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Abstract

The thesis investigates mainly probabilistic properties of solutions of many standard interest

rate models given by stochastic differential equations. Precisely it studies solutions of such mod-

els by using the standard Itô’s formula and also provides an alternative elementary method other

than this formula. Moreover, it obtains properties of these solutions like expectation, variance,

p th-moments, p ≥ 2, and some concepts of stochastic stability. Furthermore, the thesis also ob-

tains generalizations of the above theory by considering some of these interest rate models with

Poisson jumps.
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Resumen

La tesis investiga principalmente propiedades probabilísticas de soluciones de varios modelos

de tasa de interés descritos por ecuaciones diferenciales estocásticas. Con precisión, la tesis

estudia soluciones de tales modelos usando la fórmula estándar de Itô y también provee un

método sencillo alternativo a dicha fórmula. Además la tesis obtiene propiedades de estas solu-

ciones como esperanza, varianza, p-ésimo momentos, p ≥ 2, y algunos conceptos de estabili-

dad. Adicionalmente, la tesis obtiene generalizaciones de la teoría descrita arriba considerando

algunos modelos de tasa de interés con saltos de Poisson.
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Chapter 1

Introduction

A fundamental element in economics is the concept of the interest rate as the price of money.

The history of the interest rate can be traced back to the history of the money itself. From the

parable of talents, Matthew 25:14-30, the interest has been considered as a source of making

more money and the process was considered a magical one, see Salinas, 2011. A level of interest

rate can have a profound impact on inflation and employment, and therefore the welfare of the

people. It can also have an important effect in financial markets such as stock and bond mar-

kets. Changes in interest rates can become a major source of risk for banks, investment firms,

insurance companies, and multinational corporations, among other investors. For these players

in financial markets, modeling the term-structure movements of interest rates is of fundamen-

tal importance and a challenging task.

Central banks are of paramount importance to the economy, and financial markets in par-

ticular, because these institutions change the money supply through open-market operations

in bond markets, and further set a certain level of interest rates through monetary policy. For

financial markets (stock or bond markets) a level of the interest rate can induce a bull or a bear

market, meaning important gains or losses for financial institutions, investment firms or the

public at large, when trading financial instruments.

Derivative securities such as stock options, options on stock indices and currencies, exotic

options, futures, swaps, fixed income securities, credit derivatives, weather, energy, and insur-

1
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ance derivatives, interest rate derivatives, have become of central importance for modern cor-

porate finance and investment. The trading of financial assets in the economy has increased

dramatically in modern times with the availability of a broader availability of classic (securi-

ties) and more sophisticated financial instruments (i.e., derivative securities, including fixed

income). This trend has generated a lot of literature in the areas of financial mathematics and

financial economics, see Jeanblanc, Yor and Chesney, 2009, and Duffie 2001, among others.

Let us consider the so called fixed income markets, which include financial instruments such

as government bonds traded in government debt markets, zero coupon bonds, floating rate

coupon bonds, and municipal bonds. When modeling the price of a bond, it can be described in

different ways depending on the treatment given to the interest rate process involved. A simple

example of a bond is a bank account carrying a constant interest rate, r > 0. According to this

model the price of a bond evolves as follows

dB(t )

d t
= r B(t ), t > 0, (1.1)

B(0) = B0.

in this case the price of the bond is given by B(t ) = B0er t . An implicit assumption is that the

time interval involved is sufficiently small.

An interest rate process can be modeled as a deterministic function of time, i.e., r = r (t ),

where t ≥ 0, and B(0) = B0. Then the price of a bond is obtained as

B(t ) = B0 exp
{∫ t

0
r (s)d s

}
, t ≥ 0. (1.2)

We refer to Svishchuk and Kalemanova, 2000, and Govindan and Acosta, 2008, for details.

Black and Scholes, 1973, and Merton, 1973, proposed a model for the valuation of options

as a stochastic process, that is, the underlying asset price S(t ) follows a geometric Brownian
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motion given by the following Itô SDE :

dS(t ) = µS(t )d t +σS(t )dW (t ), t > 0, (1.3)

S(0) = S0,

where µ is a real constant and σ is positive constant. Equation (1.3) is known as the Black-

Scholes-Merton model. In 1997, Scholes and Merton received the Nobel prize in economics for

their work while Black passed away in 1995.

Interest rates can vary due to a variety of factors which are of a random nature. The seminal

stochastic interest rate model in the field was proposed by Vasicek in 1977. Vasicek assumes a

stochastic interest rate process as underlying the bond valuation process where the interest rate

r (t ) follows an Ornstein-Uhlenbeck process as described by the following SDE:

dr (t ) = [α−βr (t )]d t +σdW (t ), t > 0, (1.4)

r (0) = r0,

where α, β and σ are positive constants. Equation (1.4) is known as the Vasicek model for inter-

est rates. Notice that the Vasicek interest rate model may allow the possibility of having negative

interest rates.

We are interested in models of the interest rate in continuous time given by Itô stochastic

differential equations (SDEs) studied by the rules of Itô stochastic calculus, see Cairns, 2004,

Filipović, 2009, Shreve, 2004, Gibson et al, 2010, Brigo and Mercurio, 2007, Svoboda, 2004, and

Veronesi, 2011.

A model that precludes the possibility of negative interest rates is the Cox-Ingersoll-Ross

(CIR) interest rate model proposed by Cox, Ingersoll, and Ross in 1985b. The CIR model for the
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interest rate process r (t ) is given by the SDE:

dr (t ) = [α−βr (t )]d t +σ
√

r (t )dW (t ), t > 0, (1.5)

r (0) = r0,

where α, β and σ are positive constants.

Hull and White, 1990, propose the following generalized interest rate model

dr (t ) = [α(t )−β(t )r (t )]d t +σ(t )r b(t )dW (t ), t > 0, (1.6)

r (0) = r0,

which still may allow negative interest rates, where α(t ), β(t ) and σ(t ) are deterministic func-

tions and b is a positive number. When α, β and σ are positive constants and b = 0, the Vasicek

interest rate model (1.4) is obtained, as a special case of (1.6). If b = 1/2, (1.6) reduces to the CIR

interest rate model (1.5).

In equation (1.6), when β and σ are positive constants and b = 0, the following well known

form of the Hull-White interest rate model is obtained:

dr (t ) = [α(t )−βr (t )]d t +σdW (t ), t > 0, (1.7)

r (0) = r0.

The thesis considers also other models such as Extended Hull-White, Hull-White: A CIR

style extension, Brennan Schwartz, Exponential Vasicek, Dothan, Mercurio-Moraleda, Black-

Derman-Toy, and Black-Karasinki, among others.

Our research interests also include the study of continuous-time interest rate models with

discontinuities. A motivation for this type of research comes from a seminal paper published

by R. C. Merton in 1976 in the context of option pricing when underlying stock returns are dis-

continuous. Merton considers that the total change in the underlying stock price of an option
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could be as a result of “normal” vibrations, when business day news or events arise that move

the market, and “abnormal” vibrations show up when non-expected and perhaps worrisome

news hit the market. This last component can be modeled by a pure jump process, see Merton

1976.

In the context of continuous-time interest rate models we consider jump processes such as

the compound Poisson jump process (Lévy processes) and the compensated compound Pois-

son jump process described in Merton 1976, Applebaum, 2009, and Bertoin, 1996.

1.1 Objectives of the Thesis

The objectives of this doctoral thesis are

1. to study an alternative to Itô’s formula to find the solution process of some standard inter-

est rate models such as Vasicek, Cox-Ingersoll-Ross (CIR), Hull-White (including extended

Hull-White, and a CIR style extension of the Hull-White), Brennan-Schwartz, exponential

Vasicek, Dothan, extended exponential Vasicek, Mercurio-Moraleda, a generalized inter-

est rate model and the Brownian bridge,

2. to obtain the solution process by using Itô’s product rule to some interest rate models with

Poisson jumps (Lévy processes) such as Black-Derman-Toy and Black-Karasinski,

3. to obtain moment properties of some interest rate models such as Vasicek, Brennan-

Schwartz, Hull-White (including an extension of Hull-White), Black-Derman-Toy, Black-

Karasinski and Dothan and also some interest rate models with Poisson jumps such as

Vasicek, Black-Derman-Toy and Black-Karasinski,

4. to obtain stability properties like boundedness in probability uniformly in t of Brennan-

Schwartz model, exponential mean square stability of Brennan-Schwartz, Hull-White and

Dothan models, and asymptotic quadratic mean of CIR with Poisson jumps.
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1.2 Format of the Thesis

The format of this thesis is as follows:

In Chapter 2, we give preliminaries beginning with the basic concepts from the theory of

probability and stochastic processes, then Itô’s stochastic calculus, stochastic differential equa-

tions (SDEs), existence and uniqueness of a solution of SDEs. Next, some fundamentals such as

Poisson jump processes, Lévy processes and Itô’s product rule are provided. The chapter con-

cludes with the necessary definitions of stability that we are interested in this thesis.

Chapter 3 provides an alternative to Itô’s formula to solve many standard interest rate mod-

els. In other words, it is shown that the elementary linear ordinary differential equation method

extended to the stochastic equations provides solutions to stochastic interest rate models like

Vasicek, Cox-Ingersoll-Ross, Hull-White, Extended Hull-White, Hull-White: A CIR style exten-

sion, Brennan-Schwartz, Exponential Vasicek, Dothan, Black-Derman-Toy, Black-Karasinski,

Extended Exponential Vasicek, Mercurio-Moraleda, a generalized interest rate model, and the

Brownian bridge. However, Itô’s formula is also used to obtain solutions. It is interesting that

the solutions obtained by both the methods coincide.

In Chapter 4, we obtain probabilistic properties of interest rate models including such mod-

els with jumps. To be precise, moment properties such as expectation, variance, and also p-

moments, p ≥ 2, are obtained for the interest rate models like Vasicek, Brennan-Schwartz, Hull-

White, Black-Derman-Toy, Black-Karasinski, and Dothan. Such moment properties are also ob-

tained for interest rate models with Poisson jumps like Vasicek, Cox-Ingersoll-Ross, Black - Der-

man -Toy, Black-Karasinki, and Dothan. Subsequently, stability properties like boundedness in

probability uniformly in t , and exponential mean square stability are established for the models

like Vasicek, and Brennan-Schwartz with Poisson jumps.



Chapter 2

Preliminaries

In this Section we give the basic theory from Applebaum, 2009, Arnold, 1974, Allen, 2007, Mikosch,

1999, Gard, 1988, Gihman and Skorohod, 1972, Gut, 2013, Khasminskii, 2012, Itô, 1951, Mood,

Graybill and Boes, 1974, Oksensal, 2003, and Shreve, 2004.

2.1 Probability and Stochastic Processes

LetΩ be a nonempty space, and let F be a collection of subsets ofΩ. We say that F is aσ-algebra

provided that (i) the empty set ; belongs to F, (ii) whenever a set A belongs to F, its comple-

ment Ac also belongs to F, and (iii) whenever a sequence of sets A1, A2, . . . belongs to F, the

union
⋃∞

n=1 An also belongs to F. The pair (Ω,F) is called a measurable space.

Definition 2.1 [Shreve, 2004, p. 2] Let Ω be a nonempty set, and let F be a σ-algebra of subsets

ofΩ. A probability measure P is a function defined as P (Ω,F) → [0,1] such that

(i) P (A) ≥ 0, for every A ∈F,

(ii) P (Ω) = 1, and

(iii) whenever A1, A2, . . . is a sequence of disjoint sets in F, i.e., Ai ∩ A j =;, for i 6= j , then

P
( ∞⋃

n=1
An

)
=

∞∑
n=1

P (An).

7
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The triple (Ω,F,P ) is called a probability space.

Definition 2.2 [Arnold,1974, p. 2] Let (Ω,F) and (Ω′,F′) denote measurable spaces. A mapping

X :Ω→Ω′ that assigns to every ω ∈Ω a member ω′ = X (ω) ofΩ′ is said to be (F,F′)-measurable

(and is called anΩ′-valued random variable on (Ω,F)) if the preimages of measurable sets inΩ′

are measurable sets inΩ, that is, for A′ ∈F′,

{ω : X (ω) ∈ A′} = [X (ω) ∈ A′] = X −1(A′) ∈F.

The set F(X ) of preimages of measurable sets is itself a σ-algebra in Ω and is the smallest

σ-algebra with respect to which X is measurable. It is called the σ-algebra generated by X inΩ.

Definition 2.3 [Arnold, 1974, p. 8] A random variable X is said to be P-integrable if the integral∫
X dP is finite.

(i) In probability theory, this integral is also called the expectation of the random variable X

and is written as

E [X ] = E X =
∫
Ω

X dP. (2.1)

(ii) The variance of X defined as

V ar [X ] = E [X –E X ]2 = E X 2 − [E X ]2. (2.2)

Let R = (−∞,∞) be the real line.

Definition 2.4 [Arnold, 1974, p. 13] Let X and Xn , where n ≥ 1, denote R-valued random vari-

ables defined on a probability space (Ω,F,P ).

(i) If there exists a set of measure zero N ∈ F such that, for all ω ∉ N, the sequence of the

Xn(ω) ∈ R converges in the usual sense to X (ω) ∈ R, then {Xn} is said to converge almost
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surely (a.s.) or with probability 1 (w.p. 1) to X . We write

a.s.− lim
n→∞Xn = X.

(ii) If, for every ε> 0,

P {ω : |Xn(ω)–X (ω)| > ε} → 0, n →∞,

then {Xn} is said to converge stochastically or in probability to X , and we write

P − lim
n→∞Xn = X .

Definition 2.5 [Arnold, 1974, p. 16] Two random variables X and Y are said to be independent

if and only if fX ,Y (x, y) = fX (x) fY (y) where fX ,Y (x, y) is their joint density function of random

variables X and Y and fX (x) and fY (y) are their marginal density functions. This can be ex-

tended to more than two random variables in an analogous manner.

Definition 2.6 Two functions defined on the probability space (Ω,F,P ) f and g are equal a.s.

with respect to P , if f (x) = g (x) when x ∉N, for some N ∈F such that P (N) = 0.

Theorem 2.1 [Arnold, 1974, p. 12] ( Radon-Nikodym) Let ν and µ denote two measures defined

on (Ω,F), and suppose that µ is sigma-finite. Then, ν is µ-continuous if and only if ν has a

µ-density. This density is uniquely defined [ν]. We then have

∫
Ω

X dν=
∫
Ω

X
dν

dµ
dµ.

as long as one side of this equation is meaningful.

Definition 2.7 [Arnold, 1974, p. 18] (Conditional expectation) Let X ∈ L1(Ω,F,P ) denote an

R-valued random variable and let G ⊂ F denote a sub-σ-algebra of F. The probability space

(Ω,G,P ) is a coarsening of the original one and X is in general, no longer G-measurable. We seek
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now a G-measurable coarsening Y of X that assumes, on the average, the same values as X , that

is, an integrable random variable Y such that

Y is G−measurable,∫
C

Y dP =
∫

C
X dP for all C ∈G.

According to the Radon-Nikodym theorem, there exists exactly one such Y , a.s. unique. It is

called the conditional expectation of X under the condition G. We write

Y = E [X |G]. (2.3)

Therefore, the conditional expectation is, for fixed X and G, a function of ω ∈Ω. It follows from

the definition that, in particular

E [E [X |G]] = E [X ] and

|E [X |G]| = E [|X ||G] a.s..

See [Arnold, 1974, p.19] for other important properties of the conditional expectation.

The conditional probability P (A|G) of an event A under the condition G ∈F is defined by

P (A|G) = E [I A|G], (2.4)

where I A is the indicator function defined by

I A(x) =


1, if x ∈ A,

0, if x ∉ A.

Theorem 2.2 [Gut, 2013, p. 120] (Markov’s inequality) Suppose that E |X |p <∞ for some c > 0,

and let X > 0. Then,

P
{
|X | ≥ c

}
≤ 1

cp
E |X |p .
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Definition 2.8 [Mood et al,1974, p. 107] (Normal distribution) A random variable X is defined to

be normally distributed if its probability density function is given by

fX (x) = fX (x;µ,σ) = 1p
2πσ

exp
{
−1

2

(x −µ
σ

)2}
, −∞< x <∞,

where the parameters µ and σ satisfy −∞< µ <∞ and σ > 0. These parameters µ and σ2 turn

out to be the mean and the variance of the distribution.

Definition 2.9 [Doob, 1953, p. 46] A collection of random variables with respect to a parameter,

with respect to time in this case, denoted by {X (t ), t ∈ T }, where T = [0,∞) is called a stochastic

process. For simplicity, we write {X (t ), t ≥ 0}.

Definition 2.10 [Arnold, 1974, p. 25] A stochastic process {X (t ), t ∈ T } is called a Gaussian pro-

cess if every finite linear combination of random variables {X (t ), t ∈ T } is normally distributed.

Definition 2.11 [Shreve, 2004, p. 51] LetΩ be a nonempty set. Let T be a fixed positive number,

and assume that for each t ∈ [0,T ] there is a σ-algebra. Assume further that if s ≤ t , then every

set in Fs is also in Ft . Then we call the collection of σ-algebras Ft , 0 ≤ t ≤ T a filtration.

2.1.1 Markov Process

Let {X (t ), t ∈ T } be a stochastic process adapted to a filtration {Ft , t ∈ T }, with parameter space

T ⊂ [0,∞) and state space R. Then {X (t ), t ∈ T } is called a Markov process if it satisfies

P [X (t ) ∈ B |Fs] = P [X (t ) ∈ B |X (s)], a.s.,

for 0 ≤ s ≤ t and for every B ∈B, see Arnold, 1974, p. 28.

2.1.2 White Noise

Definition 2.12 [Arnold, 1974, p. 50] A Gaussian white noise is a generalized stationary Gaussian

stochastic process ξ(t ), for −∞ < t < ∞, with mean Eξ(t ) = 0 and a constant spectral density
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f (λ) on the entire real axis. If Eξ(s)ξ(t + s) =C (t ) is the covariance function of ξ(t ), then

f (λ) = 1

2π

∫ ∞

−∞
e−iλtC (t )d t = C

2π
forall λ ∈ R,

where C is a positive constant.

2.1.3 Wiener Process

Definition 2.13 [Arnold, 1974, p. 46] A stochastic process {W (t ), t ≥ 0} is called a Wiener pro-

cess or a Brownian motion if it satisfies the following conditions: W (0) = 0, the random vari-

able W (t )−W (s) is normally distributed with E [W (t )−W (s)] = 0 and V ar [W (t )−W (s)] = t − s,

W (t ) has independent increments, i.e., for every 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn , the random variables

W (t1),W (t2)−W (t1), . . .W (tn)−W (tn−1) are independent of each other and the sample paths of

W (t ) are continuous functions a.s..

Theorem 2.3 [Arnold, 1974, p. 48] Almost all sample functions of the Wiener process W (t ) are

continuous but nowhere differentiable functions.

Proposition 2.1 [Arnold, 1974, p. 45] The Wiener process, {W (t ), t ≥ 0}, is a Markov process.

Proposition 2.2 [Arnold, 1974, p. 53] The white noise is the derivative of the Wiener process

{W (t ), t ≥ 0} when both processes are considered as generalized stochastic processes, that is

ξ(t ) = dW (t )

d t
= Ẇ (t ), or conversely (2.5)

W (t ) =
∫ t

0
ξ(s)d s

in the sense of coincidence of the covariance functionals. See Arnold, 1974, p. 53, for details.
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2.1.4 Martingale

Definition 2.14 [Arnold, 1974, p. 25] Let (Ω,F,P ) denote a probability space. Let {X (t ), t ∈ [t0,T ]}

denote an R-valued stochastic process defined on (Ω,F,P ), and let {Ft }t∈[t0,T ] denote an increas-

ing family of sub-σ-algebras of F, that is, one having the property

Fs ⊂Ft for t0 ≤ s ≤ t ≤ T.

If X (t ) is Ft -measurable and integrable for all t , then the pair {X (t ),Ft }t∈[t0,T ] is called a martin-

gale if

E [X (t )|Fs] = X (s), a.s., (2.6)

for all s and t in [t0,T ], when s ≤ t . If X (t ) is a real-valued process and if we replace the equality

sign in the last expression with ≤ or ≥, what we have is a supermartingale or a submartingale.

2.2 Stochastic Calculus

In this Section, we introduce Itô stochastic calculus, see Arnold, 1974, Itô, 1951, Gard, 1988, Gih-

man and Skorohod, 1972, Oksendal, 2003, and Shreve, 2004.

Definition 2.15 [Arnold, 1974, p. 63] Let t0 denote a fixed nonnegative number. A family Ft , for

t ≥ t0, of sub-σ algebras of F is said to be nonanticipating with respect to the Wiener process

{W (t ), t ≥ 0} if it has the following properties:

(i) Fs ⊂Ft (t0 ≤ s ≤ t ),

(ii) Ft ⊃B[t0, t ] (t ≥ t0),

(iii) Ft is independent of B+
t (t ≥ t0).

Note thatB[t0, t ] is theσ-algebra generated by the Wiener process {W (t ), t ≥ t0} given byB[t0, t ] =
U(W (u) : t0 ≤ u ≤ t ). Since B+

0 =B[0,∞) (aside from sets of measure 0), condition (iii) means,

for instance, for t = 0, that F0 can contain only events that are independent of the entire Wiener
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process {W (t ), t ≥ 0}.

Definition 2.16 [Arnold,1974, p. 63] An R-valued function G =G(s,ω) defined on [t0, t ]×Ω and

measurable in (s,ω) is said to be nonanticipating (with respect to a family Fs of nonanticipating

σ-algebras) if G(s, ·) is Fs-measurable for all s ∈ [t0, t ]. We denote by M2[t0, t ] the set of those

nonanticipating functions defined on [t0, t ]×Ω for which the sample functions G(·,ω) are w.p. 1

in L2[t0, t ], that is,

∫ t

t0

|G(s,ω)|2d s <∞.

Here, the last integral is to be interpreted as the Lebesgue integral (which, for example, coincides

with the Riemann integral in the case of continuous functions).

2.2.1 Itô’s Stochastic Integral

The purpose of this section is to define Itô’s stochastic integral

∫ t

t0

GdW =
∫ t

t0

G(s)dW (s) =
∫ t

t0

G(s,ω)dW (s,ω)

for arbitrary t ≥ t0 and all G ∈ M2[t0, t ], in two steps. In the first step, Itô’s stochastic integral is

defined for step functions in M2[t0, t ]. In the next step, its definition is extended to the entire set

M2[t0, t ] by means of an approximation of an arbitrary function with the aid of step functions,

see Section 4.4 from Arnold, 1974.

Step 1 A function G ∈ M2[t0, t ] is called a step function if there exists a decomposition t0 < t1 <
. . . < tn = t such that G(s) = G(ti−1) (note that we omit the variable ω) for all s ∈ [ti−1, ti ), where

i = 1, . . . ,n. For such step functions the stochastic integral of G with respect to W (t ) is defined

as the R-valued random variable

∫ t

t0

GdW =
∫ t

t0

G(s)dW (s) =
n∑

i=1
G(ti−1)(Wti –Wti−1 ). (2.7)

Step 2 The definition of the Itô stochastic integral for arbitrary function in M2[t0, t ] is given as
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follows:

We need the following lemma.

Lemma 2.1 [Arnold,1974, p. 69] Suppose that G ∈ M2[t0, t ] and that Gn ∈ M2[t0, t ] is a sequence

of step functions for which Gn converges stochastically to G in the following sense:

P − lim
n→∞

∫ t

t0

|G(s)−Gn(s)|2d s = 0.

If we define

∫ t

t0

Gn(s)dW (s)

by (2.7), then Gn converges stochastically to I (G),

P − lim
n→∞

∫ t

t0

Gn(s)dW (s) = I (G),

where I (G) is a random variable that does not depend on the special choice of the sequence Gn .

As a consequence of the previous two steps, the following definition can be established.

Definition 2.17 [Arnold, 1974, p. 71] For every R-valued function G ∈ M2[t0, t ], the stochastic

integral (or Itô’s integral) of G with respect to an R- valued Wiener process W (t ) over the interval

[t0, t ] is defined as the random variable I (G), which is a. s. uniquely determined in accordance

with Lemma 2.1:

∫ t

t0

GdW =
∫ t

t0

G(s)dW (s) = P − lim
n→∞

∫ t

t0

GndW, (2.8)

where {Gn} is a sequence of step functions in M2[t0, t ] that converges stochastically to G in the
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sense of

P − lim
n→∞

∫ t

t0

|G(s)−Gn(s)|2d s = 0.

Some properties of Itô’s stochastic integral are summarized as follows:

Theorem 2.4 [Shreve, 2004, p. 134] Let T be a positive constant and let G(t ), G1(t ), G2(t ), 0 ≤ s ≤
t ≤ T , be adapted stochastic processes that satisfy E

∫ T
0 G2(t )d t <∞. Then I (t ) = ∫ t

0 G(s)dW (s)

defined by (2.8) has the following properties:

(i) (Continuity) As a function of the upper limit of integration t , the paths of I (t ) are contin-

uous.

(ii) (Adaptivity) For each t , I (t ) is Ft -measurable.

(iii) (Linearity)

∫ t

0
[aG1(s)+bG2(s)]dW (s) = a

∫ t

0
G1(s)dW (s)+b

∫ t

0
G2(s)dW (s), a,b ∈ R.

(iv) (Martingale) I (t ) is a martingale.

(v) (Itô Isometry)

E
∣∣∣∫ t

0
G(s)dW (s)

∣∣∣2
= E

∫ t

0
|G(s)|2d s.

(vi) (Quadratic Variation) [I , I ](t ) = ∫ t
0 G2(s)d s.

Theorem 2.5 [Shreve, 2004, p. 169] (Itô integral of a deterministic integrand) Let W (s), s ≥ 0, be

a Wiener process, and let G(s) be a nonrandom function of time. Define I (t ) = ∫ t
0 G(s)dW (s).

For each t ≥ 0, the random variable I (t ) is normally distributed with

E [I (t )] = E
∫ t

0
G(s)dW (s) = 0, (2.9)
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and

V ar [I (t )] =V ar
[∫ t

0
G(s)dW (s)

]
=

∫ t

0
G2(s)d s. (2.10)

2.2.2 Itô’s Formula

We now give Itô’s formula which will be crucial in this thesis.

Theorem 2.6 [Oksendal, 2003, p. 44] (Itô’s Formula)

Let X (t ) be an Itô process of the form

d X (t ) = f (t , X (t ))d t +G(t , X (t ))dW (t ), t > 0.

Let g (t , x) ∈C 2([0,∞)×R) (i.e. g is twice continuously differentiable on [0,∞)×R). Then

Y (t ) = g (t , X (t )), t > 0,

is again an Itô process, and is given by

dY (t ) = ∂g

∂t
(t , X (t ))d t + ∂g

∂x
(t , X (t ))d X (t )+ 1

2

∂2g

∂x2
(t , X (t ))(d X (t ))2, (2.11)

where (d X (t ))2 = (d X (t ))(d X (t )) is computed according to the rules

d td t = d tdW (t ) = dW (t )d t = 0, dW (t )dW (t ) = d t .

2.3 Stochastic Differential Equations

Consider the stochastic differential equation (SDE)

d X (t ) = f (t , X (t ))d t +G(t , X (t ))dW (t ), t > 0, (2.12)

X (0) = X0,
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where f (t , x) and G(t , x) are scalar valued measurable deterministic functions for t ∈ [0,T ] (0 <
T <∞) and x ∈ R and prove the existence and uniqueness of the solution to (2.12) with respect

to the given initial condition. {W (t ), t ≥ 0} is a Wiener process, see Arnold, 1974, and Itô, 1951.

2.3.1 Existence and Uniqueness of a Solution

Theorem 2.7 [Gard, 1988, p. 68-69] If the following assumptions are satisfied:

(i) The functions f (t , x) and G(t , x) are defined for t ∈ [0,T ] and x ∈ R and are measurable

with respect to all their arguments:

(ii) There exists a constant K > 0 such that t ∈ [0,T ] and x, y ∈ R such that

| f (t , x)− f (t , y)|− |G(t , x)−G(t , y)| ≤ K |x − y |, (2.13)

| f (t , x)|2 +|G(t , x)|2 ≤ K 2(1+|x|2); (2.14)

(iii) X0 does not depend on W (t ) and E |X0|2 <∞.

Then there exists a solution of (2.12) defined on [0,T ] which is continuous w.p. 1 and such that

sup
0≤t≤T

E |X (t )|2 <∞.

Additionally, a solution with these properties is pathwise unique, in the sense that, if x and y are

two solutions of (2.12)

P
{

sup
0≤t≤T

|X1(t )−X2(t )| = 0
}
= 1.

2.4 Poisson Jump processes

We consider the fundamental Poisson Jump process. This section picks details from Shreve,

1974, pp. 476-476.
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Definition 2.18 [Applebaum, 2009, p. 43] Let {X (t ), t ≥ 0} be a stochastic process defined on a

probability space (Ω,F,P ). We say that X (t ) is a Lévy process if:

(i) X (0) = 0, a.s.,

(ii) X (t ) has independent and stationary increments; stationary increments means that for

t1, t2 in [0,∞), and t1 < t2, the distribution of X (t2)−X (t1) is the same as that of X (t2+h)−
X (t1 +h) for any h > 0,

(iii) X (t ) is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0,

lim
t→s

P (|X (t )−X (s)| > a) = 0.

Also, notice that (iii) is equivalent to the condition

lim
t↓0

P (|X (t )| > a) = 0.

for all a > 0 whenever (i) and (ii) hold.

Let us define a jump process as the sum of a nonrandom initial condition, a Riemman inte-

gral with respect to dt, an Itô integral with respect to a Brownian motion W(t), and a pure jump

process. Hence, a jump process X (the integrator) will right be continuous and of the form

X (t ) = X (0)+R(t )+ I (t )+ J (t ). (2.15)

In expression (2.15), X(0) is a nonrandom initial condition. The process R(t ) = ∫ t
0 Θ(s)d s in (2.15)

is a Riemman integral for some adapted process Θ(t ). The process I (t ) = ∫ t
0 Γ(s)dW (s) is an Itô

integral of an adapted process Γ(t ) with respect to a Brownian motion relative to the filtration

F(t ). The term J (t ) in (2.15) is an adapted, right-continuous pure jump process with J (0) = 0. It

is right-continuous in the sense that J (t ) = lims↓t J (s) for all t ≥ 0. The left-continuous version

of J (t ) will be denoted J (t−).
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The continuous part of X is defined as

X c (t ) = X (0)+R(t )+ I (t ) = X (0)+
∫ t

0
Θ(s)d s +

∫ t

0
Γ(s)dW (s).

The quadratic variation of this process is

[X c , X c ](t ) =
∫ t

0
Γ2(s)d s,

which can be written in differential form as

d X c (t )d X c (t ) = Γ2(t )d t .

Definition 2.19 [Shreve, 2004, p. 475] A process X (t ) of the form (2.15) with Riemman integral

part R(t ), with Itô integral I (t ), and a pure jump part J (t ) as previously described will be termed

a jump process.

Let us define the stochastic integral given by

∫ t

0
Φ(s)d X (s),

whereΦ and X to be defined below.

Definition 2.20 [Shreve, 2004, p. 475] (Lévy - Itô decomposition) Let X (t ) be a jump process of

the form (2.15) and let Φ(s) be an adapted process. The stochastic integral of Φ(s) with respect

to X is defined to be

∫ t

0
Φ(s)d X (s) =

∫ t

0
Φ(s)Θ(s)d s +

∫ t

0
Φ(s)Γ(s)dW (s)+ ∑

0≤s≤t
Φ(s)∆J (s). (2.16)

In differential notation (2.16) can be written as

Φ(t )d X (t ) = Φ(t )dR(t )+Φ(t )d I (t )+Φ(t )d J (t )

= Φ(t )d X c (t )+Φ(t )d J (t ),
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where

Φ(t )dR(t ) = Φ(t )Θ(t )d t ,

Φ(t )d I (t ) = Φ(t )Γ(t )dW (t ),

Φ(t )d X c (t ) = Φ(t )Θ(t )d t +Φ(t )Γ(t )dW (t ).

Theorem 2.8 [Shreve, 2004, p. 477] Assume that the jump process X (s) described by (2.15) is a

martingale, the integrandΦ(s) is left-continuous and adapted, and

E
∫ t

0
Γ2(s)Φ2(s)d s <∞ forall t ≥ 0.

Then the stochastic integral
∫ t

0 Φ(s)d X (s) is also a martingale.

Theorem 2.9 [Shreve, 2004, p. 484] (Itô formula for a jump process) Let X (t ) be a jump process

and f (x) a function for which f ′(x) and f ′′(x) are defined and continuous, then

f (X (t )) = f (X (0))+
∫ t

0
f ′(X (s))d X c (s)+ 1

2

∫ t

0
f ′′(X (s))d X c (s)d X c (s)

+ ∑
0≤s≤t

[ f (X (s))− f (X (s−))].

Theorem 2.10 [Shreve, 2004, p. 484] (Two-dimensional Itô formula for processes with jumps)

Let X1(t ) and X2(t ) be jump processes, and let f (t , x1, x2) be a function whose first and second

partial derivatives appearing in the following formula are defined and continuous. Then

f (t , X1(t ), X2(t ) = f (0, X1(0), X2(0)+
∫ t

0
ft (s, X1(s), X2(s))d s

+
∫ t

0
fx1 (s, X1(s), X2(s))d X c

1 (s)+
∫ t

0
fx2 (s, X1(s), X2(s))d X c

2 (s)

+1

2

∫ t

0
fx1,x1 (s, X1(s), X2(s))d X c

1 (s)d X c
1 (s)

+
∫ t

0
fx1,x2 (s, X1(s), X2(s))d X c

1 (s)d X c
2 (s)

+1

2

∫ t

0
fx2,x2 (s, X1(s), X2(s))d X c

2 (s)d X c
2 (s)

+ ∑
0≤s≤t

[ f (s, X1(s), X2(s))− f (s, X1(s−)), X2(s−))]. (2.17)
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Corollary 2.1. [Shreve, 2004, p. 489] (Itô’s product rule for jump processes) Let X1(t ) and X2(t )

be jump processes. Then

X1(t )X2(t ) = X1(0)X2(0)+
∫ t

0
X2(s−)d X1(s)+

∫ t

0
X1(s−)d X2(s)+ [X1, X2](t ).

LetN be the set of natural numbers.

Definition 2.21 [Applebaum, 2009, p. 49] The Poisson process N (t ) with intensity λ> 0 is a Lévy

process taking values inN∪ {0} wherein each N (t ) has the probability function

P (N (t ) = n) = (λt )n

n!
e−λt , n = 0,1,2, . . . .

Note that the sample paths of N (t ) are piecewise constant on finite intervals with jump discon-

tinuities of size 1 at each of the random times (Tn ,n ∈N).

Let U1,U2, . . . be a sequence of independent and identicallly distributed (i.i.d.) random vari-

ables with mean E [Ui ] = γ, i = 1,2, . . .. The random variables U1,U2, . . . are independent of the

Poisson process N (t ).

Definition 2.22 [Shreve, 2004, p. 468] The Compound Poisson process is defined as

Q(t ) =
N (t )∑
i=1

Ui , t ≥ 0.

Note that the jumps in Q(t ) are of random size while the jumps in N(t) are always of size 1. Also,

Q(t ) jumps occur at the same time as N (t ) does.

For 0 ≤ s < t , the increment Q(t )−Q(s) is independent of F(s) and has mean γλ(t−s). In fact

E [Q(t )|F(s)] = E [Q(t )−Q(s)+Q(s)|F(s)]

= E [Q(t )−Q(s)|F(s)]+Q(s)

= γλ(t − s)+Q(s)
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Hence the compound Poisson process is not a martingale.

Theorem 2.11 [Applebaum, 2009, p. 49] The compound Poisson process {Q(t ), t ≥ 0} is a Lévy

process.

Proof Conditions (i) and (ii) follow immediately. To obtain (iii), let a > 0, next by conditioning

and independence

P (|Q(t )| > a) =
∞∑

n=0
P (|Z (1)+· · ·+Z (n)| > a)P (N (t ) = n),

by dominated convergence theorem [Arnold, 1974, p. 11] (iii) follows. �

Theorem 2.12 [Shreve, 2004, p. 470] Let {Q(t ), t ≥ 0} be the compound Poisson process. Then

the compensated compound Poisson process

Q(t )−γλt

is a martingale.

Proof. Let 0 ≤ s < t be given. Taking E [Q(t )] = γλt and following the previous argument we

observe that E [Q(t )−γλt |F(s)] =Q(s)−γλs. �

Lemma 2.2 [Svishchuk and Kalemanova, 2000] Let {Yn ,n ≥ 1} be a sequence of i.i.d nonnega-

tive random variables, E [Yn] < +∞, and {N (t ), t ≥ 0} be a Poisson process with intensity λ > 0,

independent of {Yn ,n ≥ 1}. Then

E
[N (t )∏

n=1
Yn

]
= exp{λt (E [Y1]−1)}, forall t ≥ 0.
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2.5 Probabilistic Properties: Stochastic Stability

In this Section, we collect stochastic stability properties from Svishchuk and Kalemanova, 2000,

and Govindan and Acosta, 2008, and Khasminskii, 2012.

Let f (t ,0) = 0 and g (t ,0) = 0 a.e. t , so that equation (2.12) admits the trivial solution X (t ) ≡ 0.

Let X (t ) = X (t , X0) a solution of (2.12), where X0 ∈ R is a constant (sometimes, we shall consider

X0 as random variable independent of {W (t ), t ≥ 0}, with E |X0|2 <∞. Let X ∗(t , X ∗
0 ) be any other

solution of (2.12) with X ∗(0) = X ∗
0 .

Definition 2.23 The solution X (t ) of (2.12) is called exponentially mean square stable if there

exists positive constants C and γ such that

E |X (t )−X ∗(t )|2 ≤C E |X0 −X ∗
0 |2e−γt , t ≥ 0.

Definition 2.24 The solution X (t ) of (2.12) is bounded in probability uniformly in t if

sup
t≥0

P {|X (t )| > M } → 0, as M →∞,

for sufficiently small |X0|.

The following lemma will be needed.

Lemma 2.3 (Gronwall-Bellman inequality) [Khasminskii, 2012, p. 9] Let u(t ) and v(t ) be non-

negative functions and let k be a positive constant such that for t ≥ s,

u(t ) ≤ k +
∫ t

s
u(τ)v(τ)dτ.

Then for t ≥ s,

u(t ) ≤ k exp
{∫ t

s
v(τ)dτ

}
.



Chapter 3

An Alternative to Itô’s Formula to Solve

some Interest Rate Models

In this Section, we solve several financial models using classical Itô’s formula and also develop

a method using basic ordinary differential equations (ODEs).

The proofs of all the theorems in this chapter appear to be new.

3.1 A Linear Ordinary Differential Equation

Definition 3.1 A first-order stochastic differential equation of the form

a1(t )
d y

d t
+a0(t )y = h(t ,ω), t > 0, (3.1)

is said to be a linear equation in the dependent variable y , where a0(t ) and a1(t ) are real-valued

continuous functions of t and h(t ,ω) is a continuous stochastic process almost surely. We sup-

pose that a1(t ) 6= 0forall t. By dividing both sides of (3.1) by the lead coefficient a1(t ), we obtain

the standard form of a first-order stochastic differential equation

d y

d t
+P (t )y = f (t ,ω), (3.2)

25
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where P (t ) is a real-valued continuous functions of t and f (t ,ω) is a continuous stochastic pro-

cess almost surely. We seek a solution of (3.2) on t > 0.

Method of solution of the equation (3.2) Following the linear ODE method, see Zill and Cullen,

2004, p. 55, and Ladde and Ladde, 2012, p. 122, we introduce the following steps:

(i) Put a linear equation of the form (3.1) into the standard form (3.2).

(ii) From the standard form, identify P (t ) and then find the integrating factor e
∫

P (t )d t .

(iii) Multiply the standard form (3.2) by this integrating factor. The LHS of the resulting equa-

tion is nothing but the derivative of the product e
∫

P (t )d t y , as follows:

d

d t
[e

∫
P (t )d t y] = e

∫
P (t )d t f (t ,ω). (3.3)

(iv) Integrating both sides of the equation (3.3) with respect to t yields the solution, provided

the integrals on the RHS are well-defined.

Remark 3.1 Notice that we take f (t ,ω) = h1(t )+h2(t )ξ(t ), where h1(t ) and h2(t ) are continuous

real-valued functions in the application of this method in the following sections. We call this

method as a linear ODE method.

3.2 Vasicek

In this section, we begin our study with standard interest rate models.

The Vasicek model, see Vasicek,1977, for the interest rate process r (t ) is given by the SDE:

dr (t ) = [α−βr (t )]d t +σdW (t ), t > 0, (3.4)

r (0) = r0,

where α, β and σ are positive constants.
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Theorem 3.1 Equation (3.4) has a solution given by

r (t ) = e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβsdW (s).

First Proof Our approach to find the solution of equation (3.4) is by applying the linear ODE

method. Rewriting (3.4) as

dr (t )

d t
+βr (t ) =α+σdW (t )

d t
, t > 0.

That is

dr (t )

d t
+βr (t ) =α+σξ(t ), t > 0. (3.5)

Equation (3.5) is in the form of the first-order ordinary differential equation (3.2) with P (t ) = β.

Its integrating factor is e
∫
βd t = eβt . Multiplying both sides of equation (3.5) by this integrating

factor, it follows that

eβt dr (t )

d t
+eβtβtr (t ) = eβtα+eβtσξ(t ).

Thus

d

d t

(
eβt r (t )

)
= eβtα+eβtσξ(t ). (3.6)

Integrating (3.6) from 0 to t , we have

eβt r (t ) = r0 +α
∫ t

0
eβsd s +σ

∫ t

0
eβsdW (s).

Hence, the solution of equation (3.4) is given by

r (t ) = e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβsdW (s). � (3.7)

Second Proof Interestingly, an application of Itô’s formula (Theorem 2.6) to the SDE (3.4) would
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also produce the same solution (3.7) as shown below:

To do so, we pick the function g (t ,r ) = eβt r , where r (t ) is the solution process of equation

(3.4). Applying Itô’s formula, we get

d(eβt r (t )) = ∂g

∂t
(t ,r (t ))d t + ∂g

∂r
(t ,r (t ))dr (t )+ 1

2

∂2g

∂r 2
(t ,r (t ))dr (t )dr (t )

= βeβt r (t )d t +eβt dr (t )+ 1

2
(0)dr (t )dr (t )

= βeβt r (t )d t +eβt
(
[α−βr (t )]d t +σdW (t )

)
= βeβt r (t )d t +eβtαd t −βeβt r (t )d t +eβtσdW (t )

= eβtαd t +σeβt dW (t ). (3.8)

Integrating equation (3.8) from 0 to t , we have

r (t ) = e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβsdW (s),

which coincides with (3.7). �

3.3 Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross (CIR) model, see Cox, Ingersoll, and Ross, 1985b, for the interest rate

process r (t ) is given by the SDE:

dr (t ) = [α−βr (t )]d t +σ
√

r (t )dW (t ), t > 0, (3.9)

r (0) = r0,

where α, β and σ are positive constants.

Theorem 3.2 Equation (3.9) has a solution that satisfies the following integral equation

r (t ) = e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβs

√
r (s)dW (s).
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Proof Proceeding as in Section 3.2, we have

dr (t )

d t
+βr (t ) =α+σ

√
r (t )

dW (t )

d t
, t > 0.

That is

dr (t )

d t
+βr (t ) =α+σ

√
r (t )ξ(t ), t > 0. (3.10)

Equation (3.10) is in the form of the first-order ordinary differential equation (3.2) and its inte-

grating factor is e
∫
βd t = eβt . Multiplying both sides of equation (3.10) by this integrating factor,

it follows that

eβt dr (t )

d t
+eβtβr (t ) = eβtα+eβtσ

√
r (t )ξ(t ).

Thus

d

d t

(
eβt r (t )

)
= eβtα+eβtσ

√
r (t )ξ(t ). (3.11)

Integrating (3.11) from 0 to t , we have

r (t ) = e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβs

√
r (s)dW (s). � (3.12)

Remark 3.2 Interestingly, an application of Itô’s formula (Theorem 2.6) to the SDE (3.9) would

also produce the same solution (3.12).

3.4 Hull-White

The Hull-White interest rate model also termed as extended Vasicek model for the interest rate

process r (t ) is given by the SDE:

dr (t ) = [α(t )−β(t )r (t )]d t +σ(t )dW (t ), t > 0, (3.13)

r (0) = r0,
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where α(t ), β(t ) and σ(t ) are nonrandom positive functions of the time variable t .

Theorem 3.3 Equation (3.13) has a solution given by

r (t ) = e−k(t )r0 +
∫ t

0
e−[k(t )−k(s)]α(s)d s +

∫ t

0
e−[k(t )−k(s)]σ(s)dW (s),

where k(t ) = ∫
β(t )d t .

Proof Proceeding as before, we obtain

dr (t )

d t
+β(t )r (t ) =α(t )+σ(t )ξ(t ), t > 0. (3.14)

Equation (3.14) is in the form of the first-order ordinary differential equation (3.2) and its in-

tegrating factor is e
∫
β(t )d t = ek(t ). Multiplying both sides of equation (3.14) by this integrating

factor, it follows that

ek(t ) dr (t )

d t
+ek(t )β(t )r (t ) = ek(t )α(t )+ek(t )σ(t )ξ(t ).

Thus

d

d t

(
ek(t )r (t )

)
= ek(t )α(t )+ek(t )σ(t )ξ(t ). (3.15)

Integrating (3.15) from 0 to t , we have the solution

r (t ) = e−k(t )r0 +
∫ t

0
e−[k(t )−k(s)]α(s)d s +

∫ t

0
e−[k(t )−k(s)]σ(s)dW (s). � (3.16)

Remark 3.3 An application of Itô’s formula would also produce the same solution.
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3.4.1 Extended Hull-White

Consider an extension of the Hull-White model for the interest rate process r (t ) given by the

SDE:

dr (t ) = k[θ(t )− r (t )]d t +σr (t )dW (t ), t > 0, (3.17)

r (0) = r0,

where k and σ are positive constants and θ(t ) is a nonrandom positive function of the time

variable t .

Theorem 3.4 Equation (3.17) has a solution that satisfies the following integral equation

r (t ) = r0e−kt +
∫ t

0
e−k(t−s)kθ(s)d s +

∫ t

0
e−k(t−s)σr (s)dW (s).

Proof Rewriting (3.17) as a first-order ordinary differential equation:

dr (t )

d t
+kr (t ) = kθ(t )+σr (t )ξ(t ), t > 0 (3.18)

which is in the form of the first-order ordinary differential equation (3.2). Its integrating factor

is ekt . Multiplying both sides of equation (3.18) by this integrating factor, it follows that

ekt dr (t )

d t
+ekt kr (t ) = ekt kθ(t )+ektσr (t )ξ(t ).

Thus

d

d t

(
ekt r (t )

)
= ekt kθ(t )+ektσr (t )ξ(t ). (3.19)

Integrating (3.19) from 0 to t , the solution of equation (3.17) is given by

r (t ) = r0e−kt +
∫ t

0
e−k(t−s)kθ(s)d s +

∫ t

0
e−k(t−s)σr (s)dW (s). � (3.20)

Remark 3.4 An application of Itô’s formula would also produce the same solution.
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3.4.2 Hull-White: A CIR Style Extension

A CIR style extension to a Hull-White class model for the interest rate process r (t ) is given by the

SDE:

dr (t ) = k[θ(t )− r (t )]d t +σ
√

r (t )dW (t ), t > 0, (3.21)

r (0) = r0,

where k and σ are positive constants and θ(t ) is a nonrandom positive function of the time

variable t .

Theorem 3.5 Equation (3.21) has a solution that satisfies the following integral equation

r (t ) = e−kt r0 +
∫ t

0
e−k(t−s)kθ(s)d s +

∫ t

0
e−k(t−s)σ

√
r (s)dW (s).

Proof From (3.21), we obtain

dr (t )

d t
+kr (t ) = kθ(t )+σ

√
r (t )ξ(t ), t > 0.

Thus

d

d t

(
ekt r (t )

)
= ekt kθ(t )+ektσ

√
r (t )ξ(t ). (3.22)

Integrating (3.22) from 0 to t , the solution of equation (3.21) is given by

r (t ) = e−kt r0 +
∫ t

0
e−k(t−s)kθ(s)d s +

∫ t

0
e−k(t−s)σ

√
r (s)dW (s). � (3.23)

Remark 3.5 An application of Itô’s formula would also produce the same solution.
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3.5 Brennan-Schwartz

An extension of the Vasicek interest rate process r (t ) with a multiplicative difussion, known as

the Brennan-Schwartz interest rate model, is given by the SDE:

dr (t ) = k[θ− r (t )]d t +σr (t )dW (t ), t > 0, (3.24)

r (0) = r0,

where k, θ and σ are positive constants.

Theorem 3.6 Equation (3.24) has a solution that satisfies the following integral equation

r (t ) = r0e−kt +θ(1−e−kt )+
∫ t

0
e−k(t−s)σr (s)dW (s).

Proof As before,

dr (t )

d t
+kr (t ) = kθ+σr (t )ξ(t ), t > 0.

Thus

d

d t

(
ekt r (t )

)
= ekt kθ+ektσr (t )ξ(t ). (3.25)

Integrating (3.25) from 0 to t , the solution of equation (3.24) satisfies

r (t ) = r0e−kt +θ(1−e−kt )+
∫ t

0
e−k(t−s)σr (s)dW (s). � (3.26)

Remark 3.6 An application of Itô’s formula would also produce the same solution.
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3.6 Exponential Vasicek

A natural way to obtain a lognormal short-rate model is by assuming that the logarithm of r

follows an Ornstein-Uhlenbeck process y , so that

r (t ) = e y(t ), t > 0, (3.27)

d y(t ) = [θ−ay(t )]d t +σdW (t ), t > 0, (3.28)

y(0) = y0,

where θ, a and σ are positive constants and y0 is a real number.

Since the short-rate is defined as the exponential of a process that is equivalent to that of

Vasicek, this model is referred as the exponential-Vasicek interest rate model.

Theorem 3.7 Equation (3.27) has a solution given by

r (t ) = exp
{

ln(r0)e−at + θ

a

[
1−e−at

]
+σe−at

∫ t

0
eaudW (u)

}
.

Proof After rewriting (3.28) as a first-order ordinary differential equation, and solving for y(t )

yields

y(t ) = y0e−at + θ

a
(1−e−at )+σe−at

∫ t

0
easdW (s).

Hence, the solution process to the exponential Vasicek interest rate model from (3.27) is

r (t ) = exp
{

ln(r0)e−at + θ

a

[
1−e−at

]
+σe−at

∫ t

0
eaudW (u)

}
. � (3.29)

Remark 3.7 An application of Itô’s formula, with the function g (t , y) = eat y , would also produce

the same solution.
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3.7 Dothan

We consider the following form of the Dothan model for the interest rate process r (t ):

dr (t ) = ar (t )d t +σr (t )dW (t ), t > 0, (3.30)

r (0) = r0,

where a is a real constant and σ is positive constant.

Theorem 3.8 Equation (3.30) has a solution that satisfies the following integral equation

r (t ) = r0eat +eatσ

∫ t

0
e−asr (s)dW (s).

Proof Clearly, the linear ODE method yields the following form for the solution process

r (t ) = r0eat +eatσ

∫ t

0
e−asr (s)dW (s). � (3.31)

Remark 3.8 An application of Itô’s formula, with the function g (t ,r ) = lnr , to equation (3.30)

gives the following well-known explicit solution process

r (t ) = r0 exp
{

(a − 1

2
σ2)t +σW (t )

}
, t ≥ 0. (3.32)

3.8 A Generalized Model

We consider a generalized interest rate model, see Svishchuk and Kalemanova, 2000, from which

the Cox-Ingersoll-Ross interest rate model, and the Brennan-Schwartz interest rate model, can

be seen as special cases for an appropriate choice of the parameter δ:

r (t ) = [α−βr (t )]d t +σr δ(t )dW (t ), t > 0, (3.33)

r (0) = r0,

where r0, α, β and σ are positive constants and δ ∈ [ 1
2 ,∞).
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Theorem 3.9 Equation (3.33) has a solution that satisfies the following integral equation

r (t ) = e−βt r0 + α

β

(
1−e−βt

)
+e−βtσ

∫ t

0
eβsr δ(t )dW (s).

Proof It can be easily seen that r (t ) satisfies

r (t ) = e−βt r0 + α

β

(
1−e−βt

)
+e−βtσ

∫ t

0
eβsr δ(t )dW (s). (3.34)

is the solution of the SDE (3.33) by application of the linear ODE method. �

Remark 3.9 An application of Itô’s formula would also produce the same solution.

3.9 Some More Models

The Mercurio-Moraleda interest rate model, see Brigo and Mercurio, 2007, p. 57 is described as

follows:

dr (t ) = r (t )
[
η(t )−

(
λ− γ

1+γt

)
lnr (t )

]
d t +σr (t )dW (t ), t > 0, (3.35)

r (0) = r0,

where λ, γ and σ are positive constants.

Theorem 3.10 The Mercurio-Moraleda interest rate model (3.35) has a solution given by

r (t ) = exp
{

e−k(t ) lnr0 +
∫ t

0
e−[k(t )−k(s)]η(s)d s +

∫ t

0
e−[k(t )−k(s)]σdW (s)

}
,

where k(t ) = ∫
β(t )d t , and β(t ) =

(
λ− γ

1+γt

)
.

Proof Note that (3.35) is the Hull-White model (3.13) expressed in a logarithmic form with

β(t ) =
(
λ− γ

1+γt

)
. The proof follows as in Theorem 3.3.
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The Extended Exponential Vasicek interest model, see Brigo and Mercurio, 2007, p. 57 as

follows:

r (t ) = x(t )+ϕ(t ), t > 0, (3.36)

d x(t ) = x(t )[η(t )−a ln x(t )]d t +σx(t )dW (t ), t > 0, (3.37)

r (0) = r0,

x(0) = x0,

where ϕ(t ) is a shift deterministic function of time, and a and σ are positive constants.

Theorem 3.11 The solution process to the Extended Exponential Vasicek interest rate model

(3.36)-(3.37) is given explicitly by

r (t ) = x(t )+ϕ(t ), t > 0, (3.38)

x(t ) = exp
{

ln(x0)e−at + θ

a

[
1−e−at

]
+σe−at

∫ t

0
eaudW (u)

}
, t > 0. (3.39)

Proof It follows immediately from the proof of Theorem 3.7.

3.9.1 Brownian Bridge

The Brownian bridge process Y (t ) is given by the SDE:

dY (t ) = b −Y (t )

1− t
d t +dW (t ), 0 ≤ t < 1, (3.40)

Y (0) = Y0,

where b ∈ R.

Theorem 3.12 Equation (3.40) has a solution given by

Y (t ) = (1− t )Y0 +bt + (1− t )
∫ t

0
(1− s)−1dW (s).
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Proof Our approach to finding the solution of equation (3.40) requires rewriting it as

dY (t )

d t
+ 1

1− t
Y (t ) = b

1− t
+ξ(t ), 0 ≤ t < 1.

The integrating factor is e
∫ 1

1−t d t = (1− t )−1. Thus

d

d t

(
(1− t )−1Y (t )

)
= (1− t )−1 b

1− t
+ (1− t )−1ξ(t ). (3.41)

Integrating (3.41) from 0 to t ,

(1− t )−1Y (t ) = Y0 +
∫ t

0
(1− s)−1 b

1− s
d s +

∫ t

0
(1− s)−1dW (s).

Hence, the solution of equation (3.40) is given by

Y (t ) = (1− t )Y0 +bt + (1− t )
∫ t

0
(1− s)−1dW (s). � (3.42)

Remark 3.10 An application of Itô’s formula would also produce the same solution.

To give a counter example, consider the following generalized Vasicek model

dr (t ) = [α−βr (t )]γd t +σdW (t ), t > 0, (3.43)

r (0) = r0,

where α, β and σ are positive constants and 0 < γ≤ 1. When γ= 1 it is the Vasicek model. Note

that when γ= 1/2 the linear ODE method does not apply.



Chapter 4

Probabilistic Properties of some Interest

Rate Models with Poisson Jumps

Stability of stochastic differential equations is a well-established area of research, see, for in-

stance, Khasminskii, 2012. However, the stability of financial models has not received consid-

erable attention in the literature. This perhaps motivated Svishchuk and Kalemanova, 2000, to

initiate a study on stability properties like stability in probability and p-stability of solutions

of several interesting financial models like Black-Scholes, Vasicek, and Cox-Ingersoll-Ross and

also such models with Poisson jumps. Subsequently, Govindan and Acosta, 2008, continued

the study further by considering uniformly boundedness in probability and exponential mean-

square stability of financial models mentioned earlier. Moreover, Bhan and Mandrekar, 2010,

considered some recurrence properties of term structure models. We refer to Brigo and Mercu-

rio, 2007, for a study on interest rate models.

Motivated by these works, we obtain exponential mean square stability, boundedness in

probability uniformly in t , and asymptotic quadratic mean of some standard interest rate mod-

els, including such models with Poisson jumps. We wll also obtain moment properties of some

of these models.

39
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4.1 Interest Rate Models

We begin with the Vasicek model.

4.1.1 Vasicek

Theorem 4.1 The solution of the Vasicek interest rate model (3.4) satisfies

E |r (t )|p ≤ 3p−1
{

E |r0|p + αp

βp
+

[1

2
p(p −1)

]p/2
T p/2−1σ

p

βp
(eβpT −1)

}
, (4.1)

for p ≥ 2 and for each t ∈ [0,T ].

Proof Consider

r (t ) = e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβsdW (s).

Using the following well-known inequality

|a +b + c|p ≤ 3p−1{|a|p +|b|p +|c|p },

the following property for the stochastic integral

E
∣∣∣∫ t

0
G(s)dW (s)

∣∣∣p
≤

[1

2
p(p −1)

]p/2
T p/2−1

∫ t

0
E |G(s)|p d s, t ∈ [0,T ], p ≥ 2,

and taking expectation, we have

E |r (t )|p ≤ 3p−1
{

e−βt p E |r0|p +E
∣∣∣α
β

(1−e−βt )
∣∣∣p
+σp e−βt p E

∣∣∣∫ t

0
eβsdW (s)

∣∣∣p}
≤ 3p−1

{
E |r0|p + αp

βp
(1−e−βt )p +[1

2
p(p −1)

]p/2
T p/2−1σp

∫ t

0
eβsp d s

}
,

from which (4.1) follows. �
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4.1.2 Brennan-Schwartz

This is an extension of the Vasicek interest rate process r (t ) with the volatility term assumed to

be dependent on the interest rate level.

The following properties appear to be new.

Proposition 4.1 For the Brennan-Schwartz interest rate model (3.24), we have

E [r (t )] = θ, as t →∞, and

V ar [r (t )] = σ2θ2/2k, as t →∞.

Proof Taking expectation of the process (3.26) it follows:

E [r (t )] = θ+ (r0 −θ)e−kt

lim
t→∞E [r (t )] = θ.

For the second moment, we have

E [r 2(t )] = θ2 + (r0 −θ)2e−2kt +2θ(r0 −θ)e−kt

+E
[

e−2ktσ2
∫ t

0
e2ku

(
θ+ (r0 −θ)e−ku

+e−kuσ

∫ u

0
ekv r (v)dW (v)

)2
du

]
.

Taking limit

lim
t→∞E [r 2(t )] = θ2 +

lim
t→∞E

1

e2kt

{
σ2

∫ t

0
e2ku[θ+ (r0 −θ)e−ku +

e−kuσ

∫ u

0
ekv r (v)dW (v)]2du

}
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= θ2 +
lim

t→∞E
{σ2

∫ t
0 e2ku[θ+ (r0 −θ)e−ku]2du

e2kt

}
= θ2 +

lim
t→∞E

{σ2e2kt [θ+ (r0 −θ)e−kt ]2

2ke2kt

}
= θ2 + σ2θ2

2k
. �

Proposition 4.2 The Brennan-Schwartz interest rate model (3.24) is exponentially mean square

stable provided k >σ2.

Proof Let r ∗(t ) be a solution of (3.24) satisfying r ∗(0) = r ∗
0 . Then

r (t )− r ∗(t ) = (r0 − r ∗
0 )e−kt +

∫ t

0
e−k(t−s)σ[r (s)− r ∗(s)]dW (s).

Thus

e2kt |r (t )− r ∗(t )|2 ≤ 2|(r0 − r ∗
0 )|2 +2

∣∣∣∫ t

0
e2ksσ[r (s)− r ∗(s)]dW (s)

∣∣∣2
.

Taking expectation on both sides of this last expression, we get

e2kt E |r (t )− r ∗(t )|2 ≤ 2E |(r0 − r ∗
0 )|2 +

∫ t

0
2σ2e2ksE |r (s)− r ∗(s)|2d s. (4.2)

Now, by application of Gronwall’s inequality, Lemma 2.3, to equation (4.2) we obtain

E |r (t )− r ∗(t )|2 ≤ 2E |r0 − r ∗
0 |2 exp{−2(k −σ2)t }. �

Theorem 4.2 The solution of the Brennan-Schwartz interest rate model (3.24) satisfies

E |r (t )|p ≤ 3p−1
{

E |r0|p +θp ekpT
}

e(L−kp)T , p ≥ 2, (4.3)

for each t ∈ [0,T ] where L = 3p−1σp
[

1
2 p(p −1)

]p/2
T p/2−1.
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Proof From (3.26), it follows that

E |r (t )|p ≤ 3p−1
{

e−kt p E |r0|p +θp (1−e−kt )p

+
[1

2
p(p −1)

]p/2
T p/2−1

∫ t

0
e−kp(t−s)σp E |r (s)|p d s

}
.

Thus

ekt p E |r (t )|p ≤ 3p−1
{

E |r0|p +θp ekt p (1−e−kt )p
}

+L
∫ t

0
eksp E |r (s)|p d s.

Applying Gronwall’s inequality, Lemma 2.3, the result follows. �

Theorem 4.3 For the Brennan-Schwartz interest rate model (3.24), the solution processs is bounded

in probability uniformly in t provided 2k >σ2.

Proof Consider the generating operator L, see Khasminskii, 2012, applied to the function V (r ) =
r 2, r > 0:

L(V (r )) = Vr f (r )+ 1

2
g 2(r )Vr r (r )

= 2r k(θ− r )+ 1

2
σ2r 22 = 2kθr −2kr 2 +σ2r 2.

We have

L(V (r )) ≤ 0 for r ≥ 2kθ/(2k−σ2) = C > 0. (4.4)

Now, from Itô’s formula for V (r ) = r 2, r > 0 and from (4.4), we get

E |r (t )|2 = E [V (r (t ))] = E [V (r0)]+
∫ t

0
EL(V r (u))du ≤ E [V (r0)] ≤ E |r0|2.
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From the last inequality, if M ≥C , then

P {|r (t )| ≥ M } ≤ 1

M 2
E |r (t )|2 ≤ 1

M 2
E |r0|2 → 0, when M →∞.

for sufficiently small r0. �

4.1.3 Hull-White

The Hull-White interest rate model, see Brigo and Mercurio, 2007, p. 72, is an arbitrage-free

model that can be seen as the Vasicek interest rate model with a time-dependent reversion level.

We first look at a general case and next we look at the Hull-White interest rate model when the

time-dependent reversal level is described by considering the forward rate and a convenient

expression for the volatility. In this case, it provides an exact calibration to the current term

structure of interest rates.

Proposition 4.3 For the solution process (3.16),

E [r (t )] = e−k(t )r0 +e−k(t )
∫ t

0
ek(s)α(s)d s, and

V ar [r (t )] = e−2k(t )
∫ t

0
e2k(s)σ2(s)d s.

Proof We take expectation and variance to the solution process (3.16) as follows:

E [r (t )] = E
[

e−k(t )r0 +e−k(t )
∫ t

0
ek(s)α(s)d s +e−k(t )

∫ t

0
ek(s)σ(s)dW (s)

]
= e−k(t )r0 +e−k(t )

∫ t

0
ek(s)α(s)d s, and

V ar [r (t )] = V ar
[

e−k(t )r0 +e−k(t )
∫ t

0
ek(s)α(s)d s +e−k(t )

∫ t

0
ek(s)σ(s)dW (s)

]
= V ar

[
e−k(t )

∫ t

0
ek(s)σ(s)dW (s)

]
= e−2k(t )

∫ t

0
e2k(s)σ2(s)d s. �

A special case An exact fit to the current term structure of interest rates can be obtained with
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the following SDE:

dr (t ) = [θ(t )−ar (t )]d t +σdW (t ), t > 0, (4.5)

r (0) = r0,

where r0, a and σ are positive constants. The nonrandom positive function θ(t ) of the time

variable t can be expressed as, see Hull, 2012, p. 692,

θ(t ) = Ft (0, t )+aF (0, t )+ σ2

2a

(
1−e−2at

)
(4.6)

where F (0, t ) is the forward rate and Ft (0, t ) is the time derivative of the forward rate. The volatil-

ity is assumed to be of the form v(u, t ) = σ
a (1−e−a(t−u)).

Proposition 4.4 The process

r (t ) = r0e−at +α(t )+σe−at
∫ t

0
eaudW (u), (4.7)

where

α(t ) = F (0, t )+ σ2

2a2
(1−e−at )2

is the solution of the SDE (4.5).

Proof It follows by applying Itô’s formula to the function g (t ,r ) = eat r . �

Proposition 4.5 For the solution process (4.7):

E [r (t )] → F (0, t )+σ2/2a2 as t →∞, and

V ar [r (t )] → σ2/2a as t →∞.
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Proof Taking the expectation of the process (4.7)

E [r (t )] = r0e−at +α(t )

= r0e−at +F (0, t )+ σ2

2a2
(1−e−at )2

lim
t→∞E [r (t )] = F (0, t )+ σ2

2a2

and for its second moment

E [r 2(t )] = σ2

2a
+α2(t )+e−2at

(
r 2

0 −
σ2

2a

)
+2e−at r0α(t )

lim
t→∞E [r 2(t )] = σ2

2a
+F 2(0, t )+2F (0, t )

σ2

2a2
+ σ4

4a4
. �

Theorem 4.4 The solution process of equation (4.5) is exponentially mean square stable.

Proof Considering the difference of solutions, it follows that

E |r (t )− r ∗(t )|2 = E |r0 − r ∗
0 |2 exp{−2at }. �

Hull-White: An extension

This model considers a time-dependent reversion level property while the volatility term is as-

sumed to be proportional to the interest rate level. The extension of the Hull-White model for

the interest rate process r (t ) given by the SDE:

dr (t ) = [θ(t )−ar (t )]d t +σr (t )dW (t ), t > 0, (4.8)

r (0) = r0,

where r0, a and σ are positive constants and θ(t ) is a nonrandom positive function of the time

variable t .
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Proposition 4.6 The process satisfying the stochastic integral equation

r (t ) = e−at r0 +e−at
∫ t

0
easθ(s)d s +e−at

∫ t

0
easσr (s)dW (s) (4.9)

is the solution of the SDE (4.8).

Proof It follows by applying Itô’s formula to the function g (t ,r ) = eat r . �

Proposition 4.7 For the solution process (4.9), its expectation can be obtained as

E [r (t )] = e−at r0 +e−at
∫ t

0
easθ(s)d s

and its variance can be expressed as

V ar [r (t )] = e−2at
∫ t

0
e2asσ2r 2(s)d s.

Proof We take expectation and variance to the solution process (4.9) as follows:

E [r (t )] = E
[

e−at r0 +e−at
∫ t

0
easθ(s)d s +e−at

∫ t

0
easσr (s)dW (s)

]
= e−at r0 +e−at

∫ t

0
easθ(s)d s,

V ar [r (t )] = V ar
[

e−at r0 +e−at
∫ t

0
easθ(s)d s +e−at

∫ t

0
easσr (s)dW (s)

]
= V ar

[
e−at

∫ t

0
easσr (s)dW (s)

]
= e−2at

∫ t

0
e2asσ2r 2(s)d s. �

Theorem 4.5 The solution process of equation (4.8) is exponentially mean square stable pro-

vided a >σ2.
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Proof Considering the difference of solutions, it follows proceeding as in Proposition 4.2:

E |r (t )− r ∗(t )|2 ≤ 2E |r0 − r ∗
0 |2 exp{−2(a −σ2)t }. �

4.1.4 Black-Derman-Toy

Black, Derman and Toy, 1990, proposed a binomial-tree approach for a lognormal short-rate

process see Hull, 2012, p. 693.

Black, Derman and Toy interest rate model is described by the following SDE:

d lnr (t ) = [h(t )−a(t ) lnr (t )]d t +σ(t )dW (t ), t > 0,

r (0) = r0.

This model imposes the following relationship between the volatility parameterσ(t ) and the

reversion rate parameter a(t ):

a(t ) =−σ
′(t )

σ(t )
(4.10)

A version of this model, often used in practice, is when σ(t ) is constant. So there is no mean

reversion and the Black-Derman-Toy interest rate model reduces to

d lnr (t ) = h(t )d t +σdW (t ), t > 0,

r (0) = r0.

or,

dr (t ) = h(t )r (t )d t +σr (t )dW (t ), t > 0, (4.11)

r (0) = r0.

The properties obtained in this section appear to be new.
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Theorem 4.6 The solution process of the Black-Derman-Toy interest rate model (4.11), is

r (t ) = r0 exp
{∫ t

0
h(s)d s − 1

2
σ2t +σW (t )

}
. (4.12)

Proof We find the solution process to (4.11) by application of Itô’s formula taking the function

g (t ,r ) = lnr . Then

d
[

lnr (t )
]

= ∂g

∂t
(t ,r (t ))d t + ∂g

∂r
(t ,r (t ))dr (t )+ 1

2

∂2g

∂r 2
(t ,r (t ))dr (t )dr (t )

= [0]d t + 1

r (t )
dr (t )+ 1

2

[
− 1

r 2(t )

]
dr (t )dr (t )

= 1

r (t )
[h(t )r (t )d t +σr (t )dW (t )]− 1

2

1

r 2(t )
[h(t )r (t )d t +σr (t )dW (t )]2

=
[

h(t )− 1

2
σ2

]
d t +σdW (t ). (4.13)

Integrating equation (4.14) from 0 to t yields

lnr (t )− lnr (0) =
∫ t

0
h(s)d s − 1

2
σ2

∫ t

0
d t +σ

∫ t

0
dW (t )

ln
[r (t )

r0

]
=

∫ t

0
h(s)d s − 1

2
σ2t +σW (t ).

Thus, the desired result follows. �

Theorem 4.7 For the solution process (4.13) of the Black-Derman-Toy interest rate model

E [r (t )] = r0 exp
{∫ t

0
h(s)d s

}
,

and

V ar [r (t )] = r 2
0 exp

{
2
∫ t

0
h(s)d s

}[
exp{σ2t }−1

]
.

Proof For the first moment of the solution process of the Black-Derman-Toy interest rate model
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(4.11),

E [r (t )] = E
[

r0 exp
{∫ t

0
h(s)d s − 1

2
σ2t +σW (t )

}]
= r0 exp

{∫ t

0
h(s)d s

}
.

For the second moment we have

E [r 2(t )] = E
[

r 2
0 exp

{
2
∫ t

0
h(s)d s

}
−σ2t +2σW (t )

]
= r 2

0 exp
{

2
∫ t

0
h(s)d s +σ2t

}
. �

4.1.5 Black-Karasinski

Black and Karasinski, 1991, proposed an extension of the Black-Derman-Toy interest rate model

where this model is no longer required to fulfill equation (4.10) so the reversion rate and volatil-

ity can be determined independently of each other.

The properties obtained in this section appear to be new.

Therefore, the Black-Karasinski interest rate model is described by the following SDE:

d lnr (t ) = [h(t )−a(t ) lnr (t )]d t +σ(t )dW (t ), t > 0,

r (0) = r0.

which is the same Black-Derman-Toy interest rate model but without a restriction. For our pur-

poses we take the case a = 0 in order to address a functional form suggested by Björk, 2009, so

that the Black-Karasinski model becomes

d lnr (t ) = h(t )d t +σ(t )dW (t ), t > 0,

r (0) = r0.
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or,

dr (t ) = h(t )r (t )d t +σ(t )r (t )dW (t ), t > 0, (4.14)

r (0) = r0.

Theorem 4.8 The solution process of the Black-Karasinski interest rate model (4.15), is

r (t ) = r0 exp
{∫ t

0
[h(s)− 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

}
. (4.15)

Proof We find the solution process to (4.15) by application of Itô’s formula taking the function

g (t ,r ) = lnr . Then

d lnr (t ) = ∂g

∂t
(t ,r (t ))d t + ∂g

∂r
(t ,r (t ))dr (t )+ 1

2

∂2g

∂r 2
(t ,r (t ))dr (t )dr (t )

= [0]d t + 1

r (t )
dr (t )+ 1

2

[
− 1

r 2(t )

]
dr (t )dr (t )

= 1

r (t )
[h(t )r (t )d t +σ(t )r (t )dW (t )]− 1

2

1

r 2(t )
[h(t )r (t )d t +σ(t )r (t )dW (t )]2

=
[

h(t )− 1

2
σ2(t )

]
d t +σ(t )dW (t ). (4.16)

Integrating equation (4.17) from 0 to t yields

lnr (t )− lnr (0) =
∫ t

0
[h(s)− 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

ln
[r (t )

r0

]
=

∫ t

0
[h(s)− 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s).

Thus, the desired result follows. �

Theorem 4.9 For the solution process (4.16) of the Black-Karasinski interest rate model

E [r (t )] = r0 exp
{∫ t

0
h(s)d s

}
,
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and

V ar [r (t )] = r 2
0 exp

{
2
∫ t

0
h(s)d s

}{
exp

{∫ t

0
σ2(s)d s

}
−1

}
.

Proof For the first moment of the solution process of the Black-Karasinski interest rate model

(4.15)

E [r (t )] = r0E exp
{∫ t

0
[h(s)− 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

}
.

= r0 exp
{∫ t

0
h(s)d s

}
.

For the second moment we have

E [r 2(t )] = r 2
0 E exp

{
2
∫ t

0
[h(s)− 1

2
σ2(s)]d s +2

∫ t

0
σ(s)dW (s)

}
= r 2

0 exp
{

2
∫ t

0
h(s)d s +

∫ t

0
σ2(s)d s

}
. �

4.1.6 Dothan

After assuming a constant market price of risk, the Dothan interest rate model takes a continuous-

time version of the Rendleman and Barter, 1980, model. The interest rate is always positive for

each t considering a lognormal distribution.

The properties obtained are known for stocks given for the Black-Scholes-Merton equation,

1973. However, we obtain similar properties for the interest rate process.

We consider the following form of the Dothan model for the interest rate process r (t ):

dr (t ) = ar (t )d t +σr (t )dW (t ), t > 0, (4.17)

r (0) = r0.

where a is a real constant and r0 and σ are positive constants.
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A well-known solution of this model is given by Svishchuk and Kalemanova, 2000:

r (t ) = r0 exp
{

(a − 1

2
σ2)t +σW (t )

}
. (4.18)

Proposition 4.8 For the solution process (4.19) of the Dothan interest rate model (4.18),

E [r (t )] = r0 exp{at }, and

V ar [r (t )] = r 2
0 exp{2at }[exp{σ2t }−1].

Proof For the first moment of (4.19), we have

E |r (t )| = r0 exp
{(

a − 1

2
σ2

)
t +σW (t )

}
= r0 exp{at }.

For the second moment we have

E |r (t )|2 = r 2
0 E exp

{
2
(
a − 1

2
σ2

)
t +2σW (t )

}
= r 2

0 exp{2at +σ2t }. �

Proposition 4.9 For the solution process (4.19),

lim
t→∞E [r (t )] =


0 if a < 0

r0 if a = 0

+∞ if a > 0

and

lim
t→∞V ar [r (t )] =+∞, a ≥ 0.

Proof It can be easily shown from expressions for E [r (t )] and V ar [r (t )] in Proposition 4.8. �

Proposition 4.10 If a < −σ2, then the trivial solution of equation (4.18) given in (4.19) is expo-

nentially mean square stable.
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Proof Let r ∗(t ) be the solution of (4.18) satisfying r ∗(0) = r ∗
0 . Then

r (t )− r ∗(t ) = (r0 − r ∗
0 )exp

{
(a − 1

2
σ2)t +σW (t )

}
.

Taking expectations on both sides of the equation, we obtain

E |r (t )− r ∗(t )|2 = E |r0 − r ∗
0 |2E exp

{
2(a − 1

2
σ2)t +2σW (t )

}
.

Thus

E |r (t )− r ∗(t )|2 = E |r0 − r ∗
0 |2 exp

{
2(a +σ2)t

}
, t ≥ 0. �

4.2 Interest Rate Models with Poisson Jumps

In this Section, we consider some of the interest rate models with Poisson jumps.

4.2.1 Vasicek

Asssume that the Vasicek model of the interest rate process is continuous on time intervals

[τi ,τi+1], i = 1,2, . . .. At random times τi the interest rate jumps:

rτi = (1+Ui )rτi−.

The number of jumps on the interaval [0, t ], denoted by N (t ), is assumed to be a Poisson process

with intensity λ. The jumps (Ui )i≥0 for a sequence of i.i.d. random variables assuming values in

(−1,∞).

According to Svishchuk and Kalemanova, 2000, the Vasicek interest rate process with com-

pound Poisson jumps can be represented as

r (t ) =
N (t )∏
i=1

(1+Ui )
[α
β
+

(
r0 − α

β

)
e−βt ++σe−βt

∫ t

0
eβsdW (s)

]
. (4.19)
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Note that equation (4.20) can be rewritten as

r (t ) =
N (t )∏
i=1

(1+Ui )
[

e−βt r0 + α

β
(1−e−βt )+σe−βt

∫ t

0
eβsdW (s)

]
. (4.20)

where the continuous part of this jump process coincides with expression (3.7) in Chapter 3.

Theorem 4.10 The solution (4.21) of the Vasicek interest rate model with jumps satisfies

E |r (t )|p ≤ eλ(E [1+U1]p−1)t 3p−1
{

E |r0|p + αp

βp
+

[1

2
p(p −1)

]p/2
T p/2−1σ

p

βp
(eβpT −1)

}
(4.21)

for p ≥ 2 and for each t ∈ [0,T ].

Proof We observe that

E
∣∣∣N (t )∏

i=1
(1+Ui )

∣∣∣p
= E

∣∣∣N (t )∏
i=1

(1+Ui )p
∣∣∣.

An application of Lemma 2.2 yields

E
∣∣∣N (t )∏

i=1
(1+Ui )p

∣∣∣= eλ(E [1+U1]p−1)t .

Next, taking expectation in (4.21), and following the proof of Theorem 4.1, we obtain the

desired result. �

4.2.2 Cox-Ingersoll-Ross

In this subsection, we follow the approach considered by Svishchuk and Kalemanova, 2000. We

do this in two steps.

In the first step, we consider the continuous part of the jump process, equation (3.9). Denote

by B(t ) a one dimensional Wiener process defined on a probability space (Ω,F,P ). Let B(0) = 0,

r0 ∈ R, V (0) = r0 − α
β

, and Ṽ (s) =V (0)+B(ϕ−1
s ) for an increasing function ϕ(s) such that

ϕt =
∫ t

0
a−2(ϕs ,Ṽ (s))d s, (4.22)
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where

a(s,Ṽ (s)) =σeβs

√
e−βsṼ (s)+ α

β
.

Proposition 4.11 [Svishchuk and Kalemanova, 2000] The process

r (t ) = α

β
+e−βt V (0)+e−βt B(ϕ−1

t ) (4.23)

is a solution of equation the CIR model (3.9).

Note that the solutions given by the above Proposition 4.11, and equation (3.12) are the same.

To show this, consider the transformation

V (t ) = eβt
(
r (t )− α

β

)
.

Applying Itô’s formula we get

d [V (t )] =σeβt

√
e−βt V (t )+ α

β
dW (t ). (4.24)

Moreover, changing the time in the Wiener process, we obtain the following solution of equation

(4.25)

V (t ) =V (0)+B(ϕ−1
s ) = Ṽ (t ), (4.25)

where

B(ϕ−1
s ) =σ

∫ t

0
eβs

√
r (s)dW (s).

In the second step, consider the following CIR interest rate process with random jumps as in

Svishchuk and Kalemanova, 2000,

r (t ) =
N (t )∏
i=1

(1+Ui )
[α
β
+e−βt

(
r0 − α

β

)
+e−βtσ

∫ t

0
eβs

√
r (s)dW (s)

]
. (4.26)
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The following theorem generalizes a previous result by Govindan and Acosta, 2008.

Theorem 4.11 For the CIR interest rate model with the compound Poisson jump (4.27), we have

limsup
t→∞

E |r (t )− r ∗(t )|2 ≤ eλ(E [1+U1]2−1)t σ
2α

β2
.

Proof For our purposes, we rewrite (4.27) as

X (t ) = r (t )eβt

=
N (t )∏
i=1

(1+Ui )
[

r0 + α

β

(
eβt −1

)
+σ

∫ t

0
eβs

√
r (s)dW (s)

]
. (4.27)

Taking expectations on both sides of (4.28), we get

E [X (t )] = E
{N (t )∏

i=1
(1+Ui )

[
r0 + α

β

(
eβt −1

)
+σ

∫ t

0
eβs

√
r (s)dW (s)

]}
= eλ(E [1+U1]−1)t

[
r0 + α

β

(
eβt −1

)]
. (4.28)

Next, we consider the processes X (t ) = r (t )eβt , and X ∗(t ) = r ∗(t )eβt , where r (t ) and r ∗(t ) are

solutions with the initial condition r (0) = r0, r ∗(0) = r ∗
0 , respectively.

Recall

J (t ) =
N (t )∏
i=1

(1+Ui ).

From (4.28), we have

|X (t )−X ∗(t )|2 = |J (t )|2
{
|r0 − r ∗

0 |2 +2|r0 − r ∗
0 |σ

∫ t

0
eβs

∣∣∣√r (s)−
√

r ∗(s)
∣∣∣dW (s)

+σ2
∫ t

0
eβs

∣∣∣√r (s)−
√

r ∗(s)
∣∣∣2

d s
}

. (4.29)
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Taking expectations on both sides of (4.30), we get

E |X (t )−X ∗(t )|2 = E |J (t )|2
{

E |r0 − r ∗
0 |2

+
∫ t

0
σ2e2βsE

∣∣∣√r (s)−
√

r ∗(s)
∣∣∣2

d s
}

. (4.30)

But note that

E |J (t )|2 = E
∣∣∣N (t )∏

i=1
(1+Ui )

∣∣∣2

= E
∣∣∣N (t )∏

i=1
(1+Ui )2

∣∣∣
= eλ(E [1+U1]2−1)t .

Also,

E
[√

r (s)−
√

r ∗(s)
]2

= E
[

r (s)−2
√

r (s)
√

r ∗(s)+ r ∗(s)
]

≤ E |r (s)|+E |r ∗(s)|. (4.31)

For the continuous part of the jump process, equation (3.12), we note that

E |r (s)| = r0e−βs + α

β
(1−e−βs),

E |r ∗(s)| = r ∗
0 e−βs + α

β
(1−e−βs).

Hence

E |X (t )−X ∗(t )|2 ≤ E |J (t )|2
{

E |r0 − r ∗
0 |2

+
∫ t

0
σ2e2βs

[
E |r (s)|+E |r ∗(s)|

]
d s

}
≤ E |J (t )|2

{
E |r0 − r ∗

0 |2

+
∫ t

0
σ2e2βsE |r (s)|d s +

∫ t

0
σ2e2βsE |r ∗(s)|d s

}
. (4.32)
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From (4.33), we obtain

∫ t

0
σ2e2βsE |r (s)|d s = 1

β
r0σ

2
(
eβt −1

)
+ασ

2

2β2

(
e2βt −1

)
−ασ

2

β2

(
eβt −1

)
,∫ t

0
σ2e2βsE |r ∗(s)|d s = 1

β
r ∗

0 σ
2
(
eβt −1

)
+ασ

2

2β2

(
e2βt −1

)
−ασ

2

β2

(
eβt −1

)
.

Hence, from (4.33), we have

E |r (t )− r ∗(t )|2 ≤ E |J (t )|2
{

E |r0 − r ∗
0 |2e−2βt

+ σ2

β

(
1−e−βt

)
(r0 − r ∗

0 )e−βt

+ ασ2

β2

(
1−e−2βt

)
−2

ασ2

β2

(
1−e−βt

)
e−βt

}
.

from which the desired result follows. �

4.2.3 Black-Derman-Toy

Consider the Black-Derman-Toy interest rate model with compensated compound Poisson jumps:

dr (t ) = h(t )r (t )d t +σr (t )dW (t )+ r (t−)d [Q(t )−λγt ], t > 0,

r (0) = r0,

where h(t ) is a deterministic function and σ, λ and γ are nonnegative constants.

Note that this equation can be re-written as

dr (t ) = [h(t )−λγ]r (t )d t +σr (t )dW (t )+ r (t−)dQ(t ), t > 0, (4.33)

r (0) = r0.

Theorem 4.12 The solution to (4.34) is given by

r (t ) =
N (t )∏
i=1

(1+Ui )r0 exp
{∫ t

0
h(s)d s − (λγ+ 1

2
σ2)t +σW (t )

}
. (4.34)
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Proof Following Shreve, 2004, p. 513, we show that (4.35) satisfies the SDE (4.34). For the

continuous part of the jump process define

X (t ) = r0 exp
{∫ t

0
h(s)d s −

(
λγ+ 1

2
σ2

)
t +σW (t )

}
,

and for the pure jump process define

J (t ) =
N (t )∏
i=1

(1+Ui ).

Next, we show that r (t ) = J (t )X (t ) is a solution to the SDE (4.34). The Itô formula (Theorem 2.6)

for a continuous part of the process says that

d X (t ) = [h(t )−λγ]X (t )d t +σX (t )dW (t ). (4.35)

When considering the i th-jump, J (t ) = J (t−)(1+Ui ), we get

∆J (t ) = J (t )− J (t−)

= J (t−)Ui

= J (t−)∆Q(t ).

The equation ∆J (t ) = J (t−)∆Q(t ) also holds at non jump times with both sides equal to zero.

Hence

d J (t ) = J (t−)dQ(t ). (4.36)

Now from Itô’s product rule (Theorem 2.9) for a jump processes,

r (t ) = X (t )J (t )

= r0 +
∫ t

0
X (s−)d J (s)+

∫ t

0
J (s)d X (s)+ [X , J ](t ). (4.37)

For a pure jump process J and a continuous process X , [X , J ](t ) = 0. Substituting (4.36) and
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(4.37) into (4.38), we obtain

r (t ) = X (t )J (t )

= r0 +
∫ t

0
X (s−)J (s−)dQ(s)+

∫ t

0
[h(s)−λγ]X (s)J (s)d s

+σ
∫ t

0
X (s)J (s)dW (s),

which expressed in a differential form gives

dr (t ) = d
[

X (t )J (t )
]

= X (t−)J (t−)dQ(t )+ [h(t )−λγ]X (t )J (t )d t +σX (t )J (t )dW (t )

= r (t−)dQ(t )+ [h(t )−λγ]r (t )d t +σr (t )dW (t ),

which is (4.34). �

Corollary 4.1 The Black-Derman-Toy interest model with a compound Poisson process Q(t )

jumps, the solution process to (4.34) reduces to

r (t ) = r0

N (t )∏
i=1

(1+Ui )exp
{∫ t

0
h(s)d s − 1

2
σ2t +σW (t )

}
.

Theorem 4.13 For the solution process (4.35),

E [r (t )] = r0 exp{
∫ t

0
h(s)d s},

and

V ar [r (t )] = r 2
0 exp{2

∫ t

0
h(s)d s}[exp{λ(E [1+U1]2 −1)t −2λγt +σ2t }−1].
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Proof For the first moment we have

E [r (t )] = E
[N (t )∏

i=1
(1+Ui )r0 exp

{∫ t

0
h(s)d s − (λγ+ 1

2
σ2)t +σW (t )

}]
= r0 exp{λ(E [1+U1]−1)t }E

[
exp

{∫ t

0
h(s)d s − (λγ+ 1

2
σ2)t +σW (t )

}]
= r0 exp

{∫ t

0
h(s)d s

}
.

For the second moment we have

E [r 2(t )] = r 2
0 E

[N (t )∏
i=1

(1+Ui )2
]

E exp
{

2
∫ t

0
h(s)d s −2λγt −σ2t +2σW (t )

}
= r 2

0 exp{λ(E [1+U1]2 −1)t }E exp
{

2
∫ t

0
h(s)d s −2λγt −σ2t +2σW (t )

}
= r 2

0 exp{λ(E [1+U1]2 −1)t }exp
{

2
∫ t

0
h(s)d s −2λγt +σ2t

}
.

Hence, the desired result follows. �

4.2.4 Black-Karasinski

Consider the Black-Karasinski interest rate model with compensated compound Poisson pro-

cess jumps

dr (t ) = h(t )r (t )d t +σ(t )r (t )dW (t )+ r (t−)d [Q(t )−λγt ], t > 0,

r (0) = r0,

where h(t ) and σ(t ) are deterministic functions and λ and γ are nonnegative constants. Note

that this equation can be re-written as

dr (t ) = [h(t )−λγ]r (t )d t +σ(t )r (t )dW (t )+ r (t−)dQ(t ), t > 0, (4.38)

r (0) = r0.
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Theorem 4.14 The solution to (4.39) is given by

r (t ) = r0

N (t )∏
i=1

(1+Ui )exp
{∫ t

0
[h(s)−λγ− 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

}
. (4.39)

Proof Following Shreve, 2004, p. 513, we show that (4.40) satisfies the SDE (4.39) as before. For

the continuous part of the jump process define

X (t ) = r0 exp
{∫ t

0
[h(s)−λγ− 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

}
,

and for the pure jump process define

J (t ) =
N (t )∏
i=1

(1+Ui ).

Next show that r (t ) = J (t )X (t ) is a solution to the SDE (4.39). The Itô’s formula for a continuous

process yields

d X (t ) = [h(t )−λγ]X (t )d t +σ(t )X (t )dW (t ). (4.40)

When considering the i th-jump, J (t ) = J (t−)(1+Ui ),

∆J (t ) = J (t )− J (t−)

= J (t−)Ui

= J (t−)∆Q(t ).

The equation ∆J (t ) = J (t−)∆Q(t ) also holds at non jump times with both sides equal to zero.

Hence

d J (t ) = J (t−)dQ(t ). (4.41)
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Now from Itô’s product rule for a jump processes,

r (t ) = X (t )J (t )

= r0 +
∫ t

0
X (s−)d J (s)+

∫ t

0
J (s)d X (s)+ [X , J ](t ). (4.42)

For a pure jump process J and a continuous process X , [X , J ](t ) = 0. Substituting (4.41) and

(4.42) into (4.43), we obtain

r (t ) = X (t )J (t )

= r0 +
∫ t

0
X (s−)J (s−)dQ(s)+

∫ t

0
[h(s)−λγ]X (s)J (s)d s

+
∫ t

0
σ(s)X (s)J (s)dW (s),

which expressed in a differential form gives

dr (t ) = d
[

X (t )J (t )
]

= X (t−)J (t−)dQ(t )+ [h(t )−λγ]X (t )J (t )d t +σ(t )X (t )J (t )dW (t )

= r (t−)dQ(t )+ [h(t )−λγ]r (t )d t +σ(t )r (t )dW (t )

which is (4.39). �

Corollary 4.2 The Black-Karasinski interest rate model with compound Poisson process Q(t )

jumps, the solution process to (4.39) reduces to

r (t ) = r0

N (t )∏
i=1

(1+Ui )exp
{∫ t

0
[h(s)− 1

2
σ2(t )]d s +

∫ t

0
σ(s)dW (s)

}
. (4.43)

Theorem 4.15 For the solution process (4.40),

E [r (t )] = r0 exp
{∫ t

0
h(s)d s

}
,
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and

V ar [r (t )] = r 2
0 exp

{
2
∫ t

0
h(s)d s

}[
exp{λ(E [1+U1]2 −1)t −2λγt +

∫ t

0
σ2(s)d s}−1

]
.

Proof For the first moment we have

E |r (t )| = r0E
∣∣∣N (t )∏

i=1
(1+Ui )

∣∣∣E exp
{∫ t

0
[h(s)− (λγ+ 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

}
= r0 exp{λ(E [1+U1]−1)t }E exp

{∫ t

0
[h(s)− (λγ+ 1

2
σ2(s)]d s +

∫ t

0
σ(s)dW (s)

}
= r0 exp

{∫ t

0
h(s)d s

}
.

For the second moment we have

E |r (t )|2 = r 2
0 E

∣∣∣N (t )∏
i=1

(1+Ui )2
∣∣∣E exp

{
2
∫ t

0
[h(s)− (λγ+ 1

2
σ2(s)]d s +2

∫ t

0
σ(s)dW (s)

}
= r 2

0 exp{λ(E [1+U1]2 −1)t }exp
{

2
∫ t

0
h(s)d s −2λγt +

∫ t

0
σ2(s)d s

}
.

Hence, the desired result follows. �



Summary

In this thesis the solution process and some probabilistic properties for the following interest

rate models were studied: Vasicek, Cox-Ingersoll-Ross, Hull-White, Extended Hull-White, Hull-

White: A CIR style extension, Hull-White: A special case, Hull-White: An extension, Brennan-

Schwartz, Exponential Vasicek, Dothan, a Generalized interest rate model, Extended- Expo-

nential Vasicek, Mercurio-Moraleda, Black-Derman-Toy, and Black-Karasinski. The Brownian

bridge was also studied. Some interest rate models with jumps were also studied such as: Va-

sicek with the compound Poisson jump process, Cox-Ingersoll-Ross with the compound Poisson

jump process, Black-Derman-Toy with the compensated compound Poisson jump process, and

Black-Karasinski with the compensated compound Poisson jump process.

In Chapter 3, an alternative method to Itô’s formula called as a linear ODE method was intro-

duced to obtain the solution of linear interest rate models. The solution process to these models

studied in this chapter was obtained by the application of the linear ODE method and also by

Itô’s formula. Note that the solution process obtained by both approaches was the same. Pre-

cisely, the solution process was obtained for the interest rate models such as Vasicek in Theorem

3.1, Cox-Ingersoll-Ross (CIR) in Theorem 3.2, Hull-White in Theorem 3.3, extended Hull-White

in Theorem 3.4, a CIR style extension of the Hull-White in Theorem 3.5, Brennan-Schwartz in

Theorem 3.6, exponential Vasicek in Theorem 3.7, Dothan in Theorem 3.8, a generalized interest

rate model in Theorem 3.9, Mercurio-Moraleda in Theorem 3.10, extended exponential Vasicek

in Theorem 3.11, and the Brownian bridge in Theorem 3.12. A counter example was introduced

to show a case where the linear ODE method was not applicable.

In Chapter 4, we first obtained the solution process by using Itô’s product rule for the in-

66
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terest rate models such as Black-Derman-Toy and Black-Karasinsk with Poisson jumps (Lévy

processes) in Theorem 4.12 and Theorem 4.14, respectively. Secondly, we obtained moment

properties of Vasicek in Theorem 4.1, Brennan-Schwartz in Proposition 4.1 and Theorem 4.2,

Hull-White in Proposition 4.3, extension of Hull-White in Proposition 4.7, Black-Derman-Toy in

Theorem 4.7, Black-Karasinski in Theorem 4.9 and Dothan in Proposition 4.8. Also, we obtained

moment properties of Vasicek in Theorem 4.10, Black-Derman-Toy in Theorem 4.13 and Black-

Karasinski in Theorem 4.15 with Poisson jumps. Lastly, we obtained stability properties like

boundedness in probability uniformly in t of Brennan-Schwartz model in Theorem 4.3, expo-

nential mean square stability of Brennan-Schwartz model in Proposition 4.2, Hull-White model

in Theorem 4.4 and Dothan model in Proposition 4.10, and asymptotic quadratic mean of CIR

with Poisson jumps in Theorem 4.11.

A comprehensive treatment of all standard interest rate models here is beyond the scope of

this thesis. However, an interested reader can consult references such as Brigo and Mercurio,

2007, and Veronesi, 2011, among others.

As far as future research is concerned, we are interested in the statistical estimation of pa-

rameters of interest rate models studied in the thesis. Similarly, we are interested in simulating

the stability behavior of some results obtained here. The study of models for the valuation of

bonds and their probabilistic properties is also of our interest in the future. We will continue the

study of more interest rate models including such models with Poisson jumps (Lévy processes).
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