
INSTITUTO POLITÉCNICO NACIONAL

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

Laboratorio de Microtecnología y Sistemas Embebidos

Low Energy DRAM Controller for Computer Systems

T E S I S

PARA OBTENER EL GRADO DE

MAESTRÍA EN CIENCIAS EN INGENIERÍA DE CÓMPUTO

PRESENTA
ING. ALBERTO GONZÁLEZ TREJO

DIRECTORES DE TESIS
DR. MARCO ANTONIO RAMÍREZ SALINAS

DR. ADRIÁN CRISTAL KESTELMAN

Ciudad de México, Julio 2019



I 
INSTITUTO POLITECNICO NACIONAL 

SECRETARiA DE INVESTIGACION Y POSGRADO 

ACTA DE REVISION DE TESIS 

SIP-14 bis 

En ia Ciudad de Mexico siendo las 12:00 horas del dia 11 del mes de 

junio de 20·19 se reunieron los miembros de la Comisi6n Revisora de la Tesis , designada 

por el Colegio de Profesores de Estudios de Posgrado e lnvestigaci6n del: 

Centro de lnvestigaci6n en Computaci6n 

para examinar la tesis titulada : 

"Low Energy DRAM Controller,for Computer Systems" 

Presentada par el alumno(a) : 

Gonzalez Trejo Alberto 
.l\pellido paterno .Apellicto materno Nombre(s) 

Con registro : '--i _A_......__1____J_7 _ _._l _o____._l_4----'_9_~_7~ 
aspirante de: MAESTRiA EN CIENCIAS EN INGENIERiA DE COMPUTO 

Despues de intercambiar opiniones los miembros de la Comisi6n manifestaron APROBAR LA 
TES/S, en virtud de que satisface los requisites senalados por las disposiciones reglamentarias 
vigentes. 

LA COMISION REVISORA 
Directores de T esis 

Dr. Marco Antonio Ramirez Salinas 

Dr. Ri~doBarr6n Fernandez 



INSTITUTO POLITECNICO NACIONAL . 
SECRETARiA DE INVESTIGACION Y POSGRADO 

CARTA CESION DE DERECHOS 

En la Ciudad de Mexico el dia 28 del mes Junio del afio 2019, el que suscribe Alberto 

Gonzalez Trejo alumno del Programa de Maestria en Ciencias en Ingenieria de C6mputo con 

numero de registro Al 70497, adscrito al Centro de Investigaci6n en Computaci6n, manifiesta 

que es autor intelectual del presente trabajo de Tesis bajo la direcci6n de Dr. Marco Antonio 

Ramirez Salinas y Dr. Adrian Cristal Kestelman, cede los derechos del trabajo titulado Low 

Energy DRAM Controller for Computer Systems al Instituto Politecnico Nacional para su 

difusi6n, con fines academicos y de investigaci6n. 

Los usuarios de la informaci6n no deben reproducir el contenido textual, graficas o datos del 

trabajo sin el permiso expreso del autor y/o director . del trabajo. . Este puede ser obtenido 

escribiendo a la siguiente direcci6n betbatesc@gmail.com. Si el permiso se otorga, el usuario 

debera dar el agradecimiento correspondiente y citar la fuente del mismo. 

~ 
A1 B')tIO (;zdl\/ZAL"'1 TR(:n, 

Nombre y firma 



Resumen

”El sistema de memoria: no lo puedes evadir, no lo puedes ignorar, no lo puedes engañar.”
Bruce Jacob

Las características de desempeño de los sistemas de memoria basados en DRAM son primer-
amente afectadas por dos atributos: la velocidad de transmisión de datos del dispositivo y el
tiempo de ciclo de fila. Las velocidades de transmisión de datos de dispositivos DRAM de pro-
ductos modernos y los tiempos de ciclo de fila están escalando a diferentes velocidades con cada
generación (SDRAM, Open page DRAM, DDR, DDR2, DDR3, DDR4). Como resultado, las
características de desempeño de los sistemas de memoria modernos basados en DRAM son cada
vez más difíciles de evaluar, y al mismo tiempo la llamada barrera de memoria, la cual señala
que la diferencia en el incremento de la frecuencia de reloj de un CPU, y el menor incremento en
la velocidad de memoria, limita el desempeño de los sistemas de cómputo actuales, los cuales
generalmente acceden a memoria intensivamente.

El controlador de memoria es la parte del sistema de memoria principal que está a cargo de ase-
gurar el correcto funcionamiento de los dispositivos DRAM, y al mismo tiempo, se encarga de
la transmisión de datos hacia y desde los dispositivos DRAM. Sin embargo, dada la complejidad
de los protocolos de acceso de memoria DRAM, el gran número de parámetros de tiempo, y el
inmenso número de combinaciones de organizaciones de sistemas de memoria, características
de cargas de trabajo y diferentes fines de diseño; el diseño de esta parte del sistema de memoria
principal en específico tiene tanta libertad de diseño como el diseño de un procesador que im-
plementa la arquitectura de un conjunto de instrucciones en específico.

Esta parte del sistema de memoria principal específicamente, es tratada como una caja negra
ya que su implementación la provee principalmente el mismo fabricante que manufactura los
chips de sistemas computacionales (ASICs o FPGAs). Esta situación nos lleva a una falta de
conocimiento en cómo realmente funciona este controlador de dispositivo. En este trabajo em-
pleamos un simulador de código libre para evaluar diferentes algoritmos de planificación de
memoria, lo cual nos permite seleccionar el algoritmo que tiene el mejor desempeño en tér-
minos de consumo de energía. Como resultado, proveemos el diseño de la arquitectura de un
controlador dememoria, el cual es implementado enVerilog y probado en una plataforma FPGA.
Por último, este trabajo provee un análisis profundo de cómo un sistema de memoria basado en
DRAM realmente trabaja y qué tan factible es el pasar de un simulador al mundo de la imple-
mentación de un controlador de memoria DRAM DDR3.



Abstract

”The Memory System: You can’t avoid it, you can’t ignore it, you can’t fake it.”
Bruce Jacob

The performance characteristics of modern DRAM memory systems are primarily impacted
for two attributes: the device data rate and the row cycle time. Modern commodity DRAM de-
vices data rates and row cycle times are scaling at different rates with each succesive generation
(SDRAM, Open page DRAM, DDR, DDR2, DDR3, DDR4). As a result, the performance char-
acteristics of modern DRAM memory systems are becoming more difficult to evaluate, and at
the same time the called memory wall, which points out the gap between the increment on CPU
clock frequency and the lower increment in memory speed, is limiting the performance of mod-
ern computer systems, which are mainly memory intensive.

The memory controller is the part of the main memory system that is in charge of assuring the
proper operation of the DRAMdevices and at the same time, it manages the flow of data into and
out the DRAM devices. However, due to the complexity of DRAM memory access protocols,
the large number of timing parameters, the large number of combinations of memory system
organizations, different workload characteristics and different design goals, the design of this
specific part of the main memory system has as much freedom as the design space of a processor
that implements a specific Instruction Set Architecture.

This specific part of the main memory system is specially treated as a black box since its imple-
mentation is mainly provided by the same companies that manufacture the computer systems
chips (ASICs or FPGAs). This situation leads to a lack of knowledge of how this specific device
controller really works.

In this work, we leverage an open source simulation framework to evaluate different memory
scheduling algorithms, which allows us to choose the one that performs better in terms of power
consumption. As a result, we provide an architectural design of a memory controller, which is
implemented in Verilog and tested on a FPGA platform.

Last but not least, this work provides a thoroughly journey of how a DRAM memory system
works and how feasible it is to jump from a simulation framework to the world of actual imple-
mentation of a DDR3 DRAM memory controller.



Agradecimientos

Primero que todo, como siempre, quiero agradecer a mi familia, quienes han sido mi fuente de
inspiración, motivación y siempre cuidaré de ellos.

Estoy sumamente agradecido con el Instituto Politécnico Nacional y la Universidad Politéc-
nica de Cataluña, por proveerme educación y brindarme la oportunidad de conocer, y al mismo
tiempo, colaborar con muchas personas impresionantes. Realmente me encuentro agradecido
por esta gran experiencia.

Por último, aprecio la ayuda queCONACYT, una institución del gobiernomexicano,me proveyó
por medio de una beca, permitiendo que estudiase en el extranjero.

”No intentes convertirte en un hombre de éxito. Mejor aún, intenta convertirte en
un hombre de valor.”
Albert Einstein



Contents

Resumen iii

Abstract iv

Agradecimientos v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 4
2.1 Main memory subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 DRAM Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 DRAMMemory System Organization . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 DRAMMemory Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Basic DRAM Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 DRAM Command Interactions . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Minimum Scheduling Distances . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Power Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 DDR3 SDRAM Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 DDR3 memory low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 DRAMMemory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Row Buffer Management Policy . . . . . . . . . . . . . . . . . . . . . . 42
2.7.2 Address Mapping Policies . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 DRAM metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.4 Memory Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8.1 Power and energy oriented schedulers . . . . . . . . . . . . . . . . . . . 48
2.8.2 Related work summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Methodology 50
3.1 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Power Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Traffic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS vii

3.3 PARSEC Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Memory Controller proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Delayed Adaptive Closed Page Policy . . . . . . . . . . . . . . . . . . . 55
3.4.2 Write Drain Policy Exploiting Row Buffer Locality . . . . . . . . . . . 55

4 Evaluation 59

5 Implementation 69
5.1 Actual implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 AXI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.4 PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 78

Bibliography 79



List of Figures

2.1 64 Mbit Fast Page Mode DRAM Device (4096 x 1024 x 16). . . . . . . . . . . . 6
2.2 Data I/O in a DDR SDRAM devices illustrating 2-bit prefetch . . . . . . . . . . 7
2.3 Systems with a single memory controller and different data bus widths. . . . . . 9
2.4 Memory system with 2 ranks of DRAM devices. . . . . . . . . . . . . . . . . . 9
2.5 Command and data movement on a generic SDRAM device. . . . . . . . . . . . 11
2.6 Different phase of an abstract DRAM command in a generic DRAM device. . . 12
2.7 Row access command and timing. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Column read command and timing. . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Column Write command and timing. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Row precharge command and timing. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Row refresh timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 One read cycle in a ”close-page” memory system. . . . . . . . . . . . . . . . . . 18
2.13 A read cycle with a row access command and a column-read-and-precharge

command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14 Posted CAS defers CAS commands in DRAM devices by a preset delay value,

tAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.15 Consecutive column-read commands to the same bank, rank, and channel. . . . 21
2.16 Read to precharge command timing. . . . . . . . . . . . . . . . . . . . . . . . . 21
2.17 Consecutive column-read commands to different rows of the same bank: best-

case scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.18 Consecutive column-read commands to different rows of the same bank: worst-

case scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.19 Consecutive DRAM read commands to different banks, bank conflict, no com-

mand reordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.20 ConsecutiveDRAM read commands to different banks, bank conflict, with com-

mand reordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.21 Consecutive column-read commands to different ranks. . . . . . . . . . . . . . . 25
2.22 Consecutive column-write commands to different ranks. . . . . . . . . . . . . . 26
2.23 Consecutive write commands, bank conflict, best cases. . . . . . . . . . . . . . . 26
2.24 Write command following read command to open banks. . . . . . . . . . . . . . 27
2.25 Write command following read command to same bank: bank conflict, best case 28
2.26 Write command following read command to different banks: bank conflict, best

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



LIST OF FIGURES ix

2.27 Read following write to the same rank of DRAM devices. . . . . . . . . . . . . 29
2.28 Read following write to different ranks of DRAM devices. . . . . . . . . . . . . 30
2.29 Read following write to different rows of the same bank: best case. . . . . . . . 31
2.30 Read following write to different banks, bank conflict, best case. . . . . . . . . . 31
2.31 Current profile of a DRAM read cycle. . . . . . . . . . . . . . . . . . . . . . . . 34
2.32 Current profile of two pipelined DRAM read cycles. . . . . . . . . . . . . . . . 35
2.33 Maximum of four row activations in any tFAW time frame. . . . . . . . . . . . . 35
2.34 ACTIVATE command meeting tRRD and tRCD . . . . . . . . . . . . . . . . . . . 36
2.35 tFAW example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.36 Read latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.37 Consecutive READ bursts (BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.38 WRITE Burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.39 Abstract DRAM memory controller. . . . . . . . . . . . . . . . . . . . . . . . . 41
2.40 Thread Fair scheduler decision flowchart. . . . . . . . . . . . . . . . . . . . . . 47

3.1 gem5 DRAM memory controller model. . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Conventional Write Drain Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Proposed Write Drain Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Flow Chart of the ”Write Drain Policy Exploiting Row Buffer Locality” . . . . . 58

4.1 gem5 simple simulation setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 FCFS - Time spent in power states - very dense traffic. . . . . . . . . . . . . . . 62
4.3 FCFS - Energy consumed by power states - very dense traffic. . . . . . . . . . . 62
4.4 FCFS - Time spent in power states - sparse traffic. . . . . . . . . . . . . . . . . . 63
4.5 FCFS - Energy consumed by power states - sparse traffic. . . . . . . . . . . . . 63
4.6 FR-FCFS - Time spent in power states - dense traffic. . . . . . . . . . . . . . . . 64
4.7 FR-FCFS - Energy consumed by power states - dense traffic. . . . . . . . . . . . 64
4.8 FR-FCFS - Time spent in power states - sparse traffic. . . . . . . . . . . . . . . 65
4.9 FR-FCFS - Energy consumed by power states - sparse traffic. . . . . . . . . . . 65
4.10 blackscholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.11 ferret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.12 blackscholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.13 ferret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 DRAM memory controller architecture. . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Actual implementation of DDR3 Memory Controller. . . . . . . . . . . . . . . . 70
5.3 Bank Management Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Controller State Machine Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Single Bank DDR2/DDR3 PHY Block Diagram. . . . . . . . . . . . . . . . . . 74
5.6 Activate command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Read command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Write command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.9 Precharge command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.10 Refresh command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Tables

2.1 Summary of timing parameters used in generic DRAM access protocol. . . . . . 13
2.2 Minimum timing for consecutive read and write transactions: open-page. . . . . 33

3.1 gem5’s DRAM model controller parameters . . . . . . . . . . . . . . . . . . . . 52

4.1 gem5’s DRAM model controller parameters . . . . . . . . . . . . . . . . . . . . 60
4.2 Traffic parameters in each memory configuration. . . . . . . . . . . . . . . . . . 61
4.3 FCFS memory controller configuration. . . . . . . . . . . . . . . . . . . . . . . 61
4.4 FR-FCFS memory controller configuration. . . . . . . . . . . . . . . . . . . . . 63

5.1 gem5’s DRAM model controller parameters . . . . . . . . . . . . . . . . . . . . 74



Chapter 1

Introduction

MICROSE Laboratory at Centro de Investigación en Computación del Instituto Politécnico Na-
cional, in Mexico city, has been working along the last 6 years developing innovative high
performance computer architectures targetting FPGA-SoC. Lagarto SoC is an academic project
which is aimed to create an educational environment on computer architecture and operating
systems, ranging from high school to graduate school. This thesis is part of this effort.

The memory system behavior has become a focal point of computer architecture research. This
is due this part of a computer system is a performance and energy bottleneck in almost all ap-
plications. Nowadays, system designers, application developers and many technological trends
are pointing to the same direction: more capacity, bandwidth, efficiency and reliability out of
the memory system is a must [1].

Recent research ranges from studies of smarter memory controllers and other recent work looks
at the performance of different commercial DRAMs at the architectural level, and a wide range
of DRAM bus and memory controller organizations at the system level. DRAM performance
has relied on technology improvements and only bandwidth-related improvements on architec-
ture.

The continuing increase of data intensive applications are today one of the main concerns re-
garding main memory systems. This is due mainly two reasons, one is the key design between
the power consumed by the main memory system by itself and the other is the QoS (Quality of
Service) that has to be delivered in order to be able to leverage the peak features that current
modern DRAM devices like DDR3 provide to system designers.

DRAM provides parallelism by means of certain number of banks which operate concurrently.
According to [2] all banks in a DRAM chip share the same data, address and command buses.
In addition, a number of DRAM devices (8 in DDR3) can be connected to the same bus, this
organization is called a rank, in order to improve parallelism. The complex internal organization
of DRAMs leads to a cumbersome list of timing constraints that govern DRAM behavior.



1.1 Motivation 2

A typical DDR memory is arranged in banks having multiple rows and columns along with
prefetch buffers. For any data transaction, the memory address is split into bank address, row
address and column address. The performance advantages of the DDR memory are mainly due
to its prefetch architecture with burst oriented operation, which allows to exploit the Dual Rate
data transfer intrinsic on these devices, where a memory access to a particular row of a bank
causes the prefetch buffer to grab a set of adjacent data words and subsequently burst them on
I/O pins on each edge of the data transfer memory clock, without requiring individual column
addresses. Thus the higher the size of prefetch buffers, the higher is the bandwidth. Higher band-
width is also achieved by creating modules with multiple DDR memory chips.

A modern DRAM memory controller employs diverse mechanisms to alleviate the complexity
of DRAM devices, those sophisticated mechanisms are address mapping, memory scheduling
algorithms and power management optimizations. All these mechanisms work together in order
to improve the efficiency of a DRAM memory system.

1.1 Motivation
A state of the art main memory system is composed by a technology device like DDR3 DRAM,
and also by a sophisticated memory controller that aims to deliver, between other things, max-
imum bandwidth. The aim of a DRAM memory controller is to ensure the correct operation
of the DRAM module regarding refresh and timing requirements, by issuing commands to the
DRAM chip to initiate the active, precharging and I/O phases. A small, seemingly inconsequen-
tial change in the sequence or timing commands to the DRAM can result in a huge change in
the bandwidth we can get out of the DRAMmemory system. Since memory bandwidth is often
the bottleneck for critical memory intensive tasks, the change in bandwidth quickly becomes a
change in system performance. Unfortunately, the command sequence and timing come from a
complex interaction of the application and system software, the various elements of the system
hardware, including cache controllers, memory managers, direct memory access (DMA) con-
trollers, accelerators and the DRAM controller. This situation gets more complicated as Systems
on Chip grow more powerful and complex.

In this work, a low power DRAM memory controller analysis, design and implementation is
presented. The aim of this work is to provide a thoroughly journey through how a DRAMmem-
ory system works, the analysis of the features of a memory controller which we can take hand
to lower power consumption, and also the development of a functional IP is presented.

This dissertation also utilizes a simulation framework based on gem5, which allows us to per-
form trace based simulation and full system simulation with an event-based memory controller
model.

The aim of this work is to provide a complete framework of how a DDR3 DRAM memory
controller is designed, ranging from simulation to implementation perspective. We make the



1.2 Organization of this dissertation 3

following contributions on this thesis:

• We analyze the main memory system in detail.

• We propose a memory scheduling algorithm that optimizes power consumption.

• We contribute to the open source community and provide a basic open source DDR3Mem-
ory Controller targeting FPGA.

• Design and implementation of an interface with the SoC Lagarto.

1.2 Organization of this dissertation
In this work a methodical analysis of a DRAM memory system is presented, this is done with
the aim of providing enough background information of the tasks a DRAM memory controller
is in charge of. In the first chapter, a brief introduction of this work is presented.

In the second chapter, the theoretical background of this work is presented, starting with the
main memory subsystem description and the underlying technology of DRAM devices, after-
wards the DRAM memory access protocol is described in detail. Also in this chapter the low
power modes present on DRAM technology like DDR3 are described, and a generic DRAM
memory controller is depicted, giving special attention to the row buffer management and ad-
dress mapping policies, DRAMmetrics and thememory scheduling algorithms; the related work
is also presented in this chapter.

The methodology followed in this work is presented in chapter 3. In here the simulation frame-
work, the traces used to evaluate the memory controller proposal and the description of the
workloads are described, the memory controller proposal is described in detail in this chapter.
The evaluation of the proposal and the results obtained out of the execution of the workloads
and trace simulations are presented in chapter 4.

In chapter 5 the actual implementation of the memory controller targeting FPGA is presented.
The architectural design andmicroarchitecure is described. Also, the interface with SoC Lagarto
is presented. In chapter 6, the conclusions and future work of this thesis are presented.



Chapter 2

Theoretical Background

In order to ease the understanding of this work, it is provided the needed theoretical background
in this section. The contents of this chapter is heavily based on the book ”Memory Systems:
Cache, DRAM, Disk” by Jacob et al. [3]. This chapter describes the organization of the main
memory subsystem and theDRAM technology in specific, giving as example a generic Fast Page
Mode DRAM, since current DRAM devices are mainly based on this DRAM architecture. The
DRAM memory system organization is described, taking into account different organizations
and remarking the DRAM access protocol, the specific DDR3 device operation is presented, and
at the end, the description of the memory controller. Also, this chapter describes specifically the
architecture of DDR3 devices, since this is the target DRAM device of the final implementation.

The limited goal of this chapter is to provide a broad overview of the functionality of DRAM de-
vices and memory controllers. With the understanding of these fundamentals we can advance in
deeper discussions about architectural trade-offs of a memory controller, and memory schedul-
ing algorithms.

2.1 Main memory subsystem
The memory subsystem is an important component in all computer systems, this is due this
part of computer systems accounts for an important fraction of the computing time and energy
consumption. When a processor fails to fetch data from caches, the LLC sends a request to
the memory controller. This memory controller is connected to DRAM devices, for example
to DIMMs (Dual In-line Memory Module) via memory channels. Then, the memory controller
manages a queue of pending memory requests and it’s in charge of the scheduling of this re-
quests, always obeying the timing constraints imposed by the DRAM technology.

In a conventional memory system, a memory controller on a processor (same chip) is connected
to Dual In-line Modules (DIMMs) via an off-chip electrical memory channel. A modern DDR3
memory channel typically has a 64-bit data bus and a 23-bit address/command bus that can sup-
port 1-2 DIMMs. Each DIMM is typically organized in 1-4 ranks. When the memory controller
issues a request for a cache line, all DRAM chips in a rank work together to service the request,



2.2 DRAM Devices 5

i.e., a cache line is striped across all chips in a rank. A rank and its constituent DRAM chips are
also partitioned into multiple (4-16) banks. Each bank can process a different cache line request
in parallel, but all banks in the active rank must sequentially share the data and command wires
of the memory channel. JEDEC, the leading developer of standards for the solid-state industry,
is in charge of regulating the emerging memory technologies. [2]

2.2 DRAM Devices
Figure 1. illustrates the organization and structure of an FPM DRAM device. Internally, the
DRAM storage cells in the FPM DRAM device shown in Figure 1 are organized as follows:
4096 rows, 1024 columns per row, and 16 bits of data per column. In this device, each time
a row access occurs, a 12 bit address is placed on the address bus and the row address strobe
(RAS) is asserted by an external memory controller; RAS signal is known as row-address strobe.
Inside the DRAM device, the address on the address bus is buffered by the row address buffer
and then sent to the row decoder. The row decoder then accepts the 12-bit address and selects 1
of 4096 rows of storage cells. The data values contained in the selected row of storage cells are
then sensed and maintained in the array of sense amplifiers.

Each row of DRAM cells in this chip consists of 1024 columns and each column is 16 bits wide.
That means, a 16 bit wide column is the basic addressable unit of memory in this device, and
each column access that follows the row access would ordinary access (read or write) 16 bits of
data from the same row of DRAM. The way that a column access is engaged is similar to the
row access in that the memory controller would be place a 10 bit address on the address bus,
but this time the column access strobe (CAS) siganl would be asserted. Internally, the DRAM
chip then takes the 10 bit column address, decodes it and uses it to select one column out of
1024 available. The data for that column is then placed onto the data bus or overwritten with
data from the data bus depending on the write enable (WE) signal.

All DRAM devices, from the FPM DRAM device to modern DDRx SDRAM devices, have
similar basic organization. All DRAM devices have one or more arrays of DRAM cells orga-
nized into a number of rows and columns, with a column being the smallest unit of addressable
memory. All DRAM devices also have some logic circuit that control the timing and sequence
how the device operates. In the case of the the FPM DRAM device shown in Figure 1, the chip
has internal clock generators as well as built-in refresh controller. In most cases, the DRAM
device itself controls the relative timing of the sequence of events for a given action. The FPM
DRAM device also keeps the address of the next row that needs to be refreshed, so when the
memory controller asserts a new refresh command to the DRAM device, the row address to be
refreshed can be loaded from internal refresh counter rather than having to load a separate row
address from the off chip address bus. Also, pin usage has always been restrictive on DRAM
devices. As a result, modern DRAM devices move data onto and off the device through a set of
bi-directional input-output pins connected to the system. [3]



2.2 DRAM Devices 6

Figure 2.1: 64 Mbit Fast Page Mode DRAM Device (4096 x 1024 x 16).

All DRAM devices contain some basic logic control circuitry to direct the movement of data
onto, within, and off DRAM devices. This essential control logic accepts externally asserted
signal and control, and then orchestrates a timed sequences of internal control signals to direct
movement of data on the FPM DRAM device illustrated in Figure 1.

Modern DRAM devices are controlled by synchronous state machines whose behavior depends
on the input values of the command signals as well as the values contained in the programmable
mode register in the control logic. Some parameters as CAS latency, burst type, burst length and
low power modes are some examples of this configurable features. The value of the burst type
determines the ordering of the data returned by the SDRAM device. The burst length determines
the number of columns that a SDRAM device will return to the memory controller within a sin-
gle read command.

DRAMdevices are classified by the number of data bits in each device and typically that number
quadruples from generation to generation. Also, in a given generation, a DRAM device may be
configured with a different data bus width. For example, we can have a specific configuration
of a 1 Gbit DDR2 SDRAM device with 16,384 rows per bank and each row consists of 8,192
bits. In the x8 configuration, we have 16,384 rows and each row consists of 1024 columns. This
configuration is denoted as 256 Meg x 8. The different configurations lead to a different num-
ber of bits per bitline, different numbers of bit per row activation, and different number of bits
per column access. Also, the differences in current consumption characteristics in turn leads
to difference in timing parameters designed to limit peak power consumption characteristics of
DRAM devices.



2.2 DRAM Devices 7

The well known N-bit prefetch in SDRAM devices, implies that each time a column read com-
mand is issued by the memory controller, the control logic determines the duration and ordering
of the data bursts, and each column is moved separately from the sense amplifiers through the
I/O latches to the external data bus. However, the separate control of each column limits the
operating data rate of the DRAM device. This leads the following result, in successive gen-
erations of SDRAM, specially in DDRx SDRAM devices, successively large numbers of bits
are moved in parallel from the sense amplifiers to the read latch, and the data is then pipelined
through a multiplexor to the external data bus. Figure 2. illustrates the data I/O structure of a
DDR SDRAM device.

Figure 2.2: Data I/O in a DDR SDRAM devices illustrating 2-bit prefetch

Figure 2 shows that given the width of the external data bus as N, 2N bits are moved from
the sense amplifiers to the read latch, the 2N bits are then pipelined through the multiplexors to
the external bus. In DDR3 SDRAM devices, the number of bits prefetched by the internal data
bus is 4N. The downside of the N bit prefetch architecture is that it is not possible to support
short bursts, meaning that, in DDR3 devices, a minimum burst length of 8 columns of data are
accessed per column read command.

DDR stands for Double Data Rate, this means data is transferred on both the rising and falling
edges of the clock signal. This means that the transfer rate is roughly twice the speed of the I/O
bus clock. For example, if the I/O bus clock runs at 800 MHz per second, then the effective
rate is 1600 Megatransfers per second (MT/s), this is due there are 800 million rising edges per
second and 800 million falling edges per second of a clock signal running at 800 MHz. The
transfer rate refers to the number of operations transferring data that occur in each second in the
data-transfer channel.

DDR architecture is aimed to achieve high-speed operation. The memory operates using a dif-
ferential clock provided by the controller. Commands are registered at every positive edge of
the clock. A bidirectional data strobe (DQS) is transmitted along with the data during reads and
by the controller during writes. DQS is edge aligned with data for reads and center aligned with
data for writes.



2.3 DRAMMemory System Organization 8

Read and write accesses to the DDR3 SDRAM devices are burst oriented. Accesses begin with
the registration of an active command, which is then followed by a read or write command. The
address bits registered with the active command are used to select the bank and row to be ac-
cessed. The address bits registered with the read or write command are used to select the bank
and the starting column location for the burst accesses.

As we can see in the following table, memory vendors use different terminology to advertise
their chips, sometimes we can find that bandwidth is indicated as MHz, other times is is ex-
pressed as time transfer per second in megabytes.

To calculate the data transmission rate, the transfer rate has to be multiplied by the information
channel width, meaning

Channel width ∗ transfer rate = bits transferred/second (2.1)

2.3 DRAMMemory System Organization
In the context of a complete memory system, the organization and operation of multiple devices
is important to examine since this is how current DRAMmemory subsystems actually work. The
parallel growth rates in DRAM device storage capacity and DRAM memory system capacity
have dictated system designs in that multiple DRAM devices must be interconnected together
to form larger memory systems for most computer systems.

The organization of multiple DRAM devices into a memory system can impact the performance
of the memory systems in such ways as latency, operating datarates, and bandwidth. This is why
it is important to present the organization of such systems in detail. In modern DRAM memory
systems, commodity non-ECC DRAMmemory modules are standardized with 64-bit wide data
busses, and the 64-bit data bus width of the memory module matches the data bus width of a
typical personal computer system controller.

Figure 2.3 shows 3 different single memory controller configurations. The one called ”Typical
system controller” consists of a single physical memory channel, which is controlled by a single
DRAM memory controller.
In the example labelled as Intel i875P, the memory controller connects to a single memory chan-
nel with a 128 bit wide data bus, but since commodity DRAM module have a 64 bit wide data
bus, it is necessary to use a configuration called paired-memory-module which is also referred
as dual-channel configuration. It is important to note that since there is only one memory con-
troller, both DRAM modules operate in parallel to store and retrieve data through the 128 bit
wide data bus, so in fact, the paired-memory module configuration is in fact a 128 bit wide single
channel memory system.

Modern DRAM memory systems with one DRAM memory controller and multiple physical



2.3 DRAMMemory System Organization 9

Figure 2.3: Systems with a single memory controller and different data bus widths.

channels of DRAM devices such as those illustrated in Figure 2.3 are typically designed with
the physical channels operating in lockstep with respect to each other.

We define a rank essentially as a set of one or more DRAM devices that operate in lockstep
in response to a given command. Those DRAM devices are controlled with the same command
and address buses. Figure 2.4 illustrates a configuration of 2 ranks of DRAM devices, note that
address and command buses are connected to every DRAM device in the memory system, but
the wide data bus is partitioned and connected to different DRAM devices.

Figure 2.4: Memory system with 2 ranks of DRAM devices.

We use the word bank to denote an independent memory array inside a DRAM device. Figure
2.4 shows an SDRAM device with 4 banks of DRAM arrays. Modern DRAM devices contain
multiple banks so that multiple, independent accesses to different DRAM arrays can occur in
parallel. In this design, each bank of memory is an independent array that can be in different
phases of a row access cycle, as we will show in the following sections. Some common re-
sources, such as I/O gating that allows access to the data pins, must be shared between different
banks. However, the multi-bank architecture allows commands such as read requests to different
banks to be pipelined. Also, multiple banks in a given DRAM device can also be precharged or



2.4 DRAMMemory Access Protocol 10

refreshed in parallel, depending on the design of the DRAM device.

We can think of a row in DRAM devices as the group of storage cells that are activated in paral-
lel in response to a row activation command. As we already mentioned, multiple DRAM devices
are typically connected in parallel as ranks of memory. The effect of having such configuration
(rank of DRAM devices operating in lockstep) is that a row activation command will activate
the addressed row in all DRAM device of a given rank of memory. This arrangement means that
the size of a row is multiplied by the number of DRAM devices in a given rank, and a DRAM
row spans across the multiple DRAM devices of a given rank of memory. A row is also called
a DRAM page, since a row activation command in essence activates a page of memory. DRAM
pages are typically several kilobytes in size, and they are cached at the sense amplifiers until a
subsequent precharge command is issued by the DRAM memory controller.

In DRAM memory systems, a column of data is the smallest independently addressable unit
of memory. In memory systems such as DDRx, the size of a column of data is the same as the
width of the data bus. In DDRx SDRAMmemory systems, each column access command loads
and stores multiple columns of data depending on the programmed burst length. For example, in
a DDR3 DRAM device, each memory read command returns a minimum of 8 columns of data.

2.4 DRAMMemory Access Protocol
In this section, the DRAM memory access protocol is examined thoroughly. A memory access
protocol defines commands that a DRAM memory controller uses to manage the movement of
data on DRAM devices in the memory system. We examine a generic DRAM access protocol
by focusing on basic DRAM commands common to all commodity DRAM devices.

2.4.1 Basic DRAM Commands
In this section, five basic commands are described. The descriptions if the basic commands form
the foundation of the DRAM memory access protocol, also the interaction of the basic DRAM
commands are then used to determine latency response and sustainable bandwidth characteris-
tics of DRAM memory systems.

Figure 2.5 illustrates a generic SDRAM device which is used to define the basic memory access
protocol. Different phases of operation occurs on the DRAM devices to facilite the movement of
data for each command. The generic DRAM access protocol described in this section is based on
a resource usage model. That is, the generic DRAM access protocol assumes that two different
commands can be fully pipelined on a given DRAM device as long as they do not require the
use of a shared resource at the same time, and that there are no additional constraints beyond
the immediate resource sharing constraint, like tRRD and tFAW .
Figure 2.5 illustrates four overlapped phases of operation for an abstract DRAM command. In
phase one, the command is transported through the address and command buses and decoded



2.4 DRAMMemory Access Protocol 11

Figure 2.5: Command and data movement on a generic SDRAM device.

by the DRAM device. In phase two, data is moved within a bank, either from the cells to the
sense amplifiers or from the sense amplifiers back into the DRAM arrays. In phase three, the
data is moved through the shared I/O gating, read latches and write drivers. In phase four, data
is placed onto the data bus by the DRAM device or the memory controller. Since the data bus
may be connected to multiple ranks of memory, no two commands to different ranks of memory
can use the shared data bus at the same time.

Figure 2.6 illustrates an abstract progression of a generic DRAM command. The time period
that it takes to transport the command from the DRAM controller to the DRAM device is illus-
trated and labelled as tCMD. Figure 2.6 also illustrates tparameter, a generic timing parameter that
measures the duration of ”operation 1”. In this text, the timing of operations is measured from
the end of the command transport stage until the end of the operation itself 1. In cases where
the duration of an operation limits the timing of command issuance, tparameter then defined the
minimum time that commands may be placed onto the command and address bus. As a result,
tparameter also denotes the minimum time that must pass between the start of two commands
whose relative timing is limited by the duration of an operation measured by tparameter.
The examination of the DRAM access protocol begins by a definition of the timing parameters.
Table 2.1 summarizes the timing parameters used in the description of the DRAM memory
access protocol. The timing parameters summarized in table 2.1 is far from a complete set of
timing parameters used in the description of amodernmemory access protocol. Nevertheless, the

1CAS command excepted. tCAS denotes the beginning of the CAS command to the beginning of the data
transport phase.



2.4 DRAMMemory Access Protocol 12

Figure 2.6: Different phase of an abstract DRAM command in a generic DRAM device.

timing parameters described here is a minimum set of timing parameters whose use is sufficient
to characterize and illustrate important interactions in modern DRAM memory systems.

Row Access Command

Figure 2.7 abstractly illustrates the progression of a generic row access command, also know
as row activation command. The purpose of a row access command is to move data from the
DRAM arrays to the sense amplifiers. Two timing parameters are associated with a row access
command: tRCD and tRAS . The time it takes for the row access command to move data from the
DRAM cell arrays to the sense amplifiers is know as the Row Column (Command) Delay, tRCD.
After tRCD, an entire row of data is held in the sense amplifiers. At that time, a column read
or write access commands can be engaged to move data between the sense amplifiers and the
memory controller through the data bus.

Figure 2.7: Row access command and timing.

After tRCD time, data is available at the sense amplifiers, but not yet restored to the DRAM cells.
A row access command discharges the DRAM cells to the accessed row. As a result, the row
of data must be restored from the sense amplifiers back into the DRAM cells before the sense
amplifiers can be used to sense the data in a different row. The time it takes for a row access
command to discharge and restore data from the row of DRAMcells is known as the RowAccess



2.4 DRAMMemory Access Protocol 13

Parameter Description
tBURST Data Burst duration. The time period that data burst occupues on the data

bus. Typically 4 or 8 beats of data. In DDR SDRAM, 4 beats of data occu-
pies 2 cycles.

tCAS Column Access Strobe. Time interval between columnd access command
and data returned by DRAM device(s). Also known as tCL.

tCMD Command transport duration. Time period that a command occupies on the
command bus as it is transported from the DRAM controller to the DRAM
devices.

tCWD ColumnWriteDelay. Time interval between issuance of columnwrite com-
mand and placement of data on data bus by the DRAM controller.

tDQS Data Strobe turnaround. Used in DDRx SDRAM memory systems. 1 full
cycle in DDRx SDRAM.

tFAW Four (row) bankActivationWindow. A rolling time frame in which a max-
imum of four bank activation may be engaged. Limits peak current profile.

tRAS Row Access Strobe. Time interval between row access command and data
restoration in DRAM array. After tRAS , DRAM bank could be precharged.

tRC Row Cycle. time interval between accesses to different rows in a given
bank. tRC = tRAS + tRP .

tRCD Row to Column command Delay. Time interval between row access com-
mand and data ready at sense amplifiers.

tRFC Refresh Cycle Time. Time interval between Refresh and Activation com-
mand.

tRRD Row activation to Row activation Delay. Minimum time interval between
two row activation commands to the same DRAM device. Limits peak cur-
rent profile.

tRP Row Precharge. Time interval that it takes for a DRAM array to be
precharged and be ready for another row access.

tWR Write Recovery time. Minimum time interval between end of a write data
burst and the start of a precharge command. Allows sense amplifiers to
restore data to cells.

Table 2.1: Summary of timing parameters used in generic DRAM access protocol.

Strobe latency or tRAS . After tRAS , the sense amplifiers are assumed to have completed the data
restoration process, and the DRAM array can be precharged for another row access to the same
bank.

Column Read Command

Figure 2.8 abstractly illustrates the progression of a column read command. A column read com-
mand moves data from the array of sense amplifiers of a given bank to the memory controller.
There are two timing parameters associated with a column read command: tCAS and tBurst. The
time it takes for the DRAM device to place the requested data onto the data bus after issuance



2.4 DRAMMemory Access Protocol 14

of the column read command is known as the Column Access Strobe latency (tCAS , or tCL).
After tCAS , the requested data is moved from the sense amplifiers onto the data bus, the into the
memory controller. Modern memory systems move data in relatively short bursts, typically oc-
cupying 2, 4 or 8 beats on the data bus. To maintain consistency in the description of the access
protocol, the duration of the data burst is described in terms of a time duration rahter than the
number of clock cycles. The data burst duration is labelled in Figure 2.8 as tBurst.

Figure 2.8: Column read command and timing.

Figure 2.8 shows that the column read command goes through 4 separate overlapping phases.
In phase one, the command is transported on the address and command bus then decoded by
the DRAM device. In phase two, the appropriate columns of data is retrieved from the sense
amplifier array of the selected bank and moved to the I/O gating. In phase three, the data flows
through the I/O gating and out to the data bus. In phase four, the data occupies the data bus for
time duration of tBurst.

Column Write Command

Figure 2.9 abstractly illustrates the progression of a column write command. A column write
command moves data from the memory controller to the sense amplifiers of a given bank. The
column write command goes through a similar set of overlapped phases as the column read
command. However, due the fact that the direction of the data movement differs between a read
command and a write command, the ordering of the phases is reversed.
In Figure 2.9, phase one shows that the column address and column write command is placed on
the address and command bus. In phase two, the data is placed on the data bus by the memory
controller. The in phase three, the data flows through the I/O gating, and in phase four, the data
reaches the sense amplifiers in the appropriate bank. One timing parameter associated with a
columnwrite command is tCWD, command write delay. Column write delay is the delay between
the time when the column write command is issued and the write data moved onto the data bus
by the memory controller. Different memory access protocols have different settings for tCWD.
Figure 2.9 also illustrates tWR, the write recovery time. The write recovery time denotes the time



2.4 DRAMMemory Access Protocol 15

Figure 2.9: Column Write command and timing.

between the end of the data burst and the completion of the movement of data into the DRAM
arrays.

Precharge Command

Accessing data on a DRAM device is a two step process. A row access command moves data
from the DRAM cells to the array of sense amplifiers. The data remains in the array of sense
amplifiers for one or more column access commands to move data to and from the DRAM de-
vices to the DRAM controller. In this context, a precharge command completes the sequence
as it resets the array of sense amplifiers and the bitlines and prepares the sense amplifiers for
another row access command. Figure 2.10 illustrates the progression of a precharge command.

Figure 2.10: Row precharge command and timing.

Figure 2.10 shows that in the first phase, the precharge command is sent to the DRAM device,
and in phase two, the selected bank is precharged. The timing parameter associated with the



2.4 DRAMMemory Access Protocol 16

(row) precharge command is tRP . The two row-access related timing parameters, tRP and tRAS

can be combined to form tRC , the row cycle time. The row cycle time of a given DRAM device
denotes the speed at which the DRAM device can bring data from the DRAM cell arrays into
the sense amplifiers, restore the data to the DRAM cells, the precharge the bitlines to the refer-
ence voltage level and made ready for another row access command. The row cycle time is the
fundamental limitation to the speed at which data may be retrieved from different rows within
the same DRAM bank.

Refresh Command

The word DRAM is an acronym that stands for Dynamic Random Access Memory. The reason
that the memory is referred as ”dynamic” is that the electrical charge retained by the storage ca-
pacitor gradually leaks as the time passes, and data stored in DRAM cells must be occasionally
read out and restored to full value. A DRAM refresh command accomplishes the task of data
readout and restoration to full value into the DRAM cells. As long as the time interval between
refresh commands is shorter than the worst case time period in which data in storage cells de-
teriorate to indistinguishable values, DRAM refresh commands can be used to overcome leaky
DRAM cells and maintain functionality of the DRAM storage system. The drawback to the re-
fresh mechanism is that refresh commands consume bank bandwidth and power. As a result,
there are a number of different refresh mechanism used by different systems, some are designed
to minimize controller complexity while others are designed to minimize bandwidth impact.

DDR3 SDRAM devices require Refresh cycles at an average periodic interval of tREFI . All
banks of the SDRAM must be precharged and idle for a minimum of the precharge time tRPmin

before the Refresh Command can be applied. To simplify refresh management, each DRAM de-
vice has an internal refresh counter that tracks the rows to be refreshed during the next refresh op-
eration. Normal memory operations resume only after the completion of an Auto-Refresh com-
mand, when the refresh cycle has completed, all banks of the SDRAMwill be in the precharged
(idle) state. A delay between the Refresh Command and the next valid command must be greater
than or equal to the minimum Refresh cycle time tRFCmin

, and this parameter depends on mem-
ory density.

Figure 2.11 illustrates a basic refresh command that allows the DRAM controller to send a single
refresh command to refresh one row in all banks. When a basic refresh command is issued, the
DRAM device takes a row address from an internal register, then sends the same row address to
all banks to be refreshed concurrently. The single refresh command to all banks take one refresh
cycle time to complete. Figure 2.11 also illustrates that the refresh cycle time tRFC , is at least
equal to the row cycle time tRC , and in many cases, much longer than tRC .

The refresh command illustrates one weakness of the resource usage model in that according
to the strict interpretation of the resource usage model, a DRAM controller should be able to
issue a refresh command to a DRAM device every row cycle time. However, Figure 2.11 shows
that the DRAM device can issue the basic refresh command only once every refresh cycle time,



2.4 DRAMMemory Access Protocol 17

Figure 2.11: Row refresh timing.

and that refresh cycle time is longer than the row cycle time. The reason that the resource usage
model fails in this case is because the basic bank-concurrent refresh cycle is power-limited, and
the DRAM device needs more time for the current spike induced by the concurrent refresh of
all banks in a given DRAM device to settle before another refresh or row activation command
can be engaged.

In modern DRAM memory systems, depending on the refresh requirement of the DRAM de-
vices, the memory controller typically injects one row refresh command once every 64 millisec-
onds for each row in a bank. That is, in a DRAM device with 8192 rows per bank and 64ms
refresh cycle requirement, 8192 refresh commands are issued every 64 ms to a DRAM device
to refresh one row in all banks concurrently. Depending on the design of the memory controller,
the 8192 refresh commands may be issued consecutively or evenly distributed throughout the
64 ms time period.

A Read Cycle

Figure 2.12 illustrates a read cycle in a generic DRAM memory system. In modern DRAM de-
vices, each row access command brings thousands of bits of data in parallel to the array of sense
amplifiers in a given bank. A subsequent column read command then brings tens or hundreds
of those bits of data through the data bus into the memory controller. For applications that are
likely to stream through memory. keeping thousands of bits of a given row of data active at the
sense amplifiers means that subsequent memory reads from the same row do not have to incur
the latency or energy cost of another row access. In contrast, applications that are not likely to
access data in adjacent locations favor memory systems that immediately precharges the DRAM
array and prepares the DRAM bank for another access to a different row.

In figure 2.12, a sequence of commands in an abstract memory system designed for applications
that do not to benefit from keeping rows of data in the sense amplifiers for subsequent accesses
is illustrated. As show in Figure 2.12, data is brought in from the DRAM cells to the sense ampli-



2.4 DRAMMemory Access Protocol 18

fiers by the row access command. After tRCD, data from the requested row has been resolved by
the sense amplifiers, and a subsequent column read command can then be issued by the memory
controller. After tCAS , the DRAM chip begins to return data on the data bus. Concurrent with
the issuance of the column read command, the memory device actively restores data from the
sense amplifiers to the DRAM cells, and after tRAS from the initial issuance of the row access
command, the DRAM cells would be ready for another row access.

Figure 2.12: One read cycle in a ”close-page” memory system.

Collectively, memory systems that immediately precharges a bank to prepare it for another ac-
cess to a different row are known as close-page memory systems. Memory systems that keep
rows active at the sense-amplifiers are known as open-page memory systems.

Complex Commands

Some DRAM devices support commands that perform more complex series of actions. Fig-
ure 2.13 shows the same sequence of DRAM commands as presented in Figure 2.12, however,
the simple column-read command is replaced with a compound column-read-and-precharge
command. As the name implies, the latter command combines a column-read command and a
precharge command into a single command. The advantages of a column-read-and-precharge
command is that for close-page memory systems that precharge the DRAM bank immeadiately
after a read command, the column-read-and-precharge command reduces the bandwidth require-
ment on the command and address bus. The implicit advantage of a combined command comes
from the memory controller is now able to place a different command on the address and com-
mand bus that a separate precharge command would have otherwise occupied.

Figure 2.13 shows a colum-read-and-precharge command as issued by the memory controller
to the DRAM device in the earliest time slot possible after the row access command while still
respecting the tRCD timing requirement, but the implicit precharge command is delayed so that
it does not violate the tRAS timing requirement.



2.4 DRAMMemory Access Protocol 19

Figure 2.13: A read cycle with a row access command and a column-read-and-precharge com-
mand.

Another type of complex command supported by DDR3 SDRAMmemory system is the posted-
CAS command. The posted-CAS command is simply a delayed column access command. Figure
2.14 abstractly illustrates a posted-CAS command. The posted CAS command is simply an
ordinary column access (read or write) command that can be issued to the DRAM device before
tRCD for the row activation command has been satisfied. The DRAM device internally delays
the action of the CAS command. The number of delay cycles for the posted CAS command is
pre-programmed into the DRAM device. The advantage of the posted CAS command is that it
allows a DRAM memory controller to issue the column access command immediately after the
row access command.

Figure 2.14: Posted CAS defers CAS commands in DRAM devices by a preset delay value, tAL.

2.4.2 DRAM Command Interactions
By using the resource usage model, DRAM commands can be scheduled consecutively subject
to availability of shared on-chip resources such as sense amplifiers, I/O gating multiplexors, and
the availability of off-chip resources such as the command, address and data buses. However,
even with the availability of some shared resources, some other considerations have to be taken
into account when scheduling DRAM commands.



2.4 DRAMMemory Access Protocol 20

This section examines read and write commands in a memory system with simplistic open-page
and close-page row buffer management policies. In a memory system that implements the open-
page and close-page row buffer management policies. In a memory system that implements the
open-page row buffer management policy, once a row is opened for access, the array of sense
amplifiers continues to hold an entire row of data for subsequent column read and write accesses
to the same row. Open-page memory systems rely on workloads that access memory with some
degree of spatial locality so that multiple column accesses can be performed to the same row and
minimizes the number of DRAM row cycles. In an open-page memory system, DRAM com-
mand sequence for a given request depends on the state of the memory system, and the dynamic
nature of the command sequences in open-pagememory systemsmeans there are larger numbers
of possible DRAM command interactions and memory system state combinations in an open-
page memory system than the number of DRAM command interactions in a close-page memory
system. This leads to a more complex command interactions and higher degree of difficulty in
scheduling command sequences in open-page memory systems. The detailed examination of
DRAM command combinations enables the creation of a table that summarizes the minimum
scheduling distances between DRAM commands. The summary of minimum scheduling dis-
tances in turn enables performance analysis of DRAM memory systems later on.

Consecutive Reads to Same Rank

In modern DDR DRAM systems, read commands to the same open row of memory in the same
bank, rank, and channel can be pipelined and scheduled consecutively subject to the availabiliry
of the data bus. Figure 2.15 shows two read commands, labelled as read 0 and read 1, pipelined
consecutively. As illustrated in Figure 2.15, tCAS after a read command is placed onto the com-
mand and address bus, the DRAM devices begins to return data on the data bus. Since column
read commands to the same open bank of the same rank can be pipelined consecutively, and the
limitation on the scheduling of these commands is the duration of the data burst on the data bus,
it follows that consecutive DRAM read commands to the same row of the same bank of memory
can be scheduled every tBurst time period.

In DDR3 DRAM memory systems, read commands to open rows in different banks within the
same rank of memory can also be pipelined consecutively. Similar to consecutive column read
commands to the same bank of the same rank of memory, DRAM column read commands can
be scheduled to different open banks within the same rank of memory once every tBurst time
period, as shown in Figure 2.15.

Read to Precharge Timing

Figure 2.16 illustrates theminimum command timing for a precharge command that immediately
follows a column-read command. The formula for minimum command timing is defined as
tBurst + tRTP − tCCD. We can notice that essentially, the timing parameter tRTP itself specifies
the minimum amount of time that is needed between a column-read command and a precharge



2.4 DRAMMemory Access Protocol 21

Figure 2.15: Consecutive column-read commands to the same bank, rank, and channel.

command.

Figure 2.16: Read to precharge command timing.

Consecutive Reads to Different Rows of Same Bank

Read commands to different rows within the same bank would incur the cost of an entire row
cycle time as the current DRAM array must be precharged and a different row activated by the
array of sense amplifiers.

Best Case Scenario: Figure 2.17 illustrates the timing and command sequence of two consecu-
tive read requests to different rows within the same bank of memory array. In this sequence, the
first read command, labelled as read 0 is issued, the array of sense amplifiers must be precharged
before a different row to the same bank can be accessed. After a time period tRP from the is-
suance of a precharge command, a different row access command can then be issued, and time
period tRCD after the row access command, the second read command labelled as read 1 can then
proceed. Figure 2.17 illustrates that consecutive column read accesses to different rows within
the same bank could at best be scheduled with minimum timing of tBurst + tRP + tRCD.



2.4 DRAMMemory Access Protocol 22

Figure 2.17: Consecutive column-read commands to different rows of the same bank: best-case
scenario.

Worst Case Scenario: Figure 2.18 illustrates the best case timing of two consecutive read com-
mands to different rows of the same bank. However, in the case that data from the current row
had not yet been restored to the DRAM cells, a precharge command cannot be issued until tRAS

time period after the previous row access command to the same bank. In contrast to the best
case scenario shown in Figure 2.17, Figure 2.18 shows the worst case timing for two consecu-
tive read commands to different rows of the same bank where the first column command was
issued immediately after a row access command. In this case, the precharge command cannot be
issued immediately after the first column read command, but must wait until tRAS time period
after the previous row access command has elapsed. Then, tRP time period after the precharge
command, the second row access command could be issued, and tRCD time period after that row
access command, the second column read command completes this sequence of commands.

Figure 2.18: Consecutive column-read commands to different rows of the same bank: worst-case
scenario.

The difference between the two different scenarios means that a DRAMmemory controller must
keep track of the timing of a row access command and delay any row precharge command until
the row restoration requirement has been satisfied.



2.4 DRAMMemory Access Protocol 23

Consecutive Reads to Different Banks: Bank Conflict

In this section we examine the case of consecutive read requests to different banks with the sec-
ond request hitting a bank conflict against an active row in that bank. This scenario has several
different combinations of possible minimum scheduling distances that depend on the state of the
bank as well as the capability of the DRAM controller to re-order commands between different
transaction requests.

Without Command Re-Ordering

Figure 2.19 illustrates the timing and command sequence of two consecutive read requests to
different banks of the same rank, and the second read request is made to a row that is different
than the active row in the array of sense amplifiers. There are three implicit assumptions in Fig-
ure 2.19. The first assumption made is that both banks i and j are open, where bank i is different
from bank j. The second read request is made to bank j, but to different row than the row of data
presently held in the array of sense amplifiers of bank j. In this case, the precharge command to
bank j can proceed concurrently with the column read access to a bank i. The second assumption
made in Figure 2.19 is that the tRAS requirement had been satisfied in bank j, and bank j can me
immediately precharged. The third and final assumption is that the DRAM controller does not
support command or transaction re-ordering between different transaction requests. That is, all
of the DRAM commands associated with the first request must be scheduled before any DRAM
commands associated with the second request can be scheduled.

Figure 2.19: Consecutive DRAM read commands to different banks, bank conflict, no command
reordering.

Figure 2.19 shows that due to the bank conflict, the read request to bank j is translated into a
sequence of three DRAM commands. The first command in the sequence precharges the sense
amplifiers to bank j, the second command brings the selected row to the sense amplifiers, and
the last command in the sequence performs the actual read request and returns data from the
DRAM devices to the DRAM controller. Figure 2.19 illustrates that consecutive read requests
to different rows, with the second row hitting a bank conflict, given that the DRAM command
sequences cannot be dynamically re-ordered, then the two requests can be at best be scheduled
with the minimum timing distance of tCMD + tRP + tRCD.



2.4 DRAMMemory Access Protocol 24

With Command Re-Ordering

Figure 2.20 shows that the DRAM memory system can obtain bandwidth utilization if the
DRAM controller can interleave or re-order DRAM commands from different transaction re-
quests. Figure 2.20 shows the case where the DRAM controller allows the precharge command
for bank j to proceed ahead of the column read command for the transaction request to bank
i. In this case, the column read command to bank i can proceed in parallel with the precharge
command to bank j, since these two commands utilize different resources in different banks.
To obtain the better utlization of the DRAM memory system, the DRAM controller must be
designed with the capability to re-order and interleave commands from different transaction
requests. Figure 2.20 shows that in the case the DRAM memory system can interleave and re-
order DRAM commands from different transaction requests, the two column read commands
can be scheduled with the timing of tRP + tRCD − tCMD. Figure 2.20 thus illustrates one way
that a DRAM memory system can obtain better bandwidth utilization with advanced DRAM
controller designs.

Figure 2.20: Consecutive DRAM read commands to different banks, bank conflict, with com-
mand reordering.

Consecutive Read Requests to Different Ranks

Consecutive read commands to the open banks of the same rank of a DRAMdevice can be issued
and pipelined consecutively. However, consecutive read commands to different ranks ofmemory
may not be issued and pipelined back to back depending on the system level synchronization
mechanism and the operating data rate of the memory system. Figure 2.21 illustrates the timing
and command sequence of two consecutive read commands to different ranks. In Figure 2.21, the
read-write data strobe re-synchronization time is labelled as tDQS . For relatively low frequency
SDRAMmemory systems, data synchronization strobes are not used, and tDQS is zero. However,
for DDR3 SDRAM memory systems, the use of a system level data strobe signal shared by all
of the ranks means that the tDQS data strobe re-synchronization penalty is non-zero.



2.4 DRAMMemory Access Protocol 25

Figure 2.21: Consecutive column-read commands to different ranks.

Consecutive Write Requests: Open Banks

Differing from the case of consecutive column read commands to different ranks of DRAM de-
vices, consecutive columnwrite commands to different ranks of DRAMdevices can be pipelined
consecutively in modern DRAMmemory systems. The difference between consecutive column
write commands to different ranks of DRAM devices and consecutive column read commands
to different ranks of DRAM devices is that in case of consecutive column read commands to
different ranks of DRAM devices, one rank of DRAM devices must first send data on the shared
data bus, give up control of the shared data bus, then the other rank of DRAM devices must then
take control of the shared data bus and send its data to the DRAMmemory controller. In the case
of the consecutive column write commands to different ranks of memory, the DRAM memory
controller sends the data to both ranks of DRAM devices without needing to give up control of
the shared data bus to another bus master. Figure 2.22 shows two write commands to different
ranks, labelled as write 0 and write 1, pipelined consecutively, and consecutive column write
commands to open banks of memory can occur every tBurst cycles without needing any idle time
on the data bus.

Consecutive Write Requests: Bank Conflicts

Similar to the case of consecutive read requests to different rows of the same bank, consecutive
write requests to different rows of the same bank must also respect the timing requirements of
tRAS and tRP . Additionally, column write commands must also respect the timing requirements
of the write recovery time tWR. In case of write commands to different rows of the same bank,
the write recovery time means that the precharge cannot begin until the write recovery time has
allowed data to move from the interface of the DRAM devices through the sense amplifiers into



2.4 DRAMMemory Access Protocol 26

Figure 2.22: Consecutive column-write commands to different ranks.

the DRAM cells. Figure 2.23 shows two of the best case timing of two consecutive write re-
quests made to different rows in the same bank. The minimum scheduling distance between two
write commands to different rows of the same bank is tCWD+ tBurst+ tWR+ tRP + tRCD− tCMD.

Figure 2.23: Consecutive write commands, bank conflict, best cases.

Figure 2.23 also shows the case where consecutive write requests are issued to different ranks
of DRAM devices with the second write request resulting in a bank conflict. In this case, the
first write command proceeds, and assuming that bank j for rank n had previously satisfied the
tRAS timing requirement, the precharge command for a different bank or different rank can be
issued immeadiately. Similar to the case of the consecutive read requests with bank conflicts
to different banks, bank conflicts to different banks and different ranks for consecutive write
requests can also benefit from command re-ordering.



2.4 DRAMMemory Access Protocol 27

Write Request Following Read Request: Open Banks

Similar to consecutive read commands and consecutive write commands, the combination of a
write command that immediately follows a read command can be scheduled consecutively sub-
ject to the timing of the respective data bursts on the shared data bus. Figure 2.24 illustrates a
write command that follows a read command and shows that the internal data movement of the
write command does not conflict with the internal data movement of the read command. As a
result, a column write command can be issued into the DRAM memory system after a column
read command as long as the timing of data burst returned by the DRAM device for the column
read command does not conflict with the timing of the data burst sent by the DRAM mem-
ory controller of the DRAM device. Figure 2.24 shows that the minimum scheduling distance
between a read command that follows a read command is tCAS + tBurst + tDQS − tCWD.

Figure 2.24: Write command following read command to open banks.

Write Following Read: Same Bank, Conflict, Best Case

Figure 2.25 illustrates the best case scenario for a write request that follows a read request to
the same bank, but to different rows. In the best case scenario presented in Figure 2.25, data
in the row accessed by the read request has already been restored to the DRAM cells. That is,
the tRAS timing requirement has already been sastisfied for the row held by bank ”i” before the
read command illustrated in Figure 2.25 was issued into the DRAM memory system. Figure
2.25 shows that under this condition, the precharge command can be issued consecutively to
the column read command. The row access command to the different row in bank i can then
be issued into the DRAM memory system after the DRAM array in abnk i is precharged. The
column write command can then proceed after time tRCD following the row access command.
Figure 2.25 thus shows that a read request that follows a read request to different rows of the
same bank can at best occur wih the minimum scheduling distance of tBurst+tRP +tRCD−tCMD.

Figure 2.25 shows the best case timing of the scenario where a read request that follows a read
request to different rows of the same bank. The best case scenario assumes that the tRAS timing
requirement has been satisfied for bank i. In worst case that the read command was in fact issued
immediately after the preceding row access command, the tRAS timing requirement must be
satisfied before the precharge command can be issued. In the worst case scenario, the minimum



2.4 DRAMMemory Access Protocol 28

Figure 2.25: Write command following read command to same bank: bank conflict, best case

scheduling distance between the column read command and the column write command that
follows it increases to an entire row cycle tRC .

Write Following Read: Different Banks, Conflict, Best Case

Figure 2.26 illustrates the case where a write request follows a read request to different banks.
Figure 2.26 shows that the column read command is issued to bank i, the column write com-
mand is issued to bank j, and i is different from j. In the common case, the two commands can
be pipelined consecutively with the minimum scheduling distance shown in Figure 2.24. How-
ever, the assumption given in Figure 2.26 is that the write command is a write command to a
different row than the row currently held in bank j. As a result, the DRAM memory controller
must first precharge bank j and issue a new row access command to bank j before the column
write command in bank j had already been restored to the DRAM cells, and more than tRAS time
period had elapsed since row was initially accessed. figure 2.26 shows that under this condition,
the read command and the write command that follows it to a different bank can best scheduled
with the minimum scheduling distance of tCMD + tRP + tRCD.

Figure 2.26: Write command following read command to different banks: bank conflict, best
case

Figure 2.26 shows the case where the ordering between DRAM commands from different re-
quests is strictly observed. In this case, the precharge command sent to bank j is not constrained
by the column read command to bank i. In a memory system with DRAM memory controllers
that support command re-ordering and interleaving DRAM commands from different transac-
tion requests, the efficiency of the DRAM memory system in scheduling a write request with a



2.4 DRAMMemory Access Protocol 29

bank conflict that follows a read request can be increased.

Read Following Write to Same Rank, Open Banks

Figure 2.27 shows the case for a column read command that follows a column write command
to open banks in the same rank of DRAM devices. The difference between a column read com-
mand and a column write command is that the direction of data flow within the selected DRAM
devices is reversed with respect to each other. The importance in the direction of data flow can
be observed when a read command is scheduled after a write command to the same rank of
DRAM devices.

Figure 2.27: Read following write to the same rank of DRAM devices.

Figure 2.27 shows that the difference in the direction of data flow limits the minimum schedul-
ing distance between the column write command and the column read command that follows the
same rank of devices. Figure 2.27 also shows that after the DRAMcontroller places the data onto
the data bus, the DRAM device must make use of the shared I/O gating resource in the DRAM
device to move the write data through the buffers into the proper columns of the selected bank.
Since the I/O gating resource is shared between all banks within a rank of DRAM devices, the
sharing of the I/O gating device means that a read command that follows a write command to
the same rank of DRAM devices must wait until the write command has been completed before
the read command can make use of the shared I/O gating resources regardless of the target or
destination bank ID’s of the respective column access commands.

Figure 2.27 shows that the minimum scheduling distance between a write command and a sub-
sequent read command to the same rank of memory is tCWD + tBurst + tWR − tCMD. In order
to alleviate the write-read turnaround time illustrated in Figure 2.27, some high performance
DRAM devices have been designed with write buffers so that as soon as data have been written
into the write buffers, the I/O gating resource can be used by another command such as a column
read command.



2.4 DRAMMemory Access Protocol 30

Read Following Write to Different Ranks, Open Banks

Figure 2.28 shows a slightly different case for a column read command that follows a column
write command than the case illustrated in Figure 2.27. The combination of column read com-
mand issued after a column write command illustrated in Figure 2.28 differs from the combina-
tion of column read command issued after a column write command illustrated in Figure 2.27
in that the column write command and the column read command are issued to different ranks
of memory. Since the data movements are to different ranks of memory, the conflict in the di-
rections of data movement inside of each rank of memory is irrelevant.

Figure 2.28: Read following write to different ranks of DRAM devices.

The timing constraint between the issuance of a read command after a write command to differ-
ent ranks is then reduced to the data bus synchronization overhead of tDQS , the burst duration
tBurst, and the relative timing differences between read and write command latencies. The mini-
mum time period between a write command and a aread command to different ranks of memory
is thus tCWD + tBurst + tDQS − tCAS .

Read Following Write to Same Bank, Bank Conflict

Figure 2.29 illustrates the case where a read request follows a write request to different rows of
the same rank. In the best case scenario presented, the tRAS row restoration time requirement
for the previous row has already been satisfied. Figure 2.29 shows that under this condition,
the precharge command can be issued as soon as the data from the column write commands has
been written into the DRAM cells. That is, the write recovery time tWR must be respected before
the precharge command can proceed to precharge the DRAM array. Figure 2.29 shows that the
best case minimum scheduling distance between a read request that follows a write request to
different rows of the same bank is tCWD + tBurst + tWR + tRP + tRCD − tCMD.

Read Following Write: Different Banks Same Rank, Conflict: Best Case

Figure 2.30 illustrates the case where a read request follows a write request to different banks of
the same rank of DRAM devices. However, the read request is sent to the bank j, and a different
row is presently active in bank j than the row needed by the read request. Figure 2.30 assumes



2.4 DRAMMemory Access Protocol 31

Figure 2.29: Read following write to different rows of the same bank: best case.

that the tRAS timing requirement has already been satisfied for bank j, and the DRAM memory
system does not support DRAM command re-ordering between different memory transactions.
Figure 2.30 shows that in this case, the precharge comamnd for the read request command can
be issued as soon as the write command is issued. Thus, Figure 2.30 shows that the minimum
scheduling distance in this case is tCMD + tRP + tRCD.

Figure 2.30: Read following write to different banks, bank conflict, best case.

Figure 2.30 also reveals several important points of note. One obvious point is that the DRAM
command sequence illustrated in Figure 2.30 likely benefits from command re-ordering between
different memory transactions. A second, less obvious point is that the computed minimum
scheduling distance depends on the relative duration of the various timing parameters. That
is, Figure 2.30 assumes that the precharge command can be issued immediately after the write
command and that tCMD+tRP+tRCD is greater than tCWD+tBurst+tWR. In case that tCMD+tRP+

tRCD is in fact less than tCWD + tBurst + tWR the use of the shared I/O gating resource becomes
the bottleneck and the column read command must wait until the write recovery phase of the
column write command has completed before the column read command can proceed. That is,
the minimum scheduling distance between a write request and a read request to a different bank
with a bank conflict is in fact the larger of tCMD + tRP + tRCD and tCWD + tBurst + tWR.



2.4 DRAMMemory Access Protocol 32

2.4.3 Minimum Scheduling Distances
In previous sections, the resource usage model for DRAMdevices was applied to a basic DRAM
commands and minimum scheduling distances between different combinations of DRAM com-
mands were examined in detail. Table 2.2 summarizes the minimum scheduling distances of
read and write requests in an open-page DRAM memory system to a combination of channels,
ranks, banks, and rows. Table 2.2 summarizes the minimum scheduling distances between read
and write requests rather than between row access, column read, column write and precharge
commands. On this table, letter ”R” represents a read request, letter ”W” represents a write re-
quest, letter ”s” means that the consecutive requests are made to same channel, rank, bank or
row, and ”d” means that the requests are made to different channel, rank, bank or row, ”o” means
open row and ”c” means closed row.

For example, the first row of the table shows that consecutive DRAM read commands to open
banks in the same channel, rank, bank and row can be issued with a minimum timing of tBurst. In
the case of a bank conflict between two consecutive requests to a DRAMmemory system, some
degree of uncertainty exists as to the minimum scheduling distance between those commands
since the timing of the second request depends on the progress of the data restoration phase of
the previous row access. Table 2.2 shows both the best case and worst case minimum schedul-
ing distances for consecutive request to an open-page DRAM memory system that does not
support command re-ordering. The best case scenario shows the minimum scheduling distance
given that the tRAS timing requirement of the row access command had already been satisfied,
and the worse case scenarios shows minimum scheduling distance given that the tRAS timing
requirement of the row access command had not been satisfied 2.

2.4.4 Power Constraints
Apart of the minimum scheduling distances between DRAM commands, there exist some addi-
tional constraints which limit the bandwidth utilization of modern DRAM based memory sys-
tems. One important constraint is related with the power consumption of DRAM devices. Due to
the increasing demand of bandwidth, DRAM manufactures put high data transfer rates in each
successive generation of DRAM devices. However, this increase in operating data frequencies
leads to higher activity rates and all in all, higher power consumption.

One of the solutions that have been proposed over the years to lower the power consumption of
DRAM devices is to constrain the activity rate of DRAM devices. By doing this, at the same
time, we are limiting the capability to move data to/fromDRAMdevices, which leads to a poorer
performance of the DRAM memory system.

2Some request combinations list tRC as the worst case minimum scheduling distance while other request com-
binations list tRC − tBurst as the worst case minimum scheduling distance. The assumption used in Table 2.2 is
that a row access is only used in combination with a column access command.



2.4 DRAMMemory Access Protocol 33

Pr
ev

N
ex
t

R
an
k

B
an
k

R
ow

Minimum schedul-
ing distance between
DRAM commands
open-page.
No command re-
ordering best case

Minimum schedul-
ing distance between
DRAM commands
worst case

R R s s o tBurst -
R R s s c tBurst + tRP + tRCD tRC

R R s d o tBurst -
R R s d c tCMD + tRP + tRCD tRC − tBurst

R R d - o tDQS + tBurst -
R R d - c tCMD + tRP + tRCD tRC − tBurst

R W s s o tCAS + tBurst + tDQS −
tCWD

-

R W s s c tBurst + tRP + tRCD −
tCWD

tRC

R W s d o tCAS + tBurst + tDQS −
tCWD

-

R W s d c tCMD + tRP + tRCD tRC − tBurst

R W d - o tCAS + tBurst + tDQS −
tCWD

-

R W d - c tCMD + tRP + tRCD tRC − tBurst

W R s s o tCWD + tBurst + tWR +

tCMD
-

W R s s c tCWD + tBurst + tWR +

tRP + tRCD − tCMD
tRC

W R s d o tCWD + tBurst + tWR −
tCMD

-

W R s d c tCWD + tRP + tRCD tRC − tBurst

W R d - o tCWD+ tBurst+ tDQS−
tCAS

-

W R d - c tCMD + tRP + tRCD tRC − tBurst

W W s s o tBurst -

W W s s c tCWD + tBurst + tWR +

tRP + tRCD − tCMD
tRC

W W s d o tBurst -
W W s d c tCWD + tRP + tRCD tRC − tBurst

W W d - o tBurst -
W W d - c tCMD + tRP + tRCD tRC − tBurst

Table 2.2: Minimum timing for consecutive read and write transactions: open-page.



2.4 DRAMMemory Access Protocol 34

In modern DRAM devices like DDR3, when a row is activated, the whole DRAM page con-
sisting of thousands of cells are discharged, sensed, and then restored to their respective cell,
all of this in parallel. As the outcome of this action, the row activation command is an energy
intensive operation. Figure 2.31 shows the abstract current profile of a DRAM read cycle. An
active DRAM device draws a relatively low and constant quiescent current level and for each
different activity, the DRAM device draws some additional current, meaning that the total cur-
rent draw of the DRAM device is simply the summation of the quiescent current draw and the
current draw of each activity on the DRAM device.

Figure 2.31: Current profile of a DRAM read cycle.

Since the magnitude of the current draw for a row activation command depends on the number
of column bits per row and the magnitude of the current draw for data burst and data bus (which
depends on the data bus width of the DRAM device), the current profile is shown in an abstract
manner. As a result, the current profile of each command on each respective device depends not
only on the specific command, but also on the internal organization and external configurations
of the DRAM devices.

All modern DRAM devices contain multiple banks of DRAM arrays, which allows to pipeline
DRAM commands in order to achieve higher performance. Unfortunately, since the current pro-
file of a DRAM device is proportional to the activity rate, a high performance, highly pipelined
DRAM device can also draw a large amount of current. Figure 2.32 shows the individual con-
tributions to the current profile of two pipelined DRAM read cycles on the same device.

The total current profile of the pipelined DRAM device is not shown in Figure 2.32, but can
be computed by the summation of the quiescent profile and the current profiles of the two re-
spective read cycles. The problem of power consumption for a high performance DRAM device
is that instead of only two pipelined read or write cycles, multiple read or write cycles can be
pipelined, and as many as tRC

tBurst
number of read or write cycles can be theoretically pipelined

and in different phases in a single DRAM device. To limit the maximum current draw of a given
DRAM device, new timing parameters have been defined in DRAM devices like DDR3, which
limit the activity rate and power consumption.



2.4 DRAMMemory Access Protocol 35

Figure 2.32: Current profile of two pipelined DRAM read cycles.

tFAW: Four Bank Activation Window

In DDR3 SDRAM devices, the timing parameter tFAW has been defined to specify a rolling time
frame in which a maximum of four row activations on the same DRAM device may be engaged
concurrently. The acronym FAW stands for Four bank Activation Window.

Figure 2.33 shows a sequence of row activation requests to different banks on the same DDR3
SDRAM device that respects both timing constraints tRRD and tFAW . figure 2.33 shows that the
row activation requests are spaced at least tRRD apart from each other, and that the fifth row
activation to a different bank is deferred until at least tFAW time period has passed since the first
row activation was initiated.

Figure 2.33: Maximum of four row activations in any tFAW time frame.

For memory systems that use close-page policy (row buffer management), tFAW places addi-
tional constraint on the maximum sustainable bandwidth of a memory system with a single rank
of memory regardless of operating data rates.



2.5 DDR3 SDRAM Protocol 36

2.5 DDR3 SDRAM Protocol
In previous sections, a generic DRAM access protocol was examined in a reasonable detail. In
this section, we describe the DDR3 SDRAM memory access protocol in detail, since this is the
DRAM device that we are targeting on this work, both in simulation and implementation. The
goal of this section is to illustrate by example how the generic DRAM access protocol can be
applied to a specific DRAM memory system.

Before any READ or WRITE commands can be issued to a bank within the DRAM, a row in
that bank must be activated. This is accomplished via the ACTIVATE command, which selects
both the bank and the row to be activated.

After a row is opened with an ACTIVE command, a READ or WRITE command may be issued
to that row, subject to the tRCD constraint. When at least one bank is open, any READ-to-READ
command delay or WRITE-to-WRITE command delay is restricted to tCCD, as shown in Figure
2.34.

A subsequent ACTIVATE command to a different row in the same bank (bank conflict) can
only be issued after the previous active row has been closed (precharged). The minimum time
interval between succesive ACTIVE commands to the same bank is defined by tRC .

A subsequent ACTIVE command to another bank can be issued while the first bank is being
accessed, which results in a reduction of total row-access overhead. The minimum time interval
between successive ACTIVATE commands to different banks is defined by tRRD. No more than
four bank ACTIVATE commands may be issued in a given tFAW period, and the tRRD constraint
sill applies. It is important to point out that the tFAW parameter applies, regardless of the number
of banks already opened or closed, as shown in Figure 2.35.

Figure 2.34: ACTIVATE command meeting tRRD and tRCD

Figure 2.36 shows a read operation, where the read latency is depicted. READ bursts are initi-
ated with a READ command. The starting column and bank addresses are provided at the same



2.5 DDR3 SDRAM Protocol 37

Figure 2.35: tFAW example.

time as the READ command, also auto-precharge is either enabled or disabled for that burst
access.

During READ bursts, the valid data-out element from the starting column address is available
READ latency (RL) clocks later. RL is defined as the sum of posted CAS additive latency (AL)
and CAS latency (CL) (RL = AL+CL). The value of AL and CL is programmable in the mode
register via the MRS command. Each subsequent data-out element is valid nominally at the next
positive or negative clock edge (that is, at the next crossing of CK and CK#). Figure 3.36 shows
an example of RL based on a CL setting of 8 and an AL setting of 0.

Figure 2.36: Read latency.

DQS, DQS# is driven by the DRAM along with the output data. Upon completition of a burst,
assuming no other commands have been initiated, the DQ goes High-Z. Data for column red
commands are sent by the DRAMdevices and edge aligned to the data strobe signal, on the other
hand, data for column write commands are sent by the DRAM controller and center aligned to
the data strobe signal.



2.6 DDR3 memory low power modes 38

Data from any READ burst may be concatenated with data from a subsequent READ command
to provide a continuous flow of data. The first data element from the new burst follows the last
element of a completed burst. The new READ command should be issued tCCD cycles after the
first READ command. Figure 2.37 illustrates this for BL8, RL=5 (CL = 5, AL = 0).

Figure 2.37: Consecutive READ bursts (BL8).

WRITE bursts are initiated with a WRITE command. The starting column and bank addresses
are provided with the WRITE command, and auto precharge is either enabled or disabled for
that access. After aWRITE command has been issued, theWRITE burst may not be interrupted.
Figure 2.38 shows a generic WRITE command.

During WRITE bursts, the first valid data-in element is registered on a rising edge of DQS fol-
lowing theWRITE latency (WL) clocks later and subsequent data elements will be registered on
successive edges of DQS. WRITE latency (WL) is defined as the sum of posted CAS additive
latency (AL) and CASWRITE latency (CWL):WL = AL+CWL. The values of AL and CWL
are programmed in the MR0 and MR2 registers, respectively.

Data may be masked from completing a WRITE using data mask. The data mask occurs on the
DM ball aligned to the WRITE data. If DM is LOW, the WRITE completes normally. If DM
is HIGH, that bit of data is masked. Upon completion of a burst, assuming no other commands
have been initiated, the DQ will remain High-Z, and any additional input data will be ignored.

Address input-bit 10 determines whether one bank or all banks are to be precharged and, in the
case where only one bank is to be precharged, the input bank selects the bank. When all banks
are to be precharged, the input bank is ignored. After the bank is precharged, it is in the idle state
and must be activated prior to any READ or WRITE commands being used.

2.6 DDR3 memory low power modes
The memory community has been pursuing methods to improve the efficiency of the memory
system. A key component of the DDR3 standard is the reduction of power. In DDR3 standard,
there exit power modes which can be synchronously entered when CKE is registered low (along



2.6 DDR3 memory low power modes 39

Figure 2.38: WRITE Burst.

with a NOP command). CKE is along to go low while any other operation such as row activa-
tion, precharge or auto-precharge and refresh is in progress, but the IDD current effect will be
applied until all the operations are finished.

DDL should be in a locked state when power-down is entered for fastest power-down exit timing.
During Power-Down, if all banks are closed after any in-progress commands are completed, the
device will be in Precharge Power-Downmode, otherwise, if any bank is open after in-progress
commands are completed, the device will be in Active Power-Down mode [2].

Auto-refresh disipates substantial power since all the clocked circuitry in an SDRAM remains
active dugin the entire refresh period. As a result, in addition to the power required for refresh,
background power is consumed due to the delat locked loop (DLL) and peripheral logic. To
save background power, a DRAM device has an option to enter Self-Refresh mode, where all
external I/O pins and clocks are disabled, the DLL is truned off, and the devices preserves data
without any intervention from the memory controller. Once the self-refresh mode is entered, all
banks are precharged and closed, and the internal self-timed refresh is triggered [2]. Self-refresh
is the lowest power mode for a DRAM device without losing data.

It is important to mention that the amount if power consumption lowered thanks to the power-
down state modes depends on the duration of each power-down mode, and overall, power-down
modes could reduce performance because of their non-zero exit times. Therefore, the power-



2.7 DRAMMemory Controller 40

down functionality included in a DRAM memory controller must identify the optimal point to
enter a power-down state.

2.7 DRAMMemory Controller
In modern computer systems, processors and I/O devices access data in the memory system
through the use of one or more memory controllers. Memory controllers manage the move-
ment of data into and out of DRAM devices while ensuring protocol compliance, accounting
for DRAM-device-specific electrical characteristics, timing characteristics, and, depending on
the specific system, even error detection and correction. [3]

The design and implementation of the DRAMmemory controllers determine the access latency
and bandwidth efficiency characteristics of the DRAMmemory system. The behavior of a con-
temporary DRAMmemory controller is heavily dependent on the interaction of many aspects of
thememory system as thememory access pattern and the various DRAM timing constraints. The
memory controller employs sophisticated address mapping, command scheduling, and power
management optimizations in order to perform the best possible.

The DRAM memory controller functions are to ensure the correct operation of DRAM, which
involves to manage the refresh operation every certain period of time (64ms) and obeying the
timing constraints imposed by the DRAM device. The memory controller also has to service the
DRAM requests while obeying the timing constraints of DRAM chips, some of this constraints
are resource contentions or conflicts (bank, bus and channel) and the minimumwrite-to-read de-
lays. And also the memory controller is in charge of translating the requests to DRAM command
sequences. The memory controller can provide better performance by buffering and scheduling
the requests, this can be done by reordering the requests, use a different row-buffer policy and to
change the way we manage the banks, ranks, and bus. The memory controller is also in charge to
manage power consumption and thermals in DRAM devices by the means of managing power
modes.

DRAM controllers can be designed to minimize die size, minimize power consumption, max-
imize system performance, or simply a reasonably optimum combination of various conflict
design goals. The goal of this section is to examine, specifically, three of the most important
actions that a DRAM memory controller has to accomplish with

• Row-Buffer Management Policy

• Address Mapping Scheme

• Memory Transaction and DRAM Command Ordering Scheme

Due to reasons presented on previous sections, many research has been devoted to the opti-
mization of DRAM memory controllers. Specifically, Address Mapping Scheme designed to



2.7 DRAMMemory Controller 41

minimize bank address conflicts have been studied by Lin et. al. and Zhang et. al [4] [5] [6].
DRAM Command and Memory Transaction Ordering Schemes have been studied by Briggs et.
al., Cuppu et. al., Hur et. al., McKee et. al., and Rixner et. al [7] [8] [9] [10] [11].

Figure 2.39 illustrates an abstract DRAM memory controller. This memory controller accepts
requests from one or more microprocessors and I/O devices. Provides an arbitration interface to
determine which of the agents that requested the access to the memory will be able to place its
request into the memory controller. This request arbitration is part of the memory controller user
interface, even though sometimes it is implemented as part of the bus interface. By including
this arbitration as part of the memory controller, it is possible to arbitrate both transaction and
command queues, and schedule them in order to achieve better performance.

In Figure 2.39 we can see that once a transaction wins arbitration and enters into the memory
controller, it is mapped to a memory address location and converted to a sequence of DRAM
commands. In the case of a write operation, the corresponding DRAM commands could be an
ACTIVATE followed by a WRITE command. All these commands are put into queues, which
can correspond to a specific bank or rank. This queues may be arranged as a generic queue pool,
as proposed in [8], where the controller will select one from pending commands to execute in an
specific queue. After that, depending on the DRAM command scheduling policy, commands are
scheduled to the DRAM devices through the electrical signaling interface, also called physical
interface.

Figure 2.39: Abstract DRAM memory controller.

We can think of a modern DRAM memory controller as having three main blocks, the physical
interface, the command processor and the transaction processor. The physical interface connects
to the DRAM chips or memory modules. It takes a single stream of commands from the com-
mand processor, sends the commands with proper timing to the DRAM chip, and manages the
associated flows of data bytes for read/write operations. The interface transceivers, synchronous
buffers for commands and data, and a state machine to generate proper command and data tim-
ing are all included in this block.



2.7 DRAMMemory Controller 42

Also, there is a state machine for the complex initialization and calibration sequences specified
in the DDR3 DRAM standard [2]. In addition, the physical interface in some applications in-
clude self-test, diagnostic, and error-detection and correction hardware. The physical interface
may be adjusted when you change to a different size or speed-grade of DRAM device.

The command processor keeps track of the state of the DRAM (ranks and banks), and translates
incoming bus read andwrite cycles into the proper sequence of DRAMcommands. For example,
the command processor might find a series of bus reads of consecutive words scattered through
its input queue, and in response, issue a precharge, an activate and a block-read command to its
output queue. In order to do this, the command must know which rows in which banks of which
ranks will be open when the new commands get issued.

As the need for bandwidth increases, the complexity of the command processor must increase,
too. For example, the processor might look ahead through its input queue and attempt to reorder
operations to stay on an active row as long as possible, to overlap reads with precharges, or to
interleave banks. Above all, the processor will seek to avoid ping-ponging between rows within
one bank (bank conflicts). All these adjustments must be identified and made on the fly.

Finally, the transaction processor sits between the command processor and the rest of the SoC.
It typically has a number of channels connecting it to the SoC’s high-speed central switch. The
main job of the transaction processor is to blend together the streams of reads and writes com-
ing in on the various channels, imposing a priority scheme so that each channel, i.e., each cache
controller, DMA engine, accelerator, etc., on the other ends of those channels, get the latency
and bandwidth they need.

Selecting such a priority scheme in a dynamic environment is not easy. It is more difficult if
you can’t accurately predict the characteristics of the traffic on each channel. Ideally, the work-
load would be fixed, so you could optimize a priority scheme for it or there would be several
clearly identified modes of access, and provision for dynamically adjusting priorities as the traf-
fic shifted.

2.7.1 Row Buffer Management Policy
Two of the most typically used row-buffer policies to manage the operation of the sense am-
plifiers are open-page and closed-page policies. There exist dynamic row-buffer management
polices, like the ones mentioned below.

The closed-page policy, opens the row for every column access and then closes it by means of
an auto-precharge command. The improve adaptive closed page keeps the row open if there are
any pending accesses to that row in the queue, as suggested in [12].



2.7 DRAMMemory Controller 43

On the other hand, the open-page policy leaves a row open until a bank conflict occurs, in which
case the the open row is closed and the new row opened. As before, the open adaptive page does
not wait until the conflict occurs, but instead closes the page in advance if there are accesses to
a different row in the same bank (bank conflict), and also there are no queued accesses to the
open row [12].

In more detail, the open-page row-buffer management policy is designed to improve the row
hits. This policy favors the memory accesses to the same row by keeping the sense amplifiers
open and holding an entire DRAM page (row of data) in order to be ready for access it. The
primary assumption in this policy is that once a row of data is brought to the array of sense
amplifiers, different columns of the same row can be accessed again in the future, meaning the
some spatial locality intrinsic in the data access is expected.

So, in the case that another memory read access is made to the same row, that memory access
could occur with the expense of the minimal latency which is tCAS , this is due since the row
is already active, a column access command timing is needed to move the data from the sense
amplifiers to the memory controller. However, in the case of a bank conflict (an access to a
different row of the same bank), the memory controller has to first precharge the DRAM array,
perform another row access, and then perform the column access. The minimum access latency
to access data in the case of a bank conflict is tRP + tRCD + tCAS .

Contrary to the open-page policy, closed-page row buffer management policy does not assume
any locality in the data access since it is designed to favor random accesses to different rows
of memory. This means that after activating and accessing a row, it is precharged automatically
my means of a READ-PRECHARGE command, this allows the bank to be ready to be access
later on.

The bottom line is that the definition of the row-buffer access policy forms the foundation for
the design of a memory controller. This specific design choice directly or indirectly impact the
selection of the address mapping scheme, the memory command-reordering mechanism, and
the transaction re-ordering mechanism.

2.7.2 Address Mapping Policies
The address mapping process does the following: take an address from system’s memory ad-
dress space and perform the mapping to the organization of the DRAM memory system. This
means that a request address is translated to a channel {L}, rank {R}, bank {B}, row {R} and col-
umn {C} values, specifying the location of the data. The address mapping scheme determines
which bits of the address are used for each specific ”dimension” or ”logical” representation of
the DRAM memory system.

Elaborating the address mapping process, by requesting two different rows of the same bank,
we would have to close the first row and open the second, which leads to a significant increment



2.7 DRAMMemory Controller 44

in latency. If the request instead were to access the same row but different columns, they could
be executed one after the other after the initial access. This would take only tCAS , in addition of
using less energy by avoiding the extra ACTIVATE and PRECHARGE commands.

Now, another scenario is the following: we have two request to different banks, in which case
we would have to pay the latency of an ACTIVATE command per each bank, but at the same
time, the second ACTIVATE command would need to be delayed some cycles in order to sat-
isfy tRRD. In spite of being able to hide this latency because of the delay necessary in the bus,
the energy consumed is higher, since two rows would be activated, instead of one. Accessing
two different channels would be even more advantageous in terms of speed, since they are fully
independent, but the energy problem would remain.

The data mapping policy determines the extent of parallelism that can be leveraged within the
memory system. A cache line is placed entirely in one bank, the next cache line could be placed
in the same row, or in the next row of the same bank, or in the next bank in the same rank, or in
the next rank in the same channel, or in the next channel.

2.7.3 DRAM metrics
Apart from the already presented metrics used to assess performance in a DRAM memory sys-
tem (bandwidth and latency), a set of parameters can be used to describe the DRAM usage
pattern and performance in addition to achieve throughput, or bandwidth. Both request pattern
and memory controller affect these parameters.

• DRAM utilization

• DRAM efficiency

• Row buffer locality

DRAM utilization is the percentage of cycles within a time period the data bus was employed
to transfer data [13]. While at first sight we would like to have this value to be high, it can be
misleading as a memory scheduler measure if there were significant intervals with no requests
at the controller.

DRAM efficiencywas defined to improve upon DRAM utilization [13] and is defined as the per-
centage of the non-idle DRAM cycles the data bus was utilized. This removes the time which
during the memory controller and DRAM have no work to perform, and so, it presents a more
indicative performance measure in the case when there are significant idle times.

Row Buffer Locality is defined as the percentage of requests which hit the already opened row.
High locality means the cost of opening a new row is amortized over a large number of serviced
requests. However, high locality can have a negative side-effect of delaying requests that access
different rows of the same bank, overall in multithreaded systems that have a high chance of



2.7 DRAMMemory Controller 45

interthread interference by keeping a bank accupied through repeated access to a single row, as
pointed by Kaseridis et al. [14].

2.7.4 Memory Scheduling
The term memory scheduler is often used in a mislead way that overlaps with the memory con-
troller. In this work, the memory scheduler is the part of the memory controller that is in charge
of the selection of specific DRAM commands to be issued. DRAM scheduling is a complex
problem, requiring a delicate balance between circumventing access scheduling constraints, pri-
oritizing requests properly, and adapting to a dynamically changing memory reference stream.

As mentioned in the latter paragraph, memory access scheduling is the process of ordering the
DRAM operations (bank precharge, row activation, column access, between others). All these
operations have to honor several timing constraints for each rank and bank. In memory schedul-
ing has to be taken into account the data bus utilization for read and write operations on the
same DDR bus. There is also the refresh time that is inherently tied to the DRAM technology.
The aim of the algorithm used in memory scheduling is to maximize the row buffer hit rates and
parallelism, leading to a maximum utilization of the bandwidth available in the DRAMmemory
system. Also, this algorithm can leverage the low power modes available in modern DRAM
devices like DDR3 in order to lower power consumption.

The memory controller receives requests and place them into a single Transaction Queue. The
write requests and their corresponding data is usually placed on a separate Write Queue. Then,
any incoming incoming read request need to be checked against the write requests waiting in
the write queue in order to maintain consistency. This action also provides the opportunity to
immediately service a read request without the need of accessing the DRAM devices.

Then, requests from the queues aforementioned are translated into a series of DRAMcommands.
The simplest translation is to wrap every incoming request into a PRECHARGE, ACTIVATE
and READ/WRITE command. After this translation, these commands are placed into queues,
called Command Queues. As we already mentioned before, there can be a single queue per
memory controller, one command queue per rank or even one command queue per each bank.
Then, the memory scheduler issues the commands to the DRAM devices. It keeps track of the
timing constraints, issuing commands only when the appropriate timing constraints are met and
at the same time, it makes sure that no data is lost in the DRAM devices by issuing REFRESH
commands at the appropriate time.

Some state-of-the-art memory scheduler are presented in the following subsections. First, the in-
order scheuler is presented as a baseline, then the mostly used scheduler is the First Ready, First
Come, First Served. Also, the Thread-Fair memory scheduler [15] is presented. More advanced
schedulers have been studied by Nazm et. al [16], O. Multu et. al [17] and Y. Kim et. al [18].



2.7 DRAMMemory Controller 46

In-order

Basically, the in-order scheduler issues commands in the strict order of arrival. A very good
example of how inefficient this scheduling can be is illustrated by Rixner et. al at [8].

First Ready - First Come - First Served

This widely used scheduler is simple, a greedy request scheduling policy proposed by Rixner et.
al at [8]. Due its popularity, it is often used as a baseline memory scheduling policy since its low
complexity is coupled with its performance. There exist variations of this scheduler, but the base
version is the following. The FR-FCFS scheduler chooses one command at very cycle from all
the ACTIVE, READ and WRITE that satisfy the timing constraints, hence the First Ready part
of the name. Out of that set of issuable commands, the oldest command will be picked, hence
the First Come, First Served. This means that a newer command will be issued over an older
one if the timing constraints prevent the former from issuing. In the case of the PRECHARGE
commands, they are only considered if no other commands can be issued.

The specific timing of the PRECHARGE commands depends on something called the Row-
status policy, which determined the rule of closing the row, therefore it is tied with the choice of
the maximum number of row accesses. There are mainly three options: single access, open row
and closed-row. As we can imagine, the single access only allows an access to a row before it is
closed by a PRECHARGE command, leading to a very simple and poor scheduling. Then, if we
want to allow multiple row accesses the question of when to close the row inevitable arises. If
the row is closed once there are no more accesses to it in the command queueu, this could slow
down future accesses to that row. Then, the closed-row policy sends a PRECHARGE command
as soon as the command queue does not have accesses to it. And the open-row policy sends a
PRECHARGE command only once the command queue contains no accesses to the open row
and at least one access to a different row of the same bank.

Thread-Fair Memory Scheduler

The Thread-Fair scheduler presented by Fang et. al [15] establishes some simple rules, and lever-
ages additional information to prioritize the oldest request from each thread. This is possible due
the oldest request is expected to have the highest chance of blocking the processor’s program.
Figure 2.40 sumarizes the scheduling rules.

Under normal operation, read requests are prioritized over write requests. If the write queue is
filled above the high watermark, or there are no read requests, enter the write drain mode in
which writes have higher priority. While read requests are being serviced, read row hits have
the highest priority. If no read row hits can be issued, the request generated by the reorder buffer
(ROB) head is given the highest priority and appropriate row is opened. If multiple such request
exits, they are considered in a round-robin fashion. If all requests generated by the ROB heads
have the corresponding rows open, or the required banks are busy, rows are opened for other
read requests by the oldests-first rule. Finally, if no row opening commands can be issued, write



2.7 DRAMMemory Controller 47

Figure 2.40: Thread Fair scheduler decision flowchart.



2.8 Related work 48

row hits are considered issuing.

Correspondingly, when in the write drain mode, write row hits have the highest priority. If the
queue holds no row hits, remaining writes are serviced according to age. Finally, if no write
requests can be serviced, read row hits will be issued. The Thread-Fair scheduler takes advan-
tage of the auto-precharge commands. When issuing column access commands, if there are no
more pending accesses that would hit in the open row, last column access is issued as the auto-
precharge command. This way does have the potential of closing the row too soon.

2.8 Related work
In the previous section, a couple of schedulers were presented. In this section, we will describe
another common design target which is power consumption.

2.8.1 Power and energy oriented schedulers
Since the energy usage is often tightly coupledwith improving performance, whereas power con-
siderations are often harmful to application performance. So, the peak power usage is already
limited by the FAW (Four-Row Activation Window) in order to ensure the proper operation of
the hardware.

One technique for controlling the power usage of the DRAM system is called throttling, and is
examined by Hanson and Rajamani [19]. The basic idea behind memory throttling is to restrict
read and write traffic to main memory as a means of controlling power consumption. This can
be done by restricting the number of accesses within a fixed time period to some level below the
peak (or normal) hardware capability. The impact of this restriction can vary from minimal to
significant. As we could imagine, the downside of this technique is the performance degradation.

Hur and Lin propose to use a timeout counter to generate power-down commands [20]. And they
extend the Adaptive History-Based scheduler [11] with additional policy which prefers issuing
commands only to one rank at a time, allowing longer power-down periods.

Another two energy-saving proposal are presented by Huang et al. [21]. One of the proposals
attempts to improve the self-refresh mode of DRAM since this mode saves large amount of en-
ergy, but as we already stated, the exit time of this mode is long. The basic idea is to use the
history of accesses within last refresh interval to modify the time threshold for entering self-
refresh mode. The other proposal is to move the most frequently accessed pages into a specific
subset of ranks, which would allow longer and more frequent power-saving modes for the other
ranks. The downside of this proposal is the penalty in terms of performance that comes with the
page migration.



2.8 Related work 49

The refresh operation is one of the main DRAM characteristics that can be leveraged to lower
power consumption. Having in mind that the REFRESH operation consists of an ACTIVATE
and PRECHARGE command per row, we could think about a kind of Smart Refresh, like the one
proposed by Ghosh and Lee [22], on which a mechanism keeps track of the rows’ last refresh
through either a normal activation or a REFRESH operation. Although rows are only refreshed
when necessary, the counters used to keep track of the rows require a large amount of storage
in the memory controlller.

2.8.2 Related work summary
In this section we gave an overview of the state of the art. The memory schedulers are mainly
divided in three groups (performance, fairness and energy), but since this work is focused on
low power consumption, the one presented was energy oriented scheduling. The schedulers
presented in the former subsection are not the ones implemented on this thesis, with the exception
of FR-FCFS and FCFS, but they are part of the theoretical background provided to understand
this work.



Chapter 3

Methodology

In this chapter, we describe the infrastructure employed for the evaluation presented in the fol-
lowing chapter. We follow two approaches to demonstrate the behavior of the memory con-
troller model proposal, a memory traffic generator and the execution of some PARSEC [23]
benchmarks in a full-system simulation running Linux. In this chapter the memory controller
proposal is described in detail as well.

3.1 Simulation framework
gem5 is an open source discrete event simulator framework [24]. To be able to study the
DRAM’s impact on system power and performance, it is necessary to have a controller model
that is representative with respect to the architecture of the memory controller, and how this con-
troller manages all DRAM timing constraints and also, the optimization goals and constraints.

gem5’s main memory model captures a generic modern DRAM controller architecture, with
split read and write queues, as illustrated in Figure 3.1. Instead of buffering the DRAM state by
bank or rank, gem5’s controller model does it per memory controller, so they do not model the
actual DRAM device.

The controller model has parameters that allow us to express the memory system organization.
Some of these parameters are bus width, burst length, row buffer size, number of devices per
rank, ranks and banks. Table 3.1 shows the DRAM controller parameters available in gem5’s
controller model.
The model used on gem5 does not model any separate command queues, in contrast to other
simulators like DRAMSim2 [25]. Therefore, the page policy and arbitration scheme operate di-
rectly on the read and write request queue. This model claims that capturing the split request
and command queues adds unnecessary cost and detail to the model, and it is demonstrated at
[26].

gem5’s DRAMmodel controller models a simplified DRAM state machine, which is implicitly
encoded in the controller code. The only timing constraints that are modelled are the ones that



3.1 Simulation framework 51

Figure 3.1: gem5 DRAM memory controller model.

have significant contribution to system level performance, as show in Table 3.1. The model cap-
tures a subset of the DRAM bank state changes, along with the data bus occupancy, and return
of DRAM read data.

The are two levels of scheduling, the first is the choice between reads and writes, on which a
write drain mode is employed in order to minimize the cost of read/write switching (tWTR).
The second level involves selecting a request either from the read or write queue, depending on
the current direction and page policy.

3.1.1 Power Model
The simulated DDR3-1600 x64 consists of 8 chips each having a 8-bit interface (x8), with timing
and power based on the Micron DDR3 SDRAM MT8JTF12864HZ-1GB [27]. gem5 employs
a tool called DRAMPower tool [28] to calculate energy components based on the IDD current
values of a specific device. This tool employs an improved Power Modeling presented on [29],
which will be described briefly later on. This SDRAM power model estimates power consump-
tion during the state transitions to power-saving states, employs an SDRAM command trace to
get the actual timings between the commands issued and is generic and applicable to al DDRx
SDRAMs and all memory controller policies and all degrees of bank interleaving.

This Power Model includes basic power components that add up and contribute to overall
memory power consumption. These basic components include background power components
(contributing mainly to static power consumption), such as Active Background (ACTBG) and
Precharged Background (PREBG) power, and active power components (contributing mainly
to dynamic power consumption), such as Activate (ACT), Precharge (PRE), Read (RD), Write
(WR) and Refresh (REF) power. Also, the transitions from stand-by modes to power-down
modes power components contributions are taken into account on this model.



3.1 Simulation framework 52

Parameter Description (unit)
Write buffer size Number of write queue entries
Read buffer size Number of read queue entries

Write high/low threshold High/low watermark for write queue
Scheduling policy FCFS or FR-FCFS
Address mapping RoRaBaCoCh, RoRaBaChCo, RoCoRaBaCh

Page policy Open or closed (adaptive or not)
Frontend latency Static frontend latency (ns)
Backend latency Static backend latency (ns)
Device bus width Data bus with per DRAM device (bits)
Burst length DRAM burst length (beats)

Row-buffer size Device row buffer size (bytes)
Devices per rank -
Ranks per channel -
Banks per rank -

Channels Channel count for the address decoding
tRCD Row to column delay (ns)
tRAS Row access strobe (ns)
tRP Row precharge time (ns)
tCL Column access latency (ns)

tBURST Burst duration (ns)
tRFC Refresh cycle time (ns)
tREFI Refresh command interval (ns)
tWTR Write to read switching time (ns)
tRRD Row to row activation delay (ns)
tXAW Activation window (ns)

Activation limit Number of activates in window

Table 3.1: gem5’s DRAM model controller parameters

Background Power

If all memory banks are in the precharged stand-by state, the memory consumes a precharge
background current (static power component) of IDD2N . However, even if a single bank is in the
active state, thememory consumes an active background current (also a static power component)
of IDD3N . Then, if a bank stays in the active state for a period of tRASnew cycles out of the total
transaction length of tRCnew cycles, it consumes an average P(ACTBG) static power per cycle
for the entire transaction length, as shown in Equation (3.1). If on the other hand, all the banks
remain in the precharged state for tRPnew cycles, the memory consumes an average P(PREBG)
static power per cycle, given by Equation (3.2) for the entire transaction length.

P (ACTBG) =
tRASnew∑

n=1

IDD3N × VDD

tRCnew

(3.1)



3.1 Simulation framework 53

P (PREBG) =
tRPnew∑
n=1

IDD2N × VDD

tRCnew

(3.2)

Activate and Precharge Command Power

IDD0 is specified as the average current consumed by the memory when it executes an ACT
command and a PRE command, within the minimum timing constraints. The IDD0 current value
also includes the active background current IDD3N for the minimum period for which the row
is active (tRAS) and the precharge current IDD2N for the minimum period for which the row is
precharged (tTC - tRAS). Hence, these should be substracted from IDD0 for the appropiate du-
rations and averaged over the transaction length tRCnew to identify the average power consumed
only due to the ACT and PRE commands. Equations 3.3 and 3.4 show P(ACT) and P(PRE)
providing estimates by using the same total average current of IDD0 and apply it separately to
the two components, based on the ratio of the number of active cycles to precharge cycles in the
transaction.

P (ACT ) =
tRAS∑
n=1

(IDD0 − IDD3N)×
VDD

tRCnew

(3.3)

P (PRE) =
tRC∑

n=tRAS+1

(IDD0 − IDD2N)×
VDD

tRCnew

(3.4)

Read and Write Command Power

A read command consumes IDD4R average current during the cycles of the data transfer, while a
Write command consumes IDD4W . Since these also include the active background current values
consumed during the read or the write, IDD3N must be substracted from the IDD4R and IDD4W

currents, to identify the power associated only with the Read and the Write commands, respec-
tively. The power values are scaled over the transaction length tRCnew to get the average power
consumed by a Read and aWrite, given the Equations (3.5) and (3.6) respectively. tR and tW rep-
resent the number of cycles the data is on the data bus when reading and writing to the SDRAM,
respectively.

P (RD) =
tR∑
n=1

(IDD4R − IDD3N)×
VDD

tRCnew

(3.5)

P (WR) =
tW∑
n=1

(IDD4W − IDD3N)×
VDD

tRCnew

(3.6)

Refresh Power

A refresh command consists of a single Refresh command along with a set of pre-refresh NOPs
that give enough time (at least tRP cycles) to precharge all the banks each before executing the
refresh. Accordingly, P(PRE) (Equation 3.4) is consumed (with a transaction length of tRP) for



3.2 Traffic generators 54

the number of precharges (N(PRE)) issued and IDD2N current is consumed for the tRP cycles
associated with those Precharges. The refresh command by itself, consumes IDD5 current over
the refresh cycles (tRFC). The refresh and pre-refresh power components add up over tREF
(= tRP + tRFC) cycles to give the total refresh power, as shown in Equation (3.7).

P (WR) =
tRP∑
n=1

((IDD2N × VDD) + (N(PRE)× P (PRE)))

tREF
+

tRFC∑
n=1

IDD5 ×
VDD

tREF
(3.7)

3.2 Traffic generators
gem5 provides a module called TrafficGen that allows synthetic traffic generation. The traffic
generator has a single master port that is used to send requests, independent of the specific be-
havior. The behavior of the traffic generator is specified in a configuration file, and this file
describes a state transition graph where each state is a specific generator behavior. Examples
including idling, generating linear address sequences, random sequences and replay of captured
traces. By describing these behaviors as states, it is straightforward to create very complex be-
haviors, simply by arranging them in graphs. The graph transitions can also be annotated with
probabilities, effectively making it a Markov Chain.

3.3 PARSEC Benchmarks
The Princeton Application Repository for Shared-Memory Computers PARSEC Benchmark
suite [23] was intended to fulfill the need of a benchmark suite that can be used to design the
next generation of processors, i.e. Chip-Multiprocessors (CMPs). It consists of 13 workloads
which were chosen from several representative application domains, ranging from scientific
computing to engineering. PARSEC workloads were selected to include different combinations
of parallel models, machone requirements and runtime behaviors. All benchmarks are written
in C/C++ because of the continuing popularity of these languages in the near future.

We selected 4 out of all the workloads available to evaluate our memory controller proposal.
These workloads are

• blackscholesThis application is an Intel RMSbenchmark. It calculates the prices of a port-
folio of European options analytically with the Black-Scholes partial differential equation.

• ferret This application is based on the Ferret toolkit which is used for content-based sim-
ilarity search.

• fluidanimate This Intel RMS application uses an extension of the Smoothed Particle Hy-
drodynamics (SPH) method to simulate an incompressible fluid for interactive animation
purposes.



3.4 Memory Controller proposal 55

• swaptionsThe application is an Intel RMSworkloadwhich uses theHeath-Jarrow-Morton
(HJM) framework to price a portfolio of swaptions. Swaptions employsMonte Carlo (MC)
simulation to compute the prices.

3.4 Memory Controller proposal
The memory controller proposal is based on gem5’s controller model. The low-power function-
ality implements a staggered powerdown similar to that described in [30]. This model captures
a subset of the DRAM bank state changes, along with the data bus occupancy, and the return
of DRAM read data. The events that are tracked are the following. First, the controller tracks
when a bank is ready to execute a new command (possibly with auto precharge). Second, the
controller records when a bank is able to precharge, i.e. when tRAS has been satisfied. Third,
the controller tracks the earliest possible time a bank is allowed to be activated. With this, it is
possible to approximate theDRAMstatemachine and respect the timings presented on Table 3.1.

In addition to the bank state, the model tracks the busy periods of the data bus, and also tracks
when a refresh is due. Upon scheduling an access, the controller determines the time when re-
sponse data is returned, and update the bank and data bus availability. [26]

We propose an adaptive page policy and a write drain policy which will be described in the
following subsections.

3.4.1 Delayed Adaptive Closed Page Policy
We propose a closed page adaptive policy. When there is an access to a closed row, the controller
opens the row for every column access, and keeps the row open if there is a certain number of
queued accesses to the open row (threshold).

Per-bank delayed close scheduling algorithm references row hit rate periodically in order to
determine whether postpone a precharge or not. The number of read commands and active com-
mands per bank are observed, increasing a read history counter per read operation and decreas-
ing per active command. For every 10k CPU cycles, if the value of the read history counter
exceeds zero, this means that there exists some locality in the memory accesses and the closed
page policy change has to be delayed, meaning that the row is kept open, according to the rules
specified before. If on the other hand, the value of the counter is less than zero, this means that
the number of active commands is higher than the number of read commands, changing to a
closed page policy.

3.4.2 Write Drain Policy Exploiting Row Buffer Locality
Traditional Write Draining like the one proposed in [12] is to drain writes when there are no-
pending read requests or when a number of write requests in the write queue exceeds a specific



3.4 Memory Controller proposal 56

number. Then, traditional write draining room has more room to be improved by exploiting row
buffer locality of both write and read requests.

The write drain algorithm is important for the memory controller performance. Write drain op-
eration without considering row buffer hit status of pending requests in the read queue and write
queue can increase the access or queuing delay by interrupting read requests.

A most efficient conventional write drain scheme is the delayed write drain algorithm [31]. De-
layed write scheme assumes that read request will arrive soon when the read queue is empty, so
that write draining is delayed for a short time to wait for potential read requests. Write drain is
performed if no read request arrives. When the number of pending write requests in the write
queue is compulsorily drained until the number of pending write requests in the queues reaches
a low watermark. However, in the previous write drain methods, row buffer locality is not con-
sidered, so that the locality of issued request sequence can be broken by write drain operation.

Figure 3.2. illustrates that the conventional write drain mechanism has possibility to degrade
performance. Write drain is started as the number of write requests in the write queue reaches
high watermark, and it is continued to be drained until the number of write requests in write
queue reaches low watermark.

Figure 3.2: Conventional Write Drain Policy.

The Write requests are represented by Wx, and the Read requests are represented by Rx. While
R4, R5 and R9 reference same pages with W0, W1 and W2, respectively, the pages are closed
by W4, W5 and W6 with conventional write drain policy. This leads to unnecessary row acti-
vation when issuing R4, R5 and R9, thereby degrading performance significantly. In addition,
row buffer locality is attacked when draining read requests.

In order to consider row buffer locality for write drain operation, we propose a Write Drain
Policy Exploiting Row Buffer Locality. Figure 3.2 shows how the proposed algorithm utilizes
the row buffer locality in write-to-read switching. While conventional write drain policy issues
write requests until the number of the write requests in the write queue reaches low watermark,
the proposed write drain policy issues write requests until the ”row hit” write requests in the



3.4 Memory Controller proposal 57

write queue are completely consumed.

Figure 3.3: Proposed Write Drain Policy.

The flowchart of the algorithm is described on Figure 3.3. If the number of write requests in the
write queue reaches high watermark, write drain is started. Once write drain is started, ”row hit”
write requests are issued consecutively, even if there exists pending read requests in the read
queue. Write to read switching is occured only when there is no ”row hit” write requests in the
write queue with ”row hit” read request in the read queue. Same policy is applied for read to
write switching so that row locality interference is to be reduced during request drain.



3.4 Memory Controller proposal 58

Figure 3.4: Flow Chart of the ”Write Drain Policy Exploiting Row Buffer Locality”



Chapter 4

Evaluation

In this chapter we analyze the memory controller proposal presented in the previous chapter. In
order to evaluate the proposed DRAM controller, first, we show the behavior of the memory
controller regarding the power-down modes employing a synthetic traffic generator. After that,
we evaluate the behavior of the DRAM controller with some PARSEC benchmarks. All com-
parisons are made against two common memory scheduling algorithms, FCFS and FR-FCFS.

The power saving potential of the power-down modes depends directly on the times spent in
these power-down modes. At the same time, power-down modes can reduce performance be-
cause of the latency of their exit-times. The experimental setup consists of a single traffic gen-
erator and a system bus that connects it to a DRAM controller, as show in Figure 4.1.

Figure 4.1: gem5 simple simulation setup.

In this work, we analyze a 1 GB DDR3 SDRAM memory system. This simulation allows us
to analyze and demonstrate some concepts presented previously, and allows us to have a better
idea of the actual implementation. The DRAM controller used is a single-ported DRAM con-
troller model aiming to model the most important system-level performance effects of a DRAM
without getting into much detail of the DRAM itself. The basic configuration of the controller
corresponds to a burst for the specific DRAM configuration, e.g. x8 with burst length of 8 is 8
bytes. The configuration of the system is the following

• Cache line size: 64 bytes



60

• Memory type: DDR3-1600 8x8

• Row Activation Windows: 4

• Banks: 8

• Ranks: 1

• Channels: 1

• Read percentage: 80%

• Burst length: 8

• Device bus width: 8

• Device row buffer size: 1024

• Device size: 536870912 bytes

• Devices per rank: 8

• Read buffer size: 32

• Write buffer size: 64

The power and timing parameters based on the Micron DDR3-1600 1Gbit datasheet [27] are
shown in Table 4.2.

Current Description Value in mA
IDD0 Active precharge current 45
IDD2N Precharge standby current 23
IDD3N Active standby current 35
IDD4W WRITE current 103
IDD4R READ current 100
IDD5 Refresh current 160
IDD3P1 Active powerdown current 35
IDD2P1 Precharge powerdown current 35
IDD6 Self-refresh current 8

Table 4.1: gem5’s DRAM model controller parameters

The Inter-Transaction Time or inter-request is proportional to the bus utilization, since as we
increase the inter-transaction time, the bus utilization is reduced. One good opportunity to enter
low power modes is after a refresh event, this is due there are no outstanding read or write re-
quests in the controller’s queue. To trigger power-downmode transitions, we have to manipulate
the parameter Inter-Transaction Time (ITT).



61

We can define ITTmin as the column to column delay tCCD and the time to power-down-entry
state as tPDE = tRAS + tRP + tCK . During a traffic generator phase, the generator selects a ran-
dom value between ITTmin and a specified value of ITTmax which is calculated by multiplying
tPDE times a constant, these constants are 1 for very dense traffic and 50 for sparse traffic. For
the target bank utilization, we use 1/8, 4/8 and 8/8, and finally, the number of bytes accessed
sequentially (NSeqBytes) by a traffic generator request are 64, 256 and 512 bytes.

Then, the traffic generation parameters are shown in table 4.2.

Description Value (unit)
Request type read (80 perc)
Request size 64B
Address range 0 to 1024 MB

ITTmin tCCD

ITTmax tPDE , 50xtPDE , 100xtPDE

NSeqBytes 64, 256, 512
Bank utilization 1, 4, 8

Table 4.2: Traffic parameters in each memory configuration.

Table 4.3 shows the first memory controller configuration.

Memory Scheduler FCFS
Page Policy Close

Address Mapping Ro:Co:Ra:Ba:Ch

Table 4.3: FCFS memory controller configuration.

Figure 4.2 shows the time spent in each power state for ITT=1, i.e. very dense traffic. Almost
all the time is spent in the ACT state, this is due the close page policy, since for every access, we
have to issue an ACT command. We have the same behavior in the different sequential accesses
since we are not exploiting any row buffer locality. For bank utilization higher than one, in the
case of 64 Bytes accesses, taking into account that the request size is 64B, every new request is
to a random address, then it is possible to enter Precharge Power-Down (PREPDN) state since
all banks are closed and precharged (because of the close page policy).
Figure 4.3 shows the energy consumed by each power state. In bank utilization 1, the energy
consumed is the same no matter the sequential accesses, as we could expect. On the other hand,
when the bank utilization increases to 4 and 8, the Active Background (ACT_BACK) energy
consumed is the same, but since we can activate more banks at the same time, the precharge
and read energy consumed is more in the case of random accesses, it means 64 Bytes. This is
an example of how in spite of entering a low power mode, the energy consumed is higher than
the other cases when a low power mode is not entered.
Figure 4.4 shows the time spent for sparse traffic (ITT = tCCD × 50). Since we met the
conditions to enter two power modes, because the sparsity of the memory accesses, most of the



62

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (
p
s)
 s
p
e
n
t 
in
 a
 p
o
w
e
r 
st
a
te

1e8 Bank util 1

64 25
6

51
2

Seq. bytes

Bank util 4

64 25
6

51
2

Seq. bytes

Bank util 8
IDLE

ACT

REF

ACT_PDN

PRE_PDN

SREF

Figure 4.2: FCFS - Time spent in power states - very dense traffic.

64
256

512

Seq. bytes

0.0

0.5

1.0

1.5

2.0

E
n

e
rg

y
 (

p
J)

 o
f 

a
 p

o
w

e
r 

st
a

te

1e8 Bank util 1

64
256

512

Seq. bytes

Bank util 4

64
256

512

Seq. bytes

Bank util 8
ACT_E

PRE_E

READ_E

REF_E

ACT_BACK_E

PRE_BACK_E

ACT_PDN_E

PRE_PDN_E

SREF_E

Figure 4.3: FCFS - Energy consumed by power states - very dense traffic.



63

time we are in state Precharge Power Down. As the sequential accesses increase, the time spent
in Self Refresh mode increases since we can have all banks precharged and closed.

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (
p
s)
 s
p
e
n
t 
in
 a
 p
o
w
e
r 
st
a
te

1e8 Bank util 1

64 25
6

51
2

Seq. bytes

Bank util 4

64 25
6

51
2

Seq. bytes

Bank util 8
IDLE

ACT

REF

ACT_PDN

PRE_PDN

SREF

Figure 4.4: FCFS - Time spent in power states - sparse traffic.

As we could expect, the impact on the energy consumed is positive (see 1e7 mark). The energy
un pJ consumed by each power state is proportional to the time spent in each state, pretty self-
explanatory.

64 25
6

51
2

Seq. bytes

0

1

2

3

4

5

6

E
n
e
rg
y
 (

p
J)

 o
f 

a
 p

o
w

e
r 

st
a

te

1e7 Bank util 1

64
256

512

Seq. bytes

Bank util 4

64
256

512

Seq. bytes

Bank util 8
ACT_E

PRE_E

READ_E

REF_E

ACT_BACK_E

PRE_BACK_E

ACT_PDN_E

PRE_PDN_E

SREF_E

Figure 4.5: FCFS - Energy consumed by power states - sparse traffic.

Table 4.4 shows the second memory controller configuration.

Memory Scheduler FR-FCFS
Page Policy Delayed Adaptive

Address Mapping Ro:Ra:Ba:Co:Ch

Table 4.4: FR-FCFS memory controller configuration.



64

Figure 4.2 shows the time spent in power states for dense traffic. As the number of sequential
bytes increases, the Active Power-Downmode can be accessed since row hits increase and other
active banks (because of the open page policy) can enter to PDNA state.

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (
p
s)
 s
p
e
n
t 
in
 a
 p
o
w
e
r 
st
a
te

1e8 Bank util 1

64 25
6

51
2

Seq. bytes

Bank util 4

64 25
6

51
2

Seq. bytes

Bank util 8
IDLE

ACT

REF

ACT_PDN

PRE_PDN

SREF

Figure 4.6: FR-FCFS - Time spent in power states - dense traffic.

The energy consumed by power states for dense traffic is shown in Figure 4.7. One observations
from this graphics is that the less row-hit, the more precharge energy consumed. This is reflected
on every bank utilization configuration with 64 bytes accesses.

64
256

512

Seq. bytes

0.0

0.5

1.0

1.5

2.0

E
n

e
rg

y
 (

p
J)

 o
f 

a
 p

o
w

e
r 

st
a

te

1e8 Bank util 1

64
256

512

Seq. bytes

Bank util 4

64
256

512

Seq. bytes

Bank util 8
ACT_E

PRE_E

READ_E

REF_E

ACT_BACK_E

PRE_BACK_E

ACT_PDN_E

PRE_PDN_E

SREF_E

Figure 4.7: FR-FCFS - Energy consumed by power states - dense traffic.

For sparse traffic, Figure 4.8 show the time spent in power states. For 64 Bytes sequential ac-
cesses, the Active Power down state is higher because of the row misses and the open page
policy of the controller.

Figure 4.9 shows the energy consumed by power states for sparse traffic.



65

64 25
6

51
2

Seq. bytes

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (
p
s)
 s
p
e
n
t 
in
 a
 p
o
w
e
r 
st
a
te

1e8 Bank util 1

64 25
6

51
2

Seq. bytes

Bank util 4

64 25
6

51
2

Seq. bytes

Bank util 8
IDLE

ACT

REF

ACT_PDN

PRE_PDN

SREF

Figure 4.8: FR-FCFS - Time spent in power states - sparse traffic.

64 25
6

51
2

Seq. bytes

0

1

2

3

4

5

6

7

E
n
e
rg
y
 (

p
J)

 o
f 

a
 p

o
w

e
r 

st
a

te

1e7 Bank util 1

64
256

512

Seq. bytes

Bank util 4

64
256

512

Seq. bytes

Bank util 8
ACT_E

PRE_E

READ_E

REF_E

ACT_BACK_E

PRE_BACK_E

ACT_PDN_E

PRE_PDN_E

SREF_E

Figure 4.9: FR-FCFS - Energy consumed by power states - sparse traffic.



66

The Evaluation with PARSEC applications and kernels are shown in the following Figures. On
the left Y-Axis, we have simulation time (execution time) in seconds and on the right Y-Axis
we have the total energy consumed in pJ.

Figure 4.10: blackscholes



67

Figure 4.11: ferret

Figure 4.12: blackscholes



68

Figure 4.13: ferret



Chapter 5

Implementation

Figure 5.1. illustrates an abstract memory controller architecture. The Interface Translation &
Synchronization represents the connection between the User Interface of the memory controller
and the system bus. After that, the requests are put into a Transaction Queue which is basically
a FIFO structure. After this, the process of Address Mapping is performed so the respective re-
quests can be put into their respective Command Queue, which can execute command in order
or out of order, depending on the memory scheduling algorithm. The block Bank States repre-
sents the part of the memory controller that keeps track of the states of the banks, this allows
us to keep track of the rows that are active, so we can make scheduling decisions. The Block
Precharge/Refresh is in charge of the Precharging/Refreshing process. After that, the commands
are executed, this means that these commands are passed to the physical interface, which is in
charge of performing all the timing signaling and the SSTL standard compliance.

Figure 5.1: DRAM memory controller architecture.



5.1 Actual implementation 70

5.1 Actual implementation
The actual implementation of the memory controller is showed in Figure 5.2. The following
subsections will describe each of the blocks that comprise the memory controller implementa-
tion.

Figure 5.2: Actual implementation of DDR3 Memory Controller.

5.1.1 AXI Interface
AXI is part of the ARM AMBA, a family of micro-controller buses. There exist three types of
AXI4 interfaces

• AXI4: it is intended for high-performance memory-mapped requirements.

• AXI4-Lite: it is intended for simple, low-throughput memory-mapped communication.

• AXI4-Stream: it is designed for high-speed streaming data.

The AXI specifications describe an interface between a single AXI master and AXI slave, rep-
resenting hardware modules or IP cores that exchange information with each other. It is feasible
to have multiple memory-mapped AXI masters and slaves connected together by using AXI
infrastructure.

The AXI interconnect is architected using a traditional, monolithic crossbar approach. Both
AXI4 and AXI4-Lite interfaces consist of five different channels: Read Address, Write Ad-
dress, Read Data, Write Data and Write Response. Data can move in both directions between
the master and slave silmutaneously, and data transfer sizes can vary.

The Interface implemented on this work is a Slave AXI4 interface. This choice was made
based on the fact that the SoC Lagarto employs AXI as the Local Memory Bus, implement-
ing AXI4 and AXI4-Lite. The AXI interface maps AXI4 transactions to the User Interface. The



5.1 Actual implementation 71

transaction-level arbitration provided by this interface is Read Priority, so Read andWrite chan-
nels are served with equal priority, and the requests from the write address channel are processed
when one of the following conditions is met

• There are no pending requests from the read address channel.

• Read wait limit is reached (16).

5.1.2 User Interface
The user interface block forms the bridge between the memory bus and the DDR3 memory
controller and PHY layer logic. This UI comprises two FIFOs: the Address/Command FIFO and
the Write Data FIFO. Commands (Read/Write) and target addresses to the memory controller
are written to the Address/Command FIFO. If the issued command is a write, the corresponding
output data must be written into the Write Data FIFO. The Address/Command FIFO is basically
a synchronous FIFO, and the Write Data FIFO is configured as an asynchronous FIFO. During
reads, the read data is presented at the output of the User Interface block on the read data bus
and is qualified by a read valid signal.

5.1.3 Controller
This is the main module of the DD3 Memory Controller. This module processes the commands
from the User Interface block and issues the required read, write, activate, precharge, and auto
refresh commands to the DDR3 SDRAM. The controller machine is held in an idle state while
the initialization state machine in the PHY layer initializes the DDR3 SDRAM device and
issues read and writes for read data timing calibration. The initialization machine asserts the
phy_init_done signal after completition of the initialization and calibration. The controller state
machine remains in the IDLE state until assertion of phy_init_done.

The user of the memory controller issues read and write requests through the Use Interface
Address/Command FIFO. This FIFO indicates with an almost empty and empty signals, the
state of the pending requests. The controller state machine processes user command requests
passed through this FIFO.

Memory Address Mapping

The user provides the target address to the user interface Address/Command FIFO, and this
block is in charge of mapping the specific column, row and bank bits of the address provided
by the user interface according to one the following memory address mapping schemes

• Row/Bank/Column: this scheme provides bank-level parallelism, by using the lower bits
(the ones with more entropy) to map the banks. Then we can map a cache line in different
banks and access them in a pipelined way, so increasing the throughput we get out of the
DRAM memory system.



5.1 Actual implementation 72

• Bank/Row/Column: this scheme provides us a way of row-level parallelism. By using
this scheme, we are accessing the same bank, so if we employ a close page policy, we
can leverage this scheme to map data to the same bank, while other banks might be in a
low-power mode.

Bank Management

The controller is able to keep up to four bank/rows open at any given time. The banks are opened
when commands are issued from the UI block. When a command is received, the controller
makes a decision as to what it needs to do to support this access

• Bank conflict: the target bank address does not match any of the currenttly opened banks.

• Bank hit: the target bank address matches one of the four currently opened banks.

• Row conflict: the target bank address matches one of th currently opened banks, however,
th target row address is different that the currently open row in that bank.

The controller indicates a conflict has occurred if there is a bank conflict or if there is a bank hit
and a row conflict. For a bank conflict, if the controller has already opened four banks, it will
close the least recently opened bank using the precharge command and open the new bank using
an active command. If the controller has not already opened four banks, then the controller will
issue and activate command to open the new bank. In the case of a bank hit and row conflict, the
controller will close the bank that had the bank hit using a precharge command and will open the
new row in the bank using the activate command. The controller closes all opened banks before
issuing an auto refresh command. After the completion of the auto refresh command, accesses
from the User Interface block again determine which banks are opened. Figure 5.3 shows the
bank management logic.

Commands

Table 5.1 shows the commands that the controller can issue to the DDR3 SDRMA. The user
through the User Interface can issue only read and write commands. The controller issues the
required SDRAM commands listed below to perform the read and write transaction.
The controller state machine logic is shown in Figure 5.4.

5.1.4 PHY
For the PHY, since we are targetting a Xilinx based FPGA, we used the PHY provided by Xilinx
7 Series, which allows us to leverage all the hard blocks of the FPGA. Xilinx supports using the
PHY only portion of the MIG 7 Series IP [32] to interface to the custom controller.

The PHY provides a physical interface to an external DDR2 or DDR3 SDRAM. The PHY gener-
ates the signal timing and sequencing required to interface to the memory device. [3] It contains



5.1 Actual implementation 73

Figure 5.3: Bank Management Logic.

Figure 5.4: Controller State Machine Logic.



5.1 Actual implementation 74

Command Description
Activate An activate command to an unopened bank/row is issued for write and read

accesses from the User Interface block. The controller also issues an acti-
vate command for the last accessed bank/row following an auto-refresh.

Read A read command is issued to an open bank/row for read requests from the
User Interface block.

Write A write command is issued to an open bank/row for write requests from the
User Interface block.

Precharge A precharge command is issued under these conditions: A
PRECHARGE_ALL command (to close all the banks) is issued be-
fore an auto refresh command; and a precharge of a particular bank is
issued when a bank/row conflict is detected.

Auto Refresh An auto refresh command is issued periodically based on the memory auto-
refresh timing requirements.

Table 5.1: gem5’s DRAM model controller parameters

the clock, address, and control generation logic, write and read datapaths, and state logic for
initializing the SDRAM after power-up. In addition, the PHY contains calibration logic to per-
form timing training of the read and write datapaths to account for system static and dynamic
analysis. Figure 5.5 shows a single bank DDR2/DDR3 PHY block diagram.

Figure 5.5: Single Bank DDR2/DDR3 PHY Block Diagram.

5.1.5 Simulation results
In this subsection we show the timing diagrams obtained from Vivado Simulator.



5.1 Actual implementation 75

Figure 5.6: Activate command.

Figure 5.7: Read command.



5.1 Actual implementation 76

Figure 5.8: Write command.

Figure 5.9: Precharge command.



5.1 Actual implementation 77

Figure 5.10: Refresh command.



Chapter 6

Conclusion

In this work it was intended to provide a thoroughly journey in the world of DRAM memory
systems, specifically focused on DDR devices. One of the goals of this work is to bring up the
difference between a simulation framework and actual implementation in hardware.

I strongly believe that both approaches are important as a computer architect and the following
are some remarks about the work done through this thesis.

• The more sophisticated the memory controller is, the more hardware has to be employed
when implementing, and this leads to more power consumption.

• Adaptive-policies and algorithms deliver small improvements over fixed-traditional poli-
cies.

• Sometimes, simple changes give us significant improvements, like in the case of theWrite-
Drain and adaptive page policy, part of this work.

In computer architecture there is no right answer for everything and most of the work in this area
has to be with insight, that’s one of the beauties of this job. Memory controllers form part of
the options to improve memory systems performance, and as technology advances and the need
of more powerful systems keeps growing, there will be always a chance to make some kind of
improvements.



Bibliography

[1] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the 1st Conference on
Computing Frontiers, CF ’04, (New York, NY, USA), pp. 162–, ACM, 2004. 1

[2] J. S. S. T. Association, “Jedec standard: Ddr3 sdram specification,” 2008. Last accessed
16 September 2017. 1, 5, 39, 42

[3] B. Jacob, S. Ng, and D. Wang,Memory Systems: Cache, DRAM, Disk. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2007. 4, 5, 40, 72

[4] Z. Zhang, Z. Zhu, and X. Zhang, “Breaking address mapping symmetry at multi-levels of
memory hierarchy to reduce dram row-buffer conflicts.” 41

[5] and and, “A permutation-based page interleaving scheme to reduce row-buffer conflicts
and exploit data locality,” in Proceedings 33rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. MICRO-33 2000, pp. 32–41, Dec 2000. 41

[6] and S. K. Reinhardt and D. Burger, “Reducing dram latencies with an integrated mem-
ory hierarchy design,” in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, pp. 301–312, Jan 2001. 41

[7] V. Cuppu and B. Jacob, “Organizational design trade-offs at the dram, memory bus, and
memory controller level: Initial results,” November 1999. 41

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access schedul-
ing,” SIGARCH Comput. Archit. News, vol. 28, pp. 128–138, May 2000. 41, 46

[9] V. Cuppu and B. Jacob, “Concurrency, latency, or system overhead: Which has the largest
impact on uniprocessor dram-system performance?,” in Proceedings 28th Annual Interna-
tional Symposium on Computer Architecture, pp. 62–71, June 2001. 41

[10] S. A. McKee, W. A. Wulf, J. H. Aylor, R. H. Klenke, M. H. Salinas, S. I. Hong, and
D. A. B. Weikle, “Dynamic access ordering for streamed computations,” IEEE Transac-
tions on Computers, vol. 49, pp. 1255–1271, Nov 2000. 41

[11] and C. Lin, “Adaptive history-based memory schedulers,” in 37th International Sympo-
sium on Microarchitecture (MICRO-37’04), pp. 343–354, Dec 2004. 41, 48



BIBLIOGRAPHY 80

[12] G. Narancic, M. Papadopoulou, and J. Zebchuk, “A preliminary exploration of memory
controller policies on smartphone workloads,” 2012. 42, 43, 55

[13] G. L Yuan and T. Aamodt, “A hybrid analytical dram performance model,” 01 2009. 44

[14] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: A dram page-mode
scheduling policy for themany-core era,” inProceedings of the 44th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-44, (New York, NY, USA), pp. 24–
35, ACM, 2011. 45

[15] N. E. Z. S. Z. S. Fang K., Iliev N., “Thread-fair memory request ordering,” July 2012. 45,
46

[16] M. N. Bojnordi and E. Ipek, “Pardis: A programmable memory controller for the ddrx
interfacing standards,” in 2012 39th Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 13–24, June 2012. 45

[17] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “Mise: Providing per-
formance predictability and improving fairness in shared main memory systems,” in
2013 IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), pp. 639–650, Feb 2013. 45

[18] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” in HPCA - 16 2010
The Sixteenth International Symposium on High-Performance Computer Architecture,
pp. 1–12, Jan 2010. 45

[19] H. Hanson and K. Rajamani, “What computer architects need to know about memory throt-
tling,” in Proceedings of the 2010 International Conference on Computer Architecture,
ISCA’10, (Berlin, Heidelberg), pp. 233–242, Springer-Verlag, 2012. 48

[20] I. Hur and C. Lin, “A comprehensive approach to dram power management,” in 2008 IEEE
14th International Symposium on High Performance Computer Architecture, pp. 305–316,
Feb 2008. 48

[21] and K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy efficiency by making dram
less randomly accessed,” in ISLPED ’05. Proceedings of the 2005 International Sympo-
sium on Low Power Electronics and Design, 2005., pp. 393–398, Aug 2005. 48

[22] M. Ghosh and H. S. Lee, “Smart refresh: An enhanced memory controller design for re-
ducing energy in conventional and 3d die-stacked drams,” in 40th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO 2007), pp. 134–145, Dec 2007. 49

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Characterization
and architectural implications,” in 2008 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pp. 72–81, Oct 2008. 50, 54



BIBLIOGRAPHY 81

[24] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, pp. 1–7,
Aug. 2011. 50

[25] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory system
simulator,” IEEE Computer Architecture Letters, vol. 10, pp. 16–19, Jan 2011. 50

[26] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi, “Simulating dram con-
trollers for future system architecture exploration,” in 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 201–210,March 2014. 50,
55

[27] Micron, “Micron ddr3 sdram part mt8jtf12864hz,” 2006. Last accessed January 18 2017.
51, 60

[28] e. K. Chandrasekar, C. Weis, “Drampower: Open-source dram power & energy estimation
tool.” Last accessed June 24 2019. 51

[29] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved power modeling of ddr
sdrams,” in 2011 14th Euromicro Conference on Digital System Design, pp. 99–108, Aug
2011. 51

[30] M. Jung, C. Weis, N. Wehn, M. Sadri, and L. Benini, “Optimized active and power-down
mode refresh control in 3d-drams,” in 2014 22nd International Conference on Very Large
Scale Integration (VLSI-SoC), pp. 1–6, Oct 2014. 55

[31] C. Natarajan, B. Christenson, and F. Briggs, “A study of performance impact of memory
controller features in multi-processor server environment,” inProceedings of the 3rdWork-
shop on Memory Performance Issues: In Conjunction with the 31st International Sympo-
sium on Computer Architecture, WMPI ’04, (New York, NY, USA), pp. 80–87, ACM,
2004. 56

[32] Xilinx, “Mig 7 series ddr3 - phy only design,” 2014. Last accessed December 10 2018. 72


	Resumen
	Abstract
	Agradecimientos
	Introduction
	Motivation
	Organization of this dissertation

	Theoretical Background
	Main memory subsystem
	DRAM Devices
	DRAM Memory System Organization
	DRAM Memory Access Protocol
	Basic DRAM Commands
	DRAM Command Interactions
	Minimum Scheduling Distances
	Power Constraints

	DDR3 SDRAM Protocol
	DDR3 memory low power modes
	DRAM Memory Controller
	Row Buffer Management Policy
	Address Mapping Policies
	DRAM metrics
	Memory Scheduling

	Related work
	Power and energy oriented schedulers
	Related work summary


	Methodology
	Simulation framework
	Power Model

	Traffic generators
	PARSEC Benchmarks
	Memory Controller proposal
	Delayed Adaptive Closed Page Policy
	Write Drain Policy Exploiting Row Buffer Locality


	Evaluation
	Implementation
	Actual implementation
	AXI Interface
	User Interface
	Controller
	PHY
	Simulation results


	Conclusion
	Bibliography

