

INSTITUTO POLITÉCNICO NACIONAL

Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Profesional Adolfo López Mateos Sección de Estudios de Posgrado e Investigación

FORMACIÓN DE CONTAMINANTES EN PROCESO DE COMBUSTIÓN EN GENERADORES DE VAPOR DE UNIDADES 2 Y 3 DE 150 MW DE LA PTE "VALLE DE MÉXICO"

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS EN INGENIERÍA MECÁNICA

PRESENTA:

ING. RENÉ CHISPAN JÁCOME

DIRECTOR DE TESIS:

DR. GEORGIY POLUPAN

DR. GUILLERMO JARQUÍN LÓPEZ

DICIEMBRE, 2018

RESUMEN

En esta tesis se desarrolla el método de combustión a dos etapas, el cual tiene como propósito principal lograr una disminución en la formación de óxidos de nitrógeno producto de la combustión de gas natural en el hogar del generador de vapor de 150 *MW* de la unidad 2/3 de la Planta Termoeléctrica Valle de México.

En primer lugar, se realizó el cálculo térmico del hogar basado en la metodología de A. M. Gurvich. Con esta metodología se obtuvieron diversos parámetros térmicos, siendo los más importantes la temperatura y entalpía de los gases a la salida del hogar. Posteriormente, se determinó la concentración de óxidos de nitrógeno en el hogar del generador de vapor por medio de la metodología descrita por Roslyakov y Egorova, para lo cual se obtuvieron los cuatro parámetros que participan en la formación de este compuesto en la zona de combustión activa, los cuales son: temperatura promedio, densidad de flujo de calor reflejado, coeficiente de exceso de aire y tiempo de residencia de los gases. Además, se realizó el cálculo de otros contaminantes derivados de la combustión en el hogar del generador de vapor. Se obtuvieron los volúmenes de óxidos de azufre y dióxido de carbono, y por medio del uso de factores de emisión estimados por metodologías elaboradas por la SEMARNAT se calculó el nivel de emisiones de estos compuestos. Estos análisis se realizaron tanto para la combustión de gas natural como de combustóleo para el máximo régimen de operación y cargas parciales del generador de vapor.

Una vez realizado lo anterior, se desarrolló el método de la combustión a dos etapas en el hogar, bajo el análisis de las dos zonas formadas en el proceso: en la primera zona se inyecta todo el combustible, mientras que el aire se inyecta de manera uniforme en ambas zonas, de tal manera que en la segunda solo hay aire. Se analizó cada zona por separado obteniendo los parámetros que influyen en la formación de óxidos de nitrógeno de la misma manera que en el proceso de combustión normal, para finalmente obtener la concentración total en el hogar. Este análisis se llevó a cabo en dos arreglos para la combustión de gas natural para carga máxima y cargas parciales de operación.

Por último, se realizó una comparación entre la concentración de óxidos de nitrógeno obtenida en la combustión de gas natural y de combustóleo y la obtenida por el método de combustión a dos etapas, logrando una disminución en la formación de este compuesto.

ABSTRACT

The two stage combustion method is developed in this thesis, which has as main purpose reaching a decrease in the nitrogen oxides formation that are product of the natural gas combustion in the furnace of the 150 *MW* steam generator that is located in the unity 2/3 at the Thermoelectric Plant Valle de México.

First, the thermal calculation of the furnace was done based on the A. M. Gurvich methodology. Diverse thermal parameters were obtained with this methodology, being the most important the flue gas temperature and enthalpy at the furnace exit. Later, the nitrogen oxides concentration in the furnace of the steam generator was determined by the Roslyakov and Egorova methodology. In order to do this, the four parameters that participate at this compound formation in the active combustion zone were obtained, which are: average temperature, reflected heat flux density, air excess coefficient and the flue gas residence time. Besides, the calculation of other pollutants derived of the combustion in the furnace of the steam generator was performed. The sulfur oxides and carbon dioxide volumes were obtained and through the use of emission factors estimated by SEMARNAT methodologies the emissions level of these compounds was calculated. These analyses were done both for the natural gas and for the fuel oil combustion for the maximum operation regime and partial loads of the steam generator.

Once the previous calculations were accomplished, the two stages combustion in the furnace method was developed, under the two zones formed in the process analysis: in the first zone all the fuel is injected, while the air is injected uniformly in both zones, so there is only air in the second zone. Every zone was analyzed separately and the parameters that influence the nitrogen oxides formation were obtained in the same way as the normal combustion process in order to get the total concentration in the furnace. This analysis was carried out in two arrangements for the natural gas combustion at the maximum and partial operation loads.

Finally, a comparison among the nitrogen oxides concentration obtained in the natural gas and fuel oil combustion and the one obtained by the two stages combustion method was performed, achieving a decrease in this compound formation.

AGRADECIMIENTOS

A mis padres, René y Lydia por su gran amor, esfuerzo, trabajo, por siempre apoyarnos en todos los aspectos de la vida y por tratar de hacernos mejores personas.

A mis hermanos, Lupita, Rafael y Fernanda por su apoyo y cariño mostrado y por estar siempre conmigo.

A mis tíos, Agustín y Luz Elvira por su cariño, por ser parte importante en mi vida y ayudarme siempre que ha sido posible.

Al IPN y a la SEPI por este tiempo tan agradable y por ofrecerme todo lo necesario para poder aprender y realizar este trabajo.

Al CONACYT por proveer el apoyo económico y hacer más sencillo este camino.

Al Dr. Georgiy Polupan por aportar sus conocimientos, por su gran apoyo y confianza a lo largo de este tiempo para poder elaborar este trabajo.

Al Dr. Guillermo Jarquín por sus buenos consejos, por su tiempo y apoyo durante todo este tiempo.

A la comisión revisora integrada por los Doctores Georgiy Polupan, Guillermo Jarquín López, Florencio Sánchez Silva, Ignacio Carvajal Mariscal, José Alfredo Jiménez Bernal y Pedro Quinto Diez, por su tiempo y sus observaciones.

A todos los profesores con los que tomé alguna clase y conviví durante este tiempo, en especial a los Doctores Pedro Quinto Diez e Ignacio Carvajal Mariscal por quienes siento admiración y respeto y al Maestro Guilibaldo Tolentino Eslava por sus consejos y por darme la oportunidad de tener acceso a información importante para este trabajo.

A los Ingenieros Fernando Venegas y Alejandro Esquivel quienes siempre fueron amables y se mostraron dispuestos a ayudar en las visitas que hicimos a la planta termoeléctrica.

A mis amigos fuera del IPN, Juan Luis, José Luis, Jesús, Pablo y Pedro quienes son parte importante de mi vida y de alguna manera me han apoyado en los buenos y malos momentos, y a Ángel y Marco Tulio con quienes conviví dentro del IPN y de quienes he recibido importante apoyo.

2.1.3

ÍNDICE

LISTA I	DE FIGURAS	I
LISTA I	DE TABLAS	
NOMEN	ICLATURA	V
INTROI	DUCCIÓN	XV
CAPÍTU	JLO 1: ASPECTOS GENERALES	1
1.1 C	OMBUSTIÓN DE COMBUSTIBLES GASEOSOS EN CFE DE M	ÉXICO 2
1.1.1	Combustibles gaseosos	2
1.1.2	Combustión de gas natural en generadores de vapor de potencia	4
1.1.3	Reacciones químicas en combustión de gas natural (metano)	6
1.2 FO GASEO	ORMACIÓN DE CONTAMINANTES EN COMBUSTIÓN DE C SOS	OMBUSTIBLES
1.2.1	Norma mexicana para el control de emisiones contaminantes	7
1.2.2	Formación de óxidos de nitrógeno	9
1.2.3	Formación de óxidos de azufre	13
1.3 G VALLE	ENERADOR DE VAPOR DE 150 <i>MW</i> DE LA PLANTA TERN DE MÉXICO CFE	IOELÉCTRICA 14
1.3.1	Descripción de la planta termoeléctrica y equipo instalado	
1.3.2	Construcción del generador de vapor de 150 MW	
1.3.3	Características y regímenes de operación	
CAPÍTU EN EL I	JLO 2: METODOLOGÍA DEL CÁLCULO DE LA TRANSMISI HOGAR Y FORMACIÓN DE CONTAMINANTES	ÓN DE CALOR 20
2.1 M GENER	ETODOLOGÍA PARA EL CÁLCULO TÉRMICO DEL ADOR DE VAPOR	HOGAR DEL
2.1.1	Ecuación adimensional de Gurvich	22
2.1.2	Coeficiente M	22

Índia	
Indice	

2.1.4	Número de Buger efectivo	29
2.1.5	Temperatura de los gases en salida del hogar	30
2.2 ME HOGAR I	CTODOLOGÍA PARA EL CÁLCULO DE LA CONCENTRACIÓN DE <i>NOx</i> I DEL GENERADOR DE VAPOR	DEL 31
2.2.1	Temperatura promedio en ZCA	31
2.2.2	Densidad de flujo de calor reflejado en ZCA	32
2.2.3	Coeficiente de exceso de aire en ZCA	32
2.2.4	Tiempo de residencia de los productos de combustión en ZCA	33
2.2.5	Concentración de NOx de los productos de combustión en ZCA	34
2.3 CÁ PROCES	LCULO DE LA FORMACIÓN DE OTROS CONTAMINANTES EN O DE COMBUSTIÓN	EL 35
2.3.1	Cálculo de SOx derivados del proceso de combustión	35
2.3.2	Cálculo de CO2 derivado del proceso de combustión	36
2.4 ME HOGAR I	CTODOLOGÍA PARA EL CÁLCULO DE LA CONCENTRACIÓN DE <i>NOx</i> I DEL GENERADOR DE VAPOR POR COMBUSTIÓN A DOS ETAPAS	DEL 38
2.4.1	Combustible hidrocarburo equivalente	38
2.4.2	Reacción de combustión completa	39
2.4.3	Etapa 1 en la zona primaria	40
2.4.4	Etapa 2 en la zona primaria	40
2.4.5	Volúmenes de los productos de combustión en zona primaria	41
2.4.6	Calor liberado en el proceso	42
2.4.7	Concentración de <i>NOx</i> en ZCA en combustión a dos etapas	44
CAPÍTUL	LO 3: APLICACIÓN DE LA METODOLOGÍA AL CASO DE ESTUDIO	45
3.1 CÁ USANDO	LCULO TÉRMICO DEL HOGAR DEL GENERADOR DE VAPOR DE 150 LA METODOLOGÍA DE GURVICH	<i>MW</i> 46
3.1.1	Cálculo del parámetro M	48
3.1.2	Cálculo del número de Boltzmann	48
3.1.3	Cálculo del número de Buger efectivo	51
3.1.4	Proceso iterativo	52
3.1.5 regímeno	Parámetros del cálculo térmico del hogar del generador de vapor a diferentes es de carga	54

3.2 CÁLCULO DE LA CONCENTRACIÓ	N DE NOX EN EL HOGAR DEL		
GENERADOR DE VAPOR DE 150 MW UTILIZANDO LA METODOLOGÍA DE			
3.2.1 Calculo de la temperatura promedio en ZC	A		
3.2.2 Cálculo de la densidad de flujo de calor ref	lejado en ZCA		
3.2.3 Cálculo del coeficiente de exceso de aire en	ZCA57		
3.2.4 Cálculo del tiempo de residencia de los pro	ductos de combustión en ZCA57		
3.2.5 Cálculo de la concentración de <i>NOx</i> en ZC	A58		
3.2.6 Parámetros obtenidos por el cálculo de la c regímenes de operación	oncentración de <i>NOx</i> en ZCA a diferentes 58		
3.3 CÁLCULO DE OTROS CONTAMI	NANTES EN EL PROCESO DE		
COMBUSTIÓN			
3.3.1 Cálculo de óxidos de azufre			
3.3.2 Cálculo de dióxido de carbono			
3.3.3 Contaminantes obtenidos por la combustió diferentes cargas de operación	n en el hogar del generador de vapor a 60		
3.4 CÁLCULO DE LA CONCENTRACIÓN	DE NOX POR COMBUSTIÓN A DOS		
ETAPAS			
3.4.1 Coeficiente de exceso de aire en zona prima	nria para el arreglo 163		
3.4.2 Cantidad molar de los productos de combu	stión en zona primaria para el arreglo 163		
3.4.3 Volúmenes de los productos de combustión	en zona primaria para el arreglo 163		
3.4.4 Calor liberado en la combustión completa .	64		
3.4.5 Calor liberado en zona primaria, dos etapa	s 64		
3.4.6 Calor total liberado en zona primaria para	el arreglo 165		
3.4.7 Parámetros de la ZCA primaria para el ar	reglo 165		
3.4.8 Temperatura promedio de la ZCA primari	a para el arreglo 166		
3.4.9 Densidad de flujo de calor reflejado de la Z	CA primaria para el arreglo 166		
3.4.10 Tiempo de residencia de los gases en la ZC.	A primaria para el arreglo 167		
3.4.11 Concentración de <i>NOx</i> en la ZCA primaria	a para el arreglo 167		
3.4.12 Volúmenes de los productos de combustión	en zona secundaria para el arreglo 167		
3.4.13 Calor total liberado en zona secundaria pa	ra el arreglo 168		
3.4.14 Parámetros de la ZCA secundaria para el a	arreglo 1		
	5		

	Temperatura promedio de la ZCA secundaria para el arreglo 1	69
3.4.17	Densidad de flujo de calor reflejado de la ZCA secundaria para el arreglo 1	70
3.4.18	Tiempo de residencia de los gases en la ZCA secundaria para el arreglo 1	70
3.4.19	Concentración de <i>NOx</i> en la ZCA secundaria para el arreglo 1	70
3.4.20	Concentración de <i>NOx</i> total	70
3.4.21 vapor a	Parámetros obtenidos por la combustión a dos etapas en el hogar del generador de diferentes regímenes de operación para los arreglos 1 y 2	71
CAPÍTU	LO 4: ANÁLISIS DE LOS RESULTADOS OBTENIDOS	73
.1 AN	ALISIS DE LOS PARÁMETROS DEL CÁLCULO TÉRMICO	74
4.1.1	Temperatura y entalpía de los gases a la salida del hogar	74
1.2 AN	ALISIS DE LOS PARÁMETROS DEL CÁLCULO DE LA CONCENTRAC	CIÓN
DE NOx.		75
4.2.1	Temperatura promedio en la ZCA	75
4.2.2	Densidad de flujo de calor reflejado en la ZCA	76
4.2.3	Coeficiente de exceso de aire en la ZCA	77
4.2.4	Tiempo de residencia de los gases en la ZCA	77
4.2.5	Concentración de <i>NOx</i> en la ZCA	78
.3 AN COMBU	IÁLISIS DE OTROS CONTAMINANTES EN EL PROCESO STIÓN	DE 78
4.3.1	Emisión de CO ₂	79
4.3.1 4.3.2	Emisión de <i>CO</i> ₂ Emisión de <i>SOx</i>	79 79
4.3.1 4.3.2 1.4 AN	Emisión de <i>CO</i> 2 Emisión de <i>SOx</i> IÁLISIS DE LOS RESULTADOS DE LA COMBUSTIÓN A DOS ETAPAS .	79 79 80
4.3.1 4.3.2 4.4 AN 4.4.1	Emisión de <i>CO</i> ₂ Emisión de <i>SOx</i> IÁLISIS DE LOS RESULTADOS DE LA COMBUSTIÓN A DOS ETAPAS . Temperatura promedio en la ZCA en las zonas 1 y 2	79 79 80 80
4.3.1 4.3.2 1.4 AN 4.4.1 4.4.2	Emisión de <i>CO</i> ₂ Emisión de <i>SOx</i> MÁLISIS DE LOS RESULTADOS DE LA COMBUSTIÓN A DOS ETAPAS . Temperatura promedio en la ZCA en las zonas 1 y 2 Densidad de flujo de calor reflejado en la ZCA en las zonas 1 y 2	79 79 80 80 81
4.3.1 4.3.2 4.4 AN 4.4.1 4.4.2 4.4.3	Emisión de <i>CO</i> ₂ Emisión de <i>SOx</i> NÁLISIS DE LOS RESULTADOS DE LA COMBUSTIÓN A DOS ETAPAS . Temperatura promedio en la ZCA en las zonas 1 y 2 Densidad de flujo de calor reflejado en la ZCA en las zonas 1 y 2 Coeficiente de exceso de aire en la ZCA en las zonas 1 y 2	79 79 80 81 81
4.3.1 4.3.2 1.4 AN 4.4.1 4.4.2 4.4.3 4.4.4	Emisión de <i>CO</i> ₂ Emisión de <i>SOx</i> VÁLISIS DE LOS RESULTADOS DE LA COMBUSTIÓN A DOS ETAPAS . Temperatura promedio en la ZCA en las zonas 1 y 2 Densidad de flujo de calor reflejado en la ZCA en las zonas 1 y 2 Coeficiente de exceso de aire en la ZCA en las zonas 1 y 2 Tiempo de residencia de los gases en la ZCA en las zonas 1 y 2	79 79 80 81 81 82 83

CONCLUSIONES

RECOMENDACIONES	
REFERENCIAS	
ANEXO A	
ANEXO B	
ANEXO C	

LISTA DE FIGURAS

Figura	Título	Página
Figura 1.1	Diagrama de formación de óxido nítrico de acuerdo al mecanismo de NO_x de combustible	11
Figura 1.2	Planta Termoeléctrica Valle de México	15
Figura 1.3	Vista lateral del generador de vapor de 150 MW de la unidad 2/3	16
Figura 1.4	Vista general del hogar del generador de vapor de 150 MW de la unidad 2/3	17
Figura 3.1	Diagrama del hogar del generador de vapor de 150 MW	46
Figura 3.2	Vista superior de los quemadores en el hogar del generador de vapor de 150 <i>MW</i>	47
Figura 3.3	Arreglo 1 para la combustión a dos etapas en el hogar del generador de vapor de 150 <i>MW</i>	61
Figura 3.4	Arreglo 2 para la combustión a dos etapas en el hogar del generador de vapor de 150 <i>MW</i>	62
Figura 4.1	Temperatura de los gases en la salida del hogar en la combustión de gas natural y combustóleo	74
Figura 4.2	Temperatura promedio en la ZCA en la combustión de gas natural y combustóleo	75
Figura 4.3	Densidad de flujo de calor reflejado en la ZCA en la combustión de gas natural y combustóleo	76
Figura 4.4	Coeficiente de exceso de aire en la ZCA en la combustión de gas natural y combustóleo	77
Figura 4.5	Tiempo de residencia de los gases en la ZCA en la combustión de gas natural y combustóleo	77
Figura 4.6	Concentración de NO_x en la ZCA en la combustión de gas natural y combustóleo	78
Figura 4.7	Emisión de CO_2 en la combustión de gas natural y combustóleo	79
Figura 4.8	Emisión de SO_x en la combustión de combustóleo	79

Figura 4.9	Temperatura promedio en la ZCA 1	80
Figura 4.10	Temperatura promedio en la ZCA 2	80
Figura 4.11	Densidad de flujo de calor reflejado en la ZCA 1	81
Figura 4.12	Densidad de flujo de calor reflejado en la ZCA 2	81
Figura 4.13	Coeficiente de exceso de aire en la ZCA 1	82
Figura 4.14	Coeficiente de exceso de aire en la ZCA 2	82
Figura 4.15	Tiempo de residencia de los gases en la ZCA 1	83
Figura 4.16	Tiempo de residencia de los gases en la ZCA 2	83
Figura 4.17	Concentración total de NO_x en la ZCA	84
Figura 4.18	Concentración total de NO_x en la ZCA por diferentes análisis	84

LISTA DE TABLAS

Tabla	Título	Página
Tabla 1.1	Análisis de algunos combustibles gaseosos típicos	3
Tabla 1.2	Niveles máximos permisibles de emisión de los equipos existentes a la entrada en vigor de la NOM-085-SEMARNAT-2011	8
Tabla 1.3	Niveles máximos permisibles de emisión de equipos nuevos	9
Tabla 1.4	Características técnicas del generador de vapor de 150 MW de la unidad 2/3	18
Tabla 1.5	Características de los componentes del generador de vapor de $150 MW$ de la unidad $2/3$	18
Tabla 1.6	Composiciones volumétrica y másica del gas natural y del combustóleo respectivamente	19
Tabla 1.7	Parámetros de operación a diferentes cargas térmicas	19
Tabla 2.1	Grado de combustión para gas natural y combustóleo a diferentes coeficientes de exceso de aire	32
Tabla 2.2	Factores de emisión de compuestos de azufre para combustóleo	36
Tabla 2.3	Factores de emisión de CO_2 para combustóleo y gas natural	38
Tabla 3.1	Parámetros del cálculo térmico del hogar a diferentes regímenes de operación quemando gas natural	55
Tabla 3.2	Parámetros del cálculo térmico del hogar a diferentes regímenes de operación quemando combustóleo	55
Tabla 3.3	Parámetros del cálculo de la concentración de NO_x quemando gas natural a diferentes cargas de operación	58
Tabla 3.4	Parámetros del cálculo de la concentración de NO_x quemando combustóleo a diferentes cargas de operación	58
Tabla 3.5	Volúmenes y emisiones de SO_x quemando combustóleo a diferentes cargas de operación	60
Tabla 3.6	Volúmenes y emisiones de CO_2 quemando gas natural a diferentes cargas de operación	60

Tabla 3.7	Volúmenes y emisiones de CO_2 quemando combustóleo a diferentes cargas de operación	60
Tabla 3.8	Parámetros de la combustión a dos etapas para el arreglo 1	71
Tabla 3.9	Parámetros de la combustión a dos etapas para el arreglo 2	72
Tabla 4.1	Parámetros más importantes del cálculo térmico para la combustión de gas natural y combustóleo	74
Tabla 4.2	Parámetros del cálculo de la concentración de NO_x en el hogar del generador de vapor para la combustión de gas natural y combustóleo	75

NOMENCLATURA

Símbolo	Descripción	Unidad SI
а	Ancho del hogar del generador de vapor	m
A_F	Área frontal	m^2
A_{FRad}	Área frontal radiante	m^2
$A_{F \ 1}$	Área frontal de la ZCA 1	m^2
A_{F2}	Área frontal de la ZCA 2	m^2
$A_{I 1}$	Área inferior de la ZCA 1	m^2
A_{I2}	Área inferior de la ZCA 2	m^2
A_L	Área lateral	m^2
A_{LRad}	Área lateral radiante	m^2
$A_{L 1}$	Área lateral de la ZCA 1	m^2
$A_{L 2}$	Área lateral de la ZCA 2	m^2
A_P	Área posterior	m^2
$A_{P Rad}$	Área posterior radiante	m^2
$A_{P \ 1}$	Área posterior de la ZCA 1	m^2
A_{P2}	Área posterior de la ZCA 2	m^2
A_{Pared}	Área de la pared "n"	m^2
A _{Paredes}	Área de las paredes del hogar	m^2
$A_{Paredes Rad}$	Área de las paredes radiantes del hogar	m^2
$A_{Quemadores}$	Área de los quemadores	m^2
A _{Rad}	Área radiante	m^2
A_{S1}	Área superior de la ZCA 1	m^2
A_{S2}	Área superior de la ZCA 2	m^2

A _{Total 1}	Área total de la ZCA 1	m^2
A _{Total 2}	Área total de la ZCA 2	m^2
A_{VS}	Área de la ventana de salida	m^2
A _{ZCA}	Área de la ZCA	m^2
b	Profundidad del hogar del generador de vapor	m
B_{calc}	Gasto de combustible	m³/s,kg/s
Во	Número de Boltzmann	_
Bu	Número de Buger	_
$Bar{u}$	Número de Buger efectivo	_
B_1 , B_2 , B_n	Gasto de combustible del quemador "n"	m³/s,kg/s
С	Porcentaje de carbono presente en el combustible	%
C_{comb}	Calor específico del combustible	kJ∕kg∙K
C_{NO_X}	Concentración de óxidos de nitrógeno en los productos de combustión	ppm
C_{NO_X}	Concentración de óxidos de nitrógeno en los productos de combustión en combustión a dos etapas	mg/m^3
$C_{NO_x total}$	Concentración de óxidos de nitrógeno en el hogar en combustión a dos etapas	mg/m^3
$C_{NO_X ZCA 1}$	Concentración de óxidos de nitrógeno en la ZCA 1	ppm
$C_{NO_{X}ZCA1}$	Concentración de óxidos de nitrógeno en la ZCA 1	mg/m^3
$C_{NO_{\chi}ZCA2}$	Concentración de óxidos de nitrógeno en la ZCA 2	ppm
$C_{NO_{\chi} ZCA 2}$	Concentración de óxidos de nitrógeno en la ZCA 2	mg/m^3
$C_{NO_X}^{Gas \ Natural}$	Concentración de óxidos de nitrógeno en los productos de combustión del gas natural en combustión a dos etapas	ppm
C _{ZCA}	Altura de la ZCA	m
$C_{ZCA 1}$	Altura de la ZCA 1	т

C _{ZCA 2}	Altura de la ZCA 2	m
$C^{R,g}_{ZCA}$	Altura de la ZCA con la fracción de gases recirculados e inyección de agua	m
E_{CO_2}	Emisiones de dióxido de carbono	kg/h
E_{SO_X}	Emisiones de óxidos de azufre	kg/h
ET	Eficiencia térmica del generador de vapor	%
FE _{CO2}	Factor de emisión del dióxido de carbono	kg/kJ
FE _{SOx}	Factor de emisión de los óxidos de azufre	kg/m ³
FE _{SO2}	Factor de emisión del dióxido de azufre	kg/m^3
g	Porcentaje de agua inyectada en el hogar	%
G_{NO_X}	Gasto volumétrico de óxidos de nitrógeno	m^3/s
$G_{NO_{X}ZCA1}$	Gasto volumétrico de óxidos de nitrógeno en la ZCA 1	<i>m</i> ³ / <i>s</i>
G _{NO_x ZCA 2}	Gasto volumétrico de óxidos de nitrógeno en la ZCA 2	<i>m</i> ³ / <i>s</i>
G_{purga}	Flujo de purga	kg/s
G_{v1}	Flujo de vapor primario	kg/s
G_{v2}	Flujo de vapor secundario	kg/s
h_{aa}	Entalpía del agua de alimentación	kJ/kg
h _{aire sal}	Entalpía del aire a la salida del precalentador	kJ/m ³ ,kJ/kg
h _{rec}	Entalpía de los gases de recirculación	kJ/m ³ ,kJ/kg
h_{v1}	Entalpía del vapor primario	kJ/kg
ĥ	Entalpía del agua en el domo	kJ/kg
h_{v2}	Entalpía del vapor secundario a la salida del recalentador	kJ/kg
$h_{hogar}^{''}$	Entalpía de los productos de combustión a la salida del hogar	kJ/m ³ ,kJ/kg
$h_{\nu 2}^{''}$	Entalpía del vapor secundario a la entrada del recalentador	kJ/kg

k	Coeficiente de absorción radiante del medio del hogar	$1/m \cdot MPa$
k_{gas}	Coeficiente de absorción radiante en el hogar debido a los gases triatómicos	$1/m \cdot MPa$
k _{hollín}	Coeficiente de absorción radiante en el hogar debido al hollín	$1/m \cdot MPa$
$l_{quemador}$	Altura promedio de los quemadores	m
l_1 , l_2 , l_n	Altura del quemador " n " con respecto al fondo del hogar	m
L _{hogar}	Altura del hogar	m
m	Coeficiente m	—
$m_{\mathcal{C}}$	Masa del componente carbono referente al hidrocarburo equivalente	kg
m_H	Masa del componente hidrógeno referente al hidrocarburo equivalente	kg
$\dot{m}_{NO_{X}}$	Flujo másico de óxidos de nitrógeno	mg/s
\dot{m}_{NO_xtotal}	Flujo másico de óxidos de nitrógeno en el hogar	mg/s
$\dot{m}_{NO_{X}ZCA1}$	Flujo másico de óxidos de nitrógeno en la ZCA 1	mg/s
$\dot{m}_{NO_{X}ZCA2}$	Flujo másico de óxidos de nitrógeno en la ZCA 2	mg/s
М	Parámetro M	_
M_o	Coeficiente de posición de los quemadores en el hogar	_
n	Exponente referido a la zona de inyección de los gases de recirculación	_
n_{C}	Número de <i>kmol</i> de carbono presentes en el hidrocarburo equivalente	kmol
n _{co}	Número de <i>kmol</i> de monóxido de carbono formados en combustión del hidrocarburo equivalente	kmol/kmol
n_{CO_2}	Número de <i>kmol</i> de dióxido de carbono formados en combustión del hidrocarburo equivalente	kmol/kmol
n_H	Número de <i>kmol</i> de hidrógeno presentes en el hidrocarburo equivalente	kmol

n_{H_2}	Número de <i>kmol</i> de hidrógeno formados en combustión del hidrocarburo equivalente	kmol/kmol
<i>n</i> _{<i>H</i>₂0}	Número de <i>kmol</i> de agua formados en combustión del hidrocarburo equivalente	kmol/kmol
n_{N_2}	Número de <i>kmol</i> de nitrógeno formados en combustión del hidrocarburo equivalente	kmol/kmol
n_1 , n_2 , n_n	Número del quemador " <i>n</i> "	_
Р	Presión en el hogar del generador de vapor	МРа
PCI	Poder calorífico inferior	kJ/m ³ ,kJ/kg
PCI _{Carbono}	Poder calorífico inferior del carbono del hidrocarburo equivalente	kJ/kg
PCI _{co}	Poder calorífico inferior del monóxido de carbono	kJ/m^3
PCI _{Hidrógeno}	Poder calorífico inferior del hidrógeno del hidrocarburo equivalente	kJ/kg
PCI_{H_2}	Poder calorífico inferior del hidrógeno	<i>kJ/m</i> ³
PM _C	Peso molecular del carbono del hidrocarburo equivalente	kg/kmol
PM _{CO}	Peso molecular del monóxido de carbono	kg/kmol
PM_{CO_2}	Peso molecular del dióxido de carbono	kg/kmol
PM_H	Peso molecular del hidrógeno del hidrocarburo equivalente	kg/kmol
PM_{H_2}	Peso molecular del hidrógeno	kg/kmol
PM_{H_2O}	Peso molecular del agua	kg/kmol
PM ₀₂	Peso molecular del oxígeno	kg/kmol
q_{ZCA}	Flujo de calor en la ZCA	kW/m^2
$q_{ZCA 1}$	Flujo de calor en la ZCA 1	kW/m^2
$q_{ZCA 2}$	Flujo de calor en la ZCA 2	kW/m^2
q_5	Pérdida de calor por radiación y convección del exterior del generador de vapor	%

q_{ZCA}^{refl}	Densidad de flujo de calor reflejado en la ZCA	MW/m^2
$q_{\it ZCA1}^{\it refl}$	Densidad de flujo de calor reflejado en la ZCA 1	MW/m^2
q_{ZCA2}^{refl}	Densidad de flujo de calor reflejado en la ZCA 2	MW/m^2
Q_{aire}	Calor del aire precalentado	kJ/m ³ ,kJ/kg
Qaire 1	Calor del aire precalentado en la ZCA 1 en combustión a dos etapas	<i>kJ/m</i> ³
Q _{aire 2}	Calor del aire precalentado en la ZCA 2 en combustión a dos etapas	<i>kJ/m</i> ³
Q_{comb}	Calor del combustóleo caliente	kJ/kg
$Q_{completoC}$	Calor liberado por el carbono en combustión completa del hidrocarburo equivalente	kJ
$Q_{completo H}$	Calor liberado por el hidrógeno en combustión completa del hidrocarburo equivalente	kJ
$Q_{Carbono}$	Calor liberado por el carbono presente en el hidrocarburo equivalente	kJ
Q_{disp}	Calor disponible en el hogar del generador de vapor	kJ/m ³ ,kJ/kg
Q_{gv}	Calor absorbido por el generador de vapor	kJ/s
$Q_{Hidr \circ geno}$	Calor liberado por el hidrógeno presente en el hidrocarburo equivalente	kJ
$Q_{incompleto\ C}$	Calor liberado por el carbono en combustión incompleta del hidrocarburo equivalente	kJ
$Q_{incompleto H}$	Calor liberado por el hidrógeno en combustión incompleta del hidrocarburo equivalente	kJ
$Q_{lib \ 1}$	Calor liberado en la ZCA 1 en combustión a dos etapas	kJ/m^3
$Q_{lib \ 2}$	Calor liberado en la ZCA 2 en combustión a dos etapas	kJ/m ³
Q_{rec}	Calor de los gases de recirculación	kJ/m ³ ,kJ/kg
Q _{rec 1}	Calor de los gases de recirculación en la ZCA 1 en combustión a dos etapas	kJ/m ³

Q_{total}	Calor total liberado en ambas zonas en combustión a dos etapas	kJ/m ³
Q _{ZCA 1}	Calor liberado en la ZCA 1	kJ/m ³
$Q_{ZCA 2}$	Calor liberado en la ZCA 2	kJ/m^3
r _{gas}	Fracción volumétrica de los gases triatómicos en los productos de combustión	-
r_v	Factor de composición de los gases	_
<i>r</i> _{<i>H</i>₂0}	Fracción volumétrica del vapor de agua en los productos de combustión	_
R	Fracción de gases recirculados en el hogar	%
S	Espesor de la capa de radiación efectiva en el hogar	m
S	Porcentaje de azufre presente en el combustible líquido	%
T_a	Temperatura adiabática	K
T _{comb}	Temperatura de calentamiento del combustóleo	°C
T_{ad}	Temperatura adiabática de combustión	K
$T_{ad\ ZCA\ 1}$	Temperatura adiabática de combustión en la ZCA 1	K
$T_{ad\ ZCA\ 2}$	Temperatura adiabática de combustión en la ZCA 2	K
$T_{hogar}^{''}$	Temperatura de los productos de combustión a la salida del hogar	K
$ar{T}_{ZCA}$	Temperatura promedio en la ZCA	K
$\bar{T}_{ZCA \ 1}$	Temperatura promedio en la ZCA 1	K
$\bar{T}_{ZCA 2}$	Temperatura promedio en la ZCA 2	K
Vgas	Volumen de los productos de combustión completa	m^3/m^3 , m^3/kg
V _{gas ZCA 1}	Volumen de los productos de combustión en la ZCA 1	m^{3}/m^{3}
V _{gas ZCA 2}	Volumen de los productos de combustión en la ZCA 2	m^{3}/m^{3}
V _{hogar}	Volumen del hogar del generador de vapor	m^3

V _{CO}	Volumen de monóxido de carbono referente al número de <i>kmol</i> del mismo en combustión incompleta del hidrocarburo equivalente	m^3
V _{CO ZCA 1}	Volumen de monóxido de carbono en la ZCA 1	m^{3}/m^{3}
V_{CO_2}	Volumen de dióxido de carbono	m^3/m^3 , m^3/kg
V _{CO2} ZCA 1	Volumen de dióxido de carbono en la ZCA 1	m^{3}/m^{3}
V _{CO2} ZCA 2	Volumen de dióxido de carbono en la ZCA 2	m^{3}/m^{3}
<i>V</i> _{<i>H</i>₂}	Volumen de hidrógeno referente al número de <i>kmol</i> del mismo en combustión incompleta del hidrocarburo equivalente	m^3
$V_{H_2 ZCA 1}$	Volumen de hidrógeno en la ZCA 1	m^{3}/m^{3}
V _{H2} 0 zca 1	Volumen de agua en la ZCA 1	m^{3}/m^{3}
V _{H2O ZCA 2}	Volumen de agua en la ZCA 2	m^{3}/m^{3}
$V_{N_2 ZCA 1}$	Volumen de nitrógeno en la ZCA 1	m^{3}/m^{3}
$V_{N_2 ZCA 2}$	Volumen de nitrógeno en la ZCA 2	m^{3}/m^{3}
V_{RO_2}	Volumen de los gases triatómicos	m^3/m^3 , m^3/kg
V_{SO_X}	Volumen de óxidos de azufre	m³/kg
V _{ZCA}	Volumen de los productos de combustión en la ZCA	m^3
$V_{gas}^{R,g}$	Volumen de los productos de combustión con gases de recirculación e inyección de agua en el hogar	m^3
$V_{ZCA}^{R,g}$	Volumen de los productos de combustión con gases de recirculación e inyección de agua en la ZCA	m^3
V_{aire}^0	Volumen teórico de aire para quemar $1 m^3$ de gas natural o $1 kg$ de combustóleo	m^3/m^3 , m^3/kg
V_{gas}^0	Volumen teórico de los productos de combustión completa	m^3/m^3 , m^3/kg
$V_{N_{2}}^{0}$	Volumen teórico de nitrógeno en los productos de combustión completa	m^3/m^3 , m^3/kg

$(Vc)_{promedio}$	Calor específico promedio de los productos de combustión	$kJ/m^3 \cdot K$,	
		kJ∕kg∙K	
x _{et 2}	Cantidad de oxígeno restante para la segunda etapa en combustión a dos etapas	kmol	
x_{quemad}	Posición relativa del núcleo de la flama	_	

Alfabeto griego

Símbolo	Descripción	Unidad SI
α_{hogar}	Coeficiente de exceso de aire en el hogar	_
α_{rec}	Coeficiente de exceso de aire en el hogar con la fracción de gases recirculados	_
α_{ZCA}	Coeficiente de exceso de aire en la ZCA	—
$\alpha_{ZCA 1}$	Coeficiente de exceso de aire en la ZCA 1	_
$\alpha_{ZCA 2}$	Coeficiente de exceso de aire en la ZCA 2	—
β_{comb}	Grado de combustión	_
ζ	Factor de ensuciamiento de las paredes del hogar	—
$ heta_{hogar}^{''}$	Temperatura relativa del hogar	—
ξ	Coeficiente de llenado ascendente de los productos de combustión	_
$ ho_{CO}$	Densidad del monóxido de carbono	kg/m^3
$ ho_{CO_2}$	Densidad del dióxido de carbono	kg/m^3
$ ho_{H_2}$	Densidad del hidrógeno	kg/m^3
$ ho_{H_2O}$	Densidad del agua	kg/m^3
$ ho_{N_2}$	Densidad del nitrógeno	kg/m^3
σ	Constante de Stefan Boltzmann	$W/m^2 \cdot K^4$
$ au_{ZCA}$	Tiempo de residencia de los productos de combustión en la ZCA	S

Nomenclatura

$ au_{ZCA \ 1}$	Tiempo de residencia de los productos de combustión en la ZCA 1							
$ au_{ZCA 2}$	Tiempo de residencia de los productos de combustión en la ZCA 2	S						
arphi	Coeficiente de conservación de calor en el hogar	_						
X	Factor de forma	_						
ψ	Coeficiente de eficiencia térmica	_						
$\psi_{promedio}$	Coeficiente de eficiencia térmica promedio	_						
$\psi_{\scriptscriptstyle F}$	Coeficiente de eficiencia térmica de la pared frontal	_						
$\psi_{\scriptscriptstyle L}$	Coeficiente de eficiencia térmica de la pared lateral	_						
ψ_P	Coeficiente de eficiencia térmica de la pared posterior	_						
$\psi_{Quemadores}$	Coeficiente de eficiencia térmica de los quemadores	_						
ψ_{ZCA1}	Coeficiente de eficiencia térmica promedio en la ZCA 1	_						
ψ_{ZCA2}	Coeficiente de eficiencia térmica promedio en la ZCA 2	_						
$ar{\psi}_{ZCA}$	Coeficiente de eficiencia térmica promedio en la ZCA	_						

INTRODUCCIÓN

En México existe una gran demanda de energía eléctrica ya que es una necesidad primaria para poder llevar a cabo actividades de producción y transformación en el país. Esta demanda es cubierta por diversas fuentes de energía, de las cuales se pueden destacar dos tipos: las tecnologías convencionales y las tecnologías limpias. Dentro de las convencionales se encuentran las plantas de ciclo combinado, las termoeléctricas convencionales, carboeléctricas, de turbogas, combustión interna y lecho fluidizado, mientras que, en las tecnologías limpias están la hidroeléctrica, eólica, geotérmica, solar, bioenergía, nucleoeléctrica y cogeneración.

De acuerdo al Programa de Desarrollo del Sistema Eléctrico Nacional (PRODESEN) elaborado por la Secretaría de Energía (SENER), de la energía eléctrica generada en el 2017 (329162 *GWh*), el 78.9% correspondió a las centrales eléctricas convencionales, mientras que el 21.1% restante a las centrales eléctricas que usan tecnologías limpias (SENER, 2017).

Lo anterior demuestra que, a pesar de que las tecnologías limpias están en buen desarrollo y serán cada vez más importantes para la generación de electricidad en el país, las tecnologías convencionales siguen siendo la principal fuente para la generación de la misma. Estas trabajan por medio del uso de combustibles fósiles, por lo que tienen un impacto ambiental importante.

En base a información mostrada por el Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero, documento perteneciente al Instituto Nacional de Ecología y Cambio Climático (INECC), se puede saber que este grupo de tecnologías participan con el 18% del total de las emisiones de Gases de Efecto Invernadero (GEI), siendo la segunda actividad en México con mayor participación en este rubro. Es por este motivo, que se han buscado diversas alternativas para lograr una mejora en esta situación (INECC, 2017).

El estudio de este trabajo está centrado en la Planta Termoeléctrica Valle de México, la cual pertenece al grupo de tecnologías convencionales y es una de las más importantes fuentes de generación de energía eléctrica en nuestro país. En el pasado las unidades generadoras que forman parte de esta planta trabajaban con combustóleo como combustible primario, sin embargo, debido al nivel de emisiones tan alto que salían a la atmósfera, ahora trabajan con gas natural. El gas natural es considerado como un combustible más limpio, sin embargo, no está exento de producir emisiones contaminantes. Estos contaminantes derivados del proceso para la generación de electricidad, se vuelven importantes en relación al aspecto ambiental y también en la salud humana, es por eso el motivo de este estudio.

Capítulo 1 Aspectos generales

Este capítulo muestra información referente a los procesos de combustión en generadores de vapor de potencia, así como los contaminantes derivados de estos procesos y sus métodos de formación. Además, se describe de manera general el generador de vapor estudiado.

1.1 COMBUSTIÓN DE COMBUSTIBLES GASEOSOS EN CFE DE MÉXICO

Debido a la gran demanda y competencia que existe en el nuevo mercado eléctrico, la Comisión Federal de Electricidad (CFE) ha trabajado y desarrollado diferentes estrategias para operar de manera más eficiente. Su principal objetivo es generar energía eléctrica de mayor calidad, más barata y que involucre procesos que causen menor daño al medio ambiente.

Cerca del 80% de la generación de energía eléctrica depende en gran medida del precio del combustible utilizado para generarla. Por tal razón, una de las estrategias implementadas por la CFE, fue reducir el uso de combustibles caros y contaminantes, como el combustóleo y el diésel, por combustibles de menor costo y con menor daño al medio ambiente, como es el caso del gas natural. Con esta estrategia se ha promovido el desarrollo en la infraestructura del transporte del gas natural, así como el de crear centrales que funcionen a partir de este combustible.

Debido a lo anterior, en los años recientes se ha logrado una alta disponibilidad de gas natural y como consecuencia, combustibles como el combustóleo, diésel y coque de petróleo han tenido una disminución considerable en su uso (CFE, 2015).

1.1.1 Combustibles gaseosos

El combustible es el factor más importante para determinar el costo de la generación de vapor, ya que determina el diseño, la operación y la eficiencia del generador de vapor. Por este motivo, al realizar el diseño de un generador de vapor se debe considerar en primer lugar el tipo de combustible que se va a utilizar, así como sus características. Esto quiere decir que el diseño de un generador de vapor debe hacerse a partir de los cálculos de combustión, los cuales están basados en la estequiometría de las reacciones de combustión y proporcionan las especificaciones de los parámetros más importantes de una planta de generación (Basu, Kefa, & Jestin, 2000).

Los combustibles fósiles son los más utilizados para la generación de vapor en las plantas termoeléctricas y pueden encontrarse en forma gaseosa, líquida o sólida. Debido a que la Planta Termoeléctrica Valle de México utiliza gas natural como combustible, se hará énfasis en los combustibles de tipo gaseoso.

Los combustibles gaseosos utilizados en generadores de vapor pueden ser naturales o artificiales, siendo los más comunes el gas de refinería, el gas de alto horno, el gas de horno de coque y el gas natural. De acuerdo con la fuente de donde son obtenidos y a los procesos posteriores a los que son sometidos sus composiciones pueden variar ampliamente como se puede ver en la tabla 1.1.

								Poder		Requerimiento de
Tipo de	Origen del		Comp	osición r	or volu	men		calorífico	Densidad	aire para la
combustible	combustible		•	0/2				superior		combustión
combustible	combustible		<i>C</i> 11	70	60	60		LI	ka	
		CH_4	$C_m H_n$	H_2	τ0	LO_2	N ₂	<u></u>	<u>ky</u>	<u>m^o</u>
								m^3	m^3	m^3
Gas Natural	Campos de	97.3	2.4				0.3	40600	0.74	9.7
	gas									
Sintético	Gas de agua	15.5	7	34	32	4.3	6.5	18950	0.77	4.27
	Horno de	24.9	3.2	50.2	9	3.2	9.5	19900	0.56	4.3
	coque									
	Agrietado	31.8	1.1	38.5	4	8.9	15.7	18900	0.7	4.2
	Pobre	3	02	14	27	4.5	50.9	5260	1.1	1.0
			= 0.2							
	Alto horno		H_2O	2.4	23.4	14.4	56.4	3122	1.3	0.63
			= 3.4							
Gases		Com	posición p	or volui	nen					
comerciales			%							
	$C_{4}H_{10}$	C_3H_8	C_3H_6	C_2H_{ϵ}	C_2	H_4	C_4H_8	kJ	kg	m^3
								$\overline{m^3}$	$\overline{m^3}$	$\overline{m^3}$
Propano	2	65.5	30	2	0	.5		102200	2.04	23.8
Butano	68.6	6.4			3	.2	21.8	131400	2.65	30.4

Tabla 1.1. A	nálisis de algu	nos combustibles	gaseosos típicos	(Basu.	Kefa. d	& Jestin.	2000
14014 11111	manoio ac aiga	nos comoastioie.	Subcobob upicob	(Dubu,	monu, c	\sim scould,	2000)

Nota: El requerimiento de aire para la combustión es en m^3 de aire por m^3 de combustible quemado.

Gas Natural

El gas natural puede encontrarse en los campos de gas o campos de petróleo. Su principal componente es el metano y en menores cantidades otros hidrocarburos (C_mH_n) y gases incombustibles. Es por esta razón que las propiedades del metano son comúnmente usadas cuando el gas natural es comparado con otros combustibles.

El gas natural que proviene de los campos de gas está formado por alrededor de 75 a 98% de metano, mientras que el gas natural proveniente de los campos de petróleo contiene cerca de 30 a 70% de metano. Su poder calorífico inferior (*PCI*) tiene valores de entre 36600 y 54400 kJ/m^3 .

Gas Sintético

Los principales tipos de gases sintéticos son el gas de carbón y el gas de alto horno. Entre los gases de carbón se pueden nombrar el gas de horno de coque, el gas agrietado, el gas de agua y el gas pobre.

El gas de horno de coque es producido a partir del coque, pero debido a que contiene muchas impurezas como amoníaco, benceno y alquitrán, debe pasar por un proceso de refinación antes de quemarse. Mientras que, el gas pobre se puede obtener a partir de la gasificación del carbón y es usado principalmente como producto crudo. De manera general su poder calorífico está en el rango de 3700 a 10000 kJ/m^3 .

Por otro lado, el gas de alto horno es producido a partir de la extracción de hierro en un alto horno y está formado principalmente por monóxido de carbono e hidrógeno, por lo que su poder calorífico es muy bajo teniendo valores de 3800 a 4200 kJ/m^3 . Este gas es considerado como un combustible de bajo rango y se quema en conjunto con combustóleos pesados o carbón pulverizado debido a que contiene grandes cantidades de partículas de ceniza con un punto de fusión muy bajo.

Gas Comercial

Los gases comerciales más comunes son el propano y el butano. Ambos son producidos a partir de la refinación del petróleo y se caracterizan por tener poderes caloríficos altos. Debido a estas características su uso principal es de tipo doméstico e industrial (Basu, Kefa, & Jestin, 2000).

1.1.2 Combustión de gas natural en generadores de vapor de potencia

De todos los combustibles gaseosos, el gas natural se considera como el más adecuado para la generación de vapor ya que ofrece grandes ventajas con respecto a otros combustibles. Sin embargo, debe pasar a través de un proceso de preparación para después poder ser transportado y utilizado para la generación de vapor.

Preparación

Como se mencionó anteriormente, el gas natural puede encontrase en depósitos de petróleo, ya sea disuelto en el petróleo o como una capa de gas sobre el mismo. Este gas es mejor conocido como gas asociado. Por otro lado, el gas natural que se obtiene de depósitos que no contienen petróleo recibe el nombre de gas no asociado.

El gas natural que proviene directamente de los pozos de petróleo es normalmente tratado con el fin de obtener otros combustibles de valor comercial. Este proceso consiste en remover los condensados, de los cuales se producen butano y propano principalmente. Posteriormente, se pueden realizar tratamientos adicionales para remover otros componentes que podrían ser un problema para los requerimientos del consumidor.

Transporte y almacenamiento

Debido al gran crecimiento en el consumo de gas natural y a las grandes distancias que existen entre los consumidores y la fuente de suministro, se han creado grandes sistemas de gasoductos para poder transportarlo en su forma gaseosa.

Sin embargo, la distribución del gas natural se ve limitada ya que requiere una alta energía para su transporte. Presiones de alrededor de 1000 psig (6895 kPa) son necesarias para el transporte a través de los gasoductos, por lo que se requieren estaciones de compresión en determinados puntos

para aumentar la presión que se ha perdido a lo largo del gasoducto. Por lo tanto, es necesario contar con un almacenamiento local o sustituir por períodos breves el suministro de gas natural por gas manufacturado para así poder cumplir con la demanda de los consumidores para la generación de vapor.

Sistema de combustión

En las unidades de generación de vapor industrial, el quemador es el componente principal para la combustión del gas natural (o combustóleo). A través de éste, el gas natural y el aire entran al hogar del generador de vapor de manera que se asegure una combustión eficiente y segura cuando el generador de vapor se encuentra operando a su máxima carga. El diseño del quemador es muy importante ya que determina las características de la mezcla del combustible y el aire, así como el tamaño y la forma de la flama.

El sistema de combustión está conformado de manera general por los quemadores, los sistemas de ignición y los equipos de seguridad de la flama. Este sistema se encarga de transportar, medir y regular el combustible y el aire que entran al horno del generador de vapor.

Por lo tanto, cuando se va a diseñar un sistema de combustión de acuerdo con ciertos requerimientos establecidos se deben tener en cuenta los siguientes factores:

- La cantidad de combustible y aire necesaria de acuerdo con la carga que requiere el generador de vapor para un cierto rango de operación.
- El tipo de combustible que se va a quemar, así como sus propiedades características y su composición química.
- La eficiencia del proceso de combustión, ya que ésta minimiza el combustible que no se quema y el exceso de aire requerido.
- Los límites de emisiones contaminantes impuestos.
- El tamaño físico del horno del generador de vapor y de los quemadores con el objetivo de definir el diseño más económico y eficiente.
- El diseño y el material de los equipos de combustión para asegurar un funcionamiento continuo y correcto por períodos largos de operación.
- Los estándares de seguridad y los procedimientos para controlar los quemadores y el generador de vapor cuando se arranca, se detiene y cuando hay variación en la carga de operación y en el combustible utilizado.

El sistema de combustión debe ser simple y directo para asegurar un buen funcionamiento cuando haya variaciones en la carga y en la cantidad y tipo de combustible (The Babcock & Wilcox Company, 2005).

1.1.3 Reacciones químicas en combustión de gas natural (metano)

La combustión es un proceso de oxidación usualmente exotérmico, es decir, libera la energía química contenida en el combustible que se quema en forma de energía térmica. Los procesos de combustión más comunes son aquellos donde un combustible hidrocarburo se vuelve dióxido de carbono y agua y que normalmente se realiza usando aire debido a su disponibilidad en el medio, sin embargo, para ciertas aplicaciones pueden usarse otros oxidantes.

De manera general, se puede decir que la combustión es un proceso que convierte a los reactantes presentes al inicio del proceso en productos al final de este. Aunque un proceso de combustión es mucho más complejo, esta definición general es útil como una aproximación de forma simplificada, ya que ofrece una apreciación válida y razonable de lo que se puede esperar cuando se tienen buenas condiciones de combustión.

Combustión de hidrocarburos simples

Como se mencionó anteriormente, se puede considerar que el gas natural está formado por un solo componente, ya que está formado principalmente por metano (CH_4), el cual es el miembro más común de una familia de hidrocarburos que son conocidos como parafinas o alcanos, cuya fórmula general es $C_m H_n$.

Para el caso de la combustión del metano con oxígeno se tiene un balance másico como se muestra:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
(1.1)

$$(12 + 4) + (2)(32) \rightarrow (12 + 32) + (2)(2 + 16)$$

$$16 kg + 64 kg \rightarrow 44 kg + 36 kg$$

El proceso de combustión ocurre normalmente entre un combustible y aire, el cual se considera como una mezcla de oxígeno y nitrógeno. El nitrógeno al ser un gas inerte no participa en el proceso, por lo que la combustión del metano con aire está dada de la siguiente manera:

$$CH_4 + 2\left(O_2 + \frac{79}{21}N_2\right) \rightarrow CO_2 + 2H_2O + 2\left(\frac{79}{21}N_2\right)$$

$$(12+4) + (2)(32+105.3) \rightarrow (12+32) + (2)(2+16) + (7.52)(28)$$

$$16 kg + 274.6 kg \rightarrow 44 kg + 36 kg + 210.56 kg$$

$$(1.2)$$

Estequiometría

Existe una relación entre las cantidades de aire y de combustible que participan en la combustión con la cual se obtendrá una combustión completa, la cual es conocida como estequiométrica. La relación estequiométrica másica aire-combustible para el caso del metano se puede evaluar a partir de la ecuación anterior como se muestra a continuación:

$$\varepsilon_{esteq} = \frac{masa \ de \ aire}{masa \ de \ combustible} = \frac{(2)(32+105.3)}{16} = 17.16$$

Esto nos muestra que se necesitan 17.16 kg de aire para lograr la combustión completa de 1 kg de metano, por lo que, si la cantidad de aire es menor a este valor la combustión completa no ocurrirá (Winterbone, 1997).

1.2 FORMACIÓN DE CONTAMINANTES EN COMBUSTIÓN DE COMBUSTIBLES GASEOSOS

La combustión de combustibles fósiles para la generación de vapor produce emisiones contaminantes que han sido atribuidas a la formación de la lluvia ácida, smog, cambios en la capa de ozono y efecto invernadero.

En el caso de los combustibles gaseosos, el gas natural es el combustible más limpio. Los principales productos derivados de su combustión son el dióxido de carbono y el agua. Sin embargo, aunque no produce cenizas también libera pequeñas cantidades de dióxido de azufre y óxidos de nitrógeno, así como monóxido de carbono. Por otro lado, combustibles como el carbón y el combustóleo liberan niveles muy altos de emisiones contaminantes tales como compuestos de carbono, óxidos de nitrógeno (NO_x), dióxido de azufre (SO_2), así como también partículas de cenizas que contribuyen a la contaminación. Para eliminar los problemas relacionados con la formación de contaminantes, los organismos locales y federales han impuesto límites en las emisiones de óxidos de nitrógeno, óxidos de azufre y otras partículas principalmente. Estos límites varían dependiendo de las regulaciones de cada lugar. Así mismo, se han implementado algunas técnicas para el control de emisiones contaminantes centradas principalmente en los óxidos de nitrógeno (The Babcock & Wilcox Company, 2005).

1.2.1 Norma mexicana para el control de emisiones contaminantes

La Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) es una organización del gobierno federal que se encarga de la protección y conservación de los ecosistemas, recursos naturales y medio ambiente de México. Uno de los temas en los que se ha centrado es la prevención y control de la contaminación, para lo cual la SEMARNAT desarrolla actividades y programas relacionados con la gestión de la calidad del aire y el registro de emisiones y transferencia de contaminantes.

La norma que regula las emisiones contaminantes relacionadas con la combustión en México es la NOM-085-SEMARNAT-2011. Esta norma determina los niveles máximos de emisiones que son permitidos producto de la combustión en equipos de calentamiento indirecto (calderas, generadores de vapor, calentadores de aceite térmico u otros fluidos, hornos y secadores) para la protección del aire y el medio ambiente. Los productos de combustión que comprende la norma

son las emisiones de humo, partículas, monóxido de carbono, dióxido de azufre y óxidos de nitrógeno. En este trabajo se hace especial énfasis en los últimos dos compuestos como se muestra en las tablas 1.2 y 1.3. En estas tablas se muestran los niveles de emisiones que eran permitidos antes de la norma y los actuales ya con la norma en vigor (SEMARNAT, 2012).

Tabla 1.2. Niveles máximos permisibles de emisión de los equipos existentes a la entrada en vigor de la NOM (Extracto de	e la
NOM-085-SEMARNAT-2011)	

Capacidad térmica nominal del equipo GJ/h	Tipo de	Dióxido de azufre		Óxidos de nitrógeno				
	combustible	(ppmv)		combustible (ppmv) (p		(ppmv)	ppmv)	
		ZVM	ZC	RP	ZVM	ZC	RP	
Mayor de 0.53 a 5.3 (Mayor de 15 a 150	Líquido	550	1100	2200	NA	NA	NA	
CC)								
	Gaseoso	NA	NA	NA	NA	NA	NA	
Mayor de 5.3 a 42.4 (Mayor de 150 a 1200	Líquido	550	1100	2200	190	190	375	
CC)								
	Gaseoso	NA	NA	NA	190	190	375	
Mayor de 42.4 a 106 (Mayor de 1200 a	Líquido	550	1100	2200	110	110	375	
3000 CC)								
	Gaseoso	NA	NA	NA	110	110	375	
							0.0	
Mayor de 106 a 530 (Mayor de 3000 a	Sólido y Líquido	550	1100	2200	110	110	375	
15000 CC)								
	Casaasa	NA	NA	NIA	110	110	275	
	Gaseoso	NA	NA	INA	110	110	3/3	
Mayor de 530 (Mayor de 15000 <i>CC</i>)	Sólido y Líquido	550	600	2200	110	110	375	
	Gaseoso	NA	NA	NA	110	110	375	

NA=No Aplica. ZVM=Zona del Valle de México. ZC=Zonas Críticas. RP=Resto del País.

Capacidad térmica nominal del equipo GJ/h	Tipo de	Dióxido de azufre			Dióxido de azufre Óxidos de nitrógeno			geno
	combustible		(ppmv)			(ppmv)		
		ZVM	ZC	RP	ZVM	ZC	RP	
Mayor de 0.53 a 5.3 (Mayor de 15 a 150 <i>CC</i>)	Líquido	275	1100	2200	NA	NA	NA	
	Gaseoso	NA	NA	NA	NA	NA	NA	
Mayor de 5.3 a 42.4 (Mayor de 150 a 1200 <i>CC</i>)	Líquido	275	1100	2200	190	190	375	
	Gaseoso	NA	NA	NA	190	190	375	
Mayor de 42.4 a 106 (Mayor de 1200 a 3000 CC)	Líquido	275	1100	2200	110	110	375	
	Gaseoso	NA	NA	NA	110	110	375	
Mayor de 106 a 530 (Mayor de 3000 a 15000 <i>CC</i>)	Sólido	30	70	700	25	110	375	
	Líquido	30	220	1100	25	110	375	
	Gaseoso	NA	NA	NA	25	110	375	
Mayor de 530 (Mayor de 15000 CC)	Sólido	30	110	220	25	110	220	
	Líquido	30	110	220	25	110	220	
	Gaseoso	NA	NA	NA	25	110	220	

Tabla 1.3. Niveles máximos permisibles de emisión de equipos nuevos (Extracto de la NOM-085-SEMARNAT-2011)

NA=No Aplica. ZVM=Zona del Valle de México. ZC=Zonas Críticas. RP=Resto del País

1.2.2 Formación de óxidos de nitrógeno

Durante la combustión de combustibles fósiles, el nitrógeno presente en el combustible y en el aire es oxidado para formar óxidos de nitrógeno. Cuando estos gases son liberados a la atmósfera, la precipitación de la lluvia ácida y la formación de smog crecen, mientras que la visibilidad en el medio se ve disminuida (Basu, Kefa, & Jestin, 2000).

Los óxidos de nitrógeno comprenden varias especies compuestas por oxígeno y nitrógeno, siendo el óxido nítrico (NO) y el dióxido de nitrógeno (NO_2) los más importantes en relación con la cantidad de emisiones liberadas a la atmósfera. El óxido nítrico es el componente principal de nitrógeno que se forma en los procesos de combustión a altas temperaturas, mientras que el dióxido

de nitrógeno es el componente al cual se le atribuyen los efectos más perjudiciales al medio ambiente.

Los óxidos de nitrógeno en la forma de óxido nítrico y dióxido de nitrógeno se forman durante la combustión por dos mecanismos principales: NO_x térmico y NO_x de combustible. Además, existe otro mecanismo secundario que también contribuye a la formación de NO_x , el cual es conocido como NO_x rápido (The Babcock & Wilcox Company, 2005).

Mecanismos de formación de óxidos de nitrógeno

La formación de óxidos de nitrógeno se da en muchos tipos de combustibles. Como se mencionó anteriormente, los principales óxidos de nitrógeno son el óxido nítrico y el dióxido de nitrógeno, a los cuales se les puede agregar el óxido nitroso (N_2O). La formación de estos compuestos en los procesos térmicos está dada a través de tres mecanismos, los cuales son:

- NO_X térmico (Zeldovich).
- NO_x de combustible.
- NO_x rápido (Fenimore).

NO_x térmico (Zeldovich)

El mecanismo relacionado al NO_x térmico fue descubierto y descrito por Zeldovich en los años cuarenta del siglo pasado (Zeldovich, 1946). Esto comprende la síntesis directa del óxido nítrico del oxígeno y el nitrógeno contenidos en el aire a altas temperaturas. En primer lugar, hay una descomposición del oxígeno molecular en dos moléculas de oxígeno atómico, resultado del contacto con una molécula inerte *M* con una alta energía, la cual actúa como catalizador (por ejemplo, una molécula de la pared metálica caliente de la cámara de combustión):

$$O_2 + M \to O + O + M \tag{1.3}$$

A altas temperaturas, el oxígeno molecular se descompone en una forma altamente activa de oxígeno atómico. Las moléculas de oxígeno atómico atacan las moléculas de nitrógeno y se forma el óxido nítrico. Mientras en esta reacción se han formado átomos de nitrógeno activo, atacando las moléculas de oxígeno, también se forman óxido nítrico y oxígeno atómico activo. Este es un claro ejemplo de una reacción en cadena, donde se tiene el estado de iniciación en primer lugar, y los estados de propagación:

$$0 + N_2 \to NO + N \tag{1.4}$$

$$N + O_2 \rightarrow NO + O \tag{1.5}$$

En mezclas ricas en combustible, donde la concentración de radicales hidroxilos es considerable y mayor a la concentración de átomos de hidrógeno y oxígeno ($OH \gg H > O$), la siguiente reacción se puede considerar como la etapa de terminación:

$$N + OH \to NO + H \tag{1.6}$$

La formación de óxidos de nitrógeno por el mecanismo térmico o de Zeldovich ocurre a temperaturas altas, con un tiempo de residencia prolongado y a una alta turbulencia (Wielgosinski, 2012).

NO_x de combustible

Este mecanismo está directamente relacionado al nitrógeno contenido en el combustible utilizado. La formación de óxido nítrico por medio de este mecanismo es demasiado larga y sucede a través de un gran número de reacciones paralelas sucesivas (Bowman, Hanson, Louge, & A., 1982) (Miller & Bowman, 1989) como se muestra en la figura siguiente:

Figura 1.1. Diagrama de formación de óxido nítrico de acuerdo al mecanismo de NO_x de combustible (Wielgosinski, 2012)

En la primera etapa de la materia orgánica (hidrocarburos que contienen nitrógeno), se libera cianuro de hidrógeno, el cual da el primer radical NCO por oxidación e hidrogenación, siguiéndole el NH y después el nitrógeno atómico libre (N). En ese momento, hay tres posibilidades que encaminan a las reacciones: la reacción de oxidación en la cual se forma el óxido nítrico, la reacción con óxido nítrico formado previamente, en resultado del cual nitrógeno molecular es formado, y la reacción con el radical hidrocarburo que regresa a la reacción inicial. Por lo tanto, solo una opción nos lleva a la formación de óxido nítrico, mientras que las otras dos reducen su cantidad.

NO_x rápido (Fenimore)

Este mecanismo fue descrito por Fenimore en 1971 (Fenimore, 1971). Él describió que, en la etapa inicial de la flama, en presencia de numerosos radicales hidrocarburos, se lleva a cabo una síntesis de óxidos nítricos, debidos al oxígeno y al nitrógeno introducidos en el proceso de combustión. Debido a que las reacciones de formación de *NO* ocurren en la etapa inicial de la flama, este mecanismo se nombró mecanismo rápido. Este mecanismo es complementario al mecanismo de combustible y algunas reacciones químicas siguen el mismo camino. De manera general se puede asumir que las siguientes reacciones caracterizan a este mecanismo:

$$CH + N_2 \rightarrow HCN + N$$
 (1.7)

$CH_2 + N_2 \rightarrow HCN + NH$	(1.8)

$$HCN + 0 \rightarrow NCO + H \tag{1.9}$$

 $NCO + O \rightarrow NO + CO$ (1.10)

La velocidad de formación de óxido nítrico en este mecanismo es muy alta, pero la cantidad de *NO* formado es relativamente baja.

De manera general, los óxidos de nitrógeno comprenden al conjunto de NO, NO_2 y N_2O . Estos son contaminantes cuyos niveles de emisión no tienen gran dependencia en el nitrógeno contenido en el combustible, sino que sus emisiones son resultado directo de la construcción de la planta y la organización del proceso de combustión (Wielgosinski, 2012).

Métodos de disminución de óxidos de nitrógeno

El crecimiento acelerado de la industrialización ha tenido un gran impacto en el medio ambiente, sobre todo en el caso de la calidad del aire. Como se mencionó, los óxidos de nitrógeno son una de las principales fuentes de contaminación del aire atmosférico. Ante esta problemática, es posible reducir la influencia negativa de estos componentes en el medio ambiente, lo cual se puede lograr modificando la organización de los procesos de combustión utilizando los denominados métodos primarios.

Los métodos primarios de reducción de NO_x son aquellos que dependen de la temperatura del proceso, ya que la temperatura tiene una influencia significativa tanto en la formación como en la reducción de las emisiones de NO_x (Szecowka & M., 2007).

Estos métodos deben tener en cuenta los distintos mecanismos de formación de NO_x , así como los parámetros que influyen en su formación. Las estrategias o técnicas principales para la reducción de las emisiones de NO_x son de dos tipos:

- Modificación del proceso de combustión para controlar la mezcla de aire y combustible y así reducir la temperatura de la flama.
- Tratamientos postcombustión de los gases de escape para eliminar los NO_x .

Modificación de la combustión

Esta técnica para la reducción de NO_x incluye el uso de quemadores de bajo NO_x , combustión por etapas y la recirculación de gases.

Los quemadores de bajo NO_x controlan la velocidad de la mezcla de aire y combustible ralentizándola, reduciendo así el oxígeno disponible en la zona de combustión. Estos pueden reducir las emisiones en un 50% o más (dependiendo de las condiciones al inicio de la combustión), son de bajo costo y pueden aplicarse a plantas de generación modernas.
La combustión por etapas utiliza niveles bajos de exceso de aire en la zona de combustión primaria añadiendo posteriormente el aire restante para así completar la combustión. Se pueden lograr importantes reducciones de NO_x con este método, aunque existe la posibilidad de formación de escoria y corrosión.

La recirculación de los gases de escape reduce la concentración de oxígeno y la temperatura de combustión recirculando parte de los gases de combustión al horno. Es posible alcanzar grandes reducciones de NO_x con este método, sin embargo, el costo de esta opción puede ser elevado debido a posibles modificaciones en el generador de vapor, así como una disminución en la eficiencia de este a causa de la energía requerida por los ventiladores de recirculación.

Tratamientos postcombustión

Las dos técnicas principales de la postcombustión son la reducción no catalítica selectiva y la reducción catalítica selectiva. En la reducción no catalítica selectiva se inyecta amoníaco o algún otro componente como la urea debajo de la zona de combustión a temperaturas alrededor de 760 a 1093°C. La selección catalítica selectiva elimina los NO_x de los gases de la combustión por medio de la reacción con amoníaco en presencia de un catalizador (The Babcock & Wilcox Company, 2005).

1.2.3 Formación de óxidos de azufre

Todos los combustibles, tanto sólidos como líquidos y gaseosos contienen azufre ya sea en pequeñas o grandes cantidades. Durante el proceso de combustión, el azufre se oxida de manera fácil convirtiéndose en dióxido de azufre como se muestra en la siguiente reacción:

$$S + O_2 \to SO_2 \tag{1.11}$$

Bajo las condiciones de temperatura a las que ocurre normalmente un proceso de combustión la velocidad de esta reacción es muy alta, por lo que, se puede decir que cerca del 90 a 95% del azufre presente en el combustible reaccionará y se oxidará para formar dióxido de azufre.

El dióxido de azufre formado puede reaccionar por medio de una oxidación catalítica parcial para formar trióxido de azufre debido a que la fracción no combustible que está presente en el material quemado contiene algunos metales. La ecuación de reacción es la siguiente:

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3 \tag{1.12}$$

Así mismo, pueden existir las condiciones donde además de las altas temperaturas a las que ocurre el proceso de combustión, el acceso de oxígeno sea limitado y en presencia de hidrógeno, el azufre contenido en el combustible sea reducido para formar sulfuro de hidrógeno como se muestra:

$$S + H_2 \to H_2 S \tag{1.13}$$

El sulfuro de hidrógeno formado previamente es un gas inflamable, por lo que finalmente puede oxidarse para formar dióxido de azufre y agua como lo muestra la siguiente reacción:

$$H_2S + \frac{3}{2}O_2 \rightarrow SO_2 + H_2O$$
 (1.14)

De manera general las emisiones de azufre derivadas del proceso de combustión contienen dióxido de azufre como principal contaminante, así como también pueden incluir trióxido de azufre y sulfuro de hidrógeno en pequeñas cantidades (Wielgosinski, 2012).

1.3 GENERADOR DE VAPOR DE 150 MW DE LA PLANTA TERMOELÉCTRICA VALLE DE MÉXICO CFE

El análisis realizado en este trabajo se llevó a cabo en el generador de vapor de 150 *MW* de la unidad 2/3 de la Planta Termoeléctrica Valle de México. Ésta pertenece a la Comisión Federal de Electricidad y se encuentra al norte de la Ciudad de México, en el municipio de Acolman en el Estado de México. Es considerada como una de las principales fuentes generadoras de energía en el país.

1.3.1 Descripción de la planta termoeléctrica y equipo instalado

La Planta Termoeléctrica Valle de México cuenta con 7 unidades generadoras con una capacidad instalada de 1115.5 *MWe*. La unidad número 1, la cual fue la primera unidad instalada en el país con ciclo Rankine regenerativo tiene una capacidad de 150 *MWe*. Las unidades 2 y 3 son de una capacidad de 158 *MWe*, mientras que la unidad número 4 es de 300 *MWe*. Las unidades 5, 6 y 7 son turbinas de gas con una capacidad de 116.5 *MWe*, las cuales están en conexión con la unidad número 4, por lo que pueden trabajar en ciclo combinado, abierto e híbrido (CFE).

Figura 1.2. Planta Termoeléctrica Valle de México (CFE)

1.3.2 Construcción del generador de vapor de 150 MW

El generador de vapor de la unidad 2/3 de la Planta Termoeléctrica Valle de México es de la marca Mitsubishi Heavy Industries, LTD y es de tipo circulación natural.

A continuación, se muestra su vista lateral donde se pueden ver sus componentes, así como el arreglo general del hogar del generador de vapor.

Figura 1.3. Vista lateral del generador de vapor de 150 *MW* de la unidad 2/3 donde se aprecian sus componentes: a) Economizador. b) Domo. c) Paredes de agua. d) Sobrecalentador primario banco de entrada. e) Sobrecalentador primario banco de salida. f) Sobrecalentador secundario. g) Recalentador. h) Precalentador. i) Tiro forzado. j) Chimenea.

Figura 1.4. Vista general del hogar del generador de vapor de 150 MW de la unidad 2/3

1.3.3 Características y regímenes de operación

Las características del generador de vapor son las siguientes (CFE):

Tabla	1.4.	Características	técnicas de	l generador	de vapor de	150 MW	de la unidad 2	2/3
				0	1			

Generador de vapor de 150 MW de U 2/3						
Fabricante	Mitsubishi Heavy Industries, LTD					
No. de serie	K-5810					
Tipo	Circulación natural, Hogar presurizado					
Sistema de combustión	Quemad. tang. basculantes, Atomización mecánica					
Tipo de combustible	Gas Natural y Combustóleo					
Sistema de tiro	Dos vent. de tiro forzado					
Control de temp. de vapor	Inclina. de quem. Atem. Vapor sobrecal. Atem. Vapor Recal.					
Nota: El combustóleo no se usa actualmente.						

Tabla 1.5. Características de los componentes del generador de vapor de 150 MW de la unidad 2/3

Domo Superior					
Material	ASME SA-212-B				
Long. entre casquetes	14.42 m				
Long. entre soldaduras	N.D.				
Diámetro interior	1.68 m				
Espesor mínimo	120 mm				
Pare	des de agua				
Material	ASME SA-210-C				
Superficie de calefacción	$2600 m^2$				
Dimensiones	N.D.				
Volumen	N.D.				
Sobrecalentador	Tres pasos de sobrecalentamiento				
Superficie de calefacción total	$3250 m^2$				
Sobrecalentador baja temperatura	Colgante, horizontal, 64 ensambles, un banco				
Material	SA-213-T22				
	SA-210-A1				
Superficie de calefacción	Convectiva, radiante				
Sobrecalentador de intermedia (Platen)	Colgante, horizontal, 65 ensambles, un banco				
Material	SA-213-T22, T12				
Material	SA-213-T22, T12 SA-209-T91				
Material Superficie de calefacción	SA-213-T22, T12 SA-209-T91 Convectiva				
Material Superficie de calefacción Sobrecalentador alta temperatura	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco				
Material Superficie de calefacción Sobrecalentador alta temperatura Material	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador Material	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador Material Superficie de calefacción	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco - 11113 m ²				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador Material Superficie de calefacción	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco - 11113 m ² Convectiva, radiante				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador Material Superficie de calefacción Economizador	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco - 11113 m ² Convectiva, radiante Horizontal, aletado, 65 ensambles, un banco				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador Material Superficie de calefacción Economizador Material	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco - 1113 m ² Convectiva, radiante Horizontal, aletado, 65 ensambles, un banco Esp. ASME SA-226, SA-192				
Material Superficie de calefacción Sobrecalentador alta temperatura Material Superficie de calefacción Recalentador Material Superficie de calefacción Economizador Material Superficie de calefacción	SA-213-T22, T12 SA-209-T91 Convectiva Horizontal, 32 ensambles, un banco - Convectiva Horizontal, 32 ensambles, un banco - 11113 m ² Convectiva, radiante Horizontal, aletado, 65 ensambles, un banco Esp. ASME SA-226, SA-192 3930 m ²				

El generador de vapor puede trabajar tanto con gas natural como con combustóleo. Actualmente, sólo se utiliza gas natural ya que el combustóleo dejó de utilizarse, sin embargo, para este estudio se presentan las composiciones de ambos combustibles (CFE):

G		Combustóleo			
Componente		Fracción vol. (%)	Componente		Fracción másica (%)
Metano	CH_4	90.7072	Carbono	С	85.27
Etano	C_2H_6	4.0416	Hidrógeno	H_2	10.29
Propano	C_3H_8	1.0186	Azufre	S	3.8
Isobutano	$C_{4}H_{10}$	0.2913	Nitrógeno	N_2	0.14
Butano	$C_{4}H_{10}$	0.2616	Oxígeno	02	0.5
Neopentano	$C_{5}H_{12}$	0.1586			
Isopentano	$C_{5}H_{12}$	0.1466			
Pentano	$C_{5}H_{12}$	0.1548			
Hexano	$C_{6}H_{14}$	0.1093			
Nitrógeno	N ₂	2.2525			
Dióxido de carbono	<i>CO</i> ₂	0.8579			

Tabla 1.6. Composiciones volumétrica y másica del gas natural y del combustóleo respectivamente

Los parámetros de los equipos principales del generador de vapor para diferentes regímenes de operación son los siguientes (CFE):

Parámetro	M.R.C.	100%	75%	50%
Temperatura (°C)				
Entrada econom.	238	236	224	205
Salida econom.	302	302	302	302
Entrada recal.	367	360	337	308
Entrada sobrecal.	342	340	338	330
Salida recal.	542	542	532	515
Salida sobrecal.	543	543	543	543
Presión (kg/cm^2)				
Entrada recal.	33	30	22	14
Salida recal.	29	27	19	12
Salida sobrecal.	125	125	125	125
Domo	140	139	134	128
Entrada econom.	144	143	137	132
Flujo (kg/s)				
Vapor sobrecal.	139.86	131.43	99.894	60.696
Vapor recal.	123.472	116.087	89.139	54.766
Agua de aliment.	127.791	127.791	92.563	50.394
Purga	6.390	6.390	4.628	2.520
Exceso de aire gas natural (%)	3	3	5	10
Exceso de aire combustóleo (%)	5	5	7	10
Recirc. De gases (%)	0	0	0	0
Eficiencia térmica-Gas Natural (%)	86.01	86.01	86.32	86.64

Tabla 1.7. Parámetros de operación a diferentes cargas térmicas

MRC: Máximo Régimen de Carga

Capítulo 2 Metodología del cálculo de la transmisión de calor en el hogar y formación de contaminantes

Este capítulo describe las metodologías usadas para el cálculo térmico y la concentración de NO_x en el hogar del generador de vapor. También se expone el cálculo de otros contaminantes formados en el proceso de combustión y la metodología de la combustión a dos etapas.

2.1 METODOLOGÍA PARA EL CÁLCULO TÉRMICO DEL HOGAR DEL GENERADOR DE VAPOR

El hogar es la parte más importante de un generador de vapor, ya que debe contar con un espacio adecuado para que el combustible se queme completamente y debe enfriar los gases de escape a una temperatura adecuada para que las superficies de calefacción no sean dañadas.

El arreglo del hogar de un generador de vapor está compuesto generalmente por unas paredes enfriadas por agua, las cuales reciben el nombre de paredes de agua, un conjunto de quemadores, los cuales son los encargados de quemar el combustible irradiando calor a las paredes del hogar y por los sobrecalentadores y recalentadores, los cuales son superficies de calefacción adicionales encargadas de enfriar los gases de escape que salen del hogar.

Sin importar el tipo de combustión que se use en un determinado generador de vapor, los requerimientos generales para un hogar son los mismos (Basu, Kefa, & Jestin, 2000):

- Debe proporcionar el tiempo y el ambiente físico necesarios para la combustión completa del combustible utilizado.
- Debe contar con las superficies de calefacción radiantes adecuadas para enfriar los gases de la combustión y así asegurar la operación correcta de las superficies de calefacción convectivas.
- Debe prevenir el impacto de la flama en las paredes de agua y asegurar una distribución uniforme del flujo de calor en las mismas.
- Debe proveer las condiciones necesarias que ayuden a que el agua circule de manera correcta a través de los tubos de las paredes de agua.
- Su configuración debe ser compacta para así minimizar la cantidad de materiales utilizados en su construcción.

Cuando el hogar de un generador de vapor está en funcionamiento se encuentra sometido a cuatro procesos interactivos: flujo, combustión, transferencia de calor y transferencia de masa. De estos, la transferencia de calor es un solo proceso para el cual no se puede obtener una solución exacta de manera directa, por lo que, es imposible realizar un análisis estrictamente teórico. Todos los cálculos para la transferencia de calor son determinados por medio de mediciones y siempre están basados en teorías básicas, por lo que los métodos de análisis son en realidad semiempíricos o semiteóricos. Uno de estos métodos es el método de Gurvich, el cual es aplicable para nuestro trabajo (Li & Zhou, 2016).

2.1.1 Ecuación adimensional de Gurvich

El método de Gurvich está basado en las características geométricas del hogar y el arreglo de los quemadores. Así mismo, relaciona los parámetros de operación, las especificaciones del combustible, aire y agua de alimentación. La ecuación adimensional de Gurvich es la siguiente (Thermal Design for Power Boilers: Standard Method, 1998):

$$\theta_{hogar}^{''} = \frac{T_{hogar}^{''}}{T_a} = \frac{Bo^{0.6}}{(M)(B\bar{u})^{0.3} + (Bo)^{0.6}}$$
(2.1)

Donde:

 $\theta_{hogar}^{''}$ es la temperatura de salida adimensional o temperatura relativa del hogar y su valor debe ser menor a 0.9.

 T_{hoaar} es la temperatura de los productos de combustión a la salida del hogar (K).

 T_a es la temperatura adiabática (K).

Bo es el número de Boltzmann el cual representa la transferencia de calor por radiación.

M es un coeficiente que representa la distribución de temperaturas en el hogar y que depende del nivel relativo de los quemadores y del tipo de combustible que se queme.

 $B\bar{u}$ es el número de Buger efectivo.

2.1.2 Coeficiente M

El coeficiente M está dado por la relación existente entre la posición relativa de la temperatura máxima de la flama y la altura del hogar. Cuando se quema gas natural o combustóleo se tiene la siguiente ecuación:

$$M = [M_o][(1) - (0.4)(x_{quemad})][\sqrt[3]{r_v}]$$
(2.2)

Donde:

 M_o es un coeficiente relacionado con la forma en que los quemadores están instalados en el hogar. Para quemadores ubicados en las paredes o en las esquinas del hogar, su valor es 0.4 (Thermal Design for Power Boilers: Standard Method, 1998).

 x_{quemad} es la posición relativa del núcleo de la flama, donde está la zona de temperatura más alta alcanzada en un proceso de combustión adiabático.

 r_v es un factor de composición de los gases de combustión, el cual depende del exceso de aire en el hogar y de la fracción de gases que se recircula al mismo.

Posición relativa del núcleo de la flama

Este parámetro es la relación que existe entre las alturas de cada quemador y la altura del hogar:

$$x_{quemador} = \frac{l_{quemador}}{L_{hogar}}$$
(2.3)

Donde:

 $l_{quemador}$ es la altura promedio de los quemadores, medida con respecto al fondo del hogar (m).

 L_{hogar} es la altura total del hogar, medida del fondo de este hasta la ventana de salida (m).

Para hogares con más de un nivel de quemadores, se puede calcular la altura promedio de los quemadores como sigue:

$$l_{quemador} = \frac{(n_1)(l_1)(B_1) + (n_2)(l_2)(B_2) + (n_3)(l_3)(B_3) + \dots + (n_n)(l_n)(B_n)}{(n_1)(B_1) + (n_2)(B_2) + (n_3)(B_3) + \dots + (n_n)(B_n)}$$
(2.4)

En donde:

 n_1, n_2, n_n es el número de quemadores.

 l_1 , l_2 , l_n son las alturas de cada quemador (*m*).

 B_1, B_2, B_n son los gastos de combustible en cada quemador $(m^3/s \ o \ kg/s)$.

Factor de composición de los gases

Como se mencionó, este parámetro está relacionado con la composición de los gases y se calcula con la siguiente ecuación:

$$r_{\nu} = \frac{(V_{gas})(1+R)}{V_{N_2}^0 + V_{RO_2}}$$
(2.5)

Donde:

 V_{gas} es el volumen total de los productos de combustión $(m^3/m^3 \ o \ m^3/kg)$.

R es la fracción de gases recirculados.

 $V_{N_2}^0$ es el volumen teórico de nitrógeno en los productos de combustión $(m^3/m^3 \ o \ m^3/kg)$.

 V_{RO_2} es el volumen de los gases triatómicos $(m^3/m^3 \ o \ m^3/kg)$.

Estos volúmenes se calculan a condiciones de referencia (0.1 MPa, 273.15 K) para $1 m^3$ de gas natural o 1 kg de combustóleo (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001).

2.1.3 Número de Boltzmann

El número de Boltzmann representa la transferencia de calor por radiación que se da en el hogar del generador de vapor. Se calcula con la ecuación:

$$Bo = \frac{(\varphi)(B_{calc})((Vc)_{promedio})}{(\sigma)(\psi_{promedio})(A_{Paredes})(T_a)^3}$$
(2.6)

Donde:

 φ es el coeficiente de conservación de calor en el hogar.

 B_{calc} es el gasto de combustible ($m^3/s \ o \ kg/s$).

 $(Vc)_{promedio}$ es el calor específico promedio de los productos de combustión para 1 m^3 de gas natural $(kJ/m^3 \cdot K)$ o para 1 kg de combustóleo $(kJ/kg \cdot K)$.

 σ es la constante de Stefan Boltzmann (5.67 × 10⁻¹¹ W/m² · K⁴).

 $\psi_{promedio}$ es el coeficiente promedio de eficiencia térmica de las paredes del hogar.

 $A_{Paredes}$ es el área de las paredes del hogar (m^2) .

 T_a es la temperatura adiabática (K).

Coeficiente de conservación de calor en el hogar

Este parámetro es la fracción de calor retenido en el agua o vapor y se calcula por medio de la siguiente ecuación (Thermal Design for Power Boilers: Standard Method, 1998):

$$\varphi = 1 - \frac{q_5}{ET + q_5} \tag{2.7}$$

Donde:

 q_5 es una pérdida de calor debido a la radiación y convección natural del exterior del generador de vapor.

ET es la eficiencia térmica del generador de vapor.

Gasto de combustible

El gasto de combustible se obtiene con la siguiente ecuación:

$$B_{calc} = \frac{Q_{gv}}{(Q_{disp})(ET)}$$
(2.8)

Donde:

 Q_{av} es el calor absorbido por el generador de vapor (kJ/s).

 Q_{disp} es el calor disponible en el hogar $(kJ/m^3 \ o \ kJ/kg)$.

ET es la eficiencia térmica del generador de vapor.

El calor útil que absorbe el generador de vapor se obtiene por medio de la siguiente ecuación:

$$Q_{gv} = (G_{v1})(h_{v1} - h_{aa}) + (G_{v2})(\dot{h_{v2}} - \dot{h_{v2}}) + (G_{purga})(\dot{h} - h_{aa})$$
(2.9)

Donde:

 G_{v1} , G_{v2} y G_{purga} son los flujos de vapor primario, secundario y de purga (kg/s).

 h_{v1} , h_{v2} , h_{v2} , h_{aa} y h' son las entalpías de vapor primario, vapor secundario a la salida y a la entrada del recalentador, agua de alimentación y del agua en el domo (kJ/kg) respectivamente.

El calor disponible en el hogar involucra todas las energías en forma de calor que entran al hogar. Para el gas natural se tiene la siguiente ecuación:

$$Q_{disp} = PCI + Q_{aire} + Q_{rec} \tag{2.10}$$

Donde:

PCI es el poder calorífico inferior del gas natural (kJ/m^3) .

 Q_{aire} es el calor sensible del aire caliente (kJ/m^3) .

 Q_{rec} es el calor de los gases de recirculación (kJ/m^3) .

El poder calorífico inferior del gas natural se puede calcular con la siguiente ecuación (Villalobos, 2017):

$$PCI = (10760.5)(H_2) + (12645)(CO) + (23405.5)(SH_2) + (PCI)(C_mH_n)$$
(2.11)

Donde:

 H_2 , CO, SH_2 y C_mH_n son las fracciones volumétricas de cada componente del gas (hidrógeno, monóxido de carbono, sulfuro de hidrógeno y otros hidrocarburos presentes, respectivamente) y *PCI* es el poder calorífico inferior del hidrocarburo respectivo.

El aire es precalentado antes de ingresar a la cámara de combustión, por lo que el calor sensible del aire caliente se calcula como sigue:

$$Q_{aire} = (\alpha_{hogar})(h_{aire\,sal}) \tag{2.12}$$

Donde:

 α_{hogar} es el coeficiente de exceso de aire con el que trabaja el hogar.

 $h_{aire \ sal}$ es la entalpía del aire a la salida del precalentador (kJ/m^3) .

El calor que ingresa con los gases de recirculación es el siguiente:

$$Q_{rec} = (R)(h_{rec}) \tag{2.13}$$

Donde:

R es la fracción de gases recirculados al hogar.

 h_{rec} es la entalpía de los gases de recirculación (kJ/m^3) .

Para el caso del combustóleo el calor disponible (kJ/kg) se calcula con la siguiente ecuación:

$$Q_{disp} = PCI + Q_{comb} + Q_{aire} + Q_{rec}$$
(2.14)

Donde:

 Q_{comb} es el calor sensible del combustóleo caliente (kJ/kg).

El poder calorífico inferior del combustóleo se calcula por medio de la ecuación (Jarquin, 2006):

$$PCI = (338)(C) + (1256)(H) - (109)(O - S) - (25)(9H - W)$$
(2.15)

Donde:

C, H, O, S y W son las fracciones másicas de cada componente del combustóleo (carbono, hidrógeno, oxígeno, azufre y la cantidad de humedad, respectivamente).

El calor que se suministra al combustóleo previo a su combustión se calcula como sigue:

$$Q_{comb} = (c_{comb})(T_{comb})$$
(2.16)

Donde:

 c_{comb} es el calor específico del combustible $(kJ/kg \cdot K)$.

 T_{comb} es la temperatura a la que se calienta el combustóleo (°C).

El calor específico del combustible está dado de la siguiente forma:

$$c_{comb} = (1.74) + (0.0025)(T_{comb})$$
(2.17)

Los valores de Q_{aire} y Q_{rec} para el combustóleo se calculan de igual forma que para el gas natural.

Calor específico promedio

El calor específico promedio de los productos de la combustión para $1 m^3$ de gas natural o 1 kg de combustóleo se calcula como se muestra a continuación (Thermal Design for Power Boilers: Standard Method, 1998):

$$(Vc)_{promedio} = \frac{Q_{disp} - h_{hogar}}{T_a - T_{hogar}}$$
(2.18)

Donde:

 Q_{disp} es el calor disponible en el hogar $(kJ/m^3 \ o \ kJ/kg)$.

 $h_{hogar}^{''}$ es la entalpía de los productos de combustión a la salida del hogar $(kJ/m^3 \ o \ kJ/kg)$ a la temperatura de salida $T_{hogar}^{''}(K)$.

 T_a es la temperatura adiabática (K).

Tanto T_{hogar} como h_{hogar} son valores desconocidos. Se debe proponer un valor para T_{hogar} , el cual es 1323.15 K y después, realizar iteraciones para encontrar el valor correcto.

Coeficiente de eficiencia térmica

Este coeficiente es definido como la fracción de radiación incidente absorbida por los tubos. Para calcularlo se utiliza la siguiente ecuación:

$$\psi = (\chi)(\zeta) \tag{2.19}$$

Donde:

 χ es el factor de forma el cual es un factor geométrico que representa la relación del calor absorbido por los tubos de las paredes de agua y el que puede ser absorbido por una placa plana con emisividad y temperatura igual a la de esos tubos (Basu, Kefa, & Jestin, 2000). Su valor para este caso es 1. ζ es el factor de ensuciamiento de las paredes del hogar, por el cual hay una reducción en la absorción de calor en los tubos. Este factor depende de las propiedades del combustible utilizado, las condiciones de combustión y el diseño de los tubos de las paredes de agua. Su valor es 0.65 para la combustión de gas natural y 0.55 para combustóleo.

Si los factores de forma y de ensuciamiento son diferentes para cada pared del hogar, se debe utilizar el coeficiente de eficiencia térmica promedio, el cual es el siguiente:

$$\psi_{promedio} = \frac{\sum_{i=1}^{n} (A_{Pared i})(\psi_i)}{A_{Pared}}$$
(2.20)

Donde:

 $i = 1 \dots n$ son las diferentes paredes con diferentes coeficientes de eficiencia térmica ψ_i .

De acuerdo con los planos del generador de vapor (CFE) y a partir de la ecuación anterior, se tiene lo siguiente:

$$\psi_{promedio} = \frac{(A_F)(\psi_F) + (A_P)(\psi_P) + (2A_L)(\psi_L) - (A_{Quemadores})(\psi_{Quemadores})}{A_{Paredes}}$$
(2.21)

En donde:

 A_F , A_P , A_L y $A_{Quemadores}$ son las áreas frontal, posterior, lateral y de quemadores (m^2) respectivamente.

 ψ_F , ψ_P , ψ_L y $\psi_{Quemadores}$ son los coeficientes de eficiencia térmica de cada superficie.

 $A_{Paredes}$ es el área total de las paredes del hogar (m^2) .

Área de las paredes del hogar

El área total de las paredes es la suma de las superficies que forman parte del volumen del hogar:

$$A_{Paredes} = \sum (A_{Pared}) \tag{2.22}$$

Del total de las paredes del hogar, se considerarán aquellas que participan en la transferencia de calor por radiación. La siguiente ecuación calcula las superficies radiantes:

$$A_{Rad} = \sum (A_{Pared})(\chi) \tag{2.23}$$

El cálculo de las áreas que participan en el intercambio de calor por radiación no involucra las áreas que no tienen tubos, así como el área ocupada por los quemadores.

Temperatura adiabática

Este parámetro es una función del calor disponible en el hogar $T_a = f(Q_{disp})$, esto es porque el calor disponible es igual al valor de la entalpía de los productos de combustión en un proceso adiabático. Su valor depende del calor disponible en el hogar y se obtiene por medio de las entalpías encontradas por la metodología de (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001).

2.1.4 Número de Buger efectivo

El número de Buger efectivo está dado por la siguiente ecuación (Thermal Design for Power Boilers: Standard Method, 1998):

$$B\bar{u} = [1.6] \left[ln \left(\frac{(1.4)(Bu)^2 + (Bu) + (2)}{(1.4)(Bu)^2 - (Bu) + (2)} \right) \right]$$
(2.24)

En la cual Bu es el número de Buger para los productos de combustión. Se calcula como sigue:

$$Bu = (k)(P)(s) \tag{2.25}$$

Donde:

k es el coeficiente de absorción radiante del medio del hogar $(1/m \cdot MPa)$.

P es la presión con que se trabaja en el hogar del generador de vapor (MPa).

s es el espesor de la capa de radiación efectiva en el hogar (m).

Para calcular el coeficiente de absorción del medio del hogar se toma en cuenta que la flama ilumina una parte del hogar. Este parámetro se representa por medio del coeficiente m, el cual tiene un valor de 0.1 para gas natural y 0.3 para combustóleo. Está dado por la siguiente ecuación:

$$k = (k_{gas}) + (m)(k_{hollin})$$
(2.26)

Donde se tiene:

 k_{gas} es el coeficiente de absorción radiante en el hogar debido a los gases triatómicos $(1/m \cdot MPa)$.

m es el coeficiente que representa la absorción del hogar.

 k_{hollin} es el coeficiente de absorción radiante en el hogar debido a partículas de hollín $(1/m \cdot MPa)$.

El coeficiente de absorción radiante en el hogar por los gases triatómicos se calcula como sigue:

$$k_{gas} = \left[\frac{(7.8) + (16)(r_{H_2O})}{\sqrt{(10)(P)(r_{gas})(s)}} - (1)\right] \left[(1) - (0.37)\left(\frac{T_{hogar}}{1000}\right) \right]$$
(2.27)

En donde:

 r_{H_2O} es la fracción volumétrica de vapor de agua en los productos de combustión.

 r_{gas} es la fracción volumétrica de los gases triatómicos en los productos de combustión (r_{RO_2}) .

Para el coeficiente de absorción radiante en el hogar debido al hollín se tiene la siguiente ecuación:

$$k_{hollin} = \left[\frac{1.2}{(1) + (\alpha_{hogar})^2}\right] \left[\left(\frac{c}{H}\right)^{0.4} \right] \left[(1.6) \left(\frac{T_{hogar}}{1000}\right) - (0.5) \right]$$
(2.28)

En donde:

 α_{hogar} es el coeficiente de exceso de aire en el hogar.

(C/H) es la relación que existe entre los componentes de carbono e hidrógeno en el combustible. Para un hidrocarburo de la forma $C_m H_n$ se tiene la ecuación:

$$\frac{c}{H} = 0.12 \sum \left(\frac{m}{n}\right) (C_m H_n) \tag{2.29}$$

Donde m y n son los componentes formados de carbono e hidrógeno respectivamente.

Para calcular el espesor de la capa de radiación efectiva en el hogar, se usa la ecuación:

$$s = \frac{(3.6)(V_{hogar})}{A_{Paredes}} \tag{2.30}$$

En donde:

 V_{hogar} es el volumen del hogar (m^3) .

 $A_{Paredes}$ son las paredes que forman el hogar (m^2) .

2.1.5 Temperatura de los gases en salida del hogar

La ecuación final para el cálculo de la temperatura de los gases a la salida del hogar es la siguiente:

$$T_{hogar}^{''} = \frac{T_a}{[1] + [(M)(B\bar{u})^{0.3}] \left[\frac{(5.67)(\psi_{promedio})(A_{Paredes})(T_a)^3}{(10^{11})(\varphi)(B_{calc})((Vc)_{promedio})} \right]^{0.6}}$$
(2.31)

Como se mencionó anteriormente, se debe realizar un método de iteraciones para conocer el valor real de la temperatura de los gases a la salida del hogar y su respectiva entalpía.

2.2 METODOLOGÍA PARA EL CÁLCULO DE LA CONCENTRACIÓN DE NO_x DEL HOGAR DEL GENERADOR DE VAPOR

Durante un proceso de combustión en el hogar de un generador de vapor se forman todos los tipos de óxidos de nitrógeno. Esto ocurre en una zona donde se quema la cantidad necesaria de combustible y la temperatura del proceso en esta zona sobrepasa los 1800 K, la cual es mejor conocida como zona de combustión activa. De los trabajos realizados previamente (Roslyakov & Egorova, 1996) y (Roslyakov & Egorova, 1997), se puede apreciar que la formación de óxidos de nitrógeno en la zona de combustión activa (ZCA) depende de cuatro parámetros básicos. Estos cuatro parámetros son: el coeficiente de exceso de aire (α_{ZCA}), la temperatura promedio en la zona de combustión activa (\overline{T}_{ZCA}), la densidad de flujo de calor reflejado en la zona de combustión activa (τ_{ZCA}) (Jarquin, Polupan, Jiménez, & Pysmenny, 2011).

2.2.1 Temperatura promedio en ZCA

Una de las características principales es la temperatura promedio de los productos de combustión en la zona de combustión activa (K), la cual está dada por la siguiente ecuación:

$$\bar{T}_{ZCA} = \left[T_{ad}^{'}\right] \left[(1 - \bar{\Psi}_{ZCA})^{0.25}\right] \left[(1) - (R)^{1+nR}\right]$$
(2.32)

Donde:

 T_{ad} es la temperatura adiabática de combustión (*K*), la cual es función del calor disponible en el hogar. Para calcular su valor se hace la consideración de que el 97% de este calor se transforma en entalpía de los productos de la combustión, mientras que el porcentaje restante son pérdidas en la combustión.

 $\overline{\Psi}_{ZCA}$ es el coeficiente de eficiencia térmica promedio de las áreas que conforman la ZCA, y es calculado de acuerdo a estas geometrías al igual que en la ecuación 2.21. Para las áreas arriba de la ZCA se tiene un valor promedio de $\Psi = 0.1$ (Thermal Design for Power Boilers: Standard Method, 1998).

R es la fracción de gases recirculados al hogar.

n es un exponente relacionado con la zona en donde se inyectan los gases de recirculación.

2.2.2 Densidad de flujo de calor reflejado en ZCA

Los valores máximos de la concentración de NO_x en el hogar dependen de la temperatura más alta de los gases en la ZCA (Roslyakov & Egorova, 1997), sin embargo, no es posible calcular esta temperatura. Por lo que se debe tomar en cuenta otro parámetro, el cual es la densidad de flujo de calor reflejado en la zona de combustión activa (MW/m^2) . Se determina por medio de:

$$q_{ZCA}^{refl} = (q_{ZCA})(1 - \overline{\Psi}_{ZCA})$$

$$(2.33)$$

En donde q_{ZCA} es la densidad del flujo de calor en la zona de combustión activa (kW/m^2) . Su valor se obtiene por medio de la siguiente ecuación:

$$q_{ZCA} = \frac{[B_{calc}][(\beta_{comb})(PCI) + (Q_{comb}) + (Q_{aire}) + (Q_{rec})]}{A_{ZCA}}$$
(2.34)

Donde:

 A_{ZCA} es el área comprendida por la zona de combustión activa (m^2) .

 β_{comb} es el grado de combustión el cual depende del coeficiente de exceso de aire. Algunos valores para este parámetro fueron obtenidos empíricamente (Egorova, 1995) y se muestran en la siguiente tabla:

Tabla 2.1. Grado de combustio	n para gas natural	y combustóleo a	diferentes coeficientes	de exceso de aire	(Jarquin, 2006)
	1 0				· · · ·

Grado de combustión							
Coeficiente de	Combustible						
exceso de aire							
	Gas Natural	Combustólao					
	Gas Naturai	Combustoreo					
1.00	0.87	0.84					
1.01	0.88	0.85					
1.02	0.90	0.87					
1.03	0.915	0.88					
1.04	0.93	0.90					
1.05	0.95	0.915					
1.06	0.965	0.93					
1.07	0.98	0.95					
1.08	0.98	0.965					
1.09	0.98	0.98					

2.2.3 Coeficiente de exceso de aire en ZCA

El siguiente parámetro que se debe considerar es el coeficiente de exceso de aire. Este depende del coeficiente de exceso de aire en el hogar y del aire que entra con los gases de recirculación:

$$\alpha_{ZCA} = \left[\alpha_{hogar}\right] + \left[R\right]\left[\left(\alpha_{rec}\right) - (1)\right] \tag{2.35}$$

Donde:

 α_{rec} es el coeficiente de exceso de aire con la fracción de gases recirculados.

2.2.4 Tiempo de residencia de los productos de combustión en ZCA

El último parámetro por considerar es el tiempo de residencia de los productos de combustión en la ZCA (*s*), el cual fue determinado por medio de la siguiente ecuación (Roslyakov, 1991) y (Roslyakov & Egorova, 1997):

$$\tau_{ZCA} = \frac{(a)(b) \left(C_{ZCA}^{R,g} \right)(\xi)}{(B_{calc}) \left(V_{gas}^{R,g} \right) (\bar{T}_{ZCA}/273)}$$
(2.36)

En donde:

a es el ancho del hogar del generador de vapor (m).

b es la profundidad del hogar del generador de vapor (m).

 $c_{ZCA}^{R,g}$ es la altura de la ZCA considerando los gases que se recirculan al hogar, así como si hay inyección de agua (*m*).

 ξ es el coeficiente de llenado de los productos de combustión cuyos valores fueron obtenidos empíricamente (Bezgreshnov, Lipov, & Shleyfer, 1991). Para hogares con quemadores tangenciales posicionados en las esquinas su valor es 0.7 (Jarquin, Polupan, Jiménez, & Pysmenny, 2011).

 $V_{gas}^{R,g}$ es el volumen de los productos de combustión con volumen de gases de recirculación y porcentaje de agua inyectada (m^3) .

La altura de la ZCA con los gases de recirculación se puede obtener a partir de la siguiente ecuación:

$$C_{ZCA}^{R,g} = (C_{ZCA}) \left(\frac{V_{ZCA}^{R,g}}{V_{ZCA}}\right)$$
(2.37)

En donde:

 C_{ZCA} es la altura de la ZCA, la cual es la altura total desde el primer nivel de quemadores hasta el último nivel más 3 m (m).

 $V_{ZCA}^{R,g}$ es el volumen de los productos de combustión con volumen de gases de recirculación y agua inyectada en la ZCA (m^3).

 V_{ZCA} es el volumen de los productos de combustión en la ZCA (m^3) .

El volumen de los productos de combustión con volumen de gases de recirculación y cantidad de agua inyectada en la ZCA se obtiene usando la siguiente ecuación:

$$V_{ZCA}^{R,g} = \left[(\beta_{comb}) (V_{gas}^{0}) \right] + \left[(1.0161) (\alpha_{hogar} - \beta_{comb}) (V_{aire}^{0}) \right] + \left[(1.24)(g) \right] + \left[R \right] \left[(V_{gas}^{0}) + (1.0161) (\alpha_{rec} - 1) (V_{aire}^{0}) + (1.24)(g) \right]$$

$$(2.38)$$

En donde:

 V_{qas}^0 es el volumen teórico de los gases de combustión (m^3) .

 V_{aire}^0 es el volumen teórico de aire para quemar 1 m^3 de gas natural o 1 kg de combustóleo (m^3).

g es el porcentaje de agua inyectada.

El volumen de los productos de combustión en la ZCA está dado por:

$$V_{ZCA} = (\beta_{comb}) (V_{gas}^{0}) + (1.0161) (\alpha_{hogar} - \beta_{comb}) (V_{aire}^{0})$$
(2.39)

2.2.5 Concentración de NO_x de los productos de combustión en ZCA

Finalmente, la ecuación para el cálculo de la concentración total de óxidos de nitrógeno en los productos de combustión (*ppm*) es dada por las siguientes ecuaciones (Roslyakov & Egorova, 1996):

Cuando se quema gas natural:

$$C_{NO_x} = \left[(26.0) \exp\left(0.26 \frac{\bar{\tau}_{ZCA} - 1700}{100}\right) - 4.7 \right] \left[\exp\left(q_{ZCA}^{refl}\right) - 1 \right] [13.0 + (9.6)(\alpha_{ZCA} - 1.07) + (59.4)(\alpha_{ZCA} - 1.07)^2 + (18.1)(\alpha_{ZCA} - 1.07)^3 + (79.8)(\alpha_{ZCA} - 1.07)^4] [\tau_{ZCA}]$$
(2.40)

Cuando se quema combustóleo:

$$C_{NO_x} = \left[(24.3) \exp\left(0.19 \frac{\bar{\tau}_{ZCA} - 1650}{100}\right) - 12.3 \right] \left[\exp\left(q_{ZCA}^{refl}\right) - 1 \right] [15.1 + (2.8)(\alpha_{ZCA} - 1.09) + (73.0)(\alpha_{ZCA} - 1.09)^2 + (72.3)(\alpha_{ZCA} - 1.09)^3 - (131.7)(\alpha_{ZCA} - 1.09)^4] [\tau_{ZCA}]$$
(2.41)

2.3 CÁLCULO DE LA FORMACIÓN DE OTROS CONTAMINANTES EN EL PROCESO DE COMBUSTIÓN

Como se mencionó anteriormente en la sección 1.2, las principales fuentes de contaminantes derivados de los procesos de combustión en generadores de vapor son principalmente los óxidos de nitrógeno cuando se queman combustibles gaseosos como el gas natural, y óxidos de azufre y óxidos de nitrógeno cuando se queman combustibles líquidos como el combustóleo. Además de estas emisiones, también se forman otros componentes como dióxido de carbono, monóxido de carbono y partículas de materia. También existe otra clase de emisiones llamadas tóxicos del aire, los cuales son contaminantes peligrosos formados normalmente en trazas y que están presentes en los efluentes de los procesos de combustión, sin embargo, debido a su potencial peligro en la salud humana son sometidos a un análisis más riguroso (The Babcock & Wilcox Company, 2005).

Hasta ahora, solo se ha centrado en la metodología para el cálculo de la concentración de óxidos de nitrógeno, sin embargo, los óxidos de azufre, así como el dióxido de carbono son emisiones importantes que se deben considerar.

2.3.1 Cálculo de SO_x derivados del proceso de combustión

La cantidad de azufre contenida en los combustibles puede variar de manera significativa. Por ejemplo, el contenido presente en algunos combustóleos puede ir de menos del 1% hasta 4%, mientras que el gas natural al contener pequeñas cantidades de azufre, se puede considerar libre de este compuesto.

Durante el proceso de combustión, la mayor parte del azufre contenido en el combustible (90%) se convierte en dióxido de azufre en los productos de combustión, mientras que el porcentaje restante está compuesto por trióxidos de azufre y partículas sulfatadas. Sin embargo, la formación de trióxidos de azufre en generadores de vapor es un proceso complejo. Por esta razón se puede generalizar al dióxido de azufre como óxidos de azufre (Coykendall, 1962).

Para calcular el volumen de óxidos de azufre presente en los productos de combustión se debe partir de las ecuaciones estequiométricas de combustión. Estas ecuaciones están establecidas para 1 kg de combustible a condiciones estándar (presión de 0.1 MPa y temperatura de 273.15 K):

$$S + O_2 \rightarrow SO_2 \tag{2.42}$$

 $32.06 \ kg \ S + 32 \ kg \ O_2 \rightarrow 64.06 \ kg \ SO_2$

De la ecuación (2.42) se puede observar que cuando se quema 1 *kmol* de azufre se produce un 1 *kmol* de dióxido de azufre. El volumen de 1 *kmol* de dióxido de azufre a condiciones de referencia tiene un valor de 21.89 m^3 por lo que se puede obtener la ecuación para el volumen de

óxidos de azufre cuando se quema un combustible líquido en una combustión completa (m^3/kg) (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001):

$$V_{SO_{\chi}} = \left(\frac{21.89}{32.06}\right) \left(\frac{S}{100}\right) = (0.68) \left(\frac{S}{100}\right)$$
(2.43)

Donde:

S es el porcentaje de azufre contenido en el combustible líquido.

La estimación de las emisiones producidas de óxidos de azufre se hace en base al uso de factores de emisión (INECC-SEMARNAT, 2013). Se calcula como sigue a continuación (kg/h):

$$E_{SO_x} = (V_{SO_x})(B_{calc})(FE_{SO_x})$$
(2.44)

Para la elección del factor de emisión se deben conocer los datos de operación de la planta descritos anteriormente. Con el uso de la siguiente tabla se obtiene el valor apropiado (US-EPA, 1995):

Tabla 2.2. Factores de emisión de compuestos de azufre para combustóleo, extracto del AP-42 tabla 1.3 – 1 (US-EPA, 1995), (INECC-SEMARNAT, 2013)

Configuración del equipo (SCC)	SO_2		SO_3	
	FE	Clasificación del	FE	Clasificación del
		FE		FE
Calderas > 100 millones Btu/h				
Combustóleo, entrada normal $(1 - 01 - 004 - 01)$, $(1 - 02 - 01)$	157 <i>S</i>	А	5.7 <i>S</i>	С
004 - 01), (1 - 03 - 004 - 01)				
Combustóleo, entrada normal. Baja quema de NO_x (1 – 01 –	157 <i>S</i>	А	5.7 <i>S</i>	С
004 - 01), (1 - 02 - 004 - 01)				
Combustóleo, entrada tangencial $(1 - 01 - 004 - 04)$	157 <i>S</i>	А	5.7 <i>S</i>	С
Combustóleo, entrada tangencial. Baja quema de NO_x (1 – 01 –	157 <i>S</i>	А	5.7 <i>S</i>	С
004 - 04)				
Calderas < 100 millones <i>Btu/h</i>				
Combustóleo $(1 - 02 - 004 - 02/03), (1 - 03 - 004 - 02/03)$	157 <i>S</i>	A	25	A

Nota: Los factores de emisión se reportan en $lb/10^3$ gal.

A: Requiere de múltiples muestreos realizados en la misma fuente usando una metodología consistente y documentada para una adecuada validación.

C: Muestreos que se basan en una metodología nueva, o que no ha sido evaluada, de la cual no hay datos de respaldo. S: Porcentaje de azufre presente en el combustóleo.

2.3.2 Cálculo de CO₂ derivado del proceso de combustión

El dióxido de carbono es otro producto derivado de los procesos de combustión. Este compuesto es considerado como uno de los principales gases de efecto invernadero y se considera que ha tenido gran impacto en el calentamiento global ya que es emitido por una gran variedad de procesos (The Babcock & Wilcox Company, 2005).

Capítulo 2: Metodología del cálculo de la transmisión de calor en el hogar y formación de contaminantes

Al igual que para los óxidos de azufre, para calcular el volumen de dióxido de carbono presente en los productos de combustión se toman en cuenta las ecuaciones estequiométricas de combustión a condiciones de referencia para 1 kg de combustible y expresando las cantidades de combustible gaseoso en unidades volumétricas.

Para el carbono se tiene la siguiente ecuación:

$$C + O_2 \rightarrow CO_2 \tag{2.45}$$

 $12.01 \ kg \ C + 32 \ kg \ O_2 \rightarrow 44.01 \ kg \ CO_2$

De estas relaciones estequiométricas se puede ver que al quemar 1 *kmol* de carbono, se produce 1 *kmol* de dióxido de carbono. El volumen de 1 *kmol* de dióxido de carbono a condiciones de referencia es 22.26 m^3 , por lo que se tiene la siguiente ecuación para el volumen de dióxido de carbono en los productos de combustión cuando se quema un combustible líquido (m^3/kg) :

$$V_{CO_2} = \left(\frac{22.26}{12}\right) \left(\frac{c}{100}\right) = (1.86) \left(\frac{c}{100}\right)$$
(2.46)

Donde:

C es el porcentaje de carbono presente en el combustible.

Así mismo, cuando se quema un combustible gaseoso el volumen de dióxido de carbono (m^3/m^3) está definido en base de las relaciones estequiométricas descritas anteriormente, por lo que la ecuación para su cálculo es la siguiente (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001):

$$V_{CO_2} = [0.01][(CO_2) + (CO) + \sum(m)(C_m H_n)]$$
(2.47)

Donde:

 CO_2 , CO y $\sum(m)$ (C_mH_n) son los componentes que contienen carbono presentes en el combustible.

Para conocer las emisiones de dióxido de carbono, se utilizan también los factores de emisión para este compuesto. La ecuación que se usa para su cálculo es la siguiente (kg/h):

$$E_{CO_2} = (B_{calc})(PCI)(FE_{CO_2})$$
(2.48)

El factor de emisión para el CO_2 se encuentra con el uso de la siguiente tabla:

Combustible	Factor de emisión
	CO_2 (ton/MJ)
Combustóleo ligero	7.74×10^{-5}
Combustóleo pesado	7.74×10^{-5}
Gas natural (promedio asociado y no asociado)	5.61×10^{-5}
Gas natural asociado	5.61×10^{-5}
Gas natural no asociado	5.61×10^{-5}

Tabla 2.3. Factores de emisión de *CO*₂ para combustóleo y gas natural, extracto de la tabla 2 del acuerdo que establece las metodologías para el cálculo de emisiones de gases o compuestos de efecto invernadero (SEMARNAT, 2015)

2.4 METODOLOGÍA PARA EL CÁLCULO DE LA CONCENTRACIÓN DE NO_x DEL HOGAR DEL GENERADOR DE VAPOR POR COMBUSTIÓN A DOS ETAPAS

La combustión a dos etapas consiste básicamente en separar el aire en dos secciones primaria y secundaria. En la sección primaria se mezcla alrededor del 70 a 90% de aire con el combustible, por lo que se tendrá una mezcla rica. En esta zona se formarán productos de combustión incompleta debido a la deficiencia de oxígeno y se tendrá una temperatura menor que la de la zona posterior. Posteriormente, estos productos incompletos reaccionan con el aire restante (10 a 30%) presente en la zona secundaria para así formar productos de combustión completa.

En este trabajo se analizan dos arreglos para la distribución del combustible y el aire a través de los seis niveles de quemadores con los que cuenta el generador de vapor. Para ambos arreglos se inyecta todo el combustible en la zona primaria y el aire se introduce de manera uniforme abarcando ambas zonas. Para el primer arreglo esto quiere decir que, en la zona primaria, la cual va del nivel uno al nivel cuatro se tiene 100% de combustible y 66.67% de aire, mientras que, en la zona secundaria, del nivel cinco al seis se tiene el 33.33% restante de aire. En el segundo arreglo, se trabaja en los primeros cinco niveles con el 100% de combustible y 83.33% de aire y en el último nivel se tiene el 16.67% restante de aire.

2.4.1 Combustible hidrocarburo equivalente

En primer lugar, se obtiene el hidrocarburo equivalente. Esto se hace a partir de la composición del gas natural mostrada en la tabla 1.6 bajo la consideración de que el combustible sólo contiene carbono e hidrógeno como componentes:

$$\sum C_m H_n \tag{2.49}$$

m = (0.907072)(1) + (0.040416)(2) + (0.010186)(3) + (0.005529)(4) + (0.0046)(5) + (0.001093)(6) = 1.07

n = (0.907072)(4) + (0.040416)(6) + (0.010186)(8) + (0.005529)(10) + (0.0046)(12) + (0.001093)(14) = 4.07

Por lo que el combustible hidrocarburo equivalente es $C_{1.07}H_{4.7}$.

Ahora se recalcula la fórmula química del combustible considerando que el hidrocarburo sólo contiene una molécula de carbono:

$$C_{1.07}H_{4.7} \rightarrow CH_x \tag{2.50}$$

La masa del componente carbono es la siguiente:

$$m_C = (PM_C)(n_C)$$
 (2.51)
 $m_C = (12)(1.07) = 12.84 \ kg$

Y la masa del componente hidrógeno es:

$$m_H = (PM_H)(n_H)$$
 (2.52)
 $m_H = (1)(4.07) = 4.07 \ kg$

La masa del combustible equivalente es 16.91 kg, por lo que el porcentaje de carbono es 75.93% y el porcentaje de hidrógeno es 24.07%.

Finalmente, se obtiene el número de moléculas de hidrógeno como se muestra:

$$x = \frac{\frac{(12)(24.07)}{75.93}}{1} = 3.8 \, kmol$$

Por lo que el hidrocarburo equivalente es $CH_{3,8}$.

2.4.2 Reacción de combustión completa

La ecuación para la reacción de combustión completa o estequiométrica de nuestro combustible con oxígeno es la siguiente:

$$CH_{3.8} + x \, O_2 \to y \, CO_2 + z \, H_2 O$$
 (2.53)

En donde los coeficientes x, y, z representan las cantidades de oxígeno teórico necesario para una combustión completa, así como de dióxido de carbono y agua formados en este proceso, respectivamente. Realizando los balances estequiométricos, la reacción de combustión completa queda de la siguiente manera:

$$CH_{3.8} + 1.95 O_2 \rightarrow CO_2 + 1.9 H_2O$$

Capítulo 2: Metodología del cálculo de la transmisión de calor en el hogar y formación de contaminantes

Por lo que, al quemar 1 *kmol* de combustible se necesita 1.95 *kmol* de oxígeno para que se formen los productos completos.

A partir de este análisis comienza la combustión a dos etapas, la cual lleva el mismo orden sin importar el arreglo para la distribución del combustible y el comburente. En primer lugar, en la zona primaria se distinguen dos etapas: en la primera se forman productos incompletos debido a la falta de oxígeno y en la segunda etapa, estos productos incompletos reaccionan con el oxígeno restante para así formar productos completos. Es decir, los productos incompletos formados en la zona primaria serán productos completos en la zona secundaria.

2.4.3 Etapa 1 en la zona primaria

Como se mencionó, en esta etapa se forman productos incompletos (CO, H_2) a partir de la reacción de 1 *kmol* de combustible con oxígeno:

$$CH_{3.8} + x \, O_2 \to y \, CO + z \, H_2$$
 (2.54)

Por lo que, realizando los balances se tiene:

 $CH_{3.8} + 0.5 O_2 \rightarrow CO + 1.9 H_2$

De esta reacción se puede ver que, del oxígeno presente en la zona primaria, se requieren 0.5 *kmol* de oxígeno para formar productos incompletos.

2.4.4 Etapa 2 en la zona primaria

En esta etapa, los productos incompletos formados previamente en la etapa 1 reaccionan con la cantidad restante de oxígeno para formar productos completos. La cantidad de oxígeno restante parte de las cantidades de oxígeno presente en las ecuaciones de combustión completa e incompleta y depende del coeficiente de exceso de aire en la zona de combustión. Este coeficiente de exceso de aire en la zona de combustión de aire presentes en la zona de combustión activa mediante la siguiente ecuación:

Para el arreglo 1:

$$\alpha_{ZCA\,1} = \left(\frac{4}{6}\right)(\alpha_{ZCA}) + \left(\frac{2}{6}\right)(R)(\alpha_{ZCA}) - \left(\frac{2}{6}\right)(R)$$
(2.55)

Y para el arreglo 2:

$$\alpha_{ZCA 1} = \left(\frac{5}{6}\right) (\alpha_{ZCA}) + \left(\frac{1}{6}\right) (R) (\alpha_{ZCA}) - \left(\frac{1}{6}\right) (R)$$
(2.56)

Como se mencionó, a partir de las reacciones de combustión completa e incompleta se calcula la cantidad de oxígeno restante para la segunda etapa como se muestra (Ramírez, 2010):

$$x_{et 2} = (\alpha_{ZCA1})(1.95 - 0.5) \tag{2.57}$$

La reacción que describe a la segunda etapa es la siguiente:

$$CO + 1.9 H_2 + x_{et 2} O_2 \rightarrow a CO_2 + b H_2 O + c CO + d H_2$$
(2.58)

Ahora los productos incompletos formados en la primera etapa reaccionan de manera proporcional con el oxígeno de la segunda etapa.

Para la combustión del monóxido de carbono se parte de la siguiente reacción:

$$2 CO + O_2 \rightarrow 2 CO_2 \tag{2.59}$$

Por lo que nuestra cantidad de monóxido de carbono formado en la etapa 1 reacciona con la parte de oxígeno en la etapa 2 como sigue:

$$(2) \left(\frac{1}{1+1.9}\right) (\alpha_{ZCA1}) (1.95 - 0.5) CO + \left(\frac{1}{1+1.9}\right) (\alpha_{ZCA1}) (1.95 - 0.5) O_2 \rightarrow (2) \left(\frac{1}{1+1.9}\right) (\alpha_{ZCA1}) (1.95 - 0.5) CO_2 \qquad (2.60)$$

$$0.7[\alpha_{ZCA1}(1.95 - 0.5)]CO + 0.35[\alpha_{ZCA1}(1.95 - 0.5)]O_2 \rightarrow 0.7[\alpha_{ZCA1}(1.95 - 0.5)]CO_2$$

Para la combustión del hidrógeno se parte de igual manera de la reacción química:

$$2H_2 + O_2 \rightarrow 2H_2O$$
 (2.61)

Al igual que para el monóxido de carbono, la cantidad de hidrógeno en la etapa 1 se hace reaccionar con la otra parte de oxígeno de la siguiente manera:

$$(2)\left(\frac{1.9}{1+1.9}\right)(\alpha_{ZCA1})(1.95 - 0.5)H_2 + \left(\frac{1.9}{1+1.9}\right)(\alpha_{ZCA1})(1.95 - 0.5)O_2 \rightarrow (2)\left(\frac{1.9}{1+1.9}\right)(\alpha_{ZCA1})(1.95 - 0.5)H_2O \qquad (2.62)$$

$$1.3[\alpha_{ZCA1}(1.95 - 0.5)]H_2 + 0.65[\alpha_{ZCA1}(1.95 - 0.5)]O_2 \rightarrow 1.3[\alpha_{ZCA1}(1.95 - 0.5)]H_2O_2 + 0.50[\alpha_{ZCA1}(1.95 - 0.5)]H_2O_2 \rightarrow 0.50[\alpha_{ZCA1}(1.95 - 0$$

2.4.5 Volúmenes de los productos de combustión en zona primaria

A partir de las relaciones anteriores se obtienen los volúmenes de cada uno de los productos de combustión, usando sus densidades a condiciones de referencia, pesos moleculares, y partiendo de las cantidades molares de cada uno de ellos en base de 1 *kmol* de nuestro combustible (m^3/m^3) :

$$V_{CO_2 \ ZCA \ 1} = \frac{(0.7)(\alpha_{ZCA \ 1})(1.95 - 0.5)(PM_{CO_2})}{(\rho_{CO_2})(22.41)}$$
(2.63)

41

Capítulo 2: Metodología del cálculo de la transmisión de calor en el hogar y formación de contaminantes

$$V_{CO\ ZCA\ 1} = \frac{[1 - (0.7)(\alpha_{ZCA\ 1})(1.95 - 0.5)][(PM_{CO})]}{(\rho_{CO})(22.41)}$$
(2.64)

$$V_{H_2O\ ZCA\ 1} = \frac{(1.3)(\alpha_{ZCA\ 1})(1.95 - 0.5)(PM_{H_2O})}{(\rho_{H_2O})(22.41)}$$
(2.65)

$$V_{H_2 ZCA 1} = \frac{[1.9 - (1.3)(\alpha_{ZCA 1})(1.95 - 0.5)][(PM_{H_2})]}{(\rho_{H_2})(22.41)}$$
(2.66)

$$V_{N_2 ZCA 1} = \frac{(3.762)(\alpha_{ZCA 1})(1.95)(PM_{O_2})}{(\rho_{N_2})(22.41)}$$
(2.67)

Y el volumen total de los productos de combustión es la suma de estos volúmenes (m^3/m^3) :

$$V_{gas ZCA1} = V_{CO_2 ZCA1} + V_{CO ZCA1} + V_{H_2 O ZCA1} + V_{H_2 ZCA1} + V_{N_2 ZCA1}$$
(2.68)

2.4.6 Calor liberado en el proceso

Combustión completa

Tomando en cuenta la ecuación para la reacción de combustión completa de nuestro combustible y los balances estequiométricos para cada uno de sus componentes se tiene que 1 kmol de carbono forma 1 kmol de dióxido de carbono. Esta reacción libera calor como lo muestra la siguiente ecuación (kJ):

$$Q_{Carbono} = (PCI_{Carbono})(PM_C)$$
(2.69)

En donde:

 $PCI_{Carbono}$ es el poder calorífico inferior del carbono (kJ/kg).

 PM_C es el peso molecular del carbono para 1 kmol de carbono en el combustible (kg/kmol).

Y para el hidrógeno se tiene que 3.8 kmol de hidrógeno forman 1.9 kmol de agua, por lo que la reacción de calor liberado (kJ) es:

$$Q_{Hidrógeno} = \left(PCI_{Hidrógeno}\right)(PM_H) \tag{2.70}$$

En donde:

 $PCI_{Hidrógeno}$ es el poder calorífico inferior del hidrógeno (kJ/kg).

 PM_H es el peso molecular del hidrógeno referente a los 3.8 *kmol* de hidrógeno presente en el combustible (*kg/kmol*).

Calor liberado

En la primera etapa, se forman sólo productos incompletos. A partir de las relaciones de combustión incompleta, se puede ver que 1 kmol de monóxido de carbono libera calor hasta formar 1 kmol de dióxido de carbono conforme a la siguiente ecuación (kJ):

$$Q_{completo C} = (PCI_{CO})(V_{CO})$$
(2.71)

Y 1.9 *kmol* de hidrógeno liberan calor hasta formar 1.9 *kmol* de agua como se muestra enseguida (*kJ*):

$$Q_{completo H} = \left(PCI_{H_2}\right)\left(V_{H_2}\right) \tag{2.72}$$

A partir de las ecuaciones 2.69, 2.70, 2.71 y 2.72 se puede realizar el balance de calor que se libera en las dos etapas llevadas a cabo en la zona primaria. Por lo que, a partir de las siguientes relaciones se puede calcular el calor liberado para formar monóxido de carbono e hidrógeno:

$$Q_{Carbono} = Q_{incompleto C} + Q_{completo C}$$
(2.73)

$$Q_{Hidrógeno} = Q_{incompleto H} + Q_{completo H}$$
(2.74)

Calor liberado en zona primaria

El calor liberado en la zona primaria (kJ/m^3) se determina a partir de la composición de los productos de combustión y los calores como se muestra a continuación (Ramírez, 2010):

$$Q_{lib\ 1} = \frac{(n_{CO_2})(Q_{Carbono})}{(1)(22.41)} + \frac{(n_{CO})(Q_{incompleto\ C})}{(1)(22.41)} + \frac{(n_{H_2O})(Q_{Hidrógeno})}{(1.9)(22.41)} + \frac{(n_{H_2})(Q_{incompleto\ H})}{(1.9)(22.41)}$$
(2.75)

Además de este calor, se debe considerar el calor que ingresa a la zona de combustión con el aire precalentado y los gases de recirculación. Estos calores se calculan por medio de las ecuaciones 2.12 y 2.13 respectivamente.

Finalmente, el calor liberado en la zona primaria será la suma de todos los calores (kJ/m^3) :

$$Q_{ZCA1} = Q_{lib1} + Q_{aire1} + Q_{rec1}$$
(2.76)

Calor liberado en zona secundaria

En esta zona el calor que se libera es debido a los productos incompletos que se vuelven productos completos. Además, se suma también el calor que ingresa en esta zona debido al aire precalentado. El cálculo del calor liberado (kJ/m^3) se da con la siguiente ecuación:

$$Q_{lib\ 2} = \frac{(1 - n_{CO_2})(Q_{completo\ C})}{(1)(22.41)} + \frac{(1.9 - n_{H_2O})(Q_{completo\ H})}{(1.9)(22.41)}$$
(2.77)

El calor que ingresa con el aire precalentado se calcula también con la ecuación 2.12, por lo que el calor total liberado en la zona secundaria es:

$$Q_{ZCA2} = Q_{lib2} + Q_{aire2}$$
(2.78)

Por último, el calor que se libera en ambas zonas será la suma de los calores en cada una de ellas (kJ/m^3) :

$$Q_{total} = Q_{ZCA1} + Q_{ZCA2} \tag{2.79}$$

2.4.7 Concentración de *NO_x* en ZCA en combustión a dos etapas

Después de realizar el análisis anterior, se calculan los parámetros involucrados en el cálculo de la concentración de NO_x , los cuales son calculados de acuerdo con la metodología de 2.2 tanto para la zona primaria como para la zona secundaria, teniendo así diferentes concentraciones de óxidos de nitrógeno al final de cada zona. Para tener una concentración de NO_x para todo el proceso en combustión a dos etapas en base a las concentraciones obtenidas para cada zona, se sigue la metodología que se muestra enseguida.

Para la concentración de NO_x (mg/m^3) se multiplica por un factor de conversión de valor 1.88:

$$C_{NO_x} = \left(C_{NO_x}^{Gas \ Natural}\right)(1.88) \tag{2.80}$$

El gasto volumétrico de óxidos de nitrógeno se calcula como sigue (m^3/s) :

$$G_{NO_x} = (B_{calc}) \left(V_{gas}^{R,g} \right) \tag{2.81}$$

Con las ecuaciones 2.80 y 2.81 se calcula el flujo másico de NO_x (mg/s) para cada zona:

$$\dot{m}_{NO_x} = (C_{NO_x})(G_{NO_x}) \tag{2.82}$$

Posteriormente, se obtiene el flujo másico en el hogar (mg/s) con la siguiente ecuación:

$$\dot{m}_{NO_x total} = \dot{m}_{NO_x ZCA1} + \dot{m}_{NO_x ZCA2} \tag{2.83}$$

La concentración de óxidos de nitrógeno (mg/m^3) es:

$$C_{NO_x total} = \frac{\dot{m}_{NO_x total}}{(B_{calc}) \left(V_{gas}^{R,g} \right)}$$
(2.84)

Y el resultado de ésta concentración en ppm:

$$C_{NO_x}^{Gas \ Natural} = \frac{C_{NO_x \ total}}{1.88} \tag{2.85}$$

Capítulo 3

Aplicación de la metodología al caso de estudio

En este capítulo se presenta nuestro caso de estudio. Por medio de las metodologías de cálculo se obtienen los parámetros que dan como resultado la concentración final de óxidos de nitrógeno en el hogar del generador de vapor de 150 *MW*.

3.1 CÁLCULO TÉRMICO DEL HOGAR DEL GENERADOR DE VAPOR DE 150 MW USANDO LA METODOLOGÍA DE GURVICH

Con el uso de la metodología basada en la ecuación de Gurvich descrita anteriormente, se realizó el cálculo térmico del hogar del generador de vapor de 150 *MW* de la PTE Valle de México para una carga de 100% quemando gas natural y combustóleo (como caso de referencia). Se muestra la construcción del hogar del generador de vapor y sus medidas mediante un diagrama. En este se aprecia la zona de combustión activa, la cual nos sirve para el cálculo posterior de la concentración de óxidos de nitrógeno, así mismo se muestra la vista superior de los quemadores en el hogar del generador de vapor. Mediante el cálculo térmico se obtienen los parámetros termodinámicos que nos ayudan a obtener la temperatura y la entalpía de los productos de combustión a la salida del hogar, así como el calor disponible en el mismo.

Figura 3.1. Diagrama del hogar del generador de vapor de 150 MW (medidas en mm.)

Figura 3.2. Vista superior de los quemadores en el hogar del generador de vapor de 150 MW (medidas en mm.)

3.1.1 Cálculo del parámetro M

Para el cálculo del parámetro *M* se debe conocer en primer lugar la posición relativa del núcleo de la flama y el factor de composición de los gases.

Por medio de la ecuación 2.4 se calcula la altura promedio de los quemadores, cuyas alturas se obtienen de los planos del generador de vapor como se muestra en el diagrama del hogar y son medidas desde el fondo del hogar hasta la altura en que se encuentra cada nivel como se muestra:

 $l_{quemador} = \frac{5.326 + 6.646 + 7.966 + 9.286 + 10.606 + 11.926}{6} = 8.626 \ m$

La altura total del hogar también se obtiene de los planos del generador de vapor y su valor es 21.376 *m*. Aplicando la ecuación 2.3 se tiene:

$$x_{quemador} = \frac{8.626 \, m}{21.376 \, m} = 0.404$$

Usando la ecuación 2.5 se calcula el factor de composición de los gases. Para esto se utilizan los valores de $V_{gas} = 11.474 \ m^3/m^3$, $V_{N_2}^0 = 7.88 \ m^3/m^3$ y $V_{RO_2} = 1.079 \ m^3/m^3$ obtenidos mediante la metodología descrita por (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001). Al no haber recirculación de gases en el hogar, el valor de *R* es 0.

$$r_{\nu} = \frac{(11.474)(1+0)}{7.88+1.079} = 1.281$$

Con los datos obtenidos y con $M_o = 0.4$ para una combustión con quemadores instalados en las esquinas del hogar se calcula el parámetro *M* con la ecuación 2.2:

$$M = [0.4][1 - (0.4)(0.404)][\sqrt[3]{1.281}] = 0.364$$

3.1.2 Cálculo del número de Boltzmann

Para obtener el valor del número de Boltzmann se deben calcular en primer lugar ciertos parámetros. Con la ecuación 2.7 se calcula el coeficiente de conservación de calor en el hogar. Para esto, se utilizan los valores de $q_5 = 0.4\%$ (Thermal Design for Power Boilers: Standard Method, 1998) y la eficiencia térmica se obtiene de los datos de la planta como ET = 86.01%.

$$\varphi = 1 - \frac{0.4}{86.01 + 0.4} = 0.995$$

El siguiente parámetro por calcular es el gasto de combustible. Para esto, se deben obtener los valores del calor absorbido en el generador de vapor y el calor disponible en el hogar con el uso de las ecuaciones 2.9 y 2.10, respectivamente. Los valores de los flujos son (CFE):

$$G_{v1} = 131.43 \ kg/s, G_{v2} = 116.087 \ kg/s \ y \ G_{purga} = 6.390 \ kg/s.$$
Y sus entalpías correspondientes son:

 $\begin{aligned} h_{v1} &= 3458.954 \ kJ/kg, \qquad h_{aa} = 1020.489 \ kJ/kg, \qquad \dot{h_{v2}} &= 3553.617 \ kJ/kg, \\ \dot{h_{v2}} &= 3142.121 \ kJ/kg \ y \ \dot{h} &= 1557.078 \ kJ/kg. \end{aligned}$

Por lo que el calor absorbido por el generador de vapor es:

$$\begin{split} Q_{gv} &= (131.43)(3458.954 - 1020.489) + (116.087)(3553.617 - 3142.121) + \\ (6.390)(1557.078 - 1020.489) &= 371685.424 \ kJ/s \end{split}$$

Para el cálculo del calor disponible en el hogar se requiere saber el poder calorífico inferior, el calor sensible del aire caliente y el calor de los gases de recirculación. Con la ecuación 2.11 se calcula el poder calorífico inferior. Se obtienen los poderes caloríficos inferiores de cada componente y sus fracciones correspondientes a partir de la composición volumétrica del combustible mostrada en la tabla 1.6.

$$\begin{split} PCI &= (35794)(0.907072) + (63705)(0.040416) + (91195)(0.010186) + (118356)(0.002913) + (118546)(0.002616) + (145116)(0.001586) + (145628)(0.001466) + (145985)(0.001548) + (173412)(0.001093) = 37485.405 \ kJ/m^3 \end{split}$$

El calor sensible del aire caliente se calcula con la ecuación 2.12. Para una carga del 100% el aire es precalentado a una temperatura de 332°C. El valor de la entalpía del aire a esta temperatura se obtiene por medio de la metodología de (Thermal Design for Power Boilers: Standard Method, 1998) y es $h_{aire \ sal} = 4371.259 \ kJ/m^3$ y el coeficiente de exceso de aire a carga del 100% es 1.03.

$$Q_{aire} = (1.03)(4371.252 \ kJ/m^3) = 4502.391 \ kJ/m^3$$

El calor que ingresa con los gases de recirculación es 0 ya que no hay recirculación el hogar, por lo que el calor disponible es:

$$Q_{disp} = 37485.405 + 4502.391 + 0 = 41987.795 \ kJ/m^3$$

Finalmente, con los valores obtenidos el gasto de combustible se calcula con la ecuación 2.8 y queda como sigue:

 $B_{calc} = \frac{371685.424}{(41987.795)(0.8601)} = 10.292 \ m^3/s$

El siguiente parámetro que se debe calcular es el calor específico promedio. Para esto es necesario conocer la temperatura de los gases a la salida del hogar, así como su entalpía correspondiente. Como se mencionó anteriormente, este valor es propuesto para comenzar el proceso iterativo como $T_{hogar}^{"} = 1323.15 \ K$. A esta temperatura, la entalpía de los gases es $h_{hogar}^{"} = 18637.08 \ kJ/m^3$. También se debe conocer el valor de la temperatura adiabática, la cual es una función del calor disponible en el hogar. El calor disponible se considera igual a la entalpía de los productos de combustión porque es un proceso a presión constante, por lo que por medio de las tablas de

entalpías obtenidas por la metodología de (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001) se tiene que, para un valor de $Q_{disp} = 41987.795 \ kJ/m^3$ la temperatura adiabática es $T_a = 2445.398 \ K$. El valor del calor específico promedio es de acuerdo con la ecuación 2.18:

$$(Vc)_{promedio} = \frac{41987.795 - 18637.08}{2445.398 - 1323.15} = 20.807 \ kJ/m^3 \cdot K$$

Ahora se calcula el coeficiente de eficiencia térmica usando la ecuación 2.19 y con los valores de $\chi = 1$ y $\zeta = 0.65$ (gas natural) como sigue:

$$\psi = (1)(0.65) = 0.65$$

También se deben calcular cada una de las áreas del hogar a partir del diagrama mostrado en la figura 3.1. De las diferentes geometrías, se tiene el área frontal, posterior, las áreas laterales (2), de la ventana de salida, de los quemadores (4) y el área total:

$$\begin{split} A_F &= (20 + 5.316)(8.58) = 217.211 \ m^2 \\ A_P &= (0.391 + 6.703 + 15.3 + 5.316)(8.58) = 237.751 \ m^2 \\ A_L &= [(2)] \left[(5.135)(0.391) + \left(\frac{(10.27 + 5.135)(4.309)}{2} \right) + (10.27)(15.3) + \left(\frac{(10.27)(1.376)}{2} \right) \right] = 398.786 \ m^2 \\ A_{VS} &= (5.135)(8.58) = 44.058 \ m^2 \\ A_{Quemadores} &= (4)(0.455)(8.6) = 15.652 \ m^2 \\ A_{Paredes} &= 217.211 + 237.751 + 398.786 + 44.058 = 897.806 \ m^2 \end{split}$$

Las áreas radiantes se obtienen usando el factor de forma $\chi = 1$. Para estas, no se consideran las áreas ocupadas por la ventana de salida y por los quemadores.

$$A_{F Rad} = (217.211)(1) = 217.211 m^{2}$$

$$A_{P Rad} = (237.751)(1) = 237.751 m^{2}$$

$$A_{L Rad} = (398.786 - 15.652)(1) = 383.134 m^{2}$$

 $A_{Paredes Rad} = (217.211 + 237.751 + 383.134)(1) = 838.096 m^2$

Con el uso de la ecuación 2.21 se tiene:

$$\psi_{promedio} = \frac{(217.211)(0.65) + (237.751)(0.65) + (383.134)(0.65)}{897.806} = 0.607$$

Ahora con los valores obtenidos se puede calcular el número de Boltzmann con la ecuación 2.6 como se muestra en seguida:

$$Bo = \frac{(0.995)(10.292)(20.807)}{(5.67 \times 10^{-11})(0.607)(897.806)(2445.398)^3} = 0.471$$

3.1.3 Cálculo del número de Buger efectivo

Para el cálculo de este parámetro se comienza encontrando el valor del espesor de la capa de radiación efectiva en el hogar para el cual se necesita saber el área total de las paredes y el volumen del hogar. El volumen del hogar es el área lateral multiplicada por el ancho del hogar:

$$V_{hogar} = (199.393)(8.58) = 1710.791 \, m^3$$

Ahora, con la ecuación 2.30 se puede calcular el valor de s:

$$s = \frac{(3.6)(1710.791)}{897.806} = 6.86 \, m$$

Ahora se calcula el coeficiente de absorción radiante debido a los gases triatómicos. Las fracciones volumétricas del vapor de agua y de los gases triatómicos en los productos de combustión se calculan en base a la metodología de (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001):

$$r_{H_20} = \frac{2.216}{11.474} = 0.193$$
$$r_{gas} = \frac{1.079}{11.474} = 0.094$$

Además de estos valores, para la temperatura de los gases a la salida del hogar se usa el valor propuesto de 1323.15 K y la presión en el hogar es 0.1 MPa, por lo que con la ecuación 2.27 se tiene:

$$k_{gas} = \left[\left(\frac{(7.8) + (16)(0.193)}{\sqrt{(10)(0.1)(0.094)(6.86)}} - 1 \right) \right] \left[(1) - (0.37) \left(\frac{1323.15}{1000} \right) \right] = 6.412 \ 1/m \cdot MPa$$

Para el cálculo del coeficiente de absorción radiante debido al hollín se usan los valores de la relación entre los átomos de carbono e hidrógeno en el combustible y el coeficiente de exceso de aire en el hogar, los cuales son 2.984 y 1.03, respectivamente. Con la ecuación 2.28 tenemos:

$$k_{hollin} = \left[\left(\frac{1.2}{1 + 1.03^2} \right) (2.984)^{0.4} \right] \left[(1.6) \left(\frac{1323.15}{1000} \right) - (0.5) \right] = 1.458 \ 1/m \cdot MPa$$

Con los valores obtenidos y con m = 0.1 (gas natural) se aplica la ecuación 2.26 para encontrar el valor del coeficiente de absorción radiante del medio del hogar:

$$k = (6.412) + (0.1)(1.458) = 6.557 \ 1/m \cdot MPa$$

Con la ecuación 2.25 se calcula el número de Buger:

$$Bu = (6.557)(0.1)(6.86) = 4.498$$

Ahora, con la ecuación 2.24 obtenemos el valor del número de Buger efectivo:

$$B\bar{u} = [1.6] \left[ln \left(\frac{(1.4)(4.498)^2 + (4.498) + (2)}{(1.4)(4.498)^2 - (4.498) + (2)} \right) \right] = 0.478$$

Finalmente, con la ecuación 2.31 se puede obtener la temperatura de los gases a la salida del hogar:

$$T_{hogar}^{''} = \frac{2445.398}{\left[1\right] + \left[(0.364)(0.478)^{0.3}\right] \left[\frac{(5.67)(0.607)(897.806)(2445.398)^3}{(10^{11})(0.995)(10.292)(20.807)}\right]^{0.6}} = 1677.098 \, K$$

A partir de este valor obtenido, se recalculan los valores de cada uno de los parámetros dependientes mediante iteraciones.

3.1.4 Proceso iterativo

Calor específico promedio

Con el valor obtenido de $T_{hogar} = 1677.098 K$ y su entalpía correspondiente $h_{hogar} = 25787.932 \ kJ/m^3$ se obtiene el nuevo valor para el calor específico promedio:

$$(Vc)_{promedio} = \frac{41987.795 - 25787.932}{2445.398 - 1677.098} = 21.085 \ kJ/m^3 \cdot K$$

Número de Buger efectivo

Se recalculan los valores de los coeficientes de disminución de rayos por los gases triatómicos y por el hollín, así como el coeficiente de absorción en el medio del hogar:

$$k_{gas} = \left[\left(\frac{(7.8) + (16)(0.193)}{\sqrt{(10)(0.1)(0.094)(6.86)}} - 1 \right) \right] \left[(1) - (0.37) \left(\frac{1677.098}{1000} \right) \right] = 4.767 \ 1/m \cdot MPa$$

$$k_{hollin} = \left[\left(\frac{1.2}{1+1.03^2} \right) (2.984)^{0.4} \right] \left[(1.6) \left(\frac{1677.098}{1000} \right) - (0.5) \right] = 1.969 \ 1/m \cdot MPa$$

$$k = (4.767) + (0.1)(1.969) = 4.964 \ 1/m \cdot MPa$$

El número de Buger es:

Bu = (4.964)(0.1)(6.86) = 3.405

Y el número de Buger efectivo:

$$B\bar{u} = [1.6] \left[ln \left(\frac{(1.4)(3.405)^2 + (3.405) + (2)}{(1.4)(3.405)^2 - (3.405) + (2)} \right) \right] = 0.605$$

Temperatura de los gases a la salida del hogar

La nueva temperatura es:

$$T_{hogar}^{''} = \frac{2445.398}{\left[1\right] + \left[(0.364)(0.605)^{0.3}\right] \left[\frac{(5.67)(0.607)(897.806)(2445.398)^3}{(10^{11})(0.995)(10.292)(21.085)}\right]^{0.6}} = 1643.788 \, K$$

Se repite el proceso de iteración nuevamente como sigue:

Calor específico promedio

Para T_{hogar} = 1643.788 K, su entalpía es h_{hogar} = 25098.096 kJ/m³. Se obtiene el nuevo valor para el calor específico promedio:

 $(Vc)_{promedio} = \frac{41987.795 - 25098.096}{2445.398 - 1643.788} = 21.070 \ kJ/m^3 \cdot K$

Número de Buger efectivo

Se recalculan los valores:

$$k_{gas} = \left[\left(\frac{(7.8) + (16)(0.193)}{\sqrt{(10)(0.1)(0.094)(6.86)}} - 1 \right) \right] \left[(1) - (0.37) \left(\frac{1643.788}{1000} \right) \right] = 4.921 \ 1/m \cdot MPa$$

$$k_{hollin} = \left[\left(\frac{1.2}{1+1.03^2} \right) (2.984)^{0.4} \right] \left[(1.6) \left(\frac{1643.788}{1000} \right) - (0.5) \right] = 1.921 \ 1/m \cdot MPa$$

$$k = (4.921) + (0.1)(1.921) = 5.114 \ 1/m \cdot MPa$$

El número de Buger es:

$$Bu = (5.114)(0.1)(6.86) = 3.508$$

Y el número de Buger efectivo:

$$B\bar{u} = [1.6] \left[ln \left(\frac{(1.4)(3.508)^2 + (3.508) + (2)}{(1.4)(3.508)^2 - (3.508) + (2)} \right) \right] = 0.590$$

Temperatura de los gases a la salida del hogar

La nueva temperatura es:

$$T_{hogar}^{''} = \frac{2445.398}{\left[1\right] + \left[(0.364)(0.590)^{0.3}\right] \left[\frac{(5.67)(0.607)(897.806)(2445.398)^3}{(10^{11})(0.995)(10.292)(21.070)}\right]^{0.6}} = 1647.417 \, K$$

Se repite el proceso:

Calor específico promedio

Para $T_{hogar} = 1647.417 K$, la entalpía correspondiente es $h_{hogar} = 25173.398 kJ/m^3$. Se obtiene el nuevo valor para el calor específico promedio:

$$(Vc)_{promedio} = \frac{\frac{41987.795 - 25173.398}{2445.398 - 1647.417}}{21.071 \ kJ/m^3 \cdot K$$

Número de Buger efectivo

Los nuevos valores de los coeficientes de disminución de rayos son:

$$k_{gas} = \left[\left(\frac{(7.8) + (16)(0.193)}{\sqrt{(10)(0.1)(0.094)(6.86)}} - 1 \right) \right] \left[(1) - (0.37) \left(\frac{1647.417}{1000} \right) \right] = 4.905 \ 1/m \cdot MPa$$

$$k_{hollin} = \left[\left(\frac{1.2}{1+1.03^2} \right) (2.984)^{0.4} \right] \left[(1.6) \left(\frac{1647.417}{1000} \right) - (0.5) \right] = 1.926 \ 1/m \cdot MPa$$

$$k = (4.905) + (0.1)(1.926) = 5.097 \ 1/m \cdot MPa$$

El número de Buger es:

$$Bu = (5.097)(0.1)(6.86) = 3.497$$

Y el número de Buger efectivo:

$$B\bar{u} = [1.6] \left[ln\left(\frac{(1.4)(3.497)^2 + (3.497) + (2)}{(1.4)(3.497)^2 - (3.497) + (2)}\right) \right] = 0.592$$

Temperatura de los gases a la salida del hogar

La nueva temperatura es:

$$T_{hogar}^{''} = \frac{2445.398}{[1] + [(0.364)(0.592)^{0.3}] \left[\frac{(5.67)(0.607)(897.806)(2445.398)^3}{(10^{11})(0.995)(10.292)(21.071)}\right]^{0.6}} = 1647.022 \ K$$

La diferencia entre los últimos dos valores obtenidos para la temperatura de salida es mínima, por lo que aquí termina el proceso iterativo.

Por último, se recalculará el valor del Número de Boltzmann:

$$Bo = \frac{(0.995)(10.292)(21.071)}{(5.67 \times 10^{-11})(0.607)(897.806)(2445.398)^3} = 0.478$$

Y la temperatura relativa del hogar, con la ecuación 2.1:

$$\theta_{hogar}^{''} = \frac{1647.022}{2445.398} = 0.674$$

3.1.5 Parámetros del cálculo térmico del hogar del generador de vapor a diferentes regímenes de carga

Los parámetros del cálculo térmico del hogar que se obtuvieron para ambos casos son:

Parámetro		M.R.C.	100%	75%	50%
Factor de composición de gases	r_v	1.281	1.281	1.303	1.360
Parámetro M	М	0.364	0.364	0.366	0.372
Coeficiente de conservación de calor	φ	0.995	0.995	0.995	0.995
Calor absorbido por el generador de vapor (<i>kJ/s</i>)	Q_{gv}	385701.671	371685.424	290359.684	182751.641
Calor sensible del aire caliente (kJ/m^3)	Q_{aire}	4544.475	4502.391	4418.211	4388.900
Calor de los gases de recirculación (kJ/m^3)	Q_{rec}	0	0	0	0
Calor disponible en el hogar (kJ/m^3)	Q_{disp}	42029.879	41987.795	41903.616	41874.304
Gasto de combustible (m^3/s)	B _{calc}	10.670	10.292	8.027	5.037
Coeficiente de eficiencia térmica promedio	$\psi_{promedio}$	0.607	0.607	0.607	0.607
Temperatura adiabática (K)	T_a	2447.389	2445.398	2411.046	2338.766
Calor específico promedio $(kJ/m^3 \cdot K)$	$(Vc)_{promedio}$	21.076	21.071	21.353	21.944
Número de Boltzmann	Во	0.494	0.478	0.394	0.278
Número de Buger	Bu	3.463	3.497	3.756	4.266
Número de Buger efectivo	$Bar{u}$	0.597	0.592	0.558	0.501
Temperatura de los gases a la salida del hogar (K)	T _{hogar}	1657.977	1647.022	1567.858	1417.128
Entalpía de los gases a la salida del hogar (kJ/m^3)	$h_{hogar}^{''}$	25392.475	25165.191	23898.913	21650.371
Temperatura relativa del hogar	$\theta_{hogar}^{''}$	0.677	0.674	0.650	0.606

Tabla 3.1. Parámetros del cálculo térmico del hogar a diferentes regímenes de operación quemando gas natural

M.R.C.: Máximo Régimen de Carga

Parámetro		M.R.C.	100%	75%	50%
Factor de composición de gases	r_v	1.187	1.187	1.208	1.241
Parámetro M	М	0.355	0.355	0.357	0.360
Coeficiente de conservación de calor	φ	0.996	0.996	0.996	0.996
Calor absorbido por el generador de vapor	Q_{gv}	385701.671	371685.424	290359.684	182751.641
(kJ/s)					
Calor sensible del aire caliente (kJ/kg)	Q_{aire}	4851.615	4806.686	4715.106	4596.277
Calor del combustible (kJ/kg)	Q_{comb}	311.536	311.536	311.536	311.536
Calor de los gases de recirculación (kJ/kg)	Q_{rec}	0	0	0	0
Calor disponible en el hogar (kJ/kg)	Q_{disp}	44953.101	44908.173	44816.592	44697.763
Gasto de combustible (kg/s)	B _{calc}	9.628	9.287	7.270	4.588
Coeficiente de eficiencia térmica promedio	$\psi_{promedio}$	0.513	0.513	0.513	0.513
Temperatura adiabática (K)	T_a	2540.941	2538.930	2503.364	2451.885
Calor específico promedio $(kJ/kg \cdot K)$	(Vc) _{promedio}	21.487	21.476	21.741	22.071
Número de Boltzmann	Во	0.480	0.464	0.384	0.262
Número de Buger	Bu	2.863	2.884	3.044	3.350
Número de Buger efectivo	$B\overline{u}$	0.690	0.687	0.660	0.613
Temperatura de los gases a la salida del hogar	$T_{hogar}^{''}$	1701.410	1689.446	1604.455	1446.061
(K)	0				
Entalpía de los gases a la salida del hogar	$h_{hogar}^{''}$	26913.912	26664.397	25273.195	22497.719
(kJ/kg)	~				
Temperatura relativa del hogar	$\theta_{hogar}^{''}$	0.670	0.665	0.641	0.590

M.R.C.: Máximo Régimen de Carga

3.2 CÁLCULO DE LA CONCENTRACIÓN DE NO_x EN EL HOGAR DEL GENERADOR DE VAPOR DE 150 *MW* UTILIZANDO LA METODOLOGÍA DE ROSLYAKOV

A continuación, se presenta el cálculo de los parámetros en la ZCA para determinar la concentración de óxidos de nitrógeno, mediante la metodología descrita anteriormente, basada en la ecuación de Roslyakov.

3.2.1 Cálculo de la temperatura promedio en ZCA

La temperatura promedio en la ZCA se obtiene usando la ecuación 2.32. Primero es necesario conocer la temperatura adiabática, que es función del calor disponible en el hogar de la siguiente forma:

$$T_{ad} = f(0.97 Q_{disp})$$

 $Q_{disp} = (0.97)(41987.795) = 40728.161 kJ/m^3$

Con las entalpías obtenidas se encuentra que la temperatura correspondiente a este calor es 2385.793 K.

Se debe calcular también el coeficiente promedio de eficiencia térmica en la ZCA. En base al diagrama del hogar mostrado en la figura 3.1 se obtienen los parámetros geométricos:

Ancho

a = 8.58 m

Profundidad

b = 10.27 m

Altura de la ZCA

 $C_{ZCA} = 9.6 m$

Área de quemadores

 $A_{Quemadores} = 15.652 \ m^2$

Área de la ZCA

 $A_{ZCA} = (8.58)(9.6)(2) + (10.27)(9.6)(2) + (8.58)(5.316)(2) + (44.058) + (57.511) = 554.713 \ m^2$

El coeficiente promedio de eficiencia térmica de las paredes es:

 $\overline{\Psi}_{ZCA} = \frac{\{0.65\}\{[(9.6)(10.27)(2) - 15.652] + [(9.6)(8.58)(2)] + [(5.316)(8.58)(2)]\} + \{0.1\}\{44.058\}}{554.713} = 0.521$

Con los valores obtenidos y la fracción de recirculación de los gases igual a 0 se tiene:

$$\bar{T}_{ZCA} = (2385.793)(1 - 0.521)^{0.25}(1 - 0^{1+0}) = 1985.230 K$$

3.2.2 Cálculo de la densidad de flujo de calor reflejado en ZCA

La densidad de flujo de calor reflejado en la ZCA está dada por la ecuación 2.33. Para esto se necesita conocer la densidad de flujo de calor y usando la ecuación 2.34 se obtiene su valor. Se usan los valores obtenidos previamente para el gasto de combustible, poder calorífico inferior, calor sensible del aire y el grado de combustión es $\beta_{comb} = 0.915$:

 $q_{ZCA} = \frac{[10.292][(0.915)(37485.405)+(4502.391)+0+0]}{554.713} = 719.920 \ kW/m^2$

La densidad de flujo de calor reflejado en la ZCA es:

$$q_{ZCA}^{refl} = \frac{(719.920)(1-0.521)}{1000} = 0.345 \ MW/m^2$$

3.2.3 Cálculo del coeficiente de exceso de aire en ZCA

Con la ecuación 2.35 se calcula el coeficiente de exceso de aire en la ZCA, en donde al no haber recirculación de gases en el hogar, el valor es el mismo que el coeficiente de exceso de aire usado en el hogar:

 $\alpha_{ZCA} = 1.03 + 0(0 - 1) = 1.03$

3.2.4 Cálculo del tiempo de residencia de los productos de combustión en ZCA

Este parámetro se calcula usando la ecuación 2.36. Al no haber recirculación en el hogar ni agua inyectada la altura de la ZCA será la misma, sin embargo, de igual manera se calcula el volumen con efecto de los gases de recirculación. Para esto se obtienen los valores de los volúmenes de los productos de combustión y del aire por medio de la metodología descrita por (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001), los cuales son $V_{gas}^0 = 11.474 \ m^3/m^3$ y $V_{aire}^0 = 9.947 \ m^3/m^3$. Por medio de la ecuación 2.38 se tiene:

$$\begin{split} V_{ZCA}^{R,g} &= (0.915)(11.474) + 1.0161(1.03 - 0.915)(9.947) + 1.24(0) + 0[11.474 + 1.0161(0 - 1)(9.947) + 1.24(0)] = 11.661 \, m^3 \end{split}$$

Y en base a lo mencionado anteriormente la altura de la ZCA es:

 $C_{ZCA}^{R,g} = 9.6 m$

Con estos valores obtenidos y con un valor de 0.7 para el coeficiente de llenado (Jarquin, Polupan, Jiménez, & Pysmenny, 2011) se calcula el tiempo de residencia de los productos en la ZCA:

$$\tau_{ZCA} = \frac{(8.58)(10.27)(9.6)(0.7)}{(10.292)(11.661)(1985.230/273)} = 0.678 \,s$$

3.2.5 Cálculo de la concentración de NO_x en ZCA

Con los parámetros obtenidos se puede calcular finalmente la concentración de NO_x en los productos de combustión utilizando la ecuación 2.40:

$$C_{NO_x} = \left[26.0 \exp\left(0.26 \frac{1985.230 - 1700}{100}\right) - 4.7\right] \left[\exp(0.345) - 1\right] \left[13.0 + 9.6(1.03 - 1.07) + 59.4(1.03 - 1.07)^2 + 18.1(1.03 - 1.07)^3 + 79.8(1.03 - 1.07)^4\right] \left[0.678\right] = 177.307 \ ppm$$

3.2.6 Parámetros obtenidos por el cálculo de la concentración de NO_x en ZCA a diferentes regímenes de operación

Los parámetros de la concentración de NO_x en el hogar del generador de vapor son los siguientes:

Parámetro		M.R.C.	100%	75%	50%
Calor disponible en el hogar (kJ/m^3)	Q_{disp}	40768.983	40728.161	40646.507	40618.075
Temperatura adiabática ZCA (K)	T_{ad}	2387.725	2385.793	2353.107	2284.143
Temperatura promedio ZCA (K)	\bar{T}_{ZCA}	1986.837	1985.230	1958.031	1900.647
Densidad de flujo de calor ZCA (kW/m^2)	q_{ZCA}	747.130	719.920	579.274	373.447
Densidad de flujo de calor reflejado ZCA (MW/m^2)	q_{ZCA}^{refl}	0.358	0.345	0.278	0.179
Coeficiente de exceso de aire ZCA	α_{ZCA}	1.03	1.03	1.05	1.1
Tiempo de residencia de los gases ZCA (s)	$ au_{ZCA}$	0.654	0.678	0.850	1.284
Concentración de óxidos de nitrógeno ZCA (ppm)	C_{NO_x}	179.403	177.307	161.102	131.345

Tabla 3.3. Parámetros del cálculo de la concentración de NO_x quemando gas natural a diferentes cargas de operación

M.R.C.: Máximo Régimen de Carga

Tabla 3.4. Parámetros del cálculo de la concentración de NO_x quemando combustóleo a diferentes cargas de operación

Parámetro		M.R.C.	100%	75%	50%
Calor disponible en el hogar (kJ/kg)	Q_{disp}	43604.508	43560.927	43472.094	43356.830
Temperatura adiabática ZCA (K)	T_{ad}	2480.571	2478.620	2442.816	2391.577
Temperatura promedio ZCA (K)	\overline{T}_{ZCA}	2144.200	2142.514	2111.565	2067.274
Densidad de flujo de calor ZCA (kW/m^2)	q_{ZCA}	716.097	690.012	557.189	360.515
Densidad de flujo de calor reflejado ZCA (MW/m^2)	q_{ZCA}^{refl}	0.400	0.385	0.311	0.201
Coeficiente de exceso de aire ZCA	α_{ZCA}	1.05	1.05	1.07	1.1
Tiempo de residencia de los gases ZCA (s)	$ au_{ZCA}$	0.646	0.670	0.838	1.288
Concentración de óxidos de nitrógeno ZCA (ppm)	C_{NO_X}	239.041	236.176	212.449	179.854

M.R.C.: Máximo Régimen de Carga

3.3 CÁLCULO DE OTROS CONTAMINANTES EN EL PROCESO DE COMBUSTIÓN

En este apartado se calculan los contaminantes derivados del proceso de combustión diferentes a los óxidos de nitrógeno. Estos compuestos son los óxidos de azufre y el dióxido de carbono.

3.3.1 Cálculo de óxidos de azufre

Como se mencionó en el apartado 2.3.1, el gas natural se considera libre de los SO_x , mientras que en la combustión de combustóleo si hay formación de este compuesto. A partir de la ecuación 2.43 y la composición del combustóleo mostrada en la tabla 1.6 se tiene el volumen de óxidos de azufre:

$$V_{SO_x} = (0.68) \left(\frac{3.8}{100}\right) = 0.025 \ \frac{m^3}{kg}$$

Así mismo, se considera que el dióxido de azufre conforma a los óxidos de azufre, por lo que para las emisiones de SO_x se utiliza el factor emisión del SO_2 por medio de la tabla 2.2. En base a los datos de operación del generador de vapor y realizando las conversiones necesarias se tiene:

$$FE_{SO_2} = 157S \ lb/10^3 \ gal = 18.85S \ kg/m^3$$

Por lo que con el uso de la ecuación 2.44 la emisión de SO_x queda de la siguiente manera:

 $E_{SO_x} = (0.025)(9.287)(3600)(18.85)(3.8) = 59870.503 \frac{kg}{h}$

3.3.2 Cálculo de dióxido de carbono

Para calcular el volumen de dióxido de carbono cuando se quema gas natural, se usa la ecuación 2.47 y la composición mostrada en la tabla 1.6:

$$V_{CO_2} = 0.01[0.8579 + 107.0136] = 1.079 \frac{m^3}{m^3}$$

Con la ecuación 2.48 y seleccionando el factor de emisión del CO_2 con la tabla 2.3 de $5.61 \times 10^{-5} ton/MJ$, la emisión de dióxido de carbono para el gas natural es:

$$E_{CO_2} = (10.292)(3600)(37.485)(5.61 \times 10^{-5})(1000) = 77915.283 \frac{kg}{h}$$

Ahora para el combustóleo se usa la ecuación 2.46 y la composición que se muestra en la tabla 1.6, por lo que el volumen de dióxido de carbono es:

$$V_{CO_2} = (1.86) \left(\frac{85.27}{100}\right) = 1.586 \ \frac{m^3}{kg}$$

Usando nuevamente la ecuación 2.48 y con la selección del factor de emisión del CO_2 de 7.74×10^{-5} ton/MJ para el combustóleo, la emisión de dióxido de carbono es:

 $E_{CO_2} = (9.287)(3600)(39.789)(7.74 \times 10^{-5})(1000) = 102963.176 \frac{kg}{h}$

3.3.3 Contaminantes obtenidos por la combustión en el hogar del generador de vapor a diferentes cargas de operación

A continuación, se muestran los volúmenes y las emisiones de los óxidos de azufre y dióxido de carbono calculados para las diferentes cargas de operación.

Tabla 3.5. Volúmenes y emisiones de SO_x quemando combustóleo a diferentes cargas de operación

		Combustóleo					
Parámetro	M.R.C.	100%	75%	50%			
Volumen $SO_x (m^3/kg) = V_{SO}$	0.025	0.025	0.025	0.025			
Emisión de SO_x (kg/h) E_{SO_x}	62068.828	59870.503	46867.509	29577.460			

M.R.C.: Máximo Régimen de Carga

Tabla 3.6. Volúmenes y emisiones de CO2 quemando gas natural a diferentes cargas de operación

		Gas Natural					
Parámetro		M.R.C.	100%	75%	50%		
Volumen $CO_2 (m^3/m^3)$	V_{CO_2}	1.079	1.079	1.079	1.079		
Emisión de CO_2 (kg/h)	E_{CO_2}	80776.921	77915.283	60768.168	38132.460		

M.R.C.: Máximo Régimen de Carga

Tabla 3.7. Volúmenes y emisiones de CO2 quemando combustóleo a diferentes cargas de operación

		Combustóleo					
Parámetro		M.R.C.	100%	75%	50%		
Volumen $CO_2 (m^3/kg)$	V_{CO_2}	1.586	1.586	1.586	1.586		
Emisión de CO_2 (kg/h)	E_{CO_2}	106743.777	102963.176	80601.087	50866.270		

M.R.C.: Máximo Régimen de Carga

3.4 CÁLCULO DE LA CONCENTRACIÓN DE NO_x POR COMBUSTIÓN A DOS ETAPAS

A continuación se presenta el cálculo de la concentración de NO_x en el hogar del generador de vapor de 150 *MW* por medio de la combustión a dos etapas. Como se mencionó anteriormente, se analizan dos arreglos, los cuales se muestran enseguida. Sin embargo, en este apartado sólo se muestra el cálculo para el arreglo 1 a una carga de 100%.

Figura 3.3. Arreglo 1 para la combustión a dos etapas en el hogar del generador de vapor de 150 MW (medidas en mm.)

Figura 3.4. Arreglo 2 para la combustión a dos etapas en el hogar del generador de vapor de 150 MW (medidas en mm.)

3.4.1 Coeficiente de exceso de aire en zona primaria para el arreglo 1

Cuando el generador de vapor opera a una carga de 100% se tiene un exceso de aire en el hogar igual a $\alpha_{hogar} = 1.03$, además no hay recirculación de gases por lo que R = 0. Con estos valores y usando la ecuación 2.55 se tiene:

$$\alpha_{ZCA1} = \left(\frac{4}{6}\right)(1.03) + \left(\frac{2}{6}\right)(0)(1.03) - \left(\frac{2}{6}\right)(0) = 0.687$$

3.4.2 Cantidad molar de los productos de combustión en zona primaria para el arreglo 1

A partir de la reacción de combustión incompleta y las relaciones mostradas en 2.60 y 2.62 se puede conocer la composición molar de los gases producto de la combustión de 1 *kmol* de $CH_{3.8}$ en la primera zona:

$$n_{CO_2} = 0.7[0.687(1.95 - 0.5)] = 0.697 \ kmol/kmol$$

$$n_{CO} = 1 - 0.7[0.687(1.95 - 0.5)] = 0.303 \ kmol/kmol$$

$$n_{H_2O} = 1.3[0.687(1.95 - 0.5)] = 1.294 \ kmol/kmol$$

$$n_{H_2} = 1.9 - 1.3[0.687(1.95 - 0.5)] = 0.606 \ kmol/kmol$$

La cantidad molar de nitrógeno se obtiene con las masas moleculares del oxígeno y el nitrógeno y con la consideración de que el aire está compuesto en volumen por 21% de oxígeno y 79% de nitrógeno. Esto quiere decir que 1 *kmol* de aire es igual a 0.21 *kmol* de oxígeno y 0.79 *kmol* de nitrógeno, por lo que por cada 1 *kmol* de oxígeno hay 3.762 *kmol* de nitrógeno. Entonces, se tiene:

$$n_{N_2} = \frac{3.762[0.687(1.95)][32.00]}{28.01} = 5.757 \ kmol/kmol$$

3.4.3 Volúmenes de los productos de combustión en zona primaria para el arreglo 1

Los volúmenes correspondientes a cada uno de los productos de combustión en la zona primaria se obtienen con el uso de las ecuaciones 2.63 a 2.67:

$$V_{CO_2 ZCA 1} = \frac{[(0.7)(0.687)(1.95-0.5)][(44.01)]}{(1.977)(22.41)} = 0.692 \ m^3/m^3$$
$$V_{CO ZCA 1} = \frac{[1-(0.7)(0.687)(1.95-0.5)][(28.01)]}{(1.25)(22.41)} = 0.303 \ m^3/m^3$$
$$V_{H_2O ZCA 1} = \frac{[(1.3)(0.687)(1.95-0.5)][(18.02)]}{(0.804)(22.41)} = 1.295 \ m^3/m^3$$

$$V_{H_2 ZCA 1} = \frac{[(1.9) - (1.3)(0.687)(1.95 - 0.5)][(2.016)]}{(0.09)(22.41)} = 0.605 \ m^3/m^3$$

 $V_{N_2 ZCA 1} = \frac{[(3.762)(0.687)(1.95)][32.00]}{(1.25)(22.41)} = 5.757 \ m^3/m^3$

Y el volumen total de los productos de combustión en la zona 1 es la suma de todos los volúmenes anteriores como se aprecia en la ecuación 2.68:

 $V_{gas\,ZCA\,1} = 0.692 + 0.303 + 1.295 + 0.605 + 5.757 = 8.652 \ m^3/m^3$

3.4.4 Calor liberado en la combustión completa

Con el uso de las ecuaciones 2.69 y 2.70 se puede calcular el calor que se libera por el carbono y por el hidrógeno en la combustión completa de nuestro combustible $CH_{3,8}$:

```
Q_{Carbono} = (34000)(1)(12) = 408000 \, kJ
```

 $Q_{Hidrógeno} = (103000)(3.8)(1) = 391400 \, kJ$

3.4.5 Calor liberado en zona primaria, dos etapas

Como se mencionó, en la primera etapa se realiza la combustión incompleta, donde se tiene 1 *kmol* de *CO* y 1.9 *kmol* de H_2 . Posteriormente, estos productos reaccionan y forman productos completos en donde liberan calor como lo muestran las ecuaciones 2.71 y 2.72:

$$Q_{completo C} = (12640)(1)(22.41) = 283262.4 \, kJ$$

 $Q_{completo H} = (10790)(1.9)(22.41) = 459427.41 \, kJ$

Mientras que el calor liberado en la primera etapa, cuando ocurre la combustión incompleta, se obtiene por medio de un balance de calor liberado en las dos etapas de la zona 1 por medio de las ecuaciones 2.73 y 2.74:

Carbono:

 $408000 = Q_{incompleto C} + 283262.4$

 $Q_{incompleto C} = 408000 - 283262.4 = 124737.6 \, kJ$

Hidrógeno:

 $391400 = Q_{incompleto H} + 459427.4$

 $Q_{incompleto H} = 391400 - 459427.4 = -68027.4 kJ$

3.4.6 Calor total liberado en zona primaria para el arreglo 1

El calor liberado total en la zona 1 involucra el calor liberado en la combustión incompleta, el calor que ingresa con el aire precalentado y el calor que ingresa con los gases de recirculación. Primero se debe calcular el calor liberado de la combustión incompleta usando la ecuación 2.75 como sigue:

 $Q_{lib\,1} = \frac{\frac{(0.697)(408000)}{1} + \frac{(0.303)(124737.6)}{1} + \frac{(1.294)(391400)}{1.9} + \frac{(0.606)(-68027.4)}{1.9}}{22.41} = 25306.450 \ kJ/m^3$

Con la metodología de (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001) se obtuvo previamente la entalpía de 4371.252 kJ/m^3 , correspondiente a la temperatura del aire a la salida del precalentador de 332°C. Ahora, con el uso de la ecuación 2.12 y tomando en cuenta que la zona primaria abarca sólo los primeros cuatro niveles de quemadores se tiene que el calor del aire precalentado es el siguiente:

$$Q_{aire\ 1} = \left(\frac{4}{6}\right)(1.03)(4371.252) = 3001.593 \ kJ/m^3$$

Al no haber recirculación en el hogar, el valor de $Q_{rec 1}$ es igual a 0, por lo que por medio de la ecuación 2.76 se calcula el calor total liberado en la zona primaria:

 $Q_{ZCA\,1} = 25306.450 + 3001.593 + 0 = 28308.040 \ kJ/m^3$

3.4.7 Parámetros de la ZCA primaria para el arreglo 1

En base al arreglo mostrado en la figura 3.3 se calculan los parámetros geométricos y el coeficiente de eficiencia térmica promedio en la zona de combustión activa primaria, los cuales son utilizados para el cálculo de los parámetros que influyen en la formación de NO_x en esta zona:

Altura de la ZCA 1

 $C_{ZCA1} = (3.96 + 1.5) + (1.32/2) = 6.12 m$

Área frontal de la ZCA 1

 $A_{F1} = (8.58)(6.12) = 52.509 m^2$

Área posterior de la ZCA 1

 $A_{P1} = (8.58)(6.12) = 52.509 m^2$

Áreas laterales de la ZCA 1

 $A_{L1} = (10.27)(6.12)(2) = 125.704 m^2$

Área superior de la ZCA 1

 $A_{S1} = (8.58)(10.27) = 88.116 m^2$

Área inferior de la ZCA 1

 $A_{I1} = (8.58)(10.632) = 91.222 \ m^2$

Área total de la ZCA 1

 $A_{Total 1} = 52.509 + 52.509 + 125.704 + 88.116 + 91.222 = 410.063 m^2$

Coeficiente de eficiencia térmica promedio de la ZCA 1

 $\Psi_{ZCA\,1} = \frac{[(52.509+52.509+125.704+91.222-10.228)(0.65)+(88.116)(0.1)]}{410.063} = 0.516$

3.4.8 Temperatura promedio de la ZCA primaria para el arreglo 1

Para conocer esta temperatura, en primer lugar se debe saber el calor disponible en la zona 1 y posteriormente calcular la temperatura adiabática. Esto se hace con el calor total liberado en la zona primaria de la misma manera en que se realizó en la sección 3.2.1:

$$Q_{ZCA1} = (0.97)(28308.040) = 27458.800 \ kJ/m^3$$

Ahora se calcula la temperatura adiabática en la zona 1 con el uso de este calor y la tabla de entalpías obtenida con la metodología de (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001). Por medio de una interpolación se obtiene:

$$T_{ad\ ZCA\ 1}^{'} = \left[\frac{(2000-1900)}{(28192.27-26495.66)}(27458.800 - 26495.66) + 1900\right] + 273 = 2229.769\ K$$

Con la temperatura adiabática y con el uso de la ecuación 2.32 se puede calcular la temperatura promedio:

 $\overline{T}_{ZCA\,1} = (2229.769)(1 - 0.516)^{0.25}(1 - 0) = 1860.205 \, K$

3.4.9 Densidad de flujo de calor reflejado de la ZCA primaria para el arreglo 1

El cálculo de este parámetro se realiza con la ecuación 2.33. Primero se calcula el flujo de calor usando el valor del gasto de combustible $B_{calc} = 10.292 \ m^3/s$ para carga del 100% como sigue:

$$q_{ZCA\,1} = \frac{(28308.040)(10.292)}{410.063} = 710.491 \ kW/m^2$$

Ahora se calcula la densidad de flujo de calor reflejado:

$$q_{ZCA1}^{refl} = \frac{(710.491)(1 - 0.516)}{1000} = 0.344 \ MW/m^2$$

3.4.10 Tiempo de residencia de los gases en la ZCA primaria para el arreglo 1

Para este parámetro se usan las dimensiones de la ZCA 1, el gasto de combustible y el volumen total de los productos de combustión en esta zona, además de la temperatura promedio. Con la ecuación 2.36 se tiene:

$$\tau_{ZCA 1} = \frac{(8.58)(10.27)(6.12)(0.7)}{(10.292)(8.65)\left(\frac{1860.205}{273}\right)} = 0.622 \,s$$

3.4.11 Concentración de *NO_x* en la ZCA primaria para el arreglo 1

Con los parámetros calculados, se puede obtener la concentración de óxidos de nitrógeno en la zona primaria utilizando la ecuación 2.40:

$$C_{NO_x ZCA 1} = \left[26 \exp\left(0.26 \frac{1860.205 - 1700}{100}\right) - 4.7\right] \left[\exp(0.344) - 1\right] \left[13 + 9.6(0.687 - 1.07) + 59.4(0.687 - 1.07)^2 + 18.1(0.687 - 1.07)^3 + 79.8(0.687 - 1.07)^4] \left[0.622\right] = 166.515 \, ppm$$

Una vez encontrados los valores de los parámetros en la ZCA primaria, se realiza el mismo procedimiento para la ZCA secundaria.

3.4.12 Volúmenes de los productos de combustión en zona secundaria para el arreglo 1

Como se mencionó anteriormente, los productos incompletos formados en la zona primaria, ahora son productos completos. Ya no habrá productos de combustión incompleta, por lo que se tiene lo siguiente:

 $V_{CO_2 \ ZCA \ 2} = 0.303 \ m^3/m^3$ $V_{H_2O \ ZCA \ 2} = 0.605 \ m^3/m^3$ $V_{N_2 \ ZCA \ 2} = 8.179 - 5.757 = 2.422 \ m^3/m^3$ El velumentatel es la sume de les 2 velúmenta

El volumen total es la suma de los 3 volúmenes anteriores:

 $V_{aas ZCA2} = 0.303 + 0.605 + 2.422 = 3.333 \ m^3/m^3$

Nuevamente, con la metodología de (Jarquin, Polupan, Sanchez, Sanchez, & Vasquez, 2001) se obtienen las entalpías de estos productos de combustión correspondientes a la ZCA secundaria.

3.4.13 Calor total liberado en zona secundaria para el arreglo 1

Al igual que en la zona primaria, este calor involucra el calor liberado tanto de la combustión como el que ingresa con el aire precalentado. El calor liberado de la combustión completa se calcula por medio de la ecuación 2.77:

 $Q_{lib\,2} = \frac{\frac{(1-0.697)(283262.4)}{1} + \frac{(1.9-1.294)(459427.41)}{1.9}}{22.41} = 10365.130 \ kJ/m^3$

El calor del aire precalentado es obtenido de igual manera con la ecuación 2.12 teniendo en cuenta que esta zona involucra los últimos dos niveles de quemadores:

$$Q_{aire\ 2} = \left(\frac{2}{6}\right)(1.03)(4371.252) = 1500.797 \ kJ/m^3$$

El calor total liberado en la zona 2 es la suma de los dos anteriores. Con la ecuación 2.78 tenemos:

$$Q_{ZCA2} = 10365.130 + 1500.797 = 11865.92 \ kJ/m^3$$

El calor total es el utilizado en la zona 2, y es la suma del calor liberado en la zona 1 y el liberado en la zona 2. Usando la ecuación 2.79 se obtiene:

 $Q_{total} = 28308.040 + 11865.92 = 40173.960 \ kJ/m^3$

3.4.14 Parámetros de la ZCA secundaria para el arreglo 1

Como en la zona primaria, ahora se calculan los parámetros geométricos y el coeficiente de eficiencia térmica promedio utilizados en la zona de combustión activa secundaria en base al mismo arreglo:

Altura de la ZCA 2

 $C_{ZCA2} = (9.6) - (6.12) = 3.48 m$

Área frontal de la ZCA 2

 $A_{F2} = (8.58)(3.48) = 29.858 m^2$

Área posterior de la ZCA 2

 $A_{P2} = (8.58)(3.48) = 29.858 m^2$

Áreas laterales de la ZCA 2 $A_{L2} = (10.27)(3.48)(2) = 71.479 m^2$ Área superior de la ZCA 2 $A_{S2} = (8.58)(5.135) = 44.058 m^2$ Área inferior de la ZCA 2 $A_{I2} = (8.58)(10.27) = 88.116 m^2$

Área total de la ZCA 2

 $A_{Total 2} = 29.858 + 29.858 + 71.479 + 101.570 + 88.116 = 320.883 m^2$

Coeficiente de eficiencia térmica promedio de la ZCA 2

$$\Psi_{ZCA\,2} = \frac{\left[(29.858 + 29.858 + 71.479 - 5.423)(0.65) + (44.058)(0.1) + (88.116)(0.515)\right]}{320.883} = 0.410$$

3.4.15 Coeficiente de exceso de aire en la ZCA secundaria para el arreglo 1

El coeficiente de exceso de aire en esta zona, es el mismo que el utilizado en el hogar, es decir:

 $\alpha_{ZCA2} = 1.03$

3.4.16 Temperatura promedio de la ZCA secundaria para el arreglo 1

Para obtener este parámetro, se obtiene en primer lugar el calor disponible en la zona secundaria de la misma manera que en la zona primaria:

$$Q_{ZCA2} = (0.97)(40173.960) = 38968.750 \ kJ/m^3$$

La temperatura adiabática en esta zona se obtiene con el uso de este calor y la tabla de entalpías. De igual manera por medio de una interpolación se obtiene:

$$T_{ad\ ZCA\ 2}^{'} = \left[\frac{(2200-2100)}{(40748.96-38731.63)}(38968.750-38731.63)+2100\right]+273 = 2384.754\ K$$

Finalmente, con el uso de la ecuación 2.32 podemos calcular la temperatura promedio:

$$\bar{T}_{ZCA2} = (2384.754)(1 - 0.410)^{0.25}(1 - 0) = 2089.97 K$$

3.4.17 Densidad de flujo de calor reflejado de la ZCA secundaria para el arreglo 1

El siguiente parámetro es la densidad de flujo de calor reflejado. Siguiendo el mismo procedimiento que en la zona primaria, se debe calcular el flujo de calor como sigue:

$$q_{ZCA\,2} = \frac{(11865.92)(10.292)}{320.883} = 380.587 \ kW/m^2$$

Y con la ecuación 2.33 se obtiene la densidad de flujo de calor reflejado:

$$q_{ZCA2}^{refl} = \frac{(380.587)(1-0.410)}{1000} = 0.225 \ MW/m^2$$

3.4.18 Tiempo de residencia de los gases en la ZCA secundaria para el arreglo 1

Para este parámetro se usan las dimensiones de la segunda zona, el gasto de combustible y el volumen total de los productos de combustión. Nuevamente, al utilizar la ecuación 2.36 tenemos:

$$\tau_{ZCA\,2} = \frac{(8.58)(10.27)(3.48)(0.7)}{(10.292)(11.983)\left(\frac{2089.97}{273}\right)} = 0.227 \ s$$

3.4.19 Concentración de NO_x en la ZCA secundaria para el arreglo 1

Por último, con los parámetros calculados se obtiene la concentración de óxidos de nitrógeno en esta zona utilizando la ecuación 2.40:

$$C_{NO_x ZCA2} = \left[26 \exp\left(0.26 \frac{2089.97 - 1700}{100}\right) - 4.7\right] \left[\exp(0.225) - 1\right] \left[13 + 9.6(1.03 - 1.07) + 59.4(1.03 - 1.07)^2 + 18.1(1.03 - 1.07)^3 + 79.8(1.03 - 1.07)^4\right] \left[0.227\right] = 48.709 \, ppm$$

3.4.20 Concentración de NO_x total

Después de obtener ambas concentraciones en ppm en cada zona, estas se multiplican por un factor de conversión para obtener la concentración en mg/m^3 . Por medio de la ecuación 2.80 se tiene:

$$C_{NO_x ZCA 1} = (165.515)(1.88) = 313.049 \ mg/m^3$$

$$C_{NO_{x}ZCA2} = (48.709)(1.88) = 91.574 \ mg/m^{3}$$

Ahora, usando la ecuación 2.81 se obtienen los gastos volumétricos:

 $G_{NO_{x}ZCA1} = (8.65)(10.292) = 89.021 \ m^3/s$

 $G_{NO_{x}ZCA2} = (3.333)(10.292) = 34.303 \ m^{3}/s$

Con las concentraciones y gastos volumétricos se obtienen los flujos másicos para cada zona como lo dice la ecuación 2.82:

 $\dot{m}_{NO_x ZCA 1} = (313.049)(89.021) = 27868.240 \ mg/s$

 $\dot{m}_{NO_{x}ZCA2} = (91.574)(34.303) = 3141.290 \ mg/s$

Y con la ecuación 2.83 se obtiene el flujo másico en el hogar, siendo la suma de los dos anteriores:

 $\dot{m}_{NO_x total} = (27868.240) + (3141.290) = 31009.53 \ mg/s$

Se obtiene la concentración final de NO_x en mg/m^3 mediante la ecuación 2.84:

$$C_{NO_x total} = \frac{31009.53}{(11.983)(10.292)} = 251.445 \ mg/m^3$$

Y, finalmente usando la ecuación 2.85 se obtiene la concentración total en el hogar en ppm:

$$C_{NO_x}^{Gas\ Natural} = \frac{251.445}{1.88} = 133.747\ ppm$$

3.4.21 Parámetros obtenidos por la combustión a dos etapas en el hogar del generador de vapor a diferentes regímenes de operación para los arreglos 1 y 2

En este apartado se resumen los parámetros que influyen en la formación de NO_x por la combustión a dos etapas, tanto en la zona primaria como en la zona secundaria para los dos arreglos analizados.

Arreglo 1		Gas N	latural					
Parámetro		M.R.C.	100%	75%	50%			
2	Zona primaria							
Coeficiente de exceso de aire ZCA	$\alpha_{ZCA 1}$	0.687	0.687	0.700	0.733			
Temperatura promedio ZCA (K)	$\overline{T}_{ZCA 1}$	1861.543	1860.205	1860.097	1865.608			
Densidad de flujo de calor reflejado ZCA (MW/m^2)	q_{ZCA1}^{refl}	0.357	0.344	0.272	0.177			
Tiempo de residencia de los gases ZCA (s)	$ au_{ZCA \ 1}$	0.600	0.622	0.788	1.213			
Z	ona secundaria							
Coeficiente de exceso de aire ZCA	$\alpha_{ZCA 2}$	1.03	1.03	1.05	1.1			
Temperatura promedio ZCA (K)	$\overline{T}_{ZCA 2}$	2091.743	2089.97	2060.194	1997.535			
Densidad de flujo de calor reflejado ZCA (MW/m^2)	q_{ZCA2}^{refl}	0.233	0.225	0.168	0.095			
Tiempo de residencia de los gases ZCA (s)	$ au_{ZCA 2}$	0.219	0.227	0.292	0.464			
Total								
Concentración de óxidos de nitrógeno ZCA (ppm)	$C_{NO_x}^{Gas \ Natural}$	135.220	133.747	123.836	109.633			
M.B.C. Máximo Págimon do Corgo								

Tabla 3.8. Parámetros de la combustión a dos etapas para el arreglo 1

M.R.C.: Máximo Régimen de Carga

Arreglo 2			Gas N	latural				
Parámetro	M.R.C.	100%	75%	50%				
2	Zona primaria							
Coeficiente de exceso de aire ZCA	$\alpha_{ZCA 1}$	0.858	0.858	0.875	0.917			
Temperatura promedio ZCA (K)	$\bar{T}_{ZCA 1}$	1911.257	1909.758	1908.592	1912.632			
Densidad de flujo de calor reflejado ZCA (MW/m^2)	q_{ZCA1}^{refl}	0.382	0.368	0.291	0.190			
Tiempo de residencia de los gases ZCA (s)	$ au_{ZCA \ 1}$	0.609	0.632	0.800	1.230			
Z	ona secundaria							
Coeficiente de exceso de aire ZCA	$\alpha_{ZCA 2}$	1.03	1.03	1.05	1.1			
Temperatura promedio ZCA (K)	$\overline{T}_{ZCA 2}$	2122.036	2120.237	2089.847	2026.443			
Densidad de flujo de calor reflejado ZCA (MW/m^2)	q_{ZCA2}^{refl}	0.133	0.129	0.090	0.040			
Tiempo de residencia de los gases ZCA (s)	$ au_{ZCA \ 2}$	0.140	0.145	0.186	0.297			
Total								
Concentración de óxidos de nitrógeno ZCA (ppm)	$C_{NO_x}^{Gas \ Natural}$	138.951	137.308	128.873	119.260			
		. ~						

Tabla 3.9. Parámetros	de la combustión a	dos etapas	para el arreglo 2

M.R.C.: Máximo Régimen de Carga

Capítulo 4

Análisis de los resultados obtenidos

En el presente capítulo se exponen los resultados obtenidos por medio de las metodologías de cálculo. Se muestran los parámetros más relevantes del cálculo térmico en el hogar, así como los parámetros que influyen en la formación de NO_x , la concentración de este y otros contaminantes, así como los obtenidos por el método de la combustión a dos etapas. Se hace una comparación entre los resultados a diferentes cargas de operación.

4.1 ANÁLISIS DE LOS PARÁMETROS DEL CÁLCULO TÉRMICO

En este apartado se muestran los parámetros más importantes del cálculo térmico: la temperatura y entalpía de los gases en la salida del hogar. Estos corresponden a la combustión de gas natural y combustóleo (caso de referencia) en el generador de vapor.

Combustible	Parámetro		M.R.C.	100%	75%	50%
Gas natural	Temperatura de los gases a la salida del hogar (<i>K</i>)	T _{hogar}	1657.977	1647.022	1567.858	1417.128
	Entalpía de los gases a la salida del hogar (kJ/m^3)	$h_{hogar}^{''}$	25392.475	25165.191	23898.913	21650.371
Combustóleo	Temperatura de los gases a la salida del hogar (K)	$T_{hogar}^{''}$	1701.410	1689.446	1604.455	1446.061
	Entalpía de los gases a la salida del hogar (kJ/kg)	h _{hogar}	26913.912	26664.397	25273.195	22497.719

Tabla 4.1. Parámetros más importantes del cálculo térmico para la combustión de gas natural y combustóleo

M.R.C.: Máximo Régimen de Carga

4.1.1 Temperatura y entalpía de los gases a la salida del hogar

A partir de la tabla 4.1 se obtienen los valores de la temperatura de los gases al salir del hogar por lo que se tiene la siguiente gráfica:

Figura 4.1. Temperatura de los gases en la salida del hogar en la combustión de gas natural y combustóleo

En la figura 4.1 se nota que la temperatura en la salida del hogar está relacionada de manera directa con la carga de operación del generador de vapor. Es decir, conforme hay mayor requerimiento de operación en la planta, la temperatura de los gases también aumenta. Las entalpías de los gases mostradas en la tabla 4.1, corresponden a cada una de estas temperaturas y tienen la misma tendencia con respecto a la carga de operación.

4.2 ANÁLISIS DE LOS PARÁMETROS DEL CÁLCULO DE LA CONCENTRACIÓN DE $N\mathcal{O}_x$

Ahora se muestran los parámetros que influyen en la formación de los óxidos de nitrógeno en el hogar del generador de vapor. Estos parámetros son calculados para carga máxima, carga de 100%, 75% y 50% para la combustión de gas natural y de combustóleo. Los resultados del cálculo se muestran en la siguiente tabla y posteriormente se analiza cada uno de ellos:

Tabla 4.2. Parámetros del cálculo de la concentración de NO_x en el hogar del generador de vapor para la combustión de gas natural y combustóleo

Gas Natural Temperatura promedio ZCA (K) \bar{T}_{ZCA} 1985.230 1958.031 1900.64 Densidad de flujo de calor reflejado (MW/m ²) q_{ZCA}^{refl} 0.358 0.345 0.278 0.179 Coeficiente de exceso de aire ZCA α_{ZCA} 1.03 1.05 1.1 Tiempo de residencia de los gases en ZCA (s) τ_{ZCA} 0.654 0.678 0.850 1.284 Concentración de óxidos de nitrógeno en ZCA C_{NO_x} 179.403 177.307 161.102 131.345	Combustible	Parámetro		M.R.C.	100%	75%	50%
Densidad de flujo de calor reflejado (MW/m^2) q_{ZCA}^{refl} 0.3580.3450.2780.179Coeficiente de exceso de aire ZCA α_{ZCA} 1.031.031.051.1Tiempo de residencia de los gases en ZCA (s) τ_{ZCA} 0.6540.6780.8501.284Concentración de óxidos de nitrógeno en ZCA C_{NO_x} 179.403177.307161.102131.345	Gas Natural	Temperatura promedio ZCA (K)	\overline{T}_{ZCA}	1986.837	1985.230	1958.031	1900.647
Coeficiente de exceso de aire ZCA α_{ZCA} 1.031.051.1Tiempo de residencia de los gases en ZCA (s) τ_{ZCA} 0.6540.6780.8501.284Concentración de óxidos de nitrógeno en ZCA C_{NO_x} 179.403177.307161.102131.345(ppm) α_{NO_x} <td></td> <td>Densidad de flujo de calor reflejado (MW/m^2)</td> <td>q_{ZCA}^{refl}</td> <td>0.358</td> <td>0.345</td> <td>0.278</td> <td>0.179</td>		Densidad de flujo de calor reflejado (MW/m^2)	q_{ZCA}^{refl}	0.358	0.345	0.278	0.179
Tiempo de residencia de los gases en ZCA (s) τ_{ZCA} 0.6540.6780.8501.284Concentración de óxidos de nitrógeno en ZCA C_{NO_x} 179.403177.307161.102131.349(ppm)		Coeficiente de exceso de aire ZCA	α_{ZCA}	1.03	1.03	1.05	1.1
Concentración de óxidos de nitrógeno en ZCA C_{NO_x} 179.403 177.307 161.102 131.34 (ppm)		Tiempo de residencia de los gases en ZCA (s)	$ au_{ZCA}$	0.654	0.678	0.850	1.284
(<i>ppm</i>)	-	Concentración de óxidos de nitrógeno en ZCA	C_{NO_x}	179.403	177.307	161.102	131.345
		(ppm)					
Combustóleo Temperatura promedio ZCA (K) T_{ZCA} 2144.200 2142.514 2111.565 2067.27	Combustóleo	Temperatura promedio ZCA (K)	\overline{T}_{ZCA}	2144.200	2142.514	2111.565	2067.274
Densidad de flujo de calor reflejado (MW/m^2) q_{ZCA}^{refl} 0.400 0.385 0.311 0.201		Densidad de flujo de calor reflejado (MW/m^2)	q_{ZCA}^{refl}	0.400	0.385	0.311	0.201
Coeficiente de exceso de aire ZCA α_{ZCA} 1.05 1.05 1.07 1.1		Coeficiente de exceso de aire ZCA	α_{ZCA}	1.05	1.05	1.07	1.1
Tiempo de residencia de los gases en ZCA (s) τ_{ZCA} 0.6460.6700.8381.288	-	Tiempo de residencia de los gases en ZCA (s)	$ au_{ZCA}$	0.646	0.670	0.838	1.288
Concentración de óxidos de nitrógeno en ZCA C_{NO_x} 239.041 236.176 212.449 179.854		Concentración de óxidos de nitrógeno en ZCA	C_{NO_x}	239.041	236.176	212.449	179.854
(<i>ppm</i>)		(ppm)					

M.R.C.: Máximo Régimen de Carga

4.2.1 Temperatura promedio en la ZCA

Usando los valores mostrados en la tabla 4.2 se tiene la siguiente gráfica para este parámetro:

Figura 4.2. Temperatura promedio en la ZCA en la combustión de gas natural y combustóleo

El valor de la temperatura en la ZCA depende del calor disponible en el hogar, y posteriormente de la temperatura adiabática. Se aprecia que los valores obtenidos cuando se quema combustóleo son mayores que los del gas natural y conforme aumenta la carga de operación, esto debido a que es la misma tendencia que se presenta en la temperatura de los gases en la salida del hogar, además de que se libera mayor calor cuando se quema combustóleo. Cuando se opera a carga máxima, la temperatura del combustóleo es mayor en un 7.33% que la del gas natural, por lo que de acuerdo con lo dicho en el apartado 1.2.2, habrá una formación de NO_x mayor en la quema de combustóleo.

4.2.2 Densidad de flujo de calor reflejado en la ZCA

Con los valores obtenidos para la densidad de flujo de calor reflejado se tiene la siguiente gráfica:

Figura 4.3. Densidad de flujo de calor reflejado en la ZCA en la combustión de gas natural y combustóleo

El valor de este parámetro también depende del calor disponible en el hogar, ya que a partir de éste se obtiene el flujo de calor, así como de la cantidad de calor absorbido por las paredes del hogar, representada por el coeficiente de eficiencia térmica. Este valor es mayor en la combustión de gas natural, por lo que la densidad de flujo de calor reflejado del gas natural es menor que la del combustóleo. Se aprecia que para la operación actual del generador de vapor conforme la carga es mayor, el valor de la densidad de flujo de calor reflejado también lo es, y cuando se opera a carga máxima el valor de este parámetro del combustóleo es mayor en un 10.5% que el del gas natural.

4.2.3 Coeficiente de exceso de aire en la ZCA

En la siguiente figura se muestran los valores del coeficiente de exceso de aire en la ZCA:

Figura 4.4. Coeficiente de exceso de aire en la ZCA en la combustión de gas natural y combustóleo

El valor del coeficiente de exceso de aire en la ZCA varía de acuerdo con el combustible que se quema, la carga de operación a la que trabaja el generador de vapor y la cantidad de gases que son recirculados al hogar. Al no haber recirculación de gases en el hogar, el valor de este parámetro en la ZCA es el mismo que el del hogar.

4.2.4 Tiempo de residencia de los gases en la ZCA

Figura 4.5. Tiempo de residencia de los gases en la ZCA en la combustión de gas natural y combustóleo

Los valores de este parámetro dependen de la geometría del hogar, así como de la temperatura promedio en la ZCA y el flujo de combustible, el cual tiene una influencia importante. Se puede apreciar en la figura anterior, que el tiempo de residencia de los gases en la ZCA es mayor conforme la carga de operación disminuye y las variaciones entre los valores de ambos combustibles son muy pequeñas.

4.2.5 Concentración de *NO_x* en la ZCA

Una vez calculados los parámetros anteriores, se puede saber la concentración de NO_x en la ZCA.

Figura 4.6. Concentración de NO_x en la ZCA en la combustión de gas natural y combustóleo

Se puede notar que la concentración de NO_x al quemar combustóleo es mayor que la obtenida para la combustión de gas natural, esto es principalmente porque en el proceso de combustión el combustóleo libera más calor y por consecuencia su temperatura en la ZCA también es mayor. Al usar combustóleo en el proceso de combustión, la concentración de óxidos de nitrógeno a la carga máxima es casi 60 *ppm* mayor que cuando se quema gas natural, es decir 25% más. Por tal razón, el gas natural es una mejor opción que el combustóleo para la generación de vapor.

4.3 ANÁLISIS DE OTROS CONTAMINANTES EN EL PROCESO DE COMBUSTIÓN

A partir de los valores mostrados en las tablas 3.5, 3.6 y 3.7 se construyen las gráficas para las emisiones de dióxido de carbono y óxidos de azufre durante el proceso de combustión de gas natural y combustóleo para los diferentes regímenes de operación a los que trabaja el generador de vapor.

4.3.1 Emisión de CO₂

Figura 4.7. Emisión de CO₂ en la combustión de gas natural y combustóleo

De la figura anterior se puede notar que las emisiones de CO_2 para el combustóleo son mayores que las del gas natural. Se aprecia que, conforme la carga de operación aumenta el valor de estas emisiones también, y cuando el generador de vapor opera a su carga máxima, las emisiones del combustóleo de CO_2 son mayores en un 23%.

4.3.2 Emisión de SO_x

Figura 4.8. Emisión de SO_x en la combustión de combustóleo

A partir de la tabla 3.7 se obtuvo la gráfica anterior. Como se sabe, los óxidos de azufre sólo son considerados para la combustión de combustóleo, ya que el gas natural se considera libre de este

compuesto. La tendencia para los óxidos de azufre es la misma que para el dióxido de carbono o los óxidos de nitrógeno, a mayor carga de operación, mayor será la emisión de SO_x .

4.4 ANÁLISIS DE LOS RESULTADOS DE LA COMBUSTIÓN A DOS ETAPAS

A continuación, se analizan cada uno de los parámetros involucrados en este cálculo para la combustión de gas natural en los dos arreglos analizados y se muestran los valores de los resultados obtenidos, partiendo de las tablas 3.8 y 3.9.

4.4.1 Temperatura promedio en la ZCA en las zonas 1 y 2

Figura 4.10. Temperatura promedio en la ZCA 2

Como se ve en las figuras anteriores, 4.9 y 4.10, se obtienen valores menores para el arreglo 1. Los valores de este parámetro son menores en la zona primaria que en la zona secundaria para ambos arreglos, ya que la combustión incompleta ocurre al inicio del proceso y por consecuencia hay una menor cantidad de calor liberado. Posteriormente, este valor aumenta en la ZCA 2 debido a que aquí se trabaja con el calor total del proceso de combustión.

4.4.2 Densidad de flujo de calor reflejado en la ZCA en las zonas 1 y 2

Figura 4.11. Densidad de flujo de calor reflejado en la ZCA 1

Figura 4.12. Densidad de flujo de calor reflejado en la ZCA 2

De manera contraria a la temperatura promedio, los valores de este parámetro en la zona primaria son mayores comparados con los de la zona secundaria, esto es porque se trabaja con el calor liberado en cada zona por separado. Es decir, que tanto el calor liberado como las áreas que componen la primera zona son mayores que los de la segunda. También, se observa la misma tendencia ascendente para ambos arreglos en relación con la carga de operación.

4.4.3 Coeficiente de exceso de aire en la ZCA en las zonas 1 y 2

Figura 4.14. Coeficiente de exceso de aire en la ZCA 2

De las dos anteriores figuras se puede notar que el coeficiente de exceso de aire es menor en ambos arreglos para la primera zona que en la segunda, debido a que en la combustión a dos etapas se trabaja en primer lugar con una deficiencia de aire para obtener productos de combustión incompleta. Sus valores dependen de la distribución de aire en los quemadores y de la cantidad de gases recirculados. Posteriormente, los productos de combustión incompleta reaccionan con una cantidad de oxígeno mayor al necesario para formar productos completos, es por eso que el

coeficiente de exceso de aire es mayor a 1. En la segunda zona, el valor de este parámetro es el mismo que el utilizado en el hogar y va desde 1.03 hasta 1.1.

4.4.4 Tiempo de residencia de los gases en la ZCA en las zonas 1 y 2

Figura 4.16. Tiempo de residencia de los gases en la ZCA 2

Los valores del tiempo de residencia de los gases en la ZCA van disminuyendo conforme la carga de operación aumenta. Esto ocurre porque existe una relación inversa entre el tiempo de residencia de los gases con la temperatura promedio y el gasto de combustible, ya que estos dos últimos parámetros aumentan conforme la carga de operación también lo hace. Además, el valor de este parámetro es menor en la ZCA 2 que en la ZCA 1 debido a que la altura de la ZCA 1 es mayor.

4.4.5 Concentración de *NO_x* total en la ZCA

Figura 4.17. Concentración total de NO_x en la ZCA

Con los parámetros anteriormente encontrados, se obtiene la concentración total de NO_x en la ZCA para cada arreglo. Como se puede apreciar, aunque la diferencia entre los dos arreglos no es muy grande, la concentración total de NO_x es menor en el arreglo 1 que en el arreglo 2. Para la carga máxima de operación, hay una diferencia de 2.7% en la concentración de NO_x entre los arreglos y la mayor diferencia porcentual se da cuando se trabaja a 50%, siendo este valor de 8.02%.

4.5 ANÁLISIS DE LA CONCENTRACIÓN TOTAL DE $N\mathcal{O}_x$ EN EL HOGAR

En la siguiente figura se hace una comparación final de las concentraciones de NO_x obtenidas:

Figura 4.18. Concentración total de NO_x en la ZCA por diferentes análisis
Finalmente, en la figura 4.18 se pueden apreciar los resultados obtenidos para la concentración de óxidos de nitrógeno en la ZCA. Los diferentes análisis fueron los siguientes: combustión de gas natural y de combustóleo a condiciones de operación de la planta termoeléctrica, y combustión a dos etapas para gas natural en dos arreglos. En la figura, se muestra que los mejores resultados se obtienen para el arreglo 1 en la combustión a dos etapas. En primer lugar, como se mencionó en la sección 4.2.5, cuando el generador de vapor opera a su carga máxima quemando combustóleo se producen 60 *ppm* que cuando quema gas natural, lo cual es igual a un 25% más de este compuesto. En relación a la combustión convencional del gas natural y trabajando a la máxima carga, se obtiene una reducción de 44.182 *ppm* para el arreglo 1 y 40.451 *ppm* para el arreglo 2, lo que equivale a reducir los NO_x en un 24.62% y 22.54%, respectivamente.

CONCLUSIONES

Se realizó el cálculo térmico en el hogar del generador de vapor de 150 *MW* de la unidad 2/3 ubicado en la Planta Termoeléctrica Valle de México para la combustión de gas natural y de combustóleo a máximo régimen de carga, carga de 100%, 75% y 50%. Con este cálculo se obtuvieron como parámetros más importantes la temperatura de los gases y su entalpía correspondiente a la salida del hogar. Los valores de estos parámetros son mayores cuando se quema combustóleo y están relacionados de manera directa con la carga de operación, ya que el valor de cada parámetro aumenta conforme la carga térmica también lo hace.

Se analizaron los cuatro parámetros que influyen en la formación de NO_x en el hogar del generador de vapor. Este análisis fue llevado a cabo a partir del anterior cálculo térmico para la combustión de gas natural y combustóleo a las condiciones de trabajo de la planta para las mismas cargas de operación, con el objetivo de determinar la influencia que tiene el tipo de combustible que se usa. Al trabajar a la carga máxima, se encontró que el sustituir el combustóleo por el gas natural reduce las emisiones de NO_x en cerca de 60 *ppm*, lo que es equivalente a un 25% de reducción.

Se calcularon otros contaminantes derivados del proceso de combustión, los cuales son dióxido de carbono y óxidos de azufre. Se obtuvieron los volúmenes de cada compuesto y utilizando factores de emisión establecidos por SEMARNAT se determinó el nivel de emisiones de dióxido de carbono para la combustión de gas natural y de combustóleo, y de óxidos de azufre para la combustión de combustóleo, a las cargas de operación anteriormente mencionadas. Se reportó que las emisiones de CO_2 del combustóleo son mayores a las del gas natural en alrededor de 23%.

Se realizó el análisis de la concentración de NO_x en el hogar del generador de vapor para dos arreglos por medio del método de combustión a dos etapas. Para esto se examinaron las dos zonas formadas en el proceso de manera separada, es decir, para cada zona se obtuvieron los parámetros geométricos y los cuatro parámetros que influyen en la formación de los NO_x . Este análisis se hizo sólo para la combustión de gas natural. A pesar de que no hay mucha variación entre los resultados obtenidos para cada arreglo se obtuvieron mejores resultados para el arreglo 1, en el cual se inyecta el combustible a través de los primeros cuatro niveles de quemadores y el aire se distribuye uniformemente a través de los seis niveles. Con respecto a la combustión de gas natural a condiciones de operación de la planta, a la carga máxima y al 100% para el arreglo 1 se obtuvieron disminuciones de alrededor de 44 *ppm* lo que equivale a una disminución porcentual de alrededor de 24.6%, para la carga de 75% se redujeron cerca de 37 *ppm* que es igual a un 23%, mientras que la menor disminución porcentual se presenta cuando el generador de vapor trabaja a 50%, reduciendo sólo 21 *ppm*, es decir 16.5%. De igual manera, para el arreglo 2 a la máxima carga y al 100% se redujeron cerca de 40 *ppm*, 32 *ppm* al 75% y 12 *ppm* al 50%, lo que significa que los porcentajes de reducción van de 23 hasta 9%.

RECOMENDACIONES

- Evaluar los dos arreglos analizados por el método de combustión a dos etapas realizando las mediciones pertinentes en la operación del generador de vapor.
- Estudiar posibles efectos que pueda producir la combustión a dos etapas en el hogar del generador de vapor.
- Estudiar métodos postcombustión con el objetivo de alcanzar menores niveles de emisiones contaminantes.
- Realizar el análisis de la combustión a dos etapas en combinación con otras alternativas para lograr una mayor disminución en la formación de NO_x .
- Realizar un análisis más profundo en el cálculo de la formación de otros contaminantes diferentes a los NO_x por un método diferente a los factores de emisión, para poder establecer una comparativa entre los resultados obtenidos.

REFERENCIAS

- Basu, P., Kefa, C., & Jestin, L. (2000). *Boilers and Burners: Design and Theory*. New York, U.S.A.: Springer.
- Bezgreshnov, A. N., Lipov, Y. M., & Shleyfer, B. M. (1991). Calculation of steam boilers.
- Bowman, C. T., Hanson, R. K., Louge, M., & A., G. (1982). Gas Phase Reaction Kinetics of NOx Formation from Fuel Nitrogen in Fossil Fuel Combustion. *Proceedings of 1982 Joint Symposium* on Stationary Symposium NOx Control. Dallas, U.S.A.
- CFE. (2015). Informe Anual 2015.
- CFE. (s.f.). Libro de curvas Unidades 2 y 3.
- CFE. (s.f.). Prontuario de Datos Técnicos: Central Termoeléctrica Valle de México.
- Coykendall, L. H. (1962). Formation and Control of Sulfur Oxides in Boilers. *Journal of the Air Pollution Control Association*, 567-591.
- Egorova, L. E. (1995). Development of calculation method of nitrogen oxide formation in hot water and steam boilers. Tesis Ph.D. Moscow.
- Fenimore, C. P. (1971). Formation of nitric oxide in premixed hydrocarbon flames. *Proceedings of XIIIth International Symposium on Combustion*, (págs. 373-384). Pittsburg.
- INECC. (2017). Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero.
- INECC-SEMARNAT. (2013). Guía metodológica para la estimación de emisiones de fuentes fijas. México, D. F.
- Jarquin, G. (2006). *Estudio de la formación de NOx en generadores de vapor que queman gas natural y combustóleo. Tesis doctoral.* México, D. F.: Instituto Politécnico Nacional.
- Jarquin, G., Polupan, G., Jiménez, J. A., & Pysmenny, Y. (2011). Metodología del cálculo de NOx en generadores de vapor que queman gas natural. *Científica, Vol. 15 Núm. 2*, 93-100.
- Jarquin, G., Polupan, G., Sanchez, A., Sanchez, A., & Vasquez, B. (2001). Cálculo de las Características Termodinámicas de los Productos de la Combustión del Gas Natural y del Combustóleo. Sexto Congreso Nacional de Ingeniería Electromecánica y de Sistemas, (págs. 308-313). México, D. F.
- Li, Q., & Zhou, H. (2016). Heat Transfer Calculation in Furnaces. En *Theory and Calculation of Heat Transfer in Furnaces* (págs. 131-172).
- Miller, J. A., & Bowman, C. T. (1989). Mechanism and modeling of nitrogen chemistry in combustion. *Progress in Energy and Combustion Science, Vol. 15*, 287-338.

- Ramírez, H. A. (2010). Influencia de la combustión de 2 etapas en la formación de NOx en un generador de vapor de 350 MW quemando combustóleo. Tesis de Maestría. México, D. F.: Instituto Politécnico Nacional.
- Roslyakov, P. V. (1991). Recommendations on decrease of nitrogen oxide formation in gas and black oil boilers. *Power Plants*, #9, 9-17.
- Roslyakov, P. V., & Egorova, L. E. (1996). Influence of the basic characteristics of active burning zone on nitrogen oxides formation. *Thermal Engineering*, #9, 22-26.
- Roslyakov, P. V., & Egorova, L. E. (1997). Method of calculation of nitrogen oxide formation in hot water and steam boilers. *Thermal Engineering*, #4, 67-74.
- SEMARNAT. (2012). NOM-085-SEMARNAT-2011.
- SEMARNAT. (2015). Acuerdo que establece las particularidades técnicas y las fórmulas para la aplicación de metodologías para el cálculo de emisiones de gases o compuestos de efecto invernadero.
- SENER. (2017). PRODESEN 2018-2032: Programa de Desarrollo del Sistema Eléctrico Nacional.
- Szecowka, L., & M., P. (2007). Techniques to Limit NOx Emissions. En Advanced Combustion and Aerothermal Technologies (págs. 47-54). N. Syred and A. Khalatov.
- The Babcock & Wilcox Company. (2005). Steam: Its generation and use. Ohio, U.S.A.

Thermal Design for Power Boilers: Standard Method. (1998). Sankt Petersburg, URSS.

- US-EPA. (1995). Emission factors & AP-42. North Carolina, U.S.A.
- Villalobos, E. (2017). Estudio de formación de óxidos de nitrógeno en la combustión de gas natural en un generador de vapor de unidad 350 MW. Tesis de Maestría. Ciudad de México: Instituto Politécnico Nacional.
- Wielgosinski, G. (2012). Pollutant Formation in Combustion Processes. En Advances in Chemical Engineering (págs. 295-325). Dr Zeeshan Nawaz.
- Winterbone, D. E. (1997). Advanced Thermodynamics for Engineers. Butterworth-Heinemann.
- Zeldovich, Y. B. (1946). The Oxidation of Nitrogen in Combustion and Explosions. *Acta Physcochimica*, *Vol. 21*, 577-628.

ANEXO A

Parámetros para el cálculo de las características termodinámicas de la combustión completa de gas natural a diferentes cargas de operación en el hogar del generador de vapor

Composición volumétrica del gas natural					
Componente		Porcentaje %			
Metano	CH_4	90.7072			
Etano	C_2H_6	4.0416			
Propano	C_3H_8	1.0186			
Isobutano	$C_{4}H_{10}$	0.2913			
Butano	$C_{4}H_{10}$	0.2616			
Neopentano	$C_{5}H_{12}$	0.1586			
Isopentano	$C_{5}H_{12}$	0.1466			
Pentano	$C_{5}H_{12}$	0.1548			
Hexano	$C_{6}H_{14}$	0.1093			
Nitrógeno	N_2	2.2525			
Dióxido de Carbono	<i>CO</i> ₂	0.8579			
TOTAL		100			

Tabla A1. Composición volumétrica del gas natural

Tabla A2. Poder calorífico inferior de algunos hidrocarburos comunes

Poder calorífico inferior de hidrocarburos						
Compone	nte	PCI (kJ/m^3)				
Metano	CH_4	35794				
Etano	C_2H_6	63705				
Propano	C_3H_8	91195				
Isobutano	$C_{4}H_{10}$	118356				
Butano	$C_{4}H_{10}$	118546				
Neopentano	$C_{5}H_{12}$	145116				
Isopentano	$C_{5}H_{12}$	145628				
Pentano	$C_{5}H_{12}$	145985				
Hexano	$C_{6}H_{14}$	173412				

Volumen teórico (m^3/m^3)						
Aire	V^0	9.947				
Nitrógeno	$V_{N_2}^{0}$	7.880				
Vapor de agua	$V_{H_20}^{0}$	2.212				

Tabla A3. Volúmenes teóricos de los gases

Tabla A4. Volúmenes de los gases de combustión a diferentes coeficientes de exceso de aire

Volúmenes de los gases de combustión							
Coeficiente de exceso de aire	α	1	1.03	1.05	1.1		
Volumen de gases triatómicos	V_{RO_2}	1.079	1.079	1.079	1.079		
Volumen de gases diatómicos	V_{R_2}	7.880	8.179	8.378	8.875		
Volumen de vapor de agua	V_{H_2O}	2.212	2.216	2.220	2.228		
Volumen de los gases	Vgas	11.171	11.474	11.676	12.181		

Tabla A5. Relación de temperatura y entalpía de los productos de combustión para un coeficiente de exceso $\alpha = 1.03$

	Entalpía de los productos de combustión para $\alpha = 1.03 \ (kJ/m^3)$								
T (°C)	I_{RO_2}	I_{N_2}	I_{H_2O}	Igas	I _{aire}	I _{exc aire}	I _{total}		
200	392.13018	2065.348	672.35952	3129.8377	2607.1087	78.213261	3208.05096		
300	612.56988	3117.6432	1019.68776	4749.90084	3935.43108	118.062932	4867.96377		
400	843.86432	4183.3344	1378.076	6405.27472	5297.37432	158.92123	6564.19595		
500	1090.9769	5262.264	1750.3556	8103.5965	6684.384	200.53152	8304.12802		
600	1344.39084	6373.8168	2133.73944	9851.94708	8095.8633	242.875899	10094.823		
700	1603.27531	7505.6212	2528.22752	11637.124	9562.15057	286.864517	11923.9885		
800	1868.48272	8657.2832	2941.42912	13467.195	11027.6421	330.829262	13798.0243		
900	2138.65353	9828.0936	3367.4382	15334.1853	12518.8963	375.56689	15709.7522		
1000	2412.4282	11019.392	3797.1192	17228.9394	14035.217	421.05651	17649.9959		
1100	2688.44719	12230.548	4237.90444	19156.8996	15575.51	467.265299	19624.1649		
1200	2970.78912	13460.616	4689.79392	21121.199	17141.864	514.255921	21635.455		
1300	3247.67131	14668.3836	5153.0752	23069.1301	18677.6808	560.330425	23629.4605		
1400	3535.40824	15934.6208	5627.19528	25097.2243	20231.4022	606.942067	25704.1664		
1500	3821.9259	17172.096	6098.484	27092.5059	21864.5007	655.935021	27748.4409		
1600	4112.80272	18422.8096	6593.88352	29129.4958	23455.8218	703.674653	29833.1705		
1700	4400.4857	19686.7616	7084.96964	31172.2169	25062.1628	751.864884	31924.0818		
1800	4691.96676	20962.5336	7584.948	33239.4484	26611.607	798.348209	34037.7966		
1900	4978.25783	22040.2812	8094.17252	35112.7116	28248.7837	847.463511	35960.1751		
2000	5276.5258	23490.28	8613.0856	37379.8914	29819.1166	894.573498	38274.4649		
2100	5568.67584	24803.7972	9140.82456	39513.2976	31483.4486	944.503459	40457.8011		
2200	5863.76076	26057.7416	9657.3708	41578.8732	33074.5708	992.237123	42571.1103		
2300	6161.56476	27392.6136	10181.8139	43735.9922	34674.0484	1040.22145	44776.2137		
2400	6450.95256	28663.0272	10713.1584	45827.1382	36281.8814	1088.45644	46915.5946		
2500	6742.40125	29940.06	11229.218	47911.6793	38000.0268	1140.0008	49051.6801		

	Entalpía de los productos de combustión para $\alpha = 1.05 \ (kJ/m^3)$								
T (°C)	I_{RO_2}	I_{N_2}	I_{H_2O}	Igas	I _{aire}	I _{exc aire}	I _{total}		
200	392.13018	2065.348	672.35952	3129.8377	2607.1087	130.355435	3260.19314		
300	612.56988	3117.6432	1019.68776	4749.90084	3935.43108	196.771554	4946.67239		
400	843.86432	4183.3344	1378.076	6405.27472	5297.37432	264.868716	6670.14344		
500	1090.9769	5262.264	1750.3556	8103.5965	6684.384	334.2192	8437.8157		
600	1344.39084	6373.8168	2133.73944	9851.94708	8095.8633	404.793165	10256.7402		
700	1603.27531	7505.6212	2528.22752	11637.124	9562.15057	478.107529	12115.2316		
800	1868.48272	8657.2832	2941.42912	13467.195	11027.6421	551.382104	14018.5771		
900	2138.65353	9828.0936	3367.4382	15334.1853	12518.8963	625.944816	15960.1301		
1000	2412.4282	11019.392	3797.1192	17228.9394	14035.217	701.76085	17930.7003		
1100	2688.44719	12230.548	4237.90444	19156.8996	15575.51	778.775498	19935.6751		
1200	2970.78912	13460.616	4689.79392	21121.199	17141.864	857.093202	21978.2922		
1300	3247.67131	14668.3836	5153.0752	23069.1301	18677.6808	933.884042	24003.0142		
1400	3535.40824	15934.6208	5627.19528	25097.2243	20231.4022	1011.57011	26108.7944		
1500	3821.9259	17172.096	6098.484	27092.5059	21864.5007	1093.22504	28185.7309		
1600	4112.80272	18422.8096	6593.88352	29129.4958	23455.8218	1172.79109	30302.2869		
1700	4400.4857	19686.7616	7084.96964	31172.2169	25062.1628	1253.10814	32425.3251		
1800	4691.96676	20962.5336	7584.948	33239.4484	26611.607	1330.58035	34570.0287		
1900	4978.25783	22040.2812	8094.17252	35112.7116	28248.7837	1412.43919	36525.1507		
2000	5276.5258	23490.28	8613.0856	37379.8914	29819.1166	1490.95583	38870.8472		
2100	5568.67584	24803.7972	9140.82456	39513.2976	31483.4486	1574.17243	41087.47		
2200	5863.76076	26057.7416	9657.3708	41578.8732	33074.5708	1653.72854	43232.6017		
2300	6161.56476	27392.6136	10181.8139	43735.9922	34674.0484	1733.70242	45469.6947		
2400	6450.95256	28663.0272	10713.1584	45827.1382	36281.8814	1814.09407	47641.2322		
2500	6742.40125	29940.06	11229.218	47911.6793	38000.0268	1900.00134	49811.6806		

Tabla A6. Relación de temperatura y entalpía de los productos de combustión para un coeficiente de exceso $\alpha = 1.05$

	Entalpía de los productos de combustión para $\alpha = 1.1 \ (kJ/m^3)$							
T (°C)	I_{RO_2}	I_{N_2}	I_{H_2O}	Igas	I _{aire}	I _{exc aire}	I _{total}	
200	392.13018	2065.348	672.35952	3129.8377	2607.1087	260.71087	3390.54857	
300	612.56988	3117.6432	1019.68776	4749.90084	3935.43108	393.543108	5143.44395	
400	843.86432	4183.3344	1378.076	6405.27472	5297.37432	529.737432	6935.01215	
500	1090.9769	5262.264	1750.3556	8103.5965	6684.384	668.4384	8772.0349	
600	1344.39084	6373.8168	2133.73944	9851.94708	8095.8633	809.58633	10661.5334	
700	1603.27531	7505.6212	2528.22752	11637.124	9562.15057	956.215057	12593.3391	
800	1868.48272	8657.2832	2941.42912	13467.195	11027.6421	1102.76421	14569.9592	
900	2138.65353	9828.0936	3367.4382	15334.1853	12518.8963	1251.88963	16586.075	
1000	2412.4282	11019.392	3797.1192	17228.9394	14035.217	1403.5217	18632.4611	
1100	2688.44719	12230.548	4237.90444	19156.8996	15575.51	1557.551	20714.4506	
1200	2970.78912	13460.616	4689.79392	21121.199	17141.864	1714.1864	22835.3854	
1300	3247.67131	14668.3836	5153.0752	23069.1301	18677.6808	1867.76808	24936.8982	
1400	3535.40824	15934.6208	5627.19528	25097.2243	20231.4022	2023.14022	27120.3645	
1500	3821.9259	17172.096	6098.484	27092.5059	21864.5007	2186.45007	29278.956	
1600	4112.80272	18422.8096	6593.88352	29129.4958	23455.8218	2345.58218	31475.078	
1700	4400.4857	19686.7616	7084.96964	31172.2169	25062.1628	2506.21628	33678.4332	
1800	4691.96676	20962.5336	7584.948	33239.4484	26611.607	2661.1607	35900.6091	
1900	4978.25783	22040.2812	8094.17252	35112.7116	28248.7837	2824.87837	37937.5899	
2000	5276.5258	23490.28	8613.0856	37379.8914	29819.1166	2981.91166	40361.8031	
2100	5568.67584	24803.7972	9140.82456	39513.2976	31483.4486	3148.34486	42661.6425	
2200	5863.76076	26057.7416	9657.3708	41578.8732	33074.5708	3307.45708	44886.3302	
2300	6161.56476	27392.6136	10181.8139	43735.9922	34674.0484	3467.40484	47203.3971	
2400	6450.95256	28663.0272	10713.1584	45827.1382	36281.8814	3628.18814	49455.3263	
2500	6742.40125	29940.06	11229.218	47911.6793	38000.0268	3800.00268	51711.6819	

Tabla A7. Relación de temperatura y entalpía de los productos de combustión para un coeficiente de exceso $\alpha = 1.1$

ANEXO B

Parámetros del cálculo de la combustión a 2 etapas de gas natural a diferentes cargas de operación en el hogar del generador de vapor para el arreglo 1 y 2

	Densidad		so molecular	Poder Calorífico Inferior		
$ ho_{CO_2}$	1.977 kg/m ³	PM_{CO_2}	44.01 kg/kmol	PCI_C	34000 kJ/kg	
ρ_{CO}	1.250 kg/m ³	PM_{CO}	28.01 kg/kmol	PCI_H	103000 kJ/kg	
ρ_{H_2O}	0.804 kg/m ³	PM_{H_2O}	18.02 kg/kmol	PCI _{CO}	12640 kJ/m ³	
$ ho_{H_2}$	$0.090 \ kg/m^3$	PM_{H_2}	2.016 kg/kmol	PCI_{H_2}	10790 kJ/m ³	
$ ho_{N_2}$	$1.250 \ kg/m^3$	PM_{N_2}	28.01 kg/kmol			
		PM_{O_2}	32.00 kg/kmol			

Tabla B1. Parámetros utilizados en la combustión a 2 etapas (Ramírez, 2010)

Las densidades son calculadas a condiciones de referencia (0.1 MPa, 273.15 K)

Tabla B2. Volúmenes de los productos de combustión y coeficiente de exceso de aire en la ZCA 1 para el arreglo 1

Zona 1	M.R.C.	100%	75%	50%
α_{hogar}	1.03	1.03	1.05	1.1
R	0	0	0	0
$\alpha_{ZCA 1}$	0.687	0.687	0.700	0.733
$V_{CO_2} (m^3/m^3)$	0.692	0.692	0.706	0.739
$V_{CO} (m^3/m^3)$	0.303	0.303	0.289	0.256
$V_{H_20} \ (m^3/m^3)$	1.295	1.295	1.320	1.383
$V_{H_2} (m^3/m^3)$	0.605	0.605	0.580	0.517
$V_{N_2} (m^3/m^3)$	5.754	5.754	5.866	6.145
$V_{Total} (m^3/m^3)$	8.650	8.650	8.761	9.040

Tabla B3. Volúmenes de los productos de combustión y coeficiente de exceso de aire en la ZCA 2 para el arreglo 1

Zona 2	M.R.C.	100%	75%	50%
α_{hogar}	1.03	1.03	1.05	1.1
$\alpha_{ZCA 2}$	1.03	1.03	1.05	1.1
$V_{CO_2} (m^3/m^3)$	0.303	0.303	0.289	0.256
$V_{H_20} (m^3/m^3)$	0.605	0.605	0.580	0.517
$V_{N_2} (m^3/m^3)$	2.425	2.425	2.512	2.730
$V_{Total} (m^3/m^3)$	3.333	3.333	3.382	3.503

ZCA 1: M.R.C.							
T (°C)	I _{CO2}	I _{CO}	I_{H_2O}	I_{H_2}	I_{N_2}	I _{Total}	
200	251.4866	79.4163	393.6282	157.0459	1508.123	2389.7	
300	392.8622	119.8789	596.9691	236.3312	2276.513	3622.554	
400	541.1994	161.3657	806.785	315.1082	3054.684	4879.142	
500	699.6812	203.616	1024.734	395.1558	3842.521	6165.708	
600	862.2043	247.3753	1249.183	475.7115	4654.18	7488.654	
700	1028.236	291.2769	1480.133	554.9968	5480.627	8835.27	
800	1198.323	336.936	1722.039	638.2992	6321.575	10217.17	
900	1371.592	382.489	1971.443	720.428	7176.504	11622.46	
1000	1547.174	428.7753	2222.997	802.956	8046.394	13048.3	
1100	1724.194	475.8524	2481.052	888.8418	8930.783	14500.72	
1200	1905.27	523.6931	2745.607	975.744	9828.983	15979.3	
1300	2082.844	570.6035	3016.832	1063.584	10710.9	17444.76	
1400	2267.38	619.841	3294.402	1152.513	11635.51	18969.64	
1500	2451.133	666.0243	3570.315	1238.647	12539.12	20465.24	
1600	2637.683	716.5344	3860.343	1329.354	13452.39	21996.31	
1700	2822.184	763.4297	4147.846	1420.976	14375.33	23529.77	
1800	3009.12	812.9187	4440.555	1513.819	15306.91	25083.32	
1900	3192.729	862.9167	4738.677	1607.461	16093.88	26495.66	
2000	3384.018	910.8786	5042.471	1702.228	17152.67	28192.27	
2100	3571.384	961.7038	5351.432	1792.676	18111.81	29789	
2200	3760.632	1013.099	5653.841	1894.679	19027.44	31349.69	
2300	3951.624	1062.076	5960.872	1992.489	20002.17	32969.23	
2400	4137.219	1111.307	6271.944	2085.217	20929.83	34535.52	
2500	4324.135	1163.975	6574.068	2184.655	21862.32	36109.16	

Tabla B4. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para M.R.C. para el arreglo 1

	ZCA 2: M.R.C.						
I _{CO2}	$I_{H_{2}O}$	I_{N_2}	I _{Total}				
361.6029	577.524	2143.716	3082.843				
564.8814	875.862	3235.94	4676.683				
778.1696	1183.7	4342.068	6303.937				
1006.045	1503.47	5461.936	7971.451				
1239.73	1832.778	6615.666	9688.174				
1478.461	2171.624	7790.416	11440.5				
1723.022	2526.544	8985.777	13235.34				
1972.16	2892.465	10201.01	15065.64				
2224.621	3261.54	11437.51	16923.67				
2479.152	3640.153	12694.63	18813.93				
2739.514	4028.304	13971.37	20739.19				
2994.841	4426.24	15224.96	22646.04				
3260.177	4833.486	16539.25	24632.91				
3524.39	5238.3	17823.68	26586.37				
3792.622	5663.824	19121.85	28578.29				
4057.909	6085.643	20433.76	30577.31				
4326.698	6515.1	21757.94	32599.74				
4590.701	6952.499	22876.58	34419.78				
4865.749	7398.22	24381.6	36645.57				
5135.155	7851.522	25744.96	38731.63				
5407.268	8295.21	27046.48	40748.96				
5681.888	8745.681	28432	42859.57				
5948.747	9202.08	29750.62	44901.45				
6217.506	9645.35	31076.11	46938.97				

ZCA 1: 100%								
T (°C)	I _{CO2}	I _{CO}	I_{H_2O}	I_{H_2}	I_{N_2}	I _{Total}		
200	251.4866	79.4163	393.6282	157.0459	1508.123	2389.7		
300	392.8622	119.8789	596.9691	236.3312	2276.513	3622.554		
400	541.1994	161.3657	806.785	315.1082	3054.684	4879.142		
500	699.6812	203.616	1024.734	395.1558	3842.521	6165.708		
600	862.2043	247.3753	1249.183	475.7115	4654.18	7488.654		
700	1028.236	291.2769	1480.133	554.9968	5480.627	8835.27		
800	1198.323	336.936	1722.039	638.2992	6321.575	10217.17		
900	1371.592	382.489	1971.443	720.428	7176.504	11622.46		
1000	1547.174	428.7753	2222.997	802.956	8046.394	13048.3		
1100	1724.194	475.8524	2481.052	888.8418	8930.783	14500.72		
1200	1905.27	523.6931	2745.607	975.744	9828.983	15979.3		
1300	2082.844	570.6035	3016.832	1063.584	10710.9	17444.76		
1400	2267.38	619.841	3294.402	1152.513	11635.51	18969.64		
1500	2451.133	666.0243	3570.315	1238.647	12539.12	20465.24		
1600	2637.683	716.5344	3860.343	1329.354	13452.39	21996.31		
1700	2822.184	763.4297	4147.846	1420.976	14375.33	23529.77		
1800	3009.12	812.9187	4440.555	1513.819	15306.91	25083.32		
1900	3192.729	862.9167	4738.677	1607.461	16093.88	26495.66		
2000	3384.018	910.8786	5042.471	1702.228	17152.67	28192.27		
2100	3571.384	961.7038	5351.432	1792.676	18111.81	29789		
2200	3760.632	1013.099	5653.841	1894.679	19027.44	31349.69		
2300	3951.624	1062.076	5960.872	1992.489	20002.17	32969.23		
2400	4137.219	1111.307	6271.944	2085.217	20929.83	34535.52		
2500	4324.135	1163.975	6574.068	2184.655	21862.32	36109.16		

Tabla B5. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para 100% para el arreglo 1

ZCA 2: 100%								
I _{CO2}	I_{H_2O}	I_{N_2}	I _{Total}					
361.6029	577.524	2143.716	3082.843					
564.8814	875.862	3235.94	4676.683					
778.1696	1183.7	4342.068	6303.937					
1006.045	1503.47	5461.936	7971.451					
1239.73	1832.778	6615.666	9688.174					
1478.461	2171.624	7790.416	11440.5					
1723.022	2526.544	8985.777	13235.34					
1972.16	2892.465	10201.01	15065.64					
2224.621	3261.54	11437.51	16923.67					
2479.152	3640.153	12694.63	18813.93					
2739.514	4028.304	13971.37	20739.19					
2994.841	4426.24	15224.96	22646.04					
3260.177	4833.486	16539.25	24632.91					
3524.39	5238.3	17823.68	26586.37					
3792.622	5663.824	19121.85	28578.29					
4057.909	6085.643	20433.76	30577.31					
4326.698	6515.1	21757.94	32599.74					
4590.701	6952.499	22876.58	34419.78					
4865.749	7398.22	24381.6	36645.57					
5135.155	7851.522	25744.96	38731.63					
5407.268	8295.21	27046.48	40748.96					
5681.888	8745.681	28432	42859.57					
5948.747	9202.08	29750.62	44901.45					
6217.506	9645.35	31076.11	46938.97					

			ZCA 1: 75	5%		
Т (°С)	I _{CO2}	I _{CO}	$I_{H_{2}O}$	I_{H_2}	I_{N_2}	I _{Total}
200	256.5745	75.7469	401.2272	150.5564	1537.479	2421.584
300	400.8103	114.34	608.4936	226.5654	2320.824	3671.034
400	552.1485	153.9098	822.36	302.0872	3114.142	4944.648
500	713.8366	194.208	1044.516	378.827	3917.315	6248.702
600	879.6478	235.9454	1273.298	456.054	4744.773	7589.718
700	1049.038	277.8186	1508.707	532.063	5587.306	8954.933
800	1222.566	321.368	1755.283	611.9232	6444.622	10355.76
900	1399.341	364.8163	2009.502	690.6582	7316.193	11780.51
1000	1578.475	408.9639	2265.912	769.776	8203.014	13226.14
1100	1759.077	453.8658	2528.948	852.1128	9104.619	14698.62
1200	1943.816	499.496	2798.611	935.424	10020.3	16197.65
1300	2124.982	544.239	3075.072	1019.634	10919.38	17683.31
1400	2313.251	591.2015	3358.001	1104.888	11861.99	19229.33
1500	2500.723	635.2509	3639.24	1187.463	12783.19	20745.86
1600	2691.046	683.4272	3934.867	1274.422	13714.24	22298
1700	2879.28	728.1557	4227.92	1362.258	14655.15	23852.76
1800	3069.999	775.3581	4526.28	1451.264	15604.85	25427.75
1900	3257.322	823.046	4830.157	1541.037	16407.14	26858.7
2000	3452.481	868.7918	5139.816	1631.888	17486.55	28579.52
2100	3643.638	917.2687	5454.742	1718.598	18464.35	30198.6
2200	3836.715	966.2888	5762.988	1816.386	19397.81	31780.18
2300	4031.571	1013.003	6075.947	1910.155	20391.51	33422.18
2400	4220.92	1059.96	6393.024	1999.051	21337.22	35010.18
2500	4411.618	1110.194	6700.98	2094.38	22287.87	36605.04

Tabla B6. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para 75% para el arreglo 1

ZCA 2: 75%								
I_{CO_2}	I_{H_2O}	I_{N_2}	I _{Total}					
361.6029	577.524	2195.874	3135.001					
564.8814	875.862	3314.672	4755.415					
778.1696	1183.7	4447.713	6409.582					
1006.045	1503.47	5594.828	8104.343					
1239.73	1832.778	6776.629	9849.137					
1478.461	2171.624	7979.961	11630.05					
1723.022	2526.544	9204.406	13453.97					
1972.16	2892.465	10449.21	15313.83					
2224.621	3261.54	11715.8	17201.96					
2479.152	3640.153	13003.49	19122.8					
2739.514	4028.304	14311.3	21079.12					
2994.841	4426.24	15595.4	23016.48					
3260.177	4833.486	16941.66	25035.32					
3524.39	5238.3	18257.34	27020.03					
3792.622	5663.824	19587.09	29043.54					
4057.909	6085.643	20930.92	31074.48					
4326.698	6515.1	22287.32	33129.12					
4590.701	6952.499	23433.18	34976.38					
4865.749	7398.22	24974.82	37238.79					
5135.155	7851.522	26371.35	39358.02					
5407.268	8295.21	27704.54	41407.02					
5681.888	8745.681	29123.77	43551.34					
5948.747	9202.08	30474.47	45625.3					
6217.506	9645.35	31832.21	47695.07					

	ZCA 1: 50%						ZCA 2: 50%			
<i>T</i> (°C)	I_{CO_2}	I _{CO}	$I_{H_{2}0}$	I_{H_2}	I_{N_2}	I _{Total}	I_{CO_2}	$I_{H_{2}O}$	I_{N_2}	I _{Total}
200	268.5674	67.0976	420.3767	134.2029	1610.605	2500.849	361.6029	577.524	2326.138	3265.264
300	419.5451	101.2838	637.5353	201.9557	2431.208	3791.528	564.8814	875.862	3511.305	4952.048
400	577.9571	136.3354	861.609	269.2743	3262.258	5107.433	778.1696	1183.7	4711.56	6673.43
500	747.2029	172.032	1094.368	337.6786	4103.631	6454.912	1006.045	1503.47	5926.725	8436.24
600	920.7644	209.0035	1334.069	406.5171	4970.445	7840.799	1239.73	1832.778	7178.633	10251.14
700	1098.073	246.0954	1580.714	474.27	5853.051	9252.203	1478.461	2171.624	8453.349	12103.43
800	1279.712	284.672	1839.058	545.4557	6751.143	10700.04	1723.022	2526.544	9750.43	14000
900	1464.75	323.159	2105.41	615.6384	7664.167	12173.12	1972.16	2892.465	11069.08	15933.7
1000	1652.256	362.2656	2374.058	686.1624	8593.168	13667.91	2224.621	3261.54	12410.8	17896.96
1100	1841.3	402.0403	2649.648	759.5557	9537.655	15190.2	2479.152	3640.153	13774.89	19894.19
1200	2034.674	442.4602	2932.181	833.8176	10496.89	16740.02	2739.514	4028.304	15160.28	21928.09
1300	2224.309	482.0941	3221.837	908.8808	11438.73	18275.85	2994.841	4426.24	16520.55	23941.63
1400	2421.378	523.6941	3518.269	984.8747	12426.17	19874.39	3260.177	4833.486	17946.67	26040.33
1500	2617.612	562.7136	3812.931	1058.48	13391.18	21442.92	3524.39	5238.3	19340.4	28103.09
1600	2816.832	605.3888	4122.668	1135.994	14366.52	23047.4	3792.622	5663.824	20749.04	30205.49
1700	3013.864	645.0099	4429.708	1214.288	15352.18	24655.05	4057.909	6085.643	22172.59	32316.14
1800	3213.497	686.8224	4742.307	1293.627	16347.05	26283.31	4326.698	6515.1	23609.45	34451.25
1900	3409.576	729.065	5060.687	1373.648	17187.5	27760.48	4590.701	6952.499	24823.29	36366.49
2000	3613.858	769.5872	5385.125	1454.631	18318.25	29541.45	4865.749	7398.22	26456.38	38720.34
2100	3813.949	812.5286	5715.082	1531.923	19342.56	31216.04	5135.155	7851.522	27935.75	40922.43
2200	4016.051	855.9514	6038.04	1619.089	20320.41	32849.54	5407.268	8295.21	29348.03	43050.51
2300	4220.015	897.3312	6365.935	1702.672	21361.37	34547.33	5681.888	8745.681	30851.45	45279.02
2400	4418.215	938.9261	6698.146	1781.913	22352.07	36189.27	5948.747	9202.08	32282.28	47433.11
2500	4617.826	983.424	7020.8	1866.887	23347.93	37836.86	6217.506	9645.35	33720.56	49583.42

Tabla B7. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para 50% para el arreglo 1

Tabla B8. Volúmenes de los productos de combustión y coeficiente de exceso de aire en la ZCA 1 para el arreglo 2

Zona 1	M.R.C.	100%	75%	50%
α_{hogar}	1.03	1.03	1.05	1.1
R	0	0	0	0
$\alpha_{ZCA 1}$	0.858	0.858	0.875	0.917
$V_{CO_2} (m^3/m^3)$	0.865	0.865	0.882	0.924
$V_{CO} (m^3/m^3)$	0.129	0.129	0.112	0.070
$V_{H_20} (m^3/m^3)$	1.618	1.618	1.650	1.728
$V_{H_2} (m^3/m^3)$	0.282	0.282	0.251	0.172
$V_{N_2} (m^3/m^3)$	7.193	7.193	7.333	7.682
$V_{Total} (m^3/m^3)$	10.087	10.087	10.227	10.576

Zona 2	M.R.C.	100%	75%	50%
α_{hogar}	1.03	1.03	1.05	1.1
$\alpha_{ZCA 2}$	1.03	1.03	1.05	1.1
$V_{CO_2} (m^3/m^3)$	0.129	0.129	0.112	0.070
$V_{H_20} (m^3/m^3)$	0.282	0.282	0.251	0.172
$V_{N_2} (m^3/m^3)$	0.986	0.986	1.045	1.193
$V_{Total} (m^3/m^3)$	1.397	1.397	1.408	1.435

Tabla B9. Volúmenes de los productos de combustión y coeficiente de exceso de aire en la ZCA 2 para el arreglo 2

Tabla B10. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para M.R.C. para el arreglo 2

	ZCA 1: M.R.C.							ZCA 2:	M.R.C.		
<i>T</i> (°C)	I_{CO_2}	I _{CO}	I_{H_2O}	I_{H_2}	I_{N_2}	I _{Total}	_	I_{CO_2}	I_{H_2O}	I_{N_2}	I _{Total}
200	314.3583	33.8109	491.8073	73.20156	1885.285	2798.463		361.2395	577.524	2143.716	3082.479
300	491.0778	51.03756	745.8656	110.1577	2845.839	4243.977		564.3137	875.862	3235.94	4676.115
400	676.4992	68.70024	1008.014	146.8769	3818.62	5718.71	_	777.3875	1183.7	4342.068	6303.155
500	874.6015	86.688	1280.323	184.1883	4803.485	7229.287	-	1005.033	1503.47	5461.936	7970.44
600	1077.755	105.3182	1560.755	221.7366	5818.13	8783.695	_	1238.484	1832.778	6615.666	9686.928
700	1285.295	124.009	1849.309	258.6927	6851.261	10368.57	_	1476.975	2171.624	7790.416	11439.01
800	1497.903	143.448	2151.552	297.5213	7902.518	11992.94	-	1721.29	2526.544	8985.777	13233.61
900	1714.491	162.8419	2463.162	335.8028	8971.253	13647.55		1970.178	2892.465	10201.01	15063.65
1000	1933.967	182.5479	2777.459	374.2704	10058.69	15326.94	-	2222.385	3261.54	11437.51	16921.44
1100	2155.243	202.5906	3099.878	414.3031	11164.26	17036.27		2476.66	3640.153	12694.63	18811.44
1200	2381.587	222.9584	3430.419	454.8096	12287.08	18776.86	_	2736.76	4028.304	13971.37	20736.43
1300	2603.555	242.9302	3769.293	495.7532	13389.55	20501.08		2991.831	4426.24	15224.96	22643.03
1400	2834.224	263.8927	4116.095	537.2044	14545.4	22296.81		3256.901	4833.486	16539.25	24629.63
1500	3063.917	283.5549	4460.826	577.3527	15674.99	24060.64		3520.847	5238.3	17823.68	26582.82
1600	3297.103	305.0592	4823.193	619.633	16816.66	25861.65	-	3788.81	5663.824	19121.85	28574.48
1700	3527.73	325.0245	5182.405	662.339	17970.42	27667.91		4053.83	6085.643	20433.76	30573.23
1800	3761.401	346.0941	5548.122	705.6148	19134.96	29496.19		4322.349	6515.1	21757.94	32595.39
1900	3990.911	367.3804	5920.602	749.2627	20118.75	31146.91	_	4586.087	6952.499	22876.58	34415.17
2000	4230.023	387.7998	6300.168	793.4352	21442.33	33153.76	-	4860.859	7398.22	24381.6	36640.68
2100	4464.23	409.4383	6686.191	835.5942	22641.33	35036.79		5129.994	7851.522	25744.96	38726.47
2200	4700.791	431.3192	7064.026	883.1394	23785.96	36865.23		5401.833	8295.21	27046.48	40743.52
2300	4939.531	452.1708	7447.638	928.7303	25004.45	38772.52	-	5676.177	8745.681	28432	42853.86
2400	5171.524	473.1307	7836.298	971.9525	26164.11	40617.01	-	5942.768	9202.08	29750.62	44895.47
2500	5405.169	495.5535	8213.777	1018.302	27329.8	42462.6	-	6211.258	9645.35	31076.11	46932.72

ZCA 1: 100%								
T (°C)	I _{CO2}	I _{CO}	I_{H_2O}	I_{H_2}	I_{N_2}	I _{Total}		
200	314.3583	33.8109	491.8073	73.20156	1885.285	2798.463		
300	491.0778	51.03756	745.8656	110.1577	2845.839	4243.977		
400	676.4992	68.70024	1008.014	146.8769	3818.62	5718.71		
500	874.6015	86.688	1280.323	184.1883	4803.485	7229.287		
600	1077.755	105.3182	1560.755	221.7366	5818.13	8783.695		
700	1285.295	124.009	1849.309	258.6927	6851.261	10368.57		
800	1497.903	143.448	2151.552	297.5213	7902.518	11992.94		
900	1714.491	162.8419	2463.162	335.8028	8971.253	13647.55		
1000	1933.967	182.5479	2777.459	374.2704	10058.69	15326.94		
1100	2155.243	202.5906	3099.878	414.3031	11164.26	17036.27		
1200	2381.587	222.9584	3430.419	454.8096	12287.08	18776.86		
1300	2603.555	242.9302	3769.293	495.7532	13389.55	20501.08		
1400	2834.224	263.8927	4116.095	537.2044	14545.4	22296.81		
1500	3063.917	283.5549	4460.826	577.3527	15674.99	24060.64		
1600	3297.103	305.0592	4823.193	619.633	16816.66	25861.65		
1700	3527.73	325.0245	5182.405	662.339	17970.42	27667.91		
1800	3761.401	346.0941	5548.122	705.6148	19134.96	29496.19		
1900	3990.911	367.3804	5920.602	749.2627	20118.75	31146.91		
2000	4230.023	387.7998	6300.168	793.4352	21442.33	33153.76		
2100	4464.23	409.4383	6686.191	835.5942	22641.33	35036.79		
2200	4700.791	431.3192	7064.026	883.1394	23785.96	36865.23		
2300	4939.531	452.1708	7447.638	928.7303	25004.45	38772.52		
2400	5171.524	473.1307	7836.298	971.9525	26164.11	40617.01		
2500	5405.169	495.5535	8213.777	1018.302	27329.8	42462.6		

Tabla B11. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para 100% para el arreglo 2

ZCA 2: 100%

1476.975 2171.624 7790.416 11439.01

2526.544 8985.777

2892.465 10201.01

 I_{N_2}

3235.94

4342.068

5461.936 1832.778 6615.666 9686.928

11437.51

3640.153 12694.63 18811.44

4028.304 13971.37 20736.43

17823.68

19121.85

20433.76

21757.94

22876.58

24381.6

7851.522 25744.96 38726.47

28432

29750.62

31076.11

27046.48 40743.52

15224.96 22643.03

16539.25 24629.63

2143.716 3082.479

I_{Total}

4676.115

6303.155

7970.44

13233.61 15063.65

16921.44

26582.82

28574.48

30573.23

32595.39

34415.17

36640.68

42853.86

44895.47

46932.72

 $I_{H_{2}0}$

577.524

875.862

1183.7

1503.47

3261.54

4426.24

4833.486

5238.3

5663.824

6085.643

6515.1

6952.499

7398.22

8295.21

8745.681

9202.08

9645.35

 I_{CO_2}

361.2395

564.3137

777.3875

1005.033

1238.484

1721.29

1970.178 2222.385

2476.66

2736.76

2991.831

3256.901

3520.847

3788.81

4053.83

4322.349

4586.087

4860.859

5129.994

5401.833

5676.177

5942.768

6211.258

			ZCA 1: 75%								
T (°C)	I _{CO2}	I _{CO}	I_{H_20}	I_{H_2}	I_{N_2}	I _{Total}					
200	320.5364	29.3552	501.534	65.15458	1921.979	2838.56					
300	500.729	44.31168	760.617	98.04813	2901.228	4304.934					
400	689.7946	59.64672	1027.95	130.7308	3892.943	5801.065					
500	891.7902	75.264	1305.645	163.9407	4896.977	7333.617					
600	1098.937	91.43904	1591.623	197.3613	5931.37	8910.73					
700	1310.555	107.6667	1885.884	230.2549	6984.609	10518.97					
800	1527.342	124.544	2194.104	264.815	8056.327	12167.13					
900	1748.186	141.3821	2511.878	298.8883	9145.864	13846.2					
1000	1971.976	158.4912	2832.39	333.1272	10254.47	15550.45					
1100	2197.6	175.8926	3161.186	368.7592	11381.55	17284.99					
1200	2428.393	193.5763	3498.264	404.8128	12526.23	19051.28					
1300	2654.723	210.9162	3843.84	441.2555	13650.16	20800.89					
1400	2889.926	229.1162	4197.501	478.15	14828.5	22623.19					
1500	3124.132	246.1872	4549.05	513.8849	15980.07	24413.33					
1600	3361.902	264.8576	4918.584	551.5173	17143.97	26240.83					
1700	3597.061	282.1918	5284.901	589.5287	18320.18	28073.86					
1800	3835.324	300.4848	5657.85	628.0472	19507.39	29929.1					
1900	4069.345	318.9659	6037.697	666.897	20510.33	31603.23					
2000	4313.156	336.6944	6424.77	706.2136	21859.67	33640.51					
2100	4551.967	355.4813	6818.427	743.7381	23082.01	35551.62					
2200	4793.176	374.4787	7203.735	786.0567	24248.91	37406.36					
2300	5036.608	392.5824	7594.934	826.6359	25491.12	39341.88					
2400	5273.16	410.7802	7991.28	865.1066	26673.35	41213.67					
2500	5511.398	430.248	8376.225	906.361	27861.73	43085.97					

Tabla B12. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para 75% para el arreglo 2

ZCA 2: 75%

1833.743 6776.629

2527.874 9204.406

 I_{N_2}

1184.323 4447.713 6409.423

1504.261 5594.828 8104.123

10449.21

11715.8

13003.49

14311.3

15595.4

16941.66

20930.92

22287.32

6956.158 23433.18 34975.43

7402.114 24974.82 37237.79

18257.34 27019.24

2195.874 3134.941

3314.672 4755.309

I_{Total}

9848.856

11629.7

13453.57

15313.37

17201.44

19122.22

21078.48

23015.8

25034.59

29042.71

31073.6

33128.2

39357

45624.16

47693.9

 $I_{H_{2}0}$

577.828

876.323

1476.975 2172.767 7979.961

2893.987

3642.069

4030.424

4428.57

4836.03

5241.057

6088.846

6518.529

5129.994 7855.654 26371.35

6211.258 9650.427 31832.21

5666.805 19587.09

5401.833 8299.576 27704.54 41405.95 5676.177 8750.284 29123.77 43550.23 9206.923 30474.47

 I_{CO_2}

361.2395

564.3137

777.3875

1005.033

1238.484

1721.29

1970.178

2476.66

2736.76

2991.831

3256.901

3520.847

3788.81

4053.83

4322.349

4586.087 4860.859

5942.768

2222.385 3263.257

$(^{\circ}C)$ I_{Co_2} I_{CO} I_{H_2O} I_{H_2} I_{N_2} I_{Total} 200335.800118.347525.242944.647762013.4522937.49300524.573327.6948796.573467.188363039.3064455.336400722.641937.27921076.54489.584484078.226004.27500934.256447.041367.366112.34185130.047591.0446001151.26757.14941666.863135.24366213.6639224.1867001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513003771.14143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.93221795.9927176.4617003768.349176.36995534.732403.97520435.8130997.2618004017.959187.8035925.312430	ZCA 1: 50%							
200335.800118.347525.242944.647762013.4522937.49300524.573327.6948796.573467.188363039.3064455.336400722.641937.27921076.54489.584484078.226004.27500934.256447.041367.366112.34185130.047591.0446001151.26757.14941666.863135.24366213.6639224.1867001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.4698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.93221795.9927176.4617003768.349176.36995534.732403.37520435.8130997.2619004263.123199.35376323.115456.99712	T (°C)	I _{CO2}	I _{CO}	I_{H_20}	I_{H_2}	I_{N_2}	I _{Total}	
300524.573327.6948796.573467.188363039.3064455.336400722.641937.27921076.54489.584484078.226004.27500934.256447.041367.366112.34185130.047591.0446001151.26757.14941666.863135.24366213.6639224.1867001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.37520435.8130997.2618004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.9971 <t< td=""><td>200</td><td>335.8001</td><td>18.347</td><td>525.2429</td><td>44.64776</td><td>2013.452</td><td>2937.49</td></t<>	200	335.8001	18.347	525.2429	44.64776	2013.452	2937.49	
400722.641937.27921076.54489.584484078.226004.27500934.256447.041367.366112.34185130.047591.0446001151.26757.14941666.863135.24366213.6639224.1867001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.9392	300	524.5733	27.6948	796.5734	67.18836	3039.306	4455.336	
500934.256447.041367.366112.34185130.047591.0446001151.26757.14941666.863135.24366213.6639224.1867001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521005021.423234.04927544.275538.6524<	400	722.6419	37.2792	1076.544	89.58448	4078.22	6004.27	
6001151.26757.14941666.863135.24366213.6639224.1867001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.	500	934.2564	47.04	1367.366	112.3418	5130.04	7591.044	
7001372.96267.29171975.035157.78427317.02810890.18001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566	600	1151.267	57.1494	1666.863	135.2436	6213.663	9224.186	
8001600.07277.842297.825181.46698439.75212596.969001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.813097.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.0559	700	1372.962	67.2917	1975.035	157.7842	7317.028	10890.1	
9001831.43388.36382630.621204.81599581.14414336.3810002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	800	1600.072	77.84	2297.825	181.4669	8439.752	12596.96	
10002065.87999.0572966.285228.278410742.5116102.0111002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	900	1831.433	88.3638	2630.621	204.8159	9581.144	14336.38	
11002302.248109.93293310.623252.695511923.2317898.7312002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1000	2065.879	99.057	2966.285	228.2784	10742.51	16102.01	
12002544.031120.98523663.636277.401613122.3919728.4513002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1100	2302.248	109.9329	3310.623	252.6955	11923.23	17898.73	
13002781.138131.82264025.549302.374314299.8121540.714003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1200	2544.031	120.9852	3663.636	277.4016	13122.39	19728.45	
14003027.541143.19764395.928327.656615534.2323428.5615003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1300	2781.138	131.8226	4025.549	302.3743	14299.81	21540.7	
15003272.9153.8674764.096352.144216740.6125283.6216003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1400	3027.541	143.1976	4395.928	327.6566	15534.23	23428.56	
16003521.992165.5365151.099377.932217959.927176.4617003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1500	3272.9	153.867	4764.096	352.1442	16740.61	25283.62	
17003768.349176.36995534.732403.979819192.0929075.5318004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1600	3521.992	165.536	5151.099	377.9322	17959.9	27176.46	
18004017.959187.8035925.312430.37520435.8130997.2619004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1700	3768.349	176.3699	5534.732	403.9798	19192.09	29075.53	
19004263.123199.35376323.115456.997121486.4832729.0720004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1800	4017.959	187.803	5925.312	430.375	20435.81	30997.26	
20004518.545210.4346728.486483.939222900.0434841.4521004768.727222.17587140.753509.653224180.5536821.8622005021.423234.04927544.275538.652425402.9938741.3923005276.447245.3647953.967566.459626704.3240746.5624005524.263256.73768369.05592.822127942.8142685.69	1900	4263.123	199.3537	6323.115	456.9971	21486.48	32729.07	
2100 4768.727 222.1758 7140.753 509.6532 24180.55 36821.86 2200 5021.423 234.0492 7544.275 538.6524 25402.99 38741.39 2300 5276.447 245.364 7953.967 566.4596 26704.32 40746.56 2400 5524.263 256.7376 8369.05 592.8221 27942.81 42685.69	2000	4518.545	210.434	6728.486	483.9392	22900.04	34841.45	
2200 5021.423 234.0492 7544.275 538.6524 25402.99 38741.39 2300 5276.447 245.364 7953.967 566.4596 26704.32 40746.56 2400 5524.263 256.7376 8369.05 592.8221 27942.81 42685.69	2100	4768.727	222.1758	7140.753	509.6532	24180.55	36821.86	
2300 5276.447 245.364 7953.967 566.4596 26704.32 40746.56 2400 5524.263 256.7376 8369.05 592.8221 27942.81 42685.69	2200	5021.423	234.0492	7544.275	538.6524	25402.99	38741.39	
2400 5524 263 256 7376 8369 05 592 8221 27942 81 42685 69	2300	5276.447	245.364	7953.967	566.4596	26704.32	40746.56	
5524.205 250.7570 6505.05 552.6221 27542.01 42005.05	2400	5524.263	256.7376	8369.05	592.8221	27942.81	42685.69	
2500 5773.845 268.905 8772.192 621.092 29187.76 44623.79	2500	5773.845	268.905	8772.192	621.092	29187.76	44623.79	

Tabla B13. Relación de temperatura y entalpía de los productos de combustión en la ZCA 1 y ZCA 2 para 50% para el arreglo 2

ZCA 2: 50%								
I_{CO_2}	I_{H_20}	I_{N_2}	I _{Total}					
361.2395	577.524	2326.138	3264.901					
564.3137	875.862	3511.305	4951.481					
777.3875	1183.7	4711.56	6672.648					
1005.033	1503.47	5926.725	8435.228					
1238.484	1832.778	7178.633	10249.89					
1476.975	2171.624	8453.349	12101.95					
1721.29	2526.544	9750.43	13998.26					
1970.178	2892.465	11069.08	15931.72					
2222.385	3261.54	12410.8	17894.73					
2476.66	3640.153	13774.89	19891.7					
2736.76	4028.304	15160.28	21925.34					
2991.831	4426.24	16520.55	23938.62					
3256.901	4833.486	17946.67	26037.06					
3520.847	5238.3	19340.4	28099.55					
3788.81	5663.824	20749.04	30201.67					
4053.83	6085.643	22172.59	32312.06					
4322.349	6515.1	23609.45	34446.9					
4586.087	6952.499	24823.29	36361.87					
4860.859	7398.22	26456.38	38715.45					
5129.994	7851.522	27935.75	40917.26					
5401.833	8295.21	29348.03	43045.07					
5676.177	8745.681	30851.45	45273.31					
5942.768	9202.08	32282.28	47427.13					
6211.258	9645.35	33720.56	49577.17					

ANEXO C

Participaciones en congresos

MEMORIAS DEL XXXII CONGRESO NACIONAL DE TERMODINÁMICA

> Ciudad de México 11-14 de septiembre de 2017

Trabajo en extenso

ESTUDIO DE PARÁMETROS TERMODINÁMICOS DE LOS PRODUCTOS DE COMBUSTIÓN EN HOGAR DE UN GENERADOR DE VAPOR DE POTENCIA DE UNIDAD DE 150 MW

<u>*René Chispan Jácome</u>¹, Emmanuel Villalobos Huerta¹, Georgiy Polupan¹, Guillermo Jarquin López²

¹Instituto Politécnico Nacional, SEPI ESIME Unidad Profesional Adolfo López Mateos, Av. IPN S/N, Edificio 5, Col. Lindavista, Del. Gustavo A. Madero, CDMX, México, C.P. 07738. Correo electrónico: <u>r.chispan@outlook.com</u>, <u>emmvsha@gmail.com</u>, <u>gpolupan@ipn.mx</u>.

²Instituto Politécnico Nacional, SEPI ESIME Unidad Profesional Culhuacán, Av. Santa Ana No. 1000, Edificio 2, Col. San Francisco Culhuacán, Del. Coyoacán, CDMX, México, C.P. 04430. Correo electrónico: gjarquin@ipn.mx.

Resumen

En el presente trabajo se realizó el análisis de los procesos termodinámicos de combustión e intercambio de calor en el generador de vapor de potencia de 150 MW de la unidad 2/3 de la Planta Termoeléctrica "Valle de México". El procedimiento del cálculo termodinámico en el hogar del generador de vapor se desarrolló mediante la metodología descrita por la ecuación empírica de A. M. Gurvich. Dicho análisis se realizó para Régimen Máximo de Carga y cargas parciales quemando gas natural y combustóleo, tomando a este último como caso de referencia.

Se presentan las características geométricas de la construcción del hogar del generador de vapor, así como los parámetros termodinámicos tales como: la temperatura adiabática, la temperatura y la entalpía de los productos de combustión a la salida del hogar. Se muestra la comparación de los parámetros térmicos de mayor interés en relación con las cargas térmicas de operación del generador de vapor para cada combustible

Con los resultados obtenidos de este análisis, se pretende realizar el estudio de la formación de los contaminantes que son producto de la combustión para establecer un método que reduzca dichos contaminantes.