Secuencia de maniobras para llevar a cabo la configuración dinámica
con los seccionamientos C10 y C15 entre los circuitos CEO 4000 y CEO 404072

Simbología

- *D_B*: Demanda base [kW]
- D_M: Demanda intermedia [kW]
- *D_P*: Demanda en horario punta [kW]
- *t*₁: Horario en el que termina la demanda base [h]
- *t*₂: Horario en el que termina la demanda intermedia [h]
- *t*₃: Horario en el que termina la demanda punta [h]
- *v*: Voltaje en función del tiempo [V]
- *V*: Voltaje de pico [V]
- *f*: Frecuencia de la fuente [Hz]
- t: Tiempo [s]
- *ϕ*: Ángulo de fase [rad]
- A, B: Subíndice que indica la fuente
- a, b, c: Subíndice que indica la fase

HS: Matriz de 24 x n, que resume los kW perdidos de ambos circuitos para cada hora (cada renglón) y para cada seccionamiento virtual exclusivamente abierto (cada columna).

 P_A : Pérdidas en kW que se obtienen para el circuito A cuando el seccionamiento C_j se encuentra abierto en la hora *i*.

 P_B : Pérdidas en kW que se obtienen para el circuito B cuando el seccionamiento C_j se encuentra abierto en la hora *i*.

n : Número de seccionamientos que en forma exclusiva se mantienen abiertos para cada configuración

 F_i : Función que permite encontrar el valor mínimo de pérdidas en ambos circuitos para el horario "*i*" en un estado de configuración " ε " de los *n* posibles.

t: Tiempo en el que se analiza la condición de los circuitos de acuerdo a su demanda y va desde 0 a 24 horas.

 ε : Estado que guarda la configuración de ambos circuitos de acuerdo al seccionamiento que se encuentre abierto.

i : Índice de la hora del día que se analiza

j: Índice del seccionamiento que se encuentra abierto

 P_{Ap} : Pérdidas eléctricas del elemento p que constituye el circuito A. [kWh]

 P_{Bq} : Pérdidas eléctricas del elemento q que constituye el circuito B. [kWh]

r: Totalidad de elementos que constituyen la línea de media tensión del circuito A.

s: Totalidad de elementos que constituyen la línea de media tensión del circuito B.

 f_p : Número de fases con la que está construido el elemento p.

 f_q : Número de fases con la que está construido el elemento q.

 I_p : Intensidad de corriente promedio que conduce el elemento p. [A]

 I_q : Intensidad de corriente promedio que conduce el elemento q. [A]

 R_p : Resistencia eléctrica en corriente alterna a 60 Hz, que presenta el conductor por fase del elemento *p*. [Ω]

 R_q : Resistencia eléctrica en corriente alterna a 60 Hz, que presenta el conductor por fase del elemento q. [Ω]

A: Es la matriz de *24x2* que resume los seccionamientos cada hora que, al mantenerlos abiertos en forma exclusiva, dan la configuración de menor pérdida eléctrica y en su segunda columna relaciona los valores de pérdida correspondientes

C_i: Es el seccionamiento que ofrece las menores pérdidas en el horario i

 $F_i(t, \varepsilon)$: Son las menores pérdidas para el horario *i*. [kW]

l: Son el número de seccionamientos que pueden involucrarse en configuración dinámica

Capítulo 1. Introducción

1.1 Antecedentes

Las redes de distribución de potencia eléctrica han tenido un papel fundamental en el desarrollo de las comunidades, los comercios y la industria, la figura 1.1 muestra los sectores de venta por tipo de utilización de la energía eléctrica para visualizar qué ingresos se tienen para cada sector y destaca que más de un 90% de sus ventas tuvieron su origen en estos 3 sectores durante el año 2016 [1] y éste es considerado un insumo de primera necesidad.

Figura 1.1 Sectores de ventas de energía durante el año 2016 en GWh.

En el caso de la zona Xalapa, se cuenta con una red de distribución de media tensión que tiene un voltaje de 13.8 kV y que cubre una extensión geográfica de 913 km². Esta zona tiene como objetivo la distribución de energía eléctrica para 372441 clientes, mismos que en conjunto consumen en demanda máxima coincidente de 198.23 MW presentándose la misma en el mes de Mayo [2].

El crecimiento en las instalaciones se ha dado a un ritmo del 2.3% anual en cuanto a kW demandados [3].

Este compromiso de atención a los clientes obliga a buscar métodos eficientes y eficaces en la operación de las redes de distribución en la media tensión para la reducción de los costos, de tal forma que ayude a incrementar la rentabilidad de la empresa [4].

1.2 Objetivo general

Establecer una metodología en el desarrollo de propuestas para la operación dinámica de la red de media tensión con base en el comportamiento de los perfiles de carga, para obtener la reducción de las pérdidas eléctricas en media tensión por el método del reparto de carga.

1.3 Objetivos específicos

1.- Desarrollar un método que permita identificar una o más configuraciones para un par de circuitos que arrojen el mínimo de pérdidas durante diferentes horarios de acuerdo a la demanda horaria de cada uno.

2.- Encontrar la secuencia de maniobras y los horarios adecuados para llevarlas a cabo de acuerdo con el objetivo específico anterior.

3.- Realizar pruebas en SynerGEE en alimentadores de la zona Xalapa y analizar los resultados mediante MATLAB.

1.4 Planteamiento del problema

Para el desarrollo de la presente tesis, se pretenden resolver las siguientes interrogantes: ¿Existe la posibilidad de tener dos o más configuraciones en dos circuitos con estructura en anillo y operación radial, dependiente del horario de acuerdo con sus perfiles de demanda?, Si existen, ¿Cuánta energía dejaría de perderse al realizar un reparto de carga entre circuitos para aprovechar dicho efecto?

En esta tesis se realiza un análisis de los perfiles de demanda de media tensión que presentan los circuitos de la Zona Xalapa. Esto brinda la oportunidad de identificar perfiles básicos que se usan como insumo para seleccionar los circuitos que pueden ser susceptibles de operar mediante la configuración dinámica. El término "configuración dinámica" es utilizado en esta tesis, para referirse a un par de circuitos que reúnan las condiciones para que, en periodos determinados por el análisis de sus perfiles de demanda, puedan realizarse maniobras para repartir o desplazar la carga entre ellos; con el objetivo primario de reducción de pérdidas técnicas.

Las redes de distribución cumplen con el objetivo fundamental de distribuir la energía dentro de las ciudades, poblaciones o comunidades; para lograr esta tarea se requieren varios kilómetros de línea de media tensión a lo largo de calles, calzadas y jardines [5], de tal forma que se garantice un voltaje adecuado para conectar transformadores de distribución, los cuales a su vez serán capaces de proporcionar al cliente un voltaje de baja tensión manejable dentro de los hogares y oficinas.

Para realizar esta tarea, los circuitos dejan cierta cantidad de energía en el camino por el efecto Joule debido a la intensidad de corriente que fluye por la resistencia del conductor por el cual está formado el circuito [6], [7]. Derivado de que la intensidad de corriente es proporcional a la potencia que se desea transmitir a un voltaje determinado, entonces una disminución en la potencia refleja una disminución en la intensidad de la corriente a través del circuito. Las pérdidas por efecto Joule son proporcionales al cuadrado de la intensidad de la corriente eléctrica y ello brinda la oportunidad disminuir las pérdidas por dicho efecto si se disminuye la potencia en un circuito [8], [9].

Uno de los circuitos (el que tiene mayor demanda en el instante), disminuye sus pérdidas al disminuir su carga y el otro las aumenta ya que recibe la carga que el otro ha dejado. Este efecto puede ser aprovechado, cuando dos circuitos con las condiciones descritas, presentan perfiles de demanda con diferente forma; habrá horarios en los que uno de ellos se encuentre más cargado que el otro y existirá otro horario en el que la condición se invierta. Esto permitirá tener dos o más puntos óptimos por pérdidas de energía eléctrica en media tensión y este efecto puede ser aprovechado para realizar el reparto de la carga entre las dos fuentes según convenga.

1.5 Justificación

Una de las principales características que se aplican en la ley de la industria eléctrica, es el de la rentabilidad de las empresas productivas del estado y sus empresas subsidiarias [5], por lo que es de suma importancia considerar lo que se estipula en el artículo 140 de la misma Ley, párrafo II, en el que se indica lo siguiente: "Determinar Tarifas Reguladas de los servicios regulados de transmisión y distribución que permitirán obtener el ingreso estimado necesario para recuperar los costos eficientes de operación, mantenimiento, financiamiento y depreciación aplicables a las diversas modalidades de servicio, las pérdidas técnicas y no técnicas de acuerdo con el estándar determinado por la CRE, los impuestos aplicables y una rentabilidad razonable, misma que no estará garantizada". De lo anterior surgen una gran cantidad de métodos que cada una de las unidades de negocio que integran la CFE deberán considerar para disminuir los costos e

incrementar los ingresos que permitan mantener una utilidad suficiente para mantener una rentabilidad de ley.

1.6 Estado del arte

A nivel mundial, el ahorro de energía es una prioridad como lo asegura el CME (consejo mundial de la energía) que guía e impulsa las acciones para que todo el mundo pueda acceder a una energía sostenible [10]. Se encuentran documentos relacionados con las redes inteligentes, en la que se consideran las ventajas que se tiene derivado de las tecnologías electrónicas, de software y de redes que traen como oportunidad, el tener una gran cantidad de información en forma casi inmediata sin necesidad de trasladarse a los puntos en los que los equipos se encuentran instalados. Esto da como ventaja que la operación y la interrelación de equipos ayuden a una mejor y más rápida toma de decisiones, asegura inclusive que se prevengan daños o apagones.

Existen también algoritmos para seleccionar las mejores formas de rearmar la red en caso de libranza y falla [11], [12]; mismos que serán de utilidad en este trabajo para adecuarlo a las características de nuestra red [13]. Asimismo existe mucha información respecto a la caída de voltaje y del cálculo de pérdidas eléctricas en redes de distribución [14], [15], mismos que son de suma importancia para este trabajo; ya que es el criterio básico para la toma de decisiones para seleccionar la mejor opción de transferencia. Se considera como criterio determinante, la menor pérdida de energía por efecto Joule en ambos circuitos, sin embargo, otros parámetros como son los indicadores de confiabilidad y como es la importancia de los clientes en las redes de distribución de acuerdo con el ramo de utilización y al beneficio ante la sociedad (o perjuicio ante su ausencia) [5].

Existe un artículo que maneja la optimización de los costos por conmutación para un solo día en una red mediante el método de programación dinámica y logrando el balanceo de la potencia eléctrica entre los diversos alimentadores [16].

En la CFE se cuenta con procedimientos establecidos para la planeación y la operación de las redes generales de distribución, ninguno de ellos contempla una configuración dinámica de los circuitos en estado estable de las redes generales de distribución. Asimismo, se asignó un presupuesto de 47.9 millones de pesos en el 2016 para la reducción de pérdidas técnicas que intenta impulsar la renovación de las redes mediante la mejora de sus componentes, mediante el reordenamiento de las mismas [17]. El procedimiento que se propone no se utiliza por los procesos de planeación u operación en la CFE. Es parte de la pretensión de esta tesis que quienes esperen un área de oportunidad al notar en sus redes la aplicación del presente; puedan tener una referencia del mismo y puedan calcular el beneficio en

ahorro de energía perdida, que respecto de los resultados que se obtengan en forma individual a cada estudio; se tomen las decisiones correspondientes.

En el Instituto Politécnico Nacional, se cuenta con tesis que relacionan la optimización de la localización de dispositivos restauradores y para el reforzamiento de las redes con base en la confiabilidad. Estos documentos sirven de complemento a este tema considerando la confiabilidad como una de las características deseables de las redes generales de distribución y considerando que durante el desarrollo de esta tesis, la confiabilidad no es factor para la decisión en ninguno de los casos; sin embargo, es importante que una vez aplicado este procedimiento se garantice que no se vea afectada la confiabilidad del sistema y las propuestas de Leyva y Martínez pueden ser de gran ayuda, [18] y [19] respectivamente.

1.7 Aportaciones

Esta tesis pretende aportar los siguientes beneficios:

1.- Establecer un método que determine dos o más seccionamientos normalmente abiertos entre dos circuitos de distribución con configuración en anillo y operación radial, que generen las pérdidas eléctricas mínimas para ambos, en particular; cuando los perfiles de demanda tienen diferente comportamiento.

2.- Calcular y mostrar los resultados para el punto 1.

3.- Servir de base para trabajos futuros en los que participen una cantidad mayor de circuitos mallados y se pueda decidir una configuración dinámica para una configuración mallada con operación radial.

4.- Ofrecer un código en MATLAB de tal forma que quien cuente con los datos de un par de circuitos, pueda rápidamente obtener resultados sin tener que llevar a cabo un análisis manual.

1.8 Limitaciones

Esta tesis pretende mostrar una opción en la operación tradicional que mejore el desempeño de los circuitos de media tensión, sin embargo; no se utilizan referencias a gestión de la demanda [20], ya que en una red de media tensión, se considera que las cargas se distribuyen por toda una ciudad y representaría cambiar los estilos de consumo de muchos clientes.

1.9 Estructura de la tesis

Esta tesis se divide en seis capítulos y cinco apéndices. El primer capítulo relata el objetivo, justificación, metas, limitaciones y beneficios de la misma; así como el estado del arte en el mundo, en México, en CFE y en el IPN.

El capítulo 2 describe y clasifica los perfiles de demanda eléctrica, muestra los perfiles característicos para la zona Xalapa. Asimismo, se da una breve explicación de la repartición de carga que motiva y fundamenta esta tesis.

El capítulo 3 advierte sobre las consideraciones físicas y eléctricas que se deben tener en cuenta para poder aplicar el método. Se dedica un espacio para relatar los efectos de los equipos reguladores de tensión y capacitores, así como de las protecciones eléctricas y los aspectos de seguridad; especialmente los orientados a la operación segura hacia el personal, se describen algunas referencias a costos de implementación.

Es en el capítulo 4 en dónde se establece el método y se describe cada paso del mismo. Es posible que se encuentren algunos inconvenientes para encontrar los resultados deseados, algunos de estos problemas se pueden resolver y otros impedirán la aplicación del mismo, por lo que se abordan en ese capítulo.

En el capítulo 5 se aplica el método a dos pares de circuitos de la zona Xalapa y se comparan los resultados entre ellos. Se confirman los resultados con ayuda de MATLAB.

En el capítulo 6 se describen algunos trabajos futuros que pueden surgir con base en esta tesis y las conclusiones de la misma.

En el apéndice A se muestra el uso resumido del sistema SynerGEE referente a esta tesis. En el apéndice B se plasma el resumen de la construcción de los circuitos estudiados. En el apéndice C, se muestran las tablas de mediciones reales, para llevar a cabo los estudios. En el apéndice D se muestra el código en MATLAB utilizado para llevar a cabo la confirmación de los resultados de las pruebas realizadas en el capítulo 5. Finalmente, el apéndice E muestra el diagrama de telecontrol dónde aparecen los circuitos probados para dar un panorama de su ubicación eléctrica.

Capítulo 2. Perfiles de demanda eléctrica

2.1 Introducción

Este capítulo desarrolla los conceptos relativos a las mediciones y a los perfiles de demanda, ofrece una clasificación para los tipos de carga y cuál es su comportamiento esperado. Muestra también como se compone un perfil de demanda desde las cargas individuales y cuál es el proceso en que se combinan para obtener el perfil que el medidor registra.

Una vez clasificados los perfiles de carga, se hace notar la diferencia entre los mismos y permite mostrar las áreas de oportunidad para mejorar su desempeño con fundamento en su comportamiento horario.

2.2 Clasificación de los perfiles de demanda

La figura 1.1, ayuda a realizar una clasificación del uso de energía en residencial, gran industria, empresas medianas, comercial, agrícola y de servicios [1]. Para el caso técnico, en cuanto a los perfiles de demanda¹, dicha clasificación puede quedar reducida en tres grandes rubros: Residencial o doméstico, comercial o de oficina e industrial [21] [22]².

La energía eléctrica tiene su utilización en miles de aplicaciones, una de las más comunes es la referida a la iluminación. Esta aplicación implica que cada vez que es encendida una lámpara, una cantidad de potencia eléctrica es requerida para realizar la conversión de energía eléctrica a energía lumínica (y calorífica); esto es conocido como uso final [23], e implica que el usuario de dicha energía requerirá su uso para la satisfacción de alguna necesidad y no con el objetivo de consumir energía eléctrica. Este concepto, aunque es muy sencillo, da la pauta para relacionar la utilización de la energía eléctrica con base en hábitos, por ejemplo, en cualquier ciudad, el alumbrado público tiene un comportamiento (deseado) de encender al atardecer y apagarse al amanecer. Lo anterior genera un perfil de demanda rectangular con un escalón al amanecer y otro al atardecer y como ejemplo se muestra la figura 2.1.

¹ Los perfiles de demanda representan la demanda activa a través del tiempo, para la mayoría de los casos en esta tesis, están referenciados a 24 horas, aunque un análisis por semana o por temporada puede brindar datos de interés.

² Existen otras clasificaciones como lo son, el uso agrícola o de riego, el uso en servicios como el alumbrado público; sin embargo, en esta tesis se utilizan los tres mencionados.

Figura 2.1: Ejemplo del perfil de demanda requerida por un conjunto de lámparas de alumbrado público, cuyo consumo es de 1000 W. Se encienden al atardecer y se apagan al amanecer.

El uso de la energía en servicios domésticos dependerá de las rutinas de los consumidores [24], en el que a manera de ejemplo y para describir cómo se forman los perfiles de carga; se muestra la utilización de primera mano de un refrigerador de 200 W que enciende durante periodos de 30 minutos y se apaga en periodos de 30 minutos, iluminación de 200 W que es encendido de 05:00 a 07:30 y de 19:00 a 23:00 horas, asimismo como un sistema de audio – video de 200 W cuya utilización se realiza de 18:00 a 23:30. Con los datos anteriores, se tendría una gráfica como la que se muestra a continuación en la figura 2.2 [20].

Se continúa con el ejemplo, se propone que; al utilizar la rutina propuesta para un cliente, se generan rutinas similares para cinco clientes con ligeras variaciones en la amplitud de sus exigencias de potencia eléctrica y con ciertos desfases en los horarios de la misma como se muestra en la figura 2.3.

Figura 2.3: Ejemplo de perfil de demanda resultante de combinar los perfiles de cinco clientes.

La tabla 2.1 muestra los valores de amplitud y desfase aplicados a la gráfica de la figura 2.2 en su serie "Total", que se utilizaron para reproducir la gráfica de la figura 2.3 [25].

Tabla 2.1: Valores de amplitud y de desfase utilizados para el ejemplo de cada cliente con el objeto de reproducir la figura 2.3.

Cliente	Amplitud (Sin Unidad)	Desfase (Hrs)
1	1,25	00:30
2	1,00	00:00
3	0,85	-00:30
4	1,20	-01:00
5	1,40	-04:00

Lo que se pretende mostrar con el ejercicio anterior, es que la utilización de la energía eléctrica en forma común, genera perfiles de demanda universales con patrones similares [23]. Como lo demuestra la siguiente gráfica con un circuito de la zona Xalapa.

Figura 2.4: Perfil de demanda de todo el mes de noviembre de 2017 para el circuito ELC 4030 "El castillo 4030" cuya carga predominante es la doméstica semiurbana y rural.

Es muy importante resaltar varias propiedades de la gráfica de la figura 2.4, y es que, durante todo el mes de noviembre, la forma que tiene el perfil de cada uno de los días, se mantiene muy similar. Algunas diferencias que aprecian son específicamente una variación entre las amplitudes en ciertos horarios. Sin embargo, se pueden sacar varias conclusiones: que las demandas mínimas diarias, se presentan alrededor de las 4:00 am, que existe un ligero pico alrededor de las 7:00 am, que de 8:00 a 18:00 horas se mantiene una demanda intermedia y que es alrededor de las 20:00 horas que se alcanza una demanda máxima, que casi duplica la demanda intermedia. Éstas características y otras adicionales se analizan en la siguiente sección.

2.3 Características del perfil de demanda residencial

Los perfiles de demanda que se encuentran comúnmente a nivel mundial se pueden clasificar en tres tipos generales, qué son residencial, industrial y comercial. Existe una página web [26] qué permite visualizar las formas que tienen los perfiles de demanda eléctrica para diferentes ciudades y diferentes aplicaciones de uso final de la energía, inclusive a nivel de aparato eléctrico. Ésta referencia se aprovecha para verificar que efectivamente los perfiles de demanda se pueden clasificar en tres grandes grupos. La figura 2.5 muestra una página web del Electric Power Research Institute, que permite visualizar diferentes tipos de perfiles de demanda.

																						-		
	ELECTRIC PO RESEARCH I	OWER NSTITUTE											I	Lo	a	d s	Sh	a	be	L	ibı	rai	ry	5.0
Home	End Use	Whole Premise	Т	echnolog	y Mea	sures			Pa	acifi	c No	rthw	est	RBS	5A			At	out	Us				
You Are Here: Loa	d Shape Library 5.0	> End Use Load Shap	es																					
End Use L	oad Shape	s																						
														_	_	_	_	_						
Add Load Sr	iape(s):			1.0						7	7	~	(Î		Å	2	-	~	~			
Country	Region								Ι	/			2	-	-	6	~	5	ľ.			~		
USA	All Regio	ns 🔻		0.8	~		:	2	4	-	-0	~		٣	1				7	¢ 1	~	~	4	
			\$					/												\setminus				
Season and	Day Type		nd (K)				1	ø												1	\mathbf{N}			
Peak Sea	son, Peak Weekda	y	emai	0.6	~~	~	ø			-	-	_	_	_	+	+	-	+	-			~	1	
🗹 Peak Sea	son, Average Weeł	day	Q Å																					
🔲 Peak Sea	son, Average Weeł	kend	Ноц																					
Off Peak	Season, Peak Wee	kday	rage	0.4	_																			
Off Peak :	Season, Average W	/eekday	Ave																					
Off Peak	Season, Average W	/eekend																						
Sector and E	ind lice:			0.2																				
Sector and E																								
Commercial	Residential	Industrial		0.0																				
Central /	Air Conditioning(CA	C)		1 2	3 4	5	6	78	9	10) 11	12	13	14	15	16	17	18	19 2	20 2	1 2	2 23	3 24	
Clothes	Dryer										iour	end	ing											
Clothes	Washer		3 [Ind U	se Lo	oad	Sh	apo	es	plo	otte	d.	Do	wnle	bad	load	l sha	<u>pe c</u>	lata (<u>/)</u>			
Dishwas	her		Sci	alina																				

Figura 2.5 Pagina web del Electric Power Research Institute, que permite visualizar diferentes tipos de perfiles de demanda http://loadshape.epri.com/enduse.

Se realiza un análisis de los tipos de perfil de demanda que se presentan en la zona Xalapa, esto sirve para clasificar a los circuitos y también brinda la oportunidad de visualizar los horarios en los que se presentan las variaciones de la misma, así como las demandas máximas y demandas promedio qué se presentan en los circuitos de esta zona.

Figura 2.6: Perfil de demanda residencial tipo en la Zona Xalapa.

La forma de los perfiles residenciales como el mostrado en la figura 2.6 se mantiene similar para diferentes tipos de poblaciones. En la figura 2.7 se muestran cuatro perfiles de carga tipo residencial en ubicaciones distintas de la zona y se puede verificar que mantienen una forma similar a la descrita en la sección anterior. Esta cuestión permite realizar un modelo de este tipo de perfil de tal forma que pueda ser utilizada en términos de una función matemática manejable.

Es de resaltar que las demandas base, intermedia y punta se mantienen parcialmente proporcionales en los cuatro ejemplos, sin embargo, dos diferencias se pueden resaltar de ellos en la figura 2.7: en el perfil superior izquierdo, se muestra un incremento en la demanda entre 6:00 y 8:00 am, que los otros tres perfiles no presentan. También que de 8:00 a 18:00 se presenta una curva cóncava hacia arriba en el primero de los perfiles (el que tiene mayor contenido rural), mientras que los otros tres, esta misma curva se presenta cóncava hacia abajo, ya que presentan un contenido comercial limitado. Todo ello servirá en la siguiente sección para poder modelar este tipo de perfil.

Figura 2.7: Cuatro perfiles de carga de tipo residencial que permiten comparar las similitudes y diferencias entre los mismos.

2.4 Modelado de un perfil de demanda residencial

Se verá que la propuesta que realiza Price [27], al modelo de carga, es coincidente con la se tiene en la zona y que corresponde a los perfiles mostrados en la sección 2.2.

La figura 2.8 muestra un perfil de demanda extraído de la publicación de Price, que es similar con los perfiles obtenidos de los medidores de los circuitos residenciales de la zona Xalapa, por lo que sirve para explicar las características de este tipo de perfil.

Figura 2.8: Perfil de demanda extraído de la publicación de Price y que es similar con los perfiles obtenidos de los medidores de los circuitos residenciales de la zona Xalapa.

Para iniciar un modelo de perfil de demanda residencial, se consideran de primera mano, las propiedades mínimas recomendadas por Price [27], en el que se muestra la carga base, referida a la carga mínima que se presenta en el circuito durante el día; la carga pico, que se refiere a la carga máxima que tiene el perfil y a tres parámetros relacionados con el tiempo, el primero es la duración de la carga máxima, el segundo indica el tiempo de elevación de demanda así como el tiempo de caída de la demanda. La figura 2.9 muestra los parámetros mínimos recomendados por Price.

2.5 Modelo simplificado del perfil de demanda residencial

Se inicia con un modelo simplificado en el que se maneja la carga en tres escalones del perfil: escalón de demanda base, escalón de demanda intermedia y escalón de demanda punta.

Como se aprecia en la figura 2.10, se presentan tres grupos de demanda en el perfil y que tienen que ver con la demanda base, intermedia y punta y aunque estos conceptos existen dentro de las tarifas horarias, en realidad aquí se hace notar la posibilidad de que los horarios no sean perfectamente correspondientes con la tarifa [28], pero si con los puntos de inflexión de la curva de demanda que se requiere analizar.

Figura 2.10 Propiedades del perfil de demanda residencial que se utiliza en esta tesis.

En la figura 2.11 es de resaltarse las amplitudes de cada uno de los escalones y los periodos de duración de cada uno de ellos. Para obtener los datos correspondientes a cada uno de los escalones, se requieren 6 parámetros a definir que son: la magnitud de cada una de las demandas y los tres tiempos en que se realiza en cambio de demanda.

Figura 2.11 Se puede formar un modelo simplificado en términos de tres escalones de acuerdo a la demanda.

Como se muestra en la ecuación 2.1, este perfil puede ser reducido a seis parámetros, tres de demanda y tres de tiempo.

$$f(t) = \begin{cases} D_B & si \ t < t_1, t_3 \le t \\ D_M & si \ t_1 \le t < t_2 \\ D_P, & si \ t_2 \le t < t_3 \end{cases}$$
(2.1)

Donde:

D_B: es la demanda base

D_M: es la demanda intermedia

- D_P: es la demanda en horario punta
- t_1 : es el horario en el que termina la demanda base
- *t*₂: es el horario en el que termina la demanda intermedia
- t3: es el horario en el que termina la demanda punta

Se inicia con los tiempos que corresponden a los cambios en los escalones de las demandas. Para encontrarlos, se toma en cuenta los puntos de inflexión existentes en las curvas. Los puntos de inflexión quedan establecidos cuando la curva ajustada cambia de ser cóncava hacia arriba, a cóncava hacía abajo (o

viceversa) [29]³. El mismo caso se toma para el cambio de demanda intermedia a demanda punta. Para el cambio de demanda punta a demanda base se considera que al caer la demanda las diferencias serán negativas por lo que una vez alcanzada la diferencia mínima (máxima en valor absoluto), se habrá encontrado el tiempo que corresponde al punto de inflexión.

La figura 2.12 muestra una gráfica simplificada que utiliza los datos de la ecuación 2.1.

Para el caso de encontrar las magnitudes D_B , D_M y D_P , mediante el promedio de las cantidades que contienen el periodo que les corresponde.

Este modelo servirá para comparar los perfiles de demanda con los perfiles de demanda comerciales e industriales y poder combinarlos de una forma efectiva.

2.6 Perfil de demanda comercial

Los perfiles comerciales característicos de la zona Xalapa, contemplan una carga mínima en la madrugada que se incrementa aproximadamente a las 10:00 horas y se mantiene en demanda máxima básicamente hasta las 22:00 horas inmediatamente disminuye hasta llegar a la demanda mínima. Ésta característica va implícita en la manera que los comercios inician su jornada y cómo manejan sus equipos de acuerdo con las necesidades de sus actividades; llega un límite por la noche, que permite iniciar el fin de las actividades principales del negocio y

³ En una función, para este caso, un polinomio ajustado a los datos medidos; si un punto se mueve a lo largo de la gráfica de la función, la recta tangente a la curva gira conforme se desplace por la gráfica. Los puntos de inflexión se ubican donde la recta de la pendiente cambie su sentido de giro.

durante la madrugada quedan únicamente los sistemas mínimos necesarios para conservar productos, mantener alarmas, iluminación menor, vigilancia etc.

La figura 2.13 representa una gráfica de demanda comercial que corresponde con los perfiles de demanda reales de la zona Xalapa.

Figura 2.13: Gráfica de demanda comercial común en la zona Xalapa.

En la figura 2.13 es de resaltar que los horarios definidos para el perfil de demanda residencial, son correspondientes aquí también; esto con el objeto de poder compararlos.

En la figura 2.14 se presenta un perfil de demanda con un alto contenido comercial, es importante mencionar que los horarios de apertura y cierre de los comercios son los que impactan directamente a la gráfica.

2.7 Perfil de demanda industrial

El perfil industrial es un poco más complicado y depende básicamente del proceso que se lleve a cabo en cada industria. Los hábitos de las mismas están enfocados a los requerimientos de producción, a los horarios de mantenimiento entre muchos otros.

Cualquiera que sea su forma, es posible que se encuentren variaciones en los perfiles en los días de descanso del personal y esa variación de carga que se reduce considerablemente respecto de la demanda en los días activos; puede dar la oportunidad de repartir cargas con otros circuitos para dar un mejor aprovechamiento de las instalaciones.

Figura 2.15: Demanda tipo industrial cuya forma depende del proceso que se mide, el turno principal es comúnmente de 8:00 a 16:00 Horas.

En la figura 2.15 se muestra un perfil de demanda industrial y pueden ser resaltados los horarios que conforman los turnos de los trabajadores, los cambios de turno aproximadamente a las 8:00 y 16:00 horas, así como los cuidados de disminuir la demanda en horarios de demanda pico derivado del costo más alto que implican [28].

La figura 2.16 muestra un perfil de carga industrial real sobre el circuito Coatepec 4070 (COP 4070).

Figura 2.16: Perfil de demanda del circuito COP 4070, cuya carga predominante es industrial.

El modelo de demanda industrial se complica ya que cuando se cuenta con demandas altas por cada cliente (como en el caso anterior que un solo cliente determina el perfil del circuito), la forma del perfil tendrá un factor de diversidad tal que, cada movimiento de carga del mismo, será difícil de pronosticar [30]⁴.

2.8 Selección de circuitos candidatos para determinar una configuración dinámica

Como se vio en las secciones 2.3 y 2.4, existen diferentes tipos de perfiles de demanda, cuando dos circuitos que geográficamente se encuentran cercanos entre sí y que forman una configuración en anillo con operación radial, es posible realizar un estudio de minimización de pérdidas, para buscar el lugar que se mantendrá abierto sobre el anillo, en el cual rematarán ambos circuitos. Esto da pie a que, en horarios de demanda máxima, ambos circuitos presentan su mejor desempeño combinado en cuanto a pérdidas, caída de tensión y razonablemente a repartición de carga y posiblemente de clientes [16].

⁴ Aunque en este párrafo se hace referencia a la publicación de la universidad de Antioquia, es aplicable a los tres tipos de carga y no solo a la industrial. Sin embargo, para los perfiles estudiados de la zona Xalapa, se deduce que los perfiles asociados a las cargas industriales presentan patrones tan irregulares que se vuelven más estocásticos que pronosticables; por lo que [30] se vuelve una referencia muy útil para el estudio de estos casos.

Figura 2.17: Al combinar dos circuitos que tienen diferente perfil, puede aprovecharse el área de oportunidad marcada en amarillo para repartir carga con otra configuración a la de la demanda punta.

Para obtener el objetivo buscado, es indispensable seleccionar un circuito comercial como circuito inicial. La figura 2.17 sirve para explicar que este circuito al presentar una demanda "alta" en horarios de demanda intermedia, permitirá compartir una cantidad de carga razonable a su circuito vecino; de tal forma que durante un horario (aproximadamente de 10:00 a 19:00 horas) repartan su carga de una forma y en el horario complementario del día, la repartan de otra forma, de acuerdo con la optimización clásica realizada comúnmente.

2.9 Repartición de la carga

La figura 2.18 muestra cómo puede utilizarse la demanda promedio entre los dos circuitos seleccionados, para dar pauta a la repartición de carga a lo largo del día. Evidentemente cuando los circuitos son muy parecidos en su construcción, lo ideal será promediar las cargas, sin embargo; en los casos que no sea así, dependerá de los cálculos de pérdidas, la mejor configuración para ellos.

Figura 2.18: La demanda promedio entre los dos circuitos descritos anteriormente, puede orientar hacia dónde conviene desplazar la carga de cada uno de los circuitos.

En la figura 2.19 se muestra un ejemplo de desplazar la carga mediante maniobras en los circuitos en un horario de 9:00 horas del circuito comercial al residencial y a las 17:00 horas recuperarla. Por lo que el comportamiento de las demandas cambiaría en forma imperfecta hacia el promedio

Figura 2.19: Estas son las curvas esperadas para cada uno de los circuitos al hacer el traslado de carga a las 9:00 horas y a las 17:00 horas.

Capítulo 3. Condiciones y consideraciones físicas y eléctricas para la operación de los circuitos en configuración dinámica

3.1 Introducción

Antes de desarrollar el método en el capítulo 4, este capítulo describe características que deben ser tomadas en cuenta para obtener un resultado factible en condiciones reales. Las características eléctricas y físicas de los circuitos son de alta relevancia para llevar a cabo las transferencias entre los mismos de una manera posible. El comportamiento de algunos elementos del circuito puede afectar de forma importante el desempeño de los mismos y finalmente es de primera necesidad considerar los aspectos de seguridad, hacia el personal, hacia terceros y hacia las propias instalaciones.

3.2 Parámetros eléctricos

3.2.1 Frecuencia

En la figura 3.1 se consideran dos circuitos de diferente fuente cuyos voltajes de cada fase pueden representarse de la siguiente forma [31]:

$$v_{Aa} = V_{Aa} \cos(2\pi f_A t + \phi_{Aa}) \tag{3.1}$$

$$v_{Ab} = V_{Ab} \cos(2\pi f_A t + \phi_{Ab}) \tag{3.2}$$

$$v_{Ac} = V_{Ac} \cos(2\pi f_A t + \phi_{Ac}) \tag{3.3}$$

$$v_{Ba} = V_{Ba} \cos(2\pi f_B t + \phi_{Ba}) \tag{3.4}$$

$$v_{Bb} = V_{Bb} \cos(2\pi f_B t + \phi_{Bb}) \tag{3.5}$$

$$v_{Bc} = V_{Bc} \cos(2\pi f_B t + \phi_{Bc}) \tag{3.6}$$

Donde:

- *v*: Voltaje en función del tiempo en Volts
- V: Voltaje de pico en Volts
- f: Frecuencia de la fuente en Hz
- t: Tiempo en segundos

ϕ : Ángulo de fase

- A, B: Subíndice que indica la fuente o el circuito
- *a, b, c*: Subíndice que indica la fase

Este es un tema muy importante para la aplicación del procedimiento, con el objeto de no discriminar ningún detalle. La figura 3.1 muestra dos circuitos trifásicos de media tensión para detallar las ecuaciones de este capítulo.

Figura 3.1: Dos circuitos con capacidad de transferencia de carga mediante la configuración en anillo con operación radial.

Una de las condiciones fundamentales, es que la frecuencia eléctrica sea igual en ambas fuentes y dado que en la república mexicana está definida a 60 Hertz [32]. Para el caso, es poco común encontrar una fuente que se encuentre fuera de este requisito que inclusive es legal, sin embargo, esta condición puede tomar relevancia derivado de la reforma energética promueve la generación distribuida.

En el caso particular de la zona Xalapa, se cuenta con un circuito denominado COP 4010⁵, al cual se conecta un generador mediante energía potencial hidráulica en la que, en su caso, debe ser considerada la frecuencia como un parámetro muy relevante a verificar para realizar transferencias de circuitos. Por las características de este circuito, es la central quien debe confirmar la sincronización antes de conectarse a la red general de distribución.

La figura 3.2 muestra un sincronizador para los generadores que se encuentran en la central hidroeléctrica Texolo; la central es la que debe sincronizarse una vez que el circuito se encuentra energizado.

⁵ COP 4010: Circuito 4010 de la subestación Coatepec.

Figura 3.2: Sincronizador para los generadores que se encuentran en la central hidroeléctrica Texolo. La sincronización se realiza en los tableros de la central.

3.2.2 Tensión

El segundo punto relevante es considerar que la magnitud del voltaje de operación de cada uno de los circuitos a convertir en pareja dinámica sea igual. Existen casos en los que pueden encontrarse físicamente cercanos dos circuitos que tengan las propiedades físicas que se verán en la sección siguiente, pero que no cuentan con la misma tensión eléctrica. Los voltajes que son manejados en forma normalizada dentro de la república mexicana para circuitos de distribución son 13.8, 23.9 y 34.5 kV [32].

3.2.3 Secuencia de fases y desfasamiento

Una vez que las dos condiciones anteriores son cumplidas, se deben tomar en cuenta dos más, una de ellas es que la secuencia de fases sea la misma en ambos circuitos y la segunda es que debe existir un desfasamiento de cero grados entre las mismas fases de cada fuente. El primer caso puede convertirse en un problema muy común cuando los circuitos se construyen en anillo con operación radial, principalmente cuando se realizan modificaciones o ampliaciones a la

infraestructura eléctrica y es uno de los puntos a tomar en cuenta en el momento de la puesta en servicio, para lo cual se cuida la secuencia de fases de los transformadores de distribución en las subestaciones en el lado de alta tensión y de la misma forma, en los circuitos de distribución.

La figura 3.3 muestra un medidor de voltaje de media tensión que se maneja con pértigas aislantes y que sirve para verificar que las fases que van a trabajar en paralelo, tengan una diferencia de potencial mínima.

Figura 3.3: Medidor de voltaje que se maneja mediante pértigas aisladas, con él se puede verificar la diferencia de tensión entre ambos circuitos.

Aunque muchas veces esta confirmación de fases puede seguirse en forma física con la trayectoria de cada fase, en ocasiones no es posible en instalaciones de difícil acceso como las instalaciones subterráneas. De cualquier forma, es posible medir en forma eléctrica la diferencia de potencial entre las combinaciones de conductores de un circuito a otro para asegurar que la secuencia de fases sea correspondiente entre ambos circuitos.

Para el caso del ángulo de fase entre dos conductores a enlazar, se debe tener cuidado principalmente cuando las fuentes de los circuitos de media tensión se presentan en diferentes números de etapas de transformación. Por ejemplo, para

un circuito en 13.8 kV, en la mayoría de los casos se utiliza un transformador 115/13.8 kV, como etapa subsecuente de transformación a una de 230/115 kV.

Es importante mencionar que cuando por condiciones de regulación de voltaje o de disminución de pérdidas eléctricas, se cuenta con dos circuitos de media tensión uno de los cuales tiene un transformador de media tensión a media tensión (MT-MT)⁶, aunque en ciertos puntos pueden tener el mismo valor de tensión eléctrica RMS, es posible que por la conexión del transformador MT-MT, se tenga un desfasamiento eléctrico.

La figura 3.4 muestra la placa de datos de un transformador de media tensión a media tensión (34.5 a 13.8 kV) que es utilizado para reducir las pérdidas eléctricas, que genera una etapa intermedia de transformación y a su vez 30 grados de desfase con sus circuitos vecinos que no tienen esa etapa.

Figura 3.4: Placa de datos de un transformador de media tensión a media tensión que genera una etapa intermedia de transformación y a su vez 30 grados de desfase (por su conexión) con sus circuitos vecinos que no cuentan con esa etapa intermedia de transformación.

⁶ Como ejemplo un transformador 34.5/13.8 kV

Sin embargo, existen casos muy particulares en los que puede darse una etapa de transformación directa de 230/13.8 kV, lo que implica que exista una diferencia en ángulos de fase; se genera una imposibilidad para el cierre de equipos de conmutación en paralelo, aunque la secuencia de fases sea correspondiente.

Para el caso en el que se cumplan todos los parámetros eléctricos excepto el que el ángulo de fase sea el mismo en ambas fuentes para cada fase, es posible realizar una transferencia mediante una interrupción breve a la carga a transferir (lo cual es inaceptable para este procedimiento), para evitar el corto circuito que se generaría por el desfasamiento existente entre ellos.

En resumen, para esta sección y con base en las ecuaciones 3.1 a 3.6, debe cumplirse lo siguiente:

$f_A = f_B$	(3.7)
$V_{Aa} = V_{Ba}$	(3.8)
$V_{Ab} = V_{Bb}$	(3.9)
$V_{Ac} = V_{Bc}$	(3.10)
$\phi_{Aa} = \phi_{Ba}$	(3.11)
$\phi_{Ba} = \phi_{Bb}$	(3.12)
$\phi_{Ac}=\phi_{Ac}$	(3.13)

3.3 Condiciones físicas de los circuitos

Si se desea transferir carga entre circuitos, se debe contar con una configuración en anillo de los mismos con operación radial. Esto implica que los circuitos deben estar cercanos geográficamente y se convierte en una limitante en cuanto a la búsqueda de pares para llevar a cabo la configuración dinámica para el reparto de las cargas.

Cuando se tiene una carga distribuida en la zona que se estudia, existe una serie de ubicaciones para las subestaciones de distribución que se encargan de dar alimentación a los circuitos de distribución, los cuales dejan la potencia que trasladan en los transformadores de distribución, por las trayectorias que se han desarrollado junto con el incremento de carga de la zona⁷. Esto implica que las trayectorias de los circuitos tomen varias formas [14]. Si se piensa en una

⁷ Algunas veces el crecimiento paulatino de las instalaciones, no genera trayectorias ordenadas en los circuitos, derivado de causas como es la "opción técnica más económica", una ciudad con vialidad irregular, entre otras.

trayectoria simple radial y se considera que la subestación se vuelve el centro de un polígono que contiene la carga que se alimenta, el circuito en su parte troncal, será una recta (como versión óptima del mismo) que nace en el centro del polígono y termina en el perímetro del mismo.

Para alimentar la carga que se requiere, esta troncal tendrá diferentes ramificaciones perpendiculares que en conjunto forman un triángulo (en su forma geográfica). Ahora, se supone que la carga tiene una densidad uniforme por km²; se encuentra que las derivaciones más cercanas a la fuente tendrán menor carga que las derivaciones más lejanas de la misma. Esta descripción es importante porque complica encontrar puntos verdaderamente óptimos al generar "escalones" de carga a lo largo de la troncal y no puede aplicarse la consideración de carga uniforme sobre la troncal del circuito [23].

En una configuración multi-troncal, o con troncal tipo tenedor; cada uno de los brazos troncales lleva una fracción de la carga del circuito y esto facilita la transferencia de la carga, en este caso se considera que se disminuyen los escalones de carga.

Cuando un circuito se aleja de su fuente, existe la posibilidad que deje de ser urbano y se convierta en rural en la que el polígono descrito arriba, deje de serlo ya que la carga rural pierde la uniformidad de la densidad de carga por km², esta situación es de mucha importancia y ayuda para realizar la transferencia dinámica, ya que aunque pueden existir ramales largos derivados de la troncal, es cierto que la densidad de carga rural disminuye y facilita la tarea de repartir carga en base a los horarios.

3.4 Efecto de los bancos de capacitores

El banco de capacitores como equipo pasivo de corrección de factor de potencia, ayuda a la disminución de las pérdidas eléctricas en la trayectoria del mismo principalmente porque la carga reactiva que se le exige al alimentador, se suministra en parte, en el punto que se encuentra instalado el banco de capacitores y no es necesario llevarlo desde la fuente. Esa energía reactiva evita el traslado de una intensidad de corriente en cuadratura con la tensión del circuito desde la fuente y ayuda a disminuir la potencia perdida por efecto Joule en el circuito con la mejora a la tensión del circuito [14], [31].

Derivado de que el banco de capacitores es un equipo con capacitancia fija, las variaciones de potencia reactiva que el mismo equipo inyecta al circuito, sólo dependen de la variación la tensión que tiene el circuito en el punto que se encuentra instalado el banco de capacitores [33].

Por otro lado, la exigencia de carga reactiva a lo largo del circuito, es variable de acuerdo con los horarios (tal como sucede con la potencia real exigida). Estas dos condiciones implican que un banco fijo de capacitores que compensa bien la potencia reactiva mínima del circuito con una pequeña diferencia de kVAR, por lo cual se deben considerar dos situaciones que pueden presentarse con la transferencia dinámica: la primera ocurre cuando el banco de capacitores se encuentra fuera de la carga dinámica. Esto implica que cuando la carga se retire del propio circuito, el banco de capacitores puede llegar a sobre compensar el circuito que queda disminuido. La otra opción que existe es cuando el banco de capacitores se encuentra en el tramo que se transfiere, entonces el circuito que cede la carga queda sub-compensado y el que recibe queda sobre-compensado. Sin embargo, es de gran importancia que sean analizados cada uno de los casos [34].

3.5 Efecto de los equipos reguladores de tensión

Un banco de reguladores es un equipo eléctrico que se encarga de generar un escalón de voltaje en un punto particular del circuito. Normalmente se utiliza en una sección del circuito en el que se comienza a tener problemas de bajo voltaje. Se considera que el banco de reguladores puede ajustarse para estar en modo manual o automático, es de relevancia comentar que, si el banco de reguladores se encuentra dentro del anillo, en el momento de realizar el paralelo entre los dos circuitos (con el anillo cerrado), se está forzando el equipo regulador por la diferencia de potencial que exista en el enlace. Asimismo, es de suma importancia que ya sea durante la transferencia o sobre los estados radiales de los circuitos, asegurar que el banco de reguladores tenga la capacidad (potencia nominal) de soportar carga del circuito normal y adicionando la carga dinámica [35]⁸.

3.6 Efectos de las protecciones eléctricas

Las protecciones eléctricas son de suma importancia para la operación y el cuidado de los circuitos, si se considera que uno de los tramos de un circuito será dinámico, entonces es requerido considerar que cuando la carga se encuentre alimentada de una de las fuentes, el equipo que la alimenta deberá contener los ajustes necesarios [36] para que dicho tramo del circuito quede protegido y a su vez, cuando la carga sea transferida al circuito vecino, también quede protegida

⁸ Es importante mencionar que cuando se calcula un banco de reguladores para ser instalado en un punto del circuito, debe realizarse el estudio con el estado normal del mismo, pero a su vez con la carga trasferida del vecino, ya que uno de los puntos a cuidar es precisamente no rebasar la potencia nominal del banco, por un lado y por otro que los voltajes mínimos queden dentro de los rangos que permite la ley en caso de contingencia y lo mismo para los voltajes altos, especialmente cuando se pierde la carga adelante del regulador.

mediante los ajustes apropiados del equipo tele controlado, que en dicho caso queda como fuente de la misma.

La Figura 3.5 muestra un equipo tele controlado [37] con posibilidad de ajuste de protecciones.

Figura 3.5: Equipo tele controlado con posibilidad de ajuste de protecciones.

3.7 Aspectos de seguridad

Aunque los aspectos de seguridad para el personal pueden ser temas que se extienden ampliamente, es importante cuando menos mencionar algunos de los aspectos que deben ser considerados para la operación de los circuitos.

Se parte de que los circuitos se encuentran permanentemente energizados y que el máximo tiempo que puedan mantenerse sin interrupción serán deseables para ofrecer continuidad y confiabilidad del mismo; se debe contemplar que los trabajos en el tramo transferible deben precisarse para poder otorgar las licencias en vivo o en muerto correspondiente, por lo cual quienes estén encargados del mantenimiento del circuito, deben contemplar los horarios de transferencia manual o automática de los mismos, para que así sean consideradas en la planeación de los trabajos de mantenimiento y advertir al operador de la condición que prevalezca.

El operador que otorga las licencias, para que sean realizados los trabajos de restablecimiento o de mantenimiento en las instalaciones, deberá tener conocimiento preciso de la fuente de la cual se encuentra alimentada la carga dinámica, de tal forma que, en caso no deseado de incidente o accidente, pueda

abrir (o mantener abierta) la fuente correcta a la brevedad. Asimismo, durante la ejecución de los trabajos de mantenimiento o restablecimiento; el operador debe asegurarse que los circuitos no realicen la transferencia automática de los mismos, para lo cual deberá realizar los bloqueos necesarios para asegurar dicha condición.

Si la transferencia de la carga se hace de forma automática, deberá bloquearse dicha operación para que mientras dura una licencia sobre el tramo dinámico, éste no tenga ninguna opción de energizarse en forma automática o manual por ninguna de las posibles fuentes del anillo.

Para los trabajos en vivo, será indispensable activar en ambos equipos la función "Hot Line" o "Trabajos en línea energizada" si es que cuenta con ello o en su defecto bloquear las operaciones de re-cierre o de re-energización en caso de ser equipos restauradores. Para los casos de equipos con función de automatismo por ausencia de potencial, esta función también deberá ser bloqueada tal y como se realiza con los equipos que ya operan con ella. Estas recomendaciones son descriptivas y no limitativas, deben ser adaptadas a cada circuito y complementarse con los reglamentos y normas de seguridad correspondientes.

3.8 Costos

Si los circuitos operan con un seccionamiento abierto manual, es factible utilizar este procedimiento para encontrar un solo punto óptimo abierto que implicaría considerar la mano de obra necesaria para relocalizar el equipo de seccionamiento. Este costo es mínimo y será dependiente de las características del mismo y de las condiciones del lugar, Es posible considerar un costo aproximado de 15 mil pesos para ello⁹.

Para este mismo caso y se considera que se requiera llevar a cabo la configuración dinámica, será necesario un par de equipos tele controlados con todos los complementos para llevar a cabo la función requerida. Se considera un costo de 350 mil pesos¹⁰ por equipo [38], se requieren al menos 700 mil pesos para llevar a cabo la tarea propuesta.

⁹ Costo aproximado con base en los costos de CFE para montaje y retiro de equipo de seccionamiento manual en el que se incluye la mano de obra para maniobras, retiro del equipo, conexión para sellar el punto previo, montaje, conexión, calibración y puesta en servicio en la nueva ubicación, así como traslados de los materiales y equipos.

¹⁰ Costo de \$349,601 de acuerdo con la página de CFE [38] a octubre de 2018 incluye un equipo tele-controlado, módulo de conmutación, control, radio de comunicación, antena, cables de control y comunicación, mano de obra para maniobras, montaje, conexión, programación del control, ajuste de radio de comunicación, registro en la unidad central maestra, calibración y puesta en servicio en la nueva ubicación así como traslados de los materiales y equipos.

Si en su caso el circuito ya opera con un seccionador tele controlado en su punto normalmente abierto, entonces la inversión disminuye a 365 mil pesos se considera el suministro e instalación del segundo equipo y la reubicación del primero.

Cualquiera que sea el caso, debe analizarse en forma individual para determinar la factibilidad de su aplicación.

Para el caso de los ahorros por pérdidas se puede considerar que por cada kWh se paga comercialmente un promedio de 2.7 pesos [39]¹¹. Por lo anterior los datos financieros son importantes para determinar si el proyecto es factible económicamente y se recupera la inversión en pocos años o si por el contrario no amerita llevarse a cabo.

¹¹ Este dato es muy variable considerando la tarifa predominante de la región que se estudia, por lo que sólo es una referencia aproximada.

Capítulo 4. Metodología para aplicar la configuración dinámica en un sistema de dos circuitos

4.1 Introducción

Este capítulo desarrolla el método a utilizarse para conseguir dos o más seccionamientos abiertos en forma exclusiva durante el día, generando un desempeño óptimo de los dos circuitos en cuanto a pérdidas eléctricas en media tensión. Se muestra en forma resumida la clasificación para los circuitos de la zona. Utiliza los criterios de selección del par de circuitos y desarrolla en ellos el método de optimización por minimización de perdidas en el conjunto. Describe las maniobras necesarias para la combinación de uno o más seccionamientos dinámicos y emite los resultados de aplicar cada una de las combinaciones seleccionadas.

4.2 Procedimiento para aplicar la configuración dinámica en un sistema de dos circuitos

Los circuitos de distribución, anualmente deben ser optimizados para que en demanda máxima presenten las pérdidas de media tensión mínimas con una configuración estática¹². El historial de las mediciones es requerido tal y como los circuitos se encuentren operando por lo que no debe ser modificada su configuración para iniciar con este método, el hacerlo implica obtener el historial de mediciones nuevamente.

Se clasifican los circuitos por su tipo de perfil de demanda, eso ayuda a seleccionar la pareja dinámica que cumpla con los criterios vistos en el capítulo 3. Una vez seleccionados, se analizan las mediciones.

Con los circuitos modelados, es necesario realizar el alojamiento de la carga a lo largo de los mismos para poder hacer, para cada hora del día, las corridas de flujo para cada seccionamiento virtual normalmente abierto en forma exclusiva¹³.

La figura 4.1 muestra el diagrama de flujo que se propone para encontrar las pérdidas menores a través del análisis de los perfiles de demanda y la configuración dinámica.

¹² Se considera que el equipo normalmente abierto permanecerá así mientras las condiciones de la red sean normales (no en libranza, ni en emergencia).

¹³ Significa que se debe tener un solo seccionamiento virtual abierto a la vez para cada corrida de flujos.

Finalmente se realiza el análisis de resultados para cada uno de los horarios para seleccionar cuál de ellos, al permanecer abierto, aporta la mínima perdida eléctrica en media tensión en el conjunto.

El paso anterior será el que indique la secuencia de maniobras correcta y los horarios en los que deben hacerse cada una de ellas.

4.3 Clasificación de los circuitos por su tipo de perfil de demanda

El primer paso involucrado, es analizar todos los perfiles de carga disponibles en la zona, lo cual permitirá clasificar los circuitos por su tipo de carga (doméstica, comercial e industrial) **<paso 1 del diagrama de flujo>**.

Para este caso se consideran circuitos industriales los que, en forma general, presentan un contenido preponderante de carga industrial o los cuales alimentan en forma exclusiva a un cliente industrial. Para el caso de los circuitos domésticos, se consideran aquellos cuya demanda máxima en horarios de demanda intermedia es menor al 80% de la demanda máxima presentada en horarios de demanda punta, por lo que los circuitos comerciales se consideran aquellos cuya demanda intermedia superan el 80% de la demanda máxima presentada en horarios de demanda punta.

La figura 4.2 muestra una gráfica que ayuda a clasificar los circuitos en residencial y comercial para aplicación en esta tesis, asignando un porcentaje a los valores de demanda intermedia respecto a la demanda punta.

Figura 4.2: Gráfica que ayuda a clasificar los circuitos en residencial y comercial para aplicación en esta tesis.

El número de circuitos comerciales, ofrece un panorama de cuántos pares se pueden formar de primera mano, ya que es mayor la cantidad de circuitos domésticos que comerciales (lo que depende de cada zona y cada región de estudio)

Para el caso de la Zona Xalapa se muestra la clasificación en la Tabla 4.1. De esta clasificación se selecciona un par de circuitos que, por su situación geográfica, sea posible llevar a cabo la transferencia de carga entre ellos **<paso 2 del diagrama de flujo>**.

La tabla 4.1 muestra un resumen de la clasificación de los circuitos de distribución de la zona Xalapa, después de verificar los perfiles de demanda de cada uno de ellos.

TIPO DE CIRCUITO	CANTIDAD
DOMÉSTICO	35
COMERCIAL	14
INDUSTRIAL	4
TOTAL	53

 Tabla 4.1: Clasificación de los circuitos de la zona de distribución Xalapa.

4.4 Selección de un par de circuitos

Una vez que se han seleccionado los dos circuitos que pueden ser utilizados para este procedimiento, se deben confirmar dos cosas: la primera es que los circuitos formen un anillo en su configuración física y la segunda es que sean compatibles eléctricamente, al complacer las ecuaciones 3.7 a 3.13.

4.5 Análisis de las mediciones

Los medidores de las subestaciones tienen la información que se requiere para analizar los perfiles de demanda. Dentro del análisis de la demanda puede ser necesario encontrar el día de mayor demanda en el ámbito de la zona. Esto permitirá calcular las perdidas eléctricas con la mayor demanda registrada en el último año, sin embargo, puede ser factible; para evitar el manejo de una gran cantidad de información, encontrar el día con mayor demanda del conjunto de los dos circuitos y para ello es posible hacer uso de suma de las demandas de los mismos **<paso 3 del diagrama de flujo>**.

Para esta sección se cuenta con los datos de los circuitos TRN 4060 y TDD 4050¹⁴. Para llevar a cabo cualquiera de los procesos optimización de circuitos por minimización de pérdidas eléctricas, se extraen directamente los datos del

¹⁴ TRN 4060 y TDD 4050: Son los circuitos "Trancas cuarenta sesenta" y "Tamarindo dos cuarenta cincuenta"

medidor o en su defecto del sistema SIMOCE (Sistema de monitoreo de la calidad de la energía) perteneciente a CFE.

La figura 4.3 muestra la gráfica de la demanda que presentaron en conjunto (la suma) los dos circuitos y de ellos se seleccionan los días que tienen la mayor demanda. Específicamente se detecta que los días 3 y 17 de abril presentan la mayor demanda registrada. Esto permite seleccionar un día con mayor demanda para aplicar sus características de demanda al estudio, y garantiza que con las condiciones más adversas se satisface la operación de ambos circuitos, e inclusive que se defina una operación más ligera de los mismos.

Figura 4.3: Gráfica que muestra la demanda total de los circuitos TRN 4060 y TDD 4050 en estudio. Esta gráfica sirve para identificar el día con mayor demanda. Es resaltable que los dos días que presentan mayor demanda son el 17 y 03 de abril respectivamente.

La figura 4.4 muestra la gráfica que servirá para desechar al día 17 de abril de 2018 como sujeto de estudio, derivado de que presenta una transferencia con valores atípicos para el circuito.

Figura 4.4: Gráfica del perfil de demanda conjunta presentada el día 17 de abril de 2018, en la que se muestra que existió una transferencia 10:50 a las 14:10 horas, por lo que no representa el día con mayor demanda en el mes.

Los datos atípicos que contienen las gráficas de demanda impiden llevar a cabo un estudio de pérdidas y transferencias, ya que emiten resultados superiores al real, por lo que no deben ser utilizados para ello.

4.6 Verificación del modelo del circuito

Los circuitos que se utilizan en esta tesis, ya se encuentran modelados para ser estudiados en el sistema SynerGEE, sin embargo, en los apéndices A y B se puede encontrar detalle de la construcción de los circuitos y el uso del sistema para los fines que se requieren aquí*<paso 4 del diagrama de flujo>*.

4.7 Cálculo de las pérdidas para cada seccionamiento exclusivamente abierto en cada horario del día seleccionado

Una vez que se tienen modelados los circuitos en el sistema y se ha comprobado que es posible realizar una corrida de flujos en ambos, se abre el seccionamiento que físicamente corresponda con las mediciones. Los siguientes pasos deben ser seguidos para cada uno de los horarios que conforman el día, desde 0 hasta 23 horas en intervalos de una hora.

Con ambos circuitos modelados como se encuentran en campo y con especial cuidado en que el seccionamiento normalmente abierto lo esté también en el modelo; se procede a realizar el alojamiento de la carga [14]. Con esto se asegura que el modelo repartirá la misma, en forma adecuada (Apéndice A, sección A.3).

Realizada esta acción, es conveniente ejecutar la corrida de flujos como se indica en el apéndice A, sección A.4 y se procede a realizar la optimización por pérdidas mínimas como en el apéndice A, sección A.5. El reporte que arroja este estudio, emite la información de todas las combinaciones que implica mover el seccionamiento normalmente abierto (para el cual, se debe considerar la instalación virtual de seccionamientos en la cercanía del punto normalmente abierto) [40] **<paso 5 del diagrama de flujo>**.

4.7.1 Modelo matemático a utilizar

El paso anterior generará una matriz de 24 x n, de la siguiente forma **<paso 6 del** diagrama de flujo>:

$$HS = \begin{bmatrix} (P_A + P_B)_{0,0} & \cdots & (P_A + P_B)_{n-1,0} \\ \vdots & \ddots & \vdots \\ (P_A + P_B)_{0,23} & \cdots & (P_A + P_B)_{n-1,23} \end{bmatrix}$$
(4.1)

En la que:

HS: Es una matriz de 24 x n, que resume los kW perdidos de ambos circuitos para cada hora (cada renglón) y para cada seccionamiento virtual exclusivamente abierto (cada columna).

 P_A : Son las pérdidas en kW que se obtienen para el circuito A cuando el seccionamiento C_j se encuentra abierto en la hora *i*.

 P_B : Son las pérdidas en kW que se obtienen para el circuito B cuando el seccionamiento C_j se encuentra abierto en la hora *i*.

n: Es el número de seccionamientos, que en forma exclusiva, se mantienen abiertos para cada configuración

La ecuación 4.1, es el resumen que se obtiene del sistema SynerGEE para cada uno de los horarios cuando se usan los datos de demanda para cada hora. La ecuación 4.2 indica que para cada tiempo *t* (en este caso, para cada hora del día) y para cada configuración de los circuitos o estado ε , existen unas pérdidas eléctricas que presenta cada circuito en media tensión P_A y P_B , tales que al sumarlas se vuelven las pérdidas del conjunto que se estudia. De todas ellas, se escoge la que representa el valor mínimo de pérdidas eléctricas del conjunto **<paso 7 del diagrama de flujo>**. Por lo que la función que representa lo que se explica es la siguiente:

$$F_i(t,\varepsilon) = Min[(P_A + P_B)_{i,0}, (P_A + P_B)_{i,1}, \cdots, (P_A + P_B)_{i,n-1}]$$
(4.2)

En la que:

 F_i : Es la función que permite encontrar el valor mínimo de pérdidas en ambos circuitos para el horario "*i*" en un estado de configuración " ε "¹⁵ de los *n* posibles.

t: Es tiempo en el que se analiza la condición de los circuitos de acuerdo a su demanda y va desde 0 a 23 horas.

 ε : Es el estado que guarda la configuración de ambos circuitos de acuerdo al seccionamiento que se encuentre abierto.

 P_A : Son las pérdidas en kW que se obtienen para el circuito A cuando el seccionamiento C_i se encuentra abierto en la hora *i*.

 P_B : Son las pérdidas en kW que se obtienen para el circuito B cuando el seccionamiento C_j se encuentra abierto en la hora *i*.

i: Es el índice de la hora del día que se analiza

j: Es el índice del seccionamiento que se encuentra abierto

$$P_A(t,\varepsilon) = \sum_{p=1}^r P_{Ap}$$
(4.3)

$$P_B(t,\varepsilon) = \sum_{q=1}^{\infty} P_{Bq} \qquad (4.4)$$

Donde:

 P_{Ap} : Son las pérdidas eléctricas del elemento p que constituye el circuito A.

 P_{Bq} : Son las pérdidas eléctricas del elemento q que constituye el circuito B.

r: Es la totalidad de elementos que constituyen la línea de media tensión del circuito *A*.

¹⁵ Aunque " ε " es dependiente a su vez del tiempo, *F*; se define en estos términos debido a que los estados pueden variar al depender de la cantidad de seccionamientos dinámicos que sean configurados.

s: Es la totalidad de elementos que constituyen la línea de media tensión del circuito *B*.

Las ecuaciones 4.3 y 4.4 sirven para describir que las pérdidas eléctricas P_A y P_B , se encuentran definidas como la sumatoria de las pérdidas de todos los elementos de línea de media tensión de cada circuito. Cabe mencionar que para cada configuración, r y s varían su valor, ya que los elementos que transfiere un circuito, los recibe el otro; pero r + s se mantiene constante. La función F, se define en términos de t y ε porque las pérdidas de cada elemento son causa de la intensidad de corriente en el elemento y ésta a su vez, depende de la demanda y del estado de configuración del circuito ε . La demanda depende del tiempo t como indica el capítulo 2.

$$P_{Ap} = f_p * |I_p|^2 R_p$$
 (4.5)

$$P_{Bq} = f_q * |I_q|^2 R_q$$
 (4.6)

Donde:

 P_{Ap} : Son las pérdidas eléctricas del elemento p que constituye el circuito A.

 P_{Bq} : Son las pérdidas eléctricas del elemento q que constituye el circuito B.

 f_p : Es el número de fases con la que está construido el elemento p.

 f_q : Es el número de fases con la que está construido el elemento q.

 I_p : Es la intensidad de corriente promedio que conduce el elemento p.

 I_q : Es la intensidad de corriente promedio que conduce el elemento q.

 R_p : Es la resistencia eléctrica en corriente alterna a 60 Hz, que presenta el conductor por fase del elemento *p*.

 R_q : Es la resistencia eléctrica en corriente alterna a 60 Hz, que presenta el conductor por fase del elemento q.

Las ecuaciones 4.3 a 4.6 no serán directamente utilizadas en esta tesis, sin embargo, son la base con la que el SynerGEE calcula las pérdidas de los circuitos de acuerdo con el alojamiento de la carga. La utilización de la ecuación 4.1 implica que los resultados de cada corrida de flujos (i, j); se acomode en la posición que

corresponde de acuerdo a la matriz *HS*. La ecuación 4.2 selecciona el valor menor de pérdidas de cada renglón.

Los resultados de aplicar la ecuación 4.2, pueden ser acomodados en una matriz A de 24 x 2 como se muestra a continuación

$$\boldsymbol{A} = \begin{bmatrix} C_0 & F_0(t,\varepsilon) \\ C_1 & F_1(t,\varepsilon) \\ \vdots & \vdots \\ C_{23} & F_{23}(t,\varepsilon) \end{bmatrix}$$
(4.7)

En la que:

A: Es la matriz que resume los seccionamientos cada hora que, al mantenerlos abiertos en forma exclusiva, dan la configuración de menor pérdida eléctrica y en su segunda columna relaciona los valores de pérdida correspondientes

C_i: Es el seccionamiento que ofrece las menores pérdidas en el horario *i*.

 $F_i(t, \varepsilon)$: Son las menores pérdidas para el horario *i*.

La ecuación 4.7 sirve para mostrar un resumen por horarios de cuáles seccionamientos generan las menores pérdidas y cuál es el valor de las mismas en kWh.

4.8 Análisis de los resultados de las combinaciones de las configuraciones

Los resultados obtenidos en la sección anterior se analizan para que en cada horario se encuentre el seccionamiento que arroja las pérdidas mínimas. Esto permite obtener una gráfica de desplazamiento de carga horaria que emite las pérdidas eléctricas mínimas. Con esos resultados se puede calcular la diferencia de pérdidas, contra la que se tiene con el seccionamiento normalmente abierto y con ello se calcula el ahorro.

La misma información de la sección 4.8, sirve para decidir el utilizar una menor cantidad de seccionamientos y calcular los beneficios en cada caso *<paso 8 del diagrama de flujo>*.

También puede ser utilizada para confirmar que el seccionamiento abierto actualmente, en condiciones estáticas; es el óptimo o en su defecto sirve para determinar cuál lo es en realidad si se prefiere obtener una configuración estática.

4.9 Consideraciones adicionales

4.9.1 Derivaciones y ramales

Es muy importante verificar que en la cercanía de los seccionamientos dinámicos no existan derivaciones de gran carga. Cuando esto ocurre la optimización no permite brincar dicho escalón y se ve limitada hasta los rangos en los que las derivaciones permiten "saltar al siguiente seccionamiento".

Como ejemplo se muestra el caso de los circuitos TRN 4060 y TDD 4050. Estos dos circuitos parten de diferentes fuentes y se presentan como radiales, por lo que es conveniente describirlos. La subestación TRN se encuentra en la localidad las trancas del municipio de Emiliano Zapata del estado de Veracruz, mientras que la subestación TDD se encuentra ubicada en el perímetro de la población Tamarindo perteneciente al municipio de Cardel del mismo estado.

La figura 4.5 muestra la configuración de los circuitos TRN 4060 y TDD 4050 de la zona Xalapa.

Figura 4.5: Disposición geográfica de los circuitos TRN 4060 y TDD 4050 de la zona Xalapa.

La separación entre ambas subestaciones ronda los 45 Km. El circuito TRN 4060 tiene una trayectoria principal por la carretera Xalapa – Veracruz, con dirección hacia el sur, el circuito TDD 4050 tiene su trayectoria principal sobre la misma carretera, pero en la dirección opuesta y ambos pueden ser enlazados mediante un seccionador controlado vía remota, ubicado en la población de dos ríos del municipio de Emiliano Zapata. Cabe señalar que ambos circuitos tienen un voltaje

de 13.8 kV con secuencia de fases correcta y sin desfase por etapas de transformación.

La figura 4.6 muestra sobre el circuito TDD 4050 (marrón), una derivación en la región de enlace que impide saltarlo durante las corridas de optimización. Se considera que dicha derivación tiene arriba de 800 kW cuando la fuente mide 4000 kW de demanda. De la misma forma el circuito TRN 4060 (azul) muestra la misma problemática se considera en la derivación 1 un valor arriba de 100 kW cuando la fuente registra 3500 kW.

Figura 4.6: Derivaciones sobre los circuitos que limitan la región de transferencia dinámica.

4.9.2 Clientes con cargas altas

Aunque en forma física o de diagrama sea complicado visualizar esta condición, es relevante mencionar que, como en la sub sección anterior, un cliente con una carga alta (arriba de los 200 kW), puede convertirse en un límite para el salto en la configuración dinámica por las mismas razones descritas.

4.9.3 Perfiles similares

Para el ejemplo del TDD 4050 y TRN 4060, se analizan los perfiles de demanda y se verifica que ambos cuentan con un perfil de carga similar conforme a lo mostrado en la figura 4.7

Figura 4.7: Demanda eléctrica que proveen los circuitos TRN 4060 y TDD 4050 para el día 3 de abril de 2018.

Aunque como se muestra en la figura 4.7 no hay datos atípicos durante las mediciones en dicho día, si es relevante comentar que derivado de que las demandas se mantienen proporcionales unas a otras durante el recorrido del día, esto se traduce a que el seccionamiento abierto óptimo lo sea para cualquier horario.

4.9.4 Semanas, meses y temporadas

Finalmente, y respecto a los perfiles de demanda, es de importancia revisar el comportamiento semanal, mensual y anual de los mismos para considerar si durante ciertos días o temporadas es factible utilizar la transferencia dinámica derivado de que las cargas pueden variar fuertemente como sucede sábados y domingos en circuitos que alimentan oficinas o en ciertas temporadas en circuitos que alimentan bombeos.

Capítulo 5. Pruebas y resultados

5.1 Introducción

Este capítulo tiene por objetivo aplicar el método descrito en el capítulo anterior al par de circuitos JLD 4020 y JLD 4070 como se muestra en la figura 5.3 y al par de circuitos CEO 4000 y CEO 4040¹⁶ como se muestra en la figura 5.16, obtener los seccionamientos dinámicos, decidir los horarios de las maniobras, calcular los resultados correspondientes a la disminución de las pérdidas eléctricas en media tensión y comparar los resultados entre ellos.

5.2 Características del sistema de prueba

Los circuitos con los que cuenta la zona Xalapa son 53 y se encuentran clasificados de acuerdo con la tabla 5.1 *<paso 1 del diagrama de flujo>.*

NO	SE	сто	CLASIFICACIÓN	NO	SE	сто	CLASIFICACIÓN	NO	SE	сто	CLASIFICACIÓN
1	ACJ	4012	INDUSTRIAL	19	COP	4030	DOMESTICO	37	JLD	4070	DOMESTICO
2	ACJ	4022	DOMESTICO	20	COP	4040	COMERCIAL	38	JLD	4080	COMERCIAL
3	AOC	4010	DOMESTICO	21	COP	4050	DOMESTICO	39	JLD	4090	COMERCIAL
4	AOC	4020	DOMESTICO	22	COP	4060	DOMESTICO	40	RNA	4015	DOMESTICO
5	AOC	4030	DOMESTICO	23	COP	4070	INDUSTRIAL	41	RNA	4025	DOMESTICO
6	CEO	4000	DOMESTICO	24	ELC	4010	DOMESTICO	42	RNA	4035	DOMESTICO
7	CEO	4010	DOMESTICO	25	ELC	4020	DOMESTICO	43	RNA	4045	DOMESTICO
8	CEO	4020	DOMESTICO	26	ELC	4030	DOMESTICO	44	TDD	4030	DOMESTICO
9	CEO	4030	COMERCIAL	27	ELC	4040	DOMESTICO	45	TDD	4050	COMERCIAL
10	CEO	4040	COMERCIAL	28	ELC	4050	DOMESTICO	46	TRN	4010	DOMESTICO
11	CEO	4050	COMERCIAL	29	ELC	4060	DOMESTICO	47	TRN	4020	DOMESTICO
12	CEO	4060	COMERCIAL	30	JLD	4000	INDUSTRIAL	48	TRN	4030	COMERCIAL
13	CEO	4070	COMERCIAL	31	JLD	4010	COMERCIAL	49	TRN	4040	COMERCIAL
14	CEO	4080	COMERCIAL	32	JLD	4020	COMERCIAL	50	TRN	4050	COMERCIAL
15	CEO	4090	COMERCIAL	33	JLD	4030	COMERCIAL	51	TRN	4060	DOMESTICO
16	CEO	4100	DOMESTICO	34	JLD	4040	DOMESTICO	52	TRN	4070	DOMESTICO
17	COP	4010	DOMESTICO	35	JLD	4050	INDUSTRIAL	53	TRN	4080	DOMESTICO
18	COP	4020	DOMESTICO	36	JLD	4060	DOMESTICO				

Tabla 5.1: Clasificación de cada circuito de la zona Xalapa.

¹⁶ JLD 4020 y JLD 4070 son los circuitos cuarenta – veinte y cuarenta - setenta de la subestación Jalapa Dos, asimismo los circuitos CEO 4000 y CEO 4040 son los circuitos cuatro mil y cuarenta – cuarenta de la subestación el cerro, mismas que se encuentran ubicadas en la ciudad de Xalapa, Veracruz.

5.3 Prueba 1: Sistema formado por los circuitos JLD 4020 y JLD 4070

5.3.1 Selección del primer circuito

En esta sección se seleccionan dos circuitos con el objeto de aplicar el procedimiento de reducción pérdidas por configuración dinámica.

En este caso se selecciona el circuito JLD 4020 dado que se trata de un circuito con perfil de demanda comercial como se puede verificar en la figura 5.1. Este circuito resalta sobre los demás, debido a que el contenido de carga comercial es alto y puede determinarse gracias al alto valor de demanda que presenta en horarios de demanda intermedia comparado con la demanda en horario de demanda pico.

A este circuito se le busca otro, con perfil de demanda doméstico <paso 2 del diagrama de flujo>.

Figura 5.1: Perfil de demanda del circuito JLD 4020, que se ajusta a un perfil de demanda tipo comercial.

5.3.2 Condiciones técnicas y geográficas

La tabla 4.1 indica que existen 35 circuitos domésticos de los cuales se disponen para seleccionar, todos ellos cumplen con las características de compatibilidad de

magnitud de voltaje, secuencia de fases y ángulo de fase, sin embargo, solo los circuitos CEO¹⁷ 4030, CEO 4050, JLD 4010, JLD 4090, JLD 4030 Y JLD 4070, tienen cercanía geográfica con el primer circuito seleccionado.

De la lista anterior, quedan solamente los últimos dos circuitos ya que su contenido de carga comercial es menor que la de todos los demás. Esto ayuda a que incrementar la diferencia de demanda en horarios de demanda intermedia, se mejora el área de oportunidad para la disminución de pérdidas eléctricas.

Finalmente se selecciona el circuito JLD 4070 para trabajar en configuración dinámica con el circuito JLD 4020 porque físicamente forma ya una configuración en anillo (con operación radial). En la figura 5.2 se muestra el perfil de demanda del circuito JLD 4070.

Figura 5.2: Perfil de demanda de varios días del circuito JLD 4070, con características de un perfil de demanda doméstico.

En la figura 5.3, se muestra la disposición geográfica de los circuitos JLD 4020 y JLD 4070. El rótulo "SE JLD", es la ubicación de la fuente para ambos, la subestación Jalapa Dos.

¹⁷ CEO: Subestación "El cerro", JLD: Subestación "Jalapa dos".

Figura 5.3: Disposición geográfica de los circuitos JLD 4020 y JLD 4070, su fuente se encuentra en la parte inferior izquierda y su punto de enlace actual, en la parte superior central.

5.3.3 Mediciones de los circuitos JLD 4020 y JLD 4070

Las mediciones de los circuitos pueden extraerse directamente de los medidores de los alimentadores en la subestación; sin embargo, es muy común que los medidores registren algunos de los parámetros como lo es la energía en kWh y no la potencia en kW, esto normalmente deriva de que los medidores precisan la energía que demanda el alimentador. Algunos medidores reportan los datos medidos cada 5 minutos y algunos otros cada 10 minutos, por lo que dichas condiciones en los medidores implican acondicionar los reportes de tal forma que puedan ser útiles a nuestras necesidades. Para ello puede ser necesario calcular los parámetros requeridos como los kW a partir de los kWh.

Otra fuente para los datos de las mediciones, es la que corresponde con el SIMOCE¹⁸ de CFE, que básicamente es un enlace en línea con los medidores de todas las subestaciones. Tiene la ventaja de que los datos ya se encuentran

¹⁸ SIMOCE: Sistema de monitoreo de la calidad de la energía, perteneciente a CFE y que tiene la capacidad de extraer y organizar la información de los medidores de los alimentadores de las subestaciones.

acondicionados a conveniencia de esta tesis, y pueden ser seleccionados los parámetros que se necesiten.

El apéndice C, muestra los datos completos de las mediciones que serán utilizados en esta tesis y ahí puede encontrarse la tabla C.1 con las mediciones de los circuitos JLD 4020 y JLD 4070.

5.3.4 Análisis de los datos

La figura 5.4 muestra la gráfica de los datos de la tabla C.1 para el circuito JLD 4020 correspondientes al día 22 de febrero de 2018 y que serán los datos a utilizar en el modelo **<paso 3 del diagrama de flujo>**.

Figura 5.4: Perfiles de demanda activa y demanda reactiva del circuito JLD 4020 el día 22 de febrero de 2018.

La figura 5.5 muestra los datos de la tabla C.1 para el circuito JLD 4070 y que serán los datos a utilizar en el modelo.

Figura 5.5: Perfiles de demanda activa y demanda reactiva del circuito JLD 4070 el día 22 de febrero de 2018.

La figura 5.6 muestra la comparación entre las demandas activas de los dos circuitos un mismo día (22 de febrero de 2018), se puede apreciar una diferencia arriba de 1 MW en los horarios vespertinos, lo cual favorece el análisis.

Figura 5.6: Gráficas de las demandas activas de los circuitos JLD 4020 y JLD 4070 para observar el área de oportunidad en horarios de demanda intermedia.

La tabla 5.2 contiene el resumen de los datos que serán utilizados en el modelo.

Hora	Vprom (V) JLD 4020	lprom (A) JLD 4020	kW tot JLD 4020	kVAR tot JLD 4020	Vprom (V) JLD 4070	lprom (A) JLD 4070	kW tot JLD 4070	kVAR tot JLD 4070
00:00:00	14169	95	2294	423	14044	104	2493	330
01:00:00	14138	89	2126	384	14002	94	2246	313
02:00:00	14162	86	2064	395	14034	86	2070	285
03:00:00	14179	83	2012	393	14056	81	1940	248
04:00:00	14185	82	1979	395	14060	80	1931	258
05:00:00	14160	82	1974	362	14041	82	1970	239
06:00:00	14109	90	2163	368	13990	91	2185	221
07:00:00	14069	99	2386	370	13941	94	2259	187
08:00:00	14078	119	2871	474	13945	103	2461	272
09:00:00	14027	150	3597	587	13907	115	2725	380
10:00:00	14005	174	4147	737	13896	123	2922	450
11:00:00	14000	185	4396	847	13888	130	3069	558
12:00:00	13999	190	4494	897	13899	133	3131	612
13:00:00	14012	193	4572	959	13936	135	3191	630
14:00:00	14021	191	4519	955	13946	136	3222	633
15:00:00	14049	182	4332	925	13963	134	3178	613
16:00:00	14094	175	4164	867	14001	130	3095	570
17:00:00	14128	174	4172	819	14029	132	3153	510
18:00:00	14021	178	4258	717	13914	142	3389	441
19:00:00	14031	182	4351	683	13935	161	3841	456
20:00:00	14079	165	3963	624	13971	157	3753	419
21:00:00	14157	137	3307	516	14039	149	3576	398
22:00:00	14139	116	2802	459	14017	137	3304	347
23:00:00	14155	105	2529	434	14042	118	2841	340

Tabla 5.2: Datos por hora a utilizar en el modelo para la prueba 1.

5.3.5 Modelos de los circuitos

Los circuitos existen modelados en el sistema SynerGEE, a raíz de levantamientos de campo concentrados en la base de datos geográfica de la CFE, por lo que sólo es requerido verificar el modelo, para que se encuentre en congruencia con las condiciones reales **<paso 4 del diagrama de flujo>**.

Una vez verificados los modelos en el sistema, se hace necesario colocar seccionamientos virtuales a lo largo de la configuración en anillo a cada escalón de carga, de tal forma que cada una de ellas se convierta en una opción para la transferencia dinámica.

Para este caso el primero de los seccionamientos queda determinado con la etiqueta "C00" y los demás en sentido inverso al giro de las manecillas del reloj, con el objetivo de tenerlos bien identificados.

El seccionamiento "C08" es el que se encuentra normalmente abierto en las condiciones actuales de los circuitos y toma una gran relevancia, ya que funciona como configuración de referencia para iniciar cada cálculo por horario, dado que las mediciones con las que se cuenta, son referidas a dicha configuración. Por lo tanto, la distribución de la carga, deberá hacerse con la configuración inicial mostrada **<paso 5 del diagrama de flujo>**.

La figura 5.7 muestra los seccionamientos que se adicionan al modelo y que físicamente no existen, pero en el modelo sirven para que el SynerGEE pueda evaluar diferentes combinaciones de configuraciones.

Figura 5.7: Seccionamientos virtuales agregados sobre el anillo entre los circuitos JLD 4020 y JLD 4070.

El seccionamiento inicial se encuentra en dicha posición derivado de que más a la derecha sobre el anillo, se deriva la troncal del circuito JLD 4070 hacia la derecha, representa un escalón de demanda grande para intervenir en la transferencia. De la misma forma se concluye en el "C17" por la misma razón (ver sección 4.9.1).

5.3.6 Utilización del método matemático

En esta sub sección, se describe como se utiliza el método matemático, en forma breve, para estar en condiciones de desarrollar el procedimiento con el primer par de circuitos.

Derivado de la cantidad de elementos que componen un circuito y con la ventaja de que los mismos se encuentran modelados en el sistema SynerGEE en bases de datos de Access; las ecuaciones 4.3 a 4.6, correrán a cargo del sistema. Es necesario que para cada horario se repita el cálculo de las ecuaciones 4.3 y 4.4; sin embargo, con el sistema SynerGEE, se utiliza la herramienta de optimización como se indica en el apéndice B.

Una vez que se cuente con el resultado de las 24n (432) pérdidas conjuntas como se muestra en la tabla 5.4, es posible ordenar los datos como solicita la ecuación 4.1. Para cada uno de los 24 horarios se selecciona la configuración o seccionamiento abierto que arroja las pérdidas mínimas de acuerdo a la ecuación 4.2.

Con el listado de seccionamientos óptimos por horario, es posible seleccionar las maniobras que representen el mínimo de pérdidas diarias, condicionado al número de seccionamientos que se determinen para telecontrolar el anillo de media tensión.

5.3.7 Distribución de la carga

Para llevar a cabo la distribución de la carga en los circuitos, se utiliza la tabla 5.2 columnas 4, 5, 8 y 9 al introducir los datos en los "medidores" del modelo de cada uno de los circuitos como se muestra en la figura 5.8.

Meter: JLD0402	0 ? ×							
₽ < = > 0	₽							
Meter	Edit meter demands.							
Demands								
Reliability	Do not use demands							
Zones	Type Units ◯ Amp ● kVA ● kW, kvar ○ kva, % pf							
Results	Metered Values							
	Overridden by upstream meters Total							
	A B C kW: 1534.4 1534.4 4603.2							
	kvar: 330.7 330.7 330.7 992.1							
	1 Replace with results							
	Allocation Scaling							
	75.0 % < Range for scaling < 150.0 %							
Growth Curve: Unknown ~								
	♦ Apply 🗶 Cancel							

Figura 5.8: Medidor del modelo correspondiente al circuito JLD 4020.

En el apéndice B, se muestra mayor detalle para llevar a cabo la distribución de la carga en los circuitos.

Una vez que la carga se encuentre distribuida, se deben realizar las corridas de flujo para calcular las pérdidas eléctricas de ambos circuitos, se considera que el punto normalmente abierto sea recorrido desde el seccionamiento " C_0 " al " C_{17} " uno a uno.

En la tabla 5.3 se muestra el caso para el horario de 19:00 horas

Tabla 5.3: Cálculo de las pérdidas para todos los casos de un seccionamiento abierto a la vez para t = 19:00 Horas.

SEC. N.A.	PERDIDAS
C00	103.33
C01	103.07
C02	102.8
C03	102.44
C04	102.51
C05	103.01
C06	103.87
C07	104.11
C08	104.55
C09	104.6
C10	104.82
C11	105.08
C12	105.62
C13	105.69
C14	106.14
C15	106.19
C16	106.44
C17	106.56

La figura 5.9 muestra el comportamiento de las pérdidas eléctricas de ambos circuitos contra el seccionamiento exclusivo abierto para t = 19:00 h.

Para cada uno de los horarios que integran la tabla 5.2, se repite el proceso de minimizar la función de pérdidas conjuntas. Se encuentra el resultado resumido en la tabla 5.4 *<paso 6 del diagrama de flujo>*.

Figura 5.9: Comportamiento de las pérdidas eléctricas de ambos circuitos de acuerdo con el seccionamiento exclusivo abierto para t = 19:00 h.

La tabla 5.4 muestra, en resumen, la matriz HS.

Hora	C00	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17
00:00	32.89	32.88	32.78	32.86	32.96	33.32	33.8	34.15	34.14	34.12	34.04	33.95	33.81	33.79	33.71	33.71	33.67	33.66
01:00	27.36	27.34	27.2	27.21	27.27	27.51	27.85	27.94	28.01	28.08	27.99	27.91	27.78	27.76	27.7	27.69	27.67	27.66
02:00	24.58	24.55	24.44	24.37	24.4	24.54	24.77	24.84	24.89	24.94	24.87	24.8	24.71	24.7	24.67	24.67	24.66	24.66
03:00	22.51	22.47	22.4	22.29	22.29	22.38	22.54	22.59	22.63	22.66	22.6	22.56	22.5	22.5	22.49	22.49	22.5	22.51
04:00	22.01	21.98	21.91	21.81	21.81	21.9	22.07	22.12	22.16	22.19	22.13	22.08	22.01	22.01	22	22	22.01	22.01
05:00	22.21	22.18	22.09	22.01	22.03	22.15	22.34	22.39	22.44	22.48	22.41	22.35	22.28	22.27	22.26	22.26	22.26	22.27
06:00	26.97	26.94	26.88	26.83	26.86	27.05	27.32	27.39	27.45	27.51	27.45	27.39	27.31	27.31	27.28	27.28	27.27	27.27
07:00	31.13	31.07	31.01	30.89	30.91	31.05	31.3	31.36	31.42	31.48	31.45	31.42	31.4	31.39	31.4	31.4	31.41	31.42
08:00	42.53	42.42	42.31	42.02	41.99	42.06	42.27	42.34	42.40	42.46	42.47	42.48	42.51	42.52	42.56	42.56	42.59	42.6
09:00	62.53	62.33	62.05	61.45	61.33	61.24	61.35	61.4	61.46	61.51	61.55	61.61	61.73	61.74	61.85	61.87	61.93	61.96
10:00	80.65	80.36	80.03	79.14	78.94	78.69	78.69	78.72	78.76	78.8	78.86	78.94	79.12	79.15	79.32	79.33	79.43	79.48
11:00	91.18	90.85	90.46	89.45	89.21	88.93	88.93	88.96	89.01	89.06	89.13	89.22	89.44	89.47	89.68	89.7	89.82	89.88
12:00	95.69	95.35	94.92	93.86	93.62	93.33	93.33	93.37	93.42	93.47	93.55	93.65	93.88	93.91	94.14	94.16	94.29	94.36
13:00	99.58	99.22	98.83	97.73	97.48	97.18	97.19	97.22	97.28	97.33	97.42	97.53	97.78	97.82	98.07	98.09	98.24	98.31
14:00	98.5	98.16	97.78	96.74	96.51	96.27	96.34	96.39	96.46	96.52	96.62	96.74	97.01	97.05	97.3	97.33	97.48	97.55
15:00	91.89	91.58	91.25	90.34	90.15	89.98	90.11	90.17	90.25	90.33	90.42	90.53	90.79	90.83	91.05	91.08	91.21	91.27
16:00	85.86	85.58	85.31	84.51	84.36	84.27	84.46	84.53	84.62	84.7	84.8	84.91	85.16	85.2	85.42	85.44	85.57	85.63
17:00	85.86	85.58	85.31	84.51	84.36	84.27	84.46	84.53	84.62	84.7	84.8	84.91	85.16	85.2	85.42	85.44	85.57	85.63
18:00	91.81	91.52	91.23	90.54	90.45	90.53	90.9	91.02	91.15	91.28	91.42	91.59	91.94	91.99	92.29	92.32	92.5	92.58
19:00	103.33	103.07	102.8	102.44	102.51	103.01	103.87	104.11	104.36	104.6	104.82	105.08	105.62	105.69	106.14	106.19	106.44	106.56
20:00	90.05	89.87	89.72	89.64	89.79	90.48	91.47	91.74	92.00	92.26	92.44	92.63	93.05	93.1	93.45	93.48	93.67	93.76
21:00	69.63	69.58	69.53	69.86	70.15	71.07	72.25	72.55	72.82	73.09	73.16	73.23	73.38	73.4	73.53	73.54	73.61	73.65
22:00	53.74	53.75	53.78	54.24	54.54	55.46	56.57	56.85	57.09	57.33	57.29	57.25	57.19	57.18	57.15	57.15	57.14	57.13
23:00	41.46	41.44	41.38	41.59	41.76	42.33	43.04	43.22	43.37	43.52	43.45	43.38	43.25	43.24	43.16	43.16	43.13	43.11

Tabla 5.4: Resumen de pérdidas horarias por cada uno de los seccionamientos cuando están normalmente abiertos t = 0 a 23:00 horas e i = 0 a 17, Matriz *HS*.

Como puede verse en la figura 5.10, los seccionamientos que participan en forma horaria son "C00", "C02", "C03", "C04" y "C05"; por lo cual los demás seccionamientos son innecesarios para este estudio.

Figura 5.10: Selección de seccionamientos que minimizan la función de pérdidas conjuntas para cada hora del día.

5.4 Resultados de la prueba 1

5.4.1 Selección de los seccionamientos que generan la menor pérdida

La tabla 5.4 muestra las pérdidas que se obtienen de ambos circuitos, se considera que la configuración de los circuitos es con el seccionamiento de cada columna exclusivamente abierto *<paso 7 del diagrama de flujo>*.

Se resalta en la tabla 5.4, para cada horario, el valor mínimo de perdidas, por lo que es sencillo verificar que el traslado de carga se lleva a cabo entre los primeros cinco seccionamientos.

5.4.2 Pruebas en diferentes casos de combinaciones de transferencia de carga y sus resultados

De los seis seccionamientos "C00" al "C05" el "C01" no se encuentra relacionado en los "óptimos" aunque se deduce que en horarios de 21:30 y 22:30, es un seccionamiento óptimo factible sólo por unos minutos.

En la tabla 5.5 se comparan las pérdidas del conjunto en kWh al día. Se considera la configuración estática para cada seccionamiento como N.A. Para el caso de

mantener el seccionamiento "C08" como punto abierto en la configuración del circuito (como se encuentran actualmente los circuitos), se tiene un total perdido diario de 1492.16 kWh)

SECCIONAMIENTO	kWh AL DIA
C00	1493.95
C01	1490.07
C02	1485.40
C03	1476.33
C04	1475.68
C05	1479.00
C06	1487.22
C07	1489.90
C08	1492.16
C09	1494.42
C10	1495.14
C11	1496.14
C12	1498.81
C13	1499.22
C14	1502.04
C15	1502.34
C16	1504.07
C17	1504.92

Tabla 5.5: Pérdidas al día. Se considera la configuración con el seccionamiento indicado, abierto.

5.4.3 Selección del grupo de seccionamientos y sus resultados

Caso I: Se considera hipotéticamente que se utilizan 5 seccionamientos telecontrolados, el resultado sería la suma de los kWh resaltados en azul de la tabla 5.4 y es el mínimo de pérdidas que se puede obtener en dicha configuración del anillo.

La tabla 5.6 tiene un resumen de la secuencia de maniobras que debe efectuarse para llevar a cabo la configuración dinámica con cinco seccionamientos.

El resultado de las pérdidas totales al operar de esta forma es de 1471.51 kWh.

Hora	CIERRE	APERTURA
02:00	C02	C03
08:00	C03	C04
09:00	C04	C05
18:00	C05	C04
19:00	C04	C03
21:00	C03	C02
22:00	C02	C00
23:00	C00	C02

Tabla 5.6: Secuencia de maniobras que se deberán realizar cuando se instalan 5 seccionadores.

Caso II: Se considera que se dispone de 4 seccionamientos tele controlados, y con base en el caso anterior, se descarta el seccionamiento "C01"¹⁹, entonces la secuencia de maniobras horarias es como se muestra en la tabla 5.7.

Hora	CIERRE	APERTURA
02:00	C02	C03
08:00	C03	C04
09:00	C04	C05
18:00	C05	C04
19:00	C04	C03
21:00	C03	C02

El resultado de las pérdidas totales al operar de esta forma es de 1471.55 kWh.

Caso III: Se considera que se dispone de 3 seccionamientos telecontrolados, y con base en el caso anterior, se descarta el seccionamiento "C04"²⁰, entonces la secuencia de maniobras horarias es como se muestra en la tabla 5.8.

Tabla 5.8: Secuencia de maniobras que se deberán realizar cuando se instalan 3 seccionadores.

Hora	CIERRE	APERTURA
02:00	C02	C03
09:00	C03	C05
19:00	C05	C03
21:00	C03	C02

El resultado de las pérdidas totales al opera de esta forma es de 1471.66 kWh.

¹⁹ Otra opción para descartar es el seccionamiento "C04", sin embargo, el resultado de dichas pérdidas es 1473.83 kWh; superior al seleccionado.

²⁰ Otra opción para descartar es el seccionamiento "C03", sin embargo, el resultado de dichas pérdidas es 1472.75 kWh; superior al seleccionado.

Caso IV: Se considera que se dispone de 2 seccionamientos tele controlados, y con base en el caso anterior, se descarta el seccionamiento "C03"²¹, entonces la secuencia de maniobras horarias es como se muestra en la tabla 5.9.

 Tabla 5.9: Secuencia de maniobras que se deberán realizar cuando se instalan 2 seccionadores.

Hora	CIERRE	APERTURA
08:00	C02	C05
19:00	C05	C02

El resultado de las pérdidas totales al operar de esta forma es de 1472.64 kWh.

Caso V: Finalmente se considera que se dispone de un sólo seccionamiento telecontrolado, y con base en el caso anterior, se selecciona como seccionamiento abierto "C04", por lo que no se requieren realizar maniobras durante el día. La tabla 5.5 se utiliza para justificar esta selección. Para este caso las perdidas mínimas del conjunto son de 1475.68 kWh.

Es de resaltar que la tabla 5.5 es de utilidad para obtener el valor de las pérdidas totales para la configuración original, con el seccionamiento "C08" abierto, con pérdidas de 1492.16 kWh.

Figura 5.11: Resumen de pérdidas totales mínimas con relación a los seccionamientos que se involucran.

²¹ Otra opción para descartar es el seccionamiento "C05", sin embargo, el resultado de dichas pérdidas es 1472.92 kWh; superior al seleccionado.

La figura 5.11 muestra la relación que existe en las pérdidas eléctricas en media tensión del conjunto contra el número de seccionamiento involucrados en la transferencia dinámica. La figura 5.12 muestra los ahorros para cada caso empezando con un solo seccionamiento (caso V).

Figura 5.12: Resumen de pérdidas que se ahorran respecto a las condiciones iniciales del circuito.

Para este par de circuitos se obtiene una diferencia de 16.48 kWh al día únicamente se considera la reubicación del seccionamiento del "C08" al "C04". Para el caso de realizar la transferencia dinámica con dos seccionadores se reubica el seccionamiento "C08" al "C05" y se instala uno adicional en el seccionamiento "C03" con un ahorro de 19.41 kWh. El involucramiento de más seccionamientos no representa mejoras considerables al ahorro.

5.5 Resultados de la prueba 1 utilizando MATLAB

Los resultados que se obtienen mediante MATLAB son los siguientes

		======	-===		
Perdidas mínim	mas = 1471.	51 kW,	con	5 secc	ionamientos
===== Secciona	amientos y	kW ====	==		
HORA	Secc C-	kW			
00:00	2	32.78			
01:00	2	27.2			
02:00	3	24.37			
03:00	3	22.29			
04:00	3	21.81			
05:00	3	22.01			
06:00	3	26.83			
07:00	3	30.89			
08:00	4	41.99			
09:00	5	61.24			
10:00	5	78.69			

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00	5 5 5 5 5 5 4 3 2 0 2	88.93 93.33 97.18 96.27 89.98 84.27 84.27 90.45 102.44 89.64 69.53 53.74 41.38		
=================				
Perdidas mínima ===== Seccionar	as = 1471. mientos y	.55 kW, cor kW =====	n 4 seccionami	entos
HORA 00:00	Secc C- 2	k₩ 32.78		
01:00	2	27.2		
02:00	3	24.37 22.29		
04:00	3	21.81		
05:00	3	22.01		
06:00	3	26.83		
07:00	3	30.89 41.99		
09:00	5	61.24		
10:00	5	78.69		
11:00	5	88.93		
13:00	5	97.18		
14:00	5	96.27		
15:00	5	89.98		
16:00	5	84.27		
18:00	4	90.45		
19:00	3	102.44		
20:00	3	89.64		
21:00	2	69.53 53.78		
23:00	2	41.38		
Perdidas mínima	as = 1471.	.66 kW, cor	n 3 seccionami	entos
===== Seccionar	mientos y	kW =====		
	Secc C- 2	KW 32 78		
01:00	2	27.2		
02:00	3	24.37		
03:00	3	22.29		
04:00 05:00	২	21.81 22 01		
06:00	3	26.83		
07:00	3	30.89		
08:00	3	42.02		

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00	5 5 5 5 5 5 5 5 5 3 3 2 2 2 2	61.24 78.69 88.93 93.33 97.18 96.27 89.98 84.27 84.27 90.53 102.44 89.64 69.53 53.78 41.38	
Perdidas mínim	nas = 1472.	.64 kW, con 2 seccionamientos	
===== Secciona	amientos y	kW =====	
HORA	Secc C-	kW	
00:00	2	32.78	
01:00	2	27.2	
02:00	2	24.44	
03:00	5	22.38	
04:00	5	21.9	
05:00	2	22.09	
06:00	2	26.88	
07:00	Z	31.01	
08:00	5	42.06	
10:00	5	01.24 79.60	
11:00	5	/0.09 88 93	
12.00	5	93 33	
13.00	5	97 18	
14.00	5	96.27	
15.00	5	89 98	
16.00	5	84 27	
17:00	5	84.27	
18:00	5	90.53	
19:00	2	102.8	
20:00	2	89.72	
21:00	2	69.53	
22:00	2	53.78	
23:00	2	41.38	
================		=======	
Perdidas mínin	nas = 1475.	.68 kW, con 1 seccionamiento	
===== Secciona	amientos y	kW =====	
HORA	Secc C-	KŴ	
00:00	4	32.96	
00:10	4	$\angle I \cdot \angle I$	
02:00	4	24.4	
03:00	4	22.29	
04:00	4	21.01 22.02	
05:00	4	22.03	
00:00	4	20.00	

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00	4 4 4 4 4 4 4 4 4 4 4 4 4 4	30.91 41.99 61.33 78.94 89.21 93.62 97.48 96.51 90.15 84.36 84.36 84.36 90.45 102.51 89.79
19:00	4	102.51
20:00	4	89.79
21:00	4	70.15
22:00	4	54.54
23:00	4	41.76

Mismos que corresponden con lo indicado en la sección anterior

5.6 Prueba 2: Sistema formado por los circuitos CEO 4000 y CEO 4040

5.6.1 Selección de los dos circuitos

Se seleccionan dos circuitos, el CEO 4000 y el CEO 4040²². El primero de ellos tiene una carga predominante del tipo doméstica tal como se muestra en la figura 5.13, mientras que el segundo cuenta con un grado de carga comercial suficiente para llevar a cabo el estudio deseado y su perfil de demanda se muestra en la figura 5.14 *<paso 2 del diagrama de flujo>*.

La figura 5.13 contiene los perfiles de demanda activa y reactiva del circuito CEO 4000 en el que se muestra que el perfil corresponde con el tipo de carga doméstica, esto es muy importante, porque determina una diferencia de potencia activa aproximadamente de 1.5 MW entre los horarios de demanda intermedia y de demanda punta.

La figura 5.14 contiene los perfiles de demanda activa y reactiva del circuito CEO 4040 en el que se muestra que el perfil corresponde con el tipo de carga comercial, y a diferencia del perfil de la gráfica 5.13; éste tiene una demanda máxima en horario de demanda intermedia superior a la demanda máxima en horario de demanda con una diferencia de aproximadamente 0.3 MW.

²² CEO 4000 y el CEO 4040 "El cerro cuatro mil" y "el cerro cuarenta cuarenta" respectivamente.

Figura 5.14: Perfil de demanda para el circuito CEO 4040 el día 10 de abril de 2018.

En la figura 5.15, se detecta una doble área de oportunidad, la primera cuando en horarios de demanda punta en la que el circuito domestico supera al comercial y en el caso del horario de demanda intermedia es, al contrario **<paso 3 del diagrama de flujo>**.

Figura 5.15:Comparación de los perfiles de carga de los circuitos CEO 4000 y CEO 4040.

5.6.2 Ubicación de los seccionamientos dinámicos

Se considera para el presente estudio la configuración de los circuitos tal como aparece en la figura 5.16.

Figura 5.16: Condiciones de operación actual de los circuitos CEO 4000 y CEO 4040.

La figura 5.16 muestra la sección final del anillo entre los dos circuitos y se determina, para este caso, que el seccionador normalmente abierto que físicamente opera así, será llamado "C00". En el modelo se deben agregar tantos seccionamientos (virtuales) como sea necesario para que cada uno de ellos se convierta en una opción de seccionamiento que permita obtener las pérdidas mínimas. La numeración será consecutiva en sentido antihorario en la región del anillo **<paso 4 y 5 del diagrama de flujo>**.

La figura 5.17 muestra la ubicación que se da a los conmutadores virtuales en SynerGEE para llevar a cabo esta prueba.

Figura 5.17: Ubicación de los conmutadores virtuales para el desarrollo de la prueba 2.

5.6.3 Rango de aplicación del método

La tabla 5.10 muestra la matriz *HS* que ordena los resultados obtenidos del SynerGEE para estos dos circuitos, en los que puede apreciarse de una manera rápida, que sólo se existen dos seccionamientos que reducen las pérdidas durante el día, a diferencia del par entre el JLD 4020 y JLD 4070, mismos que podían combinar hasta 5 seccionamientos <*paso 6 del diagrama de flujo>*.

Hr	C00	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
0	68.5	68.2	67.4	65.5	65.4	61.5	54.5	53.2	52.6	48.1	47.9	48.0	48.0	48.0	48.0	47.9	49.2	49.4	54.7	56.6	56.8
1	52.1	51.9	51.3	50.0	49.9	47.1	42.0	41.1	40.6	37.5	37.4	37.6	37.6	37.6	37.6	37.6	38.7	38.9	43.0	44.5	44.7
2	44.5	44.3	43.8	42.7	42.6	40.2	36.0	35.3	34.9	32.4	32.3	32.5	32.5	32.5	32.5	32.5	33.5	33.7	37.3	38.5	38.7
3	41.9	41.7	41.3	40.3	40.2	38.0	34.1	33.4	33.1	30.7	30.7	30.9	30.9	30.9	30.9	30.9	31.9	32.1	35.5	36.7	36.8
4	42.1	41.9	41.5	40.4	40.3	38.0	33.9	33.2	32.9	30.3	30.2	30.4	30.4	30.4	30.4	30.4	31.4	31.5	34.9	36.1	36.2
5	42.1	41.9	41.5	40.4	40.3	38.0	33.9	33.2	32.9	30.3	30.2	30.4	30.4	30.4	30.4	30.4	31.4	31.5	34.9	36.1	36.2
6	49.1	48.9	48.3	46.9	46.8	44.0	38.9	37.9	37.5	34.1	34.0	34.1	34.1	34.1	34.1	34.0	34.9	35.1	38.9	40.2	40.4
7	71.1	70.7	69.8	67.8	67.6	63.4	55.5	54.1	53.4	48.2	47.9	47.8	47.8	47.8	47.8	47.7	48.8	49.0	54.3	56.2	56.4
8	89.7	89.2	88.2	85.7	85.5	80.3	70.8	69.1	68.3	62.1	61.9	61.9	61.9	61.9	61.9	61.8	63.3	63.5	70.3	72.7	73.0
9	80.7	80.3	79.5	77.7	77.5	73.7	67.0	65.7	65.2	61.3	61.1	61.7	61.8	61.8	61.8	61.8	63.9	64.2	70.7	72.9	73.1
10	86.4	86.1	85.3	83.3	83.2	79.2	72.1	70.8	70.2	66.2	66.1	66.8	66.8	66.9	66.9	66.9	69.2	69.5	76.5	78.8	79.1
11	92.7	92.3	91.4	89.4	89.2	85.0	77.7	76.4	75.8	71.6	71.5	72.3	72.3	72.5	72.5	72.5	75.0	75.3	82.8	85.4	85.7
12	98.1	97.7	96.8	94.5	94.4	89.7	81.5	80.0	79.3	74.6	74.4	75.2	75.2	75.3	75.3	75.3	77.8	78.1	86.0	88.7	89.0
13	94.6	94.2	93.3	91.1	90.9	86.3	78.2	76.7	76.0	71.3	71.1	71.7	71.7	71.8	71.8	71.8	74.2	74.5	82.0	84.6	85.0
14	88.6	88.2	87.3	85.2	85.1	80.7	73.0	71.7	71.0	66.5	66.3	66.9	66.9	67.0	67.0	67.0	69.1	69.4	76.5	78.9	79.2
15	90.4	90.0	89.1	87.0	86.8	82.3	74.3	72.9	72.2	67.4	67.2	67.8	67.8	67.9	67.9	67.8	70.0	70.3	77.5	79.9	80.2
16	86.0	85.6	84.8	82.7	82.5	78.3	70.6	69.3	68.6	64.1	63.9	64.4	64.4	64.5	64.5	64.5	66.6	66.8	73.7	76.0	76.3
17	84.5	84.1	83.3	81.3	81.1	77.0	69.6	68.2	67.6	63.2	63.1	63.6	63.6	63.7	63.7	63.7	65.7	66.0	72.7	75.0	75.3
18	86.7	86.3	85.4	83.2	83.0	78.5	70.5	69.0	68.3	63.4	63.2	63.6	63.6	63.7	63.7	63.6	65.6	65.8	72.6	75.0	75.3
19	103.	102.	101.	99.0	98.8	93.0	82.5	80.5	79.6	72.9	72.7	72.8	72.8	72.8	72.8	72.7	74.6	74.9	82.7	85.5	85.9
20	162.	161.	159.	154.	153.	143.	124.	121.	119.	107.	106.	105.	105.	105.	105.	105.	107.	107.	119.	123.	123.
21	167.	166.	164.	159.	159.	148.	128.	124.	122.	109.	108.	107.	107.	107.	107.	107.	108.	109.	120.	125.	125.
22	144.	143.	141.	137.	137.	128.	111.	108.	106.	95.3	94.8	94.2	94.1	94.1	94.1	93.8	95.5	95.8	106.	109.	110.
23	91.7	91.2	90.1	87.5	87.3	81.8	71.8	70.0	69.1	62.5	62.2	62.1	62.0	62.1	62.1	61.9	63.3	63.5	70.3	72.7	73.0

Tabla 5.10: Pérdidas en kW que se generan cuando el seccionamiento "C", se encuentra abierto en cada horario (únicamente se muestran resultados hasta el seccionamiento C20).

Para el caso de los circuitos CEO 4000 y CEO 4040, el rango máximo entre los que puede desplazarse carga es entre el "C10" y "C15" tal como se muestra en las figuras 5.18 y 5.19, esto se determina al utilizar los valores con máxima diferencia en horarios de demanda intermedia y de la misma forma en horarios de demanda punta.

Figura 5.18: Seccionamiento óptimo más cercano al "C00".

Figura 5.19: Seccionamiento óptimo más alejado del "C00".

5.7 Resultados de la prueba 2

5.7.1 Análisis de los resultados

Los resultados del análisis de ambos circuitos es el siguiente:

Con el seccionamiento C00 abierto, se tiene un total de pérdidas de 2058.74 kWh al día (configuración inicial) **<paso 7 del diagrama de flujo>**.

La tabla 5.11 muestra las pérdidas en configuración estática para cada uno de los seccionamientos abiertos en forma exclusiva durante todo el día.

Tabla 5.11: Perdidas en configuración estática. Se considera cada seccionamiento exclusivamente abierto durante todo el día.

Secc	kWh al dia
C00	2058.74
C01	2048.98
C02	2026.47
C03	1972.48
C04	1968.23
C05	1855.87
C06	1652.93
C07	1615.79
C08	1598.18
C09	1470.01
C10	1464.9
C11	1469.8
C12	1469.72
C13	1470.94
C14	1470.94
C15	1469.22
C16	1509.98
C17	1515.19
C18	1673.48
C19	1729.21
C20	1736.07

Caso I: Si se considera tener un solo punto abierto, entonces el seccionamiento que tiene las mínimas pérdidas manteniéndose abierto, es el C10 con un valor de 1464.9 kWh al día.

Caso II: Si se consideran tener dos seccionamientos que trabajan en forma dinámica se obtiene un valor de 1461.11 kWh al día.

No es posible para este par de circuitos, encontrar tres o más seccionamientos que trabajen de manera conjunta para reducir aún más las pérdidas con la configuración inicial como se muestra en la figura 5.20.

Figura 5.20: Selección de seccionamientos que generan las pérdidas mínimas en media tensión por cada hora del día.

La tabla 5.12 muestra la secuencia de maniobras que deben llevarse a cabo durante el día con los seccionamientos C10 y C15 para los circuitos CEO 4000 y CEO 4040.

Tabla 5.12: Secuencia de maniobras para llevar a cabo la configuración dinámica con losseccionamientos C10 y C15 entre los circuitos CEO 4000 y CEO 4040.

Hora	CIERRE	APERTURA
00:00	C15	C10
07:00	C10	C15
09:00	C15	C10
20:00	C10	C15

La figura 5.21 muestra las pérdidas eléctricas del conjunto se considera las condiciones actuales con C00 abierto, con C10 abierto y al utilizar el conjunto C10-C15 en configuración dinámica.

Figura 5.21: Resumen de pérdidas totales mínimas con relación a los seccionamientos que se involucran.

La figura 5.22 muestra los ahorros en energía eléctrica perdida al día, por acción de operar los circuitos en configuración estática con C10 abierto y con configuración dinámica con C10 y C15 alternándose la función de abierto.

Figura 5.22: Resumen de pérdidas que se ahorran respecto a las condiciones iniciales del circuito.

5.8 Resultados de la prueba 2 utilizando MATLAB

Utilizando MATLAB se obtienen los siguientes resultados

Perdidas m	ínimas = 1461.	11 kW, con	2 seccionamientos
===== Secc	ionamientos y	kW =====	
HORA	Secc C-	kW	
00:00	10	47.87	
01:00	10	37.39	
02:00	10	32.26	
03:00	10	30.65	
04:00	10	30.23	
05:00	10	30.23	
06:00	10	33.99	
07:00	15	47.73	
08:00	15	61.78	
09:00	10	61.14	
10:00	10	66.1	
11:00	10	71.52	
12:00	10	74.43	
13:00	10	71.09	
14:00	10	66.3	
15:00	10	67.24	
16:00	10	63.92	
17:00	10	63.07	
18:00	10	63.23	
19:00	10	72.65	
20:00	15	105.37	
21:00	15	107.17	
22:00	15	93.84	
23:00	15	61.91	
		· · · · ·	
Perdidas m	inimas = 1464.	9 kW, con 1	l seccionamiento
===== Secc	ionamientos y	KM =====	
HORA	Secc C-	KW	
00:00	10	4/.8/	
01:00	10	37.39	
02:00	10	32.20	
03:00			
04 • 00	10	30.65	
01.00	10	30.65 30.23	
05:00	10 10 10	30.65 30.23 30.23	
05:00	10 10 10	30.65 30.23 30.23 33.99	
05:00 06:00 07:00	10 10 10 10	30.65 30.23 30.23 33.99 47.93	
05:00 06:00 07:00 08:00	10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85	
05:00 06:00 07:00 08:00 09:00	10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14	
05:00 06:00 07:00 08:00 09:00 10:00	10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1	
05:00 06:00 07:00 08:00 09:00 10:00 11:00	10 10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52	
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00	10 10 10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52 74.43	
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00	10 10 10 10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52 74.43 71.09	
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00	10 10 10 10 10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52 74.43 71.09 66.3	
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00	10 10 10 10 10 10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52 74.43 71.09 66.3 67.24	
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00	10 10 10 10 10 10 10 10 10 10 10 10 10	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52 74.43 71.09 66.3 67.24 63.92	
05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	30.65 30.23 30.23 33.99 47.93 61.85 61.14 66.1 71.52 74.43 71.09 66.3 67.24 63.92 63.07	

19:00	10	72.65
20:00	10	106.38
21:00	10	108.5
22:00	10	94.77
23:00	10	62.16

5.9 Comparación entre los resultados

De acuerdo con los resultados de aplicar el método entre un par de circuitos, es posible observar que se reducen las pérdidas eléctricas en media tensión al analizar las pérdidas de todos los horarios en diferentes configuraciones de los circuitos. En el primer caso se tiene la oportunidad de llevar a cabo la transferencia hasta con cinco seccionamientos, sin embargo; en la segunda prueba, únicamente existen dos seccionamientos entre los cuales puede transferirse la carga.

Si se analiza la tabla 5.10, es posible verificar que cuando se realiza una optimización en horarios de demanda pico y se involucran combinaciones de circuitos comerciales con domésticos, ése horario no genera la mejor solución al problema de minimizar las pérdidas. Cada caso tendrá su valor mínimo de acuerdo con la configuración de los circuitos y la forma que tenga el perfil de las demandas de cada uno.

Capítulo 6. Conclusiones, aportaciones y trabajos futuros

6.1 Conclusiones

Una vez analizados los resultados en SynerGEE y MATLAB, se determina que, en la prueba 1, se pueden tener hasta 5 seccionamientos para realizar conmutaciones para la transferencia de carga en configuración dinámica a lo largo del día. Los beneficios en ahorros en energía eléctrica perdida por reubicar el seccionamiento estático a un nuevo punto son ligeramente mayores a 16 kWh al día. Pasar de una configuración estática a una configuración dinámica es factible y representa ahorros adicionales de energía eléctrica perdida, sin embargo; como lo muestran los resultados de cada uno de los casos, pasar de una configuración estática con un solo seccionamiento a una configuración dinámica con dos seccionamientos y posteriormente a tres, cuatro y así sucesivamente, generará ahorros cada vez menos significativos.

La prueba 2 por su parte nos indica que, para ese sistema, únicamente es posible contar con dos seccionamientos para realizar las conmutaciones para la transferencia de carga en configuración dinámica a lo largo del día. Los beneficios en ahorros en energía eléctrica perdida por reubicar el seccionamiento estático a un nuevo punto son mayores a 500 kWh al día, lo cual es considerable. Pasar de una configuración estática a una configuración dinámica es factible y representa ahorros adicionales de energía eléctrica perdida.

Cuando los circuitos cuentan con perfiles similares en forma, es suficiente con optimizar los circuitos en demanda máxima y no es requerido aplicar este procedimiento. Cuando los perfiles de demanda no tengan la misma forma, es importante utilizar este procedimiento ya que el seccionamiento óptimo no precisamente se encuentra en horario de demanda pico.

Si los circuitos tienen una reconfiguración reciente, antes de considerar los seccionamientos dinámicos, deberán recogerse las nuevas mediciones de los mismos ya reconfigurados físicamente, para verificar cómo se reacomodaron los perfiles de carga en los mismos.

El código de MATLAB que se utiliza con dos alimentadores en la tesis, puede ser utilizado para más de dos circuitos si se identifica claramente cada una de las configuraciones de los circuitos involucrados (las combinaciones en que puede operarse la red). Durante el desarrollo de la tesis se utiliza SynerGEE; sin embargo, es factible utilizar cualquier sistema que emita los resultados las pérdidas eléctricas de los circuitos.

6.2 Aportaciones

Se describe un método que determina dos o más puntos normalmente abiertos en forma exclusiva, entre dos circuitos de distribución con configuración en anillo y operación radial, que genera las pérdidas eléctricas mínimas para ambos aprovechando las diferencias en los perfiles de demanda.

Se brindan herramientas para calcular y comparar los resultados obtenidos del párrafo anterior y esto permite tomar decisiones de cómo operar los dos circuitos mediante un código escrito en MATLAB.

El código de MATLAB analiza la matriz HS de 24xn y la reduce a una matriz de 24xl, en donde "l" son los seccionamientos para realizar conmutaciones, para la transferencia de carga en configuración dinámica a lo largo del día. Si l>2 entonces se va eliminando el seccionamiento que da los menores beneficios y se despliega nuevamente la matriz reducida. Cuando sólo queda un seccionamiento, se selecciona el que ofrece la menor pérdida eléctrica y se despliega.

Este código es suficiente para que, quien cuente con los datos de dos circuitos como en la ecuación 4.1, pueda obtener resultados sin tener que llevar a cabo un análisis manual; lo que permite observar si existe un beneficio al llevarlas a configuración dinámica o no y si representa un beneficio el reubicar un seccionamiento estático normalmente abierto.

Sirve de base para trabajos futuros donde se pueda involucrar una mayor cantidad de circuitos y se pueda decidir una configuración dinámica para una configuración mallada con operación radial; para llevar este análisis a un simulador y precisar los resultados con tiempos de muestreo menores a una hora y para que con las mediciones en tiempo real y con los historiales de las mismas se pueda llevar a cabo una decisión de conmutación en tiempo real.

6.3 Trabajos futuros

Para trabajos futuros, pueden ser considerados los siguientes temas:

Configuración dinámica para un conjunto de circuitos cuando se encuentran mallados con operación radial, cada uno con perfil de demanda particular.

Analizar los perfiles de demanda de circuitos industriales, que presentan una gran variación de potencia en horarios fuera de jornada con relación a los horarios dentro de jornada, y buscar la conmutación por semana, mensual o estacional.

Minimización de pérdidas durante condiciones n-1 en las redes de distribución, ya sea por libranzas o por emergencias, se busca la optimización de las mismas con el aprovechamiento de los equipos tele controlados.

Buscar la optimización en tiempo real de acuerdo con las mediciones de dos o más alimentadores, considerando el uso de un simulador.

REFERENCIAS

Apendice A.

- [1] Secretaría de energía, «Prospectiva del sector eléctrico 2017 2031, pag 40,» SENER, México D.F. 03100, 2017.
- [2] Comision federal de electricidad, «Datos básicos de la zona Xalapa,» CFE, Xalapa, Veracruz, 2018.
- [3] Comisión federal de electricidad, «DMED, Demandas máximas registradas en los medidores,» CFE, Xalapa. Veracruz, 2017.
- [4] Comisión reguladora de energía, «Ley de CFE,» *Diario oficial de la federación,* vol. I, nº 1, p. 3 de 51, 11 08 2014.
- [5] Secretaría de energía, «Ley de la industria eléctrica,» *Diario Oficial de la Federación,* vol. I, nº 1, p. 58, 11 08 2014.
- [6] P. Fishbane, S. Gasiorowicz y S. Thornton, Physics for scientist and engineers, Virginia: Prentice Hall, 2005.
- [7] R. Jiménez, T. Serebrisky y J. Mercado, «Sizing electicity losses in transmission and distribution systems in Latin America and the Caribbean,» Inter-American Development Bank, Washington, 2014.
- [8] A. Aguila, D. Carrión y L. Ortiz, «Analysis of power losses in asymetric construction of electric distribution systems,» *IEEE Latin america transactions*, vol. 13, nº 7, pp. 2190-2194, 2015.
- [9] Cámara argentina de la construción, «Reducción de pérdidas en sistemas de transmisión y distribución,» 01 12 2013. [En línea]. Available: http://www.camarco.org.ar/File/GetPublicFile?id=1707. [Último acceso: 26 05 2018].
- [10] Consejo Mundial de la Energía, «La red de líderes del sector energético que promueve el suministro y uso sostenible de la energía en beneficio de todos,» 01 01 2014. [En línea]. Available: www.worldenergy.org. [Último acceso: 15 05 2018].
- [11] J. Jerome, «Distribution network reconfiguration and reactive power compensation,» *IEEE Sirindhorn International Institute of Technology,*

THAILAND, vol. I, nº 1, pp. 177 - 183, 2001.

- [12] S. Wang, Nikovski y Z. J, «Flex-grid: a dynamic and adaptive configurable power distribution system,» Mitsubishi Electrics Resaearch Laboratories, Cambridge, Massachusetts, 2015.
- [13] D. Bernardon, L. Canha, A. Abaide, V. Garcia, M. Sperandio y L. Pfitscher, «Automatic restoration of power supply considering islanded operation of distribution network,» 4th International conference on power engineering, energy and electrical drives, vol. 13, nº 17, pp. 58-63, 2013.
- [14] W. H. Kersting, Distribution system modeling and analysis, Las Cruces New Mexico: CRC PRESS, 2001.
- [15] F. Hosseinzadeh, B. Alinejad y K. Pakfar, «A new technique in distribution network recunfiguration for loss reduction and optimum operation,» *CIRED*, vol. 475, nº 1, p. 3, 2009.
- [16] T. Yenn-Ming, Y.-L. Ke y M.-S. Kang, «Generic Switching Actions of Distribution System Operation Using Dynamic Programming Method,» *IEEE*, vol. 1, nº 1-4244-0336, pp. 1-7, 2006.
- [17] G. Pineda y J. Pedroza, «Energía a debate,» PwC Mexico, 30 06 2016. [En línea]. Available: www.energiaadebate.com/peridas-electricas-en-mexico. [Último acceso: 15 05 2018].
- [18] G. Martínez Ruiz, Ubicación óptima de dispositivos de desconexión en redes de distribución mediante un algoritmo genético, Mexico, DF: IPN, 2013.
- [19] O. Leyva Álvarez, Metodología para el reforzamiento de redes de distribución en base a confiabilidad, Mexico DF: IPN, 2011.
- [20] K. Kouzelis, «Load and flexibility models for distribution grid management,» Aalborg University, Aalbrorg, 2015.
- [21] M. Busrah, M. Teng y M. Mohamad, «End user load profile analysis por distribution system planning,» *CIRED*, vol. 82, nº 21 Int conference on Electricity Distribution, pp. 1-4, 2011.
- [22] A. Mutanen, M. Ruska, S. Repo y P. Järventausta, «Customer classification and load profiling method for distribution systems,» *TPRWD*, vol. 1, n^o TPWRD-00616-2010, pp. 1-9, 2010.

- [23] L. Willis, Power distribution planning reference book, Raleigh, North Carolina: Marcel Dekker, 2004.
- [24] J. Dickert y P. Schegner, «Residential load models for network planning purposes,» Institute of electrical power systems and high voltage engineering, Dresden, Germany, 2010.
- [25] A. Grandjean, G. Binet, J. Bieret, J. Adnot y B. Duplessis, «A functional analysis of electrical load curve modelling for some households specific electric end-uses,» HAL, Paris France, 2013.
- [26] Electric Power Research Institute, «EPRI Electric power research institute,» EPRI 3420 Hillview Avenue, Palo Alto, California 94304, 01 01 2018. [En línea]. Available: http://loadshape.epri.com/enduse. [Último acceso: 24 03 2018].
- [27] P. Price, «Methods for analyzing electric load,» Berkely Lau, California, 2010.
- [28] CFE, «Tarifas horarias,» CFE, 01 01 2018. [En línea]. Available: http://app.cfe.mx/Aplicaciones/CCFE/Tarifas/Tarifas/tarifas_negocio.asp. [Último acceso: 26 05 2018].
- [29] L. Leithold, El cálculo con geometría analítica, New York: Harla, 1998.
- [30] H. Tobares y J. Hernández, «Mapeo de curvas típicas demanda de energía eléctrica del sector residencial, comercial e industrial de la ciudad de Medellín, usando redes neuronales artificiales y algoritmos de interpolación,» *Facultad de Ingeniería de Antioquia*, vol. 1, nº 46, pp. 110-118, 2008.
- [31] J. Nilsson, Circuitos eléctricos, Wilmington Delaware: Addison Wesley Iberoamericana, 1995.
- [32] Comisión reguladora de energía, «Código de red,» *Diario oficial de la federación,* vol. 1, nº Tercera sección, pp. 1-49, 2016.
- [33] COOPER, Grounded Versus Ungrounded Pole Mounted Capacitor Racks, Greenwood: McGraw-Edison, 1991.
- [34] COOPER, ABC'S of capacitors power factor correction, Pittsburg: McGraw-Edison, 1998.
- [35] COOPER, Single phase step voltage regulators, Waukesha: COOPER, 1998.

- [36] Comisión federal de electricidad, GOD 3539 Procedimiento para la coordinación de protecciones de sobrecorriente en sistemas de distrubución, MORELIA: CFE, 2008.
- [37] Noja power system, Manual del usuario OSM, Irapuato: NOJA, 2010.
- [38] Comisión federal de electricidad, «Comisión Federal de Electricidad,» CFE, 01
 01 2018. [En línea]. Available: https://app.cfe.mx/Aplicaciones/OTROS/Aportaciones/. [Último acceso: 11 10 2018].
- [39] Comisión federal de electricidad, «Comisión Federal de Electricidad,» CFE, 01
 01 2018. [En línea]. Available: https://www.cfe.mx/tarifas/Pages/Tarifas.aspx.
 [Último acceso: 11 10 2018].
- [40] W. Lin, H. Chin y G. Yu, «An effective algorithm for distribution feeder loss reduction by switching operations,» IEEE Departament od electrical engineering, Kaohsiung, Taiwan, 1999.

Apendice B. Manejo básico del sistema SynerGEE

B.1 Cargar el modelo

En las zonas de distribución de CFE, existen los modelos de los circuitos ya importados desde el sistema geográfico de distribución. Para cargar el modelo de un circuito con extensión *.mdb (base de datos de Microsoft Access), es necesario dar clic en el botón "New" de la pestaña "Model", esto permite que el modelo actual se cierre y se pueda seleccionar uno nuevo; si se hace clic en el botón de "Load", el modelo existente no se cierra y el nuevo modelo queda adicionado al existente. La figura A.1 muestra el menú "Model".

*	* -	Model	Analysis	Capacity	Planning	Protectio	on Reliability	Wizards
	Þ	<i> L</i> oad		🛃 Backup ? \ Regression	-		<i>i</i> Load 🕺 Save	
	New	😽 Compa	re Gallery	Check & Re	pair Schema	New	💁 Check & Repa	ir Schema
			Mod		Warehouse			

Figura A.1: Herramientas de SynerGEE para manejar el modelo.

B.2 Ingresar demanda activa y reactiva de un circuito

Los valores de demanda activa y reactiva se agregan en los datos particulares de los alimentadores en el sistema SynerGEE Electric 4, en el que se tienen ya modelados los circuitos.

Estos valores se agregan a los medidores correspondientes para poder realizar la distribución de la carga sobre los segmentos del circuito. Esto permite preparar el circuito para realizar la corrida de flujo.

La figura A.2 muestra la pantalla de carga de datos al medidor del modelo del circuito.

Meter: TRN0406	0 ?	×								
- < - > 0		+ +								
Meter	Edit meter demands.									
Demands										
Reliability	Do not use demands									
Zones	Type Units ◯ Amp ● kVA ● kW, kvar ◯ kva, % pf									
Results	Metered <u>V</u> alues									
	Overridden by upstream meters Total									
	A B C									
	kvar: 216.7 216.7 650.1									
	Replace with results									
	Allocation Scaling									
	75.0 % < Range for scaling <									
	Growth Curve: Unknown ~									
	Apply X	Cancel								

Figura A.2: Herramientas de SynerGEE para ingresar los datos de demanda activa y reactiva.

A.3 Distribución de la carga

Una vez que se han dispuesto los valores de demanda activa y reactiva para cada circuito, se procede a realizar la distribución de la carga. Como se muestra en la figura B.3, el botón "Load allocation" permite llevar a cabo dicha tarea.

Figura A.3: Herramientas de SynerGEE para realizar la distribución de la carga.

Los resultados aparecen en diferentes reportes del sistema y ayudan a verificar que la distribución ha sido adecuada.

A.4 Corrida de flujos

El procedimiento con el cálculo de corrida de flujos para un circuito se realiza con la herramienta "Load Flow" de la pestaña "Analysis" como se muestra en la figura A.4.

Figura A.4: Herramientas de SynerGEE para realizar la corrida de flujos, importante es haber distribuido la carga previamente.

Los resultados se reflejan en diferentes reportes como el que se muestra en la figura A.5. Los datos relevantes después de la corrida de flujos aparecen aquí y toma mucha relevancia para esta tesis, la sección de pérdidas del reporte "Loss - kW"

	Feeder Summary															
Source		Dem	and			Am	ps		Vo	ts	Conne	ected	Loa	ıd	Los	S
ld	kW	kvar	kVA	pf	Avg		% Imb	Neut	Avg	% Imb	c.Cust	c.kVA	kW	kvar	kW	%
Y	7	Y	Y	Y	7	7	7	7	Y	Y	Y	\mathbf{A}	Y	7	Y	7
Feeders for CEO42010																
CE004000 ACUEDUCTO	4501	605	4542	99	190		0.08	1	120.00	0.00	3366	9527	4351	785	150	3.32
Feeders for CEO42020																
CE004040 PROGRESO MACUILTEPEC	3492	94	3493	100	146		0.87	4	120.00	0.00	1944	13385	3466	76	26	0.75
Feeders for CEO42020 CEO04040 PROGRESO MACUILTEPEC	3492	94	3493	100	146		0.87	4	120.00	0.00	1944	13385	3466	76	26	

Figura A.5: Uno de los varios reportes del sistema SynerGEE para la corrida de flujos.

A.5 Seccionamientos óptimos

Finalmente, se utiliza el botón "Optimal" de la pestaña "Capacity", para que el sistema SynerGEE realice corridas de flujo donde abre y cierra los seccionamientos existentes en el modelo, hasta encontrar el mejor parámetro que se haya seleccionado para optimizar; en nuestro caso, las pérdidas.

Figura A.6: Herramienta del sistema SynerGEE para la optimizar la configuración de los circuitos.

Apendice C. Parámetros eléctricos de los circuitos para reproducir los modelos

C.1 Elementos de los diagramas

Para elaborar los modelos de los circuitos, es posible utilizar la siguiente información. Los diagramas de árbol como el que se muestra en la figura B.1, tienen la nomenclatura de cada una de las ramas que se utilizan en el mismo. Cuentan con la información de las ramas que anteceden y que suceden a la rama actual y los cuadrados indican que existe una derivación en el nodo correspondiente.

Figura B.1: Árbol para representar el circuito, en este caso el JLD 4020. Los elementos que se ven en cascada diagonal están en serie. Si derivan dos o más elementos, se generan las derivaciones.

Estas ramas pueden ser armadas como un diagrama unifilar tal como el que se muestra en la figura B.2.

Figura B.2: Diagrama unifilar para representar los elementos de la figura B.1.

El sistema SynerGEE muestra el diagrama en forma geográfica como en la figura B.3.

Figura B.3: El circuito tal como es representado en el SynerGEE y que corresponde con las figuras anteriores B.1 y B.2.

Las siguientes figuras, B.4 a B.17, muestran los árboles de los cuatro circuitos utilizados.

Figura B.4: Árbol 1 de 3 del circuito JLD 4020.

Figura B.5: Árbol 2 de 3 del circuito JLD 4020.

Apéndice B: Parámetros de los circuitos

Figura B.6: Árbol 3 de 3 del circuito JLD 4020.

Figura B.7: Árbol 1 de 3 del circuito JLD 4070.

Apéndice B: Parámetros de los circuitos

Figura B.8: Árbol 2 de 3 del circuito JLD 4070.
Apéndice B: Parámetros de los circuitos

Figura B.9: Árbol 3 de 3 del circuito JLD 4070.

Figura B.10: Árbol 1 de 4 del circuito CEO 4000.

Figura B.11: Árbol 2 de 4 del circuito CEO 4000.

Figura B.12: Árbol 3 de 4 del circuito CEO 4000.

Apéndice B: Parámetros de los circuitos

Figura B.13: Árbol 4 de 4 del circuito CEO 4000.

Figura B.14: Árbol 1 de 4 del circuito CEO 4040.

Apéndice B: Parámetros de los circuitos

Figura B.15: Árbol 2 de 4 del circuito CEO 4040.

Figura B.16: Árbol 3 de 4 del circuito CEO 4040.

Figura B.17: Árbol 4 de 4 del circuito CEO 4040.

C.2 Datos básicos de cada elemento de los circuitos

Adicionalmente para poder saber las características de cada tramo, se anexan las tablas B.1 a B.4 con los datos necesarios para conocer el detalle de cada rama.

Tabla B.1: Datos básicos de cada rama del circuito JLD 4020.

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
1	CB_17390	MH_42150	MH_42131	ABCN	15kV 750AL XLP	83.67	15kV 3F4H 750 Duc. Hor.			
2	CB_17391	MH_42154	MH_42150	ABCN	15kV 750AL XLP	289.14	15kV 3F4H 750 Duc. Hor.			
3	CB_17393	MH_42151	MH_42133	ABCN	15kV 3/0AL XLP	32.79	15kV 3F4H 3/0 Duc. Hor.			
4	CB_17394	MH_42154	MH_42151	ABCN	15kV 3/0AL XLP	193.18	15kV 3F4H 3/0 Duc. Hor.			
5	CB_17395	MH_42148	MH_42154	ABCN	15kV 3/0AL XLP	207.77	15kV 3F4H 3/0 Duc. Hor.			
6	CB_17396	MH_42146	MH_42148	ABCN	15kV 3/0AL XLP	151.48	15kV 3F4H 3/0 Duc. Hor.			
7	CB_17397	MH_42145	MH_42146	ABCN	15kV 3/0AL XLP	43.53	15kV 3F4H 3/0 Duc. Hor.			
8	CB_17398	MH_42135	MH_42134	ABCN	15kV 3/0AL XLP	13.21	15kV 3F4H 3/0 Duc. Hor.			
9	CB_17399	MH_42146	MH_42135	ABCN	15kV 3/0AL XLP	199.45	15kV 3F4H 3/0 Duc. Hor.	50	50	50
10	CB_17401	MH_42145	MH_42138	ABCN	15kV 3/0AL XLP	114.53	15kV 3F4H 3/0 Duc. Hor.			
11	CB_17402	MH_42146	MH_42147	ABCN	15kV 3/0AL XLP	30.77	15kV 3F4H 3/0 Duc. Hor.			
12	CB_17404	MH_42143	MH_42142	ABCN	15kV 3/0AL XLP	34.49	15kV 3F4H 3/0 Duc. Hor.			
13	CB_17405	MH_42145	MH_42143	ABCN	15kV 3/0AL XLP	44.31	15kV 3F4H 3/0 Duc. Hor.			
14	CB_19391	MH_45473	MH_45476	ABCN	15kV 3/0AL XLP	33.63	15kV 3F4H 3/0 Duc. Hor.			
15	CB_19392	MH_45508	MH_45471	ABCN	15kV 3/0AL XLP	14.33	15kV 3F4H 3/0 Duc. Hor.			
16	CB_19393	MH_45506	MH_45508	ABCN	15kV 3/0AL XLP	81.74	15kV 3F4H 3/0 Duc. Hor.	15	15	15
17	CB_19394	MH_45476	MH_45506	ABCN	15kV 3/0AL XLP	188.23	15kV 3F4H 3/0 Duc. Hor.			
18	CB_19395	MH_45473	MH_45472	ABCN	15kV 1/0AL XLP	14.7	15kV 3F4H 1/0 Duc. Hor.			
19	CB_19396	MH_45477	MH_45473	ABCN	15kV 500AL XLP	22.07	15kV 3F4H 500 Duc. Hor.			
20	CB_19397	MH_45478	MH_45477	ABCN	15kV 500AL XLP	29.5	15kV 3F4H 500 Duc. Hor.	10	10	10
21	CB_19398	MH_45480	MH_45478	ABCN	15kV 500AL XLP	34.48	15kV 3F4H 500 Duc. Hor.			
22	CB_19399	MH_45491	MH_45480	ABCN	15kV 500AL XLP	259.38	15kV 3F4H 500 Duc. Hor.			
23	CB_19400	MH_45489	MH_45488	ABCN	15kV 1/0AL XLP	19.38	15kV 3F4H 1/0 Duc. Hor.			
24	CB_19401	MH_45491	MH_45489	ABCN	15kV 1/0AL XLP	112.55	15kV 3F4H 1/0 Duc. Hor.	15	15	15
25	CB_19402	MH_45517	MH_45491	ABCN	15kV 500AL XLP	175.4	15kV 3F4H 500 Duc. Hor.	100	100	100
26	CB_19403	MH_45518	MH_45526	ABCN	15kV 1/0AL XLP	239.64	15kV 3F4H 1/0 Duc. Hor.			
27	CB_19404	MH_45517	MH_45518	ABCN	15kV 1/0AL XLP	9.51	15kV 3F4H 1/0 Duc. Hor.			
28	CB_19405	MH_45523	MH_45519	ABCN	15kV 1/0AL XLP	218.17	15kV 3F4H 1/0 Duc. Hor.	100	100	100
29	CB_19406	MH_45526	MH_45523	ABCN	15kV 1/0AL XLP	78.64	15kV 3F4H 1/0 Duc. Hor.			
30	CB_19407	MH_45526	MH_45522	ABCN	15kV 1/0AL XLP	10.78	15kV 3F4H 1/0 Duc. Hor.	15	15	15
31	CB_21044	MH_48970	MH_48951+	ABCN	15kV 750AL XLP	73.5	15kV 3F4H 750 Duc. Hor.			
32	CB_21045	MH_48974	MH_48970	ABCN	15kV 750AL XLP	289.14	15kV 3F4H 750 Duc. Hor.			
33	CB_21047	MH_48971	MH_48953++	ABCN	15kV 3/0AL XLP	76.2	15kV 3F4H 3/0 Duc. Hor.			
34	CB_21048	MH_48974	MH_48971	ABCN	15kV 3/0AL XLP	193.18	15kV 3F4H 3/0 Duc. Hor.			
35	CB_21049	MH_48968	MH_48974	ABCN	15kV 3/0AL XLP	207.77	15kV 3F4H 3/0 Duc. Hor.			
36	CB_21050	MH_48966	MH_48968	ABCN	15kV 3/0AL XLP	151.48	15kV 3F4H 3/0 Duc. Hor.			
37	CB_21051	MH_48965	MH_48966	ABCN	15kV 3/0AL XLP	43.53	15kV 3F4H 3/0 Duc. Hor.			
38	CB_21052	MH_48955	MH_48954	ABCN	15kV 3/0AL XLP	13.21	15kV 3F4H 3/0 Duc. Hor.	50	50	50
39	CB_21053	MH_48966	MH_48955	ABCN	15kV 3/0AL XLP	199.45	15kV 3F4H 3/0 Duc. Hor.			
40	CB_21055	MH_48965	MH_48958	ABCN	15kV 3/0AL XLP	114.53	15kV 3F4H 3/0 Duc. Hor.			
41	CB_21056	MH_48966	MH_48967	ABCN	15kV 3/0AL XLP	30.77	15kV 3F4H 3/0 Duc. Hor.			
42	CB_21058	MH_48963	MH_48962	ABCN	15kV 3/0AL XLP	34.49	15kV 3F4H 3/0 Duc. Hor.			
43	CB_21059	MH_48965	MH_48963	ABCN	15kV 3/0AL XLP	44.31	15kV 3F4H 3/0 Duc. Hor.			
44	CB_21123	MH_49109	MH_49108	ABCN	15kV 3/0AL XLP	104.77	15kV 3F4H 3/0 Duc. Hor.	37.5	37.5	37.5
45	CB_21124	MH_49110	MH_49109	ABCN	15kV 3/0AL XLP	99.63	15kV 3F4H 3/0 Duc. Hor.			
46	CB_21524	MH_50000	MH_50266	ABCN	15kV 750AL XLP	488.22	15kV 3F4H 750 Duc. Hor.			
47	CB_21525	MH_49994	MH_49993	BN	15kV 1/0AL XLP	50.99	15kV 1F2H 1/0 Duc. Hor.	0	50	0
48	CB_21526	MH_50011	MH_49994	ABCN	15kV 1/0AL XLP	418.14	15kV 3F4H 1/0 Duc. Hor.			
49	CB_21527	MH_50011	MH_50000	ABCN	15kV 750AL XLP	473.39	15kV 3F4H 750 Duc. Hor.	100	100	100
50	CB_21528	MH_50011	MH_50008	ABCN	15kV 1/0AL XLP	115.69	15kV 3F4H 1/0 Duc. Hor.	15	15	15
51	CB_21530	MH_50017	MH_50011	ABCN	15kV 750AL XLP	339.96	15kV 3F4H 750 Duc. Hor.			
52	CB_21531	MH_50032	MH_50017	ABCN	15kV 750AL XLP	211.11	15kV 3F4H 750 Duc. Hor.			
53	CB_21532	MH_50032	MH_50027	ABCN	15kV 1/0AL XLP	321.82	15kV 3F4H 1/0 Duc. Hor.	15	15	15

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
54	CB 21533	MH 50032	MH 50034	ABCN	15kV 1/0AL XLP	145 19	15kV 3E4H 1/0 Duc Hor	50	50	50
55	CB 21534	MH_50097	MH 50032	ABCN	15kV 750AL XLP	392.16	15kV 3F4H 750 Duc. Hor.	100	100	100
56	CB 21536	MH_50055	MH 50046	ABCN	15kV 3/0AL XLP	626.51	15kV 3E4H 3/0 Duc. Hor.	37.5	37.5	37.5
57	CB 21537	MH 50097	MH 50055	ABCN	15kV 3/0AL XLP	525.59	15kV 3F4H 3/0 Duc. Hor.	100	100	100
58	CB_21538	MH_50058	MH_50064	ABCN	15kV 1/0AL XLP	179.85	15kV 3F4H 1/0 Duc. Hor.	15	15	15
59	CB_21540	MH_50097	MH_50058	ABCN	15kV 1/0AL XLP	270.24	15kV 3F4H 1/0 Duc. Hor.	166.67	166.67	166.67
60	CB_21541	MH_50097	MH_50096	ABCN	15kV 750AL XLP	30.48	15kV 3F4H 750 Duc. Hor.			
61	CB_21543	MH_50105	MH_50097	ABCN	15kV 750AL XLP	460.73	15kV 3F4H 750 Duc. Hor.	10	10	10
62	CB_21544	MH_50107	MH_50105	ABCN	15kV 750AL XLP	223.69	15kV 3F4H 750 Duc. Hor.			
63	CB_21545	MH_50205	MH_50107	ABCN	15kV 750AL XLP	206.27	15kV 3F4H 750 Duc. Hor.			
64	CB_21546	Node_3954076877	MH_50205	ABCN	15kV 750AL XLP	556.27	15kV 3F4H 750 Duc. Hor.			
65	CB_21548	MH_50174	MH_50168	ABCN	15kV 3/0AL XLP	436.15	15kV 3F4H 3/0 Duc. Hor.	25	25	25
66	CB_21551	MH_50156	MH_50155	ABCN	15kV 3/0AL XLP	28.01	15kV 3F4H 3/0 Duc. Hor.			
67	CB_21552	MH_50174	MH_50156	ABCN	15kV 3/0AL XLP	172.16	15kV 3F4H 3/0 Duc. Hor.	25	25	25
68	CB_21553	MH_50195	MH_50174	ABCN	15kV 3/0AL XLP	482.55	15kV 3F4H 3/0 Duc. Hor.			
69	CB_21554	MH_50198	MH_50195	ABCN	15kV 750AL XLP	166.73	15kV 3F4H 750 Duc. Hor.	100	100	100
70	CB_21555	MH_50204	MH_50198	ABCN	15kV 750AL XLP	367.85	15kV 3F4H 750 Duc. Hor.			
71	CB_21557	MH_50208	MH_50204	ABCN	15kV 750AL XLP	216.27	15kV 3F4H 750 Duc. Hor.			
72	CB_21558	MH_50208	MH_50207	ABCN	15kV 1/0AL XLP	18.24	15kV 3F4H 1/0 Duc. Hor.			
73	CB_21559	MH_50253	MH_50208	ABCN	15kV 750AL XLP	394.72	15kV 3F4H 750 Duc. Hor.	25	25	25
74	CB_21560	MH_50249	MH_50242	ABCN	15kV 1/0AL XLP	500.85	15kV 3F4H 1/0 Duc. Hor.	15	15	15
75	CB_21561	MH_50253	MH_50249	ABCN	15kV 1/0AL XLP	48.18	15kV 3F4H 1/0 Duc. Hor.	100	100	100
76	CB_21562	MH_50253	MH_50250	ABCN	15kV 1/0AL XLP	12.87	15kV 3F4H 1/0 Duc. Hor.			
77	CB_21563	MH_50297	Node_3954304840	ABCN	15kV 750AL XLP	59.05	15kV 3F4H 750 Duc. Hor.			
78	CB_21564	MH_50261	MH_50260	ABCN	15kV 1/0AL XLP	31.92	15kV 3F4H 1/0 Duc. Hor.	37.5	37.5	37.5
79	CB_21565	MH_50266	MH_50261	ABCN	15kV 1/0AL XLP	381.23	15kV 3F4H 1/0 Duc. Hor.			
80	CB_21566	MH_50266	MH_50265	ABCN	15kV 1/0AL XLP	86.81	15kV 3F4H 1/0 Duc. Hor.	15	15	15
81	CB_21567	MH_50274	MH_50266	ABCN	15kV 750AL XLP	930.05	15kV 3F4H 750 Duc. Hor.			
82	CB_21568	MH_50274	MH_50273	ABCN	15kV 1/0AL XLP	51.44	15kV 3F4H 1/0 Duc. Hor.	25	25	25
83	CB_21569	MH_50288	Node_3954476847	ABCN	15kV 750AL XLP	432.74	15kV 3F4H 750 Duc. Hor.	100	100	100
84	CB_215/0	MH_50297	MH_50288	ABCN	15kV 750AL XLP	35.88	15kV 3F4H 750 Duc. Hor.	05	05	05
85	CB_215/3	MH_50297	MH_50294	ABCN	15KV 1/UAL XLP	119.16	15KV 3F4H 1/U DUC. Hor.	25	25	25
86	CB_215/5	MH_50156	MH_50469	ABCN	4/U ACSR	39.22	15KV 3F4H 3/U DUC. Hor.	07.5	07.5	07.5
8/	CB_21576	MH_50000	MH_50303	ABCN	15KV 1/UAL XLP	409.81	15KV 3F4H 1/U DUC. HOF.	37.5	57.5	37.5
00	CB_21576	MH_49994	MH_50303	ADON	15kV 1/0AL ALP	JU.99	15kV 1F2H 1/0 Duc. Hor.	0	50	0
03	CB_21500	MH 50097	MH 50367	ABON	15kV 3/0AL XLP	525.6	15kV 3F4H 3/0 Duc. Hor.	100	100	100
91	CB_21591	MH_50058	MH 50376	ABCN	15kV 1/0AL XLP	179.85	15kV 3F4H 1/0 Duc. Hor.	15	15	15
92	CB 21593	MH_50097	MH 50370	ABCN	15kV 1/0AL XLP	270.24	15kV 3E4H 1/0 Duc. Hor.	166.67	166.67	166.67
93	CB_21595	MH_50097	MH 50412	ABCN	15kV 1/0AL XLP	202.97	15kV 3E4H 1/0 Duc. Hor.	100	100	100
94	CB_21596	MH 50105	MH 50409	ABCN	15kV 750AL XLP	460.73	15kV 3F4H 750 Duc. Hor.	10	10	10
95	CB 21599	MH 50168	MH 50422	ABCN	15kV 3/0AL XLP	22.48	15kV 3F4H 3/0 Duc, Hor.			
96	CB 21601	MH 50195	MH 50457	ABCN	15kV 3/0AL XLP	326.41	15kV 3F4H 3/0 Duc. Hor.	25	25	25
97	CB_21609	MH_50208	MH_50519	ABCN	15kV 1/0AL XLP	18.24	15kV 3F4H 1/0 Duc. Hor.			
98	CB_21610	MH_50253	MH_50520	ABCN	15kV 750AL XLP	394.72	15kV 3F4H 750 Duc. Hor.	25	25	25
99	CB_21611	MH_50253	MH_50561	ABCN	15kV 1/0AL XLP	48.18	15kV 3F4H 1/0 Duc. Hor.	100	100	100
100	CB_21612	MH_50253	MH_50562	ABCN	15kV 1/0AL XLP	12.87	15kV 3F4H 1/0 Duc. Hor.			
101	CB_21614	MH_50261	MH_50572	ABCN	15kV 1/0AL XLP	31.92	15kV 3F4H 1/0 Duc. Hor.	37.5	37.5	37.5
102	CB_21616	MH_50274	MH_50585	ABCN	15kV 1/0AL XLP	51.44	15kV 3F4H 1/0 Duc. Hor.	25	25	25
103	CB_21619	MH_50294	MH_50604	ABCN	15kV 1/0AL XLP	16.84	15kV 3F4H 1/0 Duc. Hor.			
104	CB_21620	MH_50294	MH_50605	ABCN	15kV 1/0AL XLP	41.27	15kV 3F4H 1/0 Duc. Hor.	37.5	37.5	37.5
105	CB_21624	MH_50469	MH_50466	ABCN	15kV 3/0AL XLP	219.47	15kV 3F4H 3/0 Duc. Hor.	10	10	10
106	CB_23747	MH_48951+	MH_42179	ABCN	15kV 750AL XLP-	215.49	15kV 3F4H 750 Duc. Hor.			
107	CB_23753	MH_48953++	MH_53810	ABCN	15kV 3/0AL XLP	36.08	15kV 3F4H 3/0 Duc. Hor.	50	50	50
108	CB_3954378392	MH_42179	MH_50260	ABCN	15kV 750AL XLP-	441.86	15kV 3F4H 750 Duc. Hor.			
109	CB_3954443804	MH_45506	MH_50288	ABCN	15kV 3/0AL XLP	183.92	15kV 3F4H 3/0 Duc. Hor.			
110	CB_3954476756	Node_3954476847	MH_50274	ABCN	15kV 750AL XLP	61.1	15kV 3F4H 750 Duc. Hor.			
111	CB_39544785910	Node_3954478599	Node_3954305434	ABCN	15kV 750AL XLP	44.86	15kV 3F4H 750 Duc. Hor.			
112	CB_51888195140	Node_51888195139	ND_1188236	ABCN	266 ACSR	782.56	VS_13_kV			
113	CB_5373727404	MH_48958	Node_5373727415	ABCN	15kV 3/0AL XLP	31.31	15kV 3F4H 3/0 Duc. Hor.			
114	OH_51888269671	ND_1188317	MH_49108	ABCN	1/0 ACSR	343.94	VS_13_kV	07.5		
115	OH_646225	ND_1188236	ND_1188237	AN	3/U ACSR	214.17	15_13_kV	37.5	0	0
116	UH_646226	NU_1188238	ND_1188239	ABCN	1/U ACSR	/0.23	VS_13_KV	0	0	25
117	OH_646227	ND_1188240	ND_1188238	ABCN	1/0 ACSR	117.18	VS_13_KV	0	10	0
118	UT_046228	ND_1100242	ND_1188240	ABCN	1/0 ACSR	103.99	V0_13_KV	25	15	U
119	OH 646229	ND_1100244	ND_1100242	ABON	ACH	300.42	TS 12 MV	37 5	37 5	37 5
120	OH_040230	ND 1199249	ND_1198246		4 00	91.01	TS 13 KV	31.5	37.5	31.5
121	OH 646232	ND_1188249	ND 1188251	ARCN	4 CU	71.15	TS 13 kV	100	100	100
123	OH 646233	ND 1188252	ND 1188248	ABON	4 CU	151 32	TS 13 kV	100	100	100
124	OH 646234	ND 1188254	ND 1188252	ABCN	4 CU	40.73	VS 13 kV	25	0	0
125	OH 646235	ND 1188256	ND 1188257	ABCN	266 ACSR	141.27	VS 13 kV		, ,	
126	OH 646236	ND 1188258	ND 1188256	ABCN	266 ACSR	115.67	VS 13 kV	15	15	15
								1		, · · ·

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
127	OH_646237	ND_1188260	ND_1188258	ABCN	266 ACSR	156.18	VS_13_kV	25	0	0
128	OH_646238	ND_1188262	ND_1188260	ABCN	266 ACSR	184.18	PS_13_kV			
129	OH_646239	ND_1188264	ND_1188262	ABCN	266 ACSR	104.3	VS_13_kV			
130	OH_646240	ND_1188266	ND_1188267	ABCN	3/0 ACSR	134.25	VS_13_kV			
131	OH_646241	ND_1188268	Node_3954161404	ABCN	3/0 ACSR	326.51	VS_13_kV	10	10	10
132	OH_646242	ND_1188272	ND 1188270	ABCN	200 ACSR	263.72	VS_13_KV	15	15	15
134	OH 646244	ND 1188274	ND 1188272	ABCN	266 ACSR	136.4	VS 13 kV	10	10	10
135	OH_646245	ND_1188276	Node_3954054412	ABCN	266 ACSR	374.74	VS_13_kV			
136	OH_646246	ND_1188278	ND_1188276	ABCN	266 ACSR	139.67	VS_13_kV	15	15	15
137	OH_646247	ND_1188280	ND_1188278	ABCN	266 ACSR	405.25	VS_13_kV	37.5	37.5	37.5
138	OH_646248	ND_1188282	ND_1188280	ABCN	266 ACSR	279.1	VS_13_kV			
139	OH_646249	ND_1188274	ND_1188282	ABCN	266 ACSR	468.9	VS_13_kV	10	10	10
140	OH_646250	ND_1188280	ND_1188274	ABCN	266 ACSR	90.04	VS_13_KV	25	25	25
141	OH_646252	ND_1188290	ND_1188291	ABCN	200 ACSR	75.49	VS_13_KV	25	25	25
143	OH 646253	ND 1188288	ND 1188290	ABCN	2 ACSR	86.34	VS 13 kV	16.7	16.7	16.7
144	OH_646254	ND_1188294	ND_1188288	ABCN	266 ACSR	412.76	VS_13_kV			
145	OH_646255	ND_1188296	ND_1188294	ABCN	266 ACSR	80.67	VS_13_kV	25	25	25
146	OH_646256	ND_1188298	ND_1188299	ABCN	6 CU	106.92	VS_13_kV	75	75	75
147	OH_646257	ND_1188300	ND_1188298	ABCN	6 CU	129.34	VS_13_kV	16.7	16.7	16.7
148	OH_646258	ND_1188296	ND_1188300	ABCN	6 CU	132.93	VS_13_kV	15	15	15
149	OH_646259	ND_1188304	ND_1188296	ABCN	266 ACSR	76.81	VS_13_KV	16.7	16.7	16.7
151	OH 646261	ND 1188308	ND 1188309	ABCN	3/0 ACSR	196.43	VS_13_kV	10.7	10.7	10.7
152	OH_646262	ND_1188306	ND_1188308	ABCN	3/0 ACSR	39.24	VS_13_kV			
153	OH_646263	ND_1188306	ND_1188313	ABCN	3/0 ACSR	42.24	VS_13_kV			
154	OH_646264	ND_1188314	ND_1188306	ABCN	266 ACSR	92.39	VS_13_kV			
155	OH_646265	ND_1188314	ND_1188317	ABCN	1/0 ACSR	209.9	VS_13_kV	25	25	25
156	OH_646266	ND_1188318	ND_1188314	ABCN	266 ACSR	51.59	VS_13_kV			
157	OH_646267	ND_1188268	ND_1188318	ABCN	266 ACSR	478.18	VS_13_kV	37.5	37.5	37.5
158	OH_646269	ND_1188324	ND_1188208	ABCN	266 ACSR	108.74	VS_13_KV	37.5	37.5	37.5
160	OH 646271	ND 1188264	ND 1188324	ABCN	266 ACSR	244.89	VS_13_kV	51.5	51.5	51.5
161	OH_646272	ND_1188330	ND_1188264	ABCN	266 ACSR	121.65	VS_13_kV			
162	OH_646273	ND_1188332	ND_1188330	ABCN	266 ACSR	203.58	VS_13_kV	10	10	10
163	OH_646274	ND_1188334	ND_1188332	ABCN	266 ACSR	152.87	VS_13_kV	25	0	0
164	OH_646275	ND_1188336	ND_1188337	ABCN	266 ACSR	358.6	VS_13_kV			
165	OH_646276	ND_1188338	ND_1188336	ABCN	266 ACSR	88.59	VS_13_kV			
166	OH_646277	ND_1188340	ND_1188338	ABCN	266 ACSR	143.23	VS_13_kV	25	25	25
168	OH_646279	ND_1188344	ND_1188342	ABCN	266 ACSR	87.83	VS_13_KV TS 13 kV			
169	OH 646280	ND 1188346	ND 1188347	ABCN	6 CU	152.3	TS 13 kV	50	50	50
170	OH_646281	ND_1188348	ND_1188346	ABCN	6 CU	103.73	TS_13_kV	15	15	15
171	OH_646282	ND_1188344	ND_1188348	ABCN	266 ACSR	99.43	TS_13_kV			
172	OH_646283	ND_1188352	ND_1188353	ABCN	3/0 ACSR	58.86	VS_13_kV	25	25	25
173	OH_646284	ND_1188354	ND_1188352	ABCN	3/0 ACSR	86.54	VS_13_kV	16.7	16.7	16.7
174	OH_646285	ND_1188356	ND_1188354	ABCN	3/0 ACSR	266.24	VS_13_kV	37.5	37.5	37.5
175	OH_646287	ND_1188360	ND_1188358	ABCN	200 AUSK	207.00	VS_13_KV	100	100	100
177	OH 646288	ND 1188362	ND 1188360	ABCN	2 CU	165.2	VS 13 kV	37.5	37.5	37.5
178	OH_646289	ND_1188356	ND_1188362	ABCN	2 CU	290.45	VS_13_kV	15	15	15
179	OH_646290	ND_1188366	ND_1188356	ABCN	3/0 ACSR	53.35	VS_13_kV			
180	OH_646291	ND_1188366	ND_1188369	ABCN	3/0 ACSR	34.83	VS_13_kV	15	15	15
181	OH_646292	ND_1188370	ND_1188366	ABCN	3/0 ACSR	145.99	VS_13_kV	10	10	10
182	OH_646293	ND_11883/2	ND_1188370	ABCN	3/U ACSR	35.69	VS_13_kV	50	50	50
103	OH_646294	ND_1188376	ND_1188374	ABCN	4 CU	101.09	TS_13_KV	15	50	15
185	OH 646296	ND 1188378	ND 1188376	ABCN	2 ACSR	94.42	VS 13 kV	15	15	15
186	OH_646297	ND_1188372	ND_1188378	ABCN	2 ACSR	376.67	VS_13_kV			
187	OH_646298	ND_1188344	ND_1188372	ABCN	3/0 ACSR	198.17	VS_13_kV			
188	OH_646299	ND_1188384	ND_1188344	ABCN	266 ACSR	258.69	VS_13_kV			
189	OH_646300	ND_1188334	ND_1188384	ABCN	266 ACSR	120.71	PS_13_kV			
190	OH_646301	ND_1188388	ND_1188334	ABCN	266 ACSR	99.22	VS_13_kV			
191	OH_646302	ND_1188390	ND_1188388	ABCN	266 ACSR	493.77	VS_13_kV	10	10	10
192	OH 646304	ND_1188392	ND 1188390	ABON	200 AUSK	88.3	15_13_KV	37.5	31.5	31.5
193	OH 646305	ND_1188396	ND 1188394	ABCN	266 ACSR	43,08	TS 13 kV			
195	OH_646306	ND_1188396	ND_1188399	ABCN	4/0 ACSR	79.85	TS_13 kV	25	25	25
196	OH_646307	ND_1188400	ND_1188396	ABCN	266 ACSR	351.77	TS_13_kV	16.7	16.7	16.7
197	OH_646308	ND_1188254	ND_1188400	ABCN	266 ACSR	305.28	TS_13_kV			
198	OH_646309	ND_1188404	ND_1188254	ABCN	266 ACSR	391.44	VS_13_kV			
199	OH_646310	ND_1188406	ND_1188404	ABCN	266 ACSR	47.28	VS_13_kV	0	0	25

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
200	OH_646311	ND_1188408	ND_1188406	ABCN	266 ACSR	155.62	VS_13_kV	37.5	37.5	37.5
201	OH_646312	ND_1188410	ND_1188408	ABCN	266 ACSR	179.12	VS_13_kV	25	25	25
202	OH_646313	ND_1188412	ND_1188410	ABCN	266 ACSR	102.13	VS_13_kV			
203	OH_646314	ND_1188412	ND_1188415	ABCN	6 CU	607.55	VS_13_kV	37.5	37.5	37.5
204	OH_646315	ND_1188416	ND_1188412	ABCN	266 ACSR	265.98	VS_13_kV			
205	OH_646316	ND_1188418	ND_1188416	ABCN	266 ACSR	46.28	VS_13_kV	10	10	10
206	OH_646317	ND_1188418	ND_1188421	ABCN	266 ACSR	209.56	VS_13_kV	0	25	0
207	OH_646318	ND_1188418	ND_1188423	ABCN	266 ACSR	35.97	VS_13_kV			
208	OH_646319	ND_1188424	ND_1188418	ABCN	266 ACSR	170.75	VS_13_kV	25	25	25
209	OH_646320	ND_1188424	ND_1188427	ABCN	8 CWC	156.14	VS_13_kV	37.5	37.5	37.5
210	OH_646321	ND_1188428	ND_1188424	ABCN	266 ACSR	89.13	VS_13_kV			
211	OH_646322	ND_1188430	ND_1188428	ABCN	266 ACSR	130.65	TS_13_kV	15	15	15
212	OH_646323	ND_1188432	ND_1188430	ABCN	266 ACSR	161.47	PS_13_kV			
213	OH_646324	ND_1188434	ND_1188432	ABCN	266 ACSR	155.44	PS_13_kV			
214	OH_646325	ND_1188436	ND_1188434	ABCN	266 ACSR	109.58	TS_13_kV			
215	OH_646326	ND_1188438	ND_1188436	ABCN	266 ACSR	273.43	PS_13_kV	15	15	15
216	OH_646327	ND_1188244	ND_1188438	ABCN	266 ACSR	400.43	PS_13_kV			
217	OH_646328	ND_1188236	ND_1188244	ABCN	266 ACSR	1,217.09	TS_13_kV			
218	OH_646329	JLD04020 IMSS	Node_51888195139	ABCN	266 ACSR	92.04	VS_13_kV			
219	Section_3954304841	Node_3954304840	Node_3954304932	ABCN	15kV 750AL XLP	39.32	15kV 3F4H 750 Duc. Hor.			
220	Section_3954304933	Node_3954304932	Node_3954478599	ABCN	15kV 750AL XLP	48.57	15kV 3F4H 750 Duc. Hor.			
221	Section_3954305435	Node_3954305434	MH_50253	ABCN	15kV 750AL XLP	199.14	15kV 3F4H 750 Duc. Hor.			
222	SV_269	MH_42133	ND_SV_269	ABCN	15kV 3/0AL XLP-TR	27.3	15kV 1F2H 1/0 Duc. Tre.	50	50	50
223	SV_271	MH_42133	ND_SV_271	ABCN	15kV 3/0AL XLP-TR	44.5	15kV 1F2H 1/0 Duc. Tre.			
224	SynF_1	MH_42154	ND_1188353	ABCN	4/0 ACSR	328.08	12.5/7.2 kV X arm C2-2			
225	SynF_17	MH_45517	ND_1188267	ABCN	4/0 ACSR	328.08	12.5/7.2 kV X arm C2-2			
226	SynF_31	MH_48954	MH_42134	ABCN	4/0 ACSR	328.08	12.5/7.2 kV X arm C2-2			

Tabla B.2: Datos básicos de cada rama del circuito JLD 4070.

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
1	CB_51888052127	Node_51888052126	ND_1208539	ABCN	336 ACSR	159.83	VS_13_kV			
2	OH_5400360272	ND_1186921	Node_5400360675	ABCN	2 ACSR	751.82	VS_13_kV			
3	OH_645553	ND_1186921	ND_1208234	ABCN	15kV 750AL XLP-	235.68	15kV 3F4H 750 Duc. Hor.			
4	OH_656115	ND_1208025	ND_1208026	BCN	3/0 ACSR	188.60	VS_13_kV	0.00	15.00	0.00
5	OH_656116	ND_1208027	ND_1208025	BCN	3/0 ACSR	70.29	TS_13_kV			
6	OH_656117	ND_1208029	ND_1208030	ABCN	336 ACSR	341.40	VS_13_kV			
7	OH_656118	ND_1208031	ND_1208029	ABCN	336 ACSR	522.87	VS_13_kV	15.00	15.00	15.00
8	OH_656119	ND_1208033	ND_1208034	CN	3/0 ACSR	130.58	PS_13_kV	0.00	0.00	25.00
9	OH_656120	ND_1208035	ND_1208033	CN	3/0 ACSR	166.05	PS_13_kV	0.00	0.00	37.50
10	OH_656121	ND_1208031	ND_1208035	CN	3/0 ACSR	110.52	VS_13_kV	0.00	0.00	25.00
11	OH_656122	ND_1208039	ND_1208031	ABCN	336 ACSR	108.33	TS_13_kV			
12	OH_656123	ND_1208041	ND_1208039	ABCN	336 ACSR	221.39	VS_13_kV			
13	OH_656124	ND_1208043	ND_1208044	A N	1/0 ACSR	307.19	VS_13_kV	15.00	0.00	0.00
14	OH_656125	ND_1208045	ND_1208046	AN	1/0 ACSR	200.58	PS_13_kV	10.00	0.00	0.00
15	OH_656126	ND_1208043	ND_1208045	AN	1/0 ACSR	202.91	PS_13_kV			
16	OH_656127	ND_1208049	ND_1208043	A N	1/0 ACSR	121.28	TS_13_kV			
17	OH_656128	ND_1208049	ND_1208052	AN	1/0 ACSR	163.56	TS_13_kV	10.00	0.00	0.00
18	OH_656129	ND_1208053	ND_1208049	ABCN	1/0 ACSR	334.68	VS_13_kV			
19	OH_656130	ND_1208053	ND_1208056	A N	1/0 ACSR	254.57	PS_13_kV	15.00	0.00	0.00
20	OH_656131	ND_1208057	ND_1208053	ABCN	1/0 ACSR	45.97	TS_13_kV			
21	OH_656132	ND_1208059	ND_1208060	CN	1/0 ACSR	308.53	PS_13_kV	0.00	0.00	15.00
22	OH_656133	ND_1208061	ND_1208062	CN	3/0 ACSR	258.05	PS_13_kV	0.00	0.00	37.50
23	OH_656134	ND_1208063	ND_1208061	CN	3/0 ACSR	174.80	PS_13_kV	0.00	0.00	37.50
24	OH_656135	ND_1208059	ND_1208063	CN	3/0 ACSR	173.16	TS_13_kV			
25	OH_656136	ND_1208057	ND_1208059	ABCN	1/0 ACSR	70.78	TS_13_kV			
26	OH_656137	ND_1208069	ND_1208057	ABCN	1/0 ACSR	436.58	VS_13_kV			
27	OH_656138	ND_1208041	ND_1208069	ABCN	6 CU	51.37	VS_13_kV			
28	OH_656139	ND_1208073	ND_1208041	ABCN	336 ACSR	276.02	VS_13_kV	15.00	0.00	0.00
29	OH_656140	Node_3954052800	ND_1208076	ABCN	6 CU	114.32	VS_13_kV			
30	OH_656141	ND_1208078	ND_1208073	ABCN	336 ACSR	213.29	VS_13_kV			
31	OH_656142	ND_1208079	Node_3954052800	ABCN	6 CU	148.62	VS_13_kV			
32	OH_656143	ND_1208078	ND_1208079	ABCN	6 CU	74.48	VS_13_kV	5.00	5.00	5.00
33	OH_656144	ND_1208083	ND_1208078	ABCN	336 ACSR	134.04	TS_13_kV	0.00	0.00	37.50
34	OH_656145	ND_1208085	ND_1208083	ABCN	336 ACSR	174.96	VS_13_kV			
35	OH_656146	ND_1208087	ND_1208085	ABCN	336 ACSR	104.73	TS_13_kV	5.00	5.00	5.00

N٥	Sección	Nodo de	Nodo a	Facos	Conductor	I (ft)	Configuración	kV/A a	kVAb	kVAc.
20		ND 100000	NO. 1000007	ADON	226 ACCD	200.42		0.00	75.00	0.00
30	OH_050147	ND_1200009	ND_1200007	ABON	330 AUSR	200.13	15_13_KV	0.00	75.00	0.00
31	OH_000140	ND_1206091	ND_1200009	ABCN	330 AUSK	449.74	VS_13_KV	25.00	0.00	37.50
20	OH_030149	ND_1208095	ND_1200091	ADCIN	1/0 ACSR	124.40	VO_IJ_KV	25.00	25.00	25.00
39	OH_030150	ND_1208095	ND_1200090	ADON	1/0 ACSR	104.03	TO_10_KV	23.00	25.00	23.00
40	OH_656152	ND_1208097	ND_1208100	RN	1/0 ACSP	3/2 36	DS 13 kV	0.00	37.50	0.00
41	OH_656153	ND_1200033	ND 1208000	ARCN	1/0 ACSR	137.12	TS_13_KV	15.00	15.00	15.00
42	OII_030133	ND_1200037	ND 1200033	ADON	1/0 ACSR	107.12	TC 12 W/	13.00	10.00	13.00
43	OH_656155	ND_1200103	ND 1208106	ABON	1/0 ACSR	30.06	TS_13_kV			
45	OH_656156	ND_1208107	ND 1208108	ARCN	3/0 ACSP	60.00	VS 13 KV	25.00	25.00	25.00
45	OH_656157	ND_1200107	ND 1208110	ABON	3/0 ACSR	70.85	VS_13_kV	15.00	15.00	15.00
40	OH 656158	ND_1208109	ND 1208112	ABCN	3/0 ACSR	90.42	VS_13_kV	25.00	25.00	25.00
48	OH 656159	ND 1208113	ND 1208114	ABCN	1/0 ACSR	45.79	VS_13_kV	37.50	37.50	37.50
49	OH 656160	ND_1208115	ND 1208113	ABCN	1/0 ACSR	83.05	VS_13_kV	15.00	15.00	15.00
50	OH 656161	ND_1208117	ND 1208118	ABCN	3/0 ACSR	73.76	VS_13_kV	10.00	10.00	10.00
51	OH 656162	ND 1208119	ND 1208117	ABCN	3/0 ACSR	63.09	VS_13_kV	15.00	15.00	15.00
52	OH 656163	ND 1208121	Node 3954068226	ABCN	266 ACSR	202.46	VS_13_kV	10.00	10.00	10.00
53	OH 656164	ND 1208119	ND 1208121	ABCN	266 ACSR	282.81	VS_13_kV	25.00	25.00	25.00
54	OH 656165	ND 1208125	ND 1208119	ABCN	266 ACSR	449.38	VS_13_kV			
55	OH 656166	ND 1208127	ND 1208125	ABCN	266 ACSR	74.24	VS_13_kV	0.00	0.00	15.00
56	OH 656167	ND 1208129	ND 1208130	ABCN	3/0 ACSR	401.80	VS 13 kV	50.00	50.00	50.00
57	OH 656168	ND 1208127	ND 1208129	ABCN	3/0 ACSR	193.65	VS 13 kV	15.00	15.00	15.00
58	OH 656169	ND 1208133	ND 1208127	ABCN	266 ACSR	290.88	VS 13 kV			
59	OH 656170	ND 1208135	ND 1208133	ABCN	266 ACSR	188.42	VS 13 kV	0.00	25.00	0.00
60	OH 656171	ND 1208115	ND 1208135	ABCN	266 ACSR	277.17	VS 13 kV	15.00	15.00	15.00
61	OH 656172	ND 1208139	ND 1208115	ABCN	266 ACSR	170.93	VS 13 kV	_		
62	OH 656173	ND 1208141	ND 1208139	ABCN	4/0 ACSR	402.56	VS 13 kV			_
63	OH_656174	ND_1208143	ND_1208141	ABCN	266 ACSR	65.75	VS_13_kV			
64	OH_656175	ND_1208145	ND_1208146	ABCN	266 ACSR	360.07	VS_13_kV	10.00	10.00	10.00
65	OH_656176	ND_1208143	ND_1208145	ABCN	266 ACSR	181.10	VS_13_kV	25.00	25.00	25.00
66	OH_656177	ND_1208109	Node_3954160062	ABCN	266 ACSR	190.95	VS_13_kV			_
67	OH_656178	ND_1208151	ND_1208109	ABCN	266 ACSR	194.30	VS_13_kV	0.00	15.00	0.00
68	OH_656179	ND_1208153	ND_1208151	ABCN	266 ACSR	183.75	VS_13_kV			
69	OH_656180	ND_1208153	ND_1208156	ABCN	3/0 ACSR	80.66	VS_13_kV	10.00	10.00	10.00
70	OH_656181	ND_1208153	ND_1208158	ABCN	3/0 ACSR	100.76	VS_13_kV	15.00	15.00	15.00
71	OH_656182	ND_1208159	ND_1208153	ABCN	266 ACSR	199.64	VS_13_kV			
72	OH_656183	ND_1208161	ND_1208162	ABCN	1/0 ACSR	53.32	TS_13_kV	25.00	25.00	25.00
73	OH_656184	ND_1208163	ND_1208161	ABCN	1/0 ACSR	30.06	TS_13_kV	25.00	25.00	25.00
74	OH_656185	Node_3954160062	ND_1208163	ABCN	1/0 ACSR	77.29	TS_13_kV			
75	OH_656186	ND_1208167	Node_3954160062	ABCN	1/0 ACSR	49.45	TS_13_kV			
76	OH_656187	ND_1208169	ND_1208167	ABCN	2 ACSR	331.66	VS_13_kV	25.00	25.00	25.00
77	OH_656188	ND_1208171	ND_1208169	ABCN	1/0 ACSR	624.08	VS_13_kV			
78	OH_656189	Node_3954159930	ND_1208171	ABCN	1/0 ACSR	147.00	TS_13_kV	25.00	25.00	25.00
79	OH_656190	ND_1208175	ND_1208176	ABCN	1/0 ACSR	123.87	VS_13_kV	25.00	25.00	25.00
80	OH_656191	ND_1208177	ND_1208178	ABCN	3/0 ACSR	72.94	VS_13_kV	37.50	0.00	0.00
81	OH_656192	ND_1208179	ND_1208177	ABCN	3/0 ACSR	45.97	VS_13_kV	0.00	25.00	0.00
82	OH_656193	ND_1208181	ND_1208179	ABCN	3/0 ACSR	135.67	VS_13_kV	0.00	0.00	37.50
83	OH_656194	ND_1208183	ND_1208181	ABCN	3/0 ACSR	65.08	TS_13_kV	0.00	37.50	0.00
84	OH_656195	ND_1208185	ND_1208183	ABCN	4/0 ACSR	165.46	TS_13_kV	15.00	0.00	0.00
85	OH_656196	ND_1208187	ND_1208185	ABCN	266 ACSR	75.08	VS_13_kV			
86	OH_656197	ND_1208189	ND_1208187	ABCN	266 ACSR	248.90	TS_13_kV			
87	OH_050198	ND_1208189	ND_1208192	ABCN	1/0 ACSR	308.43	15_13_KV	10.00	10.00	10.00
00	OH_000199	ND_1200175	ND_1200109	ABON	I/U ACSK	200.79	VS_13_KV	_		
09	OH_656200	ND_1206195	ND_1200190	ABCN	6.00	14.41	VS_13_KV	25.00	25.00	25.00
01	011_030201	ND_1200137	ND 1200133	DN	1/0 ACCER	012.66	VS_13_KV	20.00	25.00	23.00
91	OH_030202	ND_1208199	ND_1200200	DIN	1/0 ACSR	213.00	VS_13_KV	0.00	20.00	0.00
92	OH_656204	ND_1208197	ND 1208201	BN	1/0 ACSR	146.33	VS_13_kV	0.00	25.00	0.00
94	OH 656205	ND_1208175	ND 1208197	ABCN	1/0 ACSR	491.63	VS_13_kV	0.00	20.00	0.00
95	OH 656206	ND 1208173	ND 1208175	ABCN	1/0 ACSR	317.85	VS_13_kV			
96	OH 656207	ND 1208209	ND 1208173	ABCN	1/0 ACSR	362.37	VS 13 kV			
97	OH 656208	ND 1208159	ND 1208209	ABCN	2 ACSR	40.03	TS 13 kV			
98	OH 656209	ND 1208213	ND 1208214	ABCN	2 ACSR	38.18	TS 13 kV	25.00	25.00	25.00
99	OH_656210	ND_1208213	ND_1208216	ABCN	3/0 ACSR	29.75	TS_13 kV			
100	OH_656211	ND_1208159	ND_1208213	ABCN	2 ACSR	92.45	VS_13_kV	5.00	5.00	5.00
101	OH_656212	ND_1208219	ND_1208159	ABCN	266 ACSR	217.70	VS_13 kV			
102	OH_656213	ND_1208219	ND_1208222	ABCN	3/0 ACSR	55.52	VS_13_kV			
103	OH_656214	ND_1208107	ND_1208219	ABCN	266 ACSR	258.10		15.00	0.00	0.00
104	OH_656215	ND_1208225	ND_1208226	BN	3/0 ACSR	149.40	PS_13_kV	0.00	15.00	0.00
105	OH_656216	ND_1208227	ND_1208225	BN	3/0 ACSR	141.14	 PS_13_kV	0.00	25.00	0.00
106	OH_656217	ND_1208229	ND_1208227	BN	3/0 ACSR	80.83	VS_13_kV			
107	OH_656218	ND_1208231	ND_1208232	ABCN	1/0 ACSR	138.61	TS_13_kV	10.00	10.00	10.00
108	OH_656219	ND_1208231	ND_1208234	ABCN	266 ACSR	1,278.31	TS_13_kV			
109	OH_656220	ND_1208235	ND_1208231	ABCN	266 ACSR	252.40	TS_13_kV			

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
110	OH_656221	ND_1208235	ND_1208238	A N	1/0 ACSR	101.15	TS_13_kV			
111	OH_656222	ND_1208239	ND_1208235	ABCN	266 ACSR	367.85	VS_13_kV			
112	OH_656223	ND_1208241	ND_1208239	ABCN	266 ACSR	1,164.93	VS_13_kV			
113	OH_656224	ND_1208243	ND_1208241	ABCN	266 ACSR	155.93	VS_13_kV	10.00	0.00	0.00
114	OH_656225	ND_1208243	ND_1208246	ABCN	266 ACSR	105.82	VS_13_kV			
115	OH_656226	ND_1208247	ND_1208243	ABCN	266 ACSR	126.79	VS_13_kV			
116	OH_656227	ND_1208249	ND_1208247	ABCN	266 ACSR	140.44	VS_13_kV			
11/	OH_656228	ND_1208251	ND_1208249	ABCN	266 ACSR	242.04	TS_13_KV	25.00	25.00	25.00
110	OH_050229	ND_1208255	ND_1208251	ABCN	200 ACSR	83.74	TS 13 kV	23.00	23.00	23.00
120	OH 656231	ND 1208253	ND 1208255	ABON	1/0 ACSR	324 15	TS 13 kV	10.00	10.00	10.00
121	OH 656232	ND 1208259	ND 1208253	ABCN	266 ACSR	284.25	VS 13 kV	10.00	10.00	10.00
122	OH_656233	ND_1208261	ND_1208259	ABCN	266 ACSR	97.75	VS_13_kV	37.50	0.00	0.00
123	OH_656234	ND_1208263	ND_1208261	ABCN	266 ACSR	99.94	TS_13_kV	0.00	0.00	10.00
124	OH_656235	ND_1208265	ND_1208263	ABCN	266 ACSR	183.54	TS_13_kV			
125	OH_656236	ND_1208265	ND_1208268	ABCN	266 ACSR	35.17	TS_13_kV	25.00	25.00	25.00
126	OH_656237	ND_1208269	ND_1208265	ABCN	266 ACSR	114.90	TS_13_kV			
127	OH_656238	ND_1208271	ND_1208269	ABCN	266 ACSR	170.32	VS_13_kV	10.00	10.00	10.00
128	OH_656239	ND_1208273	ND_1208271	ABCN	266 ACSR	134.73	VS_13_kV	15.00	15.00	15.00
129	OH_656240	ND_1208275	ND_1208273	ABCN	266 ACSR	710.60	VS_13_kV	5.00	5.00	5.00
130	OH_050241	ND_1208270	ND_1208275	ABCN	200 ACSR	/10.00	VS_13_KV	0.00	0.00	15.00
132	OH 656243	ND 1208281	ND 1208279	ABCN	266 ACSR	423.03	VS 13 kV	0.00	0.00	13.00
133	OH 656244	ND 1208283	ND 1208281	ABCN	266 ACSR	1.214.01	VS 13 kV	0.00	0.00	15.00
134	OH 656245	ND 1208285	ND 1208286	CN	3/0 ACSR	239.39	PS 13 kV	0.00	0.00	37.50
135	OH_656246	ND_1208283	ND_1208285	CN	3/0 ACSR	385.66	PS_13_kV	0.00	0.00	37.50
136	OH_656247	ND_1208289	ND_1208283	ABCN	266 ACSR	154.73	VS_13_kV			_
137	OH_656248	ND_1208291	ND_1208289	ABCN	266 ACSR	178.53	VS_13_kV	0.00	15.00	0.00
138	OH_656249	ND_1208293	ND_1208294	CN	2 ACSR	366.99	PS_13_kV	0.00	0.00	15.00
139	OH_656250	ND_1208291	ND_1208293	CN	2 ACSR	99.42	VS_13_kV			
140	OH_656251	ND_1208297	ND_1208298	CN	3/0 ACSR	170.86	PS_13_kV	0.00	0.00	25.00
141	OH_656252	ND_1208297	ND_1208300	CN	3/0 ACSR	213.27	PS_13_kV	0.00	0.00	37.50
142	OH_656253	ND_1208301	ND_1208297	CN	3/0 ACSR	142.11	PS_13_kV	0.00	0.00	25.00
143	OH_656254	ND_1206303	ND_1200301	CN	3/0 ACSR	147.22	PS_13_KV	0.00	0.00	25.00
144	OH 656256	ND 1208305	ND_1200303	A CN	1/0 ACSR	122.15	TS 13 kV	25.00	0.00	0.00
146	OH 656257	ND 1208309	ND 1208305	A CN	1/0 ACSR	169.84	TS 13 kV	25.00	0.00	0.00
147	OH_656258	ND_1208311	ND_1208309	A CN	1/0 ACSR	31.88	TS_13_kV	0.00	0.00	25.00
148	OH_656259	ND_1208313	ND_1208314	A N	1/0 ACSR	111.22	PS_13_kV	25.00	0.00	0.00
149	OH_656260	ND_1208315	ND_1208313	AN	1/0 ACSR	41.90	PS_13_kV	25.00	0.00	0.00
150	OH_656261	ND_1208317	ND_1208318	A N	266 ACSR	170.24	PS_13_kV	37.50	0.00	0.00
151	OH_656262	ND_1208317	ND_1208320	A N	1/0 ACSR	110.13	PS_13_kV	25.00	0.00	0.00
152	OH_656263	ND_1208321	ND_1208317	AN	1/0 ACSR	83.59	PS_13_kV			
153	OH_656264	ND_1208315	ND_1208321	AN	1/0 ACSR	263.33	PS_13_kV	25.00	0.00	0.00
104	OH_050205	ND_1200311	ND_1206315	A N A CN	1/0 ACSR	210.14	PS_13_KV			
156	OH 656267	ND 1208329	ND 1208330	AN	1/0 ACSR	142.94	PS 13 kV	25.00	0.00	0.00
157	OH 656268	ND 1208331	ND 1208329	AN	1/0 ACSR	139.63	PS 13 kV	25.00	0.00	0.00
158	OH_656269	ND_1208333	ND_1208331	A N	1/0 ACSR	219.70	PS_13_kV	25.00	0.00	0.00
159	OH_656270	ND_1208335	ND_1208336	A N	1/0 ACSR	66.14	PS_13_kV	10.00	0.00	0.00
160	OH_656271	ND_1208333	ND_1208335	A N	1/0 ACSR	28.43	PS_13_kV	25.00	0.00	0.00
161	OH_656272	ND_1208339	ND_1208340	BN	1/0 ACSR	155.67	PS_13_kV	0.00	25.00	0.00
162	OH_656273	ND_1208341	ND_1208339	BN	1/0 ACSR	89.46	VS_13_kV	0.00	25.00	0.00
163	OH_656274	ND_1208333	ND_1208341	BN	1/0 ACSR	150.58	PS_13_kV	0.00	25.00	0.00
104	OH 656276	ND 1208347	ND_1206333	AB N ABON	1/0 ACSK	J42.05	VS_13_KV	25.00	0.00	0.00
166	OH 656277	ND 1208349	ND 1208347	ABCN	1/0 ACSR	115.15	VS_13_kV	0.00	0.00	25.00
167	OH 656278	ND 1208351	ND 1208349	ABCN	1/0 ACSR	178.29	VS 13 kV	25.00	0.00	0.00
168	OH_656279	ND_1208353	ND_1208351	ABCN	1/0 ACSR	188.36	VS_13_kV	0.00	25.00	0.00
169	OH_656280	ND_1208355	ND_1208353	ABCN	1/0 ACSR	40.99	TS_13_kV			
170	OH_656281	ND_1208291	ND_1208355	ABCN	1/0 ACSR	47.10	VS_13_kV			
171	OH_656282	ND_1208229	ND_1208291	ABCN	266 ACSR	591.01	VS_13_kV			
172	OH_656283	ND_1208107	ND_1208229	ABCN	266 ACSR	402.66	VS_13_kV			
173	OH_656284	ND_1208363	ND_1208107	ABCN	336 ACSR	481.46	VS_13_kV			
1/4	OH_656285	ND_1208365	ND_1208363	ABCN	336 ACSR	/9.84	VS_13_kV	5.00	5.00	5.00
1/5	OH_656287	ND_1208365	ND_1208368	ABCN	330 AUSR	45.03	VS_13_KV	37.50	0.00	0.00
177	OH 656288	ND 1208365	ND 1208372	ABCN	336 ACSR	46.85	VS_13_kV	0.00	37.50	0.00
178	OH 656289	ND 1208373	ND 1208365	ABCN	336 ACSR	206.72	VS 13 kV	0.00	01.00	0.00
179	OH_656290	ND_1208375	ND_1208373	ABCN	336 ACSR	112.26	VS_13_kV	37.50	0.00	0.00
180	OH_656291	ND_1208377	ND_1208378	BCN	1/0 ACSR	157.85	VS_13_kV	0.00	25.00	0.00
181	OH_656292	ND_1208379	ND_1208380	B N	1/0 ACSR	52.49	PS_13_kV			
182	OH_656293	ND_1208381	ND_1208379	BN	1/0 ACSR	52.25	PS_13_kV			
183	OH_656294	ND_1208383	ND_1208381	BN	1/0 ACSR	49.04	PS_13_kV	0.00	37.50	0.00

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
184	OH_656295	ND_1208385	ND_1208386	CN	1/0 ACSR	73.86	PS_13_kV			
185	OH_656296	ND_1208387	ND_1208388	CN	1/0 ACSR	35.68	PS_13_kV	0.00	0.00	37.50
186	OH_656297	ND_1208389	ND_1208390	CN	1/0 ACSR	90.31	PS_13_kV	0.00	0.00	37.50
187	OH_656298	ND_1208387	ND_1208389	CN	1/0 ACSR	78.55	PS_13_kV	0.00	0.00	37.50
188	OH_656299	ND_1208393	ND_1208387	CN	1/0 ACSR	140.73	PS_13_kV			
189	OH_656300	ND_1208393	ND_1208396	CN	1/0 ACSR	158.12	PS_13_kV	0.00	0.00	37.50
190	OH_656301	ND_1208397	ND_1208393	CN	1/0 ACSR	101.36	PS_13_kV	0.00	0.00	27.50
191	OH_656303	ND_1206365	ND_1206397	CN	1/0 ACSR	120.33	PS_13_KV	0.00	0.00	37.00
193	OH 656304	ND 1208403	ND 1208401	CN	1/0 ACSR	368.83	PS 13 kV	0.00	0.00	37.50
194	OH 656305	ND 1208383	ND 1208403	BCN	1/0 ACSR	128.49	VS 13 kV	0.00	37.50	0.00
195	OH_656306	ND_1208377	ND_1208383	BCN	1/0 ACSR	116.25	VS_13_kV			
196	OH_656307	ND_1208409	ND_1208377	BCN	1/0 ACSR	320.54	VS_13_kV			
197	OH_656308	ND_1208409	ND_1208412	CN	1/0 ACSR	136.66	PS_13_kV	0.00	0.00	37.50
198	OH_656309	ND_1208413	ND_1208409	BCN	1/0 ACSR	311.15	VS_13_kV			
199	OH_656310	ND_1208415	ND_1208413	BCN	1/0 ACSR	106.22	VS_13_kV	0.00	37.50	0.00
200	OH_656311	ND_1208417	ND_1208415	BCN	1/0 ACSR	116.70	VS_13_kV	0.00	37.50	0.00
201	OH_656312	ND_1208419	ND_1208417	ABCN	1/0 ACSR	244.93	VS_13_kV	37.50	0.00	0.00
202	OH_000313	ND_1200421	ND_1200419	ABCN	1/0 ACSR	94.13	VS_I3_KV	37.50	0.00	0.00
203	OH_656315	ND_1208425	ND_1208424	ABCN	1/0 ACSR	96.94	VS 13 kV	37.30	0.00	0.00
205	OH 656316	ND 1208427	ND 1208425	ABCN	1/0 ACSR	265.35	VS 13 kV	37.50	0.00	0.00
206	OH_656317	ND_1208375	ND_1208427	ABCN	336 ACSR	80.77	VS_13_kV			
207	OH_656318	ND_1208431	ND_1208375	ABCN	336 ACSR	376.94	VS_13_kV			
208	OH_656319	ND_1208433	ND_1208431	ABCN	336 ACSR	1,008.86	VS_13_kV	0.00	25.00	0.00
209	OH_656320	ND_1208435	ND_1208433	ABCN	336 ACSR	394.19	VS_13_kV			
210	OH_656321	ND_1208437	ND_1208435	ABCN	336 ACSR	318.34	VS_13_kV	15.00	0.00	0.00
211	OH_656322	ND_1208439	ND_1208437	ABCN	336 ACSR	45.65	TS_13_kV	_		
212	OH_656323	ND_1208441	ND_1208442	ABCN	266 ACSR	43.87	VS_13_KV	25.00	0.00	0.00
213	OH_656325	ND_1208445	ND_1208443	AN	3/0 ACSR	82 79	PS_13_kV PS_13_kV	23.00	0.00	0.00
215	OH 656326	ND 1208441	ND 1208445	AN	3/0 ACSR	130.80	VS 13 kV			
216	OH_656327	ND_1208449	ND_1208441	ABCN	266 ACSR	246.36	VS_13_kV			
217	OH_656328	ND_1208451	ND_1208449	ABCN	266 ACSR	139.08	VS_13_kV	50.00	50.00	50.00
218	OH_656329	ND_1208439	ND_1208451	ABCN	266 ACSR	41.25	VS_13_kV	15.00	15.00	15.00
219	OH_656330	ND_1208455	ND_1208439	ABCN	266 ACSR	626.25	VS_13_kV			
220	OH_656331	ND_1208457	ND_1208458	A CN	3/0 ACSR	81.57	VS_13_kV	0.00	0.00	25.00
221	OH_656332	ND_1208459	ND_1208457	A CN	3/0 ACSR	52.04	TS_13_kV			
222	OH_656333	ND_1208461	ND_1208462	ABCN	1/0 ACSR	380.25	VS_13_kV	10.00	10.00	10.00
223	OH_656334	ND_1208459	ND_1208461	ABCN	1/U ACSR	202.12	15_13_KV	0.00	0.00	37.50
224	OH 656336	ND_1208467	ND_1208465	ABCN	1/0 ACSR	202.12	VS_13_kV	10.00	10.00	10.00
226	OH 656337	ND 1208469	ND 1208470	ABCN	1/0 ACSR	206.03	TS 13 kV	10.00	10.00	10.00
227	OH_656338	ND_1208469	ND_1208472	ABCN	1/0 ACSR	125.11	TS_13_kV	10.00	10.00	10.00
228	OH_656339	ND_1208467	ND_1208469	ABCN	1/0 ACSR	305.64	TS_13_kV			
229	OH_656340	ND_1208475	ND_1208467	ABCN	1/0 ACSR	33.94	TS_13_kV			
230	OH_656341	ND_1208455	ND_1208475	ABCN	1/0 ACSR	234.58	TS_13_kV	10.00	10.00	10.00
231	OH_656342	ND_1208479	ND_1208455	ABCN	266 ACSR	123.63	VS_13_kV			
232	OH_656343	ND_1208481	ND_1208479	ABCN	266 ACSR	166.94	VS_13_kV	15.00	15.00	15.00
233	OH_656346	ND_1206463	ND_1200461	ABCN	200 AUSR	180.58	VS_13_KV	10.00	10.00	10.00
234	OH 656347	ND 1208483	ND 1208487	ABCN	266 ACSR	230.68	VS_13_kV	37.50	37.50	37.50
236	OH 656348	ND 1208103	ND 1208483	ABCN	336 ACSR	207.07	VS 13 kV			
237	OH_656349	ND_1208095	ND_1208103	ABCN	336 ACSR	157.90	TS_13_kV			
238	OH_656350	ND_1208495	ND_1208095	ABCN	336 ACSR	631.46	VS_13_kV			
239	OH_656351	ND_1208497	ND_1208495	ABCN	336 ACSR	65.29	VS_13_kV	37.50	0.00	0.00
240	OH_656352	ND_1208093	ND_1208497	ABCN	336 ACSR	681.46	VS_13_kV	50.00	0.00	0.00
241	OH_656353	ND_1208501	ND_1208093	ABCN	336 ACSR	232.19	VS_13_kV			
242	OH_656354	ND_1208503	ND_1208501	ABCN	336 ACSR	194.25	VS_13_kV	10.00	10.00	10.00
243	OH_656355	ND_1208505	ND_1208506	CN	3/0 ACSR	103.60	PS_13_kV	0.00	0.00	37.50
244	OH 656357	ND_1208509	ND_1208503	ABCN	336 ACSR	635.10	VS_13_KV			
246	OH 656358	ND 1208511	ND 1208509	ABCN	336 ACSR	137.64	VS 13 kV			
247	OH_656359	ND_1208513	ND_1208511	ABCN	336 ACSR	807.09	VS_13_kV	10.00	10.00	10.00
248	OH_656360	ND_1208027	ND_1208513	ABCN	4/0 ACSR	358.66	VS_13_kV			
249	OH_656361	ND_1208517	ND_1208027	ABCN	4/0 ACSR	131.87	TS_13_kV			
250	OH_656362	ND_1208519	ND_1208520	A CN	3/0 ACSR	122.69	VS_13_kV	0.00	0.00	25.00
251	OH_656363	ND_1208517	ND_1208519	A CN	3/0 ACSR	84.63	TS_13_kV			
252	OH_656364	ND_1208523	ND_1208517	ABCN	4/0 ACSR	132.98	VS_13_kV			
253	OH_656365	ND_1208525	ND_1208523	ABCN	4/0 ACSR	032.84	15_13_KV	15.00	15.00	15.00
255	OH 656367	ND_1208529	ND 1208527	ABCN	4/0 ACSR	427.95	TS 13 kV	13.00	13.00	13.00
256	OH_656368	ND_1208531	ND_1208529	ABCN	4/0 ACSR	72.60	HS_13 kV	15.00	15.00	15.00
257	OH_656369	ND_1208533	ND_1208531	ABCN	4/0 ACSR	256.31	HS_13_kV			

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
258	OH_656370	ND_1208535	ND_1208533	ABCN	266 ACSR	609.74	HS_13_kV			
259	OH_656371	ND_1208537	ND_1208535	ABCN	336 ACSR	149.77	HS_13_kV			
260	OH_656372	ND_1208539	ND_1208537	ABCN	336 ACSR	338.81	TS_13_kV			
261	OH_656373	JLD04070	Node_51888052126	ABCN	336 ACSR	714.26	VS_13_kV			
262	Section_3954160063	Node_3954160062	ND_1208143	ABCN	266 ACSR	443.40	VS_13_kV			

Tabla B.3: Datos básicos de cada rama del circuito CEO 4000.

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
1	CB_21502	MH_49968	MH_49967+	ABCN	15kV 750AL XLP	187.27	15kV 3F4H 750 Duc. Tre.			
2	CB_21503	MH_49970	MH_49968	ABCN	15kV 750AL XLP	703.15	15kV 3F4H 750 Duc. Tre.			
3	CB_31120	MH_49967+	MH_66980	ABCN	15kV 750AL XLP	51.68	15kV 3F4H 750 Duc. Tre.			
4	OH_3954065940	ND_1273971	ND_1313692	ABCN	3/0 ACSR	672.85	PS_13_kV			
5	OH_39543639610	Node_3954362292	Node_3954362324	ABCN	266 ACSR	251.08	VS_13_kV			
6	OH_51888281681	MH_49970	Node_51888282285	ABCN	15kV 750AL XLP	586.78	15kV 3F4H 750 Duc. Tre.			
7	OH_51888282286	Node_51888282285	CEO04000	ABCN	15kV 750AL XLP	35.33	15kV 3F4H 750 Duc. Tre.			
8	OH_689312	ND_1273878	ND_1273879	ABCN	266 ACSR	111.69	TS_13_kV	50	50	50
9	OH_689313	ND_1273880	ND_1273878	ABCN	266 ACSR	310.4	TS_13_kV	0	0	25
10	OH_689314	ND_1273882	ND_1273880	ABCN	266 ACSR	47.41	TS_13_kV	-	_	
11	OH 689315	ND 1273884	ND 1273882	ABCN	266 ACSR	154.37	TS 13 kV			
12	OH_689316	ND_1273886	ND_1273887	ABCN	1/0 CU	91.06	TS_13_kV	75	75	75
13	OH 689317	ND 1273884	ND 1273886	ABCN	3/0 ACSR	140.49	TS 13 kV			
14	OH 689318	ND 1273890	ND 1273884	ABCN	1/0 CU	217.54	TS 13 kV	25	25	25
15	OH 689319	ND 1273892	ND 1273890	ABCN	1/0 CU	195.95	TS 13 kV	25	25	25
16	OH 689320	ND 1273894	ND 1273895	ABCN	1/0 CU	71.72	TS 13 kV	15	15	15
17	OH 689321	ND 1273896	ND 1273894	ABCN	1/0 ACSR	250.97	TS 13 kV			
18	OH 689322	ND 1273892	ND 1273896	ABCN	2 ACSR	114.59	TS 13 kV	15	15	15
19	OH 689323	ND 1273900	ND 1273892	ABCN	1/0 ACSR	342.45	TS 13 kV			-
20	OH 689324	ND 1273902	ND 1273900	ABCN	1/0 ACSR	134.33	TS 13 kV			
21	OH 689325	ND 1273904	ND 1273905	ABCN	1/0 ACSR	83.6	TS 13 kV	25	25	25
22	OH 689326	ND 1273906	ND 1273907		2 ACSR	154.93	PS 13 kV	25	0	0
23	OH 689327	ND_1273906	ND 1273909	AN	2 ACSR	383.86	PS 13 kV	37.5	0	0
24	OH 689328	ND 1273910	ND 1273906	AN	2 ACSR	302.99	PS 13 kV	01.0		
25	OH 680320	ND 1273012	ND 1273010		2 ACSP	154.44	PS 13 kV	25	0	0
25	011_003323	ND 1273912	ND 1273910		2 ACON	140.14	DC 12 I/V	25	0	0
20	OH 680331	ND 1273914	ND 1273912		2 ACSP	01.63	PS 13 W	25	0	0
21	01_003331	ND 1273910	ND 1273010		1/0.4000	126 70	DC 12 W	15	0	0
20	OH_009332	ND_1273910	ND_1273919	AN	1/0 ACSR	130.70	F3_13_KV	10	0	0
29	OH_009333	ND_1273920	ND_1273910	AN	1/0 ACSR	202.10	PS_13_KV			
30	OH_009334	ND_1273922	ND_1273920	AN	1/0 ACOR	100.01	F0_13_KV	45	0	0
31	OH_009335	ND_1273924	ND_1273922	AN	1/0 ACSR	109.01	PS_13_KV	15	0	0
32	OH_009330	ND_1273920	ND_1273924	AN	1/0 ACSR	230.4	PS_13_KV	45	0	0
33	OH_009337	ND_1273920	ND_1273926	AN	1/U AUSR	2/1	PS_13_KV	15	0	0
34	OH_689338	ND_1273930	ND_1273931	AN	3/0 ACSR	361.29	PS_13_KV	10	0	0
35	OH_689339	ND_1273932	ND_12/3930	AN	3/U AUSR	433.92	PS_13_KV	10	0	0
30	OH_009340	ND_1273934	ND_1313437	ABON	2 AUSK	303.00	VS_13_KV	40	- 10	40
3/	OH_689341	ND_1273934	ND_12/393/	ABCN	1/U ACSR	80.57	VS_13_KV	10	10	10
38	OH_689342	ND_1273938	ND_1273934	ABCN	2 ACSR	119.4	VS_13_kV			
39	OH_689343	ND_1273940	ND_1273938	ABCN	ZAUSR	67.05	VS_13_KV			
40	OH_689344	ND_1273942	ND_1273943	AN	3/0 ACSR	121.87	PS_13_KV	25	0	0
41	OH_689345	ND_1273944	ND_1273942	AN	3/0 ACSR	515.94	PS_13_kV	25	0	0
42	OH_689346	ND_1273946	ND_1273944	AN	3/U ACSR	60.96	PS_13_KV			
43	OH_689347	ND_1273948	ND_1273949	ABCN	3/0 ACSR	157.64	VS_13_kV	25	25	25
44	OH_689348	ND_1273948	ND_12/3951	ABN	3/0 ACSR	165.56	VS_13_kV	25	0	0
45	OH_689349	ND_1273952	ND_1273948	ABCN	3/0 ACSR	124.7	VS_13_kV			
46	OH_689350	ND_1273954	ND_12/3955	BCN	3/0 ACSR	324.05	VS_13_kV	0	15	0
47	OH_689351	ND_1273956	ND_1273954	BCN	3/0 ACSR	513.81	VS_13_kV	0	25	0
48	OH_689352	ND_1273952	ND_1273956	BCN	3/0 ACSR	37.36	VS_13_kV			
49	OH_689353	ND_1273960	ND_1273952	ABCN	3/0 ACSR	162.27	VS_13_kV			
50	OH_689354	ND_1273962	ND_1273960	ABCN	3/0 ACSR	148.83	VS_13_kV	0	37.5	0
51	OH_689355	ND_1273964	ND_1273962	ABCN	1/0 ACSR	81.22	VS_13_kV			
52	OH_689356	ND_1273966	ND_1273964	ABCN	1/0 ACSR	228.25	VS_13_kV			
53	OH_689357	ND_1273968	ND_1273969	BN	3/0 ACSR	230.38	PS_13_kV	0	25	0
54	OH_689358	ND_1273968	ND_1273971	ABCN	3/0 ACSR	176	PS_13_kV	0	37.5	0
55	OH_689359	ND_1273972	ND_1273968	ABCN	3/0 ACSR	117.7	PS_13_kV			
56	OH_689360	ND_1273974	ND_1273972	ABCN	3/0 ACSR	425.2	PS_13_kV			
57	OH_689361	ND_1273966	ND_1273974	ABCN	1/0 ACSR	177.03	VS_13_kV	0	0	25
58	OH_689362	ND_1273978	ND_1273966	ABCN	1/0 ACSR	387.5	VS_13_kV			
59	OH_689363	ND_1273980	ND_1273978	ABCN	1/0 ACSR	193.84	PS_13_kV	25	0	0
60	OH_689364	ND_1273946	ND_1273980	ABCN	1/0 ACSR	190.37	VS_13_kV	100	100	100

NI ⁰	Coortée	Nod- 4-	Nedee	Ferre	Conductor	(4)	Configuration	L)/A -		L\/A -
N* 61	OH 689365	NOGO GE	NOGO a	ABCN	1/0 ACSR	L (π)		куда	KVAD	KVAC
62	OH 689366	ND 1273986	ND 1273987	BN	3/0 ACSR	258.94	PS 13 kV	0	25	0
63	OH_689367	ND_1273984	ND_1273986	BN	3/0 ACSR	65.3	PS_13_kV			
64	OH_689368	ND_1273940	ND_1273984	ABCN	1/0 ACSR	199.36	VS_13_kV			
65	OH_689369	ND_1273992	ND_1273940	ABCN	2 ACSR	496.03	VS_13_kV			
66	OH_689370	ND_1273994	ND_1273992	ABCN	1/0 ACSR	421.16	VS_13_kV	15	15	15
67	OH_689371	ND_1273996	ND_1273994	ABCN	1/0 ACSR	444.16	VS_13_kV	_		
68	OH_689372	ND_1273998	ND_1273996	ABCN	1/0 ACSR	84.13	VS_13_kV	45	0	0
69 70	OH_689373	ND_1274000	ND_1273998	ABCN	1/U ACSR	76.06	VS_13_KV	15	U	0
70	OH_009374	ND_1274002	ND_1274003	CN	2 ACSR	106.07	PS 13 kV	0	0	15
72	OH 689376	ND 1274006	ND 1274007	BN	1/0 ACSR	117.92	PS 13 kV	0	15	0
73	OH_689377	ND_1274006	ND_1274009	BN	1/0 ACSR	269.46	PS_13_kV	0	15	0
74	OH_689378	ND_1274010	ND_1274006	BN	1/0 ACSR	338.88	PS_13_kV			
75	OH_689379	ND_1274012	ND_1274010	BN	1/0 ACSR	109.48	PS_13_kV	0	37.5	0
76	OH_689380	ND_1274012	ND_1274015	ABCN	1/0 ACSR	94.32	TS_13_kV	0	0	15
77	OH_689381	ND_1274004	ND_1274012	ABCN	1/0 ACSR	262.12	PS_13_kV			
78	OH_689382	ND_1274000	ND_1274004	ABCN	1/0 ACSR	129.94	VS_13_kV	5	5	5
79	OH_689383	ND_1273932	ND_1274000	ABCN	1/0 ACSR	336.75	VS_13_kV			
80	OH_689384	ND_1274022	ND_1273932	ABCN	1/U ACSR	11.25	VS_13_KV	0	15	0
01 82	OH_689386	ND_1273920	ND_1274022	ABON	3/0 ACSR	305.58	VS_13_KV	0	15	U
83	OH 689387	ND 1274028	ND 1273020	ABCN	3/0 ACSR	254.26	VS_13_kV	0	0	15
84	OH 689388	ND 1273916	ND 1274028	ABCN	3/0 ACSR	139.75	VS 13 kV	10	10	10
85	OH 689389	ND 1274032	ND 1273916	ABCN	3/0 ACSR	234.95	VS 13 kV			
86	OH_689390	ND_1274034	ND_1274032	ABCN	3/0 ACSR	220.83	TS_13_kV			
87	OH_689391	ND_1274036	ND_1274037	A CN	3/0 ACSR	166.34	TS_13_kV	0	0	25
88	OH_689392	ND_1274038	ND_1274036	A CN	3/0 ACSR	66.88	TS_13_kV			
89	OH_689393	ND_1274040	ND_1274038	A CN	3/0 ACSR	154.76	TS_13_kV	0	0	25
90	OH_689394	ND_1274042	ND_1274040	A CN	3/0 ACSR	184.87	TS_13_kV			
91	OH_689395	ND_1274044	ND_1274042	A CN	3/0 ACSR	40.34	TS_13_kV			
92	OH_689396	ND_1274034	ND_1274044	A CN	3/0 ACSR	36.18	TS_13_kV			
93	OH_689397	ND_1274048	ND_1274034	ABCN	3/U ACSR	89.11	IS_13_kV	45	45	45
94	OH_689390	ND_1273904	ND_1274040	ABCN	2 AUSR	202.00	TS_13_KV	15	15	15
96	OH 689400	ND_1274052	ND_1273504	ABCN	1/0 ACSR	329.36	TS 13 kV	37.5	37.5	37.5
97	OH 689401	ND 1273902	ND 1274054	ABCN	1/0 ACSR	167.62	TS 13 kV	01.0	01.0	01.0
98	OH_689402	ND_1274058	ND_1273902	ABCN	1/0 ACSR	403.41	TS_13_kV			
99	OH_689403	ND_1274060	ND_1274058	ABCN	1/0 ACSR	118.45	TS_13_kV	15	15	15
100	OH_689404	ND_1274062	ND_1274060	ABCN	1/0 ACSR	158.09	TS_13_kV	25	25	25
101	OH_689405	ND_1274062	ND_1274065	ABCN	1/0 ACSR	162.55	TS_13_kV	10	10	10
102	OH_689406	ND_1274066	ND_1274062	ABCN	1/0 ACSR	56.31	TS_13_kV			
103	OH_689407	ND_1274068	ND_1274066	ABCN	1/0 ACSR	139.74	TS_13_kV	15	15	15
104	OH_689408	Nodo2	ND_1274068	ABCN	1/0 ACSR	122.8	TS_13_kV			10
105	OH_689409	ND_12/40/2	ND_1274073	ABCN	2 ACSR	444.82	VS_13_kV	10	10	10
100	OH 689410	ND_1274074	ND_1274072	ABCN	2 ACSR	208.88	VS_13_KV	20	15	15
107	OH 689412	ND_1274070	ND_1274074	ABCN	4/0 ACSR	150.44	TS 13 kV	15	15	15
109	OH 689413	ND 1274078	ND 1274081	ABCN	2 ACSR	802.26	TS 13 kV	25	25	25
110	OH 689414	ND 1274082	ND 1274078	ABCN	4/0 ACSR	65.71	TS 13 kV			
111	OH_689415	ND_1274084	ND_1274082	ABCN	4/0 ACSR	198.88		83.3	83.3	83.3
112	OH_689416	ND_1274086	ND_1274087	ABCN	2 ACSR	472.8	TS_13_kV			
113	OH_689417	ND_1274084	ND_1274086	ABCN	2 ACSR	328.74	TS_13_kV	25	25	25
114	OH_689418	ND_1274076	ND_1274084	ABCN	4/0 ACSR	551.05	TS_13_kV			
115	OH_689419	ND_1274092	ND_1274076	ABCN	4/0 ACSR	90.18	TS_13_kV			
116	OH_689420	Nodo2	ND_1274092	ABCN	4/0 ACSR	118.48	TS_13_kV			
117	OH_710505	ND_1313325	ND_1313326	ABCN	1/0 ACSR	34.49	VS_13_kV	10	10	10
118	OH_710506	ND_1313327	ND_1313328	CN	3/U ACSR	230.68	PS_13_kV	U	U	37.5
119	OH_/1050/	ND_1313329	ND_1313327		3/0 ACSR	323	VO_13_KV	0	15	0
120	OH_710509	ND 1313333	ND 1313331	BN	1/0 ACSR	219.85	TS 13 W	U	10	U
122	OH 710510	ND 1313335	ND 1313336	CN	3/0 ACSR	112.92	PS 13 kV	0	0	25
123	OH_710511	ND_1313337	ND_1313335	CN	3/0 ACSR	157.91	PS_13 kV		-	
124	OH_710512	ND_1313339	ND_1313337	CN	3/0 ACSR	150.97	PS_13_kV			
125	OH_710513	ND_1313341	ND_1313339	CN	3/0 ACSR	155.79	PS_13_kV	0	0	25
126	OH_710514	ND_1313343	ND_1313341	CN	3/0 ACSR	132.04	PS_13_kV			
127	OH_710515	ND_1313345	ND_1313346	CN	3/0 ACSR	319.23	PS_13_kV	0	0	25
128	OH_710516	ND_1313347	ND_1313345	CN	3/0 ACSR	104.39	PS_13_kV			
129	OH_710517	ND_1313349	ND_1313347	CN	3/0 ACSR	112.63	PS_13_kV			
130	OH_710518	ND_1313343	ND_1313349	CN	3/0 ACSR	182.37	PS_13_kV			
131	OH_710519	ND_1313353	ND_1313343	CN	3/0 ACSR	143.55	PS_13_kV	0	0	25
132	UH_710520	ND_1313353	ND_1313356	CN	3/0 ACSR	45.45	PS_13_kV	0	0	15
133	OH_/10521	ND_131335/	ND_1313353		3/0 ACSR	140.19	15_13_KV	10	0	0
134	UTL/ 10022	10,10000	101000	AN	JU ACOK	140.10	F3_13_KV	10	U U	1 0

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAh	kVAr
135	OH 710523	ND 1313361	ND 1313359	AN	3/0 ACSR	145.8	PS 13 kV	37.5	0	0
136	OH_710524	ND_1313361	ND_1313364	AN	3/0 ACSR	175.35	PS_13_kV	37.5	0	0
137	OH_710525	ND_1313365	ND_1313361	AN	3/0 ACSR	639.14	PS_13_kV	37.5	0	0
138	OH_710526	ND_1313367	ND_1313365	AN	3/0 ACSR	279.07	PS_13_kV	37.5	0	0
139	OH_710527	ND_1313357	ND_1313367	AN	3/0 ACSR	124.25	TS_13_kV			
140	OH_710528	ND_1313371	ND_1313357	ABCN	1/0 ACSR	153.7	TS_13_kV			
141	OH_710529	ND_1313373	ND_1313374	BN	3/0 ACSR	364.37	PS_13_kV	0	25	0
142	OH_710530	ND_1313375	ND_1313373	BN	3/0 ACSR	348.88	PS_13_kV	0	37.5	0
143	OH_710531	ND_1313377	ND_1313375	BN	3/0 ACSR	648.88	PS_13_kV	0	37.5	0
144	OH_710532	ND_1313379	ND_1313377	BN	3/0 ACSR	177.71	TS_13_kV			
145	OH_710533	ND_1313379	ND_1313382	ABCN	3/0 ACSR	67.83	TS_13_kV	5	5	5
146	OH_710534	ND_1313383	ND_1313379	ABCN	3/0 ACSR	100.91	IS_13_kV			
14/	OH_710535	ND_1313371	ND_1313383	ABCN	3/0 ACSR	237.22	VS_13_KV	0	27.5	0
140	OH_710530	ND_1313380	ND_1313387	D N D N	3/0 ACSR	126.43	PS_13_KV	0	31.5	0
143	OH 710538	ND 1313391	ND_1313392	BN	3/0 ACSR	144.92	PS 13 kV	0	25	0
151	OH 710539	ND 1313393	ND 1313391	BN	3/0 ACSR	146.51	PS 13 kV		20	
152	OH 710540	ND 1313393	ND 1313396	BN	3/0 ACSR	192.12	PS 13 kV	0	37.5	0
153	OH 710541	ND 1313397	ND 1313393	BN	3/0 ACSR	196.21	PS 13 kV	-		-
154	OH 710542	ND 1313399	ND 1313397	BN	3/0 ACSR	207.62	PS 13 kV	0	25	0
155	OH_710543	ND_1313401	ND_1313399	BN	3/0 ACSR	153.92	PS_13_kV			
156	OH_710544	ND_1313403	ND_1313401	BN	3/0 ACSR	115.76	PS_13_kV			
157	OH_710545	ND_1313389	ND_1313403	BN	3/0 ACSR	291.11	PS_13_kV	0	37.5	0
158	OH_710546	ND_1313371	ND_1313389	BN	3/0 ACSR	170.15	PS_13_kV			
159	OH_710547	ND_1313409	ND_1313371	ABCN	1/0 ACSR	260.21	TS_13_kV			
160	OH_710548	ND_1313411	ND_1313409	ABCN	1/0 ACSR	146.81	TS_13_kV	0	37.5	0
161	OH_710549	ND_1313411	ND_1313414	CN	1/0 ACSR	302	PS_13_kV	0	0	15
162	OH_710550	ND_1313415	ND_1313411	ABCN	1/0 ACSR	435.79	TS_13_kV			
163	OH_710551	ND_1313417	ND_1313415	ABCN	1/0 ACSR	111.35	TS_13_kV	0	0	15
164	OH_710552	ND_1313333	ND_1313417	ABCN	1/0 ACSR	88.71	VS_13_kV	0	0	15
165	OH_710553	ND_1313421	ND_1313333	ABCN	1/0 ACSR	129.84	VS_13_kV			
166	OH_710554	ND_1313423	ND_1313421	ABCN	1/0 ACSR	192.07	VS_13_kV	0	25	0
167	OH_710555	ND_1313329	ND_1313423	ABCN	1/0 ACSR	308.4	VS_13_kV	15	15	15
168	OH_710556	ND_1313325	ND_1313329	ABCN	1/0 ACSR	232.1	VS_13_kV			
169	OH_710557	ND_1313429	ND_1313325	ABCN	1/0 ACSR	39.09	VS_13_KV	-	0	05
170	OH_710558	ND_1313431	ND_1313432	A CN	3/U ACSR	150.92	15_13_KV	0	0	25
1/1	OH_710559	ND_1313433	ND_1313434	ABUN	2 AUSR 3/0 ACSP	159.03	VS_13_KV	10	10	0
172	OH_710502	ND 1313441	ND_1313440		3/0 ACSR	100.22	PS 13 kV	15	0	0
174	OH 710564	ND 1313443	ND_1010442	AN	3/0 ACSR	56.19	VS 13 kV	10	0	0
175	OH 710565	ND 1313445	ND 1313446	A CN	3/0 ACSR	172.97	VS 13 kV	0	0	37.5
176	OH 710566	ND 1313447	ND 1313445	A CN	3/0 ACSR	141.35	VS 13 kV	0	0	15
177	OH_710567	ND_1313449	ND_1313450	A CN	3/0 ACSR	103.29	VS_13_kV	0	0	37.5
178	OH_710568	ND_1313451	ND_1313452	A CN	3/0 ACSR	304.76	VS_13_kV	0	0	15
179	OH_710569	ND_1313453	ND_1313451	A CN	3/0 ACSR	140.52	VS_13_kV			
180	OH_710570	ND_1313455	ND_1313456	A CN	3/0 ACSR	117.23	VS_13_kV	0	0	15
181	OH_710571	ND_1313457	ND_1313455	A CN	3/0 ACSR	154.84	VS_13_kV	0	0	25
182	OH_710572	ND_1313457	ND_1313460	A CN	3/0 ACSR	80.33	VS_13_kV	0	0	10
183	OH_710573	ND_1313461	ND_1313457	A CN	3/0 ACSR	151.75	VS_13_kV			
184	OH_710574	ND_1313453	ND_1313461	A CN	3/0 ACSR	187.7	VS_13_kV	0	0	25
185	OH_710575	ND_1313465	ND_1313453	A CN	3/0 ACSR	250.39	VS_13_kV			
186	OH_710576	ND_1313467	ND_1313465	A CN	3/0 ACSR	205.13	VS_13_kV	0	0	37.5
187	OH_710577	ND_1313469	ND_1313470	A CN	3/0 ACSR	164.89	VS_13_kV	0	0	25
188	OH_710578	ND_1313471	ND_1313472	A CN	3/0 ACSR	171.42	VS_13_kV	0	0	25
189	OH_710579	ND_1313469	ND_1313471	A CN	3/0 ACSR	123.37	VS_13_kV			
190	OH 740504	ND_1313467	ND_1313469	A CN	J/U AUSK	209.95	V5_13_KV			
191	OH 710501	ND_1313477	ND_1313467	A CN	3/0 ACSK	66.24	VO_13_KV			
192	OH_710583	ND_1313449	ND_13134/7	A CN	3/0 ACSR	159.68	VS_13_KV			
194	OH 710584	ND_1313483	ND 1313447	A CN	3/0 ACSR	176.85	VS_13_kV			
195	OH 710585	ND 1313483	ND 1313486	A CN	3/0 ACSR	58.94	VS 13 kV	0	0	37.5
196	OH 710586	ND 1313487	ND 1313483	A CN	3/0 ACSR	70.63	VS 13 kV	Ŭ	Ű	51.0
197	OH_710587	ND_1313489	ND_1313490	AN	3/0 ACSR	171.94	PS_13_kV	37.5	0	0
198	OH_710588	ND_1313491	ND_1313489	AN	3/0 ACSR	189.18	PS_13_kV			
199	OH_710589	ND_1313493	ND_1313491	AN	3/0 ACSR	201.62	PS_13_kV	37.5	0	0
200	OH_710590	ND_1313495	ND_1313493	AN	3/0 ACSR	122.49	PS_13_kV			
201	OH_710591	ND_1313497	ND_1313495	AN	3/0 ACSR	147.89	PS_13_kV			
202	OH_710592	ND_1313499	ND_1313500	AN	3/0 ACSR	332.55	PS_13_kV	25	0	0
203	OH_710593	ND_1313497	ND_1313499	AN	1/0 ACSR	166.66	PS_13_kV			
204	OH_710594	ND_1313487	ND_1313497	AN	1/0 ACSR	161.62	VS_13_kV	15	0	0
205	OH_710595	ND_1313443	ND_1313487	A CN	3/0 ACSR	207.06	VS_13_kV			
206	OH_710596	ND_1313439	ND_1313443	A CN	3/0 ACSR	185.78	VS_13_kV			
207	OH_710597	ND_1313509	ND_1313439	A CN	3/0 ACSR	241.99	VS_13_kV			
		1								

Iab	Ia B.3 (Cont	inuación)								
N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
209	OH_710599 OH_710600	ND_1313513 ND_1313515	ND_1313514 ND_1313516	B N	1/U ACSR 3/0 ACSR	61.42 91.22	VS_13_KV PS_13_kV	0	15	25
210	OH 710600	ND_1313513	ND_1313515	CN	3/0 ACSR	174.6	PS 13 kV	0	0	25
212	OH_710602	ND_1313519	ND_1313517	CN	3/0 ACSR	271.75	PS_13_kV			
213	OH_710603	ND_1313521	ND_1313519	CN	3/0 ACSR	206.82	PS_13_kV	0	0	37.5
214	OH_710604	ND_1313523	ND_1313521	CN	3/0 ACSR	198.12	VS_13_kV			
215	OH_710605	ND_1313525	ND_1313523	ABCN	266 ACSR	186.43	VS_13_kV			
216	OH_710606	ND_1313527	ND_1313528	A CN	3/0 ACSR	140.03	VS_13_kV			
217	OH_710607	ND_1313529	ND_1313527	A CN	3/0 ACSR	122.87	VS_13_kV	0	0	10
218	OH_710608	ND_1313531	ND_1313532	A CN	3/0 ACSR	151.95	VS_13_kV	0	0	25
219	OH_710609	ND_1313529	ND_1313531	A CN	3/0 ACSR	132.49	V5_13_KV			
220	OH 710611	ND_1313537	ND_1313538	A CN	3/0 ACSR	157.45	VS_13_kV	0	0	25
222	OH 710612	ND 1313535	ND 1313537	A CN	3/0 ACSR	144.18	VS 13 kV	-		20
223	OH_710613	ND_1313535	ND_1313542	A CN	3/0 ACSR	165.27	VS_13_kV	0	0	25
224	OH_710614	ND_1313543	ND_1313535	A CN	3/0 ACSR	141.74	VS_13_kV			
225	OH_710615	ND_1313545	ND_1313543	A CN	3/0 ACSR	161.19	VS_13_kV			
226	OH_710616	ND_1313525	ND_1313545	A CN	3/0 ACSR	251.56	VS_13_kV	0	0	15
227	OH_710617	ND_1313549	ND_1313525	ABCN	266 ACSR	170.49	TS_13_kV	25	0	0
228	OH_710618	ND_1313551	ND_1313549	ABCN	266 ACSR	163.85	TS_13_kV			
229	OH_710619	ND_1313553	ND_1313554	A CN	3/0 ACSR	137.65	VS_13_kV	0	0	15
230	OH_710620	ND_1313555	ND_1313553	A CN	3/0 ACSR	120.76	VS_13_kV			AT -
231	OH_710621	ND_1313557	ND_1313558	A CN	3/0 ACSR	231.94	VS_13_kV	0	0	37.5
232	UH_/10622	ND_1313555	ND_1313557	A CN	3/U ACSR	85.37	VS_13_KV			
233	OH 710624	ND_1313561	ND_1313555	A CN	3/0 AUSK 3/0 ACSP	1/2.15	VS_13_KV			
234	OH 710625	ND 1313565	ND 1313563	A CN	3/0 ACSR	137.6	VS_13_kV	0	0	10
236	OH 710626	ND_1313567	ND_1313565	A CN	3/0 ACSR	106.56	VS_13_kV			10
237	OH 710627	ND 1313569	ND 1313567	A CN	3/0 ACSR	223.9	VS 13 kV			
238	OH_710628	ND_1313561	ND_1313569	A CN	3/0 ACSR	119.28	VS_13_kV	0	0	25
239	OH_710629	ND_1313573	ND_1313561	A CN	3/0 ACSR	511.22	VS_13_kV			
240	OH_710630	ND_1313575	ND_1313573	A CN	3/0 ACSR	379.33	VS_13_kV			
241	OH_710631	ND_1313577	ND_1313578	A CN	3/0 ACSR	159.19	VS_13_kV	0	0	15
242	OH_710632	ND_1313579	ND_1313577	A CN	3/0 ACSR	77.62	VS_13_kV			
243	OH_710633	ND_1313581	ND_1313579	A CN	3/0 ACSR	212.5	VS_13_kV			
244	OH_710634	ND_1313575	ND_1313581	A CN	3/0 ACSR	310.63	VS_13_kV	0	0	37.5
245	OH_710635	ND_1313585	ND_1313575	A CN	3/0 ACSR	171.1	VS_13_kV			
246	OH_710636	ND_1313587	ND_1313585	A CN	3/0 ACSR	62.73	VS_13_kV			05
247	OH_/1063/	ND_1313589	ND_1313587	A CN	3/0 ACSR	91.24	VS_13_kV	0	0	25
248	OH_710639	ND_1313591	ND_1313592	A CN	3/0 ACSR	140.5	VS_13_KV	0	0	25
249	OH_710640	ND 1313589	ND_1313593	A CN	3/0 ACSR	157.42	VS_13_kV	0	0	37.5
251	OH 710641	ND 1313597	ND 1313589	A CN	3/0 ACSR	160.73	VS_13_kV	0		01.0
252	OH 710642	ND 1313599	ND 1313597	A CN	3/0 ACSR	111.83	VS 13 kV			
253	OH_710643	ND_1313601	ND_1313599	A CN	3/0 ACSR	71.05	VS_13_kV			
254	OH_710644	ND_1313603	ND_1313604	A CN	3/0 ACSR	237.35	VS_13_kV	0	0	37.5
255	OH_710645	ND_1313605	ND_1313603	A CN	3/0 ACSR	115.35	VS_13_kV			
256	OH_710646	ND_1313605	ND_1313608	A CN	3/0 ACSR	244.75	VS_13_kV	0	0	37.5
257	OH_710647	ND_1313609	ND_1313605	A CN	3/0 ACSR	127.66	VS_13_kV			
258	OH_710648	ND_1313611	ND_1313609	A CN	3/0 ACSR	102.97	VS_13_kV	0	0	25
259	OH_710649	ND_1313613	ND_1313611	A CN	3/0 ACSR	484.45	VS_13_kV			
260	OH_710650	ND_1313615	ND_1313613	A CN	3/0 ACSR	113.91	VS_13_kV	0	0	15
261	OH_/10651	ND_1313617	ND_1313615	A CN	3/U ACSR	131.95	VS_13_kV	0	0	15
262	UH_/10652	ND_1313619	ND_1313617	A CN	3/U ACSR	344.42	V5_13_KV	0	0	15
203	OH 710654	ND_1313601	ND_1313619	ABON	266 ACSR	200.12	VS_13_KV	U	20	U
265	OH 710655	ND 1313625	ND 1313623	ABCN	266 ACSR	170.53	VS 13 kV	25	0	0
266	OH 710656	ND 1313627	ND 1313628	AB N	3/0 ACSR	283.6	VS 13 kV	25	0	0
267	OH_710657	ND_1313629	ND_1313630	AB N	3/0 ACSR	153.89	VS_13_kV	25	0	0
268	OH_710658	ND_1313631	ND_1313629	AB N	3/0 ACSR	91.27	VS_13_kV	25	0	0
269	OH_710659	ND_1313633	ND_1313631	AB N	3/0 ACSR	96.91	VS_13_kV			
270	OH_710660	ND_1313627	ND_1313633	AB N	3/0 ACSR	271.88	VS_13_kV	25	0	0
271	OH_710661	ND_1313637	ND_1313627	AB N	3/0 ACSR	137.67	VS_13_kV	0	25	0
272	OH_710662	ND_1313625	ND_1313637	AB N	3/0 ACSR	64.56	VS_13_kV			
273	OH_710663	ND_1313641	ND_1313625	ABCN	266 ACSR	154.56	VS_13_kV	0	0	25
274	OH_710664	ND_1313643	ND_1313644	A CN	3/0 ACSR	153.06	TS_13_kV	0	0	37.5
275	OH_710665	ND_1313645	ND_1313643	A CN	3/0 ACSR	106.98	TS_13_kV			
2/6	UH_/10666	ND_1313641	ND_1313645	A CN	J/U AUSK	112.91	V5_13_KV			
2//	OH_/1066/	ND_1313649	ND_1313641	ABCN	200 AUSK	305.77	15_13_KV	05	0	0
270	OH 710669	ND 1313551	ND 1313651	ABON	200 AUSK 266 ACSR	167.88	TS 13 KV	20	25	0
280	OH 710670	ND 1313655	ND 1313551	ABCN	266 ACSR	194.01	TS 13 kV	0	2.5	0
281	OH_710671	ND_1313657	ND_1313655	ABCN	266 ACSR	97.44	TS_13_kV			
282	OH_710672	ND_1313659	ND_1313657	ABCN	266 ACSR	77.18	TS_13_kV	25	0	0
				1		1 1		- 1 · · ·	· · ·	1

Tal	ola B.3 (Cont	inuación)								
N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
283	OH_710673	ND_1313661	ND_1313659	ABCN	266 ACSR	253.62	TS_13_kV			
284	OH_710674	ND_1313663	ND_1313664	BCN	3/0 ACSR	143.43	VS_13_kV	0	25	0
285	OH_710675	ND_1313663	ND_1313665	BCN	3/0 ACSR	09.40	VS_13_KV	0	20	U
287	OH_710677	ND_1313669	ND_1313670	BCN	3/0 ACSR	163.83	VS_13_kV	0	25	0
288	OH_710678	ND_1313669	ND_1313672	BCN	3/0 ACSR	146.72	VS_13_kV	0	25	0
289	OH_710679	ND_1313663	ND_1313669	BCN	3/0 ACSR	161.02	VS_13_kV			
290	OH_710680	ND_1313675	ND_1313663	BCN	3/0 ACSR	264.73	VS_13_kV			
291	OH_710681	ND_1313677	ND_1313675	BCN	3/0 ACSR	336.91	VS_13_kV			
292	OH_710682	ND_1313679	ND_1313677	BCN	3/0 ACSR	463.75	VS_13_kV	0	0	37.5
293	OH_710683	ND_1313681	ND_1313679	BCN	3/0 ACSR	76.08	VS_13_kV	0	0	25
294	OH_710684	ND_1313683	ND_1313681	BCN	3/0 ACSR	101.26	VS_13_kV			
295	OH_/10685	ND_1313685	ND_1313683	BCN	3/0 ACSR	156.63	VS_13_KV	0	0	25
290	OH_710687	ND_1313689	ND_1313687	BCN	3/0 ACSR	180.24	VS_13_kV	0	U	23
298	OH 710688	ND 1313691	ND 1313692	ABCN	3/0 ACSR	151.6	VS_13_kV	0	0	25
299	OH 710689	ND 1313689	ND 1313691	ABCN	3/0 ACSR	99.2	VS 13 kV	-	-	
300	OH_710690	ND_1313695	ND_1313696	AN	3/0 ACSR	44.13	PS_13_kV	37.5	0	0
301	OH_710691	ND_1313689	ND_1313695	AN	3/0 ACSR	112.85	VS_13_kV			
302	OH_710692	ND_1313699	ND_1313689	ABCN	266 ACSR	184.37	TS_13_kV			
303	OH_710693	ND_1313661	ND_1313699	ABCN	266 ACSR	163.53	TS_13_kV	0	25	0
304	OH_710694	ND_1313703	ND_1313661	ABCN	266 ACSR	184.27	TS_13_kV	0	10	0
305	OH_710695	ND_1313703	ND_1313706	BCN	3/0 ACSR	83.76	TS_13_kV	0	25	0
306	OH_710696	ND_1313707	ND_1313703	ABCN	266 ACSR	257.18	TS_13_kV			
307	OH_710697	ND_1313709	ND_1313710	BCN	3/0 ACSR	181.38	VS_13_kV	0	25	0
308	OH_/10698	ND_1313/11	ND_1313709	BCN	3/0 ACSR	63.87	VS_13_kV		05	
309	OH_710699	ND_1313711	ND_1313714	BON	3/0 ACSR	171.01	VS_13_KV	0	20	0
310	OH_710700	ND_1313715	ND_1313718	BCN	3/0 ACSR	166.69	VS_13_KV	0	25	0
312	OH 710702	ND 1313719	ND 1313715	BCN	3/0 ACSR	82.8	VS_13_kV	•	20	
313	OH 710703	ND 1313719	ND 1313722	BCN	3/0 ACSR	256.66	VS 13 kV	0	25	0
314	OH_710704	ND_1313723	ND_1313719	BCN	3/0 ACSR	103.62	VS_13_kV			
315	OH_710705	ND_1313725	ND_1313723	BCN	3/0 ACSR	111.48	VS_13_kV			
316	OH_710706	ND_1313727	ND_1313725	BCN	3/0 ACSR	102.42	VS_13_kV	0	25	0
317	OH_710707	ND_1313729	ND_1313730	BCN	3/0 ACSR	82.37	VS_13_kV	0	25	0
318	OH_710708	ND_1313731	ND_1313732	BCN	3/0 ACSR	63.29	VS_13_kV	0	37.5	0
319	OH_710709	ND_1313733	ND_1313731	BCN	3/0 ACSR	104.37	VS_13_kV			
320	OH_710710	ND_1313735	ND_1313733	BCN	3/0 ACSR	87.95	VS_13_kV			
321	OH_710711	ND_1313737	ND_1313735	BCN	3/0 ACSR	64.37	VS_13_kV	0	37.5	0
322	OH_/10/12	ND_1313739	ND_1313737	BCN	3/0 ACSR	130.93	VS_13_KV	_		
323	OH_710713	ND_1313741	ND_1313741	BCN	3/0 ACSR	94.44	VS_13_KV			
325	OH 710715	ND 1313743	ND 1313746	BCN	3/0 ACSR	138.31	VS_13_kV	0	25	0
326	OH 710716	ND 1313729	ND 1313743	BCN	3/0 ACSR	111.67	VS 13 kV			
327	OH_710717	ND_1313727	ND_1313729	BCN	3/0 ACSR	144.62	VS_13_kV			
328	OH_710718	ND_1313751	ND_1313727	BCN	3/0 ACSR	149.44	VS_13_kV			
329	OH_710719	ND_1313753	ND_1313754	BN	3/0 ACSR	104.76	PS_13_kV	0	25	0
330	OH_710720	ND_1313755	ND_1313756	BN	3/0 ACSR	141.49	PS_13_kV	0	25	0
331	OH_710721	ND_1313757	ND_1313755	BN	3/0 ACSR	166	PS_13_kV			
332	OH_710722	ND_1313759	ND_1313757	BN	3/0 ACSR	154.15	PS_13_kV			
333	OH_710723	ND_1313761	ND_1313759	BN	3/0 ACSR	171.07	PS_13_kV	0	25	0
334 335	OH_/10724	ND_1313753	ND_1313761	BN	3/0 ACSR	239.09	PS_13_KV			
336	OH_710725	ND_1313767	ND_1313768	RN	3/0 ACSR	140 14	PS_13_KV	0	37.5	0
337	OH 710727	ND 1313769	ND 1313767	BN	3/0 ACSR	175.08	PS 13 kV	U	01.0	
338	OH_710728	ND_1313771	ND_1313769	BN	3/0 ACSR	150.52	PS_13_kV			
339	OH_710729	ND_1313773	ND_1313771	BN	3/0 ACSR	187.71	 PS_13_kV	0	37.5	0
340	OH_710730	ND_1313775	ND_1313773	BN	3/0 ACSR	102.61	PS_13_kV			
341	OH_710731	ND_1313765	ND_1313775	BN	3/0 ACSR	145.95	PS_13_kV			
342	OH_710732	ND_1313779	ND_1313765	B N	3/0 ACSR	342.59	PS_13_kV	0	50	0
343	OH_710733	ND_1313781	ND_1313779	BN	3/0 ACSR	132.73	PS_13_kV	0	10	0
344	OH_710734	ND_1313781	ND_1313784	BN	3/0 ACSR	90.41	PS_13_kV	0	25	0
345	OH_710735	ND_1313785	ND_1313781	BN	3/0 ACSR	124.85	PS_13_kV			
346	OH_710736	ND_1313787	ND_1313785	BN	3/0 ACSR	145.27	PS_13_kV	-	05	-
34/	UH_/10/37	ND_1313751	ND_1313787	BN	3/U ACSR	8/2.9	PS_13_kV	U	25	0
348	OH_/10/38	ND_1313/91	ND_1313/51	BCN	3/0 ACSR	09.79	VS_13_KV	0	50	0
349	OH_710739	ND_1313795	ND 1313793	BCN	3/0 ACSR	97.23	VS_13_KV VS_13_kV	0	25	0
351	OH 710741	ND 1313797	ND 1313798	BN	1/0 ACSR	111.54	VS_13_kV	0	37.5	0
352	OH 710742	ND 1313799	ND 1313797	BCN	1/0 ACSR	145.95	VS 13 kV		07.0	
353	OH 710743	ND 1313801	ND 1313802	BN	3/0 ACSR	187.28	PS 13 kV	0	25	0
354	OH_710744	ND_1313803	ND_1313801	BN	3/0 ACSR	162.33	PS_13_kV	0	25	0
355	OH_710745	ND_1313805	ND_1313803	B N	3/0 ACSR	121.25	PS_13_kV			
356	OH_710746	ND_1313807	ND_1313805	BN	1/0 ACSR	165.21	PS_13_kV			

N°	Sección	Nodo de	Nodo a	Fases	Conductor	(ft)	Configuración	kV∆a	kV∆h	kV∆r
357	OH 710747	ND 1313809	ND 1313807	BN	1/0 ACSR	498.43	PS 13 kV	0	25	0
358	OH 710748	ND 1313799	ND 1313809	BN	1/0 ACSR	728.31	PS 13 kV	0	25	0
359	OH_710749	ND_1313795	ND_1313799	BCN	1/0 ACSR	189.95	VS_13_kV			
360	OH_710750	ND_1313815	ND_1313816	BN	3/0 ACSR	141.5	PS_13_kV	0	25	0
361	OH_710751	ND_1313795	ND_1313815	BN	3/0 ACSR	437.14	PS_13_kV			
362	OH_710752	ND_1313819	ND_1313795	BCN	1/0 ACSR	155.02	VS_13_kV			
363	OH_710753	ND_1313821	ND_1313822	B N	1/0 ACSR	159.92	PS_13_kV	0	15	0
364	OH_710754	ND_1313819	ND_1313821	BN	1/0 ACSR	150.97	VS_13_kV	0	25	0
365	OH_710755	ND_1313825	ND_1313819	BCN	1/0 ACSR	186.49	VS_13_kV			
366	OH_710756	ND_1313827	ND_1313825	BCN	1/0 ACSR	251.06	VS_13_kV			
367	OH_710757	ND_1313707	ND_1313827	BCN	1/0 ACSR	195.11	VS_13_kV	0	0	37.5
368	OH_710758	ND_1313831	ND_1313707	ABCN	1/0 ACSR	138.47	VS_13_kV			
369	OH_710759	ND_1313831	ND_1313834	CN	1/0 ACSR	48.37	VS_13_kV	0	0	37.5
370	OH_710760	ND_1313835	ND_1313831	ABCN	1/0 ACSR	197.62	VS_13_kV			
371	OH_710761	ND_1313837	ND_1313838	B N	3/0 ACSR	183.81	PS_13_kV	0	15	0
372	OH_710762	ND_1313839	ND_1313837	B N	3/0 ACSR	232.44	PS_13_kV			
373	OH_710763	ND_1313841	ND_1313839	B N	3/0 ACSR	59.76	VS_13_kV			
374	OH_710764	ND_1313843	ND_1313841	ABCN	1/0 ACSR	37.34	VS_13_kV			
375	OH_710765	ND_1313835	ND_1313843	ABCN	1/0 ACSR	46.34	VS_13_kV	0	37.5	0
376	OH_710766	ND_1313847	ND_1313835	ABCN	1/0 ACSR	220.88	VS_13_kV			
377	OH_710767	ND_1313849	ND_1313847	ABCN	1/0 ACSR	301.54	VS_13_kV			
378	OH_710768	ND_1313851	ND_1313849	ABCN	1/0 ACSR	93.23	VS_13_kV	0	25	0
379	OH_710769	ND_1313851	ND_1313854	CN	1/0 ACSR	109.65	VS_13_kV	0	0	25
380	OH_710770	ND_1313855	ND_1313851	ABCN	1/0 ACSR	301.15	VS_13_kV			
381	OH_710771	ND_1313513	ND_1313855	ABCN	1/0 ACSR	430.87	VS_13_kV	10	10	10
382	OH_710772	ND_1313859	ND_1313513	ABCN	2 ACSR	98.35	VS_13_kV			
383	OH_710773	ND_1313437	ND_1313859	ABCN	2 ACSR	286.84	VS_13_kV	5	5	5
384	OH_710774	ND_1313863	ND_1313437	ABCN	2 ACSR	514.04	VS_13_kV			
385	OH_710775	ND_1313433	ND_1313863	ABCN	2 ACSR	291.57	VS_13_kV	15	15	15
386	OH_710776	ND_1313867	ND_1313433	ABCN	2 ACSR	104.24	VS_13_kV			
387	OH_710777	ND_1313869	ND_1313870	AN	3/0 ACSR	182.95	PS_13_kV	25	0	0
388	OH_710778	ND_1313867	ND_1313869	AN	3/0 ACSR	63.79	VS_13_kV			
389	OH_710779	ND_1313873	ND_1313874	A CN	3/0 ACSR	178.31	VS_13_kV	0	0	25
390	OH_710780	ND_1313875	ND_1313873	A CN	3/0 ACSR	78.45	VS_13_kV			
391	OH_710781	ND_1313877	ND_1313875	A CN	3/0 ACSR	70.41	VS_13_kV	0	0	25
392	OH_710782	ND_1313879	ND_1313877	A CN	3/0 ACSR	182.88	VS_13_kV			
393	OH_710783	ND_1313881	ND_1313879	A CN	3/0 ACSR	84.52	VS_13_kV			
394	OH_710784	ND_1313883	ND_1313881	A CN	3/0 ACSR	82.53	VS_13_kV	0	0	25
395	OH_710785	ND_1313885	ND_1313883	A CN	3/0 ACSR	96.22	VS_13_kV			
396	OH_710786	ND_1313887	ND_1313885	A CN	3/0 ACSR	162.48	VS_13_kV			
397	OH_710787	ND_1313889	ND_1313887	A CN	3/0 ACSR	164.5	VS_13_kV	0	0	15
398	OH_710788	ND_1313891	ND_1313892	A CN	3/0 ACSR	160.86	VS_13_kV	0	0	25
399	OH_710789	ND_1313889	ND_1313891	A CN	3/0 ACSR	99.36	VS_13_kV			
400	OH_710790	ND_1313895	ND_1313889	A CN	3/0 ACSR	155.42	VS_13_kV	0	0	25
401	OH_710791	ND_1313897	ND_1313895	A CN	3/0 ACSR	135.12	VS_13_kV			
402	OH_710792	ND_1313899	ND_1313897	A CN	3/0 ACSR	161.85	VS_13_kV	0	0	37.5
403	OH_710793	ND_1313901	ND_1313899	A CN	3/0 ACSR	154.33	VS_13_kV			
404	OH_710794	ND_1313903	ND_1313904	A CN	3/0 ACSR	122.53	VS_13_kV			
405	OH_710795	ND_1313905	ND_1313903	A CN	3/0 ACSR	201.41	VS_13_kV	0	0	37.5
406	OH_710796	ND_1313907	ND_1313905	A CN	3/0 ACSR	67.77	VS_13_kV			
407	OH_710797	ND_1313909	ND_1313910	A CN	3/0 ACSR	96.06	VS_13_kV	0	0	25
408	OH_710798	ND_1313911	ND_1313912	A CN	3/0 ACSR	92.09	VS_13_kV	0	0	25
409	OH_710799	ND_1313913	ND_1313914	A CN	3/0 ACSR	123.66	VS_13_kV	0	0	25
410	OH_710800	ND_1313911	ND_1313913	A CN	3/0 ACSR	113.61	VS_13_kV			
411	OH_710801	ND_1313909	ND_1313911	A CN	3/0 ACSR	150.22	VS_13_kV			
412	OH_710802	ND_1313907	ND_1313909	A CN	3/0 ACSR	154.19	VS_13_kV			
413	OH_710803	ND_1313921	ND_1313907	A CN	3/0 ACSR	133.05	VS_13_kV			
414	OH_710804	ND_1313921	ND_1313924	A CN	3/0 ACSR	101.26	VS_13_kV	0	0	25
415	OH_710805	ND_1313925	ND_1313921	A CN	3/0 ACSR	95.43	VS_13_kV			
416	OH_710806	ND_1313925	ND_1313928	A CN	3/0 ACSR	230.41	VS_13_kV	0	0	37.5
417	OH_710807	ND_1313929	ND_1313925	A CN	3/0 ACSR	140.88	VS_13_kV			
418	OH_710808	ND_1313931	ND_1313929	A CN	3/0 ACSR	113.44	VS_13_kV			
419	OH_710809	ND_1313933	ND_1313931	A CN	3/0 ACSR	906.46	VS_13_kV	0	0	25
420	OH_710810	ND_1313935	ND_1313933	A CN	3/0 ACSR	380.58	TS_13_kV			
421	OH_710811	ND_1313937	ND_1313935	A CN	3/0 ACSR	81.12	TS_13_kV			
422	OH_710812	ND_1313939	ND_1313937	A CN	3/0 ACSR	104.77	VS_13_kV			
423	OH_710813	ND_1313941	ND_1313939	A CN	3/0 ACSR	132.68	VS_13_kV			
424	OH_710814	ND_1313943	ND_1313941	A CN	3/0 ACSR	59.15	VS_13_kV	0	0	25
425	OH_710815	ND_1313943	ND_1313946	A CN	3/0 ACSR	272.93	VS_13_kV	0	0	25
426	OH_710816	ND_1313947	ND_1313943	A CN	3/0 ACSR	101.21	VS_13_kV			
427	OH_710817	ND_1313949	ND_1313947	A CN	3/0 ACSR	81.11	VS_13_kV	0	0	25
428	OH_710818	ND_1313951	ND_1313952	CN	3/0 ACSR	254.82	PS_13_kV	0	0	25
429	OH_710819	ND_1313953	ND_1313951	CN	3/0 ACSR	119.33	PS_13 kV			
430	OH 710820	ND 1313955	ND 1313953	CN	3/0 ACSR	119.14	PS 13 kV			
								1	1	1

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
431	OH_710821	ND_1313957	ND_1313955	CN	3/0 ACSR	136.86	VS_13_kV		-	-
432	OH_710822	ND_1313959	ND_1313960	CN	3/0 ACSR	70.69	PS_13_kV	0	0	25
433	OH_710823	ND_1313961	ND_1313959	CN	3/0 ACSR	75.8	PS_13_kV			
434	OH_710824	ND_1313963	ND_1313961	CN	3/0 ACSR	249.94	PS_13_kV	0	0	37.5
435	OH_710825	ND_1313965	ND_1313963	CN	3/0 ACSR	152.89	PS_13_kV	0	0	15
430	OH_710626	ND_1313969	ND_1313967	CN	3/0 ACSR	167.31	VS_13_KV	0	U	15
438	OH 710828	ND 1313957	ND 1313969	CN	3/0 ACSR	173.11	VS_13_kV			
439	OH_710829	ND_1313973	ND_1313957	A CN	3/0 ACSR	165.57	VS_13_kV	0	0	15
440	OH_710830	ND_1313975	ND_1313973	A CN	3/0 ACSR	151.44	VS_13_kV			
441	OH_710831	ND_1313977	ND_1313978	A CN	3/0 ACSR	198.31	VS_13_kV	0	0	15
442	OH_710832	ND_1313979	ND_1313977	A CN	3/0 ACSR	278.08	VS_13_kV			
443	OH_710833	ND_1313981	ND_1313979	A CN	3/0 ACSR	61.62	VS_13_kV	0	0	15
444	OH_710834	ND_1313983	ND_1313981	A CN	3/0 ACSR	324.28	VS_13_kV			
445	OH_710835	ND_1313975	ND_1313983	A CN	3/0 ACSR	247.77	VS_13_kV			
446	OH_710836	ND_1313987	ND_1313975	A CN	3/U ACSR	113.66	VS_13_kV	0	0	37.5
447	OH_710838	ND_1313989	ND_1313997	A CN	3/0 ACSR	251.81	VS_13_kV	0	0	37.5
440	OH 710839	ND_1313989	ND_1313991	A CN	3/0 ACSR	125.45	VS_13_kV	0	0	51.5
450	OH 710840	ND 1313995	ND 1313989	A CN	3/0 ACSR	129.52	VS_13_kV	0	0	25
451	OH_710841	ND_1313997	ND_1313995	A CN	3/0 ACSR	76.45	VS_13_kV			-
452	OH_710842	ND_1313999	ND_1313997	A CN	3/0 ACSR	155.71	VS_13_kV	0	0	37.5
453	OH_710843	ND_1314001	ND_1314002	A CN	3/0 ACSR	85.53	VS_13_kV	0	0	25
454	OH_710844	ND_1314003	ND_1314001	A CN	3/0 ACSR	120.6	VS_13_kV			
455	OH_710845	ND_1314005	ND_1314003	A CN	3/0 ACSR	45.71	VS_13_kV			
456	OH_710846	ND_1314007	ND_1314005	A CN	3/0 ACSR	77.25	VS_13_kV	0	0	25
457	OH_710847	ND_1313999	ND_1314007	A CN	3/0 ACSR	76.53	VS_13_kV	0	0	15
458	OH_710848	ND_1314011	ND_1313999	A CN	3/0 ACSR	89.57	VS_13_kV			
459	OH_710849	ND_1314013	ND_1314011	A CN	3/0 ACSR	89.46	VS_13_kV	0	0	15
400	OH_710000	ND_1314015	ND_1314016	CN	3/0 ACSR	410.21 619.11	VS_13_KV	0	0	27.5
401	OH_710851	ND_1314013	ND_1314013	A CN	3/0 ACSR	100.87	VS_13_kV	0	U	31.3
463	OH 710853	ND 1314021	ND 1314019	A CN	3/0 ACSR	221.19	VS 13 kV	0	0	25
464	OH 710854	ND 1314023	ND 1314021	A CN	3/0 ACSR	134.66	VS 13 kV	-	-	
465	OH_710855	ND_1314023	ND_1314026	CN	3/0 ACSR	281.53	PS_13_kV	0	0	25
466	OH_710856	ND_1314027	ND_1314023	A CN	3/0 ACSR	60.74	VS_13_kV			
467	OH_710857	ND_1314027	ND_1314030	A CN	3/0 ACSR	115.37	VS_13_kV	0	0	25
468	OH_710858	ND_1314031	ND_1314027	A CN	3/0 ACSR	239.33	VS_13_kV			
469	OH_710859	ND_1314033	ND_1314031	A CN	3/0 ACSR	130.13	VS_13_kV			
470	OH_710860	ND_1314035	ND_1314033	A CN	3/0 ACSR	333.1	VS_13_kV	0	0	25
471	OH_710861	ND_1314037	ND_1314035	A CN	3/0 ACSR	285.47	VS_13_kV			
472	OH_710862	ND_1313949	ND_1314037	A CN	3/0 ACSR	102.54	VS_13_kV			
4/3	OH_710863	ND_1314041	ND_1313949	A CN	3/U ACSR	60.25	VS_13_kV			
4/4	OH_710865	ND_1314045	ND_1314041	A CN	3/0 ACSR	123.03	VS_13_KV	_		
475	OH_710866	ND_1314043	ND_1314045	A CN	3/0 ACSR	336.71	VS_13_kV	0	0	15
477	OH 710867	ND 1313901	ND 1314047	A CN	3/0 ACSR	641.11	VS_13_kV	25	0	0
478	OH 710868	ND 1313867	ND 1313901	A CN	3/0 ACSR	260.73	TS 13 kV		-	-
479	OH_710869	ND_1314053	ND_1313867	ABCN	1/0 ACSR	239.97	TS_13_kV			
480	OH_710870	ND_1314055	ND_1314056	CN	1/0 ACSR	339.83	PS_13_kV	0	0	15
481	OH_710871	ND_1314053	ND_1314055	CN	1/0 ACSR	491.11	PS_13_kV			
482	OH_710872	ND_1314059	ND_1314053	ABCN	1/0 ACSR	165.36	TS_13_kV			
483	OH_710873	ND_1313431	ND_1314059	ABCN	1/0 ACSR	308.89	TS_13_kV	25	25	25
484	OH_710874	ND_1314063	ND_1313431	ABCN	1/0 ACSR	204.31	TS_13_kV			
485	OH_710875	ND_1314065	ND_1314063	ABCN	1/0 ACSR	396.29	TS_13_kV	25	25	25
486	UH_/108/6	ND_1313429	ND_1314065	ABCN	1/0 ACCR	195.86	15_13_KV	25	25	25
407	OH 720008	ND_1314069	ND_1313429		1/0 AUSK	410.14	VS_13_KV	25	25	25
489	OH 720099	ND_1326414	ND 1326417	ABCN	1/0 ACSR	276.97	VS_13_kV	10	10	10
490	OH 720100	ND 1326418	ND 1326419	ABCN	3/0 ACSR	194.42	VS 13 kV	10	10	10
491	OH_720101	ND_1326420	ND_1326418	ABCN	3/0 ACSR	153.8	VS_13_kV			
492	OH_720102	ND_1326422	ND_1326420	ABCN	1/0 ACSR	308.2	VS_13_kV	15	15	15
493	OH_720103	ND_1326424	ND_1326422	ABCN	1/0 ACSR	126.07	VS_13_kV	25	25	25
494	OH_720104	ND_1326426	ND_1326427	ABCN	3/0 ACSR	270.8	VS_13_kV	15	15	15
495	OH_720105	ND_1326428	ND_1326426	ABCN	1/0 ACSR	155.78	VS_13_kV	25	25	25
496	OH_720106	ND_1326430	ND_1326428	ABCN	1/0 ACSR	264.34	VS_13_kV			
497	OH_720107	ND_1326432	ND_1326430	ABCN	1/0 ACSR	102.25	VS_13_kV	0	15	0
498	OH_720108	ND_1326424	ND_1326432	ABCN	1/0 ACSR	178.06	VS_13_kV	10	10	10
499	UH_/20109	ND_1326414	ND_1326424	ABCN	1/U ACSR	338.39	VS_13_kV			
501	OH_720110	ND_1326438	ND_1326414	ABCN	1/U ACSR	208.44	V5_13_KV	0	25	0
502	OH_720111 OH_720112	ND_1326440	ND_1326440	BN	3/0 ACSR	161	PS 13 kV	U	20	U
503	OH 720113	ND 1326444	ND 1326442	BN	3/0 ACSR	187.98	VS 13 kV			
504	OH 720114	ND 1326446	ND 1326447	ABCN	266 ACSR	95.4	VS 13 kV	0	0	75
									-	1

N° 505	Sección OH 720115	Nodo de ND 1326446	Nodo a Node 51888344696	Fases ABCN	266 ACSR	L (ft) 479.27	Configuración VS 13 kV	kVAa	kVAb	kVAc
506	OH 720117	ND 1326452	ND 1326447	ABCN	266 ACSR	242.76	VS_13_kV			
507	OH 720118	ND 1326454	ND 1326452	ABCN	266 ACSR	61.52	TS 13 kV			
508	OH_720119	ND_1326454	ND_1326457	ABCN	3/0 ACSR	151.1	TS_13_kV	10	10	10
509	OH_720120	ND_1326454	ND_1326459	ABCN	3/0 ACSR	117.71	TS_13_kV	10	10	10
510	OH_720121	ND_1326460	ND_1326454	ABCN	266 ACSR	44.08	TS_13_kV			
511	OH_720122	ND_1326444	ND_1326460	ABCN	266 ACSR	213.34	VS_13_kV	5	5	5
512	OH_720123	ND_1326464	ND_1326465	ABCN	6 CU	71.3	TS_13_kV	25	25	25
513	OH_720124	ND_1326466	ND_1326467	ABCN	2 ACSR	188.3	VS_13_kV	10	10	10
514	OH_720125	ND_1326466	ND_1326469	ABCN	266 ACSR	216.78	VS_13_kV			
515	OH_720126	ND_1326466	ND_1326471	ABCN	6 CU	297.87	VS_13_kV	5	5	5
516	OH_720127	ND_1326472	ND_1326466	ABCN	266 ACSR	139.82	VS_13_kV			
517	OH_720128	ND_1326464	ND_1326472	ABCN	266 ACSR	203.27	VS_13_kV	10	10	10
518	OH_720129	ND_1326476	ND_1326464	ABCN	266 ACSR	275.43	VS_13_kV			
519	OH_720130	ND_1326478	ND_1326476	ABCN	266 ACSR	258.7	VS_13_kV	15	15	15
520	OH_720131	ND_1326478	ND_1326481	ABCN	1/0 ACSR	594.78	VS_13_kV	37.5	37.5	37.5
521	OH_720132	ND_1326482	ND_1326478	ABCN	266 ACSR	200.81	VS_13_kV			
522	OH_720133	ND_1326484	ND_1326482	ABCN	266 ACSR	338.81	VS_13_kV	0	25	0
523	OH_720134	ND_1326486	ND_1326487	ABCN	3/0 ACSR	157.36	VS_13_kV	15	15	15
524	OH_720135	ND_1326488	ND_1326486	ABCN	3/0 ACSR	380.81	TS_13_kV			
525	OH_720136	ND_1326490	ND_1326488	ABCN	3/0 ACSR	42.55	TS_13_kV			
526	OH_720137	ND_1326492	ND_1326490	ABCN	3/0 ACSR	204.1	TS_13_kV	15	15	15
527	OH_720138	ND_1326494	ND_1326492	ABCN	3/0 ACSR	394.82	TS_13_kV	15	15	15
528	OH_720139	ND_1326484	ND_1326494	ABCN	4 CU	360.37	TS_13_kV	37.5	37.5	37.5
529	OH_720140	ND_1326444	ND_1326484	ABCN	266 ACSR	258.49	VS_13_kV			
530	OH_720141	ND_1326500	ND_1326444	ABCN	1/0 ACSR	181.61	VS_13_kV			
531	OH_720142	ND_1326502	ND_1326500	ABCN	1/0 ACSR	485.33	VS_13_kV	25	25	25
532	OH_720143	ND_1326438	ND_1326502	ABCN	1/0 ACSR	140.34	VS_13_kV	15	15	15
533	OH_720144	ND_1326506	ND_1326438	ABCN	1/0 ACSR	430.81	VS_13_kV			
534	OH_720199	ND_1326616	Nodo2	ABCN	4/0 ACSR	243.57	TS_13_kV			
535	OH_720200	ND_1326618	ND_1326616	ABCN	4/0 ACSR	222.51	TS_13_kV	10	0	0
536	OH_720219	ND_1326656	ND_1326657	BN	1/0 ACSR	145.6	PS_13_kV	0	37.5	0
537	OH_720220	ND_1326658	ND_1326656	BN	1/0 ACSR	560.76	PS_13_kV			
538	OH_720221	ND_1326660	ND_1326658	BN	1/0 ACSR	53.32	TS_13_kV			
539	OH_720222	ND_1326662	ND_1326663	ABCN	1/0 ACSR	238.84	TS_13_kV	25	25	25
540	OH_720223	ND_1326660	ND_1326662	ABCN	1/0 ACSR	107.22	TS_13_kV	10	10	10
541	OH_720224	ND_1326666	ND_1326660	ABCN	1/0 ACSR	345.8	TS_13_kV			
542	OH_720225	ND_1326668	ND_1326666	ABCN	1/0 ACSR	125.58	TS_13_kV	25	25	25
543	OH_720226	ND_1326670	ND_1326671	A CN	3/0 ACSR	70.01	VS_13_kV	0	0	25
544	OH_720227	ND_1326670	ND_1326673	A CN	3/0 ACSR	99.62	VS_13_kV	0	0	15
545	OH_720228	ND_1326668	ND_1326670	A CN	3/0 ACSR	365.06	VS_13_kV			
546	OH_720229	ND_1326676	ND_1326668	ABCN	1/0 ACSR	368.7	TS_13_kV			
547	OH_720230	ND_1326678	ND_1326676	ABCN	1/0 ACSR	180.48	VS_13_kV			
548	OH_720231	ND_1326680	ND_1326678	ABCN	1/0 ACSR	436.12	VS_13_kV	25	25	25
549	OH_720232	ND_1326680	ND_1313429	ABCN	1/0 ACSR	731.27	VS_13_kV			
550	OH_720233	ND_1326684	ND_1326680	ABCN	3/0 ACSR	126.85	VS_13_kV			
551	OH_720234	ND_1326684	ND_1326687	AN	1/0 ACSR	152.16	VS_13_kV	10	0	0
552	OH_720235	ND_1326688	ND_1326684	ABCN	3/0 ACSR	99.42	VS_13_kV	37.5	37.5	37.5
553	OH_720236	ND_1326690	ND_1326691	AN	2 ACSR	175.84	VS_13_kV	25	0	0
554	OH_720237	ND_1326688	ND_1326690	AN	2 ACSR	46.66	VS_13_kV			
555	OH_720238	ND_1326694	ND_1326688	ABCN	3/0 ACSR	103.02	VS_13_kV			
556	OH_720239	ND_1326696	ND_1326694	ABCN	3/0 ACSR	37.02	VS_13_kV			
557	OH_720240	ND_1326698	ND_1326696	ABCN	3/0 ACSR	67.48	VS_13_kV	15	15	15
558	OH_720241	ND_1326698	ND_1326701	BN	1/0 ACSR	320.47	PS_13_kV	0	15	0
559	OH_720242	ND_1326702	ND_1326698	ABCN	4/0 ACSR	140.07	VS_13_kV			
560	OH_720243	ND_1326704	ND_1326702	ABCN	4/0 ACSR	117.07	TS_13_kV			
561	OH_720244	ND_1326706	ND_1326704	ABCN	4/0 ACSR	136.06	TS_13_kV	0	0	25
562	OH 720245	ND 1326708	ND 1326706	ABCN	4/0 ACSR	123.74	TS 13 kV			
563	OH_751822	MH_66980	ND_1386936	ABCN	266 ACSR	317.39	VS_13_kV			
564	OH_751823	ND_1386936	ND_1386938	ABCN	266 ACSR	253.93	VS_13_kV			
565	OH_751824	ND_1386938	Node_51888344696	ABCN	266 ACSR	1,171.26	VS_13_kV			
566	OH_751843	ND_1326469	Node_3954362292	ABCN	266 ACSR	127.99	VS_13_kV			
567	OH_751844	ND_1326767	ND_1386985	ABCN	266 ACSR	106.38	VS_13 kV			
568	OH 751845	ND 1386985	ND 1386987	ABCN	266 ACSR	252.36	VS 13 kV			
569	OH 751846	ND 1386987	ND 1386989	ABCN	4/0 ACSR	208.83	VS 13 kV			
570	OH 751852	ND 1386999	ND 1274079	ABCN	4/0 ACSR	193.83	TS 13 kV			
571	OH 752918	ND 1386989	ND 1388786	ABCN	4/0 ACSR	164 19	TS 13 kV	15	15	15
572	OH 752919	ND 1388786	ND 1386999	ABCN	4/0 ACSR	44,73	TS 13 kV	5	5	5
573	Section 3954362261	Node 3954362260	ND 1326767	ABON	266 ACSR	180.63	VS 13 kV		5	5
574	Section 305/362201	Node 3954362200	Node 305/362260	ABON	266 4090	60.15	VS 13 KV			
575	Section 3054262770	ND 1226767	Nodo 305436250514	ADON	200 0000	180 55	VG_13_KV			
3/3	000001 0004000//0	110 1320/0/	11000_33343033314	ADUN	200 ACSK	109.00	v3_13_KV			

Tabla B.4: Datos básicos de cada rama del circuito CEO 4040.

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
1	OH_39543639610	Node_3954362292	Node_3954362324	ABCN	266 ACSR	251.08	VS_13_kV			
2	OH_39543658913	Node_39543658912	Node_3954362346	ABCN	266 ACSR	65.15	VS_13_kV			
3	OH_39543659515	Node_39543659514	Node_39543658912	ABCN	266 ACSR	39.33	VS_13_kV			
4	OH_720078	ND_1326374	ND_1326375	ABCN	1/0 CU	362.4	TS_13_kV	100	100	100
5	OH_720079	ND_1326376	ND_1326377	ABCN	3/0 ACSR	82.5	TS_13_kV	37.5	37.5	37.5
6	OH_720080	ND_1326374	ND_1326376	ABCN	3/0 ACSR	93.14	TS_13_kV	10	10	10
7	OH_720081	ND_1326380	ND_1326374	ABCN	3/0 ACSR	99.91	TS_13_kV			
8	OH_720082	ND_1326382	ND_1326380	ABCN	3/0 CU	236.38	TS_13_kV	15	15	15
9	OH_720083	ND_1326384	ND_1326382	ABCN	4 CU	242.77	VS_13_kV	5	0	5
10	OH_720084	ND_1326386	ND_1326384	ABCN	4 CU	255.28	VS_13_kV	15	15	15
11	OH_720085	ND_1326388	ND_1326386	ABCN	4 CU	68.57	VS_13_kV	25	25	25
12	OH_720086	ND_1326390	ND_1326388	ABCN	4 CU	84.48	VS_13_KV	07.5	07.5	07.5
13	OH_720067	ND_1320392	ND_1320390	ABON	4 CU	133.72	VS_13_KV	37.5	37.5	37.5
14	OH_720080	ND_1326394	ND_1326392	ABCN	4 CU	99.41 173.43	VS_13_KV	25	25	25
16	OH 720000	ND_1326308	ND_1326300	ABCN	2 ACSR	60.45	TS 13 kV	15	15	15
17	OH 720090	ND 1326308	ND_1326401	ABCN	2 ACSR	165.38	TS_13_kV	15	15	15
18	OH 720092	ND 1326396	ND 1326398	ABCN	2 ACSR	300.98	TS 13 kV	10	10	10
19	OH 720093	ND 1326394	ND 1326396	ABCN	2 ACSR	304.07	TS 13 kV			
20	OH 720094	ND 1326406	ND 1326407	ABCN	2 ACSR	114.13	VS 13 kV	25	25	25
21	OH 720095	ND 1326406	ND 1326409	ABCN	1/0 ACSR	378.35	VS 13 kV	25	25	25
22	OH 720096	ND 1326410	ND 1326406	ABCN	1/0 ACSR	436.25	VS 13 kV			
23	OH_720097	ND_1326412	ND_1326410	ABCN	4 CU	140.94	VS_13_kV	37.5	37.5	37.5
24	OH_720145	ND_1326508	ND_1326506	ABCN	1/0 ACSR	168.26	VS_13_kV	15	15	15
25	OH_720146	ND_1326510	ND_1326511	ABCN	3/0 ACSR	304.95	VS_13_kV	25	25	25
26	OH_720147	ND_1326512	ND_1326510	ABCN	3/0 ACSR	161.94	VS_13_kV			
27	OH_720148	ND_1326514	ND_1326512	ABCN	1/0 ACSR	429.72	VS_13_kV	25	25	25
28	OH_720149	ND_1326516	ND_1326514	ABCN	1/0 ACSR	87	VS_13_kV			
29	OH_720150	ND_1326518	ND_1267058	ABCN	266 ACSR	210.35	VS_13_kV			
30	OH_720151	ND_1326520	ND_1326518	ABCN	266 ACSR	193.12	VS_13_kV	37.5	37.5	37.5
31	OH_720152	ND_1326522	ND_1326520	ABCN	266 ACSR	145.2	VS_13_kV			
32	OH_720153	ND_1326516	ND_1326522	ABCN	266 ACSR	209.2	VS_13_kV	37.5	37.5	37.5
33	OH_720154	ND_1326526	ND_1326516	ABCN	266 ACSR	202.19	VS_13_kV			
34	OH_720155	ND_1326528	ND_1326526	ABCN	266 ACSR	258.13	VS_13_kV	15	15	15
35	OH_720156	ND_1326530	ND_1326528	ABCN	266 ACSR	160.1	VS_13_kV	10	10	10
36	OH_720157	ND_1326532	ND_1326533	ABCN	3/0 ACSR	370.11	TS_13_kV	15	15	15
37	OH_720158	ND_1326534	ND_1326532	ABCN	3/0 ACSR	1/3.92	IS_13_kV	15	15	15
38	OH_720159	ND_1326536	ND_1326534	ABCN	1/0 ACSR	123.45	IS_13_kV	5	5	5
39	OH_720100	ND_1320530	ND_1320530	ADCN	3/0 ACSR	00.00	TO_13_KV	25	23	23
40	OH_720161	ND_1326540	ND_1326543	ABCN	3/0 ACSR	47.78	TS_13_KV	5	5	5
41	OH 720163	ND_1326544	ND_1326540	ABCN	3/0 ACSR	1/0 11	TS_13_kV	5	5	5
42	OH 720164	ND_1326546	ND_1326544	ABCN	1/0 ACSR	172 02	TS_13_kV	50	50	50
44	OH 720165	ND 1326548	ND 1326549	ABCN	3/0 ACSR	377.23	VS 13 kV	37.5	37.5	37.5
45	OH 720166	ND 1326550	ND 1326548	ABCN	3/0 ACSR	129.72	TS 13 kV	5	5	5
46	OH 720167	ND 1326546	ND 1326550	ABCN	3/0 ACSR	70.09	TS 13 kV	-	-	-
47	OH 720168	ND 1326554	ND 1326546	ABCN	1/0 ACSR	150.8	TS 13 kV			
48	OH 720169	ND 1326556	ND 1326554	ABCN	1/0 ACSR	180.53	VS 13 kV	10	10	10
49	OH_720170	ND_1326558	ND_1326556	ABCN	1/0 ACSR	166.44	VS_13_kV	15	15	15
50	OH_720171	ND_1326530	ND_1326558	ABCN	1/0 ACSR	150.78	VS_13_kV	10	10	10
51	OH_720172	ND_1326508	ND_1326530	ABCN	266 ACSR	309.22	VS_13_kV			
52	OH_720173	ND_1326564	ND_1326508	ABCN	266 ACSR	471.95	VS_13_kV			
53	OH_720174	ND_1326412	ND_1326564	ABCN	266 ACSR	178.42	VS_13_kV	37.5	37.5	37.5
54	OH_720175	ND_1326568	ND_1326412	ABCN	266 ACSR	264.34	VS_13_kV			
55	OH_720176	ND_1326570	ND_1326568	ABCN	266 ACSR	114.99	VS_13_kV	25	25	25
56	OH_720177	ND_1326570	ND_1326573	ABCN	2 ACSR	463.85	TS_13_kV	37.5	37.5	37.5
57	OH_720178	ND_1326574	ND_1326570	ABCN	266 ACSR	936.58	VS_13_kV			
58	OH_720190	ND_1326598	ND_1326594	ABCN	266 ACSR	169.17	TS_13_kV			
59	OH_720191	ND_1326600	ND_1326598	ABCN	266 ACSR	172.46	TS_13_kV	15	15	15
60	OH_720192	ND_1326602	ND_1326603	ABCN	2 ACSR	75.28	TS_13_kV	25	25	25
61	OH_720193	ND_1326604	ND_1326605	ABCN	1/0 CU	198.47	TS_13_kV	15	15	15
62	OH_720194	ND_1326606	ND_1326607	ABCN	1/0 ACSR	132.89	TS_13_kV	15	15	15
63	OH_720195	ND_1326608	ND_1326606	ABCN	1/0 ACSR	52.61	TS_13_kV	10	10	10
64	OH_720196	NU_1326610	ND_1326608	ABCN	1/U ACSR	83.52	15_13_kV	15	15	15
65	OH_720197	ND_1326612	ND_1326610	ABCN	1/U ACSR	34.27	15_13_kV	07.5	07.5	07.5
00 67	OH_720198	ND_1320614	ND_1326612	ABON	1/U AUSR	108.74	15_13_KV	31.5 E	37.5 F	37.5
62	OH_720201	ND_122620	ND 122602	ABUN	4/0 AUSK	204.09	10_10_KV	25	25	25
60	OH 720202	ND_1320020	ND 1326620	ABON	4/0 ACSR	415.30	VS_13_KV	20	20	20
09	011_120203	110_1320014	1320020	ADON	HO AGOR	413.39	13_13_KV			

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAd
70	OH_720204	ND_1326626	ND_1326614	ABCN	4/0 ACSR	53.02	TS_13_kV			
71	OH_720205	ND_1326628	ND_1326626	ABCN	4/U ACSR	202.58	IS_13_kV			
72	OH_720206	ND_1320030	ND_1320020	ABCN	4/0 ACSR	254.96	15_13_KV	75	75	75
74	OH_720207	ND_1326630	ND_1326632	ABCN	4/0 ACSR	332.25	VS_13_kV	15	15	75
75	OH 720209	ND 1326604	ND_1326630	ABCN	4/0 ACSR	90.82	TS 13 kV			
76	OH 720210	ND 1326638	ND 1326604	ABCN	4/0 ACSR	248.26	TS 13 kV			
77	OH 720211	ND 1326640	ND 1326641	A CN	3/0 ACSR	227.66	VS 13 kV	0	0	25
78	OH 720212	ND 1326642	ND 1326640	A CN	3/0 ACSR	158.34	VS 13 kV	0	0	37.5
79	OH 720213	ND 1326642	ND 1326645	ABCN	1/0 ACSR	143.61	VS 13 kV	25	25	25
80	OH_720214	ND_1326646	ND_1326642	ABCN	1/0 ACSR	138.31	VS_13_kV			
81	OH_720215	ND_1326648	ND_1326646	ABCN	1/0 ACSR	179.21	VS_13_kV	25	25	25
82	OH_720216	ND_1326650	ND_1326648	ABCN	1/0 ACSR	180.66	VS_13_kV	50	50	50
83	OH_720217	ND_1326652	ND_1326650	ABCN	4/0 ACSR	42.56	TS_13_kV			
84	OH_720218	ND_1326654	ND_1326655	ABCN	2 ACSR	113.06	TS_13_kV	50	50	50
85	OH_720246	ND_1326654	ND_1326708	ABCN	4/0 ACSR	312.27	TS_13_kV			
86	OH_720247	ND_1326712	ND_1326654	ABCN	4/0 ACSR	73.29	TS_13_kV			
87	OH_720248	ND_1326652	ND_1326712	ABCN	4/0 ACSR	141.09	TS_13_kV	25	25	25
88	OH_720249	ND_1326638	ND_1326652	ABCN	4/0 ACSR	119.27	TS_13_kV			
89	OH_720250	ND_1326602	ND_1326638	ABCN	266 ACSR	292	TS_13_kV			
90	OH_720251	ND_1326600	ND_1326602	ABCN	266 ACSR	237.6	TS_13_kV			
91	OH_720252	ND_1326722	ND_1326600	ABCN	4/0 ACSR	140.56	TS_13_kV			
92	OH_720253	ND_1326722	ND_1326725	ABCN	266 ACSR	41.18	TS_13_kV	50	50	50
93	OH_720254	ND_1326726	ND_1326722	ABCN	266 ACSR	224.95	TS_13_kV			
94	OH_720255	ND_1326728	ND_1326726	ABCN	266 ACSR	162.29	VS_13_kV			
95	OH_720256	ND_1326730	ND_1326728	ABCN	266 ACSR	239.12	TS_13_kV			
96	OH_720257	ND_1326732	ND_1326730	ABCN	266 ACSR	41.95	VS_13_kV			
97	OH_720258	ND_1326734	ND_1326732	ABCN	266 ACSR	110.67	VS_13_kV			
98	OH_720259	ND_1326736	ND_1326734	ABCN	266 ACSR	117.7	VS_13_kV	25	25	25
99	OH_720260	ND_1326738	ND_1326736	ABCN	266 ACSR	112.36	VS_13_kV			
100	OH_720261	ND_1326740	ND_1299078	ABCN	266 ACSR	144.92	VS_13_kV			
101	OH_720262	ND_1326738	ND_1326740	ABCN	266 ACSR	175.9	VS_13_kV	37.5	37.5	37.5
102	OH_720263	ND_1326744	ND_1326745	ABCN	266 ACSR	177.53	VS_13_kV			
103	OH_720264	ND_1326746	ND_1326744	ABCN	266 ACSR	651.8	VS_13_kV	10	10	10
104	OH_720265	ND_1326738	ND_1326746	ABCN	266 ACSR	165.64	VS_13_kV			
105	OH_720266	ND_1326750	ND_1326738	ABCN	266 ACSR	1,178.87	VS_13_kV			
106	OH_720267	ND_1326752	ND_1326750	ABCN	266 ACSR	54.54	VS_13_kV			
107	OH_720268	ND_1326752	ND_1326755	ABCN	2 ACSR	163.85	VS_13_kV	15	15	15
108	OH_720269	ND_1326574	ND_1326752	ABCN	266 ACSR	587.4	VS_13_kV			
109	OH_720270	ND_1326758	ND_1326574	ABCN	266 ACSR	101.87	VS_13_kV			
110	OH_720271	ND_1326394	ND_1326758	ABCN	266 ACSR	578.31	VS_13_kV	25	25	25
111	OH_720272	ND_1326762	ND_1326394	ABCN	266 ACSR	331.76	VS_13_kV			
112	OH_720273	ND_1326764	Node_39543659514	ABCN	266 ACSR	46.38	VS_13_kV	25	25	25
113	OH_720274	ND_1326766	Nodo1	ABCN	266 ACSR	80.7	TS_13_kV			
114	OH_720275	ND_1326764	ND_1326766	ABCN	266 ACSR	249.41	TS_13_kV	15	15	15
115	OH_720276	ND_1326764	ND_1326771	ABCN	6 CU	634.28	VS_13_kV	37.5	37.5	37.5
116	OH_720277	ND_1326772	ND_1326764	ABCN	266 ACSR	328.61	VS_13_kV			
117	OH_720278	ND_1326774	ND_1326772	ABCN	266 ACSR	91.36	VS_13_kV			
118	OH_720279	ND_1326776	ND_1326777	ABCN	1/0 ACSR	171.57	VS_13_kV	25	25	25
119	OH_720280	ND_1326778	ND_1326776	ABCN	1/0 ACSR	327.46	VS_13_kV	10	10	10
120	OH_720281	ND_1326780	ND_1326778	ABCN	1/0 ACSR	182.3	VS_13_kV	50	50	50
121	OH_720282	ND_1326774	ND_1326780	ABCN	2 ACSR	420.24	VS_13_kV	25	25	25
122	OH_720283	ND_1326784	ND_1326774	ABCN	266 ACSR	823.1	VS_13_kV			
123	OH_720284	ND_1326786	ND_1326784	ABCN	266 ACSR	320.24	VS_13_kV			
124	OH_720285	ND_1326788	ND_1326786	ABCN	266 ACSR	134.08	VS_13_kV	10	10	10
125	OH_720286	ND_1326790	ND_1326788	ABCN	266 ACSR	120.67	VS_13_kV	10	10	10
126	OH_720287	ND_1326792	ND_1326793	ABCN	6 CU	489.11	TS_13_kV	37.5	37.5	37.5
127	OH_720288	ND_1326790	ND_1326792	ABCN	6 CU	409.38	VS_13_kV	25	25	25
128	OH_720289	ND_1326796	ND_1326790	ABCN	266 ACSR	32	VS_13_kV	4.57		
129	OH_720290	ND_1326798	ND_1326796	ABCN	266 ACSR	120.06	VS_13_kV	150	150	150
130	UH_720291	ND_1326800	ND_1326798	ABCN	266 ACSR	196.25	VS_13_kV	37.5	37.5	37.5
131	UH_720292	ND_1326802	ND_1326800	ABCN	206 ACSR	586.52	VS_13_kV	37.5	37.5	37.5
132	UH_/20293	ND_1326804	ND_1326805	ABCN	206 ACSR	67.85	vS_13_kV			
133	OH_720294	ND_1326806	ND_1326804	ABCN	266 ACSR	148.54	VS_13_kV			
134	UH_720295	ND_1326808	ND_1326806	ABCN	3/U ACSR	458.37	V5_13_KV	07.5	07.5	
135	OH_720296	ND_1326810	ND_1326808	ABCN	3/U ACSR	525.07	VS_13_kV	37.5	37.5	37.5
136	OH_720297	ND_1326812	ND_1326810	ABCN	3/0 ACSR	116.2	VS_13_kV	50	50	50
13/	OH_720298	ND_1326814	ND_1326812	ABCN	3/U ACSR	121.08	VS_13_kV	50	50	50
138	UH_720299	ND_1326816	ND_1326817	ABCN	1/0 ACSR	42.96	IS_13_kV	15	15	15
139	OH_720300	ND_1326816	ND_1326819	ABCN	2 ACSR	144.49	1S_13_kV	37.5	37.5	37.5
140	OH_720301	ND_1326820	ND_1326816	ABCN	2 ACSR	117.21	15_13_kV			
141	OH_720302	ND_1326822	ND_1326820	ABCN	6 CU	142.05	15_13_kV	50	50	50
142	UH_720303	ND_1326824	ND_1326822	ABCN	6 CU	288.16	1S_13_kV	0	0	15
4.40		NU1 1000000	NU1 120C007	- AUCN	3/11 ACCD	116.0	1 S 13 W	. 16		

N°	Sección	Nodo de	Nodo a	Fases	Conductor	L (ft)	Configuración	kVAa	kVAb	kVAc
144	OH_720305	ND_1326828	ND_1326826	ABCN	1/0 ACSR	107.75	TS_13_kV			
145	OH_720306	ND_1326830	ND_1326828	ABCN	1/0 ACSR	101.11	TS_13_kV			
146	OH_720307	ND_1326832	ND_1326833	ABCN	3/0 ACSR	184.51	TS_13_kV	10	10	10
147	OH_720308	ND_1326830	ND_1326832	ABCN	1/0 ACSR	127.26	TS_13_kV	15	15	15
48	OH_720309	ND_1326836	ND_1326830	ABCN	1/0 ACSR	63.84	TS_13_kV			
49	OH_720310	ND_1326838	ND_1326836	ABCN	1/0 ACSR	72.19	TS_13_kV	15	15	15
50	OH_720311	ND_1326838	ND_1326841	ABCN	1/0 ACSR	42.24	TS_13_kV	37.5	37.5	37.5
51	OH_720312	ND_1326824	ND_1326838	ABCN	3/0 ACSR	470.14	TS_13_kV			
52	OH_720313	ND_1326844	ND_1326824	ABCN	266 ACSR	551.51	TS_13_kV			
53	OH_720314	ND_1326814	ND_1326844	ABCN	266 ACSR	124.32	VS_13_kV	37.5	37.5	37.5
54	OH_720315	ND_1326848	ND_1326814	ABCN	3/0 ACSR	182.09	VS_13_kV			
55	OH_720316	ND_1326850	ND_1326848	ABCN	3/0 ACSR	123.4	VS_13_kV	15	15	15
56	OH_720317	ND_1326852	ND_1326853	ABCN	6 CU	160.25	TS_13_kV	25	25	25
57	OH_720318	ND_1326850	ND_1326852	ABCN	6 CU	49.13	TS_13_kV	75	75	75
58	OH_720319	ND_1326856	ND_1326850	ABCN	3/0 ACSR	102.49	TS_13_kV			
59	OH_720320	ND_1326858	ND_1326856	ABCN	3/0 ACSR	97.8	TS_13_kV	10	10	10
50	OH_720321	ND_1326860	ND_1326858	ABCN	3/0 ACSR	344.72	VS_13_kV			
51	OH_720322	ND_1326862	ND_1326860	ABCN	3/0 ACSR	77.93	VS_13_kV	15	15	15
52	OH_720323	ND_1326864	ND_1326862	ABCN	3/0 ACSR	60.46	VS_13_kV	50	50	50
53	OH_720324	ND_1326866	ND_1326864	ABCN	3/0 ACSR	46.65	VS_13_kV	5	5	5
64	OH_720325	ND_1326866	ND_1326869	ABCN	266 ACSR	310.04	VS_13_kV	25	25	25
65	OH_720326	ND_1326870	ND_1326866	ABCN	3/0 ACSR	236.96	VS_13_kV			
66	OH_720327	ND_1326872	ND_1326870	ABCN	3/0 ACSR	96.27	VS_13_kV	25	25	25
67	OH_720328	ND_1326874	ND_1326872	ABCN	3/0 ACSR	227.94	VS_13_kV			
68	OH_720329	ND_1326876	ND_1326874	ABCN	3/0 ACSR	210.1	VS_13_kV	15	15	15
69	OH_720330	ND_1326878	ND_1326876	ABCN	3/0 ACSR	65.75	VS_13_kV	10	10	10
70	OH_720331	ND_1326880	ND_1326881	ABCN	3/0 ACSR	73.58	VS_13_kV			
71	OH_720332	ND_1326882	ND_1326880	ABCN	4 CU	304.79	VS_13_kV	37.5	37.5	37.5
/2	OH_/20333	ND_1326884	ND_1326882	ABCN	6 CU	180.69	IS_13_kV			
73	OH_720334	ND_1326886	ND_1326884	ABCN	266 ACSR	82.38	VS_13_kV			
74	OH_720335	ND_1326878	ND_1326886	ABCN	266 ACSR	88.68	VS_13_kV	37.5	37.5	37.5
/5	OH_/20336	ND_1326890	ND_1326891	ABCN	6 CU	301.64	VS_13_kV	10	10	10
76	OH_720337	ND_1326892	ND_1326890	ABCN	6 CU	331.99	VS_13_kV	10	10	10
77	OH_720338	ND_1326894	ND_1326892	ABCN	6 CU	56.28	TS_13_kV			
/8	OH_/20339	ND_1326896	ND_1326894	ABCN	6 CU	157.49	TS_13_kV	25	25	25
/9	OH_/20340	ND_1326898	ND_1326899	ABCN	4 CU	60.86	TS_13_kV	25	25	25
80	OH_720341	ND_1326900	ND_1326898	ABCN	4 CU	98.33	TC_13_KV			
81	OH_720342	ND_1326900	ND_1326903	ABCN	4 CU	50.42	TS_13_KV			
82	OH_720343	ND_1326900	ND_1326905	ABCN	4 CU	82.4	15_13_KV			
53	OH_/20344	ND_1326906	ND_1326900	ABCN	4 CU	81.91	TS_13_kV	45	45	45
84	OH_720345	ND_1326908	ND_1326906	ABCN	4 CU	126.27	TS_13_KV	15	15	15
85	OH_720346	ND_1326910	ND_1326908	ABCN	4 CU	346.59	TS_13_KV	25	0	0
00	UT_/2034/	ND_1320890	ND_1320910	ABUN	4 CU	321.13	15_13_KV	U	U	10
99	OH 700240	ND 1220914	ND 1220030	ABON	400	436.00	TS_13_KV	37 5	37 5	27 5
80	OH 700250	ND 1220914	ND 1220917	ADUN	6.00	430.29	10_10_KV	37.5	31.5	31.5
90	OH_720350	ND 1326978	ND_1326914		3/0 0.00	183.84	VS_IS_KV			
91	OH 720351	ND 1326022	ND 1326979		266 ACSD	103.04	TS 13 KV			
02	OH_720332	ND 120922	ND 1226022	ADON	200 ACOR	410.07	TS_13_KV	10	10	10
9 <u>4</u> 93	OH 720354	ND 1326924	ND 1326922	R N	1/0 ACSK	323.16	VS 13 KV	0	37.5	0
55 04	OH 720355	ND_1326028	ND_1326924	ARCN	266 ACSP	00.04	TS 13 kV	0	51.5	0
95	OH 720356	ND 1326802	ND_1326028	ABON	200 AUGR	177 / 2	TS 13 KV	25	25	25
96	OH_720350	ND 1326032	ND_1326802	ABON	266 ACSR	335.43	VS 13 kV	20	20	20
97	OH 720358	ND 1326934	ND 1326032	ABON	266 ACSR	275.49	VS 13 kV	15	15	15
98	OH_720359	ND 1326936	ND 1326934	ABCN	266 ACSR	522.47	VS 13 kV	10	10	10
99	OH 720360	ND 1326938	ND 1326936	ABON	266 ACSR	485.1	VS 13 kV	25	25	25
00	OH 720361	ND 1326040	ND 1326038	ABON	266 ACSP	400.1	VS 13 LV	15	15	15
01	OH 720362	ND 1326042	ND_1326040	ABON	200 AUGR	1 128 35	VS 13 LV	10	10	10
02	OH_720302	ND 1326044	ND 1326042		336 ACCP	1,120.00	VS 13 LV	10	10	10
03	OH 720364	CE004040	ND 1326044	ABON	336 ACSP	104.23	VS 13 LV	10	10	10
0.0	Section 3054262205	Node 3054262224	ND 120544	ABON	266 4000	123.12	VG_13_KV	10	10	10
05	Section 305/362247	Node 3954362346	Node 3054362224	ABCN	200 AUSK	420.13	VS_13_KV			
υJ	Section_393430234/	NUUE_3934302340	NUUE_3934302324	ADON	200 AUSK	100.53	VS_13_KV			
206	Contion 2054202770	NILL TOWNS		1 ALC: 11	100 mm (01 12-14					

Apendice D. Tablas de mediciones eléctricas de los circuitos

D.1 Mediciones de los circuitos JLD 4020 y JLD 4070

A continuación, se presentan las diferentes tablas de mediciones de los circuitos utilizados en esta tesis, la tabla C.1 muestra los datos de los circuitos JLD 4020 y JLD 4070, que se extraen del sistema SIMOCE. Se muestran los parámetros promedio y totales.

Hora	Vprom (V) JLD 4020	kW tot JLD 4020	kVAR tot JLD 4020	Vprom (V) JLD 4070	kW tot JLD 4070	kVAR tot JLD 4070
00:00:00	14194.1	2352.44	410.368	14074.5	2635.99	348.541
00:10:00	14190.7	2391.07	447.069	14059.1	2566.97	341.473
00:20:00	14190.9	2305.49	422.859	14060.9	2516.45	335.762
00:30:00	14196.9	2265.81	445.267	14068	2472.31	334.461
00:40:00	14163	2259.75	443.957	14042.5	2413.71	317.064
00:50:00	14077.5	2186.67	369.685	13961.4	2352.21	302.035
01:00:00	14135.6	2127.2	345.856	13999.6	2348.65	342.926
01:10:00	14135.6	2142.01	381.555	14003.2	2323.69	341.971
01:20:00	14152.1	2190.03	428.176	14000.7	2270.1	314.267
01:30:00	14135.9	2147.46	422.984	14004.8	2203.38	295.637
01:40:00	14130.9	2110.42	383.126	13990.7	2171.92	287.884
01:50:00	14137.4	2037.3	341.75	14010.2	2159.08	294.623
02:00:00	14170.9	2084.69	404.104	14039.5	2123.87	308.807
02:10:00	14144.9	2096.8	408.6	14007.8	2114.5	297.953
02:20:00	14172.6	2083.63	412.826	14041.6	2066.14	291.287
02:30:00	14145.9	2066.67	387.817	14039.8	2056.76	278.625
02:40:00	14168.1	2013.74	360.543	14036.2	2033.52	257.46
02:50:00	14171.2	2040.13	394.861	14042	2024.42	275.656
03:00:00	14156	2030.69	397.644	14051.9	1953.55	242.782
03:10:00	14190.5	2046.63	410.486	14072.8	1965.97	259.831
03:20:00	14171.2	2003.12	389.212	14044.1	1936.42	247.49
03:30:00	14166.6	1976.9	364.176	14044.7	1925.22	242.025
03:40:00	14192.3	2015.76	408.871	14050.1	1934.59	254.103
03:50:00	14194.9	2001.17	385.973	14074.2	1924.41	240.541
04:00:00	14193.4	2012.55	412.539	14069.4	1941.06	264.533
04:10:00	14204.1	1963.76	382.905	14068.6	1940.69	262.699
04:20:00	14187.2	1965.75	390.472	14071.6	1932.2	250.388
04:30:00	14183.2	2008.43	426.504	14059.8	1930.54	257.483
04:40:00	14171.7	1977.19	396.493	14043.3	1924.66	260.075
04:50:00	14169.4	1943.56	358.765	14050.1	1918.5	254.516
05:00:00	14190.9	1942.87	349.357	14064.4	1937.47	270.962
05:10:00	14173.9	1959.51	358.491	14055.6	1947.73	250.509
05:20:00	14149.7	2007.38	390.31	14044.4	1955.83	241.734
05:30:00	14151.6	1990.68	383.094	14048.9	1965.94	222.8
05:40:00	14150.1	1967.33	348.741	14024.3	1978.26	219.605
05:50:00	14143.2	1973.48	341.344	14008.6	2033.72	228.802
06:00:00	14169.5	2072.71	372.699	14066.4	2074.15	242.831

Tabla C.1: Mediciones de los circuitos JLD 4020 y JLD 4070.

Tabla C.1 (Co	Tabla C.1 (Continuación).												
Hora	Vprom (V) JLD 4020	kW tot JLD 4020	kVAR tot JLD 4020	Vprom (V) JLD 4070	kW tot JLD 4070	kVAR tot JLD 4070							
06:10:00	14104.8	2098.83	369.661	13985.3	2079.77	208.277							
06:20:00	14101.3	2132.69	366.906	13985.5	2147.61	206.327							
06:30:00	14099.3	2179.42	373.917	13971.8	2209.6	222.305							
06:40:00	14086.8	2219.34	366.942	13957.5	2239.74	206.483							
06:50:00	14092.6	2276.61	357.202	13972.9	2356.89	239.137							
07:00:00	14090.8	2290.04	363.181	13955.2	2201.98	174.728							
07:10:00	14089.3	2295.93	343.268	13967.5	2199.97	183.941							
07:20:00	14063.3	2415.5	404.02	13938.3	2270.25	186.462							
07:30:00	14046.9	2435.94	393.406	13923.9	2273.55	175.046							
07:40:00	14052.8	2420.02	357.966	13926	2310.93	201.428							
07:50:00	14070.7	2461.19	358.787	13933.1	2298.45	198.331							
08:00:00	14121.4	2603.52	440.566	13995.6	2348.17	241.804							
08:10:00	14116.4	2718.12	490.595	13981.3	2366.9	247.619							
08:20:00	14080.5	2840.51	468.401	13951.5	2414.52	254.4							
08:30:00	14074.2	2906.91	453.638	13925.8	2495.18	285.509							
08:40:00	14025.6	3022.6	472.543	13906.9	2548.09	282.438							
08:50:00	14050.6	3133.66	518.287	13907.4	2593.86	318.751							
09:00:00	14016.3	3249.83	561.58	13887.4	2600.9	340.102							
09:10:00	14007.7	3365.53	526.477	13885.2	2621.21	343.789							
09:20:00	14052	3528.3	560.412	13933.2	2691.29	365.014							
09:30:00	14036	3745.25	615.374	13918.1	2767.91	395.531							
09:40:00	14033.6	3821.42	642.313	13923.1	2804.68	401.929							
09:50:00	14017.5	3873.89	615.661	13892.1	2861.71	435.568							
10:00:00	14052.3	4003.63	707.036	13942.8	2878.18	441.027							
10:10:00	14027.5	4047.8	708.224	13917.3	2888.58	429.466							
10:20:00	14002.3	4132.67	729.919	13878	2878.1	438.686							
10:30:00	14006.6	4278.54	797.649	13902.3	2900.95	432.806							
10:40:00	13972	4168.93	711.029	13882.5	2960.13	456.338							
10:50:00	13971.6	4252.52	765.521	13855.6	3024.64	503.473							
11:00:00	13949.8	4295.2	788.72	13836.3	3033.97	499.012							
11:10:00	14028.5	4312.33	786.65	13873.5	3011.64	518.129							
11:20:00	13998.7	4449.91	894.44	13905.7	3050.44	566.692							
11:30:00	14005.5	4412.72	862.192	13890.5	3086.07	576.451							
11:40:00	13994.8	4420.19	843.049	13899.9	3127.07	583.862							
11:50:00	14020.1	4483.05	908.236	13922.6	3106.63	605.862							
12:00:00	13973.8	4477.17	909.281	13879.9	3101.22	590.045							
12:10:00	13990	4538.78	915.247	13882.2	3114.06	607.558							
12:20:00	14000.1	4486.31	882.768	13898.5	3120.5	611.587							
12:30:00	13997	4486.86	872.091	13893	3122.34	624.596							
12:40:00	14018.5	4503.25	900.17	13914	3170.51	621.406							
12:50:00	14012.2	4473.04	899.836	13923.8	3159.7	614.21							
13:00:00	14008.3	4553.72	945.741	13937.7	3199.51	636.767							
13:10:00	14009.7	4592.28	955.862	13911.7	3207.34	646.654							
13:20:00	13996.6	4603.73	991.956	13934.1	3188.48	633.124							
13:30:00	14007.6	4584.61	950.062	13941.2	3168.98	617.523							
13:40:00	14041.5	4584.45	959.429	13955.4	3185.34	623.291							
13:50:00	14006	4513.62	951.258	13937.1	3194.74	622.972							
14:00:00	14034.7	4472.09	935.181	13948.4	3221.47	633.51							
14:10:00	14006.3	4590.06	994.205	13935.6	3194.47	613.73							
14:20:00	14004.4	4593.91	990.106	13958.7	3187.06	612.143							
14:30:00	14035.2	4516.23	947.745	13963.7	3219.79	638.386							
14:40:00	14027	4463.45	911.244	13934.9	3250.21	642.556							
14:50:00	14016.6	4475.75	952.876	13936.7	3256.89	656.509							
15:00:00	14016.7	4461.07	980.812	13924.8	3265.92	638.717							

Tabla C.1 (Continuación).												
Hora	Vprom (V) JLD 4020	kW tot JLD 4020	kVAR tot JLD 4020	Vprom (V) JLD 4070	kW tot JLD 4070	kVAR tot JLD 4070						
15:10:00	14019.2	4361.42	932.139	13934	3214.93	634.438						
15:20:00	14050.5	4379.33	937.068	13966.1	3161.16	594.488						
15:30:00	14055.6	4255.05	889.868	13979.8	3191.19	612.156						
15:40:00	14078.1	4251.45	873.398	13993	3119.89	601.457						
15:50:00	14072.5	4282.6	936.308	13978.1	3117.35	598.857						
16:00:00	14068.9	4199.13	883.417	13970	3146.68	592.309						
16:10:00	14093.2	4134.93	881.443	14005.9	3078.31	566.325						
16:20:00	14102.6	4097.71	826.563	14014.4	3079.76	570.707						
16:30:00	14093.8	4171.04	852.494	13995.6	3105.14	573.046						
16:40:00	14103.1	4192.67	877.609	14007.4	3069.82	556.136						
16:50:00	14100.5	4189.48	880.726	14014.2	3089.86	559.732						
17:00:00	14129.9	4186.54	859.849	14033.8	3097.01	526.934						
17:10:00	14111.3	4168.61	851.24	14011.1	3139.51	526.168						
17:20:00	14091.8	4125.25	791.042	13994.6	3159.04	512.62						
17:30:00	14135.4	4182.62	810.638	14037.5	3156.38	497.209						
17:40:00	14142.8	4199.12	799.474	14043.5	3184.46	504.623						
17:50:00	14154.3	4171.41	801.84	14050.6	3179.73	493.522						
18:00:00	14041.4	4193.06	759.383	13955.8	3205.24	449.338						
18:10:00	14027.7	4153.04	707.403	13928.6	3204.29	430.546						
18:20:00	14035.6	4176.29	712.485	13947.4	3234.38	423.637						
18:30:00	14022.1	4291.06	700.4	13920	3411.67	422.133						
18:40:00	14004.2	4337.08	718,271	13907	3578.84	442.78						
18:50:00	13997.9	4399.86	706.519	13826.1	3700.59	475.37						
19:00:00	13991.4	4437.98	746.451	13909.8	3793.53	464.852						
19:10:00	14029.5	4377.68	679 501	13934 1	3827.9	473.318						
19:20:00	14037.3	4385.36	688.843	13946.2	3855.72	456,282						
19:30:00	14030.2	4378.38	702,776	13941.7	3874.89	468.322						
19:40:00	14041.7	4296.22	658.93	13934	3865.18	443.742						
19:50:00	14054 4	4231.98	619 089	13946 6	3830.92	431 761						
20:00:00	14051.8	4130.93	609.627	13935.2	3820.89	451.388						
20:10:00	14063.3	4083.33	642,732	13942.1	3813.74	437,702						
20:20:00	14065.5	3995.17	636,794	13973.7	3787.21	420,227						
20:30:00	14076.9	3918.99	616.388	13968.2	3729.77	397,707						
20:40:00	14104.3	3863.22	625 205	13995.6	3679.58	405 724						
20:50:00	14113.5	3786.07	611 666	14011 6	3684 45	402 866						
21:00:00	14126.8	3672.9	583 154	14013.2	3649 13	404 948						
21:10:00	14146	3560.38	565.033	14025.6	3628 43	409.526						
21:20:00	14159.4	3362.17	513,232	14048.7	3611.35	421.247						
21:30:00	14184.9	3200.58	478,756	14073.7	3563.95	396.454						
21:40:00	14191 1	3041.8	477,393	14062.9	3503.4	380,365						
21:50:00	14133.9	3001.47	476.022	14012.2	3499.27	376 295						
22:00:00	14122.8	2970.4	497 19	14009.9	3443.97	355 548						
22:10:00	14138 7	2868 5	444 832	14000.0	3396.62	354 624						
22:10:00	14144.6	2804.8	445.01	14035.9	3315 21	347.087						
22:20:00	14155 5	2733 51	419 698	14001 3	3279.67	345 195						
22:00:00	14148 7	2731 51	466 178	14032 4	3221 35	337 589						
22:50:00	14124 9	2705.28	482 972	14007.4	3168 76	340 322						
23.00.00	14163 3	2642 95	456 330	14041 7	3035 34	356 811						
23.10.00	14177 8	2600 76	440 803	14063.5	2942 00	363 445						
23.20.00	14183.0	2523.16	428 307	14060.0	2877 22	347 647						
23.20.00	1/100.0	2502 08	420.037	1/1030.3	2800 68	328 822						
23:40:00	14140	2002.00	439 826	14030.2	2750 56	331 049						
23:50:00	14131 7	2407.65	420 716	14025 9	2638 73	314 796						
23.00.00	. +101.7	2 +01.00	120.110	1 1020.0	2000.70	514.100						

D.2 Mediciones de los circuitos CEO 4000 y CEO 4040

La tabla C.2 contiene los valores de voltaje en las fuentes del circuito CEO 4000 y CEO 4040, los valores de potencia activa totales, así como los valores de potencia reactiva totales, mismos que son extraídos del SIMOCE de la zona Xalapa

Hora	Vprom (V) CEO 4000	kW tot CEO 4000	kVAR tot CEO 4000	Vprom (V) CEO 4040	kW tot CEO 4040	kVAR tot CEO 4040
00:00:00	13844	2914	610	13562	2683	119
00:10:00	13867	2821	620	13586	2606	130
00:20:00	13879	2711	617	13586	2635	189
00:30:00	13880	2604	604	13590	2573	173
00:40:00	13847	2513	577	13541	2503	177
00:50:00	13806	2459	595	13523	2520	177
01:00:00	13785	2380	581	13494	2545	176
01:10:00	13827	2340	585	13525	2432	150
01:20:00	13807	2304	580	13512	2376	129
01:30:00	13815	2232	577	13518	2344	168
01:40:00	13824	2202	568	13521	2326	158
01:50:00	13852	2166	569	13550	2284	141
02:00:00	13800	2122	545	13529	2301	120
02:10:00	13822	2109	558	13525	2270	156
02:20:00	13810	2073	541	13509	2234	125
02:30:00	13825	2055	540	13529	2232	116
02:40:00	13853	2048	542	13549	2244	158
02:50:00	13868	2033	548	13565	2224	151
03:00:00	13830	2029	541	13545	2178	150
03:10:00	13845	2016	540	13542	2248	163
03:20:00	13831	1998	532	13527	2256	161
03:30:00	13841	1978	518	13549	2164	116
03:40:00	13860	1996	524	13550	2238	166
03:50:00	13865	1995	524	13555	2214	162
04:00:00	13884	2020	549	13576	2120	110
04:10:00	13861	2013	542	13556	2154	138
04:20:00	13852	2021	546	13561	2138	144
04:30:00	13899	2033	541	13582	2131	107
04:40:00	13870	2026	542	13566	2176	142
04:50:00	13867	2042	541	13571	2125	102
05:00:00	13861	2079	539	13573	2053	30
05:10:00	13845	2177	561	13556	2092	49
05:20:00	13867	2235	563	13575	2163	96
05:30:00	13871	2248	546	13587	2140	60
05:40:00	13836	2346	537	13534	2169	75
05:50:00	13846	2428	532	13556	2232	85
06:00:00	13852	2538	576	13577	2289	24
06:10:00	13852	2538	576	13577	2289	24
06:20:00	13803	2817	577	13523	2445	97
06:30:00	13819	2823	527	13548	2415	47
06:40:00	13791	2914	553	13512	2518	82
06:50:00	13765	3071	584	13469	2617	101
07:00:00	13748	3086	577	13467	2728	117
07:10:00	13762	3182	588	13440	2815	172

Tabla C.2: Valores correspondientes al circuito CEO 4000 para el día 10 de abril de 2018.

Hora	Vprom (V) CEO 4000	kW tot CEO 4000	kVAR tot CEO 4000	Vprom (V) CEO 4040	kW tot CEO 4040	kVAR tot CEO 4040
07:20:00	13794	3190	548	13508	2881	180
07:30:00	13784	3146	539	13496	2851	153
07:40:00	13766	3139	574	13473	2898	211
07:50:00	13784	2961	552	13491	3055	277
08:00:00	13772	2883	549	13481	2924	221
08:10:00	13714	2921	577	13429	3089	277
08:20:00	13687	2922	579	13412	3127	242
08:30:00	13721	2940	587	13430	3077	189
08:40:00	13695	2841	587	13420	3101	235
08:50:00	13681	2684	568	13387	3052	211
09:00:00	13685	2629	586	13383	3187	294
09:10:00	13630	2656	591	13346	3195	328
09:20:00	13679	2713	629	13400	3289	339
09:30:00	13706	2852	678	13426	3351	376
09:40:00	13682	2844	689	13390	3424	418
09:50:00	13679	2850	686	13383	3478	425
10:00:00	13662	2818	697	13395	3481	435
10:10:00	13659	2857	695	13371	3455	412
10:20:00	13654	2864	719	13349	3472	409
10:30:00	13651	2761	689	13349	3563	460
10:40:00	13652	2814	722	13357	3539	453
10:50:00	13642	2828	721	13340	3476	441
11:00:00	13627	2818	724	13326	3663	520
11:10:00	13666	2852	725	13333	3653	551
11:20:00	13659	2925	764	13353	3615	509
11:30:00	13671	2909	757	13353	3650	557
11:40:00	13680	2951	779	13351	3827	616
11:50:00	13668	2933	770	13354	3650	534
12:00:00	13679	2976	782	13369	3705	582
12:10:00	13654	3004	791	13358	3745	605
12:20:00	13631	3001	772	13343	3634	572
12:30:00	13638	3019	785	13340	3667	573
12:40:00	13636	3065	803	13340	3570	490
12:50:00	13639	3066	790	13346	3622	542
13:00:00	13676	3075	788	13388	3551	501
13:10:00	13683	3066	783	13388	3603	494
13:20:00	13671	3052	765	13358	3562	481
13:30:00	13677	2992	740	13402	3575	455
13:40:00	13663	2913	711	13354	3494	427
13:50:00	13681	2862	691	13348	3444	411
14:00:00	13669	2834	686	13381	3462	431
14:10:00	13670	2877	689	13396	3440	411
14:20:00	13671	2949	724	13358	3439	404
14:30:00	13677	2953	721	13364	3381	367
14:40:00	13695	2923	698	13361	3330	347
14:50:00	13721	2915	687	13641	3362	311
15:00:00	13742	2959	704	13647	3489	365
15:10:00	13737	2989	702	13645	3400	336
15:20:00	13730	3020	709	13644	3402	340
15:30:00	13711	2982	684	13638	3401	347
15:40:00	13695	2923	645	13611	3334	324
15:50:00	13715	2889	657	13612	3358	347
16:00:00	13704	2905	666	13604	3413	399

Hora	Vprom (V) CEO 4000	kW tot CEO 4000	kVAR tot CEO 4000	Vprom (V) CEO 4040	kW tot CEO 4040	kVAR tot CEO 4040
16:10:00	13718	2900	658	13586	3361	378
16:20:00	13728	2890	662	13540	3280	320
16:30:00	13726	2890	663	13421	3287	353
16:40:00	13735	2886	656	13413	3238	300
16:50:00	13716	2867	661	13271	3231	301
17:00:00	13687	2894	675	13392	3319	361
17:10:00	13699	2905	681	13395	3266	294
17:20:00	13708	2803	641	13426	3271	301
17:30:00	13737	2835	648	13447	3368	355
17:40:00	13734	2839	655	13466	3326	354
17:50:00	13739	2851	654	13457	3275	314
18:00:00	13718	2828	631	13438	3268	303
18:10:00	13713	2907	641	13444	3214	279
18:20:00	13713	2943	617	13451	3206	266
18:30:00	13745	2971	637	13460	3204	265
18:40:00	13740	2991	620	13464	3159	255
18:50:00	13773	3046	605	13503	3140	217
19:00:00	13767	3114	588	13498	3301	280
19:10:00	13771	3156	590	13486	3159	202
19:20:00	13768	3264	583	13486	3147	196
19:30:00	13739	3403	605	13483	3274	238
19:40:00	13704	3480	618	13451	3255	140
19:50:00	13700	3484	618	13441	3232	134
20:00:00	13714	4082	683	13442	3516	160
20:10:00	13703	4187	659	13435	3469	129
20:20:00	13723	4320	673	13458	3471	97
20:30:00	13725	4339	680	13455	3479	100
20:40:00	13727	4465	653	13467	3424	69
20:50:00	13739	4471	653	13472	3522	106
21:00:00	13752	4501	650	13488	3492	94
21:10:00	13751	4436	623	13483	3474	92
21:20:00	13746	4431	605	13477	3424	98
21:30:00	13766	4387	586	13494	3397	98
21:40:00	13775	4371	567	13516	3345	72
21:50:00	13787	4410	710	13523	3311	80
22:00:00	13801	4322	605	13544	3378	77
22:10:00	13808	4272	592	13546	3276	86
22:20:00	13811	4169	585	13537	3355	141
22:30:00	13829	4032	583	13546	3236	111
22:40:00	13827	3905	573	13536	3158	104
22:50:00	13847	3771	571	13565	3195	129
23:00:00	13864	3593	547	13579	2996	93
23:10:00	13872	3418	546	13589	2875	80
23:20:00	13891	3239	540	13601	2844	133
23:30:00	13854	3074	523	13559	2734	63
23:40:00	13858	2921	515	13574	2684	72
23:50:00	13850	2873	542	13554	2641	99

Apendice E. Código utilizado en MATLAB para realizar las pruebas

E.1 Programa principal

El programa utiliza cuatro funciones escritas en el mismo lenguaje, por lo que se presenta el código utilizado en cada uno de ellos. En esta sección se muestra el programa principal que controla los resultados y que puede utilizarse para otras pruebas adicionales a las presentadas aquí, sólo es requerido se cuente con una matriz *HS* (Horas - seccionamientos) de 24 X n, en el que 24 representa las horas del día y *n* el número de seccionamientos virtuales que se utilizan en SynerGEE. Esta debe insertarse en el renglón 3 y pueden usarse las que aparecen en las secciones D.6 y D.7.

E.2 Función "desplegar"

La primera función que aparece en el código tiene como objetivo desplegar los primeros resultados de la matriz original y a su vez hace la primer y más grande reducción de seccionamientos, del total de seccionamientos usados virtualmente en el modelo, hasta los que son necesarios de acuerdo con los datos de *HS*. El código utiliza dos pasos importantes, uno es el ordenamiento de los seccionamientos que aportan menores pérdidas y el segundo es eliminar los repetidos.

```
%Función de para desplegar resultados
%1 = es la cantidad de seccionamientos usados
%El vector que contiene los seccionamientos que se usan (Hay q restar 1)
function [l,secc_usados] = desplegar(HS)
    %h son los horarios y n los seccionamientos totales
    [h,n] = size(HS);
    %son los kW mínimos y el seccionamiento (mas uno) que lo produce
    [kw,sec_min] = min(HS');
    %Se usa para saber los seccionamientos
    secc_ord = sort(sec_min);
    secc usados = unique(secc ord);
```

```
% Emite la longitud del vector secc usados
   % que corresponde a la cantidad de seccionamientos utilizados
   l = length(secc usados);
   %Muestra los kW mínimos que pueden ser generados
    disp('========')
   r = ['Perdidas minimas = ', num2str(sum(kw)), ' kW, con ',
num2str(l), ' seccionamientos'];
   disp(r)
       %Muestra el seccionamiento que genera los kW mínimos y ése valor
   HORAS = [0;1;2;3;4;5;6;7;8;9;10;11;12;
       13;14;15;16;17;18;19;20;21;22;23];
       HSmin = [HORAS, sec min'-1, kw'];
   disp('===== Seccionamientos y kW =====')
   disp(' HORA Secc C-
                             kW')
   for j=0:23
      if j<10
         r = [' 0',num2str(j),':00
                                          ',num2str(sec min(j+1)-
1),'
         ',num2str(kw(j+1))];
      else
         r = [' ',num2str(j),':00 ',num2str(sec min(j+1)-1),'
',num2str(kw(j+1))];
      end
      disp(r)
   end
   disp('=======')
   disp(' ')
end
```

E.3 Función "reduce"

Cuando se ha determinado el número de seccionamientos necesarios para que exista una transferencia dinámica, esta función va eliminando uno a uno los seccionamientos que menor beneficio aportan al sistema, hasta emitir resultados con dos seccionamientos.

Para lograrlo, la función compara los resultados combinados de ir retirando un seccionamiento a la vez y deshecha el seccionamiento que aporta menos ahorro de pérdidas eléctricas. Una vez hecho esto, arma la matriz resultante con un seccionamiento menos y el vector de seccionamientos usados.

```
%Control de reducción de la matriz hasta que sea un solo seccionamiento
%secc_usados es el vector que tiene los seccionamientos
%l es la cantidad de seccionamientos que quedan
%A es la matriz reducida de HS que tiene solo los seccionamientos usados
function [l,secc_usados2,A] = reduce(l,secc_usados,HS)
    b=[];
    for i=1:1;
        %Se crea la matriz vacía para iniciar
```

```
A=[];
        %Este for genera la matriz con los elementos necesarios
        for j = 1:1;
            %Este If descarta los elementos del seccionamiento en turno
            if j ~= i
                A = [A, HS(:, secc usados(j))];
            end
        end
        [kW1, S1] = min(A');
        b = [b, sum(kW1)];
    end
%Se quita el mínimo, por que al no estar, genera el mejor resultado
[kW2, S2] = min(b);
% Se restablece la matriz A para dar como resultante la que ya no tiene
%el seccionamiento con mayor pérdida
%Asimismo el seccionamiento Utilizado
    A = [];
    secc usados2 = [];
        for j = 1:1;
            %Este If descarta los elementos del seccionamiento en turno
            if j ~= S2
                A = [A, HS(:, secc usados(j))];
                secc usados2 = [secc usados2, secc usados(j)];
            end
        end
        % Se reduce la matriz a un seccionamiento menos
1 = 1 - 1;
end
```

E.4 Función "desplegar2"

En conjunto con la función "reduce", se usa función "desplegar2" para desplegar los resultados cuando se va retirando uno a uno los seccionamientos que representa menor beneficio.

```
%Función para desplegar resultados de la matriz A, arriba de l=1
%1: es la cantidad de seccionamientos usados
%El vector que contiene los seccionamientos que se usan (Hay q restar 1)
function [1, secc usados] = desplegar2(1, secc usados, A)
   %h son los horarios y n los seccionamientos totales
    [kw, sec min] = min(A');
   %Muestra los kW minimos que pueden ser generados
    disp('========')
   r = ['Perdidas minimas = ', num2str(sum(kw)), ' kW, con ',
num2str(l), ' seccionamientos'];
   disp(r)
       %Muestra el seccionamiento que genera los kW mínimos y ese valor
   disp('===== Seccionamientos y kW =====')
   disp(' HORA
                   Secc C-
                             kW')
   for j=0:23
```

```
if j<10
         r = ['
                 0',num2str(j),':00
',num2str(secc_usados(sec min(j+1))-1),'
                                          ',num2str(kw(j+1))];
      else
         r = ['
                  ',num2str(j),':00
',num2str(secc_usados(sec_min(j+1))-1),'
                                         ',num2str(kw(j+1))];
      end
       disp(r)
   end
   disp('=======')
   disp(' ')
end
```

E.5 Función "desplegar3"

Una vez que queda un seccionamiento solitario o una configuración estática de los circuitos, se debe seleccionar el que represente menor pérdidas de ellos durante las 24 horas que se analizan, por lo que esta función lleva a cabo esa tarea y despliega el resultado.

```
%Función de para desplegar resultados de la matriz A
%cuando solo se utiliza un seccionamiento
function [] = desplegar3(HS)
   %h son los horarios y n los seccionamientos totales
   B = sum(HS);
   [kw, sec min] = min(B);
   %Muestra los kW minimos que pueden ser generados
    disp('=========')
   r = ['Perdidas minimas = ', num2str(kw), ' kW, con ', num2str(1), '
seccionamiento'];
   disp(r)
       %Muestra el seccionamiento que genera los kW mínimos y ése valor
   disp('===== Seccionamientos y kW =====')
   disp(' HORA
               Secc C-
                             kW')
   for j=0:23
      if j<10
         r = ['
                  0',num2str(j),':00
                                         ',num2str(sec min-1),'
',num2str(HS(j+1,sec_min))];
      else
         r = [' ',num2str(j),':00 ',num2str(sec min-1),'
',num2str(HS(j+1,sec min))];
      end
       disp(r)
   end
   disp('=======')
   disp(' ')
```
end

E.6 Datos de *HS* para la prueba 1

Para probar los resultados del par de circuitos JLD 4020 y JLD 4070, se utiliza la siguiente matriz de 24 X 18:

[32.89,32.88,32.78,32.86,32.96,33.32,33.8,34.15,34.135,34.12,34.04,33.95, 33.81,33.79,33.71,33.71,33.67,33.66;

27.36,27.34,27.2,27.21,27.27,27.51,27.85,27.94,28.01,28.08,27.99,27.91,27 .78,27.76,27.7,27.69,27.67,27.66;

24.58,24.55,24.44,24.37,24.4,24.54,24.77,24.84,24.89,24.94,24.87,24.8,24. 71,24.7,24.67,24.67,24.66,24.66;

22.51,22.47,22.4,22.29,22.29,22.38,22.54,22.59,22.625,22.66,22.6,22.56,22 .5,22.5,22.49,22.49,22.5,22.51;

22.01,21.98,21.91,21.81,21.81,21.9,22.07,22.12,22.155,22.19,22.13,22.08,2 2.01,22.01,22,22,22.01,22.01;

22.21,22.18,22.09,22.01,22.03,22.15,22.34,22.39,22.435,22.48,22.41,22.35, 22.28,22.27,22.26,22.26,22.26,22.27;

26.97,26.94,26.88,26.83,26.86,27.05,27.32,27.39,27.45,27.51,27.45,27.39,2 7.31,27.31,27.28,27.28,27.27,27,27;

31.13, 31.07, 31.01, 30.89, 30.91, 31.05, 31.3, 31.36, 31.42, 31.48, 31.45, 31.42, 31 .4, 31.39, 31.4, 31.4, 31.41, 31.42;

42.53,42.42,42.31,42.02,41.99,42.06,42.27,42.34,42.4,42.46,42.47,42.48,42 .51,42.52,42.56,42.56,42.59,42.6;

62.53,62.33,62.05,61.45,61.33,61.24,61.35,61.4,61.455,61.51,61.55,61.61,6 1.73,61.74,61.85,61.87,61.93,61.96;

80.65,80.36,80.03,79.14,78.94,78.69,78.69,78.72,78.76,78.8,78.86,78.94,79 .12,79.15,79.32,79.33,79.43,79.48;

91.18,90.85,90.46,89.45,89.21,88.93,88.93,88.96,89.01,89.06,89.13,89.22,8 9.44,89.47,89.68,89.7,89.82,89.88;

95.69,95.35,94.92,93.86,93.62,93.33,93.33,93.37,93.42,93.47,93.55,93.65,9 3.88,93.91,94.14,94.16,94.29,94.36;

99.58,99.22,98.83,97.73,97.48,97.18,97.19,97.22,97.275,97.33,97.42,97.53, 97.78,97.82,98.07,98.09,98.24,98.31;

98.5,98.16,97.78,96.74,96.51,96.27,96.34,96.39,96.455,96.52,96.62,96.74,9 7.01,97.05,97.3,97.33,97.48,97.55; 91.89,91.58,91.25,90.34,90.15,89.98,90.11,90.17,90.25,90.33,90.42,90.53,9 0.79,90.83,91.05,91.08,91.21,91.27;

85.86,85.58,85.31,84.51,84.36,84.27,84.46,84.53,84.615,84.7,84.8,84.91,85 .16,85.2,85.42,85.44,85.57,85.63;

85.86,85.58,85.31,84.51,84.36,84.27,84.46,84.53,84.615,84.7,84.8,84.91,85 .16,85.2,85.42,85.44,85.57,85.63;

91.81,91.52,91.23,90.54,90.45,90.53,90.9,91.02,91.15,91.28,91.42,91.59,91 .94,91.99,92.29,92.32,92.5,92.58;

103.33,103.07,102.8,102.44,102.51,103.01,103.87,104.11,104.355,104.6,104. 82,105.08,105.62,105.69,106.14,106.19,106.44,106.56;

90.05,89.87,89.72,89.64,89.79,90.48,91.47,91.74,92,92.26,92.44,92.63,93.0 5,93.1,93.45,93.48,93.67,93.76;

69.63,69.58,69.53,69.86,70.15,71.07,72.25,72.55,72.82,73.09,73.16,73.23,7 3.38,73.4,73.53,73.54,73.61,73.65;

53.74,53.75,53.78,54.24,54.54,55.46,56.57,56.85,57.09,57.33,57.29,57.25,5 7.19,57.18,57.15,57.15,57.14,57.13;

41.46,41.44,41.38,41.59,41.76,42.33,43.04,43.22,43.37,43.52,43.45,43.38,4 3.25,43.24,43.16,43.16,43.13,43.11]

E.7 Datos de *HS* para la prueba 2

Para probar los resultados del par de circuitos CEO 4000 y CEO 4040, se utiliza la siguiente matriz de 24 X 18:

[68.51,68.17,67.4,65.53,65.39,61.51,54.48,53.19,52.57,48.06,47.87,47.98,4 7.97,48.01,48.01,47.94,49.23,49.4;

52.12,51.88,51.32,49.96,49.86,47.05,42,41.08,40.64,37.5,37.39,37.58,37.59,37.62,37.62,37.59,38.73,38.87;

44.48,44.28,43.8,42.68,42.59,40.24,36.04,35.28,34.92,32.35,32.26,32.47,32 .48,32.52,32.52,32.5,33.53,33.65;

41.93,41.74,41.3,40.25,40.17,38,34.12,33.41,33.08,30.74,30.65,30.89,30.89,30.93,30.93,30.92,31.93,32.05;

42.12,41.92,41.47,40.37,40.29,38.02,33.94,33.2,32.85,30.32,30.23,30.41,30.41,30.44,30.44,30.42,31.37,31.48;

42.12,41.92,41.47,40.37,40.29,38.02,33.94,33.2,32.85,30.32,30.23,30.41,30.41,30.44,30.44,30.42,31.37,31.48;

49.1,48.85,48.29,46.93,46.82,43.99,38.85,37.9,37.45,34.13,33.99,34.05,34. 05,34.07,34.07,34.02,34.93,35.06; 71.07,70.7,69.84,67.79,67.63,63.35,55.5,54.05,53.36,48.16,47.93,47.84,47. 82,47.84,47.84,47.73,48.81,48.98;

89.65,89.21,88.17,85.68,85.48,80.29,70.83,69.09,68.26,62.12,61.85,61.87,6 1.85,61.89,61.89,61.78,63.31,63.53;

80.65,80.31,79.54,77.69,77.54,73.71,66.95,65.74,65.17,61.26,61.14,61.73,6 1.75,61.83,61.83,61.83,63.93,64.15;

86.44,86.09,85.27,83.33,83.18,79.17,72.1,70.84,70.24,66.22,66.1,66.78,66. 81,66.9,66.9,66.91,69.23,69.46;

92.65,92.28,91.43,89.4,89.24,85.04,77.67,76.36,75.75,71.63,71.52,72.31,72 .34,72.45,72.45,72.47,75.03,75.28;

98.14,97.73,96.79,94.54,94.37,89.71,81.49,80.01,79.32,74.58,74.43,75.15,7 5.17,75.27,75.27,75.28,77.84,78.1;

94.59,94.18,93.26,91.05,90.87,86.29,78.16,76.7,76.01,71.25,71.09,71.71,71 .74,71.83,71.83,71.82,74.2,74.45;

88.57,88.19,87.32,85.23,85.06,80.73,73.03,71.65,70.99,66.45,66.3,66.86,66 .88,66.96,66.96,66.95,69.14,69.38;

90.42,90.02,89.12,86.95,86.78,82.29,74.3,72.86,72.18,67.41,67.24,67.77,67 .78,67.86,67.86,67.84,70.02,70.26;

86,85.62,84.76,82.7,82.54,78.26,70.64,69.26,68.62,64.07,63.92,64.41,64.43,64.5,64.5,64.49,66.56,66.79;

84.5,84.13,83.29,81.28,81.13,76.96,69.56,68.23,67.6,63.22,63.07,63.58,63. 6,63.68,63.68,63.66,65.74,65.96;

86.65,86.26,85.35,83.19,83.02,78.53,70.49,69.03,68.34,63.41,63.23,63.61,6 3.62,63.68,63.68,63.64,65.58,65.81;

103.4,102.9,101.74,98.97,98.75,92.96,82.47,80.54,79.63,72.93,72.65,72.79, 72.78,72.83,72.83,72.72,74.64,74.89;

161.99,161.12,159.1,154.24,153.85,143.67,124.92,121.42,119.75,106.98,106. 38,105.73,105.66,105.67,105.67,105.37,107.22,107.59;

167.63,166.71,164.57,159.43,159.02,148.26,128.35,124.63,122.85,109.15,108 .5,107.63,107.55,107.54,107.54,107.17,108.84,109.21;

144.34,143.57,141.76,137.43,137.08,128.01,111.29,108.17,106.68,95.3,94.77,94.19,94.12,94.13,94.13,93.84,95.5,95.83;

91.67,91.2,90.11,87.49,87.28,81.81,71.81,69.95,69.07,62.45,62.16,62.05,62 .02,62.05,62.05,61.91,63.3,63.53]

Apendice F. Diagrama unifilar de telecontrol

Índice alfabético

A

B

bancos de capacitoresIII, 29

С

confiabilidad	4, 5, 31
configuración estáticaIII, 34, 43, 58, 71, 73,	76, 128
consejo mundial de la energía	4
CRE	3

D

demanda máxima	coincidente 1	
	contendente	

E

equipo tele controlado31

F

factor de diversidad20

I

Instituto Politécnico	Nacional5

J

L

le١	de la industria	eléctrica 3
ıc,		

Μ

MATLAB	. III, IV, 2, 5, 6, 62, 74, 76, 77, 125
matriz HS	43, 57, 69, 77, 125
medidores de los alime	entadores50
Modelo matemático	40
modelo simplificado	

0

operación de las redes de distribución	2
operación dinámica	2

Ρ

Perfil de demanda comercial	17
Perfil de demanda industrial	19
perfil de demanda residencial	10, 13, 14, 15, 18
perfiles de demanda III, 2, 3, 5, 6, 7,	10, 11, 17, 18, 20,
34, 37, 45, 46, 66, 76, 77, 78	
planeación	VII, 4, 31
programación dinámica	4
protecciones eléctricas	6, 30
puntos de inflexión	15, 16, 17

R

redes de distribución	1, 3, 4, 78
reguladores de tensión	6, 30
repartición de carga	6, 20, 21
reparto de la carga	3

S

seccionamientos virtuales	53, 125
Secuencia de fases	25
secuencia de maniobras	2, 36, 59, 60, 61, 72
SIMOCE	
SynerGEE III, IV, 2, 6, 39, 40, 4	2, 53, 54, 55, 68, 69, 76,
77, 82, 83, 84, 87, 125	

Т

```
transferencia automática...... 32
```

V

voltaje de operación 2

Z

Zona Xalapa	1,	2,	12,	, 37	7
-------------	----	----	-----	------	---