

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA Y ARQUITECTURA
UNIDAD TECAMACHALCO

"PROYECTO ANÁLISIS Y DISEÑO ESTRUCTURAL DE UN EDIFICIO DE ACERO"

TESINA

OPCIÓN DE SEMINARIO EN ESTRUCTURAS

QUE PARA OBTENER EL TÍTULO DE

INGENIERO ARQUITECTO

PRESENTAN:

GARRIDO MÁRQUEZ EMMANUEL

MONTERREY VERA LUIS ANGEL

MALVAES CALDERÓN ABIMAEL EMILIANO

ASESOR DE TESINA:

M. en C. BONILLA MANTEROLA OSCAR ING. CIVIL DÍAZ DÍAZ NICOLÁS ALAN

Autorización de uso de obra

Instituto Politécnico Nacional

Presente

Bajo protesta de decir verdad el que suscribe *Malvaes Calderón Abimael Emiliano* (se anexa copia simple de identificación oficial), manifiesto ser autor (a) y titular de los derechos morales y patrimoniales de la obra titulada *Proyecto análisis y diseño estructural de un edificio de acero*, en adelante "El Trabajo Terminal" y del cual se adjunta copia, por lo que por medio del presente y con fundamento en el artículo 27 fracción II, inciso b) de la Ley Federal del Derecho de Autor, otorgo a el Instituto Politécnico Nacional, en adelante El IPN, autorización no exclusiva para comunicar y exhibir públicamente total o parcialmente en medios digitales.

"El Trabajo Terminal" por un periodo indefinido contado a partir de la fecha de la presente autorización, dicho periodo se renovará automáticamente en caso de no dar aviso expreso a "El IPN" de su terminación.

En virtud de lo anterior, "El IPN" deberá reconocer en todo momento mi calidad de autor del "Trabajo Terminal".

Adicionalmente, y en mi calidad de autor y titular de los derechos morales y patrimoniales del "Trabajo Terminal", manifiesto que la misma es original y que la presente autorización no contraviene ninguna otorgada por el suscrito respecto del "Trabajo Terminal", por lo que deslindo de toda responsabilidad a El IPN en caso de que el contenido del "Trabajo Terminal" o la autorización concedida afecte o viole derechos autorales, industriales, secretos industriales, convenios o contratos de confidencialidad o en general cualquier derecho de propiedad intelectual de terceros y asumo las consecuencias legales y económicas de cualquier demanda o reclamación que puedan derivarse del caso.

México, CDMX, 31 de Enero de 2019.

Atentamente:

Malvaes Calderón Abimael Emiliano.

Carta d

Código

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA DE SERVICIOS EDUCATIVOS

DIRECCIÓN DE ADMINISTRACIÓN ESCOLAR

	ión de Administración Escolar del Instituto Politécnico Nacional, sumentos que obran en sus archivos hace constar que:
	ABIMAEL EMILIANO MALVAES CALDERON
Con núme	ro de boleta:2013380340
	ntegramente los estudios correspondientes a la carrera de:
	INGENIERO ARQUITECTO
con sujeci	ón a los planes de estudio vigentes, por lo que se le considera
	PASANTE
En cumpli	miento de las disposiciones reglamentarias y para los usos legales
que proce	edan, se expide la presente en la Ciudad de México, a
los	DIEZ días del mes de JUNIO de
dos mil _	DIECINUEVE
	FIRMA ELECTRÓNICA DE AUTORIDAD EDUCATIVA: LIC. MARISELA CABRERA ROJAS, DIRECTORA DE ADMINISTRACIÓN ESCOLAR AKqi+6NOJh/w2vsHlruWZ8X6xC8nMvlDej8ouh08xo3o1kRP5ehmqwAucFAHIYbY3l0dM/LtrVD0uVdBy94ovfwJMkyBM9HGp2UDjuhEe+IHPOOCF0dUnKt/NDwCxu W6OB7MfSMxRSNbVtUmyRPjGw5LFJN9r6IT74M+rDlfAOCvmAPtquqzydS54GulAOkBNYk+s+zfekTi2rXVvuUDmPZDKRr7v8L37eji8ZTSL6KYGbBV9G28D4iDD84 fKTW+GrnfucpJ4cEuRGo3c1cVRLF+Y5hosgh8gi/xUHgWOsoANqKEbJEnO3OElli1lwOgzDLHMS1dMOHmjq8m8vM4Yw== FIRMA ELECTRÓNICA DE AUTORIDAD EDUCATIVA: ING. FABIÁN TAPIA ALBINO, JEFE DEL DEPARTAMENTO DE CERTIFICACIÓN OZmFYf/HqKSTM4Xk+7l5sPRb9vWuebMdBYyyKtk54LBhvPVLqvni1sUa6nmw61EEDcZ3/8kEcsPVlh3LdHSaKSxFyFHRPM8LQO+UloXab7M5ZCaSW4J/VeRml9J 994SqvzHm2N05/DXLKaTfxfx+xSWb0P53Mw819oWeagUoF7oz/JtEyNvbYN/SnoKAys2U7lkmKZ2yx5y24hGVbMhtfNPdr23HTSZilmxvcP/jC93vOzVtncpvbDigaKws h2a911bGb0nZI+dF6X1qKYXnQCBPU49QltG7H+Gz//k+Wct8wLtNc2o+RQrWfdJyOB0w2xsbmzKshu3bMM//Bq2Wew==
Carta de Pasante No. 2019/441697	
Código de Verificación 44169700238407	NOTAS: 1 El presente documento autoriza al Pasante a iniciar sus trámites de Titulación en la Unidad Académica correspondiente. 2 El presente documento acredita la conclusión de los estudios, no la autorización para el ejercicio profesional.

Autorización de uso de obra

Instituto Politécnico Nacional Presente

Bajo protesta de decir verdad el que suscribe *Monterrey Vera Luis Angel* (se anexa copia simple de identificación oficial), manifiesto ser autor (a) y titular de los derechos morales y patrimoniales de la obra titulada *Proyecto análisis y diseño estructural de un edificio de acero*, en adelante "El Trabajo Terminal" y del cual se adjunta copia, por lo que por medio del presente y con fundamento en el artículo 27 fracción II, inciso b) de la Ley Federal del Derecho de Autor, otorgo a el Instituto Politécnico Nacional, en adelante El IPN, autorización no exclusiva para comunicar y exhibir públicamente total o parcialmente en medios digitales.

"El Trabajo Terminal " por un periodo indefinido contado a partir de la fecha de la presente autorización, dicho periodo se renovará automáticamente en caso de no dar aviso expreso a "El IPN" de su terminación.

En virtud de lo anterior, "El IPN" deberá reconocer en todo momento mi calidad de autor del "Trabajo Terminal".

Adicionalmente, y en mi calidad de autor y titular de los derechos morales y patrimoniales del "Trabajo Terminal", manifiesto que la misma es original y que la presente autorización no contraviene ninguna otorgada por el suscrito respecto del "Trabajo Terminal", por lo que deslindo de toda responsabilidad a El IPN en caso de que el contenido del "Trabajo Terminal" o la autorización concedida afecte o viole derechos autorales, industriales, secretos industriales, convenios o contratos de confidencialidad o en general cualquier derecho de propiedad intelectual de terceros y asumo las consecuencias legales y económicas de cualquier demanda o reclamación que puedan derivarse del caso.

México, CDMX, 31 de Enero de 2019.

Atentamente:

Monterrey Vera Luis Angel.

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA DE SERVICIOS EDUCATIVOS

DIRECCIÓN DE ADMINISTRACIÓN ESCOLAR

La Dirección de Administración Escolar del Instituto Politécnico Nacional, según documentos que obran en sus archivos hace constar que:

LUIS ANGEL MONTERREY VERA

Con número de boleta:

2013311300

Terminó íntegramente los estudios correspondientes a la carrera de:

INGENIERÍA CIVIL

con sujeción a los planes de estudio vigentes, por lo que se le considera

PASANTE

SECRETARIA DE EDUCACION PUBLICA INSTITUTO POLITECNICO NACIONAL DIRECCION DE ADMINISTRAÇION ESCOLAR

FIRMA DEL INTERESADO

DEPARTAMENTO DE CERTIFICACION En cumplimiento de las disposiciones reglamentarias y para los usos legales que procedan, se expide la presente en la Ciudad de México, a

los

DIECISIETE

días del mes de

ABRIL

de

dos mil

DIECINUEVE

DIRECTORA DE ADMINISTRACIÓN ESCOLAR

MARISELA CABRERA ROJAS

SECRETARIA DE EDUCACION PUBLICA INSTITUTO POLITECNICO NACIONAL DIRECCION DE ADMINISTRACION ESCOLAR DEPARTAMENTO DE CERTIFICACION

FABIÁN TAPIA ALBINO

Carta de Pasante No.

2019/434587

NOTA:

1.- El presente documento autoriza al Pasante a iniciar sus trámites de Titulación en la Escuela correspondiente.

Elaboró

JESSICA

2.- El presente documento acredita la conclusión de los estudios, no la autorización para el ejercicio profesional.

3.- ESTA CARTA DE PASANTE ES NULA:

- a) Si no va acompañada con el original del Certificado o Boleta de Calificaciones expedida por la División de Registro y Certificación de Estudios.
- b) Si no contiene todos los requisitos estipulados.
- c) Si carece de las firmas de los funcionarios que la suscriben
- d) Si presenta raspaduras o enmendaduras.

Autorización de uso de obra

Instituto Politécnico Nacional

Presente

Bajo protesta de decir verdad el que suscribe *Garrido Márquez Emmanuel* (se anexa copia simple de identificación oficial), manifiesto ser autor (a) y titular de los derechos morales y patrimoniales de la obra titulada *Proyecto análisis y diseño estructural de un edificio de acero*, en adelante "El Trabajo Terminal" y del cual se adjunta copia, por lo que por medio del presente y con fundamento en el artículo 27 fracción II, inciso b) de la Ley Federal del Derecho de Autor, otorgo a el Instituto Politécnico Nacional, en adelante El IPN, autorización no exclusiva para comunicar y exhibir públicamente total o parcialmente en medios digitales.

"El Trabajo Terminal " por un periodo indefinido contado a partir de la fecha de la presente autorización, dicho periodo se renovará automáticamente en caso de no dar aviso expreso a "El IPN" de su terminación.

En virtud de lo anterior, "El IPN" deberá reconocer en todo momento mi calidad de autor del "Trabajo Terminal".

Adicionalmente, y en mi calidad de autor y titular de los derechos morales y patrimoniales del "Trabajo Terminal", manifiesto que la misma es original y que la presente autorización no contraviene ninguna otorgada por el suscrito respecto del "Trabajo Terminal", por lo que deslindo de toda responsabilidad a El IPN en caso de que el contenido del "Trabajo Terminal" o la autorización concedida afecte o viole derechos autorales, industriales, secretos industriales, convenios o contratos de confidencialidad o en general cualquier derecho de propiedad intelectual de terceros y asumo las consecuencias legales y económicas de cualquier demanda o reclamación que puedan derivarse del caso.

México, CDMX, 31 de Enero de 2019.

Atentamente:

Garrido Márquez Emmanuel.

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA DE SERVICIOS EDUCATIVOS

DIRECCIÓN DE ADMINISTRACIÓN ESCOLAR

La Dirección de Administración Escolar del Instituto Politécnico Nacional, según documentos que obran en sus archivos hace constar que:

EMMANUEL GARRIDO MARQUEZ

Con número de boleta: 2014310276

Terminó íntegramente los estudios correspondientes a la carrera de:

INGENIERÍA CIVIL

con sujeción a los planes de estudio vigentes, por lo que se le considera

SECRETARIA DE EBUCACION PUBLICA NSTITUTO POLITECNICO NACIONAL DIRECCION DE ADMINISTRACION ESCOLAR DEPARTAMENTO DE CERTIFICACIÓN

PASANTE

En cumplimiento de las disposiciones reglamentarias y para los usos legales que procedan, se expide la presente en la Ciudad de México, a

FIRMA DEL INTERESADO

ONCE

días del mes de

ABRIL

dos mil

DIECINUEVE

ADMINISTRACION ESCOLAR

SECRETARIA DE EDUCACION PUBEICA INSTITUTO POLITECNICO NACIONAL

DIRECCIÓN DE ADMINISTRACION ESCOLAFABIAN TAPIA ALBINO

DEPARTAMENTO DE CERTIFICACIÓN

Carta de Pasante No.

2019/434038

1.- El presente documento autoriza al Pasante a iniciar sus trámites de Titulación en la Escuela correspondiente

El presente documento acredita la conclusión de los estudios, no la autorización para

Elaboró

JESSICA

3.- ESTA CARTA DE PASANTE ES NULA:

- a) Si no va acompañada con el original del Certificado o Boleta de Calificaciones expedida por la División de Registro y Certificación de Estudios.
- b) Si no contiene todos los requisitos estipulados.
- c) Si carece de las firmas de los funcionarios que la suscriben.
- d) Si presenta raspaduras o enmendaduras

ÍNDICE

INTRODUCCIÓN	4
CAPÍTULO 1 PLANTEAMIENTO DE LA INVESTIGACIÓN	5
1.1 Justificación	5
1.2 Objetivos y alcances	5
1.3 Antecedentes.	5
1.4 Metodología.	11
CAPÍTULO 2 MEMORIA DESCRIPTIVA	11
2.1 Medio físico.	11
2.2 Descripción Arquitectónica	11
CAPÍTULO 3 CRITERIOS Y ACCIONES PARA EL DISEÑO ESTRUCTURAL	13
3.1 Acciones de diseño.	13
3.2 Descripción Estructural.	15
3.3 Propiedades de los materiales a utilizar.	15
CAPÍTULO 4 CLASIFICACIÓN Y UBICACIÓN SÍSMICA DE LA ESTRUCTURA	18
4.1 Zonas	18
4.2 Clasificación de la estructura.	19
4.3 Espectros obtenidos del Sistema de Acciones Sísmicas de Diseño (SASII)). 19
4.4 Factor de comportamiento sísmico.	20
4.5 Condiciones de regularidad	21
4.6 Espectro de diseño (SASID).	26
CAPÍTULO 5 ANÁLISIS DE CARGAS Y PREDIMENSIONAMIENTO	28
5.1 Análisis de cargas	28
5.2 Predimensionamiento	30
CAPÍTULO 6 DISEÑO DE ELEMENTOS ESTRUCTURALES MEDIANTE LRFD	59
6.1 Diseño de Columna mediante método LRDFD	59
6.2 Diseño de Viga mediante método LRDFD	61
CAPÍTULO 7 ANÁLISIS SÍSMICO ESTÁTICO	62
7.1 Cálculo del centro de torsión.	62
7.2 Cálculo del centro de cargas.	64
7.3 Excentricidades en ambas direcciones.	
7.4 Peso por nivel calculado con Staad Pro V8i.	67

7.5 Participaciones modales obtenidas desde Staad Pro V8i	69
7.6 Análisis Sísmico Estático.	77
7.7 Distorsiones.	79
CAPÍTULO 8 CARGAS Y DESPLAZAMIENTOS APLICADOS EN EL MODELO ESTRUCTURAL EN STAAD PRO V8i	84
8.1 Combinaciones de cargas.	84
8.2 Desplazamientos.	88
CONCLUSIONES.	91
BIBLIOGRAFÍA	92
ANEXO 1 (PLANOS ARQUITECTÓNICOS)	93
ANEXO 2 (PLANOS ESTRUCTURALES).	94

INTRODUCCIÓN.

A través del tiempo, las necesidades humanas, así como factores externos han hecho que en la rama de la ingeniería estructural se estén implementando nuevas normas y tecnologías que satisfagan las necesidades que se requieren, sin embargo, el aspecto más importante en una estructura es salvaguardar la seguridad de quienes dan uso de la edificación y que esta sea capaz de soportar incidentes a causa del tiempo, fenómenos naturales e incidentes provocados por cualquier otro factor externo y así lograr una estabilidad en la estructura.

El presente trabajo pretende encontrar la solución estructural más eficiente, económica, durable y resistente de un edificio destinado al uso de oficinas del sector privado y centro comercial en la planta baja, que realmente se va a construir en la alcaldía de Miguel Hidalgo de la Ciudad de México.

Con un análisis que permita su utilización como marco de referencia para resolver dudas de quien lo consulta especialmente de Ingenieros Arquitectos para realizar el cálculo y diseñar cualquier otro edificio de características similares, pero respetando las particularidades de este proyecto.

Por las condiciones que presenta este proyecto y los factores externos que lo rodean se considera como mejor solución el diseño de estructura a base de marcos de acero trabajando en colaboración con losa cero y con los espacios arquitectónicos divididos por muros de tabla roca y canceles de aluminio y cristales.

El diseño en el cual se basa este proyecto es el método que lleva el nombre de LRFD (Diseño por Factores de Carga y Resistencia por sus siglas en inglés) comprobando los resultados con lo que se permite en las **Normas Técnicas Complementarias de 2017** publicadas en la gaceta oficial de la Ciudad de México.

CAPÍTULO 1.- PLANTEAMIENTO DE LA INVESTIGACIÓN.

1.1 Justificación.

A lo largo de la historia en México se han presentado sismos que han marcado a la sociedad debido al gran daño que desgraciadamente le ha causado a la sociedad por no darle la importancia al estudio de las estructuras o por ignorar los factores que pueden dañar una estructura o simplemente por corrupción de parte de las empresas constructoras.

Por mencionar algunos ejemplos tenemos el sismo de 1957 en el cual se callera el ángel de la independencia con una magnitud de 7.7 grados en escala de Richter. Así como en 1979 se generaría un en Petatlan, Guerrero de 7.6 grados en escala de Richter y los dos sismos más recordados hasta el momento que ocurrieran el día 19 de septiembre, el primero en 1985 con 8.1 grados en escala de Richter y el del 2017 generado a 12 km al sureste de Acoxiapan, Morelos 7.1 grados en escala de Richter, generando grandes daños al derrumbarse inmuebles que fueron construidos con un precario estudio estructural, dejándonos grandes lecciones.

Para brindar mayor seguridad en el proceso de la construcción de los elementos, llámense columnas y trabes es preferible la utilización de estructuras de acero, así como también nos garantizan mayor tiempo de vida útil, alta resistencia, uniformidad, elasticidad, ductilidad, tenacidad, con respecto a otros materiales como lo es el concreto armado. Adicionalmente las características nos permiten encontrar elementos con menor tamaño que ayudan a tener mayor espacio libre como lo exigen algunos proyectos arquitectónicos.

1.2 Objetivos y alcances.

En el presente trabajo se muestra el diseño estructural de un proyecto para un edificio que tiene como objetivo principal el uso de oficinas para sector privado, también contara con un centro comercial en la planta baja, para la estructura ya mencionada se propondrá una solución estructural a base de marcos de acero, los marcos están conformados por elementos horizontales (trabes), elementos verticales (columnas) y un sistema de piso rígido, que en conjunto brindaran estabilidad necesaria a la edificación.

1.3 Antecedentes.

Afortunadamente existen grandes ejemplos de edificios creados con estructura de acero en el país un ejemplo de ello es la torre BBVA BANCOMER, cuya obra finalizo en el 2015 este edificio es un rascacielos ubicado en paseo de la reforma y es el segundo edificio más alto de la ciudad de México con 235 metros de altura y 50 pisos.

Foto de la torre BBVA BANCOMER en el proceso de construcción.

El edificio se basa en la reinterpretación de la organización tradicional de un espacio para oficinas, ofreciendo una variedad de nuevos entornos de trabajo para todos los usuarios, enriqueciendo el modelo universal de espacio comercial. De esta manera, se explora una arquitectura que promueve un sentido de comunidad y que dota al espacio de un entorno más sano y eficiente.

La propuesta se basa en generar plantas libres que planteen la posibilidad de configurar una gran variedad de entornos de trabajo, de manera que permitan a los usuarios solucionar sus necesidades presentes y ser fácilmente adaptables a las necesidades futuras.

Se proponen en lo posible materiales locales y soluciones tanto arquitectónicas como de ingenierías de vanguardia en el uso de la energía y la mínima afectación al medio ambiente.

También las áreas comunes de los empleados, como la cafetería (localizada en el último piso del predio de estacionamiento con amplias vistas al bosque), el auditorio y otras más están diseñadas para permitir mayor interacción entre los usuarios promoviendo un sentido de comunidad en un ambiente más humano.

Dicho por el despacho LEGORRETA encargada del diseño de este inmueble.

Foto desde las alturas de la torre BBVA BANCOMER terminado.

Otro gran ejemplo de edificios importantes en la ciudad de México es la llamada Torre Reforma.

Se encuentra ubicado en la avenida paseo de la reforma y cuneta con una altura de 246 metros lo que lo convierte en el rascacielos más alto de la Ciudad de México hasta el momento.

Foto tomada de la galería de la página oficial de la torre reforma.

El edificio contiene 45,000 M ² de espacio de oficinas, 2,500 M ² de espacio comercial y 2,500 M ² de espacio de gimnasio. Cuenta con 28 elevadores presurizados, 8 sótanos de estacionamiento 1,100 cajones de estacionamiento de auto servicio y 440 cajones de estacionamiento robotizado.

Foto tomada de la galería de la página oficial de la torre reforma.

Por la ubicación tan importante de este inmueble se prohibió derrumbar el edifico que albergaba este terreno por lo que se tuvo que mantener y reforzar su estructuración.

Por ultimo un gran antecedente histórico en la construcción de edificios a base de estructuras metálicas es la torre ejecutiva de PEMEX que fue construida entre 1976 y 1982 de 214 metros de altura en 54 pisos.

Foto tomada desde las alturas a la torre ejecutiva Pemex

Se encuentra ubicado sobre la avenida marina nacional en la alcaldía de miguel hidalgo y fue diseñada por el arquitecto Pedro Moctezuma. La Torre Ejecutiva Pemex originalmente propuso reemplazar dos torres de 14 pisos construidas entre 1967 y 1970. Más tarde, estos

edificios fueron reemplazados por un par de torres de 26 pisos para albergar las oficinas administrativas de Pemex. Sin embargo, el auge petrolero de la década de 1980 exigió el crecimiento del espacio de oficinas y Pemex decidió construir una torre de 52 pisos en un lote del centro con una plaza enorme que cubre una avenida subterránea. El edificio está anclado al suelo, descansa sobre 164 pilotes de concreto y acero que penetran hasta una profundidad de 35 metros, superando el antiguo lago pantanoso de relleno para alcanzar un terreno más firme. Además, su estructura reforzada en X cuenta con 90 amortiguadores para minimizar las oscilaciones de los terremotos. La torre se completó en 1982, pero la plaza circundante nunca se completó.

Imagen tomada de la página oficial de PEMEX.

1.4 Metodología.

- 1. Estructurar con base a los planos arquitectónicos.
- 2. Hacer un análisis de cargas considerando lo indicado en planos arquitectónicos.
- 3. Lograr un predimensionamiento de elementos estructurales.
- 4. Modelar la estructura en un programa de análisis estructural, en este caso el programa STAAD.Pro 2008. (la edición del programa es diferente a las Normas utilizadas para el cálculo).
- Diseño y revisión de elementos estructurales bajo el lineamiento de las Normas Técnicas Complementarias de la Ciudad de México (2017) y el LRFD (Diseño por Factores de Carga y Resistencia por sus siglas en inglés).
- 6. Elaborar los planos estructurales.

CAPÍTULO 2.- MEMORIA DESCRIPTIVA.

2.1 Medio físico.

2.1.1 Ubicación:

La estructura está ubicada en la alcaldía Miguel Hidalgo que se encuentra situada geográficamente en la parte norte de la Ciudad de México. Colinda al norte con la alcaldía Azcapotzalco, al oriente con Cuauhtémoc, al suroriente con Benito Juárez, al sur con Álvaro Obregón y al poniente con Cuajimalpa y con los municipios de Naucalpan y Huixquilucan del estado de México.

2.1.2 Extensión:

Oficialmente la alcaldía Miguel Hidalgo tiene una extensión territorial de 46.99 km². La altitud media en la alcaldía alcanza los 2,273 m.s.n.m. (m.s.n.m.: metros sobre nivel del mar).

2.2 Descripción Arquitectónica.

- 1. El edificio está conformado por 10 niveles.
- 2. Está considerado en un área de 625.00 m² de terreno y con un área de desplante 430.00 m².

- 3. El área construida es aproximadamente 6700 m²
- 4. Las plantas arquitectónicas están descritas de la siguiente manera

- En Planta Baja se cuenta con dos locales comerciales, cubo de elevadores y escaleras que conectan a los niveles superiores.
- Los niveles superiores tienen como uso destinado el de oficinas. Las plantas son tipo con un cubo de circulación vertical con escaleras y dos elevadores al centro de la planta.
- Al suroeste del predio se cuenta con una escalera de emergencia conectada a todos los niveles con salida a Calle Ciencias. La estructura de la escalera es independiente al edificio.
- 5. La distancia de los pisos terminados al lecho bajo de las trabes principales en la planta baja y pisos superiores son de 2.70m.
- 6. En la fachada principal y posterior se encuentran ventanas de vidrio templado que va de piso a techo.
- 7. Los muros divisorios son de tabla roca con recubrimiento de pintura vinílica.
- 8. Acabados:
 - a. Pisos de loseta vinílica colocado en todas las áreas de cada piso.
 - b. Falso plafón para alojar instalaciones.
 - c. La fachada se pintará con colores claros.
- 9. Recubrimientos
 - La azotea está recubierta con impermeabilizante.
 - Las vigas y columnas están recubiertas con pintura vinílica anticorrosiva.
- 10. Las escaleras están diseñadas en dos tramos, con ancho de 1.10 m.
- 11. Con escalones de 18 cm. por 30 cm. de profundidad, esta va desde planta baja, hasta la azotea.

^{*}Planos Arquitectónicos (Ver Anexo 1)

CAPÍTULO 3.- CRITERIOS Y ACCIONES PARA EL DISEÑO ESTRUCTURAL.

En este tercer capítulo se explican los parámetros o acciones que van a ser considerados para la construcción de la estructura, así como sus posibles efectos sobre ella y la forma de tomarlos en cuenta para fines de diseño estructural, como base del diseño estructural serán las Normas Técnicas Complementarias de la Ciudad De México de 2017 (NTC - Criterios y Acciones para el Diseño Estructural de las Edificaciones de la Ciudad de México /2017).

Se explicarán los parámetros, pesos volumétricos y superficiales, que serán considerados para el análisis estructural y diseño de elementos. También los criterios que se toman en cuenta para modelar el sistema estructural propuesto.

3.1 Acciones de diseño.

3.1.1 Acciones permanentes o muertas.

Se considerarán como cargas muertas los pesos de todos los elementos constructivos, de los acabados y de todos los elementos que ocupan una posición permanente y tienen un peso que no cambia sustancialmente con el tiempo. Para la evaluación de las cargas muertas se emplearán las dimensiones especificadas de los elementos constructivos y los pesos unitarios de los materiales. Para estos últimos se utilizarán valores mínimos probables cuando sea más desfavorable para la estabilidad de la estructura considerar una carga muerta menor, como en el caso de volteo, flotación, lastre y succión producida por viento. En otros casos se emplearán valores máximos probables. (NTC - Criterios y Acciones para el Diseño Estructural de las Edificaciones de la Ciudad de México /2017)

3.1.2 Acciones Variables o Cargas vivas.

Las acciones variables son las que obran sobre la estructura con una intensidad que varía significativamente con el tiempo.

Se considerarán cargas vivas las fuerzas que se producen por el uso y ocupación de las edificaciones y que no tienen carácter permanente. Las cargas especificadas no incluyen el peso de muros divisorios de mampostería o de otros materiales, ni el de muebles, equipos u objetos de peso fuera de lo común, como cajas fuertes de gran tamaño, archivos importantes, libreros pesados o cortinajes en salas de espectáculos.

Destino de piso o cubierta	W	Wa	Wm
a) Habitación (casa-habitación, departamentos, viviendas, dormitorios, cuartos de hotel, internados de escuelas, cuarteles, cárceles, correccionales, hospitales y similares)	0.8	1.0	1.9
	(80)	(100)	(190)

b) Oficinas, despachos y laboratorios	1.0 (100)	1.8 (180)	2.5 (250)
c) Aulas	1.0 (100)	1.8 (180)	2.5 (250)
d) Comunicación para peatones (pasillos, escaleras, rampas, vestíbulos y pasajes de acceso libre al público)	0.4 (40)	1.5 (150)	3.5 (350)
e) Estadios y lugares de reunión sin asientos individuales	0.4 (40)	3.5 (350)	4.5 (450)
f) Otros lugares de reunión (bibliotecas, templos, cines, teatros, gimnasios, salones de baile, restaurantes, salas de juego y similares)	0.4 (40)	2.5 (250)	3.5 (350)
g) Comercios, fábricas y bodegas	0.8Wm	0.9Wm	Wm
h) Azoteas con pendiente no mayor de 5 %	0.15 (15)	0.7 (70)	1.0 (100)
i) Azoteas con pendiente mayor de 5 %; otras cubiertas, cualquier pendiente.	0.05 (5)	0.2 (20)	0.4 (40)
j) Volados en vía pública (marquesinas, balcones y similares)	0.15 (15)	0.7 (70)	3 (300)
k) Garajes y estacionamientos (exclusivamente para automóviles)	0.4 (40)	1.0 (100)	2.5 (250)

Tabla 6.1.1 Cargas Vivas Unitarias kN/m² (kg/m²).

(NTC sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones /2017)

Donde:

Wm= Carga viva máxima

Wa= Carga instantánea

W= Carga media

3.1.3 Acciones accidentales.

Las acciones accidentales son las que no se deben al funcionamiento normal de la edificación y que pueden alcanzar intensidades significativas sólo durante lapsos breves. Pertenecen a esta categoría: las acciones sísmicas; los efectos del viento; las cargas de granizo; los efectos de explosiones, incendios y otros fenómenos que pueden presentarse en casos extraordinario.

Para las acciones accidentales se considerará como intensidad de diseño el valor que corresponde a un periodo de retorno de cincuenta años, excepto para aquellas, tales como los efectos de sismo o de viento, en que las normas técnicas correspondientes establezcan específicamente otros valores. (NTC - Criterios y Acciones para el Diseño Estructural de las Edificaciones de la Ciudad de México /2017).

3.1.4 Factores de carga.

Para combinaciones de acciones se tomará un factor de carga de 1.3 para acciones permanentes y un factor de 1.5 para las variables. (NTC - Criterios y Acciones para el Diseño Estructural de las Edificaciones de la Ciudad de México /2017).

3.2 Descripción Estructural.

- Clasificación de la estructura, al ser una edificación (oficinas) que alojara archivos y registros privados está clasificado en el grupo B conforme a las Normas Técnicas Complementarias de la Ciudad De México de 2017.
- 2. La estructura está formada por vigas tipo IR y columnas tipo IR formando marcos rígidos de media ductilidad en dos direcciones octogonales. Las columnas de la planta baja están empotradas a los cajones de cimentación.
- 3. El sistema de piso en la azotea y en los entrepisos consiste en tableros de losacero apoyados en trabes principales y secundarias.

3.3 Propiedades de los materiales a utilizar.

Esto se refiere a los materiales que se van a utilizar en la estructura, quedando de la siguiente forma:

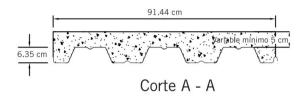
- ✓ Estructura principal: Acero Estructural A-36.
- ✓ Azotea: Losacero.
- ✓ Entrepisos: Losacero.
- ✓ Paredes exteriores de todos los niveles: Muro cortina.
- ✓ Divisiones internas en todos los niveles: Tablaroca doble.
- ✓ Escaleras: Acero Estructural A-36 (trabes) y Losacero.

3.3.1 Propiedades mecánicas del acero estructural.

Para el acero estructural: Acero A-36= 2530 kg/m²

Módulo de elasticidad del acero= 2040000 kg/cm²

Esfuerzo de fluencia del acero de refuerzo= Fy= 2530 kg/cm²


3.3.2 Propiedades de Losacero (Ternium).

Ternium Losacero es un sistema de entrepiso metálico que utiliza un perfil laminado diseñado para anclar perfectamente con el concreto y formar la losa de azotea o entrepiso.

Ternium Losacero fue diseñada para usarse como losa compuesta, por lo que los elementos que la conforman son:

- ✓ Perfil acanalado metálico.
- ✓ Concreto y malla electro soldada.
- ✓ Pernos de cortante (opcionales).

El siguiente perfil mostrado corresponde a Ternium Losacero 25.

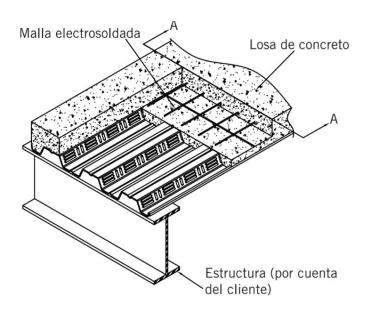
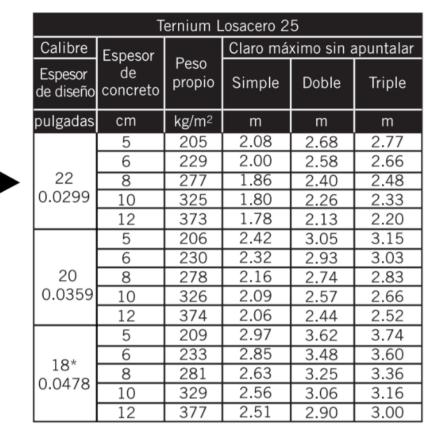


Fig. 3.3.2 Detalle de Losacero Ternium.

Se utilizará un tipo de lámina para losa de oficinas y azotea, la cual será calibre 22, con espesor de concreto de 8 cm, con conectores y con claros no mayores de 2.40 m por lo que se considera una carga admisible de 2206 kg/m².


El peso de la sección de acero aproximadamente es de 8.32 kg/m².

Propiedades de la sección de acero:										
	Espesor		Peso Aprox		Compresión Superior M+			Compresión Inferior M-		
Calibre	nominal	F 620	Aprox	Ixe+	Sxe+	M axo+	Ixe-	Sxe-	М ахо-	admisible
	pulgada	kg/m l	kg/m²	cm4/m	cm³/m	Kg-m	cm4/m	cm³/m	Kg-m	kg/m ancho
22	0.0299	7.61	8.32	67.48	18.01	281	67.03	18.82	293	2206
20	0.0359	9.07	9.91	83.46	23.14	361	83.46	24.08	375	3181
18*	0.0478	11.96	13.07	111.32	32.76	511	111.32	34.13	532	4213

Propiedades para un acero ASTM A-653 grado SS37 con un Fy de 37 ksi.

Se va a considerar una capa compresión de 8 cm donde se obtiene un peso de 277 kg/m2.

Concreto normal F´c = 200 kg/cm² Peso volumétrico 2400 kg/m³

CAPÍTULO 4.- CLASIFICACIÓN Y UBICACIÓN SÍSMICA DE LA ESTRUCTURA.

4.1 Zonas.

Para los efectos de cumplimiento de algunos requisitos de estas Normas, se considerarán las tres zonas consideradas en la Zonificación Geotécnica de la Ciudad de México fijada por las Normas Técnicas Complementarias para el Diseño y Construcción de Cimentaciones.

Conforme a lo anterior, la Ciudad de México se divide en tres zonas:

- ✓ Zona I o de Lomas.
- ✓ Zona II o de Transición.
- ✓ Zona III o del Lago.

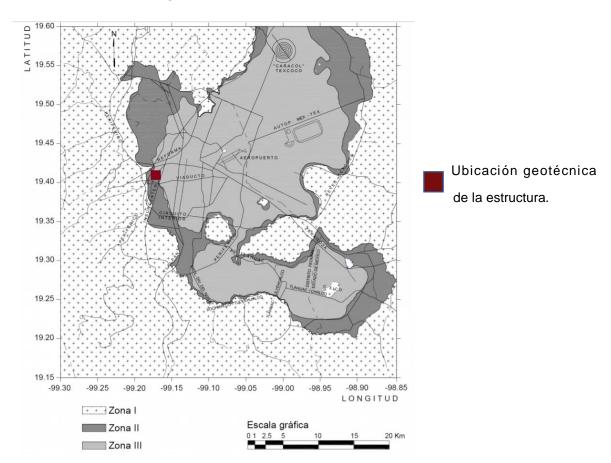


Fig. 2.2.1 Zonificación Geotécnica.

(NTC - Para Diseño y Construcción de Cimentaciones de la Ciudad de México /2017) El edificio se ubica entre la Zona II y Zona III de la Ciudad De México, por lo que hemos considerando la ubicación en la Zona III.

4.2 Clasificación de la estructura.

Para fines de diseño sísmico las construcciones se clasificarán en los grupos y subgrupos que se indican en el Artículo 139 del Título Sexto del Reglamento de Construcciones para la Ciudad de México, que se reproducen a continuación:

Grupo B. Edificaciones comunes destinadas a viviendas, oficinas y locales comerciales, hoteles y construcciones comerciales e industriales no incluidas en el Grupo A, las que se subdividen en:

Subgrupo B1: Pertenece a este subgrupo las edificaciones que reúnen las siguientes características:

- a) Edificaciones de más de 30 m de altura o con más de 6,000 m² de área total construida, ubicadas en las zonas I y II a que se alude en el Artículo 170 de este Reglamento, y construcciones de más de 15 m de altura o más de 3,000 m² de área total construida, en la zona III; en ambos casos las áreas se refieren a un solo cuerpo de edificio que cuente con medios propios de desalojo: acceso y escaleras; incluyendo las áreas de anexos, como pueden ser los propios cuerpos de escaleras. El área de un cuerpo que no cuente con medios propios de desalojo se adicionará a la de aquel otro a través del cual se desaloje.
- **b)** Las estructuras anexas a los hospitales, aeropuertos o terminales de transporte, como estacionamientos, restaurantes, etc., que sean independientes y no esenciales para el funcionamiento de estos.

Subgrupo B2: Las demás de este grupo.

4.3 Espectros obtenidos del Sistema de Acciones Sísmicas de Diseño (SASID).

Cuando se emplee el método de análisis dinámico modal, las acciones sísmicas de diseño se determinarán a partir de los espectros de diseño contenidos en el Sistema de Acciones Sísmicas de Diseño, denominado SASID, para la ubicación específica del predio en estudio. Se encuentran en esa base de datos el espectro elástico para el sitio de la construcción, así como el afectado por los factores de reducción por comportamiento sísmico, Q', y por sobre-resistencia, R. Cuando se emplee el método de análisis estático, las acciones de diseño para el estado límite de seguridad contra colapso se obtendrán los parámetros necesarios se obtendrán del SASID.

4.3.1 Ubicación.

El proyecto se encuentra ubicado en la Av. Benjamín Franklin 88, Col. Escandón, Delegación Miguel Hidalgo C.P. 11800, Ciudad de México.

Coordenadas: 19°24'22.21" Norte, 99°10'48.23" Oeste.

Fig. 3.3.1 Croquis de localización.

4.4 Factor de comportamiento sísmico.

El factor de comportamiento sísmico, Q, que se refiere al capítulo 4 (NTC - Para diseño por Sismo de la Ciudad de México /2017) se adoptó el valor de 2 conforme a la siguiente tabla:

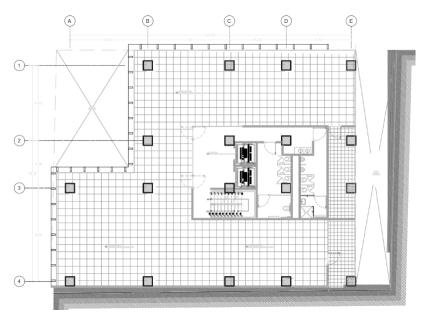
- (1) Los sistemas estructurales de acero o compuestos deben cumplir los requisitos establecidos en las Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Acero.
- (2) Los marcos en estos sistemas duales deberán ser capaces de resistir en cada entrepiso, sin contar con la contribución de los contravientos o muros, por lo menos 30 por ciento de la fuerza cortante actuante. Los marcos deben ser detallados para obtener el mismo nivel de ductilidad que los muros o contravientos.
- (3) Se debe garantizar en los sistemas duales con contravientos que los contravientos en tensión sean capaces de resistir en cada entrepiso entre 30 y 70 por ciento de la fuerza cortante actuante.
- (4) En caso de que los sistemas estructurales utilicen muros, los valores de γmax podrán incrementarse en 0.005 cuando la relación de aspecto (cociente entre la altura y dimensión en planta)

de todos los muros sea igual o mayor que 4. En caso de que se utilicen contravientos metálicos, la relación de aspecto para considerar dicho incremento debe considerar la dimensión en planta de la crujía o crujías que hayan sido contra venteadas en forma consecutiva.

(5) En estos sistemas, los marcos exteriores deben tomar por lo menos 80 por ciento de la fuerza cortante actuante. Las columnas interiores, así como sus conexiones deben detallarse para que puedan desarrollar una capacidad de deformación igual a la de los marcos exteriores.

Tabla 4.2.2 Factores de comportamiento sísmico y distorsiones límite para estructuras de acero y compuestas (1)

Ductilidad	Condición	Q	Ymax
Alta		4.0	0.030
Media	MATERIAL STATE OF THE STATE OF	3.0	0.020
Baja		2.0	0.015
Media	Vigas de alma abierta (armaduras) de ductilidad alta	3.0	0.020
Baja	Vigas de alma abierta (armaduras) de ductilidad baja	2.0	0.015
Baja	Conexiones semirrígidas	2.0	0.015
Alta	Contravientos excéntricos	4.0	0.020
Alta	Contravientos restringidos al pandeo	4.0	0.020
Media	Contravientos concéntricos de ductilidad alta	3.0	0.015
Baja	Contravientos concéntricos de ductilidad baja	2.0	0.010
Baja	Contravientos concéntricos que trabajan solo en tensión	1.5	0.005
Alta	Muros de ductilidad alta de placa de acero	4.0	0.020
Alta	Muros de ductilidad alta de concreto	4.0	0.020
Media	Muros de ductilidad media de placa de acero	3.0	0.015
Baja	Muros de ductilidad baja de concreto	2.0	0.010
Alta		4.0	0.030
Media		3.0	0.020
Media	Vigas de alma abierta (armaduras) de ductilidad alta	3.0	0.020
Media	Conexiones semirrígidas	3.0	0.020
Baja	Vigas de alma abierta (armaduras) de ductilidad baja	2.0	0.015
Baja	Marcos de ductilidad baja	2.0	0.015
Alta	Contravientos excéntricos	4.0	0.020
Alta	Contravientos restringidos al pandeo	4.0	0.020
Media	Contravientos concéntricos de ductilidad alta	3.0	0.015
Baja	Contravientos concéntricos de ductilidad baja	2.0	0.010
Media	Columnas de ductilidad media	1.5	0.012
			0.012
	A SOCIONA DE CASA A MARCINA DE CASA CASA CASA CASA CASA CASA CASA CAS	1121520	20000000
Media		3.0	0.015
Raia	Con marcos o muros de ductilidad media de placa de	2.0	0.010
Daja	acero	2.0	3.010
Media	Marcos exteriores de ductilidad media	3.0	0.020
WICGIA	marcos carellores de ductificad friedra	5.0	0.020
Baja	Marcos exteriores de ductilidad baja	2.0	0.015
	Alta Media Baja Media Baja Baja Alta Alta Media Baja Baja Alta Alta Media Baja Alta Media Baja Alta Media Baja Alta Media Media Media Media Baja Baja Alta Media Baja Baja Alta Media Baja Baja Baja Alta Alta Media Baja Baja Alta Alta Media Baja Baja Alta Alta Media Baja Baja Media Baja	Alta Media Baja Media Vigas de alma abierta (armaduras) de ductilidad alta Baja Vigas de alma abierta (armaduras) de ductilidad baja Baja Conexiones semírrígidas Alta Contravientos excéntricos Alta Contravientos concéntricos de ductilidad baja Baja Contravientos concéntricos de ductilidad baja Baja Contravientos concéntricos que trabajan solo en tensión Alta Muros de ductilidad alta de placa de acero Alta Muros de ductilidad alta de placa de acero Media Muros de ductilidad media de placa de acero Baja Muros de ductilidad baja de concreto Media Vigas de alma abierta (armaduras) de ductilidad alta Media Conexiones semirrígidas Baja Vigas de alma abierta (armaduras) de ductilidad baja Baja Marcos de ductilidad baja Alta Contravientos excéntricos Alta Contravientos excéntricos Alta Contravientos excéntricos Alta Contravientos concéntricos de ductilidad alta Baja Contravientos concéntricos de ductilidad baja Media Contravientos concéntricos de ductilidad baja Media Columnas de ductilidad media Baja Columnas de ductilidad media Baja Columnas de ductilidad media Baja Con marcos o muros de ductilidad alta de placa de acero Con marcos o muros de ductilidad media de placa de acero Con marcos o muros de ductilidad media de placa de acero Con marcos o muros de ductilidad media de placa de acero Con marcos o muros de ductilidad media de placa de acero Con marcos o muros de ductilidad media de placa de acero	Alta 3.0 Media 3.0 Baja 2.0 Media Vigas de alma abierta (armaduras) de ductilidad alta 3.0 Baja Vigas de alma abierta (armaduras) de ductilidad baja 2.0 Baja Conexiones semirrigidas 2.0 Alta Contravientos excéntricos 4.0 Alta Contravientos concéntricos de ductilidad alta 3.0 Baja Contravientos concéntricos de ductilidad alta 3.0 Baja Contravientos concéntricos de ductilidad baja 2.0 Baja Contravientos concéntricos de ductilidad baja 2.0 Baja Contravientos concéntricos que trabajan solo en tensión 1.5 Alta Muros de ductilidad alta de placa de acero 4.0 Alta Muros de ductilidad alta de placa de acero 3.0 Media Muros de ductilidad alta de placa de acero 3.0 Alta 4.0 Media 4.0 Media 4.0 Media Vigas de alma abierta (armaduras) de ductilidad alta 3.0 Media Vigas de alma abierta (armaduras) de ductilidad baja 2.0 Baja Marcos de ductilidad baja 2.0 Alta Contravientos excéntricos 4.0 Alta Contravientos concéntricos de ductilidad baja 2.0 Media Con marcos o muros de ductilidad media de placa de acero 3.0 Media Con marcos o muros de ductilidad media de placa de acero 3.0 Media Marcos exteriores de ductilidad media de placa de acero 3.0 Media Marcos exteriores de ductilidad media de placa de acero 3.0 Media Marcos exteriores de ductilidad media de placa de acero 3.0


4.5 Condiciones de regularidad.

Para los efectos de este capítulo, la dimensión en planta de un sistema estructural se define como la delimitada por los paños exteriores de los elementos resistentes verticales ubicados en la periferia; su área en planta es la que se obtiene con las dimensiones en planta determinadas de acuerdo con esta definición. El desplazamiento lateral es aquel determinado con un análisis elástico. (NTC - Para diseño por Sismo de la Ciudad de México /2017)

Para que una estructura se considere regular debe satisfacer los requisitos siguientes:

1. Su planta es sensiblemente simétrica con respecto a dos ejes ortogonales por lo que toca a masas, así como a muros y otros elementos resistentes. Éstos son, además, sensiblemente paralelos a los ejes ortogonales principales del edificio.

3.5.1 Planta de condiciones de regularidad.

-SI CUMPLE

-Esta condición SI cumple debido a que la planta es simétrica con respecto a sus ejes ortogonales.

2. La relación de su altura a la dimensión menor de su base no pasa de 4.

H Total: 37.80 m

b Claro Desfavorable: 21.17 m

$$\frac{H}{b} = \frac{37.80}{19.02} = 1.98$$

1.98 < 4

-Por lo tanto, SI CUMPLE.

Fig. 3.5.2 Corte Frontal del Edificio.

3. La relación de largo a ancho de la base no excede de 4.

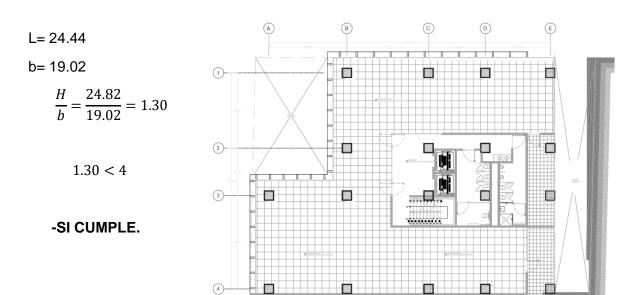


Fig. 3.5.3 Planta de Ancho y Largo del Edificio.

4. En planta no tiene entrantes ni salientes cuya dimensión exceda de 20 por ciento de la dimensión de la planta medida paralelamente a la dirección que se considera del entrante o saliente.

$$\frac{S}{l} = \frac{1.48}{24.82} = 0.05$$

-SI CUMPLE.

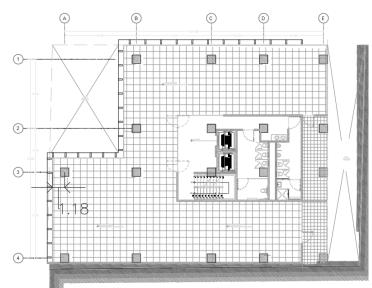


Fig. 3.5.4 Planta de condiciones de entrantes y salientes.

5. En cada nivel tiene un sistema de techo o piso rígido y resistente.

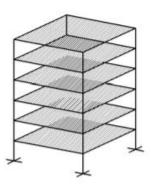


Fig. 1.5 Sistema de piso rígido mediante sistema Losacero.

-SI CUMPLE.

Fig. 3.5.5 Sistemas de piso.

6. El sistema de piso no tiene aberturas que en algún nivel excedan 20 por ciento de su área en planta en dicho nivel, y las áreas huevas no difieren en posición de un piso a otro. Se exime de este requisito la azotea de la construcción.

Areas Huecas = 0 m^2 Area Edificio= 490.99 m^2

Por lo tanto: $490.99 \times 0.0 = 0 \text{ } m^2$

-SI CUMPLE.

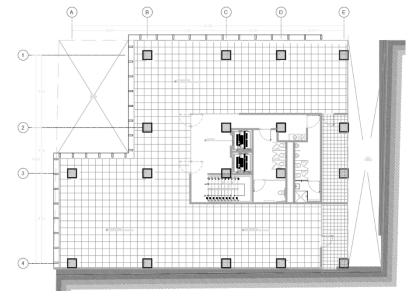


Fig. 3.5.6 Área en planta.

- El peso de cada nivel, incluyendo la carga viva que debe considerarse para diseño sísmico, no es mayor que 120 por ciento del correspondiente al piso inmediato inferior.
 - -SI CUMPLE.

- 8. En cada dirección, ningún piso tiene una dimensión en planta mayor que 110 por ciento de la del piso inmediato inferior. Además, ningún piso tiene una dimensión en planta mayor que 125 por ciento de la menor de las dimensiones de los pisos inferiores en la misma dirección.
 - -SI CUMPLE.
- 9. Todas las columnas están restringidas en todos los pisos en las dos direcciones de análisis por diafragmas horizontales o por vigas. Por consiguiente, ninguna columna pasa a través de un piso sin estar ligada con él.
 - -SI CUMPLE.
- 10. Todas las columnas de cada entrepiso tienen la misma altura, aunque esta pueda variar de un piso a otro. Se exime de este requisito al último entrepiso de la construcción.
 - -SI CUMPLE.
- 11. La rigidez lateral de ningún entrepiso difiere en más de 20 por ciento de la del entrepiso inmediatamente inferior. El último entrepiso queda excluido de este requisito.
 - -SI CUMPLE.
- 12. En ningún entrepiso el desplazamiento lateral de algún punto de la planta excede más del 20 por ciento el desplazamiento lateral promedio de los extremos de la misma.
 - -SI CUMPLE.
- 13. En sistemas diseñados para Q de 4, en ningún entrepiso el cociente de la capacidad resistente a carga lateral entre la acción de diseño debe ser menor que el 85 por ciento del promedio de dichos cocientes para todos los entrepisos. En sistemas diseñados para Q igual o menor que 3, en ningún entrepiso el cociente antes indicado debe ser menor que 75 por ciento del promedio de dichos cocientes para todos los entrepisos. Para verificar el cumplimiento de este requisito, se calculará la capacidad resistente de cada entrepiso teniendo en cuenta todos los elementos que puedan contribuir apreciablemente a ella. Queda excluido de este requisito el último entrepiso.
 - -SI CUMPLE.

Conclusiones.

Conforme a las NTC para diseño por sismo de 2017 no se necesita alguna corrección de Q por irregularidad, nuestra estructura cumple con todos los parámetros de condiciones de irregularidad marcadas en las NTC - Para diseño por Sismo de la Ciudad de México /2017.

Entonces Q=2

4.6 Espectro de diseño (SASID).

Espectro de diseño

Espectro de diseño para las coordenadas indicadas.

Coordenadas					
Latitud Longitud					
19.406160	-99.180060				

Factores sísmicos					
Importancia	Irregularidad	Comportamiento sísmico	Hiperestaticidad		
В	1.0	2.0	1.0		

Parámetros sísmicos							
Ts	a0	c	Ta	Tb	k		
[s]			[s]	[s]			
0.652	0.195	0.524	0.600	1.169	1.500		

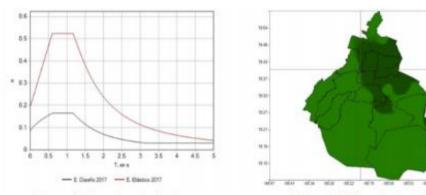


Figura 1. Espectro de diseño

Figura 2. Mapa de localización

T	a	T	a
[s]		[s]	9
0.000	0.087	2.500	0.046
0.100	0.107	2.600	0.043
0.200	0.122	2.700	0.040
0.300	0.135	2.800	0.037
0.400	0.146	2.900	0.035
0.500	0.156	3.000	0.033
0.600	0.165	3.100	0.031
0.700	0.165	3.200	0.030
0.800	0.165	3.300	0.030
0.900	0.165	3,400	0.030
1.000	0.165	3.500	0.030
1.100	0.165	3.600	0.030
1.169	0.165	3.700	0.030
1.200	0.159	3.800	0.030
1.300	0.143	3.900	0.030
1.400	0.128	4.000	0.030
1.500	0.115	4.100	0.030
1.600	0.103	4.200	0.030
1.700	0.093	4.300	0.030
1.800	0.084	4.400	0.030
1.900	0.077	4.500	0.030
2.000	0.070	4.600	0.030

2.100 0.064

2.200 0.059

2.300 0.054

2.400 0.050

4.700 0.030

4.800 0.030

4.900 0.030

5.000 0.030

CAPÍTULO 5.- ANÁLISIS DE CARGAS Y PREDIMENSIONAMIENTO.

5.1 Análisis de cargas.

5.1.1 Losa de azotea.

	Losa de azotea						
		ESPESOR	PESO VOL	KG/M2			
Impermeabiliz	zante	-	-	3.5			
Firme		-	-	-			
Capa de compi	esión	0.8	-	277			
Propiedades de la	sección	-	-	8.32			
Instalacion	es			27			
Plafón Fals	0	-	-	25			
Carga adicional	(NTC)	<u>-</u>	-	40			
			C.M	380.82	kg/m²		
CARGA VIVA	(NTC CDMX	2017)					
Wm=	100	kg/m²					
Wa=	70	kg/m²					
W=	15	kg/m²					

Tabla 5.1.1 Análisis de losa de azotea.

5.1.2 Losa de entrepiso Oficinas.

Losa Entrepiso Oficinas							
	ESPESOR	PESO VOL	KG/M2				
Loseta vinílica	-	-	10				
Cancelería para oficina	-	-	20				
Firme	0.02	1250	25				
Capa de compresión	0.8	-	277	277			
Propiedades de la sección	-	-	8.32				
Instalaciones	-	-	25				
Plafón Falso	-	-	15				
Carga adicional (NTC)	-	-	40				
		C.M	420.32	kg/m²			
CARGA VIVA (NTC CDMX 2017)							
Wm= 250	kg/m²						
Wa= 180	kg/m²						
W= 100	kg/m²						

Tabla 5.1.2 Análisis de losa de entrepiso oficinas.

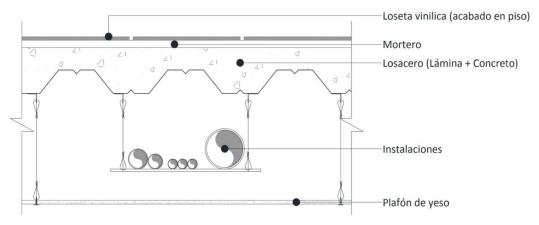


Fig. 5.1.1 Detalle de losa.

5.1.3 Muros divisorio de mampostería.

MUROS						
	ESPESOR	PESO VOL	KG/M2			
Aplanado fino c/mortero	0.01	2100	21			
Tabique rojo	0.14	1500	210			
Aplanado fino c/mortero	0.01	2100	21			
			252	kg/m²		

Tabla 5.1.3 Análisis de muro divisorio de mampostería.

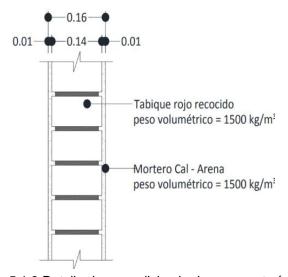


Fig. 5.1.3 Detalle de muro divisorio de mampostería.

5.1.4 Tablero de yeso o muro divisorio de tablaroca.

MURO DE TABLAROCA							
	ESPESOR	PESO VOL	KG/M2				
Tablaroca regular	12.7	-	7.6				
Tablaroca regular	12.7	-	7.6				
			15.2	kg/m²			

Tabla 5.1.5 Análisis de muro divisorio de tablaroca.

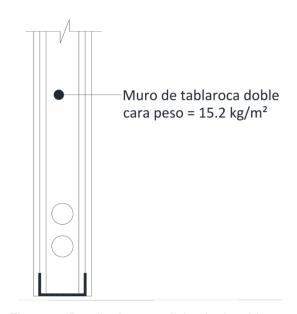


Fig. 5.1.4 Detalle de muro divisorio de tablaroca.

5.2 Predimensionamiento.

El predimensionamiento de las secciones es una de las consideraciones previas al cálculo estructural, ya que se tomarán en cuenta las secciones preliminares que vamos a obtener, para así poder llevar a cabo el análisis sísmico estático.

Para el predimensionamiento de los componentes estructurales utilizaremos el método estipulado en el LRFD (Diseño por Factores de Carga y Resistencia por sus siglas en inglés).

5.2.1 Viga principal T-1 mediante el método LRFD.

Para el análisis de secciones preliminares eligiremos la viga ubicada en el eje B entre eje 3 y 4, ya que es la mas defavorable que tenemos.

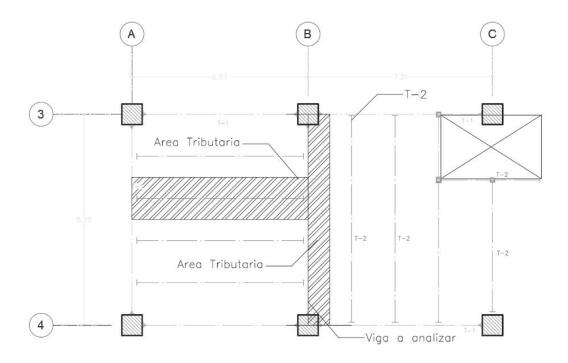


Fig 5.2.2.1 Croquis de localizacion de viga T-1 a analizar.

Para el análisis de la viga T-1 del eje B, entre los ejes 3 y 4 tenemos:

Área tributaria = 6.87 m x 1.644 m= 11.29 m^2 Carga Muerta (Wm) = 420.32 $\frac{kg}{m^2}$ Carga Viva máxima (Wvmax) = 250 $\frac{kg}{m^2}$

$$W = \frac{Atrib \, x \, W}{L}$$

Dónde: Atrib; es el área tributaria de la sección a diseñar en m^2

W; es la carga en $\frac{kg}{m^2}$

L; es la longitud en m.

$$Wm = \frac{11.29m^2 \times 420.32 \frac{kg}{m^2}}{6.87m} = 690.744 \frac{kg}{m}$$

$$Wv = \frac{11.29m^2 \times 250 \frac{kg}{m^2}}{6.87m} = 410.844 \frac{kg}{m}$$

Utilizando los factores de carga del Método LRFD tenemos:

Wu = 1.2 Wm + 1.6 Wvmax = $(1.2 \times 420.32 \frac{kg}{m})$ + $(1.6 \times 410.844 \frac{kg}{m})$ = 1486.243 $\frac{kg}{m}$ / 1000 = 1.486 Ton.

La carga puntual es de $(1.486 \frac{Ton}{m} \times 6.87 \text{ m}) / 2 = 5.104 \text{ Ton}.$

Continuando con el análisis, ahora del eje B entre los ejes B y C tenemos

Área tributaria = 0.871 m x 8.22 m= 7.159 m^2

Carga Muerta (Wm) = 420.32 $\frac{kg}{m^2}$

Carga Viva máxima (Wvmax) = $250 \frac{kg}{m^2}$

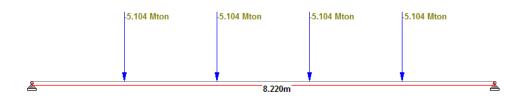
$$W = \frac{Atrib \, x \, W}{L}$$

Dónde: Atrib; es el área tributaria de la sección a diseñar en m^2

W; es la carga en $\frac{kg}{m^2}$

L; es la longitud en m.

$$Wm = \frac{7.159m^2 \times 420.32 \frac{kg}{m^2}}{8.22m} = 366.067 \frac{kg}{m}$$


$$Wv = \frac{7.159m^2 \times 250 \frac{kg}{m^2}}{8.22m} = 217.731 \frac{kg}{m}$$

Utilizando los factores de carga del Método LRFD tenemos:

Wu = 1.2 Wm + 1.6 Wvmax = $(1.2 \times 366.067 \frac{kg}{m}) + (1.6 \times 217.731 \frac{kg}{m}) = 756.29 \frac{kg}{m} / 1000 = 0.787 \frac{Ton}{m}$.

Idealizando la estructura y obteniendo los cortantes y momentos tenemos:

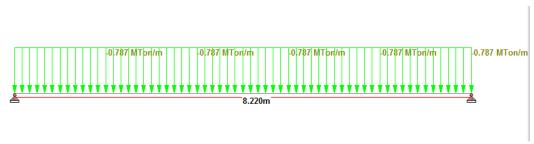


Fig. 5.2.2.2 Idealización de la estructura.

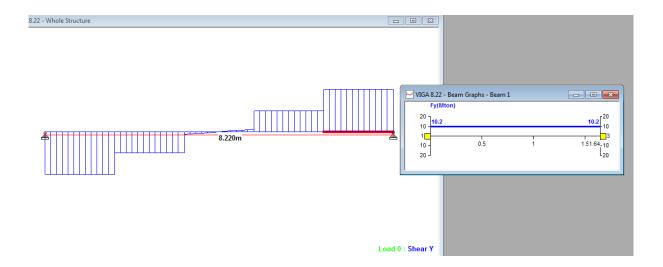


Fig. 5.2.2.3 Diagrama de cortantes.

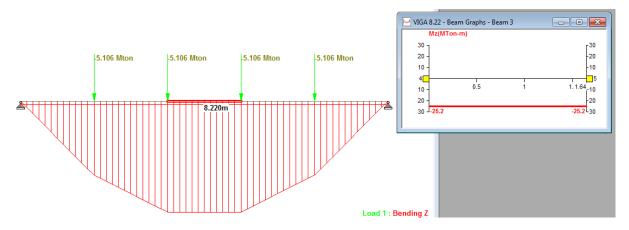


Fig. 5.2.2.4 Diagrama de momentos.

Tenemos: Vmax = 10.2 Ton; Mmax = 25.2 Ton.

Obteniendo el diseño preliminar de la viga utilizando acero A-36 tenemos:

Zx requerida =
$$\frac{M_u}{\phi_b F_y}$$
 = $\frac{2520000 \ kg - cm}{0.9 \ x \ 2530 \frac{kg}{cm^2}}$ = 1106.719 cm^3

Obteniendo la sección del Manual de Construcción en Acero IMCA, cumpliendo con el Módulo de sección plástico Z_{x} requerida y tomando en cuenta un criterio de $\frac{L}{20}$; siendo L el lado con mayor longitud proponemos:

Sección IR 457 mm x 59.6 $\frac{\text{kg}}{\text{m}}$ con un módulo de sección plástico Z_x = 1285 cm^3 ; cumpliendo satisfactoriamente el requerido.

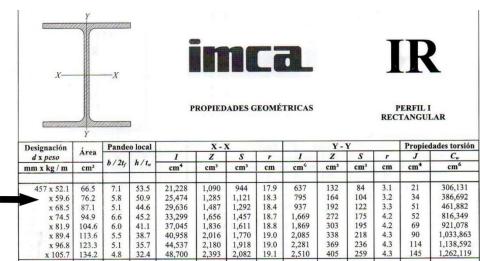


Tabla 5.2.2.1 Tabla de dimensiones y propiedades geométricas de perfiles de acero estructural.

5.2.2.1 Revisión de Viga principal T-1 mediante el método LRFD.

	Datos.	
Carga Muerta	420.32	kg/m²
Carga Viva Máxima	250	kg/m²
CM+Cvmáx	670.32	kg/m²
Área Tributaria	18.449	m²
Longitud de la viga	8.22	m
	822	cm
Acero A-36	2530	kg/cm²
Acero A-36	36	ksi

Obtención de elementos mecánicos.		
Carga Muerta 1	690.74	kg/m²
Carga Viva Máxima 1	410.84	kg/m²
Carga Muerta 2	366.06	kg/m²
Carga Viva Máxima 2	217.73	kg/m²
Cortante Máximo	10.2	ton
Momento Máximo	25.2	ton/m
	2520000	kg/cm

Predimensionamiento de la sección.		
Módulo de la sección		
Zx	1106.719	cm³

Revisión de la sección propuesta IMCA.			
Sección IR	457x59.6	mm*kg/m	
d	455	mm	
tf	13.4	mm	
tw	8.1	mm	
lx	25474	cm⁴	
Sx	1121	cm ³	
Zx	1285	cm³	

Calculo del momento resultante.		
Мр	3251050	kg/cm
Debe ser menor	4254195	
que	7237133	kg/cm
	SI CUMPLE	
Mu	2925945	kg/cm
Eficiencia	86%	

Revisión por cortante.		
h/tw	50.9	
h	428.2	mm
418		
$\overline{\sqrt{Fy}}$	69.6666667	SI CUMPLE
tw	8.1	mm
Aw	57.3788	cm²
Vu	78390.9166	kg
Revisión por cortante		OK

Revisión por flecha.		
Flecha permisible	3.425	
Flecha actuante	0.766	
	OK	

 M_p = Momento plástico

$$M_p=F_y.Z_x\,;$$

$$M_p = F_y.\,Z_x \leq 1.5\,F_y\,.\,S_x$$

Donde:
$$F_y = \frac{kg}{cm^2}$$

Módulo de sección plástico $Z_x = cm^3$

Módulo de sección $S_X = cm^3$

$$M_{ULT} = 0.9 M_p$$

$$\mathsf{Eficiencia} = \frac{M \; max_{(Ton)}}{Mult_{(Ton)}}$$

$$h=d-2t_f$$

Donde;

$$\frac{h}{t_{W}} \leq \frac{418}{\sqrt{f_{\mathcal{Y}}}}$$

$$f_y = ksi$$

$$A_W = h \cdot t_w$$

$$V_u = \phi_n V_n = 0.9 \times 0.6 f_y A_W$$

$$\Delta_{permisible} = \frac{l}{240}$$

$$\Delta_{actuante} = \frac{5wl^4}{384EI}$$

5.2.3 Viga secundaria T-2 mediante el método LRFD.

Para el análisis de secciones preliminares para T-2 eligiremos la viga ubicada entre eje D-E y entre eje 1 y 3, ya que es la mas defavorable que tenemos.

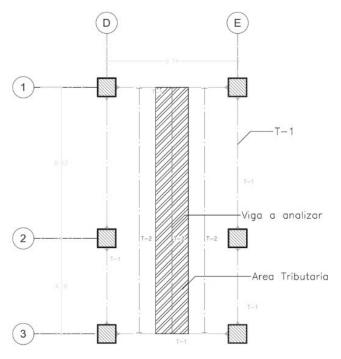


Fig 5.2.3.1 Croquis de localizacion de viga T-2 a analizar.

Para el análisis de la viga T-2 entre eje D-E tenemos:

Área tributaria = 1.43 m x 10.8 m= 15.44 m^2 Carga Muerta (Wm) = 420.32 $\frac{kg}{m^2}$ Carga Viva máxima (Wvmax) = 250 $\frac{kg}{m^2}$

$$W = \frac{Atrib \, x \, W}{L}$$

Dónde: Atrib; es el área tributaria de la sección a diseñar en m^2

W; es la carga en $\frac{kg}{m^2}$

L; es la longitud en m.

$$Wm = \frac{15.44m^2 \times 420.32 \frac{kg}{m^2}}{10.8m} = 600.90 \frac{kg}{m}$$

$$Wv = \frac{15.44m^2 \times 250 \frac{kg}{m^2}}{10.80m} = 357.40 \frac{kg}{m}$$

Utilizando los factores de carga del Método LRFD tenemos:

Wu = 1.2 Wm + 1.6 Wvmax =
$$(1.2 \times 600.90 \frac{kg}{m})$$
 + $(1.6 \times 357.40 \frac{kg}{m})$ = 1293.30 $\frac{kg}{m}$ / 1000 = 1.293 $\frac{ton}{m}$

Idealizando la estructura y obteniendo los cortantes y momentos tenemos:

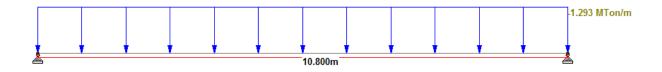


Fig. 5.2.3.2 Idealización de la estructura.

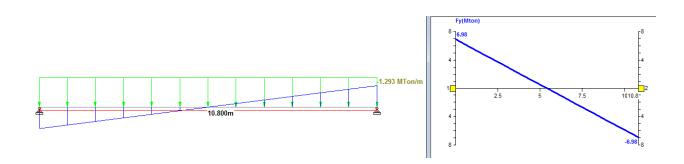
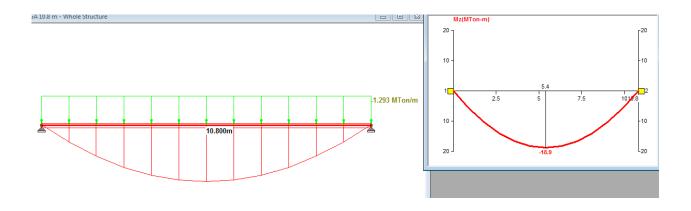



Fig. 5.2.3.3 Diagrama de cortantes.

Tenemos: Vmax = 6.96 Ton; Mmax = 18.9 Ton.

Obteniendo el diseño preliminar de la viga utilizando acero A-36 tenemos:

Zx requerida =
$$\frac{M_u}{\phi_b F_y}$$
 = $\frac{1890000 kg - cm}{0.9 \times 2530 \frac{kg}{cm^2}}$ = 830.0395 cm^3

Obteniendo la sección del Manual de Construcción en Acero IMCA y cumpliendo con el Módulo de sección plástico Zx tenemos:

Sección IR 305 mm x 52.1 $\frac{\text{kg}}{\text{m}}$ con un módulo de sección plástico Zx = 840 cm^3 ; cumpliendo satisfactoriamente el requerido.

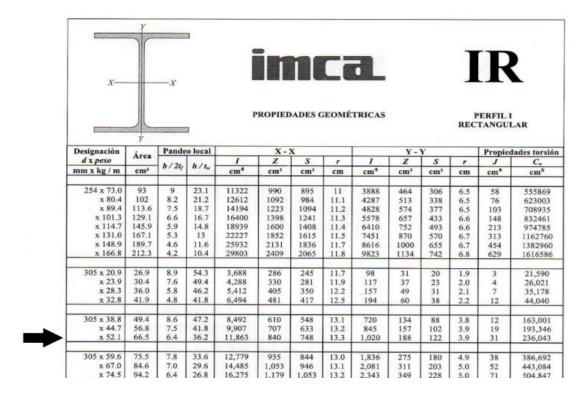


Tabla 5.2.3 Tabla de dimensiones y propiedades geométricas de perfiles de acero estructural.

5.2.3.1 Revisión de Viga secundaria T-2 mediante el método LRFD.

Datos.		
Carga Muerta	420.32	kg/m²
Carga Viva Máxima	250	kg/m²
CM+Cvmáx	670.32	kg/m²
Área Tributaria	15.44	m²
Longitud de la viga	10.8	m
	1080	cm
Acero A-36	2530	kg/cm²
Acero A-36	36	ksi

Obtención de elementos mecánicos.		
Carga Muerta 1	600.9	kg/m²
Carga Viva Máxima 1	357.4	kg/m²
Cortante Máximo	6.96	ton
Momento Máximo	18.9	ton/m
	1890000	kg/cm

Predimensionamiento de la sección.		
Módulo de la sección		
Zx	830.03	cm³

Revisión de la sección propuesta IMCA.		
Seccion IR	305x52.1	mm*kg/m
d	318	mm
tf	13.3	mm
tw	7.7	mm
lx	11863	cm⁴
Sx	748	cm³
Zx	840	cm ³

Calculo del momento resultante.		
Мр	2125200	kg/cm
Debe ser menor	2838660	
que	2030000	kg/cm
	SI CUMPLE	
Mu	1912680	kg/cm
Eficiencia	99%	

Revisión por cortante.		
h/tw	50.9	
h	291.4	mm
418		
\sqrt{Fy}	69.6666667	SI CUMPLE
tw	7.7	mm
Aw	38.7562	cm²
Vu	52948.7204	kg
Revisión por cortante		ОК

Revisión por flecha.	
Flecha permisible	4.5
Flecha actuante	7.2
	NO

M_p= Momento plástico

$$M_p = F_y \cdot Z_x$$
;

$$M_p = F_y. Z_x \le 1.5 \, F_y. S_x$$

Donde:
$$F_y = \frac{kg}{cm^2}$$

Módulo de sección plástico $Z_x = cm^3$

Módulo de sección $S_X = cm^3$

$$M_{ULT} = 0.9 M_p$$

$$\mathsf{Eficiencia} = \frac{M \; max_{(Ton)}}{Mult_{(Ton)}}$$

$$h=d-2t_f$$

Donde;

$$\frac{h}{f} \leq \frac{418}{\sqrt{f}}$$

$$f_y = ksi$$

$$A_{ur} = h \cdot t...$$

$$V_u = \phi_n V_n = 0.9 \times 0.6 f_y A_W$$

$$\Delta_{permisible} = \frac{l}{240}$$

$$\Delta_{actuante} = \frac{5wl^4}{384EI}$$

*La viga propuesta con **Sección IR 305 mm x 52.1** $\frac{kg}{m}$ NO PASA la revisión por flecha por lo cual se propondrá una sección diferente.

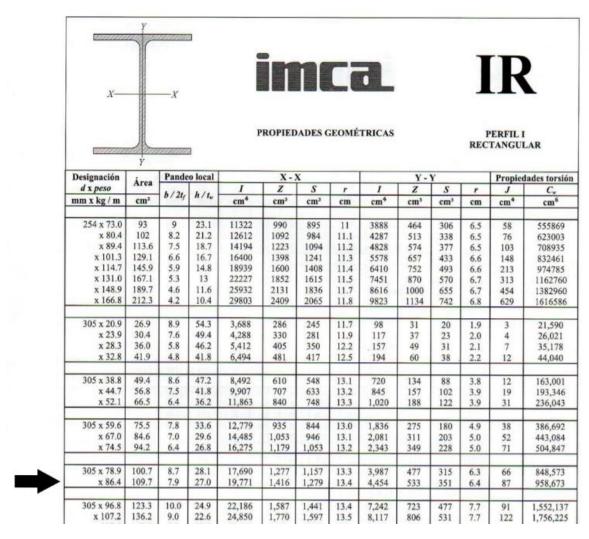


Tabla 5.2.3.1 Tabla de dimensiones y propiedades geométricas de perfiles de acero estructural.

Obteniendo la sección del Manual de Construcción en Acero IMCA y cumpliendo con el Módulo de sección plástico Zx tenemos:

Sección IR 305 mm x 86.4 $\frac{\text{kg}}{\text{m}}$ con un módulo de sección plástico Zx = 1416 cm^3 ; cumpliendo satisfactoriamente el requerido.

5.2.3.2 Revisión de Viga secundaria T-2 mediante el método LRFD.

Datos.		
Carga Muerta	420.32	kg/m²
Carga Viva Máxima	250	kg/m²
CM+Cvmáx	670.32	kg/m²
Área Tributaria	15.44	m²
Longitud de la viga	10.8	m
	1080	cm
Acero A-36	2530	kg/cm²
Acero A-36	36	ksi

Obtención de elementos mecánicos.		
Carga Muerta 1	600.9	kg/m²
Carga Viva Máxima 1	357.4	kg/m²
Cortante Máximo	6.96	ton
Momento Máximo	18.9	ton/m
	1890000	kg/cm

Predimensionamiento de la sección.		
Módulo de la sección		
Zx	830.03	cm³

Revisión de la sección propuesta IMCA.		
Sección IR	305 X 86.4	mm*kg/m
d	310	mm
tf	16.3	mm
tw	9.2	mm
lx	19771	cm⁴
Sx	1279	cm³
Zx	1416	cm³

Calculo del momento resultante.		
Мр	3582480	kg/cm
Debe ser menor	4853805	
que	+033003	kg/cm
	SI CUMPLE	
Mu	3224232	kg/cm
Eficiencia	59%	

Revisión por cortante.		
h/tw	50.9	
h	277.4	mm
418		
$\overline{\sqrt{Fy}}$	69.6666667	SI CUMPLE
tw	9.2	mm
Aw	45.2162	cm²
Vu	61774.3724	kg
Revisión por cortante		OK

Revisión por flecha.		
Flecha permisible	4.5	
Flecha actuante	4.2	
	OK	

 M_p = Momento plástico

$$M_p=F_y.Z_x\,;$$

$$M_p = F_y.\,Z_x \leq 1.5\,F_y\,.\,S_x$$

Donde:
$$F_y = \frac{kg}{cm^2}$$

Módulo de sección plástico $Z_x = cm^3$

Módulo de sección $S_X = cm^3$

$$M_{ULT} = 0.9 M_p$$

$$\mathsf{Eficiencia} = \frac{\mathit{M}\; \mathit{max}_{(Ton)}}{\mathit{Mult}_{(Ton)}}$$

$$h=d-2t_f$$

Donde;

$$\frac{h}{t_w} \le \frac{418}{\sqrt{f_v}}$$

$$f_y = ksi$$

$$A_W = h \cdot t_w$$

$$V_u = \phi_n V_n = 0.9 \times 0.6 f_y A_W$$

$$\Delta_{permisible} = \frac{l}{240}$$

$$\Delta_{actuante} = \frac{5wl^4}{384EI}$$

5.2.4 Viga secundaria T-3 mediante el método LRFD.

Para el análisis de secciones preliminares eligiremos la viga ubicada en el eje C-D entre eje 2 y 3, ya que es la mas defavorable que tenemos.

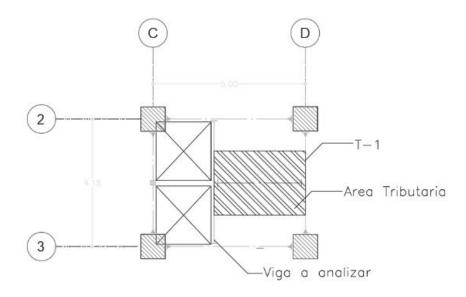


Fig 5.2.4.1 Croquis de localizacion de viga T-1 a analizar.

Para el análisis de la viga T-3 del eje B tenemos:

Área tributaria = 2.2 m x 3 m= 6.6 m^2

Carga Muerta (Wm) = $420.32 \frac{kg}{m^2}$

Carga Viva máxima (Wvmax) = 250 $\frac{kg}{m^2}$

$$W = \frac{Atrib \, x \, W}{L}$$

Dónde:

Atrib; es el área tributaria de la sección a diseñar en m^2

W; es la carga en $\frac{kg}{m^2}$

L; es la longitud en m.

$$Wm = \frac{6.6m^2 \ x \ 420.32 \ \frac{kg}{m^2}}{3m} = 924.70 \ \frac{kg}{m}$$

$$Wv = \frac{6.6m^2 \times 250 \frac{kg}{m^2}}{3m} = 550 \frac{kg}{m}$$

Utilizando los factores de carga del Método LRFD tenemos:

Wu = 1.2 Wm + 1.6 Wvmax =
$$(1.2 \times 924.70 \frac{kg}{m}) + (1.6 \times 550 \frac{kg}{m}) = 1990.23 \frac{kg}{m} / 1000 = 1.99$$
 Ton.

La carga puntual es de $(1.99 \frac{Ton}{m} \times 3 \text{ m}) / 2 = 2.98 \text{ Ton.}$

Idealizando la estructura y obteniendo los cortantes y momentos tenemos:

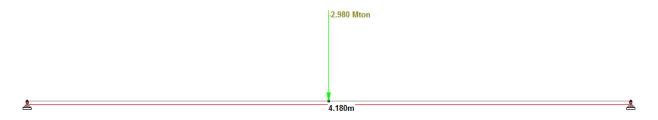


Fig. 5.2.3.2 Idealización de la estructura.

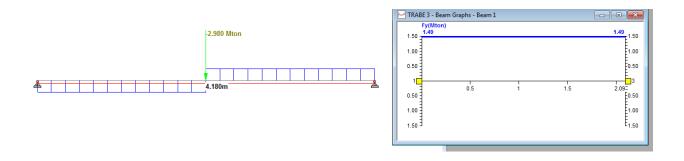


Fig. 5.2.3.3 Diagrama de cortantes.

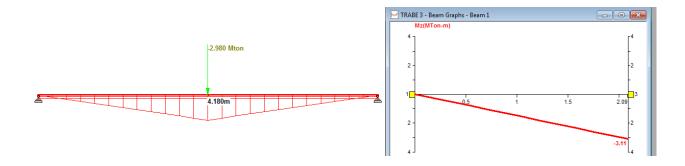


Fig. 5.2.3.4 Diagrama de momentos.

Tenemos: Vmax = 1.49 Ton;

Mmax = 3.11 Ton.

Obteniendo el diseño preliminar de la viga utilizando acero A-36 tenemos:

Zx requerida =
$$\frac{M_u}{\phi_b F_y}$$
 = $\frac{311000 kg - cm}{0.9 x 2530 \frac{kg}{cm^2}}$ = 136.58 cm^3

Obteniendo la sección del Manual de Construcción en Acero IMCA y cumpliendo con el Módulo de sección plástico Zx tenemos:

Sección IR 203 mm x 26.8 $\frac{kg}{m}$ con un módulo de sección plástico Zx = 279 cm^3 ; cumpliendo satisfactoriamente el requerido.

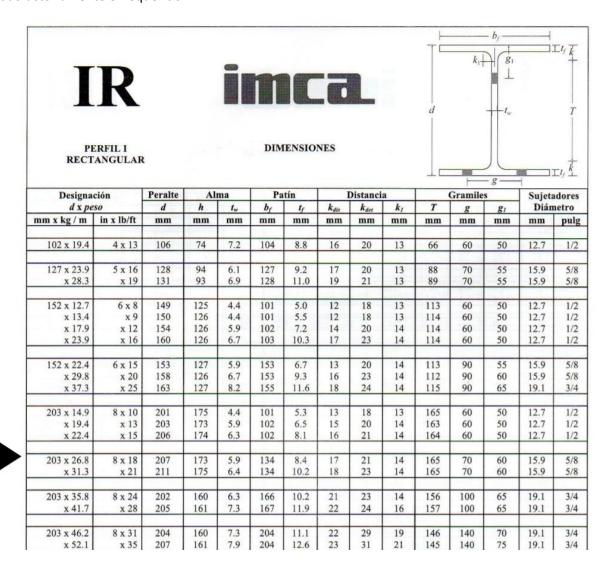


Tabla 5.2.4 Tabla de dimensiones y propiedades geométricas de perfiles de acero estructural.

5.2.4.1 Revisión de Viga secundaria T-3 mediante el método LRFD.

Datos.		
Carga Muerta	420.32	kg/m²
Carga Viva Maxima	250	kg/m²
CM+Cvmáx	670.32	kg/m²
Área Tributaria	6.6	m²
Longitud de la viga	4.18	m
	418	cm
Acero A-36	2530	kg/cm²
Acero A-36	36	ksi

Obtención de elementos mecánicos.		
Carga Muerta 1	924.7	kg/m²
Carga Viva Máxima 1	550	kg/m²
Cortante Máximo	1.49	ton
Momento Máximo	3.11	ton/m
	311000	kg/cm

Predimensionamiento de la sección.		
Módulo de la sección.		
Zx	136.58	cm³

Revisión de la sección propuesta IMCA.					
Sección IR	203 x 26.8	mm*kg/m			
d	207	mm			
tf	8.4	mm			
tw	5.9	mm			
lx	2577	cm⁴			
Sx	250	cm³			
Zx	279	cm³			

Cálculo del momento resultante.						
Мр	705870	kg/cm				
Debe ser menor	948750					
que	340730	kg/cm				
	SI CUMPLE					
Mu	635283	kg/cm				
Eficiencia	49%					

	Revisión por cortante.						
h/tw	50.9						
h	190.2	mm					
418							
\sqrt{Fy}	69.6666667	SI CUMPLE					
tw	5.9	mm					
Aw	15.9768	cm²					
Vu	21827.5042	kg					
Revisión p	oor cortante	OK					

Revisión por flecha.				
Flecha permisible	1.741666667			
Flecha actuante	1.2			
	ОК			

 M_p = Momento plástico

$$M_p = F_y.Z_x$$
;

$$M_p = F_y. Z_x \le 1.5 F_y. S_x$$

Donde:
$$F_y = \frac{kg}{cm^2}$$

Módulo de sección plástico $Z_x = cm^3$

Módulo de sección $S_X = cm^3$

$$M_{ULT} = 0.9 M_p$$

$$\mathsf{Eficiencia} = \frac{M \; max_{(Ton)}}{Mult_{(Ton)}}$$

$$h = d - 2t_f$$

Donde;

$$\frac{h}{t_w} \le \frac{418}{\sqrt{f_y}}$$

$$f_y = ksi$$

$$A_W = h \cdot t_w$$

$$V_u = \phi_n V_n = 0.9 \times 0.6 \, f_y \, A_W$$

$$\Delta_{permisible} = \frac{l}{240}$$

$$\Delta_{actuante} = \frac{5wl^4}{384EI}$$

5.2.5 Columnas.

Para el análisis de secciones preliminares eligiremos la columna ubicada en el eje B y eje 4, ya que es la mas defavorable que tenemos.

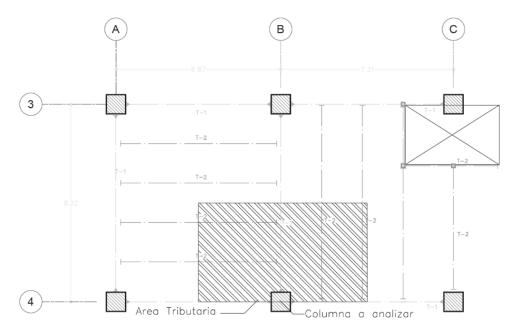


Fig 5.2.5.1 Croquis de localizacion de Columna C-1 a analizar.

Para el análisis de la columna C-1 del eje B tenemos:

Área tributaria 1 = 1.7 m x 4.12 m= 7.14 m^2 Carga Muerta (Wm) = 420.32 $\frac{kg}{m^2}$

Carga Viva máxima (Wvmax) = $250 \frac{kg}{m^2}$

$$W = \frac{Atrib \, x \, W}{L}$$

Dónde:

Atrib; es el área tributaria de la sección a diseñar en m^2

W; es la carga en $\frac{kg}{m^2}$

L; es la longitud en m.

$$Wm = \frac{7.14m^2 \ x \ 420.32 \ \frac{kg}{m^2}}{4.12} = 728.41 \ \frac{kg}{m}$$

$$Wv = \frac{7.14m^2 \times 250 \frac{kg}{m^2}}{4.12m} = 433.25 \frac{kg}{m}$$

Utilizando los factores de carga del Método LRFD tenemos:

Wu = 1.2 Wm + 1.6 Wvmax = $(1.2 \times 728.41 \frac{kg}{m})$ + $(1.6 \times 433.25 \frac{kg}{m})$ = 1567.76 $\frac{kg}{m}$ / 1000 = 1.57 Ton.

La carga puntual es de (1.57 $\frac{Ton}{m}$ x 4.12 m) / 2 = 3.23 Ton.

Área tributaria 2 = 7.1 m x 4.2 m= 29.82 m^2 Carga Muerta (Wm) = 420.54 $\frac{kg}{m^2}$ Carga Viva máxima (Wvmax) = 250 $\frac{kg}{m^2}$

$$W = \frac{Atrib \, x \, W}{L}$$

Dónde: Atrib; es el área tributaria de la sección a diseñar en m^2

W; es la carga en $\frac{kg}{m^2}$

L; es la longitud en m.

$$Wm = \frac{29.82m^2 \times 420.54 \frac{kg}{m^2}}{7.1} = 1766.26 \frac{kg}{m}$$

$$Wv = \frac{29.82m^2 \times 250 \frac{kg}{m^2}}{7.1m} = 1050 \frac{kg}{m}$$

Utilizando los factores de carga del Método LRFD tenemos:

Wu = 1.2 Wm + 1.6 Wvmax = $(1.2 \times 1766.26 \frac{kg}{m}) + (1.6 \times 1050 \frac{kg}{m}) = 3799.51 \frac{kg}{m} / 1000 = 3.8 \text{ Ton.}$

Idealizando la estructura y obteniendo los cortantes y momentos tenemos:

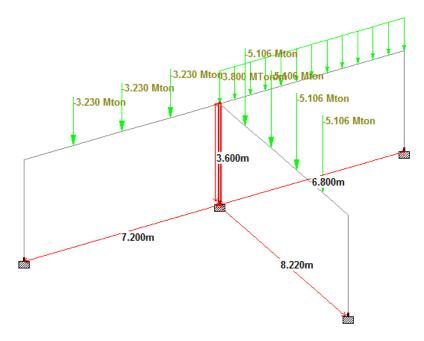


Fig 5.2.5.2 Idealización de la estructura.

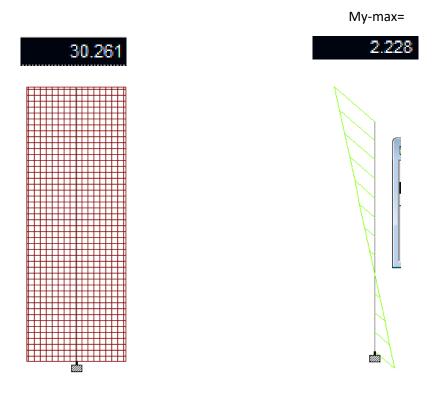


Fig. 5.2.5.3 Diagrama de carga axial.

Fig. 5.2.5.4 Diagrama momento en Y.

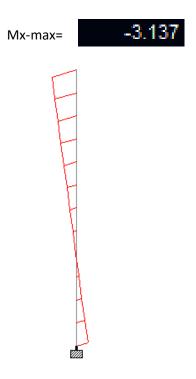


Fig. 5.2.5.5 Diagrama momento en X.

5.2.5.1 Revisión de Columna C-1 mediante el método LRFD.

Diseño de	Diseño de miembros a flexo-compresión.					
	Datos					
Acero A-36	2530	kg/cm²				
Pud	30.26	ton				
	30260	kg				
Mu dx	3.13	ton/m				
Mu dy	2.23	ton/m				
Altura	3.6	3.6				
	360					
Kx	0.65	Ver Tabla 5.1				
Ку	0.65	Ver Tabla 5.1				

Proponiendo kl/r	50		Ver Tabla Tabla 5.2.6.2
Fcr	2218	kg/cm²	Ver Tabla Tabla 5.2.6.2
Øc	0.85		
А	16.0505	cm²	
Considerand	do esfuerzos de compresión er	ntre 30 y 40%	
Atotal	53.50165	cm²	Ver IMCA
r	2.925	cm	Ver IMCA
	Sección Propuesta.		
	IR 406 x 53.6 mm-kg/n		
Area	69.4	cm²	
rx	16.5	cm	
ry	3.9	cm	
Zx	885	cm³	
Zy	115	cm³	
	Relación de esbeltez.		
(kl/r)x	14.18182		
(kl/r)y	60	Rige	Ver Tabla Tabla 5.2.6.2
Far	2004	La / 2002	
Fcr	2094	kg/cm²	Ver Tabla Tabla 5.2.6.2
Pn	145323.6		
Pu	123525.1		
Pud/ØcPn	0.000245		

		Comprobación.		
ØbM	ny	158023.8	kg/cm²	
ØbM	ny	1.580238	ton/m	
ØbN	<u> </u> 1p	23.9	ton/m	Ver T
ØbN	1r	15.2	ton/m	Ver T
Lp		195	m	Ver T
Lr		563	m	Ver T
Υ		8.7	ton/m	
ØbM	nx	23.9	ton/m	
Su	l stituyendo la	l a ecuación de interacción t	<u>l</u> enemos	
Valor	1.71	<	1]
		NO CUMPLE		

Ver Tabla Tabla 5.2.6.3 Ver Tabla Tabla 5.2.6.3 Ver Tabla Tabla 5.2.6.3 Ver Tabla Tabla 5.2.6.3

*La columna propuesta con **Sección IR 406 mm x 53.6** $\frac{kg}{m}$ NO PASA la revisión por lo cual se propondrá una sección diferente.

Se propondra una nueva Sección IR de 457 mm x 105.7 $\frac{kg}{m}$ con un módulo ry = 4.3 cm; cumpliendo satisfactoriamente el requerido.

5.2.5.2 Revisión de Columna C-1 mediante el método LRFD.

	Diseño.		
Proponiendo kl/r	50		٧
Fcr	2218	kg/cm²	٧
Øc	0.85		İ
Α	16.0505	cm²	İ
Considera	ndo esfuerzos de compresión er	ntre 30 y 40%	
Atotal	53.50165	cm²	V
r	2.925	cm	V

Ver Tabla Tabla 5.2.6.2 Ver Tabla Tabla 5.2.6.2

Ver IMCA Ver IMCA

Sección Propuesta.								
	IR 457 x 105.7 mm-kg/m							
Area	134.2	cm²						
rx	19.1	cm						
ry	4.3	cm						
Zx	2393	cm ³						
Zy	405	cm³						
	Relación de esbeltez.							
(kl/r)x	12.25131							
(kl/r)y	54.4186	Rige						
Fcr	2170	kg/cm²						
Pn								
111	291214							
Pu	247531.9							
	247.5319							
Pud/ØcPn	0.000122							

Ver Tabla Tabla 5.2.6.2

Ver Tabla Tabla 5.2.6.2

		Comprobación.					
ØbMny		305573.4	kg/cm²				
ØbMny		3.055734	ton/m				
ØbN	/n	54.1	ton/m				
ØbN	•	34.2	ton/m				
Lp		215	m				
Lr		744	m				
Υ	<u> </u>	19.9	ton/m				
ØbM	lnx	54.1	ton/m				
Sustituyendo la ecuación de interacción tenemos							
Valor	0.82	<	1				
SI CUMPLE							

Ver Tabla Tabla 5.2.6.3 Ver Tabla Tabla 5.2.6.3 Ver Tabla Tabla 5.2.6.3 Ver Tabla Tabla 5.2.6.3

5.2.6 Tablas para diseño de columnas.

Tabla 5.1 Valores	aproxima	idos del fac	tor de longitu	ıd efectiva, <i>K</i>	ζ.	
Las líneas punteadas muestran la forma pandeada de la columna	(a) + (iii) -	(b)	(c)	(d)	(e) + • • • • • • • • • • • • • • • • • •	(f)
Valor K teórico	0.5	0.7	1.0	1.0	2.0	2.0
Valores recomendados de diseño cuando las condiciones reales son aproximadas	0.65	0.80	1.2	1.0	2.10	2.0
		щи	Rotación y tra	ıslación impe	edidas	
		and a	Rotación libre	y traslación	impedida	
Símbolos para las condiciones de extremo		exe	Rotación impedida y traslación libre			
		٩	Rotación y traslación libres			

Fuente: Comentario de la Especificación, Apéndice 7 – Tabla C-A-7.1, p. 16.1-511, junio 22, 2010. Derechos reservados © American Institute of Steel Construction. Reproducido con autorización. Todos los derechos reservados.

A-36							
kl/r	Fcr	kl/r	Fcr	kl/r	Fcr	kl/r	Fcr
	kg/cm ²		kg/cm²		kg/cm ²		kg/cm²
1	2530	51	2207	101	1480	151	774
2	2529	52	2195	102	1464	152	764
3	2529	53	2183	103	1448	153	754
4	2528	54	2170	104	1432	154	745
5	2527	55	2158	105	1417	155	735
6	2525	56	2145	106	1401	156	726
7	2523	57	2133	107	1386	157	716
8	2521	58	2120	108	1370	158	707
9	2519	59	2107	109	1354	159	698
10	2517	60	2094	110	1339	160	690
11	2514	61	2080	111	1323	161	681
12	2511	62	2067	112	1308	162	673
13	2508	63	2053	113	1293	163	665
14	2504	64	2040	114	1277	164	657
4 =	0500	25	2222	445	1000	105	240

Tabla 5.2.6.2 Tabla de Esfuerzos críticos para aceros A.36

(Diseño de Estructuras de Acero – Jack C. McCormac/Stephen F. Csernak)

A-36 FrMp **PERFIL** FrMr Lr Lp Ton.m Ton.m cm cm 406x53.7 23.9 15.2 195 563 406x59.8 200 27.2 591 17.4 406x67.4 200 30.7 616 19.6 406x74.4 200 34.3 642 21.8 457x96.7 215 712 49.6 457x105.3 744 215 54.1 34.2

Tabla 5.2.6.3 Tabla de momentos resistentes de perfiles IR.

(Diseño de Estructuras de Acero – Jack C. McCormac/Stephen F. Csernak)

5.2.7 Tabla resumen de elementos estructurales propuestos.

Elementos Estructurales			
Sección IR 457x59.6 mm-kg/m	T-1		
Sección IR 305 X 86.4 mm-kg/m	T-2		
Sección IR 203 x 26.8 mm-kg/m	T-3		
Sección IR 457 x 105.7 mm-kg/m	C-1		

CAPÍTULO 6.- DISEÑO DE ELEMENTOS ESTRUCTURALES MEDIANTE LRFD.

6.1 Diseño de Columna mediante método LRDFD.

Diseño de miembros a flexo compresión.			
	Datos		
Acero A-36	2530	kg/cm²	
Pud	269.76	ton	
	269760	kg	
Mu dx	42.112	ton/m	
Mu dy	224.1	ton/m	
Altura	3.6	3.6	
	360		
Kx	0.65	Ver Tabla 5.1	
Ку	0.65	Ver Tabla 5.1	

Diseño				
Proponiendo kl/r	50			
Fcr	2218	kg/cm²		
Øc	0.85			
Α	143.086	cm²		
Conside	Considerando esfuerzos de compresión entre 30 y 40%			
Atotal	Atotal 476.9533 cm ²			
r 2.925 cm		cm		
Sección IMCA.				

IR 457 x 105.7 mm-kg/m			
Area	134.2	cm²	
rx	19.1	cm	
ry	4.3	cm	
Zx	2393	cm³	
Zy	405	cm³	
	Relación de esbeltez.		
(kl/r)x	12.25131		
(kl/r)y	54.4186	Rige	
Fcr	2170	kg/cm²	
Pn	291214		
Pu	247531.9		
	247.5319		
Pud/ØcPn	0.00109		

Comprobación.			
ØbMny		305573.4	kg/cm²
ØbMny		3.055734	ton/m
ØbMp		54.1	ton/m
ØbMr		34.2	ton/m
Lp		215	m
Lr		744	m
Υ		19.9	ton/m
ØbMnx		54.1	ton/m
Sustituyendo la ecuación de interacción tenemos			
Valor	66	<	1
NO CUMPLE			

La sección propuesta para la columna C-1 es inadecuada y no pasa la revisión con el método del LRFD, por lo tanto, se tendrá que proponer una sección OR cuadrada de 900mm x 900mm x 50mm de espesor y se procede al análisis mediante el programa de diseño estructural Staad Pro V8i.

6.2 Diseño de Viga mediante método LRDFD.

Datos.			
Carga Muerta	420.32	kg/m²	
Carga Viva Máxima	250	kg/m²	
CM+Cvmáx	670.32	kg/m²	
Área Tributaria	18.449	m²	
Longitud de la viga	8.22	m	
	822	cm	
Acero A-36	2530	kg/cm²	
Acero A-36	36	ksi	
Cortante Máximo	24.518	ton	
Momento Máximo	70.815	ton/m	
	7081500	kg/cm	

Revisión de la sección IMCA.			
Sección IR	457x59.6	mm*kg/m	
d	455	mm	
tf	13.4	mm	
tw	8.1	mm	
lx	25474	cm⁴	
Sx	1121	cm³	
Zx	1285	cm³	

	Calculo del momento resultante.			
Мр	3251050	kg/cm		
Debe ser menor que	4254195	kg/cm		
	SI CUMPLE			
Mu	2925945	kg/cm		
Eficiencia	242%			

Revisión por cortante.			
h/tw	50.9		
h	428.2	mm	
	69.6666667	SI CUMPLE	

tw	8.1	mm
Aw	57.3788	cm²
Vu	78390.9166	kg
Revisión por cortante		ОК

Revisión por flecha.			
Flecha permisible	3.425		
Flecha actuante	0.766		
	ОК		

CAPÍTULO 7.- ANÁLISIS SÍSMICO ESTÁTICO.

7.1 Cálculo del centro de torsión.

Dir. X
$$Y_t = \frac{\sum (R_X Y_t)}{\sum R_X}$$
 Dir. Y
$$X_t = \frac{\sum (R_Y X_t)}{\sum R_Y}$$

IR 356 X 64.1	Rx=	(E lxx /L)	Ixx (cm4)	lyy (cm4)
	Ry=	(E lyy/L)	17815	1881
	E acero=	2040000	kg/cm2	

DIR. X				
Marco 1	Eacero (Ton/cm2)	Ixx (cm4)	L (cm)	Rx (Ton-cm)
	2040	17815	100	363426
	2040	17815	720	50475.8333
	2040	17815	500	72685.2
	2040	17815	573	63425.1309
				550012.164
Marco 2	Eacero (Ton/cm2)	Ixx (cm4)	L (cm)	Rx (Ton-cm)
	2040	17815	100	363426
	2040	17815	720	50475.8333
	2040	17815	500	72685.2
				486587.033
Marco 3	Eacero (Ton/cm2)	Ixx (cm4)	L (cm)	Rx (Ton-cm)
	2040	17815	687	52900.4367
	2040	17815	720	50475.8333

	1					•
	2040		17815		500	72685.2
	2040		17815		573	63425.1309
						239486.601
Marco 4	Eacero (Ton/cm2)	Ixx (cm4)		L (cm)		Rx (Ton-cm)
	2040		17815		687	52900.4367
	2040		17815		720	50475.8333
	2040		17815		500	72685.2
	2040		17815		573	63425.1309
						239486.601
MARCOS	Rx(Ton-cm)	Yi (m)	RxYi			
1	550012.164	19.02	1046	1231.36		
2	486587.033	12.4	6033	679.213		
3	239486.601	8.22	1968	579.859		
4	239486.601	0		0		
	1515572.4		1846	3490.44		
Yct=	12.1825196	m				

DIR. Y					
Marco 1	Eacero (Ton/cm2)		lyy (cm4)	L (cm)	Ry (Ton-cm)
		2040	1881	100	38372.4
		2040	1881	822	4668.17518
					43040.5752
Marco 2	Eacero (Ton/cm2)		lyy (cm4)	L (cm)	Ry (Ton-cm)
		2040	1881	822	4668.17518
		2040	1881	418	9180
		2040	1881	662	5796.43505
		2040	1881	100	38372.4
					58017.0102
Marco 3	Eacero (Ton/cm2)		lyy (cm4)	L (cm)	Ry (Ton-cm)
		2040	1881	566	6779.57597
		2040	1881	418	9180
		2040	1881	662	5796.43505
		2040	1881	100	38372.4
					60128.411
Marco 4	Eacero (Ton/cm2)		lyy (cm4)	L (cm)	Ry (Ton-cm)
		2040	1881	822	4668.17518
		2040	1881	418	9180
		2040	1881	662	5796.43505
		2040	1881	100	38372.4
					58017.0102
Marco 5	Eacero (Ton/cm2)		lyy (cm4)	L (cm)	Ry (Ton-cm)

2040	1881	822	4668.17518
2040	1881	418	9180
2040	1881	662	5796.43505
2040	1881	100	38372.4
			58017.0102

MARCOS	Ry (Ton-cm)	Xi (m)	RyXi
1	43040.5752	0	0
2	58017.0102	6.87	398576.8603
3	60128.411	14.07	846006.743
4	58017.0102	19.07	1106384.385
5	58017.0102	24.8	1438821.854
	277220.017		3789789.842
Xct=	13.6706934	m	

CT = (13.670 m, 12.182 m)

7.2 Cálculo del centro de cargas.

Dir. X
$$Y_t = \frac{\sum (P_X Y_i)}{\sum P_X}$$
 Dir. Y
$$X_t = \frac{\sum (P_Y X_i)}{\sum P_Y}$$

			CM= 420.54 kg-	Cvmax = 250 kg-	Wi = (CM+Cvmax) = 670.54 kg-			
			_		,			
ſ		ı	m2	m2	m2			
	FI	В						
	G	(m)	h (m)	A(m2)= A*h	Wi (kg/m2)	AiWi (kg)	Xc	Yc
								14.6
	1	1	10.8	10.8	670.54	7241.832	6.37	2
								15.7
	2	7.2	6.62	47.664	670.54	31960.61856	10.47	1
								19.5
	3	12.2	1	12.2	670.54	8180.588	12.97	2
							21.93	19.5
	4	5.73	1	5.73	670.54	3842.1942	5	2
ſ								15.7
	5	5	6.62	33.1	670.54	22194.874	16.57	1
							21.93	13.6
	6	5.73	10.8	61.884	670.54	41495.69736	5	2
ĺ								10.3
	7	7.2	4.18	30.096	670.54	20180.57184	10.47	1
								10.3
	8	5	4.18	20.9	670.54	14014.286	16.57	1

9	6.87	1	6.87	670.54	4606.6098	3.435	8.72
10	6.87	8.22	56.4714	670.54	37866.33256	3.435	4.11
11	12.2	8.22	100.284	670.54	67244.43336	12.97	4.11
						21.93	
12	5.73	8.22	47.1006	670.54	31582.83632	5	4.11

	Centro de cargas dirección X	
AiWi	Yc	AiWi*Yc
7241.832	14.62	105875.5838
31960.6186	15.71	502101.3176
8180.588	19.52	159685.0778
3842.1942	19.52	74999.63078
22194.874	15.71	348681.4705
41495.6974	13.62	565171.398
20180.5718	10.31	208061.6957
14014.286	10.31	144487.2887
4606.6098	8.72	40169.63746
37866.3326	4.11	155630.6268
67244.4334	4.11	276374.6211
31582.8363	4.11	129805.4573
290410.874		3291865.554
Ycc=	11.3352007	m

Centro de cargas dirección Y					
AiWi	Xc	AiWi*Xc			
7241.832	6.37	46130.4698			
31960.6186	10.47	334627.676			
8180.588	12.97	106102.226			
3842.1942	21.935	84278.5298			
22194.874	16.57	367769.062			
41495.6974	21.935	910208.122			
20180.5718	10.47	211290.587			
14014.286	16.57	232216.719			
4606.6098	3.435	15823.7047			
37866.3326	3.435	130070.852			
67244.4334	12.97	872160.301			
31582.8363	21.935	692769.515			
290410.874		4003447.76			
Xcc=	13.78546096	m			

CC = (13.785 m, 11.33 m)

7.3 Excentricidades en ambas direcciones.

La excentricidad se calcula como el valor absoluto de la diferencia del Centro de Torsión y el Centro de cargas, en ambas direcciones.

$$e_x = Abs (X_{CT} - X_{CC})$$

$$e_y = Abs(Y_{CT} - Y_{CC})$$

$$e_x = Abs (13.67m - 13.78m) = 0.11 m$$

$$e_v = Abs (12.18m - 11.33m) = 0.85 m$$

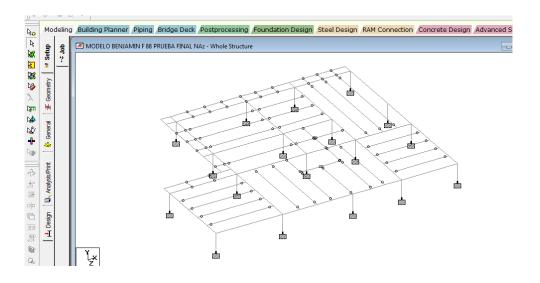
Nótese que la e_x y la e_y son menores al 10% de la distancia en las direcciones "X", y "Y" que tenemos en la estructura vista en planta.

Dist x = 24.80 m 10% de Dist x = 2.48 m

Dist y = 20.02 m 10% de Dist y = 2.00 m

Para fines de cálculo en lo que respecta a sismo, tomaremos en cuenta un mínimo de 10% de la excentricidad en ambas direcciones, por lo tanto, el CT y el CC tendrán un desfasamiento de 2.48m en la dirección **X**, y de 2.00 m en la dirección **Y**, respecto a la distancia del Centro de Torsión.

Por lo tanto CT= (13.670 m, 12.182 m) y CC= CC = (16.15 m, 14.18 m).

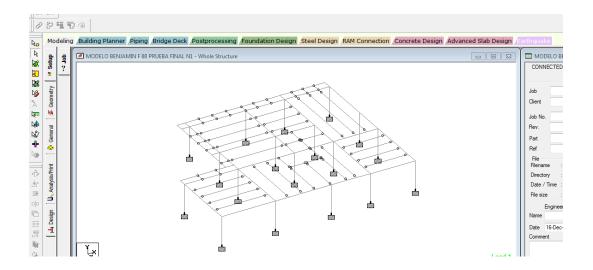


7.4 Peso por nivel calculado con Staad Pro V8i.

Nivel 1-10

Node	L/C	Force-X Mton	Force-Y Mton
2488	11	2.611	23.837
2487	11	2.299	27.639
2485	11	2.025	21.723
2483	11	2.013	28.495
2484	11	1.107	16.05
3387	11	0.605	21.013
2482	11	0.091	14.84
2489	11	0.004	10.996
4389	11	0.003	5.848
2481	11	-0.068	12.482
3379	11	-0.232	13.797
3359	11	-0.41	23.665
2486	11	-0.434	17.128
3417	11	-1.035	18.188
3366	11	-1.528	15.713
3355	11	-2.008	17.955
2490	11	-2.378	19.489
2491	11	-2.667	13.655
		N1-10	322.513

La acción sísmica aplicada al nodo viga-columna es igual a 17.91 Ton en dirección X-Y.



Nivel de Azotea

6449	11	1.959	17.575
6448	11	1.861	20.317
6447	11	1.204	15.819
6445	11	1.175	20.986
6446	11	0.519	11.602
6454	11	0.278	15.355
6450	11	0.116	7.624
6460	11	0.001	3.648
6455	11	-0.043	9.716
6453	11	-0.062	12.308
6444	11	-0.226	10.607
6457	11	-0.249	17.238
6443	11	-0.285	8.762
6459	11	-0.973	11.184
6456	11	-0.991	13.099
6451	11	-1.256	14.125
6452	11	-1.48	9.671
6458	11	-1.548	12.863
		Naz	232.499

La acción sísmica aplicada al nodo viga-columna es igual a 12.91 Ton en dirección X-Y.

7.5 Participaciones modales obtenidas desde Staad Pro V8i.

Mod	Frequency	Period	Participation X	Participation Y	Participation Z	
е	Hz	seconds	%	%	%	Type
						Elasti
1	0.574	1.741	0.087	0	64.298	С
						Elasti
2	0.582	1.72	64.435	0	0.365	С
						Elasti
3	0.634	1.577	1.184	0	6.141	С
						Elasti
4	0.767	1.304	5.525	0	0.01	С
						Elasti
5	0.865	1.157	0.055	0	0.041	С
						Elasti
6	1	1	0.002	0	0.045	С
						Elasti
7	1.066	0.938	0.007	0	0.001	С
						Elasti
8	1.335	0.749	0.001	0	0.058	С
						Elasti
9	1.822	0.549	0	0	0.038	С
						Elasti
10	1.872	0.534	1.524	0	0	С
						Elasti
11	1.997	0.501	0.002	0	0.002	C
4.0	2.460	0.464			5.640	Elasti
12	2.169	0.461	0	0	5.642	C
12	2.246	0.454	0	0	0.244	Elasti
13	2.216	0.451	0	0	0.244	C
14	2 250	0.443	0.007	0	6 227	Elasti
14	2.258	0.445	0.007	0	6.237	c Elasti
15	2.346	0.426	12.422	0	0.001	
13	2.540	0.420	12.422	0	0.001	Elasti
16	2.401	0.416	0.066	0	0.568	C
10	2.401	0.410	0.000	0	0.500	Elasti
17	2.423	0.413	0.14	0	0.319	C
17	2.425	0.413	0.14	0	0.313	Elasti
18	2.51	0.398	0.009	0	0.085	C
	2.51	2.230	2.203		2.203	Elasti
19	2.562	0.39	0.009	0	1.116	C
		2.33	2.203			Elasti
20	2.78	0.36	0	0	0.178	C
					3121	Elasti
21	3.018	0.331	0.015	0	0.001	C

						Elasti
22	3.096	0.323	0	0	0.024	С
					_	Elasti
23	4.85	0.206	0.446	0	0	C
24	5 000	0.406		•	4.445	Elasti
24	5.098	0.196	0	0	1.415	C
25	F 4F2	0.104	0	0	0.000	Elasti
25	5.152	0.194	0	0	0.809	c Elasti
26	5.378	0.186	4.86	0	0.094	C
20	5.576	0.180	4.80	0	0.034	Elasti
27	5.393	0.185	0.149	0	2.349	C
21	3.333	0.103	0.143	<u> </u>	2.545	Elasti
28	5.421	0.184	0.489	0	0.016	C
	91122	0.20	31133		0.0_0	Elasti
29	5.454	0.183	0.008	0	1.205	С
						Elasti
30	5.468	0.183	0.047	0	0.124	С
						Elasti
31	5.549	0.18	0	0	0.063	С
						Elasti
32	5.69	0.176	0.044	0	0.001	С
						Elasti
33	5.728	0.175	0	0	0.014	С
						Elasti
34	9.275	0.108	0.214	0	0	С
25	0.447	0.406			0.004	Elasti
35	9.417	0.106	0	0	0.391	C
26	0.553	0.105	0	0	0.457	Elasti
36	9.553	0.105	0	0	0.457	c Elasti
37	9.781	0.102	2.337	0	0.084	C
37	5.781	0.102	2.557	0	0.084	Elasti
38	9.792	0.102	0.066	0	1.605	C
	3.732	0.102	0.000		2.003	Elasti
39	9.817	0.102	0.506	0	0.03	C
						Elasti
40	9.827	0.102	0.018	0	0.584	С
						Elasti
41	9.847	0.102	0.074	0	0.136	С
						Elasti
42	9.876	0.101	0	0	0.009	С
						Elasti
43	9.952	0.1	0.073	0	0	С
						Elasti
44	9.976	0.1	0	0	0.008	С

		1				Elasti
45	11.773	0.085	0	0	0	С
						Elasti
46	11.908	0.084	0	0	0	С
						Elasti
47	12.314	0.081	0	0	0	С
						Elasti
48	12.45	0.08	0	0	0	С
			_	_		Elasti
49	13.418	0.075	0	0	0	C
50	42.555	0.074	0	2	0	Elasti
50	13.555	0.074	0	0	0	C
51	14.917	0.067	0	0	0	Elasti
31	14.917	0.007	U	U	U	c Elasti
52	14.973	0.067	0.125	0	0	C
32	14.575	0.007	0.123		<u> </u>	Elasti
53	15.004	0.067	0	0	0	C
						Elasti
54	15.063	0.066	0	0	0.188	С
						Elasti
55	15.104	0.066	0	0	0	С
						Elasti
56	15.221	0.066	0	0	0.266	С
						Elasti
57	15.392	0.065	0	0	0.001	С
						Elasti
58	15.429	0.065	1.36	0	0.026	C
	15 442	0.005	0.013	0	1 000	Elasti
59	15.442	0.065	0.013	0	1.089	c Elasti
60	15.461	0.065	0.211	0	0.094	C
	13.401	0.005	0.211		0.054	Elasti
61	15.466	0.065	0.122	0	0.237	C
			_			Elasti
62	15.479	0.065	0.001	0	0	С
						Elasti
63	15.483	0.065	0.069	0	0.124	С
						Elasti
64	15.496	0.065	0.005	0	0.001	С
		_				Elasti
65	15.504	0.064	0.043	0	0	C
	45 537	0.004	2 27 1	•	_	Elasti
66	15.537	0.064	0.074	0	0	C
[67	15 550	0.004		•	0.000	Elasti
67	15.558	0.064	0	0	0.006	С

						Elasti
68	15.576	0.064	0	0	0	C
						Elasti
69	15.616	0.064	0.003	0	0	С
						Elasti
70	16.233	0.062	0	0	0	С
						Elasti
71	16.525	0.061	0	0	0	C
7.0	16.613	0.00			•	Elasti
72	16.612	0.06	0	0	0	C
72	16 707	0.06	0	0	0	Elasti
73	16.707	0.06	0	0	0	c Elasti
74	16.714	0.06	0	0	0	C
/ -	10.714	0.00	<u> </u>		0	Elasti
75	17.855	0.056	0	0	0	C
70	27.000	0.000				Elasti
76	18.235	0.055	0	0	0	C
						Elasti
77	18.319	0.055	0	0	0	С
						Elasti
78	18.419	0.054	0	0	0	С
						Elasti
79	19.358	0.052	0	0	0	С
						Elasti
80	19.425	0.051	0	0	0	С
			_			Elasti
81	19.502	0.051	0	0	0	C
02	10.536	0.051	0	0	0	Elasti
82	19.536	0.051	0	0	0	c Elasti
83	19.759	0.051	0	0	0	C
05	13.733	0.031	J	<u> </u>	<u> </u>	Elasti
84	20.104	0.05	0	0	0	C
						Elasti
85	20.484	0.049	0	0	0	С
						Elasti
86	20.872	0.048	0	0	0	С
						Elasti
87	21.518	0.046	0	0	0	С
						Elasti
88	21.583	0.046	0	0	0	С
		0.5.5	_	_	_	Elasti
89	21.586	0.046	0	0	0	C
	24.67	0.046		2	^	Elasti
90	21.67	0.046	0	0	0	С

						Elasti
91	21.688	0.046	0.081	0	0	С
						Elasti
92	21.75	0.046	0	0	0.111	C
03	21 000	0.046	0	0	0.160	Elasti
93	21.898	0.046	0	0	0.169	c Elasti
94	22.068	0.045	0.865	0	0.002	C
J .	22.000	0.0.5	0.000		0.002	Elasti
95	22.086	0.045	0	0	0.773	С
						Elasti
96	22.099	0.045	0	0	0.09	С
						Elasti
97	22.108	0.045	0.178	0	0.071	C
98	22 115	0.045	0.150	0	0.091	Elasti
96	22.115	0.045	0.159	U	0.091	c Elasti
99	22.125	0.045	0.001	0	0.016	
33	22.123	0.0.0	0.001		0.010	Elasti
100	22.146	0.045	0.047	0	0.004	С
						Elasti
101	22.167	0.045	0.001	0	0.007	С
						Elasti
102	22.405	0.045	0	0	0	C
103	22.51	0.044	0	0	0	Elasti c
103	22.51	0.044	<u> </u>	0	0	Elasti
104	22.547	0.044	0	0	0	C
						Elasti
105	22.587	0.044	0	0	0	С
						Elasti
106	22.765	0.044	0	0	0	C
107	22.87	0.044	0	0	0	Elasti c
107	22.07	0.044	U	U	U	Elasti
108	23.221	0.043	0	0	0	C
		2.2.75				Elasti
109	23.278	0.043	0	0	0	С
						Elasti
110	23.542	0.042	0	0	0	С
	22.040	0.040		_	_	Elasti
111	23.819	0.042	0	0	0	
112	23.921	0.042	0	0	0	Elasti c
112	23.321	0.042	0	0	0	Elasti
113	24.555	0.041	0	0	0	C

						Elasti
114	24.642	0.041	0	0	0	С
						Elasti
115	24.7	0.04	0	0	0	С
						Elasti
116	24.968	0.04	0	0	0	С
						Elasti
117	24.975	0.04	0	0	0	С
					_	Elasti
118	24.983	0.04	0	0	0	C
440	25.005	0.04	0	•		Elasti
119	25.005	0.04	0	0	0	C
120	25.029	0.04	0	0	0	Elasti
120	23.029	0.04	U	0	U	c Elasti
121	25.079	0.04	0	0	0	C
121	23.073	0.01	<u> </u>			Elasti
122	25.322	0.039	0	0	0	C
						Elasti
123	25.58	0.039	0	0	0	С
						Elasti
124	25.684	0.039	0	0	0	С
						Elasti
125	25.719	0.039	0	0	0	С
						Elasti
126	25.973	0.039	0	0	0	С
					_	Elasti
127	26.024	0.038	0	0	0	C
420	26 24 4	0.020	0	0	0	Elasti
128	26.314	0.038	0	0	0	C
129	26.32	0.038	0	0	0	Elasti c
123	20.52	0.038	0	0	0	Elasti
130	26.566	0.038	0	0	0	C
	20.000	0.000				Elasti
131	26.62	0.038	0	0	0	С
						Elasti
132	26.688	0.037	0	0	0	С
						Elasti
133	26.791	0.037	0	0	0	С
						Elasti
134	27.116	0.037	0	0	0	С
						Elasti
135	27.419	0.036	0	0	0	С
400	27 723	2.25	_	-	_	Elasti
136	27.769	0.036	0	0	0	С

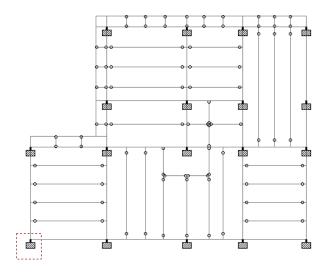
137 27.818 0.036 0 0 0 C							Elasti
138	137	27.818	0.036	0	0	0	
139							
139 27.922 0.036 0 0 0 0 c Elasti	138	27.827	0.036	0	0	0	С
140							Elasti
140	139	27.922	0.036	0	0	0	С
141 28.113 0.036 0 0 0 0 0 0 0 0 0							Elasti
141	140	28.061	0.036	0	0	0	
Table Tabl					_		
142 28.462 0.035 0 0 c Elasti 143 28.994 0.034 0.054 0 0 c Elasti 144 29.04 0.034 0 0 0.073 c c Elasti 145 29.157 0.034 0.399 0 0 c Elasti 146 29.246 0.034 0.399 0 0 c Elasti 147 29.299 0.034 0.002 0 0.541 c Elasti 148 29.307 0.034 0.133 0 0.009 c Elasti 149 29.318 0.034 0.01 0 0.071 c Elasti 150 29.322 0.034 0.261 0 0.028 c Elasti 151 29.328 0.034 0.002 0 0.031 c Elasti 152 29.342 0.034 0.001 0 0.015 c Elasti 153 29	141	28.113	0.036	0	0	0	
Table Tabl	4.40	20.462	0.005			•	
143 28.994 0.034 0.054 0 0 c Elasti 144 29.04 0.034 0 0 0.073 c Elasti 145 29.157 0.034 0.399 0 0 0.112 c Elasti 146 29.246 0.034 0.399 0 0 c Elasti 147 29.299 0.034 0.002 0 0.541 c 148 29.307 0.034 0.133 0 0.009 c 149 29.318 0.034 0.261 0 0.071 c 150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.002 0 0.015 c 153 29.361 0.034 0.001 0 0 0 c 154 29.4	142	28.462	0.035	0	0	0	
Table Tabl	142	28.004	0.034	0.054	0	0	
144 29.04 0.034 0 0 0.073 c 145 29.157 0.034 0 0 0.112 c 146 29.246 0.034 0.399 0 0 c 147 29.299 0.034 0.002 0 0.541 c 148 29.307 0.034 0.133 0 0.009 c 149 29.318 0.034 0.01 0 0.071 c 150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.002 0 0.015 c 153 29.361 0.034 0.001 0 0 0 c 154 29.4 0.034 0.001 0 0 0	143	28.994	0.034	0.054	U	U	
Table Tabl	144	29.04	0.034	0	0	0.072	
145 29.157 0.034 0 0 0.112 c Elasti 146 29.246 0.034 0.399 0 0 c Elasti 147 29.299 0.034 0.002 0 0.541 c Elasti c 158ti <	144	29.04	0.034	0	0	0.073	
146	1/15	29 157	0.034	0	0	0 112	
146 29.246 0.034 0.399 0 0 c 147 29.299 0.034 0.002 0 0.541 c 148 29.307 0.034 0.133 0 0.009 c 149 29.318 0.034 0.01 0 0.071 c 150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 c Elasti 155 29.917 0.033 0 0 0 0 c 156 29.917 0.033 0 0 0 0 c 157 29.923 0.033 0 0 <t< td=""><td>143</td><td>25.157</td><td>0.054</td><td>0</td><td><u> </u></td><td>0.112</td><td></td></t<>	143	25.157	0.054	0	<u> </u>	0.112	
147 29.299	146	29 246	0.034	0 399	0	0	
147 29.299 0.034 0.002 0 0.541 c 148 29.307 0.034 0.133 0 0.009 c 149 29.318 0.034 0.01 0 0.071 c 150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 c c 155 29.917 0.033 0 0 0 c c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c 158 29.969 0.033 0 0	140	25.240	0.054	0.333	J		
148 29.307 0.034 0.133 0 0.009 c Elasti c 149 29.318 0.034 0.01 0 0.071 c Elasti c 150 29.322 0.034 0.261 0 0.028 c Elasti c 151 29.328 0.034 0.002 0 0.031 c Elasti c 152 29.342 0.034 0.024 0 0.015 c Elasti c 153 29.361 0.034 0.001 0 0.01 c Elasti c 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 c Elasti c 156 29.917 0.033 0 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c	147	29.299	0.034	0.002	0	0.541	
148 29.307 0.034 0.133 0 0.009 c 149 29.318 0.034 0.01 0 0.071 c 150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 0 c 155 29.917 0.033 0 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c 158 29.969 0.033 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
149 29.318 0.034 0.01 0 0.071 c 150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 0 c 156 29.917 0.033 0 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0	148	29.307	0.034	0.133	0	0.009	
150							
150 29.322 0.034 0.261 0 0.028 c 151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 c 155 29.861 0.033 0 0 0 c 156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 c 158 29.969 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c	149	29.318	0.034	0.01	0	0.071	С
The color of the							Elasti
151 29.328 0.034 0.002 0 0.031 c 152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 c 155 29.861 0.033 0 0 0 c 156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 c 158 29.969 0.033 0 0 0 c Elasti 158 29.969 0.033 0 0 0 c	150	29.322	0.034	0.261	0	0.028	С
152 29.342 0.034 0.024 0 0.015 c Elasti 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 0 c 156 29.917 0.033 0 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.035 0 0 0 0 0 c 158 29.969 0.035 0 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 0 0 158 29.969 0.035 0 0 0 0 0 0 0 0 0							Elasti
152 29.342 0.034 0.024 0 0.015 c 153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 c 155 29.861 0.033 0 0 0 c 156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c Elasti 158 29.969 0.033 0 0 0 0 c	151	29.328	0.034	0.002	0	0.031	С
153 29.361 0.034 0.001 0 0.01 c Elasti 154 29.4 0.034 0.001 0 0 0 c 155 29.861 0.033 0 0 0 0 c 156 29.917 0.033 0 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 0 c 158 29.969 0.033 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 0 0 158 29.969 0.033 0 0 0 0 0 0 0 0 0							
153 29.361 0.034 0.001 0 0.01 c 154 29.4 0.034 0.001 0 0 c 155 29.861 0.033 0 0 0 c 156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 c 158 29.969 0.033 0 0 0 0 c Elasti 158 29.969 0.033 0 0 0 0 c Elasti	152	29.342	0.034	0.024	0	0.015	
154 29.4 0.034 0.001 0 0 0 c	4.50	00.004		0.004			
154 29.4 0.034 0.001 0 0 c 155 29.861 0.033 0 0 0 c 156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 c 158 29.969 0.033 0 0 0 c Elasti 158 29.969 0.033 0 0 0 c	153	29.361	0.034	0.001	0	0.01	
Elasti	154	20.4	0.024	0.001	0	0	
155 29.861 0.033 0 0 0 c 156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 c 158 29.969 0.033 0 0 0 0 c Elasti 158 29.969 0.033 0 0 0 c	154	29.4	0.034	0.001	U	0	
156 29.917 0.033 0 0 0 0 c	155	20.961	0.022	0	0	0	
156 29.917 0.033 0 0 0 c 157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c Elasti 158 29.969 0.033 0 0 Elasti	133	29.001	0.033	U	U	U	
157 29.923 0.033 0 0 0 0 c 158 29.969 0.033 0 0 0 0 c Elasti Elasti Elasti Elasti Elasti Elasti Elasti Elasti	156	29 917	0 033		0	0	
157 29.923 0.033 0 0 0 c 158 29.969 0.033 0 0 0 c Elasti Elasti Elasti Elasti c Elasti	130	25.517	0.033		0	0	
158 29.969 0.033 0 0 0 Elasti c Elasti	157	29,923	0.033	0	n	n	
158 29.969 0.033 0 0 0 c Elasti			3.000				
Elasti	158	29.969	0.033	0	0	0	
						<u> </u>	
	159	30.042	0.033	0	0	0	

180	33.649 CIPACIÓN MO I	0.03	9 9.066	0	9 9.064	
1,3	33.773	0.03	0	0	0	Elasti
179	33.449	0.03	0	0	0	Elasti c
178	33.387	0.03	0	0	0	C
	_					Elasti
177	33.359	0.03	0	0	0	C
176	32.97	0.03	0	0	0	c Elasti
						Elasti
175	32.932	0.03	0	0	0	Elasti c
174	32.862	0.03	0	0	0	С
173	32.807	0.03	0	0	0	c Elasti
173	22 007	0.03				Elasti
172	32.764	0.031	0	0	0	C
171	32.113	0.031	0	0	0	c Elasti
474	22.112	0.004				Elasti
170	32.023	0.031	0	0	0	C
169	31.71	0.032	0	0	0	c Elasti
160	24 74	0.000				Elasti
168	31.641	0.032	0	0	0	C
167	31.506	0.032	0	0	0	c Elasti
	24.706	0.000				Elasti
166	31.491	0.032	0	0	0	C
165	31.234	0.032	0	0	0	c Elasti
						Elasti
164	31.18	0.032	0	0	0	Elasti c
163	30.382	0.033	0	0	0	C
						Elasti
162	30.317	0.033	0	0	0	C
161	30.267	0.033	0	0	0	c Elasti
						Elasti
160	30.103	0.033	0	0	0	Elasti c

7.6 Análisis Sísmico Estático.

			ANÁLIS	IS ESTÁTICO)			
Q=	2		X=	24.8		ex	2.48	
Firr=	1		Z=	20.34		ez	2.034	
Q´=	2	С	0.524					
Nivel	wi	hi	wihi	Fi	Vi	Vb=	Mtx	Mtz
10	232.5	36	8370.000	64.811	64.811	469.372	131.825	160.731
9	322.513	32.4	10449.421	80.912	145.723		164.575	200.662
8	322.513	28.8	9288.374	71.922	217.645		146.289	178.366
7	322.513	25.2	8127.328	62.932	280.577		128.003	156.071
6	322.513	21.6	6966.281	53.941	334.518		109.717	133.775
5	322.513	18	5805.234	44.951	379.469		91.431	111.479
4	322.513	14.4	4644.187	35.961	415.430		73.145	89.183
3	322.513	10.8	3483.140	26.971	442.401		54.858	66.887
2	322.513	7.2	2322.094	17.980	460.382		36.572	44.592
1	322.513	3.6	1161.047	8.990	469.372		18.286	22.296
	3135.117		60617.106	469.372				

	ANÁLISIS DINÁMICO EN DIRECCIÓN X								
Nivel	wi	hi	wihi	Fi	Vi	Mtx	Mtx/nodo		
10	232.5	36	8370.000	43.644	43.644	88.772	4.93		
9	322.513	32.4	10449.421	33.375	77.019	67.885	3.77		
8	322.513	28.8	9288.374	71.633	105.008	145.702	8.09		
7	322.513	25.2	8127.328	55.806	127.439	113.509	6.31		
6	322.513	21.6	6966.281	90.727	146.533	184.539	10.25		
5	322.513	18	5805.234	72.870	163.597	148.218	8.23		
4	322.513	14.4	4644.187	105.745	178.615	215.085	11.95		
3	322.513	10.8	3483.140	84.877	190.622	172.640	9.59		
2	322.513	7.2	2322.094	113.503	198.380	230.865	12.83		
1	322.513	3.6	1161.047	87.815	201.318	178.616	9.92		
	3135.117		60617.106	759.995					


ANÁLISIS DINÁMICO EN DIRECCIÓN Z

Nivel	wi	hi	wihi	Fi	Vi	Mtz	Mtz/nodo
10	232.5	36	8370.000	43.644	44.335	108.237	6.01
9	232.5	32.4	7533.000	32.038	75.682	79.454	4.41
8	322.513	28.8	9288.374	71.466	103.504	177.236	9.85
7	322.513	25.2	8127.328	54.776	126.242	135.844	7.55
6	322.513	21.6	6966.281	91.070	145.846	225.854	12.55
5	322.513	18	5805.234	71.951	163.021	178.438	9.91
4	322.513	14.4	4644.187	105.644	177.595	261.997	14.56
3	322.513	10.8	3483.140	83.246	188.890	206.450	11.47
2	322.513	7.2	2322.094	112.833	196.079	279.826	15.55
1	322.513	3.6	1161.047	86.001	198.834	213.282	11.85
	3045,104		57700.685	752,669	•		•

7.7 Distorsiones.

Se hace el análisis en una esquina de la estructura.

Esquina analizada.

Datos obtenidos de Staad Pro.

0	-13.296	-46.183	-90.986	-141.875	-194.513	-245.754	-293.46	-336.453	-374.609	-409.13
0	13.263	46.123	90.892	141.738	194.327	245.516	293.176	336.149	374.368	409.087
0	-11.813	-41.019	-80.79	-125.946	-172.63	-218.045	-260.297	-298.344	-332.09	-362.603
0	11.78	40.958	80.696	125.809	172.443	217.808	260.012	298.041	331.849	362.56
0	-13.125	-45.6	-89.851	-140.126	-192.146	-242.808	-290.001	-332.555	-370.34	-404.534
0	13.092	45.539	89.756	139.988	191.959	242.57	289.717	332.252	370.099	404.491
0	-12.491	-43.389	-85.485	-133.303	-182.769	-230.931	-275.785	-316.221	-352.12	-384.605
0	12.457	43.328	85.39	133.165	182.582	230.694	275.501	315.918	351.879	384.562
0	-8.183	-28.384	-55.864	-87.029	-119.202	-150.446	-179.456	-205.527	-228.609	-249.444
0	8.149	28.323	55.77	86.891	119.015	150.208	179.172	205.224	228.369	249.401
0	-11.18	-38.813	-76.433	-119.131	-163.257	-206.166	-246.074	-221.915	-247.102	-269.867
0	11.147	38.752	76.339	118.994	163.07	-162.035	-193.527	-282.006	-313.877	269.825
0	-8.762	-30.432	-59.959	-93.509	-128.225	205.928	245.79	221.611	246.861	-342.698
0	8.729	30.371	59.865	93.371	128.038	161.797	193.243	281.703	313.636	342.655
0	-9.697	-33.648	-66.237	-103.202	-106.342	-134.326	-160.364	-183.807	-204.583	-223.34
0	9.664	33.588	-49.763	-77.58	-141.374	-178.458	-212.911	183.503	204.342	223.298
0	-7.279	-25.267	66.143	103.065	106.155	134.089	160.079	-243.898	-271.358	-296.171
0	7.246	25.206	49.669	77.442	141.187	178.22	212.626	243.594	-210.39	-229.515
0	-7.548	-26.173	-51.498	-80.206	-109.825	-138.57	-165.24	-189.193	271.117	296.128
0	7.515	26.112	51.404	80.068	109.638	138.332	164.956	188.89	210.149	229.472
0	-7.598	-26.394	-52.02	-81.154	-111.323	-140.731	-168.155	-192.903	-214.874	-234.735
0	7.564	26.333	51.926	81.016	111.136	140.494	167.871	192.599	214.633	234.693
0	-6.963	-24.183	-47.654	-74.331	-101.946	-128.855	-153.939	-176.569	-196.654	-214.806

0	6.93	-23.061	-45.406	-70.765	-96.968	-122.447	-146.141	-167.469	-186.37	-203.436
0	-6.646	24.122	47.56	74.193	101.759	128.617	153.655	176.265	196.414	214.763
0	6.613	23	45.312	70.627	96.782	122.209	145.856	167.165	186.13	203.393
0	-2.655	-9.178	-18.034	-28.057	-38.379	-48.37	-57.61	-65.875	-73.144	-79.646
0	2.622	9.117	17.939	27.919	38.192	48.132	57.326	65.571	72.903	79.603
0	-5.163	-17.897	-35.21	-54.836	-75.085	-94.739	-112.977	-129.36	-143.851	-156.909
0	5.13	17.836	35.116	54.698	74.898	94.501	112.693	129.057	143.61	156.866
0	-2.02	-6.967	-13.668	-21.234	-29.002	-36.493	-43.394	-49.541	-54.924	-59.716
0	1.987	6.906	13.573	21.096	28.815	36.256	43.11	49.237	54.683	59.673

VALORES ABSOLUTOS

0 13.296 46.183 90.986 141.875 194.513 245.754 293.46 336.453 374.609 409.13 0 13.263 46.123 90.892 141.738 194.327 245.516 293.176 336.149 374.368 409.087 0 11.813 41.019 80.79 125.946 172.63 218.045 260.297 298.344 332.09 362.603 0 11.78 40.958 80.696 125.809 172.443 217.808 260.012 298.041 331.849 362.56 0 13.092 45.539 89.756 139.988 191.959 242.57 289.717 332.252 370.099 404.491 0 12.491 43.388 85.485 133.303 182.769 230.931 275.785 316.221 352.12 384.605 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.1489											
0 13.263 46.123 90.892 141.738 194.327 245.516 293.176 336.149 374.368 409.087 0 11.813 41.019 80.79 125.946 172.63 218.045 260.297 298.344 332.09 362.603 0 11.78 40.958 80.696 125.809 172.443 217.808 260.012 298.041 331.849 362.56 0 13.125 45.6 89.851 140.126 192.146 242.808 290.001 332.555 370.34 404.534 0 13.092 45.539 89.756 139.988 191.959 242.57 289.717 332.252 370.099 404.491 0 12.491 43.389 85.485 133.303 182.769 230.931 275.785 316.221 352.12 384.605 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.149 <	N0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
0 11.813 41.019 80.79 125.946 172.63 218.045 260.297 298.344 332.09 362.603 0 11.78 40.958 80.696 125.809 172.443 217.808 260.012 298.041 331.849 362.56 0 13.125 45.6 89.851 140.126 192.146 242.808 290.001 332.555 370.34 404.534 0 13.092 45.539 89.756 139.988 191.959 242.57 289.717 332.252 370.099 404.491 0 12.491 43.389 85.485 133.303 182.769 230.931 275.785 316.221 352.12 384.605 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.609 249.401 0 11.147 <td< td=""><td>0</td><td>13.296</td><td>46.183</td><td></td><td>141.875</td><td>194.513</td><td>245.754</td><td>293.46</td><td>336.453</td><td>374.609</td><td>409.13</td></td<>	0	13.296	46.183		141.875	194.513	245.754	293.46	336.453	374.609	409.13
0 11.78 40.958 80.696 125.809 172.443 217.808 260.012 298.041 331.849 362.56 0 13.125 45.6 89.851 140.126 192.146 242.808 290.001 332.555 370.34 404.534 0 13.092 45.539 89.756 139.988 191.959 242.57 289.717 332.252 370.099 404.491 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.183 28.384 55.864 87.029 119.202 150.446 179.456 205.527 228.609 249.444 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.369 249.401 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 <td< td=""><td>0</td><td>13.263</td><td>46.123</td><td>90.892</td><td>141.738</td><td>194.327</td><td>245.516</td><td>293.176</td><td>336.149</td><td>374.368</td><td>409.087</td></td<>	0	13.263	46.123	90.892	141.738	194.327	245.516	293.176	336.149	374.368	409.087
0 13.125 45.6 89.851 140.126 192.146 242.808 290.001 332.555 370.34 404.534 0 13.092 45.539 89.756 139.988 191.959 242.57 289.717 332.252 370.099 404.491 0 12.491 43.389 85.485 133.303 182.769 230.931 275.785 316.221 352.12 384.605 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.369 249.401 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.959 93.509 128.225 205.928 245.79	0	11.813	41.019	80.79	125.946	172.63	218.045	260.297	298.344	332.09	362.603
0 13.092 45.539 89.756 139.988 191.959 242.57 289.717 332.252 370.099 404.491 0 12.491 43.389 85.485 133.303 182.769 230.931 275.785 316.221 352.12 384.605 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.183 28.384 55.864 87.029 119.202 150.446 179.456 205.527 228.609 249.444 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.609 249.401 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.959 93.509 128.225 205.928 245.79 221.611 246.861 342.686 0 8.729 <t< td=""><td>0</td><td>11.78</td><td>40.958</td><td>80.696</td><td>125.809</td><td>172.443</td><td>217.808</td><td>260.012</td><td>298.041</td><td>331.849</td><td>362.56</td></t<>	0	11.78	40.958	80.696	125.809	172.443	217.808	260.012	298.041	331.849	362.56
0 12.491 43.389 85.485 133.303 182.769 230.931 275.785 316.221 352.12 384.605 0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.183 28.384 55.864 87.029 119.001 150.406 179.456 205.527 228.609 249.444 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.369 249.401 0 11.18 38.813 76.433 119.131 163.257 206.166 246.074 221.915 247.102 269.867 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.595 93.501 128.225 205.928 245.79 221.611 246.861 342.655 0 9.697 <t< td=""><td>0</td><td>13.125</td><td>45.6</td><td>89.851</td><td>140.126</td><td>192.146</td><td>242.808</td><td>290.001</td><td>332.555</td><td>370.34</td><td>404.534</td></t<>	0	13.125	45.6	89.851	140.126	192.146	242.808	290.001	332.555	370.34	404.534
0 12.457 43.328 85.39 133.165 182.582 230.694 275.501 315.918 351.879 384.562 0 8.183 28.384 55.864 87.029 119.202 150.446 179.456 205.527 228.609 249.444 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.369 249.401 0 11.18 38.813 76.433 119.131 163.257 206.166 246.074 221.915 247.102 269.867 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.599 93.509 128.225 205.928 245.79 221.611 246.861 342.698 0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.664 <td< td=""><td>0</td><td>13.092</td><td>45.539</td><td>89.756</td><td>139.988</td><td>191.959</td><td>242.57</td><td>289.717</td><td>332.252</td><td>370.099</td><td>404.491</td></td<>	0	13.092	45.539	89.756	139.988	191.959	242.57	289.717	332.252	370.099	404.491
0 8.183 28.384 55.864 87.029 119.202 150.446 179.456 205.527 228.609 249.444 0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.369 249.401 0 11.18 38.813 76.433 119.131 163.257 206.166 246.074 221.915 247.102 269.867 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.959 93.509 128.225 205.928 245.79 221.611 246.861 342.698 0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.34 0 7.279 25	0	12.491	43.389	85.485	133.303	182.769	230.931	275.785	316.221	352.12	384.605
0 8.149 28.323 55.77 86.891 119.015 150.208 179.172 205.224 228.369 249.401 0 11.18 38.813 76.433 119.131 163.257 206.166 246.074 221.915 247.102 269.867 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.959 93.509 128.225 205.928 245.79 221.611 246.861 342.698 0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.697 33.648 66.237 103.202 106.342 134.326 160.364 183.807 204.583 223.34 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 <td< td=""><td>0</td><td>12.457</td><td>43.328</td><td>85.39</td><td>133.165</td><td>182.582</td><td>230.694</td><td>275.501</td><td>315.918</td><td>351.879</td><td>384.562</td></td<>	0	12.457	43.328	85.39	133.165	182.582	230.694	275.501	315.918	351.879	384.562
0 11.18 38.813 76.433 119.131 163.257 206.166 246.074 221.915 247.102 269.867 0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.959 93.509 128.225 205.928 245.79 221.611 246.861 342.698 0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.697 33.648 66.237 103.202 106.342 134.326 160.364 183.807 204.583 223.344 0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.298 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.548 <t< td=""><td>0</td><td>8.183</td><td>28.384</td><td>55.864</td><td>87.029</td><td>119.202</td><td>150.446</td><td>179.456</td><td>205.527</td><td>228.609</td><td>249.444</td></t<>	0	8.183	28.384	55.864	87.029	119.202	150.446	179.456	205.527	228.609	249.444
0 11.147 38.752 76.339 118.994 163.07 162.035 193.527 282.006 313.877 269.825 0 8.762 30.432 59.959 93.509 128.225 205.928 245.79 221.611 246.861 342.698 0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.697 33.648 66.237 103.202 106.342 134.326 160.364 183.807 204.583 223.34 0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.298 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26	0	8.149	28.323	55.77	86.891	119.015	150.208	179.172	205.224	228.369	249.401
0 8.762 30.432 59.959 93.509 128.225 205.928 245.79 221.611 246.861 342.698 0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.697 33.648 66.237 103.202 106.342 134.326 160.364 183.807 204.583 223.34 0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.298 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404	0	11.18	38.813	76.433	119.131	163.257	206.166	246.074	221.915	247.102	269.867
0 8.729 30.371 59.865 93.371 128.038 161.797 193.243 281.703 313.636 342.655 0 9.697 33.648 66.237 103.202 106.342 134.326 160.364 183.807 204.583 223.34 0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.298 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.39	0	11.147	38.752	76.339	118.994	163.07	162.035	193.527	282.006	313.877	269.825
0 9.697 33.648 66.237 103.202 106.342 134.326 160.364 183.807 204.583 223.34 0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.298 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333	0	8.762	30.432	59.959	93.509	128.225	205.928	245.79	221.611	246.861	342.698
0 9.664 33.588 49.763 77.58 141.374 178.458 212.911 183.503 204.342 223.298 0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183	0	8.729	30.371	59.865	93.371	128.038	161.797	193.243	281.703	313.636	342.655
0 7.279 25.267 66.143 103.065 106.155 134.089 160.079 243.898 271.358 296.171 0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061	0	9.697	33.648	66.237	103.202	106.342	134.326	160.364	183.807	204.583	223.34
0 7.246 25.206 49.669 77.442 141.187 178.22 212.626 243.594 210.39 229.515 0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 <td>0</td> <td>9.664</td> <td>33.588</td> <td>49.763</td> <td>77.58</td> <td>141.374</td> <td>178.458</td> <td>212.911</td> <td>183.503</td> <td>204.342</td> <td>223.298</td>	0	9.664	33.588	49.763	77.58	141.374	178.458	212.911	183.503	204.342	223.298
0 7.548 26.173 51.498 80.206 109.825 138.57 165.24 189.193 271.117 296.128 0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144<	0	7.279	25.267	66.143	103.065	106.155	134.089	160.079	243.898	271.358	296.171
0 7.515 26.112 51.404 80.068 109.638 138.332 164.956 188.89 210.149 229.472 0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144	0	7.246	25.206	49.669	77.442	141.187	178.22	212.626	243.594	210.39	229.515
0 7.598 26.394 52.02 81.154 111.323 140.731 168.155 192.903 214.874 234.735 0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.603 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903	0	7.548	26.173	51.498	80.206	109.825	138.57	165.24	189.193	271.117	296.128
0 7.564 26.333 51.926 81.016 111.136 140.494 167.871 192.599 214.633 234.693 0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.646 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	7.515	26.112	51.404	80.068	109.638	138.332	164.956	188.89	210.149	229.472
0 6.963 24.183 47.654 74.331 101.946 128.855 153.939 176.569 196.654 214.806 0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.646 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	7.598	26.394	52.02	81.154	111.323	140.731	168.155	192.903	214.874	234.735
0 6.93 23.061 45.406 70.765 96.968 122.447 146.141 167.469 186.37 203.436 0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.646 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	7.564	26.333	51.926	81.016	111.136	140.494	167.871	192.599	214.633	234.693
0 6.646 24.122 47.56 74.193 101.759 128.617 153.655 176.265 196.414 214.763 0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.646 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	6.963	24.183	47.654	74.331	101.946	128.855	153.939	176.569	196.654	214.806
0 6.613 23 45.312 70.627 96.782 122.209 145.856 167.165 186.13 203.393 0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.646 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	6.93	23.061	45.406	70.765	96.968	122.447	146.141	167.469	186.37	203.436
0 2.655 9.178 18.034 28.057 38.379 48.37 57.61 65.875 73.144 79.646 0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	6.646	24.122	47.56	74.193	101.759	128.617	153.655	176.265	196.414	214.763
0 2.622 9.117 17.939 27.919 38.192 48.132 57.326 65.571 72.903 79.603	0	6.613	23	45.312	70.627	96.782	122.209	145.856	167.165	186.13	203.393
	0	2.655	9.178	18.034	28.057	38.379	48.37	57.61	65.875	73.144	79.646
0 5.163 17.897 35.21 54.836 75.085 94.739 112.977 129.36 143.851 156.909	0	2.622	9.117	17.939	27.919	38.192	48.132	57.326	65.571	72.903	79.603
	0	5.163	17.897	35.21	54.836	75.085	94.739	112.977	129.36	143.851	156.909

0	5.13	17.836	35.116	54.698	74.898	94.501	112.693	129.057	143.61	156.866
0	2.02	6.967	13.668	21.234	29.002	36.493	43.394	49.541	54.924	59.716
0	1.987	6.906	13.573	21.096	28.815	36.256	43.11	49.237	54.683	59.673

	•	,	•	,		•	•	•	
0.00036933	0.00091353	0.00124453	0.00141358	0.00146217	0.00142336	0.00132517	0.00119425	0.00105989	0.00095892
0.00036842	0.00091278	0.00124358	0.00141239	0.00146081	0.00142192	0.00132389	0.00119369	0.00106164	0.00096442
0.00032814	0.00081128	0.00110475	0.00125433	0.00129678	0.00126153	0.00117367	0.00105686	0.00093739	0.00084758
0.00032722	0.00081050	0.00110383	0.00125314	0.00129539	0.00126014	0.00117233	0.00105636	0.00093911	0.00085308
0.00036458	0.00090208	0.00122919	0.00139653	0.00144500	0.00140728	0.00131092	0.00118206	0.00104958	0.00094983
0.00036367	0.00090131	0.00122825	0.00139533	0.00144364	0.00140586	0.00130964	0.00118153	0.00105131	0.00095533
0.00034697	0.00085828	0.00116933	0.00132828	0.00137406	0.00133783	0.00124594	0.00112322	0.00099719	0.00090236
0.00034603	0.00085753	0.00116839	0.00132708	0.00137269	0.00133644	0.00124464	0.00112269	0.00099892	0.00090786
0.00022731	0.00056114	0.00076333	0.00086569	0.00089369	0.00086789	0.00080583	0.00072419	0.00064117	0.00057875
0.00022636	0.00056039	0.00076242	0.00086447	0.00089233	0.00086647	0.00080456	0.00072367	0.00064292	0.00058422
0.00031056	0.00076758	0.00104500	0.00118606	0.00122572	0.00119192	0.00110856	-0.00067108	0.00069964	0.00063236
0.00030964	0.00076681	0.00104408	0.00118486	0.00122433	-0.00002875	0.00087478	0.00245775	0.00088531	-0.00122367
0.00024339	0.00060194	0.00082019	0.00093194	0.00096433	0.00215842	0.00110728	-0.00067164	0.00070139	0.00266214
0.00024247	0.00060117	0.00081928	0.00093072	0.00096297	0.00093775	0.00087350	0.00245722	0.00088703	0.00080608
0.00026936	0.00066531	0.00090525	0.00102681	0.00008722	0.00077733	0.00072328	0.00065119	0.00057711	0.00052103
0.00026844	0.00066456	0.00044931	0.00077269	0.00177206	0.00103011	0.00095703	-0.00081689	0.00057886	0.00052656
0.00020219	0.00049967	0.00113544	0.00102561	0.00008583	0.00077594	0.00072194	0.00232831	0.00076278	0.00068925
0.00020128	0.00049889	0.00067953	0.00077147	0.00177069	0.00102869	0.00095572	0.00086022	-0.00092233	0.00053125
0.00020967	0.00051736	0.00070347	0.00079744	0.00082275	0.00079847	0.00074083	0.00066536	0.00227567	0.00069475
0.00020875	0.00051658	0.00070256	0.00079622	0.00082139	0.00079706	0.00073956	0.00066483	0.00059053	0.00053675
0.00021106	0.00052211	0.00071183	0.00080928	0.00083803	0.00081689	0.00076178	0.00068744	0.00061031	0.00055169
0.00021011	0.00052136	0.00071092	0.00080806	0.00083667	0.00081550	0.00076047	0.00068689	0.00061206	0.00055722
0.00019342	0.00047833	0.00065197	0.00074103	0.00076708	0.00074747	0.00069678	0.00062861	0.00055792	0.00050422
0.0001925	0.00044808	0.00062069	0.00070442	0.00072786	0.00070775	0.00065817	0.00059244	0.00052503	0.00047406
0.00018461	0.00048544	0.00065106	0.00073981	0.00076572	0.00074606	0.00069550	0.00062806	0.00055969	0.00050969
0.00018369	0.00045519	0.00061978	0.00070319	0.00072653	0.00070631	0.00065686	0.00059192	0.00052681	0.00047953
0.00007375	0.00018119	0.00024600	0.00027842	0.00028672	0.00027753	0.00025667	0.00022958	0.00020192	0.00018061
7.2833E-05	0.00018042	0.00024506	0.00027722	0.00028536	0.00027611	0.00025539	0.00022903	0.00020367	0.00018611
0.00014342	0.00035372	0.00048092	0.00054517	0.00056247	0.00054594	0.00050661	0.00045508	0.00040253	0.00036272
0.0001425	0.00035294	0.00048000	0.00054394	0.00056111	0.00054453	0.00050533	0.00045456	0.00040425	0.00036822
5.6111E-05	0.00013742	0.00018614	0.00021017	0.00021578	0.00020808	0.00019169	0.00017075	0.00014953	0.00013311
5.5194E-05	0.00013664	0.00018519	0.00020897	0.00021442	0.00020669	0.00019039	0.00017019	0.00015128	0.00013861

0.00129	0.00320	0.00436	0.00495	0.00512	0.00498	0.00464	0.00418	0.00371	0.00336
0.00129	0.00319	0.00435	0.00494	0.00511	0.00498	0.00463	0.00418	0.00372	0.00338
0.00115	0.00284	0.00387	0.00439	0.00454	0.00442	0.00411	0.00370	0.00328	0.00297
0.00115	0.00284	0.00386	0.00439	0.00453	0.00441	0.00410	0.00370	0.00329	0.00299
0.00128	0.00316	0.00430	0.00489	0.00506	0.00493	0.00459	0.00414	0.00367	0.00332
0.00127	0.00315	0.00430	0.00488	0.00505	0.00492	0.00458	0.00414	0.00368	0.00334
0.00121	0.00300	0.00409	0.00465	0.00481	0.00468	0.00436	0.00393	0.00349	0.00316
0.00121	0.00300	0.00409	0.00464	0.00480	0.00468	0.00436	0.00393	0.00350	0.00318
0.00080	0.00196	0.00267	0.00303	0.00313	0.00304	0.00282	0.00253	0.00224	0.00203
0.00079	0.00196	0.00267	0.00303	0.00312	0.00303	0.00282	0.00253	0.00225	0.00204
0.00109	0.00269	0.00366	0.00415	0.00429	0.00417	0.00388	-0.00235	0.00245	0.00221
0.00108	0.00268	0.00365	0.00415	0.00429	-0.00010	0.00306	0.00860	0.00310	-0.00428
0.00085	0.00211	0.00287	0.00326	0.00338	0.00755	0.00388	-0.00235	0.00245	0.00932
0.00085	0.00210	0.00287	0.00326	0.00337	0.00328	0.00306	0.00860	0.00310	0.00282
0.00094	0.00233	0.00317	0.00359	0.00031	0.00272	0.00253	0.00228	0.00202	0.00182
0.00094	0.00233	0.00157	0.00270	0.00620	0.00361	0.00335	-0.00286	0.00203	0.00184
0.00071	0.00175	0.00397	0.00359	0.00030	0.00272	0.00253	0.00815	0.00267	0.00241
0.00070	0.00175	0.00238	0.00270	0.00620	0.00360	0.00335	0.00301	-0.00323	0.00186
0.00073	0.00181	0.00246	0.00279	0.00288	0.00279	0.00259	0.00233	0.00796	0.00243
0.00073	0.00181	0.00246	0.00279	0.00287	0.00279	0.00259	0.00233	0.00207	0.00188
0.00074	0.00183	0.00249	0.00283	0.00293	0.00286	0.00267	0.00241	0.00214	0.00193
0.00074	0.00182	0.00249	0.00283	0.00293	0.00285	0.00266	0.00240	0.00214	0.00195
0.00068	0.00167	0.00228	0.00259	0.00268	0.00262	0.00244	0.00220	0.00195	0.00176
0.00067	0.00157	0.00217	0.00247	0.00255	0.00248	0.00230	0.00207	0.00184	0.00166
0.00065	0.00170	0.00228	0.00259	0.00268	0.00261	0.00243	0.00220	0.00196	0.00178
0.00064	0.00159	0.00217	0.00246	0.00254	0.00247	0.00230	0.00207	0.00184	0.00168
0.00026	0.00063	0.00086	0.00097	0.00100	0.00097	0.00090	0.00080	0.00071	0.00063
0.00025	0.00063	0.00086	0.00097	0.00100	0.00097	0.00089	0.00080	0.00071	0.00065
0.00050	0.00124	0.00168	0.00191	0.00197	0.00191	0.00177	0.00159	0.00141	0.00127
0.00050	0.00124	0.00168	0.00190	0.00196	0.00191	0.00177	0.00159	0.00141	0.00129
0.00020	0.00048	0.00065	0.00074	0.00076	0.00073	0.00067	0.00060	0.00052	0.00047
0.00019	0.00048	0.00065	0.00073	0.00075	0.00072	0.00067	0.00060	0.00053	0.00049

Si $\frac{d_{n+1}-d_n}{h}$ < 0.015, OK de acuerdo a las NTC/SISMO 2017

 ${\sf Donde}\ d_n = Desplazamiento\ del\ nodo\ en\ el\ nivel\ n.$

h= Altura de entrepiso

N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
OK	OK	ОК	OK	ОК	ОК	ОК	ОК	OK	OK
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	OK
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	OK
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК

CAPÍTULO 8.- CARGAS Y DESPLAZAMIENTOS APLICADOS EN EL MODELO ESTRUCTURAL EN STAAD PRO V8i.

8.1 Combinaciones de cargas.

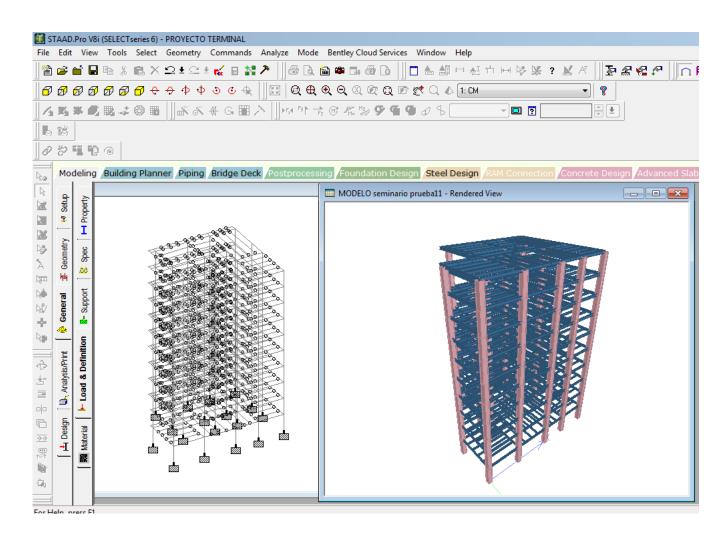


Imagen 8.1.1 Modelo estructural en Staad Pro V8i.

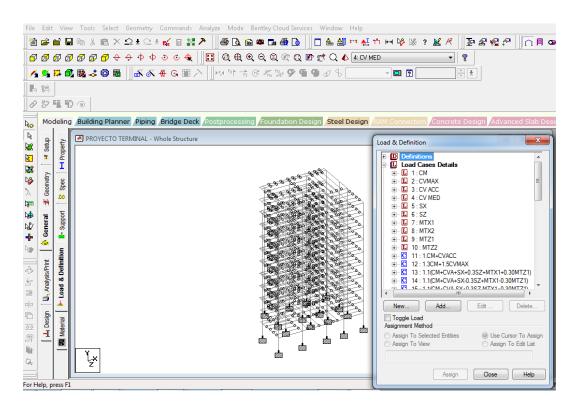


Imagen 8.1.2 Cargas aplicadas en el modelo estructural en Staad Pro V8i.

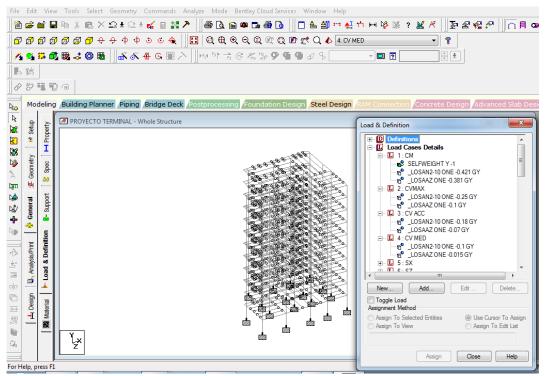


Imagen 8.1.3 Combinaciones de cargas aplicadas en el modelo estructural en Staad Pro V8i.

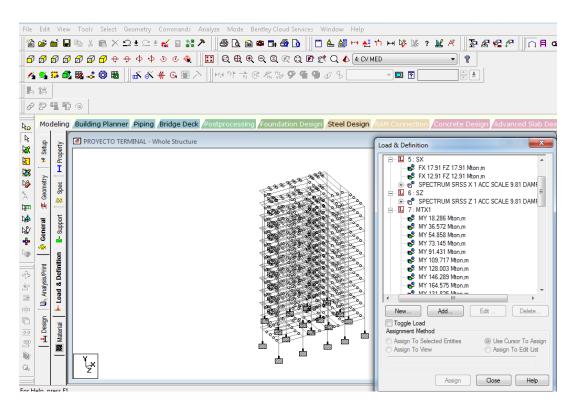


Imagen 8.1.4 Combinaciones de cargas aplicadas en el modelo estructural en Staad Pro V8i.

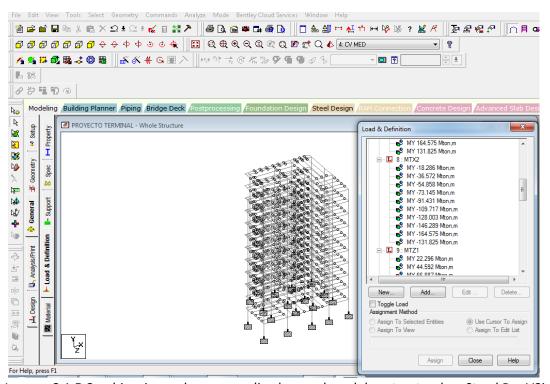


Imagen 8.1.5 Combinaciones de cargas aplicadas en el modelo estructural en Staad Pro V8i.

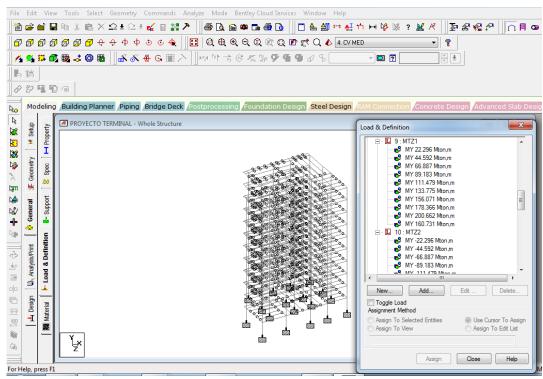


Imagen 8.1.6 Combinaciones de cargas aplicadas en el modelo estructural en Staad Pro V8i.

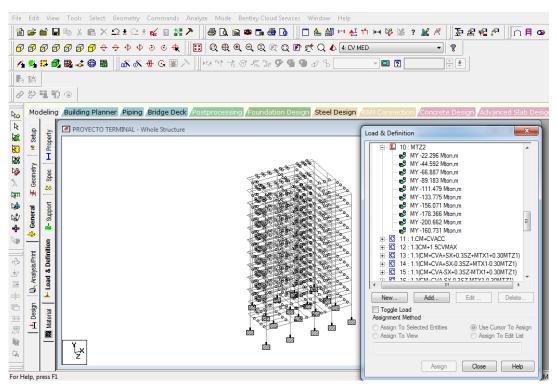
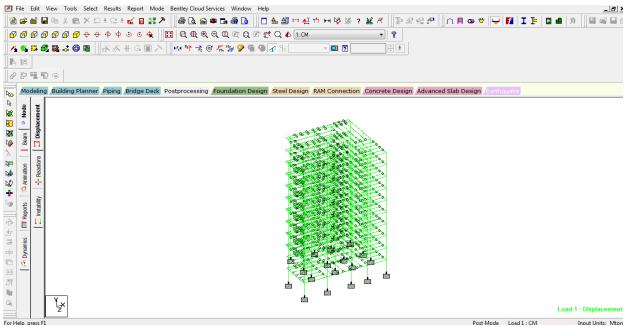
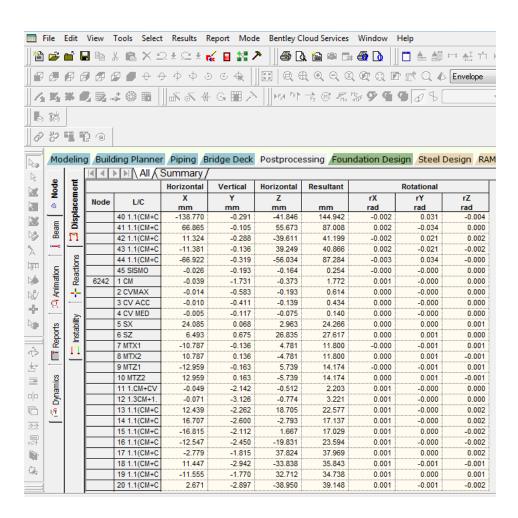
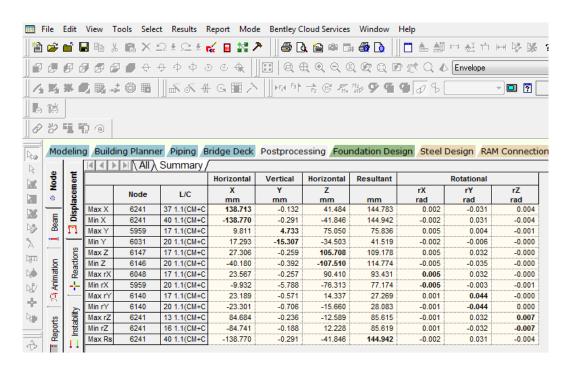
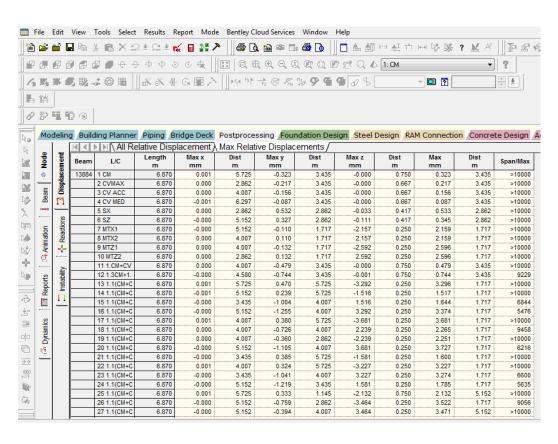


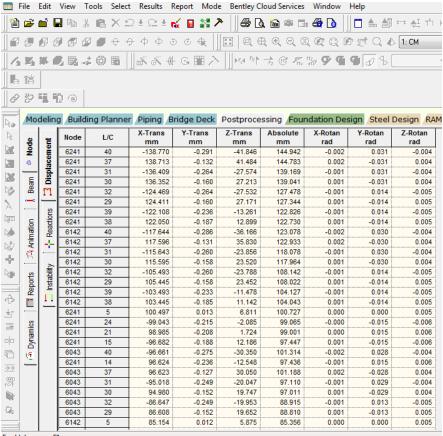
Imagen 8.1.7 Combinaciones de cargas aplicadas en el modelo estructural en Staad Pro V8i.

Imagen 8.1.8 Combinaciones de cargas aplicadas en el modelo estructural en Staad Pro V8i.

8.2 Desplazamientos.


Imagen 8.2.1 Diagrama de desplazamientos de la estructura en Staad Pro V8i.



RESUMEN FINAL DE DESPLAZAMIENTOS, NOTE QUE EL DESP. MAX = 138.77 mm en dirección X y 41.84 mm en dirección Z.

CONCLUSIONES.

Al concluir este proyecto nos encontramos con demasiadas incertidumbres, ya que es difícil determinar con exactitud la magnitud de las acciones o fuerzas que actúan en la estructura, se entiende así que esas incertidumbres quedan reflejadas en los factores aplicados a las fuerzas actuantes y a las resistencias propias de la estructura.

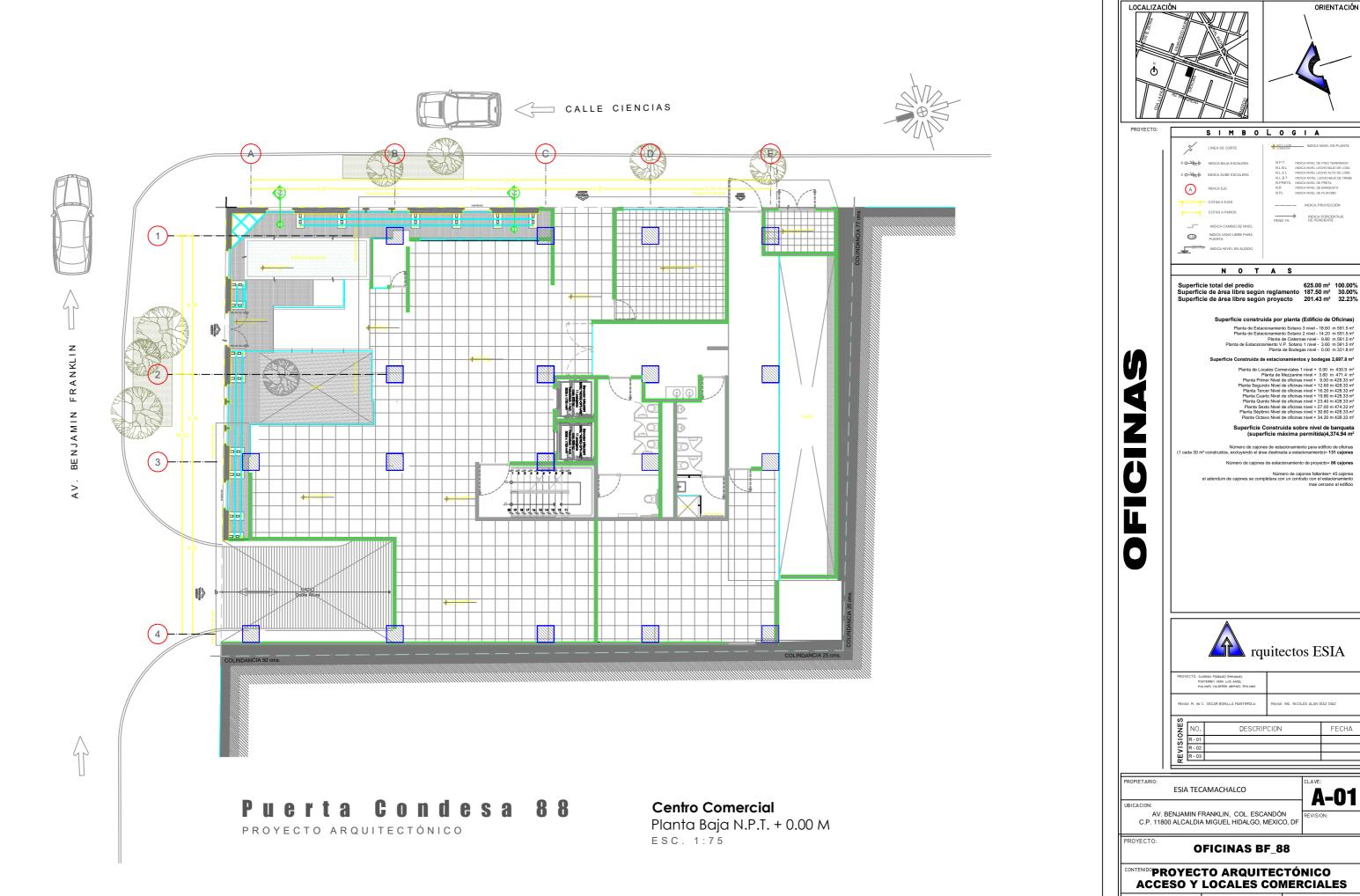
Para efectos de predimensionamiento tomamos en cuenta la combinación de carga muerta más carga viva accidental, sin tomar en cuenta alguna otra combinación de cargas, con este predimensionamiento logramos entender o idealizar las secciones que serían posibles para su estructuración, partiendo de este proceso se determinó la conveniencia de utilizar vigas con perfiles IR.

Para llevar un análisis adecuado de la estructuración propuesta se tomaron en cuenta por lo menos 32 combinaciones de carga incluyendo las acciones sísmicas en ambas direcciones (X,Z) así como los elementos mecánicos que actúan en cada parte de la estructura.

El uso de herramientas como software hoy en día fungen un papel muy importante en el análisis ya que facilitan la obtención de información disminuyendo tiempos y aumentando precisión, es importante recalcar que el mal uso podría llevarnos a una catástrofe ya que la mala interpretación de los resultados desencadena una serie de problemas severos. Por eso es de vital importancia entender y aplicar lo establecido en los códigos y reglamentos locales vigentes.

Para este proyecto utilizamos principalmente el reglamento de construcciones de la Ciudad de México, así como el manual de IMCA y el método LRFD descrito en el código del AISC.

BIBLIOGRAFÍA.


- 1.- Gaceta oficial de la Ciudad de México, 2017, Normas Técnicas Complementarias de la Ciudad de México (2017).
- 2.- Mc Cormac, Jack C., Diseño de Estructuras de Acero Método LRFD, 4ª edición, E.U.A., Ed. Alfa Omega, 2005.
- 3.- Instituto Mexicano de la Construcción en Acero, Manual de construcción en acero, IMCA 5ª edición, Ed. Limusa, 2014.
- 4.- Chopra Anil K., Dinámica de estructuras, 4ª Edición, Ed. Pearson Educación, México, 2014.
- 5.-American Institute of Steel Construction, Load and Resistance Factor Design specification for structural steel buildings, 2001.

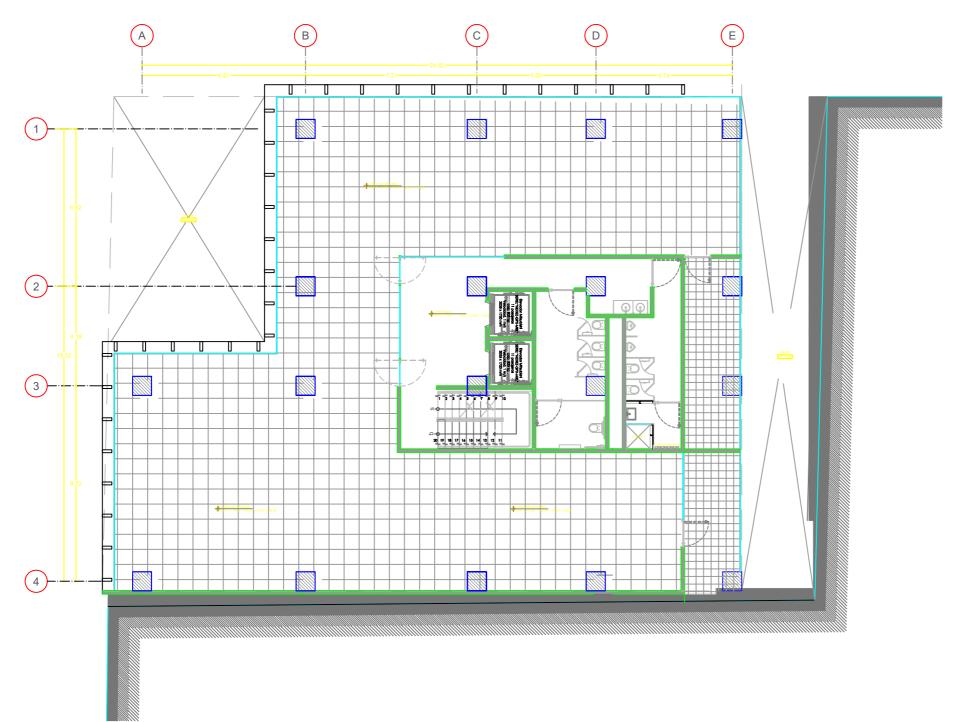
ANEXO 1 (PLANOS ARQUITECTÓNICOS).

ANEXO 2 (PLANOS ESTRUCTURALES).

SIMBOLOGIA PEND 1% INDICA PORCENTAJE DE PENDIENTE

Planta de Estacionamiento Sotiano 3 nivel - 18.60 m 591.5 m² Planta de Estacionamiento Sotiano 2 nivel - 14.20 m 591.5 m² Planta de Cistacionamiento Sotiano 2 nivel - 9.80 m 591.5 m² Planta de Cisternas nivel - 9.80 m 591.5 m² anta de Estacionamiento V.P. Sotiano 1 nivel - 3.60 m 591.5 m² Planta de Bodegas nivel - 0.00 m 331.8 m²

A-01


evisó: ING. NICOLÁS ALAN DÍAZ DÍAZ

FECHA

CONTENIDO PROYECTO ARQUITECTÓNICO

ESCALA: 1:50 ACOTACIÓN: METROS

Puerta Condesa 88

PROYECTO ARQUITECTÓNICO

Planta tipo de oficinas

Nivel 1 N.P.T. +3.60 M Nivel 2 N.P.T. +7.20 M Nivel 3 N.P.T. +10.80 M Nivel 4 N.P.T. +14.40 M Nivel 5 N.P.T. +18.00 M ESC. 1:75

Nivel 6 N.P.T. +21.60 M Nivel 7 N.P.T.+25.20 M Nivel 8 N.P.T. +28.80 M Nivel 9 N.P.T. +32.40 M

SIMBOLOGIA

LINEA DE CORTE

BOMBICA BAJA ESCALERA

SOMBICA BAJA ESCALERA

BROICA SUBE ESCALERA

A BROICA BUBE ESCALERA

A BROICA BUBE ESCALERA

BROICA BUBE ESCALERA

A BROICA BUBE ESCALERA

BROICA BUBE ESCALERA

A BROICA BUBE ESCALERA

BROICA BUBE ESCALERA

A BROICA BUBE ESCALERA

NA LIA TI

NA DEPETIL RICICA NIVEL DE PROT ERRIBNACO

NA LIA TI

NA DEPTIL RICICA NIVEL DE PROT ERRIBNACO

NA DEPTIL RICICA NIVEL DE PROT ERRIBNACO

BROICA SUBE ESCALERA

NA BROICA NIVEL DE PRACTO

PENO 15

BROICA PROVECCIÓN

BROICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NO T A S

SUPPRESIDENTE

BROICA PROVECCIÓN

NO T A S

SUPPRESIDENTE

BROICA PROVECCIÓN

ROICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PORCENTAJE

BERNA PUERTA

NO T A S

SUPPRESIDENTE

BROICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

NOICA PROVECCIÓN

ROICA PROVECCIÓN

NOICA PROTECTICA ESCALERA

NOICA PORCENTAJE

BROICA PROTECTICA ESCALERA

ROICA PROTECTICA ESCALERA

NOICA PORCENTAJE

BROICA PORCENTAJE

BRO

Superficie construida por planta (Edificio de Oficina

Planta de Estacionamiento Sotano 3 nivel - 18.60 m 591.5 m Planta de Estacionamiento Sotano 2 nivel - 14.20 m 591.5 m Planta de Cisternas nivel - 9.80 m 591.5 m Planta de Cisternas nivel - 9.80 m 591.5 m

erficie Construida de estacionamientos y bodegas 2,697.8 m

Planta Guinca (Parenta Piranta Guinca) (1900 m. 430.9 d. n. 430.4 m. 471.4 n. Planta Primer Nivel de officinas nivel - 3.60 m. 471.4 n. Planta Primer Nivel de officinas nivel - 12.60 m. 428.3 n. Planta Terror Nivel de officinas nivel - 12.60 m. 428.3 n. Planta Terror Nivel de officinas nivel - 12.60 m. 428.3 n. Planta Cuarto Nivel de officinas nivel - 13.60 m. 428.3 n. Planta Quinto Nivel de officinas nivel - 13.60 m. 428.3 n. Planta Quinto Nivel de officinas nivel - 23.00 m. 474.3 n. Planta Guinto Nivel de officinas nivel - 27.00 m. 474.3 n. Planta Guinto Nivel de officinas nivel - 27.00 m. 474.3 n. Planta Guinto Nivel de officinas nivel - 27.00 m. 474.3 n. Planta Saxiva nivel

ficie Construida sobre nivel de banqueta superficie máxima permitida)4.374.94 m²

Número de cajones de estacionamiento para edificio de oficinas ada 30 m² construidos, excluyendo el área destinada a estacionamiento) = 131 cajones

> Número de cajones faltantes= 45 cajo ndum de cajones se completara con un contrato con el estacionami mas cercano al ed

rquitectos ESIA

A-03

ROVECTO: CARROD MAGAZE PONAMEL
HOSTISSEE THE ALLES MAGE
HALVES CALRESON ABPARAZ DYLAND

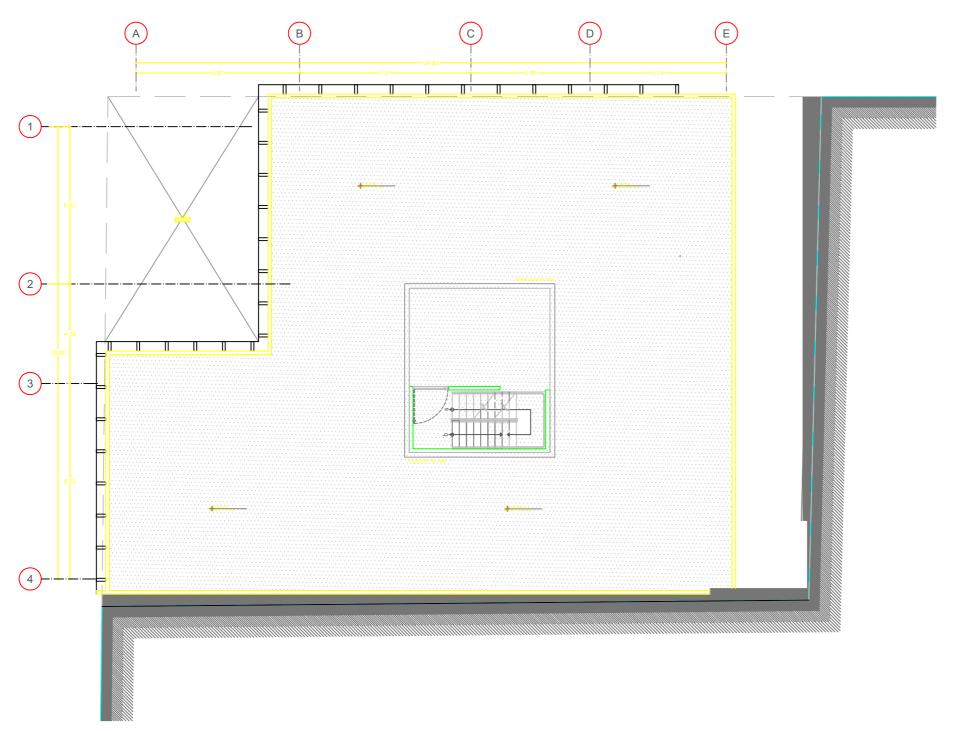
REVISO M. DI C. OSCAR BONALLA MANTEROLA.

REVISO: INC. N.COLÁS ALAN DÍAZ DÍAZ

NO. DESCRIPCION FECHA
R-01
R-02
R-03

ESIA TECAMACHALCO

AV. BENJAMIN FRANKLIN, COL. ESCANDÓN C.P. 11800 ALCALDIA MIGUEL HIDALGO, MEXICO, DF


ROYECTO:

OFICINAS BF_88

ONTENDO PROYECTO ARQUITECTÓNICO PLANTA TIPO

ESCALA: 1:50 ACOTACIÓN: METROS FEBRERO 20

Puerta Condesa 88

PROYECTO ARQUITECTÓNICO

Azotea N.P.T. +36.00 M ESC. 1:75

PROYECTO: SIMBOLOGIA PEND 1% INDICA PORCENTAJE DE PENDIENTE INDICA VANO LIBRE PARA PUERTA N O T A S Superficie total del predio625.00 m²100.00%Superficie de área libre según reglamento187.50 m²30.00%Superficie de área libre según proyecto201.43 m²32.23%

Superficie construida por planta (Edificio de Oficinas)

rquitectos ESIA

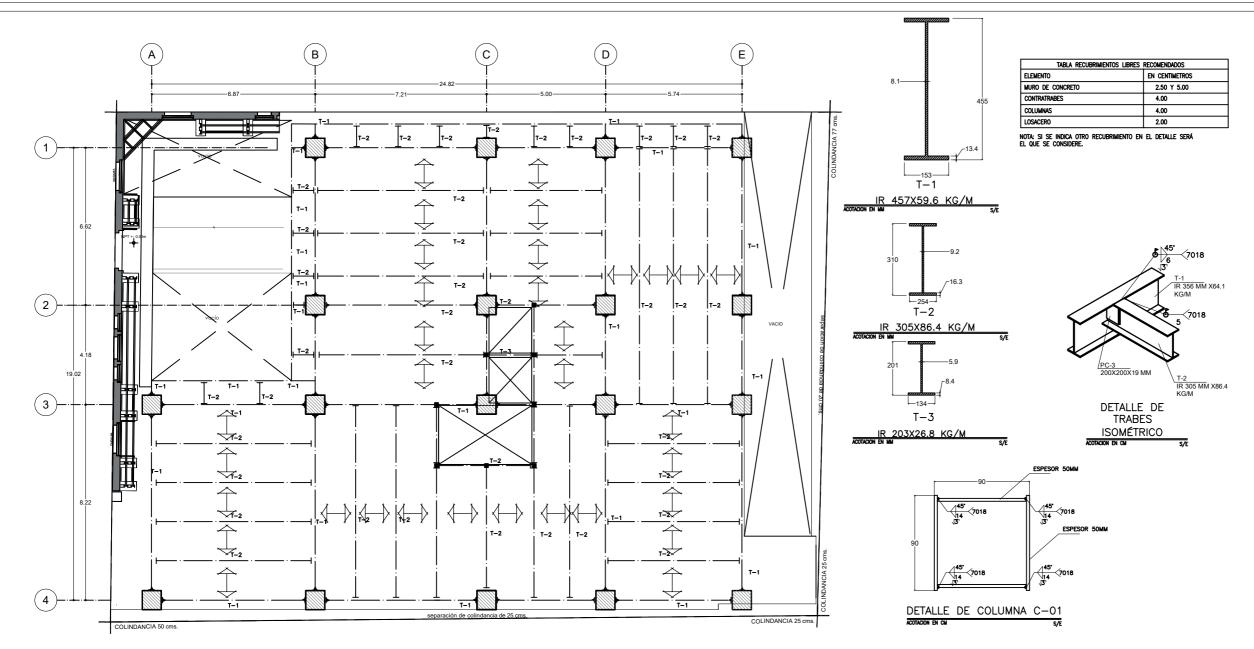
REVISÓ: ING. NICOLÁS ALAN DÍAZ DÍAZ

DESCRIPCION FECHA

ESIA TECAMACHALCO

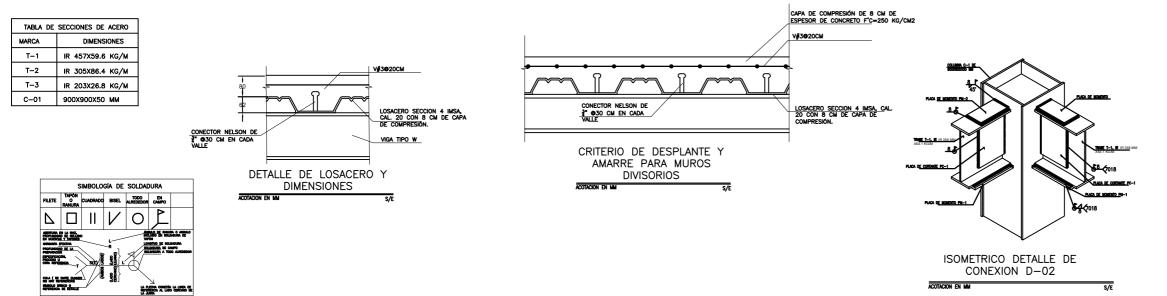
AV. BENJAMIN FRANKLIN, COL. ESCANDÓN C.P. 11800 ALCALDIA MIGUEL HIDALGO, MEXICO, DF

A-04


OFICINAS BF_88

PROYECTO ARQUITECTÓNICO **PLANTA AZOTEA**

ESCALA: 1:50 ACOTACIÓN: METROS



ESCALA: 1:50 ACOTACIÓN: METROS

Acceso Locales Comerciales N-1

ESC. 1:75

PROYECTO: SIMBOLOGIA INDICA TRABES Y NUMERO DE TRABE INDICA COLUMNA Y NUMERO DE COLUMNA INDICA DIRECCION DE LOSACERO INDICA SISTEMA DE PISO A BASE DE LOSACERO (DIRECCIÓN DE CARGA DE LAS NERVADURAS, LA LAMINA SE APUNTALARÁ PARA EL PROCESO DE COLADO) INDICA CONEXIÓN A CORTANTE INDICA CONEXIÓN A MOMENTO INDICA COLUMNA DE ACERO INDICA EJE DE TRABE PRINCIPAL INDICA MURO DE CONCRETO N.P.T. INDICA NIVEL DE PISO TERMINADO EN METROS N O T A S 1. LAS DALAS DE DESPLANTE Y CERRAMIENTO, MUROS PERIMETRALES, CAPA DE COMPRESIÓN DE LOSACERO, SERÁN DE CONCRETO ARMADO PREMEZCIADO CON UNA RESISTENCIA DE F'C=250 KG/CM2 Y UN REVENIMIENTO DE 12+- 2 CM.

> 2. LOS CASTILLOS DE LOS MUROS DIVISORIOS SERÁN DE CONCRETO ARMADO CON UNA RESISTENCIA DE POR LO MENOS F'C= 200 KG/CM2.

3. EL PESO MÍNIMO DEL CONCRETO EN ESTADO FRESCO DEBERÁ 4. EL TAMAÑO MÁXIMO DEL AGREGADO PETREO SERÁ DE 2 CM, (

5. EL ACERO DE REFUERZO DEBERÁ TENER UNA RESISTENCIA

FY=4200 KG/CM2, PARA VARILLAS DEL #3 Y SUPERIORES. PARA VARILLAS DEL 2.5 E INFERIORES SERÁ FY=2530 KG/CM2. 6. LOS ESTRIBOS SERÁN CERRADOS DE UNA PIEZA Y DEBERÁN REMATAR EN UNA ESQUINA CON DOBLECES A 135', SEGUIDOS DE TRAMOS RECTOS DE NO MENOS DE 10 CM DE LARGO.

7. Todas las varillas llevarán ganchos según lo indicado en la tabla varillas.

8. LAS VARILLAS PUEDEN AGRUPARSE FORMANDO PAQUETES MÁXIMO DE 2.

9. LA LOSA DE ENTREPISO DEL NIVEL + 1.80 METROS AL NIVEL 34.20 MTS, SERA DE LOSACERO CON UNA CAPA DE COMPRESIÓN DE 8 CM Y LÁMINA TIPO IMSA CALIBRE 20.

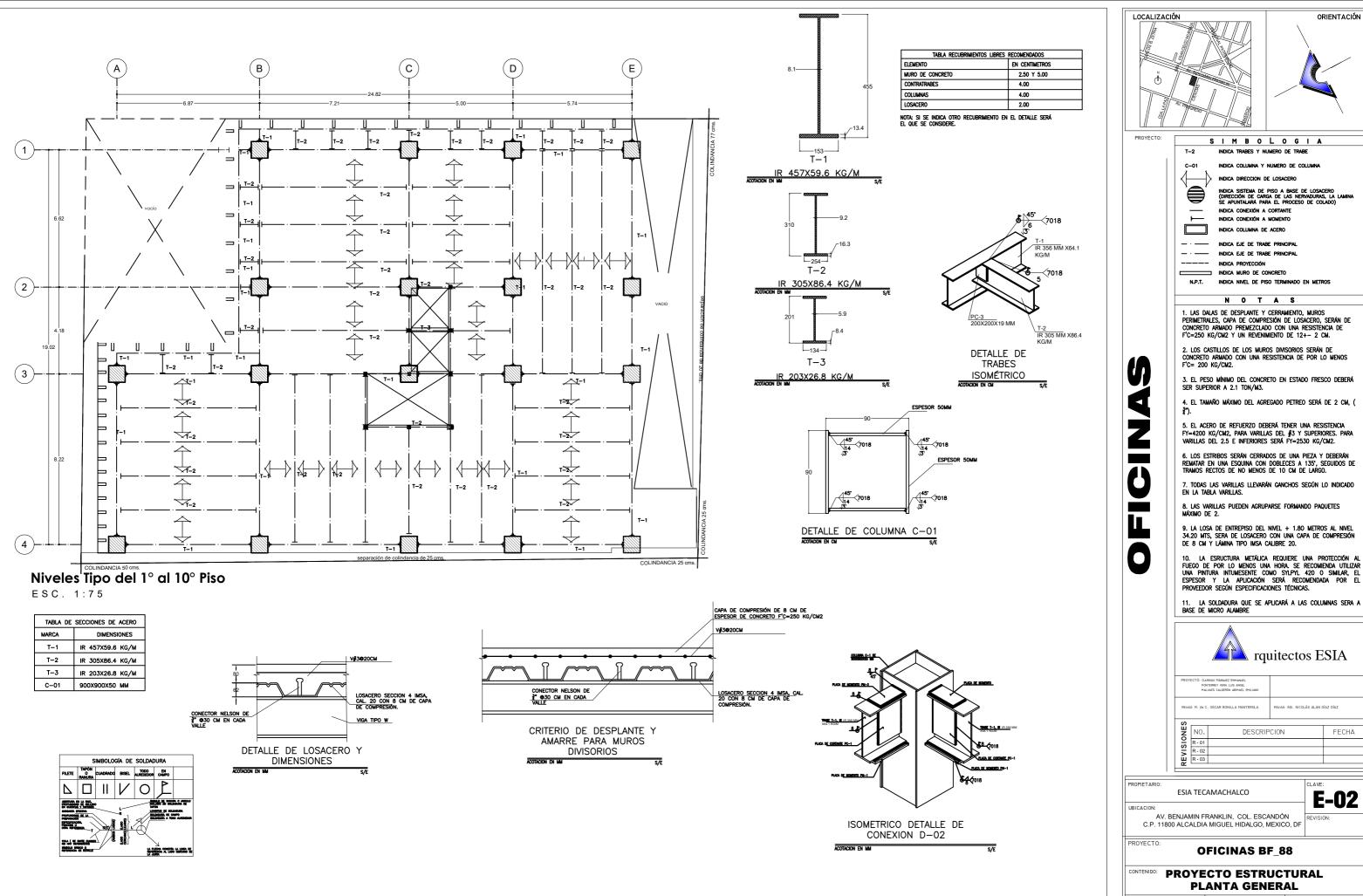
10. LA ESRUCTURA METÁLICA REQUIERE UNA PROTECCIÓN AL FUEGO DE POR LO MENOS UNA HORA. SE RECOMIENDA UTILIZAR UNA PINTURA INTUMESENTE COMO SYLPYL 420 O SIMILAR, EL ESPESOR Y LA APLICACIÓN SERÁ RECOMENDADA POR EL PROVEEDOR SEGÚN ESPECIFICACIONES TÉCNICAS.

11. LA SOLDADURA QUE SE APLICARÁ A LAS COLUMNAS SERA ABASE DE MICRO ALAMBRE

rquitectos ESIA

REVISÓ: ING. NICOLÁS ALAN DÍAZ DÍAZ FECHA DESCRIPCION

PROPIETARIO ESIA TECAMACHALCO E-01 TIBICACION:


PROYECTO:

OFICINAS BF_88

PROYECTO ESTRUCTURAL **PLANTA GENERAL**

ESCALA: 1:50 ΔCOTACIÓN: METROS FEBRERO 2019

AV. BENJAMIN FRANKLIN, COL. ESCANDÓN C.P. 11800 ALCALDIA MIGUEL HIDALGO, MEXICO, DF

SIMBOLOGIA INDICA TRABES Y NUMERO DE TRABE INDICA COLUMNA Y NUMERO DE COLUMNA INDICA CONEXIÓN A CORTANTE INDICA CONEXIÓN A MOMENTO INDICA COLUMNA DE ACERO INDICA EJE DE TRABE PRINCIPAL INDICA MURO DE CONCRETO INDICA NIVEL DE PISO TERMINADO EN METROS NOTAS

2. LOS CASTILLOS DE LOS MUROS DIVISORIOS SERÁN DE CONCRETO ARMADO CON UNA RESISTENCIA DE POR LO MENOS F'C= 200 KG/CM2.

7. Todas las varillas llevarán ganchos según lo indicado en la tabla varillas.

9. LA LOSA DE ENTREPISO DEL NIVEL + 1.80 METROS AL NIVEL 34.20 MTS, SERA DE LOSACERO CON UNA CAPA DE COMPRESIÓN

rquitectos ESIA

REVISÓ: ING. NICOLÁS ALAN DÍAZ DÍAZ

FECHA

E-02 AV. BENJAMIN FRANKLIN, COL. ESCANDÓN C.P. 11800 ALCALDIA MIGUEL HIDALGO, MEXICO, DF

PLANTA GENERAL

ESCALA: 1:50 ΔCOTACIÓN: METROS FEBRERO 2019