

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA

SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

CARACTERIZACIÓN DEL TÚNEL DE VIENTO DE VELOCIDAD BAJA DEL LABINTHAP

TESIS

PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS EN INGENIERÍA MECÁNICA

PRESENTA

ING. PEDRO ROSAS QUITERIO

DIRECTOR DE TESIS: GUILIBALDO TOLENTINO ESLAVA

MEXICO, D.F.

AGOSTO 2010

ÍNDICE

INDICE

RELAC	IÓN DE FIGURAS	i
RELAC	IÓN DE TABLAS	iii
NOME	NCLATURA	iv
RESUN	1EN	vi
ABSTR	ACT	vii
INTRO	DUCCCIÓN	viii
I E 1.1 T 1.2 T 1.3 T 1.4 T 1.5 T	STADO DEL ARTE Túnel de viento de doble sección de pruebas del NIST Túnel de viento del Politécnico de Milán Túnel de viento del Colegio Imperial de Londres Túnel de agua del Colegio Imperial de Londres Túnel de viento del LABINTHAP	1 2 5 6 8
II 2.1 2.1.1 2.1.2 2.1.3 2.2 2.3 2.4 2.5	COMPORTAMIENTO DE FLUJOS EN DUCTOS Capa límite Capa límite laminar Capa límite turbulenta Espesor de capa límite Turbulencia Perfil de velocidad Flujo en ductos Flujo en esquinas	11 12 13 13 14 15 16 17 18
III 3.1 3.1.2 3.1.2.1 3.1.2.1 3.1.2.2 3.1.3 3.1.4 3.1.5 3.1.6 3.2 3.2.1 3.2.2 3.2.3 3.3	DESCRIPCIÓN DE LA INSTALACIÓN EXPERIMENTAL Túnel de viento de velocidad baja del LABINTHAP Entrada acampanada Cámara estabilizadora Paneles hexagonales Mallas Contracción Secciones de pruebas de succión Ventilador Sección de pruebas de descarga Anemómetro de hilo caliente Sistema de calibración Sondas Sistema posicionador Estación meteorológica	20 21 23 23 24 27 25 26 27 28 29 30 31 32

IV 4.1 4.2 4.3 4.4 4.5	DESARROLLO EXPERIMENTAL Metodología experimental Perfiles de velocidad. Turbulencia Capa límite Flujo en esquinas	34 35 38 45 46 58
V 5.1 5.2 5.3 5.4 5.5 5.6	ANÁLISIS DE RESULTADOS Tiempos de muestreo Perfiles de velocidad Turbulencia Capa límite Flujo en esquinas Determinación del área de calibración	64 65 66 69 72 72
CON	CONCLUSIONES	
REFE	REFERENCIAS	

	O a ma a ta mía tiana a da da a ma alla a su al al ma ma al	77
APENDICE A	Características de las mailas y del panal	11
APÉNDICE B	Ecuaciones de mecánica de fluidos	79
APÉNDICE C	Tablas y graficas de datos experimentales	79

RELACIÓN DE FIGURAS

Figura 1.1 Figura 1.2 Figura 1.3	Túnel de viento de doble sección de pruebas del NIST. Túnel de viento del Politécnico de Milán. Perfiles de la variación de velocidad de la sección de pruebas aeronáutica	3 3 4
Figura 1.4 Figura 1.5 Figura 1.6 Figura 1.7	Intensidad de turbulencia en la sección de pruebas civil. Túnel de viento del Colegio Imperial de Londres. Túnel de viento del LABINTHAP. Perfiles de velocidad en $X = 1.60$ m.	5 6 7 7
Figura 1.8 Figura 1.9 Figura 1.10	Perfiles de velocidad de capa límite en el eje Y y en X = 1.60 m. Perfiles de velocidad de capa límite en el eje Z y en X = 1.60 m. Sistema coordenado de medición.	8 8 9
Figura 1.11 Figura 1.12	Contornos de velocidad en X ₁ /d _h =38. Variación de la velocidad y turbulencia a lo largo del ducto.	9 10
Figura 2.1 Figura 2.2	Desarrollo de la capa límite en una superficie plana. Comparación de la solución de la capa límite de Blasius con datos experimentales.	12 13
Figura 2.3	Espesor de capa límite y espesor de momento.	14
Figura 2.4	Grafica de velocidad en transitorio.	15
Figura 2.5	verificación experimental de las leyes interior, exterior y de acoplamiento en el perfil de velocidad turbulento.	17
Figura 2.6	Desarrollo de un perfil de velocidad a través de una tubería.	17
Figura 2.7	Capas límite en una esquina de 90° de un ducto cuadrado. Geometría de las líneas de corriente en el flujo secundario.	18
Figura 2.8	Capas límite en una esquina.	19
Figura 2.9	Capa límite en una esquina de 90° de un ducto cuadrado y Contornos de líneas de isovelocidad. Re=83000.	19
Figura 3.1	Túnel de viento de velocidad baja del LABINTHAP.	21
Figura 3.2	Entrada acampanada.	21
Figura 3.3	Túnel de viento del LABINTHAP.	22
Figura 3.4	Camara estabilizadora.	23
Figura 3.5	Panal de ceida nexagonal. Melles	24
Figura 3.0	Ivialias. Guías laterales (izquierda) y sistema tensor (derecha)	24
Figura 3.8	Contracción	25
Figura 3.9	Carcasa del ventilador (izquierda). Cono difusor (centro). Motor de 100HP (derecha).	26 26
Figura 3.10	Sección de pruebas de descarga.	27
Figura 3.11	Sistema de operación del anemómetro del hilo caliente.	28
Figura 3.12	Unidad de flujo del sistema de calibración del anemómetro de hilo caliente.	28
Figura 3.13	Partes de las sondas.	29
Figura 3.14	Tipos de sondas.	30
Figura 3.15	Sistema posicionador.	31
Figura 3.16	Estación meteorológica	32

Figura 4.1 Figura 4.2	Metodología experimental general. Turbulencia a diferentes frecuencias y tiempos de muestreo a 5 m/s	34 35
Figura 4.3	Turbulencia a diferentes frecuencias y tiempos de muestreo a 30 m/s.	35
Figura 4.4	Planos de medición del túnel de viento del LABINTHAP.	36
Figura 4.5	Metodología experimental de los perfiles de velocidad e intensidad	37
	de turbulencia.	
Figura 4.6	Travectoria de medición de los perfiles de velocidad	37
Figura 4.7	Perfiles de velocidad en el eie Z. en X=0.8 m.	38
Figura 4.8	Perfiles de velocidad en el eje Z. en X=1.6 m.	38
Figura 4.9	Perfiles de velocidad en el eje Z. en X=2.4 m.	39
Figura 4.10	Perfiles de velocidad en el eie Y. en X=0.8 m.	39
Figura 4.11	Perfiles de velocidad en el eie Y. en X=1.6 m.	40
Figura 4.12	Perfiles de velocidad en el eje Y, en X=2.4 m.	40
Figura 4.13	Turbulencia contra velocidad.	41
Figura 4.14	Metodología experimental de la capa límite.	42
Figura 4.15	Travectoria de medición de la capa límite	42
Figura 4.16	Capas límite en el eie Y. en X=0.8 m.	43
Figura 4.17	Capas límite en el eie Y. en X=1.6 m.	43
Figura 4.18	Capas límite en el eje Y, en X=2.4 m.	44
Figura 4.19	Capas límite en el eje Z, en X=0.8 m.	44
Figura 4.20	Capas límite en el eje Z, en X=1.6 m.	45
Figura 4.21	Capas límite en el eje Z, en X=2.4 m.	45
Figura 4.22	Metodología experimental de flujo en esquina.	46
Figura 4.23	Travectoria de medición de flujo en esquina.	47
Figura 4.24	Mallado de la medición de flujo en esquina.	47
Figura 4.25	Líneas de isovelocidad en la esquina a 5 m/s.	48
Figura 4.26	Líneas de Isovelocidad en la esquina a 30 m/s.	48
Figura 5.1	Frecuencia, tiempo y turbulencia en el plano de 1.6 m a 5 m/s.	50
Figura 5.2	Frecuencia, tiempo y turbulencia en el plano de 1.6 m a 30 m/s.	51
Figura 5.3	Porcentaje de uniformidad de los perfiles de velocidad en el eje Z	52
0	antes y después de las modificaciones en X=1.6 m.	
Figura 5.4	Porcentaje de uniformidad de los perfiles de velocidad en el eje Y	53
0	antes y después de las modificaciones en X=1.6 m.	
Figura 5.5	Turbulencia a diferentes velocidades antes y después de las	54
0	modificaciones en $X = 1.6$ m.	
Figura 5.6	Comparación del crecimiento de la capa límite en el eje Y antes y	55
-	después de las modificaciones a 5 m/s, 15 m/s y 30 m/s.	
Figura 5.7	Comparación del crecimiento de la capa límite en el eje Z antes y	56
	después de las modificaciones a 5 m/s, 15 m/s y 30 m/s.	
Figura 5.8	Flujo en esquina en el plano de 2.4 m a una velocidad de30 m/s.	57
Figura A.1	Geometría de la Malla.	61
Figura A.2	Componente de la velocidad antes y después de la malla.	62
Figura A.3	Geometría de las celdas.	62
Figura C.1	Curva de calibración de la sonda 55P11.	66
Figura C.2	Curva de error en la calibración de la sonda 55P11.	67
Figura C.3	Curva de calibración de la sonda 55P15.	70
Figura C.4	Curva de error en la calibración de la sonda 55P15.	71
Figura C.5	Curvas de calibración para la sonda 55P61.	78
Figura C.6	Curvas de error en la calibración para la sonda 55P61.	79

RELACIÓN DE TABLAS

Tabla 1.1	Especificaciones generales y limitaciones	4
Tabla 1.2.	Propiedades de las mallas.	5
Tabla 3.1.	Características de las toberas de la unidad de calibración.	30
Tabla 3.2.	Características del sistema posicionador del anemómetro de hilo caliente.	32
Tabla 3.3.	Características de la estación meteorológica.	32
Tabla 4.1	Frecuencia y tiempo contra número de muestras.	34
Tabla 4.2	Matriz experimental.	36
Tabla 4.3	Turbulencia a diferentes velocidades y a diferentes planos.	41
Tabla 5.1	Porcentaje de uniformidad de perfiles de velocidad, en el eje Z antes y después de las modificaciones en X=1.6 m.	52
Tabla 5.2	Porcentaje de uniformidad de perfiles de velocidad, en el eje Y antes y después de las modificaciones en X=1.6 m.	52
Tabla 5.3	Turbulencia a diferentes velocidades antes y después de las modificaciones en $X = 1.6$ m.	53
Tabla 5.4	Comparación entre los espesores de la capa limite en el eje Y obtenidos antes y después de las modificaciones, a diferentes condiciones de velocidad y posición.	54
Tabla 5.5	Comparación entre los espesores de la capa limite en el eje Z obtenidos antes y después de las modificaciones, a diferentes condiciones de velocidad y posición.	54
Tabla 4.3	Parámetros de calibración para la sonda 55P11.	66
Tabla 4.4	Datos de perfiles de velocidad en el eje Z, en X=0.8 m.	67
Tabla 4.5	Datos de perfiles de velocidad en el eje Z, en X=1.6 m.	68
Tabla 4.6	Datos de perfiles de velocidad en el eje Z, en X=2.4 m.	68
Tabla 4.7	Datos de perfiles de velocidad en el eje Y, en 0.8 m.	68
Tabla 4.8	Datos de perfiles de velocidad en el eje Y, en 1.6 m.	69
Tabla 4.9	Datos de perfiles de velocidad en el eje Y, en 2.4 m.	69
Tabla 4.11	Parámetros de calibración de la sonda 55P15.	70
Tabla 4.12	Datos de capa límite en el eje Y, en X=0.8 m.	71
Tabla 4.13	Datos de capa límite en el eje Y, en X=1.6 m.	72
Tabla 4.14	Datos de capa límite en el eje Y, en X=2.4 m.	73
Tabla 4.15	Datos de capa limite en el eje \angle , en X=0.8 m.	74
Tabla 4.16	Datos de capa limite en el eje \angle , en X=1.6 m.	75
Tabla 4.17	Datos de capa limite en el eje \angle , en X=2.4 m.	/6
1 abla 4.18	Parametros de calibracion de la sonda 55P61.	- 77

NOMENCLATURA

 $A = Area, m^2$.

B = Coeficiente de la ecuación de la capa limite logarítmica, equivale a 5.

b = Base, m.

- D_{EQ} = Diámetro equivalente, m.
- E_{cor} = Tensión eléctrica corregida, V.
- f = Frecuencia, Hz.
- h = Altura, m.
- K = Coeficiente de caída de presión, adimensionalizada.
- Le = Longitud equivalente, m.
- M = Número de Mach.
- N= Número de muestras.
- p = Presión, Pa.
- \overline{p} = Presión promedio, Pa.
- p' = Fluctuación de la presión, Pa.
- Re_x = Número de Reynolds para una placa plana.
- T = Periodo, s.
- t = Tiempo, s.
- Tu = Turbulencia, %.
- U = Componente de velocidad tridimensional, m/s.
- u = Componente de la velocidad en el eje X, m/s.
- \overline{u} = Componente de la velocidad promedio en el eje X, m/s.
- u' = Fluctuación de la componente de la velocidad en el eje X, m/s.
- u* = Velocidad de fricción, m/s.
- $\left. U_{\tau_{w}} \right|_{Prom}$ = Velocidad media del esfuerzo cortante en la pared, m/s.
- U_{cor} = Velocidad corregida, m/s.

- $\Delta U/U$ = Fluctuación de la velocidad, %.
- u⁺ = Componente de la velocidad u en la ley de la pared adimensionalizada, m/s.
- $U_{\rm QS}$ = Velocidad de flujo secundario, m/s.
- v = Componente de la velocidad en el eje Y, m/s.
- \overline{v} = Componente de la velocidad promedio en el eje Y, m/s.
- v' = Componente de la fluctuación de la velocidad en el eje Y, m/s.
- w = Componente de la velocidad en el eje Z, m/s.
- \overline{w} = Componente de la velocidad promedio en el eje Z, m/s.
- w' = Componente de la fluctuación de la velocidad en el eje Z, m/s.
- y⁺= Componente de la distancia Y en la ley de la pared adimensionalizada, m.
- α = Coeficiente de deflexión de la malla, adimensional.
- β = Porosidad de la malla, adimensional.
- δ = Espesor de la capa límite, m.
- δ^* = Espesor de desplazamiento de la capa límite, m.
- δ_{Y} = Espesor de la capa límite en el eje Y, m.
- δ_Z = Espesor de la capa límite en el eje Z, m.

 ϕ = Ángulo que forma la componente principal de la velocidad con respecto de la normal a la malla.

- κ = Coeficiente de la ecuación de la capa limite logarítmica, equivale a 0.40.
- μ = Viscosidad dinámica, Pa·s.
- ρ = Densidad, kg/m³.
- τ = Esfuerzo cortante, Pa.
- $\tau_{\rm W}$ = Esfuerzo cortante en la pared, Pa.

 θ = Ángulo que forma la velocidad con respecto de la normal a la malla, después de la malla, °.

- θ = Espesor de momento de la capa límite, m.
- σ = Solidez de la malla, adimensional.

RESUMEN

En este trabajo se caracterizó la sección de pruebas del túnel de viento de velocidad baja del Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP), de la Sección de Estudios de Posgrado e Investigación (SEPI) de la ESIME Zacatenco del Instituto Politécnico Nacional (IPN), en función de los perfiles de velocidad, espesor de la capa límite, nivel de turbulencia y flujo en las esquinas, para determinar la zona de calibración de instrumentos de medición de velocidad de aire en un intervalo de 5 m/s a 30 m/s.

Para determinar la zona de calibración de instrumentos de medición de velocidad de aire dentro de la sección de pruebas del túnel de viento del LABINTHAP, se hicieron las mediciones con un anemómetro de hilo caliente marca DANTEC. Los perfiles de velocidad y la turbulencia fueron medidos con la sonda 55P11, en los ejes vertical y horizontal en los planos ubicados en X=0.80 m, X=1.60 m y X=2.40 m corriente abajo de la entrada del flujo a la sección de pruebas para las velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s. La capa límite y el flujo en las esquinas fue medida en las mismas posiciones, ejes y velocidades que los perfiles de velocidad, para lo cual se utilizó las sondas 55P15 y 55P61, respectivamente. Con estas mediciones se determinó la zona de calibración en la sección de pruebas del túnel de viento.

Los resultados determinaron que la variación de velocidad en la zona de corriente libre fueron menores a ±1% en la sección de pruebas para el intervalo de velocidad de 5 m/s a 30 m/s. El espesor de la capa límite para las condiciones 30 m/s y X=2.40 m en los ejes vertical y horizontal fue δ_Y =0.04 m, δ_Z =0.04 m, respectivamente. Además las mediciones de flujo mostraron un comportamiento uniforme.

El nivel de turbulencia promedio para un intervalo de velocidad de 5 m/s a 30 m/s en el centro del plano ubicado en X=1.60 m fue de $0.582\% \pm 0.035$. El flujo en esquinas fue asimétrico debido a que las dimensiones en ambos ejes tienen diferente magnitud. Las dimensiones de las zonas de calibración en los planos de medición ubicados en X=1.80 m, X=2.60 m y X=3.40 m para 30 m/s fueron de 0.746 m por 0.562 m, 0.738 m por 0.512 m y 0.738 m por 0.512 m; respectivamente. De la caracterización de la sección de pruebas del túnel de viento del LABINTHAP, se determinó una zona de calibración para instrumentos de medición de velocidad, que permitirá establecer en este laboratorio el patrón nacional de velocidad de aire.

ABSTRACT

At the present thesis work proceeded to characterize the test section of the low speed wind tunnel that is located at the Thermal Engineering and Applied Hydraulics Laboratory (LABINTHAP), from SEPI-ESIME Zacatenco of the National Polytechnic Institute (IPN), according to velocity profile uniformity, boundary layer thickness, turbulence level and corner flow to determinate calibration zone of air speed measurement instruments for a range from 5 m/s to 30 m/s.

To determinate calibration zone of air speed measurement instruments inside the test section of the low speed wind tunnel at the LABINTHAP, measurements were done with a DANTEC hot wire anemometer. Velocity profiles and turbulence were measurements 55P11 probe on horizontal and vertical axes located at planes X=0.80 m, X=1.60 m and X=2.40 m downstream from inlet at test section at the velocities 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s. The boundary layer and corner flow measurements was done with a 55P15 and 55P61 probes, respectively. These measurements locate the calibration zone of the low speed wind tunnel.

The results determinate that the velocity fluctuations of air speed measurement at the calibration zone instruments were less to ± 1 % for a range from 5 m/s to 30 m/s. The boundary layer thickness for the conditions 30 m/s and X=2.40 m on horizontal and vertical axes was fue δ_{Y} =0.04 m, δ_{Z} =0.04 m, respectively.

The average turbulence level for a range from 5 m/s to 30 m/s in the center of plane measurement locate at X=1.60 m was 0.582% \pm 0.035. The corner flow was asymmetric because the dimensions in both axes don't have the same magnitude. Calibration zones dimension found at X=1.80 m, X=2.60 m y X=3.40 m for 30 m/s were 0.746 m by 0.562 m, 0.738 m by 0.512 m and 0.738 m by 0.512 m, respectively. The wind tunnel test section characterization of the LABINTHAP determinate an air speed calibration zone to establish a national air speed standard in this laboratory.

INTRODUCCCIÓN

Hasta el día de hoy, en México no se encuentra registrado un patrón nacional de velocidad de aire, los únicos que poseen los patrones nacionales son el propio CENAM, el ININ y el INE. Lo anterior da el sustento de este trabajo de tesis de desarrollar este patrón nacional de medición de velocidad de aire, lo cual es de suma importancia en la calibración de instrumentos que miden esta variable que está presente en diversos procesos industriales, como son secado, chimenea. Con base en lo anterior El Instituto Politécnico Nacional (IPN), por medio de la Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME) Zacatenco ha firmado el convenio no. CENAM-IPN-001-01 con el Centro Nacional de Metrología para establecer dicho patrón en el Laboratorio de Ingeniería Mecánica y Eléctrica.

En México se le ha dado gran importancia a la medición de velocidad de aire en tuberías y ductos, lo cual tiene una gran aplicación en las áreas de aeronáutica, mecánica de fluidos, turbomaquinaria, chimeneas, procesos de secado, ventilación, por mencionar algunos, que frecuentemente se encuentra en un intervalo de 5 m/s a 30 m/s. debido a la importancia de esta medición es necesario contar con un patrón nacional de velocidad de aire para calibrar instrumentos de esta variable.

Diversos laboratorios a nivel internacional, como son el NIST, PTB cuentan con instalaciones experimentales para calibrar instrumentos de medición de velocidad de aire, la turbulencia se encuentra por debajo a 1 % y además tienen una uniformidad de los perfiles de velocidad de \pm 1 %; ambas condiciones son cumplidas por la sección de pruebas del túnel de viento de velocidad baja del LABINTHAP.

Se caracterizó el túnel de viento del LABINTHAP por medio de los conceptos la capa límite, perfiles de velocidad y la turbulencia, las cuales se midieron utilizando anemometría de hilo caliente. Para alcanzar el objetivo de esta tesis, se presentan 5 capítulos, como a continuación se menciona:

En el Capitulo 1 presenta los túneles de viento de institutos, laboratorios y centros de investigación, así como también las características de los mismos, en función de uniformidad de los perfiles de velocidad, espesor de la capa límite, el nivel de turbulencia y el flujo en esquinas, empleando tubo de Pitot, anemómetro de hilo caliente y anemómetro láser Doppler.

El Capitulo 2 presenta la teoría sobre la capa límite, turbulencia y perfiles de velocidad, así como el análisis de éstos en ductos de sección rectangular. Además se realiza un análisis del flujo en las esquinas.

En el Capitulo 3 presenta la descripción el túnel de viento del LABINTHAP, así como la instrumentación empleada para realizar la caracterización de la sección de pruebas.

En el Capitulo 4 se presenta la metodología experimental para llevar a cabo las mediciones de perfiles de velocidad, capa limite, nivel de turbulencia y flujo en esquinas, además de evaluar el tiempo de muestreo, lo anterior para caracterizar la sección de pruebas del túnel de viento.

En el Capitulo 5 se analizan los resultados obtenidos y finalmente se presentan las conclusiones del desarrollo de este trabajo.

CAPITICA I ANDERATE

En éste capítulo se presentan investigaciones previas de túneles de viento de velocidad baja y sus resultados experimentales de turbulencia, capa límite y flujo en esquinas

1.1 Túnel de viento de doble sección de pruebas del NIST

Mease [1], diseñó un túnel de viento de circuito cerrado de doble sección de pruebas, el cual es accionado por un motor de 370 kW. El flujo pasa a través de dos juegos de álabes guía, posteriormente atraviesa una sección transversal cuadrada de 3.7 m por 3.7 m conteniendo un panal de celdas hexagonales de 0.001 m de lado por 0.0076 m de largo, posteriormente entra en un difusor. El difusor contiene 6 mallas y descarga en una cámara estabilizadora de 6.2 m por 7.6 m que contiene 9 mallas. Todas las mallas son de 20 aberturas por pulgada cuadrada, están hechas de acero inoxidable con un diámetro del alambre de 0.00023 m y espaciadas a 0.61 m cada una de ellas en la dirección del flujo (figura 1.1).

Después de la cámara estabilizadora, el flujo pasa a través de una entrada cónica y entra en una sección transversal de 1.5 m por 2.1 m teniendo una velocidad máxima aproximada de 45 m/s, en donde se utilizan bridas para facilitar el cambio de la sección de pruebas. El panal, las mallas y la contracción de 14:4.1 proveen a la sección de prueba niveles de turbulencia en la corriente libre de 0.07 %, en la mayoría de los intervalos de velocidad y una uniformidad del perfil de velocidad dentro del 90 % de la sección transversal de trabajo.

La sección de pruebas superior tiene longitud global de 12.1 m con paredes laterales ajustables las cuales garantizan un gradiente radial de presión de cero para propósitos de investigación. La sección transversal es variable, nominalmente mide 2.1 m de alto por 1.5 m de ancho, con el 1.5 m de ancho variable. La dimensión vertical del ducto se reduce gradualmente en la dirección del flujo de 2.1 m a 1.2 m para simular un Venturi, haciendo que la velocidad máxima sea aproximadamente de 67 m/s. La longitud efectiva de trabajo es de 3 m. Las paredes laterales de la sección de prueba de velocidad baja son fijas. Ambas secciones de pruebas son equipadas con ventanas en las paredes laterales para visualización y acceso.

El propósito principal de este túnel es realizar calibraciones mediante un instrumento primario de medición que es el anemómetro láser Doppler. Un objetivo secundario fue realizar pruebas en tubos de Pitot con nariz esférica, elipsoidal comercial y elipsoidal larga, en donde se observó una variación casi nula en la lectura de presión. Finalmente se desarrollo una metodología para llevar a cabo calibraciones de instrumentos de velocidad [1].

1.2 Túnel de viento del Politécnico de Milán

Diana [2], llevó a cabo estudios, para aplicaciones aeronáuticas en un intervalo hasta de 50 m/s de velocidad del aire, mientras que para las pruebas civiles hasta de 15 m/s. Este túnel tiene 50 m de largo y una sección transversal cuadrada de 5 m por lado, dos filas de siete ventiladores axiales que tienen un diámetro máximo del impulsor alrededor de 1.8 m.

CAPÍTULO I

El ducto superior de la estructura es de 13.8 m por 3.8 m (figura 1.2). A la entrada del ducto de sección constante se instalaron una cámara estabilizadora, seguida por un intercambiador de calor, un panal hexagonal y unas mallas para asegurar la calidad de flujo deseado.

La cámara estabilizadora tiene una sección transversal de 2 m por lado, alojando en la entrada el panal hexagonal y las mallas. La sección de pruebas se diseñó como una cámara intercambiable de 4 m por 3.8 m por 5 m y una relación de contracción de 3.5:1, permitiendo también el ensamble de modelos y pruebas de chorro abierto. En la tabla 1.1, se muestran especificaciones de la estructura y valores de la calidad de flujo, siendo Δ U/U la desviación relativa de la velocidad de flujo del valor medio y Tu la intensidad media de la turbulencia.

Tabla 1.1. Especificaciones del túnel de viento del Politécnico de Milán.				
Potencia Máxima: 1.5 MW Tamaño Total: 50 m por 15			m por 15 m	
Sección de Prueba	Dimensiones (m)	Velocidad (m/s)	∆U/U (%)	Tu (%)
Civil	13.8 - 3.8	> 14	<±2	< 2
Aeronáutica	4 - 3.8	> 50	< ± 0.2	< 0.2

El modelo se construyó totalmente en acrílico para visualizar el flujo y facilitar las técnicas de medición, teniendo también una rugosidad muy baja en las superficies. La velocidad máxima permisible en la contracción es de 20 m/s, haciendo los valores del número de Reynolds en el modelo a escala muy similares a los obtenidos en la escala real, cuando el túnel de viento opera a velocidades bajas (0.5 m/s a 1 m/s en la sección civil ó 1.5 m/s a 3 m/s en la aeronáutica).

El flujo en la sección de pruebas civil también ha sido medido por medio de un tubo de Pitot con el mismo procedimiento de la medición usado para la sección de la contracción. La intensidad de la turbulencia se evaluó en las dos secciones por medio de un anemómetro del hilo caliente. La figura 1.3 muestra variación de velocidad en la sección transversal de la sección de pruebas aeronáutica.

La figura 1.4, muestra la capa límite que presenta gran espesor en la pared interna de la sección de pruebas civil. No obstante, los valores de la intensidad de la turbulencia en la corriente libre, fueron del orden de 0.2 % y 1.5 % en las secciones de pruebas aeronáutica y civil.

1.3 Túnel de viento del Colegio Imperial de Londres

Metha [3], estudió en el túnel de viento de circuito abierto de presión (figura 1.5) del Colegio Imperial de Londres, Inglaterra el comportamiento del flujo cuando pasa a través de mallas. El túnel de viento está constituido por un ventilador, un difusor y posteriormente descarga en una cámara estabilizadora que contiene un panal y mallas, para finalmente pasar a través de una contracción con relación de 7:1 e ingresar a la sección de pruebas.

La cámara estabilizadora tiene una sección transversal de 1.245 m por 1.245 m, que contiene un panal hexagonal y dos mallas intercambiables que varían en material y calibres. La sección de pruebas tienen una sección transversal de 0.45 m por 0.45 m, en la cual se llevaron a cabo las pruebas con una velocidad nominal de 18 m/s, teniendo un nivel de turbulencia promedio de 0.28 %.

En primera instancia el efecto de la malla es generar una caída de presión proporcional al cuadrado de la velocidad del flujo y alinear el flujo normal incidente a la malla, ambos efectos se describen en términos de dos parámetros: coeficiente de caída de presión y coeficiente de deflexión de velocidad.

El objetivo principal de esta investigación fue comparar los flujos turbulentos a través de mallas de diferente material y porosidad, haciendo énfasis a los perfiles de velocidad y a la intensidad de turbulencia. La tabla 1.2 muestra las características principales de las mallas empleadas para esta investigación.

Tabla 1.2. Características de las Mallas				
Matorial do la Malla	Diámetro de alambre	Claro entre alambres	Porosidad	
Ivialenai de la Ivialia	mm	mm		
Acero	0.417	1.69-1.59	0.556	
Latón	0.274	1.27	0.614	
Plástico Áspero	0.289	1.21	0.578	
Plástico Liso	0.152	0.635	0.594	

Estudios previos demostraron que las mallas con porosidades menores de 0.6, producían inestabilidades en el flujo, debido a la coalición aleatoria de los chorros que emergían por los poros de la malla. También observó que las mallas de plástico liso produjeron la perturbación máxima, esto debido a que presenta una mayor caída de presión. Para llevar a cabo las mediciones de presión total se utilizó un tubo de Pitot, para las mediciones de presión total del flujo se utilizó una sonda de 3 orificios y para las mediciones de turbulencia utilizaron un anemómetro de hilo caliente. De ésta investigación obtuvo que las mallas de plástico presentan perturbaciones mayores que las mallas de metal a una misma porosidad.

1.4 Túnel de agua del Colegio Imperial de Londres

Melling [4], realizó un estudió en un túnel de agua del Colegio Imperial de Londres, para observar el comportamiento del flujo en las esquinas en lo referente a contornos de velocidad y turbulencia empleando un Anemómetro Láser Doppler debido a que no perturba el flujo por no ser una técnica de medición invasiva. Se utilizó un ducto con una longitud de 1.8 m y de sección transversal rectangular de 0.04 m por 0.041 m, construido de acrílico de 9 mm de espesor. Se seleccionó como fluido de trabajo el agua debido a que permite mayor continuidad a las señales emitidas por el Anemómetro Láser Doppler para ser procesadas sin necesidad de agregar partículas.

El agua fue bombeada desde un depósito a carga constante desde el cual fluye por gravedad dentro de una cámara de distribución, a través de la sección de pruebas y luego descarga dentro de un tanque que finalmente fluye hasta el depósito. El sistema se operó con un flujo másico de 1.5 kg/s, que corresponde a una velocidad promedio de 0.915 m/s y un número de Reynolds de 420 000. El sistema coordenado de medición que se utilizo para este trabajo se muestra en la figura 1.6.

La figura 1.7 presenta los contornos de velocidad axial principal (líneas de isovelocidad) en una estación de medición cerca del final del ducto, la cual se llevo a cabo con 13 planos de medición y con 40 mediciones por cada plano, obteniendo una asimetría menor a 1%, las cuales se obtuvieron comparando las mediciones puntuales a posiciones equidistantes de la línea de referencia.

El desarrollo axial del flujo principal fue analizado midiendo la velocidad de la línea central en función de X₁, y el gradiente de presión axial dp₁/dx₁. Los valores del anemómetro Láser Doppler de U_s y los de la velocidad de la línea central U, fueron normalizados y se muestran en la figura 1.8. Cuando x₁/d_h=25 el fluido se acelera producto del aumento del espesor de la capa límite. La aportación de este trabajo de investigación fue comprobar que la simetría de los perfiles de isovelocidad estan en función de las dimensiones del ducto, para este caso el ducto tiene una asímetria del 1% en las líneas de velocidad.

1.5 Túnel de viento del LABINTHAP

Tolentino [5] llevó a cabo mediciones de perfiles de velocidad y capa límite en el túnel de viento de velocidad baja del LABINTHAP, el cual tiene una sección de pruebas en la succión y otra en la descarga del ventilador, ambas de sección rectangular, en las que se alcanzan velocidades de 65 m/s y 36 m/s, respectivamente. La evaluación experimental del túnel de viento se efectúo en un arreglo integrado por una entrada acampanada con un área de entrada de 1.2 m por 1.0 m y un área de salida de 0.8 m por 0.6 m. Se usó una sección de pruebas de 0.8 m por 0.6 m con una longitud de 5.00 m (figura 1.9).

Los perfiles de velocidad se midieron con anemómetro de hilo caliente a 1.80 m, 2.60 m y 3.40 m (dirección X) de la entrada del flujo en la sección de pruebas, para velocidades de 5 m/s, 15 m/s y 30 m/s. Los perfiles de velocidad se obtuvieron en los ejes Y y Z. En la figura 1.01 se presentan los perfiles de velocidad en X=3.60 m en los ejes Y y Z, realizando un barrido cada 0.05 m. En el eje Y, se cubrieron los 0,60 m y en el eje Z, sólo los 0.40 m centrales.

Los perfiles de velocidad de capa límite se obtuvieron en los ejes Y y Z. En las figuras 1.11 y 1.12 se presentan los perfiles de velocidad de capa límite en X=3.60 m en los ejes Y y Z respectivamente, realizando un barrido cada 0,005 m a partir de la pared hasta 0.2 m, para lo que se efectuó un barrido con el sistema posicionador en los mismos puntos que las mediciones efectuadas con el tubo Pitot. Se obtuvieron valores de turbulencia alrededor del 5 % en el eje Y y 4.5 % en el eje Z.

En el próximo capítulo se presentan la teoría que se emplea para describir los perfiles de velocidad, espesor de capa límite, nivel de turbulencia y flujo en esquinas; así como la aplicación específica para éste proyecto.

CAPITULOUI

En éste capítulo se presentan las bases teóricas de Perfil de Velocidad, Capa Límite e Intensidad de Turbulencia en Ductos.

2.1 Capa límite

Ludwing Prandtl en 1904, fue el primero en introducir el concepto de capa límite. Prandtl demostró que en los flujos viscosos existen dos regiones, una cercana a las fronteras sólidas y la otra en la zona no perturbada. En la región cercana a la superficie sólida los efectos viscosos son importantes, a esta región la llamó capa límite.

El número de Reynolds es significativo para la caracterización de la capa límite, debido a que tanto las fuerzas viscosas como las de inercia son importantes. La longitud característica empleada en el número de Reynolds, puede ser la longitud en la dirección del flujo en la cual se desarrolla la capa límite, como se muestra en la ecuación (1.1).

$$\operatorname{Re}_{x} = \frac{\rho \cdot U \cdot x}{\mu} \tag{1.1}$$

Bajo condiciones estándar de flujo, se considera la capa límite es laminar hasta un número de Reynolds de 10⁵ a partir del cual entra en la zona de transición y la zona de flujo turbulento inicia hasta un número de Reynolds mayor que 3E10⁶. En la figura 2.1 [6] se ilustra el crecimiento de la capa límite sobre una placa plana. Al inicio la capa límite es laminar, después ocurre la transición y finalmente se vuelve turbulenta.

2.1.1 Capa límite laminar

Blasius en 1908 obtuvo la solución para la capa límite laminar bidimensional que se desarrolla sobre una placa plana. Para flujo bidimensional, transitorio e incompresible las ecuaciones son las siguientes:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
 (2.2)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
(2.3)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$
(2.4)

La figura 2.2 muestra una comparación entre la solución de capa límite que obtuvo Blasius contra diversos datos experimentales para diferentes números de Reynolds [7].

2.1.2 Capa límite turbulenta

Al igual que en la capa límite laminar, la capa límite turbulenta posee las ecuaciones que se obtienen considerando $\delta(x) << x$ por lo que:

$$\overline{v} \ll \overline{u}$$
 (2.5)

Las ecuaciones para la capa límite turbulenta bidimensional en flujo incompresible son:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{2.6}$$

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - \rho\left(u'\frac{\partial u'}{\partial x} + u'\frac{\partial v'}{\partial y}\right)$$
(2.7)

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \rho \left(v' \frac{\partial u'}{\partial x} + v' \frac{\partial v'}{\partial y} \right)$$
(2.8)

Las cuales (2.6), (2.7) y (2.8) se simplifican a:

$$\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} = 0$$
 (2.9)

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = U\frac{\partial U}{\partial x} + \frac{1}{\rho}\frac{\partial \tau}{\partial y}$$
(2.10)

2.1.3 Espesor de la capa límite

El espesor de la capa límite $\delta(x)$ se define como la distancia normal de la superficie al punto donde la velocidad esta dentro del 1% de la velocidad de la corriente libre. El espesor de la capa límite es difícil de medir continuamente a lo largo de una superficie puesto que el perfil de velocidad surge continúa y asintóticamente en la corriente libre, como se observa en la figura 2.3 [8]. Para el presente trabajo de tesis solamente se abordo el tema de capa límite desde el punto de vista experimental.

El efecto de las fuerzas viscosas en la capa límite es retardar el flujo; la relación de flujo másico adyacente a una superficie sólida es menor que la relación de flujo másico que pasaría por la misma región en la ausencia de efectos viscosos. El espesor de desplazamiento δ^* , es la distancia que la frontera sólida tendría que desplazarse en un flujo sin fricción para producir el mismo déficit de la relación de flujo másico que existe en la capa límite. De tal modo que:

$$\delta^* = \int_0^{\delta} \left(1 - \frac{u}{U} \right) dy \tag{2.11}$$

El retardo del flujo dentro de la capa límite origina también una reducción en el flujo de momento en una sección comparada con el flujo no viscoso. El espesor de momento, se define como el espesor de una capa de fluido de velocidad U, para el cual el flujo de momento es igual al déficit de flujo de momento a través de la capa límite. En consecuencia:

$$\theta = \int_{0}^{\delta} \left(\frac{u}{U}\right) \left(1 - \frac{u}{U}\right) dy$$
 (2.12)

Para calcular el porcentaje del área que se reduce dentro de un ducto por el efecto de la capa límite se utiliza la siguiente ecuación:

$$A_{EFE} = \frac{(b - 2\delta_z *)(h - 2\delta_y *)}{(b)(h)} (100)$$
 (2.13)

2.2 Turbulencia

La mayoría de los flujos reales son turbulentos debido a que existen fluctuaciones de presión y velocidad, las cuales varían con respecto del tiempo. En la ingeniería, las mediciones están enfocadas a valores promedio, lo cual llevó a Osborne Reynolds en 1895 a reescribir las ecuaciones para flujo turbulento de cada variable. La media temporal \overline{u} de una función turbulenta $\overline{u}(x,t)$ se define como:

$$\overline{u}(x) = \frac{1}{T} \int_0^T u(x,t) dt \qquad (2.14)$$

Donde T es el periodo promediado, que debe ser mayor que cualquier periodo significativo de las fluctuaciones (figura 2.4) [9].

Por definición la media de la fluctuación es cero:

$$\overline{u'} = \frac{1}{T} \int_0^T \left(u - \overline{u} \right) dt = \overline{u} - \overline{u} = 0$$
(2.16)

Sin embargo la media del cuadrado de la fluctuación no es cero y es una medida de la intensidad de la turbulencia:

$$\overline{u'^{2}} = \frac{1}{T} \int_{0}^{T} \left(u - \overline{u} \right)^{2} dt \neq 0$$
(2.17)

Por lo tanto, la turbulencia en la componente a lo largo del flujo, se define como:

$$Tu = \frac{\sqrt{u'^2}}{u}$$
(2.18)

$$u = \bar{u} + u'$$
 (2.15)

Teniendo por definición la separación de cada propiedad en su media más las fluctuaciones correspondientes:

$$\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}' \tag{2.19}$$

$$\mathbf{v} = \overline{\mathbf{v}} + \mathbf{v}' \tag{2.20}$$

$$\mathbf{p} = \overline{\mathbf{p}} + \mathbf{p}' \tag{2.21}$$

Sustituyendo las ecuaciones (2.19) a (2.21) en las ecuaciones (2.6) a (2.8), se tiene como resultado las ecuaciones del movimiento del flujo turbulento:

$$\frac{\partial \bar{\mathbf{u}}}{\partial \mathbf{x}} + \frac{\partial \bar{\mathbf{v}}}{\partial \mathbf{y}} = \mathbf{0} \tag{2.22}$$

$$\frac{\partial \bar{u}}{\partial t} = -\frac{\partial \bar{p}}{\partial x} + \bar{u} \frac{\partial}{\partial x} \left(\frac{\partial \bar{u}}{\partial x} - \overline{u'^2} \right) + \bar{u} \frac{\partial}{\partial y} \left(\frac{\partial \bar{u}}{\partial y} - \overline{u'v'} \right)$$
(2.23)

$$\frac{\partial \overline{v}}{\partial t} = -\frac{\partial \overline{p}}{\partial y} + \nabla \frac{\partial}{\partial x} \left(\frac{\partial \overline{v}}{\partial x} - \overline{u'v'} \right) + \nabla \frac{\partial}{\partial y} \left(\frac{\partial \overline{v}}{\partial y} - \overline{v'^2} \right)$$
(2.24)

2.3 Perfil de velocidad

Prandtl en 1930, dedujo que u debería de ser independiente del espesor de la capa límite y para un análisis adimensional se tiene la siguiente ecuación, llamada ley de la pared:

$$u^{+} = \frac{yu^{*}}{v}$$
(2.25)

Donde:

 $\mathbf{u}^{\star} = \left(\frac{\tau_{\mathrm{w}}}{\rho}\right)^{\frac{1}{2}} \tag{2.26}$

Sabiendo que u^{*} es la velocidad de fricción, en esta región se tiene que u^{*}=y⁺ hasta un valor aproximado de y⁺=5. Por otra parte, Karmán en 1933 dedujo que en la región exterior, U debía depender del espesor y de las otras propiedades y para un análisis dimensional se tiene la ecuación llamada ley del defecto de velocidad:

$$\frac{U-u}{u^*} = (G)\left(\frac{y}{\delta}\right)$$
(2.27)

Millikan en 1937, demostró que las ecuaciones (2.25) y (2.27) deben acoplarse suavemente en una región intermedia y que esto solo ocurriría si la velocidad en esta zona variaba de manera logarítmica.

$$\frac{u}{u^{*}} = \left(\frac{1}{\kappa}\right) \left[\ln\frac{(\rho)(y)(u^{*})}{\mu}\right] + B$$
(2.28)

La ecuación (2.28) corresponde a la zona logarítmica y para la mayoría de los flujos reales $\kappa \approx 0.41$ y B=5.0 [8]. En la figura 2.5, se presentan las ecuaciones de Prandtl, Millikan y Karmán.

2.4 Flujo en ductos

Los flujos internos se encuentran delimitados por fronteras sometidas a efectos viscosos, estas fronteras crecerán y se encontrarán hasta ocupar todo el flujo, dando como resultado flujo completamente desarrollado. La figura 2.6 [8] muestra un flujo interno en un conducto largo en el cual se muestra la región de entrada donde la corriente viscosa inicial converge y entra en el conducto. Las capas límite crecen corriente arriba, frenando el flujo axial en la pared y acelerando el núcleo central para mantener el requisito de la continuidad.

A una distancia finita de la entrada, las capas límite convergen y desaparece el núcleo no viscoso. El flujo se vuelve completamente viscoso y la velocidad axial se va ajustando hasta X=L donde ya cambia prácticamente con X y se dice que el flujo está completamente desarrollado, teniendo constantes el perfil de velocidad y el esfuerzo cortante en la pared; además la presión disminuye linealmente corriente arriba. Para flujo turbulento la correlación es:

$$\frac{L_{e}}{d} = 4.4 Re^{\frac{1}{6}}$$
 (2.29)

2.5 Flujo en esquinas

Los flujos secundarios de Prandtl son importantes para los flujos turbulentos, así como para las corrientes delgadas de flujo a lo largo de las paredes y en las esquinas (figura 2.7). En la zona donde las dos capas límite interactúan en los planos con una dimensión de δ a 2 δ [11].

Las líneas de corriente en la dirección del flujo son la proyección de las líneas de corriente reales en el plano secundario del flujo (yz). El flujo secundario se mueve hacia adentro a lo largo de la esquina bisectriz y tiende para desplazar las líneas de velocidad constante hacia la esquina, según lo observado por Gessner (figura 2.8 y 2.9).

Gessner demostró que la variación de la velocidad promedio del flujo secundario permanece constante con respecto de la velocidad media de fricción en la pared. Esta condición se cumple independientemente del número de Reynolds y de la rugosidad de la pared, se deben esperar flujos secundarios débiles y efectos secundarios débiles del flujo [11].

En el siguiente capítulo se presenta la descripción de los componentes de la instalación experimental, así como los instrumentos de medición empleados para llevar a cabo la caracterización del túnel de viento del LABINTHAP.

RIPCIÓ C **INSTALACIÓ**

En éste capítulo se describe la instrumentación empleada y el túnel de viento de velocidad baja del LABINTHAP.

20

3.1 Túnel de viento de velocidad baja del LABINTHAP

El túnel de viento de velocidad baja del Laboratorio de Ingeniería Térmica e Hidráulica Aplicada (LABINTHAP) (figura 3.1 y figura 3.3), consta de los siguientes componentes: entrada acampanada, cámara estabilizadora, contracción, sección de pruebas de succión, cono difusor, ventilador y sección de pruebas de descarga.

Figura 3.1. Túnel de viento de velocidad baja del LABINTHAP.

3.1.1 Entrada acampanada

Inicialmente el flujo incide en la entrada acampanada (figura 3.2), la cual está fabricada de madera en base a la norma BSI848 [14], con un radio de 0.2895 m que es igual a un octavo del diámetro equivalente (D_{FQ}=2.316 m). El objetivo de la entrada acampanada es evitar la perturbación del flujo antes de que éste entre en la cámara estabilizadora.

Figura 3.2. Entrada acampanada.

3.1.2 Cámara estabilizadora

Una vez que el flujo incidió en la entrada acampanada, pasa a través de la cámara estabilizadora (figura 3.4), la cual fue fabricada de madera y mide 1.764 m de alto, 2.388 m de ancho y 1.565 m de largo. La función de la cámara estabilizadora es mejorar la calidad del flujo. Los accesorios que contiene la cámara estabilizadora son: paneles hexagonales y mallas.

Figura 3.4. Cámara estabilizadora.

3.1.2.1 Panel hexagonal

El panal de celda hexagonal ocupa totalmente la sección transversal de la cámara estabilizadora (figura 3.5), esta área tiene más de 43000 celdas hexagonales, siendo el primer accesorio dentro de la cámara estabilizadora en entrar en contacto con el flujo y por lo tanto provocando una caída de presión. Cada celda hexagonal tiene 0.0045 m de lado, 0.00025 m de espesor y 0.011 m de largo, cumpliendo así con las recomendaciones propuestas por Loehrke [15]. Cada celda hexagonal tiene un diámetro equivalente de 0.00105 m.

La función de del panal es reducir la componente de velocidad lateral y reducir los vórtices generados por el flujo al entrar a la cámara estabilizadora. El panal debe ser colocado en la zona de menor velocidad, debido a que la caída de presión es proporcional al cuadrado de la velocidad en esta zona [16].

3.1.2.2 Mallas

Inmediatamente después de los panales se colocaron las mallas. Se posicionaron cinco mallas en base a la propuesta de Metha y Bradshaw [16], fabricadas de acero inoxidable, las cuales ocupan el total de la sección transversal de la cámara estabilizadora. Cada malla tiene una porosidad β =0.6348, dando un claro de 0.00123 m y un diámetro del alambre de 0.0025 m (figura 3.6). Además Metha y Bradshaw proponen que la distancia entre los paneles hexagonales y la primer malla sea de un quinto del diámetro equivalente de la cámara estabilizadora y de igual forma para la distancia entre la última malla y la contracción, además proponen que la distancia entre las mallas sea de 500 diámetros del alambre. La función de la malla es provocar la deflexión de velocidad, para obtener flujo con una componente de velocidad normal a la última malla [16].

Para garantizar la tensión en las mallas se fabricaron tensores verticales y para obtener nivelación y linealidad de las mallas se utilizaron guías laterales (figura 3.7). Las guías y el tensor se fabricaron de aluminio.

3.1.3 Contracción

La contracción (figura 3.8) fue hecha de madera en base a la teoría propuesta por Morel en 1977. Morel recomienda contracciones de entre 9:1 a 6:1 y propone realizar la contracción con dos curvas cúbicas [17]. Por cuestiones de espacio, la relación de áreas se considero de 9:1. La contracción cumple principalmente con dos funciones: la primera es aumentar la velocidad del flujo, y la segunda función reducir tanto las fluctuaciones de velocidad como las variaciones de la velocidad promedio.

3.1.4 Sección de pruebas de succión

La sección de pruebas de succión (figura 3.3) está construida de acrílico de 0.01 m de espesor, 3 módulos de 1 m de longitud. Los módulos tienen una sección transversal de 0.6 m por 0.8 m. La sección de pruebas de succión alcanza una velocidad máxima de 65 m/s. Toda sección de pruebas esta reforzada con solera de hierro de 0.003 m de espesor.

3.1.5 Ventilador

La generación del flujo de aire en el túnel de viento se generó con un ventilador centrífugo de presión media, marca Venturi, modelo CIMO-9X-125 (figura 3.9). El ventilador consta de un rodete de 9 álabes rectos inclinados hacia atrás con descarga a 0°, carcasa bipartida y transmisión de bandas en V con una relación de velocidades de 3:1. El ventilador es accionado por un motor trifásico jaula de ardilla, marca SIEMENS de 74.6 kW a 1775 RPM.

El motor es controlado mediante un variador de velocidad marca Emerson, modelo Laser 3 de 55.95 kW de potencia de salida a par variable, 74.6 kW de salida con par constante y frecuencia de salida de 60 Hz, la cual puede variar con incrementos de 1 Hz. El variador permite generar diferente velocidades en las secciones de pruebas del túnel de viento.

Figura 3.9. Carcasa del ventilador (izquierda). Cono difusor (centro). Motor de 74.6 kW (derecha).

3.1.6 Sección de pruebas de descarga

La sección de pruebas de descarga (figura 3.10) está construida de acrílico de 0.01 m de espesor y refuerzos de lámina de 0.003 m de espesor. Esta sección consta de un ducto vertical de 1 m por 1.25 m y una longitud de 1 m y de un ducto horizontal de sección rectangular de 1m por 1.25 m con una longitud de 5.20 m. Ambos ductos están acoplados por medio de un codo de 90 ° que tiene deflectores de flujo. En la unión del codo y el ducto horizontal, se tiene una junta flexible, para reducir las vibraciones en esta sección de pruebas. La velocidad máxima en la sección de pruebas en la descarga es de 36 m/s.

Al final de la sección de pruebas de presión del túnel de viento, se tiene una compuerta metálica de 4 álabes horizontales opuestos. Además, la compuerta tiene un mecanismo que permite variar el ángulo de manera manual, variando la sección transversal de descarga y en consecuencia el flujo volumétrico manteniendo constantes las RPM del ventilador. Esta sección de pruebas tiene un acondicionador de flujo de forma circular (figura 3.10) colocado a 2.20 m de

Plano de medición Palanca de control de flujo 0.80 1 60 1.80 0 20 0.30 2 Deflectores de flujo 8 0.24 Codo de 90° / R = 50 0.24 Junta flexible Compuerta de Ducto de Rectificado estrangulamie descarga nto de flujo Silenciado ACOT.: m Dirección del flujo Figura 3.10. Sección de pruebas de descarga.

la descarga del codo, para mejorar el comportamiento del flujo de aire en esta zona.

3.2 Anemómetro de Hilo Caliente

El anemómetro de hilo caliente es un instrumento que proporciona una respuesta muy rápida a las fluctuaciones de velocidad presentes en flujos turbulentos [18], por lo que en este trabajo se utilizará para medir los perfiles de velocidad, capa límite y turbulencia. El sistema de medición del anemómetro de hilo caliente consiste en el anemómetro de hilo caliente, sondas, sistema de calibración y sistema posicionador.

El anemómetro es marca DANTEC, modelo 90C10. El anemómetro de hilo caliente opera en dos modos, a temperatura constante y a tensión constante. En este trabajo se emplea el modo de temperatura constante, el cual tiene su principal aplicación en la medición de fluctuaciones de velocidad en flujos subsónicos incompresibles; en donde la variación de la temperatura y los cambios de densidad son tan pequeños que pueden despreciarse [18].

En la figura 3.11 [19] se muestra un diagrama de los componentes principales del sistema de anemometría de hilo caliente de temperatura constante. El gabinete del anemómetro de hilo caliente contiene un circuito que permite operar a temperatura constante, un acondicionador de señales, una caja de conexiones, una tarjeta de adquisición de datos A/D y una computadora con el software StreamWare, versión 3.0, para controlar todo el sistema de medición.

El gabinete del anemómetro tiene tres módulos de medición que permiten medir simultáneamente las tres componentes de velocidad y un módulo de calibración, además cuenta con una entrada para la sonda de temperatura, la cual permite corregir los datos de temperatura del anemómetro dentro del flujo cuando ocurren cambios de esta variable en el fluido. Cada módulo cuenta con un puente de Wheatstone que mantiene constante la resistencia del hilo en la sonda y por consiguiente la temperatura del mismo, independientemente del enfriamiento producido por el flujo de aire [19].

3.2.1 Sistema de calibración

El sistema de calibración está diseñado para calibrar las sondas en un intervalo desde 0.02 m/s hasta Ma=1, empleando aire u otro gas con propiedades físicas conocidas y se integra por una unidad de flujo (figura 3.12) y un módulo de calibración ubicado en el gabinete del sistema de anemometría de hilo caliente.

La unidad de flujo opera con aire suministrado por un compresor a una presión de 0.7 MPa a 0.9 MPa. El flujo de aire pasa a través de un filtro antes de entrar en la unidad de flujo, el cual posee una válvula de control y una serie de toberas de Laval que suministran un flujo másico de aire estable. La unidad de flujo posee una malla antes de que el flujo entre a la sección estabilizadora, formando un chorro libre uniforme con una turbulencia ≤ 0.3 % en el intervalo de velocidades. La unidad de flujo se conecta al módulo de calibración que se encuentra en el gabinete del anemómetro.

La unidad de calibración cuenta con cuatro toberas intercambiables para reducir las velocidades en el intervalo mencionado, las dimensiones de estas toberas se muestran en la tabla 3.1. Con la unidad del flujo y estas toberas se tiene en todo el intervalo de velocidad una exactitud menor a ± 1 %.

Tabla 3.1. Características de las toberas de la unidad de calibración.							
Tabara	Diámetro	Sección transversal	Velocidad				
TODEIa	(mm)	(mm ²)	(m/s)				
0	42	1400	0.02 a 0.5				
I	12	120	0.5 a 60				
	8.7	60	5 a 120				
III	5	20	5 a 1 Mach				

Para llevar a cabo la calibración de las sondas para una componente de velocidad se colocan en un mecanismo de sujeción colocado en la parte superior de la unidad de flujo. También se tiene un manipulador para realizar la calibración de sondas de dos y tres componentes. La velocidad en la salida de la tobera se calcula mediante las relaciones isoentrópicas en base a la caída de presión a través de la tobera, la presión de estancamiento, la temperatura de estancamiento y la relación de calores específicos del gas.

Para obtener las variables necesarias para calcular la velocidad, la unidad de calibración tiene los siguientes sensores: un transductor de presión diferencial de 0 Pa a 5000 Pa, un transductor de presión absoluta de 70 kPa a 200 kPa, un transductor de temperatura con un intervalo de 0 °C a 50 °C. Además la unidad está equipada con un transductor de presión diferencial para establecer las velocidades menores a 5 m/s [18].

3.2.2 Sondas

Las sondas del anemómetro de hilo caliente son capaces de medir una, dos o tres componentes de velocidad. Las sondas utilizadas en la realización de las mediciones tienen las siguientes características: respuesta rápida, resolución espacial alta, intervalo de velocidades grande; proporcionan una señal continua y producen una mínima perturbación en el flujo. Las sondas de hilo caliente pueden ser del tipo miniatura o con recubrimiento de oro.

Las partes principales de las sondas son: sensor, soportes del sensor, cuerpo de la sonda y las puntas de conexión con recubrimiento de oro. En la figura 3.13 se muestran las partes principales de las sondas tipo miniatura y con recubrimiento de oro. Estas sondas pueden tener hasta tres sensores para medir las componentes de velocidad y turbulencia, cada sensor es conectado a uno de los módulos de medición del gabinete.

Las sondas empleadas en el desarrollo de la etapa experimental de este trabajo fueron del tipo miniatura y sus dimensiones se muestran en la figura 3.13. Las sondas tipo miniatura se pueden emplear en flujos de aire o gases. Se utilizó el sensor de la sonda de tungsteno con recubrimiento de platino con una longitud de 1.25 mm y un diámetro de 5 µm, cuya resistencia típica de esta sonda es de 3.5 Ω a 20 °C. Estas sondas se emplean hasta una temperatura ambiente de 150°C y la temperatura máxima del sensor es de 300 °C. El intervalo de velocidades en el que se emplea es desde 0.05 m/s hasta 500 m/s y su frecuencia es de 400 kHz.

La sonda 55P11 (figura 3.14a) es de propósito general y se utilizó para determinar los perfiles de velocidad y de turbulencia en la sección de pruebas de succión del túnel de viento, la turbulencia en la zona de calibración. Esta sonda se coloca con el cuerpo de la misma paralelo a la dirección del flujo. Su sensor se coloca perpendicular al flujo.

La sonda 55P15 (figura 3.14b) tiene el sensor perpendicular al eje de la misma y está diseñada para realizar mediciones en la capa límite, debido a la forma de los soportes del alambre. Esta sonda también se monta con su eje paralelo a la dirección de flujo y su sensor posee las mismas características que la sonda de propósito general.

La sonda 55P61 (figura 3.14c) tiene el sensor perpendicular al eje de la misma y está diseñada para realizar mediciones en la capa límite, debido a la forma de los soportes del alambre. Esta sonda también se monta con su eje paralelo a la dirección de flujo y su sensor posee las mismas características que la sonda de propósito general.

3.2.3 Sistema posicionador

Las sondas se desplazan dentro de la sección de pruebas del túnel de viento mediante un sistema posicionador con movimiento en los tres ejes para efectuar las mediciones (figura 3.15). El desplazamiento en cada eje se realiza mediante un motor de paso acoplado directamente a un tornillo de avance de precisión.

Este sistema es de la marca DANTEC, modelo 41T50, con las siguientes características: desplazamiento en los ejes X y Y de 590mm, en el eje Z de 690mm; resolución en X y Y de 12.5 μ m y en Z de 6.25 μ m; velocidad de desplazamiento en X y Y es de 40mm/s y en el eje Z de 25mm/s. El posicionador tiene una capacidad de carga máxima de 30kg, este se controla con la computadora que contiene el software StreamWare 3.0.

Tabla 3.2. Características del sistema posicionador del anemómetro de hilo caliente.							
Ejes	Desplazamiento Resolución Velocidad (mm) (µm) (mm/s)						
Х	590	12.5	40				
Y	590	12.5	40				
Z	690	6.25	25				

3.3 Estación meteorológica

La tabla 3.3, muestra las características de la estación meteorológica en las variables de presión barométrica, temperatura y humedad relativa [19].

Tabla 3.3. Características de la estación meteorológica.					
Variable Intervalo de Medición					
Presión (hPa)	620 a 1100	± 0.08			
Temperatura (°C)	-50 a 60	±0.1			
Humedad Relativa (%)	0 a 100	±2			

El siguiente capítulo se presenta la metodología experimental para medir perfiles de velocidad, capa límite, nivel de turbulencia y flujo en esquinas, así como las graficas obtenidas de dichas mediciones.

CAPITULOUV DESARROLLO EXPERIMENTAL

En éste capítulo se presenta la metodología experimental para la medición de perfiles de velocidad, espesor de capa límite, nivel de turbulencia y flujo en las esquinas de la sección de pruebas del túnel de viento del LABINTHAP

4.1 Metodología experimental

Para determinar la zona de calibración fue necesario determinar los perfiles de velocidad, el espesor de capa límite, el nivel de turbulencia y flujo en esquinas en la sección de pruebas del túnel de viento. Para esto se efectuaron una serie de mediciones con un anemómetro de hilo caliente, a fin de determinar: frecuencia f, tiempo de muestreo t y número de muestras N, para velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s (figura 4.1).

Se realizaron mediciones en el centro de la sección de pruebas del túnel de viento a una distancia de 1.6 m del inicio de la sección de pruebas para obtener niveles de turbulencia, frecuencias y tiempos de muestreo óptimos. Para adquirir dichas mediciones se empleo la sonda 55P11. En la tabla 4.1 se presentan la relación entre frecuencias, tiempos de muestreo y número de muestras.

	Tabla 4.1. Frecuencia y tiempo contra número de muestras.							
	t (-)							
		10	20	30	s) 	50	60	
	1	10000	20000	30000	40000	50000	60000	
	5	50000	100000	150000	200000	250000	300000	
	10	100000	200000	300000	400000	500000	600000	
	15	150000	300000	450000	600000	750000	900000	
f	20	200000	400000	600000	800000	1000000	1200000	
(kHz)	25	250000	500000	750000	1000000	1250000	1500000	
	30	300000	600000	900000	1200000	1500000	1800000	
	40	400000	800000	1200000	1600000	2000000	2400000	
	50	500000	1000000	1500000	2000000	2500000	3000000	
	60	600000	1200000	1800000	2400000	3000000	3600000	

De las figuras 4.2 y 4.3 se observa que la turbulencia se estabiliza a partir de los 15 kHz. Un tiempo de muestreo mayor de 50 s no es recomendable debido a que se corre el riesgo de saturar la unidad de almacenamiento. El estudio de datos y frecuencias se llevo a cabo a las velocidades de 5 m/s y 30 m/s. Siguiendo las recomendaciones del trabajo previo se tomo como frecuencia de muestreo 30 kHz y un tiempo de muestreo de 30 s, dando como resultado una muestra de 900 000 datos para cada medición puntual de velocidad que se efectuó.

En base a los datos de frecuencia y tiempo de muestreo se procedió a realizar las mediciones, en los planos X=0.8 m, X=1.6 m y X=2.4 m (figura 4.4) y en base a los parámetros presentados en la matriz experimental de la tabla 4.2.

	Tabla 4.2. Matriz experimental.							
			X (m)					
			0.8	1.4	2.6			
			Velocidad (m/s)	Velocidad (m/s)	Velocidad (m/s)			
			5 10 15 20 25 30	5 10 15 20 25 30	5 10 15 20 25 30			
	7	Perfil de Velocidad (AD)						
- '-	2	Capa Limite (m)						
Eje	Y	Perfil de Velocidad (AD)						
	I	Capa Limite (m)						
Centro Turbulencia (%)		Turbulencia (%)						
	Fluj	jo en Esquina						

4.2 Perfiles de velocidad

Previamente a la medición de los perfiles de velocidad se calibró la sonda de propósito general 55P11 en 20 puntos en un intervalo de 0.5 m/s a 50 m/s, empleando la unidad de flujo del sistema de anemometría de hilo caliente, cubriendo las velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s, para las que se pretende la caracterización. En la tabla C.1 se presentan los resultados de la calibración de la sonda mencionada. Con los datos de la tabla anterior y empleando el software del anemómetro, se ajustó un polinomio de cuarto orden obteniéndose la siguiente ecuación:

 $U = 49.271908 - 10.554314 E_{cor} + 118.577721 E_{cor}^{2} - 57.844044 E_{cor}^{3} + 11.978719 E_{cor}^{4}$

El polinomio anterior relaciona la velocidad de corriente libre del fluido U, con la caída de tensión corregida en la sonda para diferentes velocidades, la diferencia entre la velocidad U y la velocidad corregida U_{cor} , es el error de calibración. En las figuras C.1 y C.2 se presentan las curvas de calibración de la sonda 55P11 para el intervalo de velocidad de 0.5 m/s a 50 m/s, así como la distribución de errores respectivamente.

De acuerdo a la metodología experimental (figura 4.5), la primera parte de la caracterización se llevó a cabo midiendo los perfiles de velocidad en X=0.8 m, X=1.6 m y X=2.4 m para velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s en los ejes Y y Z, realizando un barrido cada 0.05 m en los ejes mencionados (figura 4.6).

En las figuras 4.7, 4.8 y 4.9 se muestran los perfiles de velocidad obtenidos el anemómetro de hilo caliente que corresponden a las tablas C.2, C.3 Y C.4; respectivamente.

En las figuras 4.10, 4.11 y 4.12 se muestran los perfiles de velocidad en X=0.8 m, X=1.6 m y X=2.4 m, que corresponden a las tablas C.5, C.6 Y C.7; respectivamente.

4.3 Turbulencia

De acuerdo a la metodología experimental, la tercera parte de la caracterización se llevo a cabo midiendo el nivel de turbulencia en X=0.8 m, X=1.6 m y X=2.4 m para el intervalo de velocidad de 5 m/s a 30 m/s en el centro de la zona de calibración. En las figura 4.13 se muestran los niveles de turbulencia obtenidos con el anemómetro de hilo caliente en X=1.6 m, que corresponde a la tabla 4.3. Para determinar los perfiles de velocidad se empleó una sonda de propósito general 55P11, marca DANTEC, la cual se coloca con su soporte paralelo al flujo, quedando el sensor perpendicular al flujo principal y lo más cercano a la pared.

Tabla 4.3. Turbulencia a diferentes velocidades y a diferentes planos						
X (m)						
(m/s)	0.8	1.6	2.4			
(11/5)	Tu (%)	Tu (%)	Tu (%)			
5	0.747	0.579	0.653			
10	0.629	0.799	0.49			
15	0.655	0.639	0.524			
20	0.568	0.717	0.478			
25	0.726	0.679	0.52			
30	0.605 0.727 0.464					

4.4 Capa límite

La tabla C.8 presenta los resultados de la calibración de la sonda 55P15 en 20 puntos en un intervalo de 0.5 m/s a 50 m/s, empleando la unidad de flujo del sistema de anemometría de hilo caliente, cubriendo las velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s, para las que se pretende la caracterización.

Con los datos de la tabla anterior y empleando el software del anemómetro, se ajustó un polinomio de cuarto orden obteniéndose la siguiente ecuación:

$$U = 49.271908 - 10.554314 E_{cor} + 118.577721 E_{cor}^{2} - 57.844044 E_{cor}^{3} + 11.978719 E_{cor}^{4}$$

El polinomio anterior relaciona la velocidad de corriente libre del fluido U, con la caída de tensión corregida en la sonda para las diferentes velocidades, la diferencia entre la velocidad U y la velocidad corregida U_{cor}, es el error de calibración. En las figuras C.3 y C.4 se presentan las curvas de calibración de la sonda 55P15 para el intervalo de velocidad de 0.5 m/s a 50 m/s, así como la distribución de errores respectivamente. La segunda parte de la caracterización (figura 4.14) se llevo a cabo midiendo las capa límite en X=0.8 m, X=1.6 m y X=2.4 m para velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s en los ejes Y y Z, realizando un barrido cada 0.05m en los ejes mencionados (figura 4.15).

En las figuras 4.16, 4.17 y 4.18 se muestran los perfiles de velocidad obtenidos con el anemómetro de hilo caliente en X=0.8 m, X=1.6 m y X=2.4 m, que corresponden a las tablas C.8, C.9 Y C.10; respectivamente.

En las figuras 4.19, 4.20 y 4.21 se muestran los perfiles de velocidad obtenidos con el anemómetro de hilo caliente en X=0.8 m, X=1.6 m y X=2.4 m, que corresponden a las tablas C.11, C.12 Y C.13; respectivamente.

4.5 Flujo en esquinas

Previamente a la medición se calibró la sonda de dos componentes 55P61 en 20 puntos en un intervalo de 0.5 m/s a 50 m/s, empleando la unidad de flujo del sistema de anemometría de hilo caliente, cubriendo las velocidades de 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s y 30 m/s, para las que se pretende la caracterización. Los resultados de la tabla C.14 se presentan los resultados de la calibración de la sonda mencionada.

Con los datos de la tabla anterior y empleando el software del anemómetro, se ajustó un polinomio de cuarto orden obteniéndose la siguiente ecuación:

$$U = 49.271908 - 10.554314E_{cor} + 118.577721E_{cor}^{2} - 57.844044E_{cor}^{3} + 11.978719E_{cor}^{4}$$

El polinomio anterior relaciona la velocidad de corriente libre del fluido U, con la caída de tensión corregida en la sonda para las diferentes velocidades, la diferencia entre la velocidad U y la velocidad corregida U_{cor} , es el error de calibración. En las figuras C.5 y C.6 se presentan las curvas de calibración de la sonda 55P15 para el intervalo de velocidad de 0.5 m/s a 50 m/s, así como la distribución de errores respectivamente.

De acuerdo a la metodología experimental (figura 4.22), la parte final de la caracterización se llevo a cabo midiendo el flujo en esquinas en X=0.8 m, X=1.6 m y X=2.4 m para el intervalo de velocidad de 5 m/s a 30 m/s (figura 4.23).

Para llevar a cabo la medición del flujo en las esquinas se realizó un barrido en los ejes Y y Z, de forma simultánea. El barrido se dividió en dos secciones transversales, la primera cada 0.003 m en los ejes mencionados y la segunda cada 0.006 m (figura 4.24).

En las figuras 4.25 y 4.26 se muestran los perfiles de isovelocidad graficados con Sigmaplot y medidos el anemómetro de hilo caliente en X=2.4 m marca DANTEC, la cual se coloca con su soporte paralelo al flujo, quedando los sensores perpendiculares al flujo principal y lo más cercano a la pared.

ANALISIS DE RESULTADOS

CAPITULOUV

ANÁLISIS DE RESULTADOS

En éste capítulo se presentan el análisis de los resultados obtenidos con la medición de perfiles de velocidad, capa límite, nivel de turbulencia y flujo en esquinas

CAPITULO 5 ANÁLISIS DE RESULTADOS

5.1 Tiempos de Muestreo

En este capítulo se muestra el análisis de resultados de perfiles de velocidad, espesor de capa límite, nivel de turbulencia y flujo en esquinas. Lo anterior con el fin de determinar la zona de calibración para instrumentos de medición de velocidad de aire dentro de la sección de pruebas del túnel de viento.

Se observó que el tiempo de muestreo se disminuyó 67% para velocidades de 5 m/s a 25 m/s, así como también se disminuyo la tasa de muestro de 900 000 datos a 100 000 datos, como se aprecia en la figura 5.1 y 5.2. La disminución en los niveles de turbulencia se debió principalmente a la implementación de los paneles hexagonales y de las mallas.

5.2 Perfiles de Velocidad

De los perfiles de velocidad, se observa que el nivel de fluctuación en los perfiles fue aproximadamente ± 1 % y se compara el estudio previo [5] con el actual donde ya se cuenta con las modificaciones en la cámara estabilizadora para los ejes Z e Y, como se aprecia en las tablas 5.1 y 5.2 que corresponden a la figura 5.3 y 5.4, respectivamente. Todas velocidades se adimensionalizaron contra velocidad del centro debido a que la los instrumentos a calibrar se situaran en el centro. Y solo se analiza la mitad de los puntos del perfil de velocidad debido a que es simétrico.

-	Tabla 5.1. Porcentaje de uniformidad de perfiles de velocidad, en el eje Z antes y después de las modificaciones en X=1.6 m.								
	DESPUES	ANTES	DESPUES	ANTES	DESPUES	ANTES			
Z (m)	∆U₅ (m/s)	∆U₅ (m/s)	∆U ₁₅ (m/s)	∆U ₁₅ (m/s)	∆U ₃₀ (m/s)	∆U ₃₀ (m/s)			
0	0	0	0	0	0	0			
0.15	0.8491	1.1336	-0.9647	-0.6976	0.0159	-0.3782			
0.2	0.0987	-0.0354	-0.9647	-0.0958	-0.0879	-0.0696			
0.25	-0.0197	-0.1505	-1.1255	-0.4067	0.0359	0			
0.3	-0.07890	0.5314	-0.1541	-0.5422	0.5594	-0.0232			
0.35	0.0987	-0.1151	-0.3551	-0.1322	0.6793	0.2206			
0.4	0	0	0	0	0	0			

1 6	Tabla 5.2. Porcentaje de uniformidad de perfiles de velocidad, en el eje Y antes y después de las modificaciones en X=1.6 m.								
	DESPUES ANTES DESPUES ANTES DESPUES ANTES								
Y (m)	∆U₅ (m/s)	∆U₅ (m/s)	∆U ₁₅ (m/s)	∆U ₁₅ (m/s)	∆U ₃₀ (m/s)	∆U ₃₀ (m/s)			
0	0	0	0	0	0	0			
0.15	-1.3315	0.5136	0.1927	-0.6778	-0.0366	0.5408			
0.2	0.9594	0.7616	-0.2127	-0.2612	-0.2233	0.4744			
0.25	-0.0587	1.0096	0.7046	-0.3008	0.0433	0.3881			
0.3	0	0	0	-0.0	0	0			

5.3 Turbulencia

Con las modificaciones realizadas en la sección de pruebas, la intensidad de turbulencia se disminuyó para alcanzar el nivel de turbulencia de los laboratorios internacionales como es el caso del NIST, Colegio imperial de Londres, Politécnico de Milán, etc. En la figura 5.5 se compara el cambio en el nivel de turbulencia del estudio previo [5] con el actual donde ya se cuenta con las modificaciones en la cámara estabilizadora (tabla 5.3)

Tabla 5.3. Turbulencia a diferentes velocidades antes y después de las modificaciones en X = 1.6 m				
U	٦	Гu		
(m/s)	('	%)		
	DESPUES	ANTES		
5	0.679	3.2		
10	0.699	3.2		
15	0.639	4		
20	0.717	3.4		
25	0.679	3.5		
30	0.727	3.5		

5.4 Capa Límite

De la capa límite se observó que el espesor dinámico se redujo en promedio 37 %, 21 % y 13 %, para 5 m/s, 15 m/s y 30 m/s respectivamente. Lo anterior es relevante, debido a que se tuvo un aumento en las secciones transversales del 5 %, 3 % y 2 %; en los planos X=0.8 m, X=1.6 m, X=2.4 m, respectivamente El espesor de capa límite para diferentes condiciones de velocidad y posición se muestra en las tablas 5.4 y 5.5 que corresponden a las figuras 5.6 y 5.7.

Tabla 5.4 Comparación entre los espesores de la capa limite en el eje Y obtenidos antes y después de las modificaciones, a diferentes condiciones de velocidad y posición							
	U (m/s)						
			5	15		30	
		ANTES	DESPUES	ANTES	DESPUES	ANTES	DESPUES
	0.8	0.013	0.007	0.015	0.017	0.019	0.017
X (m)	1.6	0.025	0.016	0.033	0.027	0.038	0.033
()	2.4	0.035	0.027	0.043	0.045	0.049	0.043

Tabla 5.5 Comparación entre los espesores de la capa limite en el eje Z obtenidos antes y después de las modificaciones, a diferentes condiciones de velocidad y posición							
	U (m/s)						
			5	15		30	
		ANTES	DESPUES	ANTES	DESPUES	ANTES	DESPUES
	0.8	0.013	0.0075	0.021	0.015	0.017	0.015
X (m)	1.6	0.023	0.015	0.031	0.025	0.027	0.023
(,	2.4	0.029	0.019	0.037	0.031	0.035	0.031

5.5 Flujo en Esquinas

De la medición de flujo en esquinas se obtuvo el comportamiento de las líneas de isovelocidad que se presentan producto de la interacción de la capa límite horizontal y vertical. Se observó que la capa límite que se presenta en el eje Y es 25 % mayor que la capa límite presente en el eje Z. Este comportamiento se debe a que la superficie de la pared en Y es 25 % menor con respecto de la superficie de la pared en Z, además éste fenómeno se observó más claramente a mayores velocidades. La figura 5.8 muestra el efecto del crecimiento de la capa límite para las condiciones donde la capa límite es mayor (30 m/s, X = 2.4 m), así como el señalamiento de los espesores y sus dimensiones.

5.6 Determinación del Área de Calibración

El propósito final de este trabajo de tesis fue determinar la zona de calibración que se obtuvo al llevar a cabo las modificaciones en la cámara estabilizadora. La zona de calibración es una zona en donde se tienen las siguientes condiciones:

- Variaciones de velocidad del 1% o menores,
- Nivel de Turbulencia menor al 1%.

CONCLUSIONES

Se caracterizó el túnel de viento del LABINTHAP por medio de perfiles de velocidad, la capa límite, y turbulencia, utilizando anemometría de hilo caliente. Al emplear las modificaciones propuestas en la cámara estabilizadora se disminuyo el nivel de turbulencia, lo cual llevo a tener menores fluctuaciones de la velocidad. Por otro lado se logró reducir el espesor dinámico de la capa límite y por consiguiente un aumento la sección transversal de calibración en los planos X=0.8 m, X=1.6 m y X=2.4 m, determinado finalmente la zona de calibración.

- Se optimizó el tiempo de muestreo de 30 s a 10 s, por lo que el número de muestras disminuyo de 900000 a 100000, evitando la saturación de la unidad de almacenamiento de datos y reduciendo en un 67 % el tiempo de muestreo.
- La medición de perfiles de velocidad dio como resultado fluctuaciones de la velocidad de ±1 %, las cuales presentaron un mejor comportamiento a 30 m/s.
- > La medición del espesor dinámico de la capa límite para las condiciones críticas (30 m/s, X = 2.4 m) resulto en un espesor en el eje Y de δ_Y =0.045 m y en el eje Z de δ_Z =0.037 m. La zona donde se obtuvo un menor espesor dinámico de la capa límite fue en el eje Y de δ_Y =0.007 m y en el eje Z de δ_Z =0.007 m (5 m/s, X = 0.8 m).
- El nivel de turbulencia para las mediciones fue de 0.582 % ±0.035. Anteriormente el nivel de turbulencia era 3 % ±0.2968; lo cual indica una disminución del 18.71 %
- Finalmente el flujo en las esquinas fue asimétrico debido a que la sección de pruebas tiene forma rectangular. Se observó que la capa límite que se presenta en el eje Y es 25% mayor que la capa límite presente en el eje Z. Este comportamiento se debe a que la superficie de la pared en Y es 25% menor con respecto de la superficie de la pared en Z, además éste fenómeno se observa más claramente a mayores velocidades.

REFERENCIAS

- [1] Mease N. E., Cleveland Jr. W. G., Mattingly G. E. and Hall J. M.. "Air Speed Calibrations At The National Institute Of Standards And Technology", Process Measurements Division, Chemical Science and Technology Laboratory, Gaithersburg, EUA.
- [2] Diana G., Ponte S. De, Falco M. y Zasso A., "A New Large Wind Tunnel For Civil-Enviromental An Aeronautical Applications", Dipartimento Ingegnería Meccanica e Ingegnería Aerospaziale. Milan, Italia.
- [3] Metha R. D., "Turbulent Boudary Layer Perturbed By A Screen", College Imperial, London, England.
- [4] Meiling A. and J. H. Whitelaw, "Turbulent Flow in a Rectangular Duct", Department of Mechanical Engineering, Imperial College, London.
- [5] Tolentino R., "Medición de Capa Límite y Turbulencia en un Túnel de Viento para Calibración de Instrumentos de Medición de Velocidad", Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, 2003.
- [6] Cenge Yunus, Fundamentos y Aplicación Mecánica de los Fluidos, Séptima Edición, pag 514, 2007.
- [7] White F. M., Mecánica de los Fluidos Viscosos, Cuarta Edición, 2007.
- [8] Fox R. W., Introducción a la Mecánica de los Fluidos, Cuarta Edición, pag 456, 1995.
- [9] White F. M., Introducción a la Mecánica de los Fluidos, Cuarta Edición, pag 334, 2007.
- [10] Gessner F. B. y Jones J. B., "On Some Aspect Of Fully Developed Turbulent Flow In A Rectangular Channels", Journal Fluid Mechanic, 1965.
- [11] Gessner F. B., "The Origin Of The Secondary Flow In A Turbulent Flow Along A Corner", Journal Fluid Mechanic, 1973.
- [14] Norma BSI848.
- [15] Loehrke R. I. & Nagib H. M., "Control Of Free Stream Turbulence By Means Of Honeycombs: A Balance Between Suppression And Generation", Journal of fluids Engineering, 1976.
- [16] Metha R. D. & Bradshaw P., "Design Rules For Small Low Speed Wind Tunnels", Aeronautical Journal, 1973.
- [17] Morel T., "Design Of Two-Dimensional Wind Contractions, Journal Of Fluid Engineering", 1977.
- [18] DANTEC Measurement Technology, Streamline/Streamware Installation And User's Guide, 2000.
- [19] Jorgensen F. E., How to measure turbulence with Hot Wire Anemometers, Practical Guide, 2002.
- [19] Barometric Pressure, Temperature and Humidity Measurements, Digiquartz, Paroscientific, 2001.
- [20] Digital Signal Processing, Alan V. Oppenheim, Ronald W. Schafer, 1975. Prentice Hall.

APENDICEA

Características de las Mallas
Características de las Mallas

Metha en 1983, determinó que la caída de presión K está en función de la porosidad de la malla β , a su vez la porosidad de la malla está en función de su claro y del diámetro del alambre de la misma (figura A.2). Una vez obtenida la porosidad, automáticamente se conoce la solidez σ .

$$\beta = \left[1 - \frac{d}{l}\right]^2 \tag{A.1}$$

$$\sigma = 1 - \beta \tag{A.2}$$

Para éste caso el porosidad resultó ser β =0.6348, por consiguiente el cálculo arroja una solidez de σ =0.3652. Por su parte, Weighardt en 1953, desarrolló una ecuación para calcular el coeficiente de la caída de presión, que para fines de la cámara estabilizadora del túnel de viento del LABINTHAP, la velocidad promedio medida es de 3.33 m/s.

$$K = \left[6.5\right] \left[\frac{1-\beta}{\beta^2}\right] \left[\frac{(U)(d)}{(\beta)(v)}\right]^{-\frac{1}{3}}$$
(A.3)

El cálculo arroja un valor del coeficiente de la caída presión de K=1.159, para una malla. Para calcular el ángulo de deflexión de la velocidad en la Malla α , se utiliza la ecuación propuesta por Mehta en 1984, quien propuso para aquellas mallas con un θ <0 y una β ≈ 0.6, la siguiente expresión:

$$\alpha = \frac{1.1}{(1+K)^{\frac{1}{2}}}$$
(A.4)

Obteniendo así un coeficiente de deflexión de α =0.7486, el cual disminuirá el ángulo de la velocidad del flujo antes de la malla (figura A.2), de acuerdo con la siguiente expresión:

$$\varphi = \alpha \theta \tag{A.4}$$

Por otra parte, el panal fue seleccionado con celda hexagonal debido a que ofrece una menor caída de presión (figura A.3) en función de las investigaciones de Loehrke [15]. Cada celda hexagonal tiene 0.0045 m de lado, una longitud de 0.085 m, un espesor de la pared de 0.000025 m y un diámetro equivalente de 0.00105 m.

Teoría Complementaria de Mecánica de los Fluidos

Teoría Complementaria de Mecánica de Fluidos

Las propiedades y el comportamiento del flujo que está en función de su posición y del tiempo.

$$\rho = \rho(x, y, z)$$

U = U(x, y, z, t)

Ecuación de la Masa

La ecuación de la masa de forma integral generalizada está dada por:

$$\frac{\partial}{\partial t} \int_{VC} \rho \, dV + \int_{SC} \rho \left(\overline{U} \, \Box \, dA \right) = 0 \tag{A.1}$$

El flujo se supone unidimensional debido a que las velocidades radiales son mucho menores en comparación de las tangenciales, por lo que se desprecian. El flujo manejado en este trabajo siempre está por debajo de 0.3 M y por tanto se supone como incompresible, dando como resultado $\rho = cte$.

$$\frac{\partial}{\partial t} \int_{VC} \rho \, dV + \int_{SC} \rho \left(\overline{U} \Box dA \right) = 0 \tag{A.2}$$

La ecuación de masa desde un enfoque diferencial está dada por:

$$\frac{DU}{Dt} + \overline{U}div\overline{U} = 0 \tag{A.3}$$

Ecuación de Momento

La ecuación de momento en forma integral generalizada es:

$$F = F_{S} + F_{B} = \frac{\partial}{\partial t} \int_{VC} \overline{U} \rho dV + \int_{SC} \overline{U} \rho \left(\overline{U} \Box dA \right) = 0$$
(A.4)

Las fuerzas de cuerpo son despreciables, debido a que la cantidad de masa del flujo que atraviesa la zona de calibración es muy pequeña. Por otra parte, el enfoque diferencial de la ecuación de momento es:

$$\rho \frac{D\bar{U}}{Dt} = \rho \bar{g} + \nabla \tau_{ij} \tag{A.5}$$

Tablas y Gráficas de Datos Experimentales

Tabla C.1. Parámetros de calibración para la								
sonda 55P11.								
U	E	Т	P	Ecorr	U1calc			
0.496	1.487	14.913	78.604	1.487	0.463			
0.629	1.501	14.92	78.607	1.501	0.625			
0.803	1.52	14.933	78.587	1.52	0.831			
1.043	1.544	14.939	78.582	1.544	1.094			
1.318	1.57	14.946	78.576	1.57	1.381			
1.684	1.6	14.956	78.56	1.6	1.723			
2.153	1.634	14.969	78.571	1.634	2.134			
2.734	1.671	14.986	78.557	1.671	2.632			
3.529	1.714	15.008	78.549	1.714	3.31			
4.459	1.758	15.031	78.549	1.758	4.123			
5.741	1.848	15.064	78.527	1.848	6.325			
7.169	1.883	15.075	78.502	1.884	7.416			
9.029	1.928	15.088	78.516	1.929	9.047			
11.735	1.987	15.099	78.529	1.988	11.569			
14.828	2.046	15.109	78.518	2.047	14.586			
19.115	2.117	15.114	78.513	2.118	18.933			
24.269	2.189	15.117	78.507	2.19	24.212			
30.735	2.265	15.147	78.51	2.266	30.792			
38.737	2.346	15.108	78.496	2.347	38.959			
49.002	2.432	15.003	78.502	2.433	48.923			

Tabla C.2. Datos de perfiles de velocidad en Z en X=0.8 m.							
Z (m)	U ₅ (m/s)	U ₁₀ (m/s)	U ₁₅ (m/s)	U ₂₀ (m/s)	U ₂₅ (m/s)	U ₃₀ (m/s)	
0	0	0	0	0	0	0	
0.15	5.047	9.953	15.031	20.435	25.02	30.407	
0.2	5.041	9.951	15.055	20.357	25.046	30.232	
0.25	5.072	9.934	15.112	20.49	25.015	30.275	
0.3	5.016	9.962	15.068	20.521	24.884	30.293	
0.35	5.032	9.89	15.046	20.453	24.854	30.228	
0.4	5.011	9.915	14.947	20.398	25.024	30.072	
0.45	5.044	9.898	15.005	20.486	24.941	30.141	
0.5	5.034	9.873	14.995	20.348	24.88	30.125	
0.55	5.04	9.883	14.894	20.381	24.906	30.254	
0.6	5.024	9.887	14.958	20.372	24.854	30.188	
0.65	5.047	9.846	14.89	20.372	24.878	30.24	
0.8	0	0	0	0	0	0	

Tabla C	Tabla C.3. Datos de perfiles de velocidad en Z en X=1.6 m.							
Z (m)	U ₅ (m/s)	U ₁₀ (m/s)	U ₁₅ (m/s)	U ₂₀ (m/s)	U ₂₅ (m/s)	U ₃₀ (m/s)		
0	0	0	0	0	0	0		
0.15	4.978	9.936	14.798	19.9	25.234	30.114		
0.2	5.022	9.934	14.737	19.92	25.145	30.156		
0.25	4.999	9.925	14.647	19.863	25.181	30.017		
0.3	4.98	9.929	14.684	19.888	25.216	30.173		
0.35	4.982	9.832	14.61	19.869	25.301	30.034		
0.4	5.032	9.87	14.775	19.853	25.316	30.145		
0.45	5.055	9.807	14.618	19.928	25.227	30.147		
0.5	5.029	9.831	14.607	19.972	25.258	30.17		
0.55	5.019	9.957	14.614	19.821	25.239	30.037		
0.6	5.009	9.891	14.592	19.799	25.281	30.039		
0.65	4.988	9.85	14.623	19.957	25.324	30.131		
0.8	0	0	0	0	0	0		

Tabla	Tabla C.4. Datos de perfiles de velocidad en Z en X=2.4 m.							
Z (m)	U ₅ (m/s)	U ₁₀ (m/s)	U ₁₅ (m/s)	U ₂₀ (m/s)	U ₂₅ (m/s)	U ₃₀ (m/s)		
0	0	0	0	0	0	0		
0.15	5.021	9.917	15.07	20.326	25.126	30.191		
0.2	5.059	10.045	15.07	20.251	25.116	30.104		
0.25	5.065	10.047	15.094	20.103	24.913	30.114		
0.3	5.068	10.042	14.949	20.108	24.899	30.083		
0.35	5.059	10.027	14.979	20.138	24.91	30.05		
0.4	5.064	10.031	14.926	20.121	24.923	30.138		
0.45	5.055	9.992	14.977	20.139	24.917	30.189		
0.5	5.044	10.036	14.997	20.145	25.078	30.068		
0.55	5.062	9.989	14.984	20.3	25.071	30.152		
0.6	5.05	10.014	15.019	20.324	25.164	30.23		
0.65	5.021	9.917	15.07	20.326	25.126	30.191		
0.8	0	0	0	0	0	0		

Tabl	Tabla C.5. Datos de perfiles de velocidad en Y en 0.8 m.							
Y (m)	U ₅ (m/s)	U ₁₀ (m/s)	U ₁₅ (m/s)	U ₂₀ (m/s)	U ₂₅ (m/s)	U ₃₀ (m/s)		
0	0	0	0	0	0	0		
0.05	4.97	9.791	14.762	20	24.425	29.327		
0.1	5.022	9.902	14.813	20.091	24.555	29.522		
0.15	5.067	9.982	14.967	20.292	24.675	29.684		
0.2	5.051	10.006	15.009	20.232	24.534	29.645		
0.25	5.107	10.034	15.165	20.186	24.56	29.618		
0.3	5.093	10.037	15.195	20.332	24.637	29.678		
0.35	5.118	10.131	15.163	20.296	24.662	29.677		
0.4	5.088	10.066	15.252	20.377	24.815	29.766		
0.45	5.161	10.094	15.251	20.393	24.713	29.664		
0.5	5.149	10.199	15.231	20.439	24.762	29.802		
0.55	5.125	10.132	15.204	20.469	24.758	29.795		
0.6	0	0	0	0	0	0		

Tabl	Tabla C.6. Datos de perfiles de velocidad en Y en 1.6 m.							
Y (m)	U ₅ (m/s)	U ₁₀ (m/s)	U ₁₅ (m/s)	U ₂₀ (m/s)	U ₂₅ (m/s)	U ₃₀ (m/s)		
0	0	0	0	0	0	0		
0.05	5.068	10.163	14.994	20.001	24.772	30.076		
0.1	5.093	10.03	15.136	19.92	24.966	30.05		
0.15	5.175	10.075	15.015	19.763	25.174	30.011		
0.2	5.058	10.182	15.076	19.688	25.33	30.067		
0.25	5.11	10.177	14.938	19.869	24.823	29.987		
0.3	5.107	10.114	15.044	19.853	24.704	30		
0.35	5.148	10.027	15.16	19.928	25.121	29.935		
0.4	5.182	10.033	15.183	19.972	25.003	29.96		
0.45	5.201	10.042	15.184	19.721	25.102	29.993		
0.5	5.218	10.138	15.182	19.799	25.174	30.017		
0.55	5.165	10.122	15.119	19.957	25.089	29.995		
0.6	0	0	0	0	0	0		

Tabl	Tabla C.7. Datos de perfiles de velocidad en Y en 2.4 m.							
Y (m)	U ₅ (m/s)	U ₁₀ (m/s)	U ₁₅ (m/s)	U ₂₀ (m/s)	U ₂₅ (m/s)	U ₃₀ (m/s)		
0	0	0	0	0	0	0		
0.05	5.045	9.978	15.269	20.046	25.149	29.863		
0.1	5.012	9.976	14.96	20.029	25.18	29.909		
0.15	4.966	9.901	15.044	20.028	25.238	29.854		
0.2	4.966	9.901	15.18	20.046	25.176	29.893		
0.25	5	9.935	15.213	20.022	25.211	29.965		
0.3	5.02	9.973	15.242	20.035	25.204	29.986		
0.35	5.023	10.079	15.329	20.113	25.202	30.002		
0.4	5.068	10.086	15.374	20.145	25.193	30.087		
0.45	5.032	10.085	15.393	20.19	25.197	30.159		
0.5	5.072	10.085	15.383	20.027	25.118	30.16		
0.55	5.045	9.978	15.269	20.046	25.149	29.863		
0.6	0	0	0	0	0	0		

Tabla C.8.	Tabla C.8. Tabla de parámetros de calibración de la sonda 55P15.								
U	E	Т	Р	Ecorr	U1calc				
0.491	1.487	12.505	79.192	1.487	0.424				
0.629	1.499	12.496	79.19	1.499	0.612				
0.803	1.516	12.483	79.187	1.516	0.857				
1.037	1.538	12.472	79.187	1.538	1.142				
1.32	1.563	12.461	79.184	1.563	1.439				
1.688	1.594	12.455	79.184	1.594	1.784				
2.157	1.628	12.45	79.181	1.628	2.156				
2.734	1.665	12.45	79.176	1.665	2.577				
3.531	1.709	12.452	79.176	1.709	3.143				
4.465	1.753	12.455	79.17	1.753	3.824				
5.805	1.882	12.465	79.143	1.882	6.877				
7.326	1.91	12.466	79.132	1.909	7.803				
9.439	1.95	12.46	79.126	1.949	9.341				
11.482	1.99	12.454	79.126	1.99	11.142				
14.857	2.051	12.442	79.123	2.05	14.399				
19.184	2.117	12.426	79.115	2.117	18.754				
24.254	2.185	12.405	79.115	2.184	24.06				
30.764	2.258	12.345	79.109	2.257	30.842				
38.551	2.332	12.263	79.107	2.331	38.881				
47.655	2.405	12.038	79.098	2.402	47.664				

Tab	a C.8. I	Datos de	e capa lír	nite en `	Y en X=0).8 m.
Y	U	U	U	U	U	U
(m)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
0.005	4.676	8.459	12.392	16.51	20.894	25.133
0.007	4.977	8.884	13.149	17.336	21.96	26.509
0.009	4.955	9.251	13.711	18.022	22.969	27.5
0.011	4.924	9.596	14.209	18.738	23.893	28.513
0.013	4.953	9.833	14.559	19.17	24.412	29.208
0.015	4.983	10.044	14.81	19.444	24.709	29.809
0.017	4.935	10.157	14.95	19.612	24.918	29.854
0.019	4.871	10.184	14.87	19.687	24.956	30.039
0.021	5.036	10.137	14.743	19.769	25.074	30.084
0.023	4.935	10.156	14.846	19.795	25.05	30.065
0.025	4.854	10.197	14.898	19.867	25.066	30.015
0.027	4.867	10.201	14.803	19.812	25.263	30.215
0.029	4.837	10.18	14.865	19.84	25.164	29.998
0.031	4.827	10.186	14.888	19.678	25.208	29.934
0.033	4.89	10.125	14.779	19.816	25.201	30.01
0.035	4.97	10.109	14.809	19.788	25.314	30.116
0.037	5.052	10.191	14.772	19.849	25.242	30.052
0.039	5.011	10.121	14.716	19.775	25.322	30.302
0.041	4.956	10.112	14.732	19.834	25.277	30.063
0.043	5.144	10.072	14.718	19.815	25.272	30.095
0.045	5.201	10.097	14.767	19.69	25.257	30.036
0.047	5.176	10.062	14.853	19.736	25.109	30.065
0.049	5.217	10.062	14.732	19.833	25.14	30.099
0.051	5.219	10.106	14.843	19.876	25.156	30.269
0.053	5.093	10.108	14.843	19.889	24.972	30.321
0.055	4.964	10.085	14.852	19.848	25.107	30.333
0.057	4.968	10.077	14.833	19.889	24.971	30.275
0.059	5.003	9.983	14.801	19.804	25.17	30.272
0.061	5.032	10.012	14.72	19.84	25.037	30.153
0.063	5.009	10.014	14.678	19.889	24.972	30.239
0.065	5.212	9.957	14.652	19.872	24.893	30.388

Tabla	Tabla C.9. Datos de capa límite en Y en X=1.6 m.							
Y	U	U	U	U	U	U		
(m)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)		
0.005	4.224	7.734	11.586	15.406	19.589	23.426		
0.007	4.393	8.058	12.091	16.093	20.427	24.471		
0.009	4.509	8.323	12.514	16.531	21.229	25.417		
0.011	4.614	8.623	12.964	17.27	21.877	26.275		
0.013	4.741	8.874	13.287	17.636	22.419	26.99		
0.015	4.836	9.121	13.625	18.116	22.958	27.612		
0.017	4.928	9.32	13.947	18.466	23.471	28.226		
0.019	4.996	9.506	14.242	18.902	23.844	28.895		
0.021	5.075	9.668	14.4	19.149	24.169	29.391		
0.023	5.125	9.787	14.555	19.262	24.644	29.575		
0.025	5.152	9.869	14.593	19.446	24.834	29.672		
0.027	5.161	9.929	14.687	19.51	24.876	29.943		
0.029	5.171	9.946	14.76	19.622	25.008	30.023		
0.031	5.184	9.957	14.749	19.634	25.074	29.962		
0.033	5.189	9.954	14.734	19.726	24.987	30.045		
0.035	5.175	9.927	14.741	19.71	24.919	30.103		
0.037	5.193	9.954	14.746	19.716	24.964	30.039		
0.039	5.196	9.916	14.737	19.736	24.878	30.05		
0.041	5.192	9.979	14.722	19.762	24.807	30.081		
0.043	5.172	9.947	14.758	19.839	24.766	30.13		
0.045	5.181	9.983	14.723	19.732	24.658	30.195		
0.047	5.192	9.963	14.712	19.789	24.756	30.175		
0.049	5.174	9.908	14.717	19.857	24.786	29.92		
0.051	5.187	9.958	14.716	19.724	24.774	29.95		
0.053	5.176	9.935	14.694	19.821	24.747	30.027		
0.055	5.175	9.964	14.705	19.697	24.802	29.929		
0.057	5.183	9.96	14.71	19.712	24.753	30.011		
0.059	5.188	9.948	14.726	19.857	25.087	30.097		
0.061	5.179	9.961	14.709	19.771	25.237	30.265		
0.063	5.206	9.931	14.721	19.81	25.162	30.25		
0.065	5.18	9.951	14.704	19.781	25.139	30.147		

Tabl	a C.10.	Datos d	le capa	límite en	Y en X=	2.4 m.
Y	U	U	U	U	U	U
(m)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
0.005	3.647	7.66	11.453	15.104	18.863	22.816
0.007	3.957	7.934	11.81	15.523	19.525	23.581
0.009	4.058	8.202	12.105	15.944	20.014	24.278
0.011	4.202	8.353	12.573	16.36	20.512	24.782
0.013	4.307	8.532	12.94	16.813	21.096	25.621
0.015	4.441	8.758	13.093	17.1	21.413	26.015
0.017	4.434	8.882	13.258	17.607	21.934	26.509
0.019	4.492	9.018	13.588	17.858	22.306	27.131
0.021	4.639	9.164	13.771	18.172	22.708	27.552
0.023	4.678	9.247	14.031	18.363	23.11	27.756
0.025	4.665	9.345	14.274	18.678	23.446	28.181
0.027	4.559	9.471	14.424	18.901	23.722	28.348
0.029	4.542	9.662	14.601	18.979	23.938	28.739
0.031	4.735	9.717	14.721	19.231	24.116	28.903
0.033	4.738	9.831	14.834	19.367	24.273	29.023
0.035	4.872	9.924	14.911	19.444	24.378	29.055
0.037	4.887	9.915	14.928	19.524	24.494	29.174
0.039	4.822	9.961	14.884	19.606	24.525	29.103
0.041	4.797	10.033	14.966	19.725	24.577	29.136
0.043	4.945	9.961	14.973	19.618	24.688	29.23
0.045	4.876	9.883	15.135	19.711	24.701	29.151
0.047	4.88	10.038	14.984	19.698	24.622	29.229
0.049	4.925	10.115	15.111	19.751	24.629	29.212
0.051	4.905	10.056	15.247	19.796	24.601	29.186
0.053	4.91	9.898	15.384	19.809	24.702	29.146
0.055	4.939	9.968	15.54	19.886	24.729	29.201
0.057	4.906	9.767	15.634	19.939	24.597	29.148
0.059	4.797	9.88	15.387	19.988	24.574	29.077
0.061	4.851	9.899	15.554	19.8986	24.658	29.05
0.063	4.738	9.786	15.466	20.015	24.604	28.943
0.065	4.866	9.833	15.415	19.861	24.551	29.05

Tabla	a C.11.	Datos d	e capa l	ímite en	Z en X=	0.8 m.
Z	U	U	U	U	U	U
(m)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
0.005	4.434	8.958	10.38	16.417	19.967	24.043
0.007	4.614	9.174	10.839	16.877	20.52	25.048
0.009	4.782	9.385	11.555	17.919	21.628	26.204
0.011	4.92	9.519	11.832	18.594	22.443	27.704
0.013	4.92	9.743	12.218	19.5	23.494	28.822
0.015	4.991	9.884	12.781	19.742	24.145	29.351
0.017	5.025	9.687	13.033	19.875	24.485	29.703
0.019	5.014	9.718	13.327	19.981	24.683	30.144
0.021	5.002	9.647	13.695	20.082	24.712	30.391
0.023	4.995	9.739	14.062	20.059	24.843	30.415
0.025	5.008	9.653	14.237	20.087	24.775	30.291
0.027	5.002	9.631	14.535	19.979	24.783	30.21
0.029	5.021	9.83	14.703	19.97	24.721	30.413
0.031	5.013	9.804	14.794	19.979	24.601	30.162
0.033	5.026	9.878	14.733	19.918	24.616	30.378
0.035	4.987	9.862	14.856	19.767	24.744	30.189
0.037	4.968	9.737	14.84	19.863	24.617	30.244
0.039	4.998	9.82	14.907	19.876	24.605	30.273
0.041	5	9.893	14.849	19.84	24.591	30.172
0.043	4.995	9.878	14.833	19.81	24.54	30.3
0.045	5.016	9.839	14.92	19.956	24.473	30.189
0.047	5.031	9.674	14.961	19.903	24.575	30.13
0.049	5.026	9.565	14.993	19.908	24.595	30.335
0.051	5.009	9.625	14.848	19.871	24.49	30.273
0.053	5.001	9.799	14.907	19.899	24.585	30.334
0.055	5.01	9.659	14.946	19.815	24.569	30.278
0.057	4.987	9.556	14.979	19.727	24.518	30.163
0.059	4.998	9.737	15.001	19.767	24.473	30.058
0.061	4.99	9.64	14.997	19.715	24.345	30.07
0.063	4.999	9.63	15.006	19.848	24.368	30.15
0.065	4.983	9.686	15.039	19.777	24.294	30.219

Tabla C.12. Datos de capa límite en Z en X=1.6 m.							
Z	U	U	U	U	U	U	
(m)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	
0.005	3.654	7.058	10.38	13.165	16.46	19.895	
0.007	3.88	7.445	10.839	13.901	17.413	20.53	
0.009	4.013	7.768	11.555	14.681	18.328	21.561	
0.011	4.043	8.001	11.832	15.123	18.773	21.985	
0.013	4.122	8.271	12.218	15.852	19.619	23.249	
0.015	4.277	8.528	12.781	16.203	20.323	23.731	
0.017	4.344	8.616	13.033	16.625	20.699	24.11	
0.019	4.499	8.844	13.327	17.08	21.233	24.894	
0.021	4.467	9.07	13.695	17.735	21.811	25.418	
0.023	4.534	9.238	14.062	17.891	22.065	26.471	
0.025	4.75	9.307	14.237	18.371	22.4	26.598	
0.027	4.729	9.503	14.535	18.45	23.208	27.41	
0.029	4.829	9.526	14.703	18.846	23.582	28.14	
0.031	4.855	9.619	14.794	19.086	23.885	28.452	
0.033	4.85	9.614	14.733	19.257	24.341	28.545	
0.035	4.906	9.645	14.856	19.422	24.184	28.888	
0.037	4.857	9.644	14.84	19.41	24.454	29.171	
0.039	4.926	9.731	14.907	19.432	24.531	29.39	
0.041	4.912	9.685	14.849	19.419	24.406	29.428	
0.043	4.93	9.66	14.833	19.406	24.624	29.493	
0.045	4.946	9.639	14.92	19.561	24.475	29.493	
0.047	4.955	9.714	14.961	19.534	24.538	29.511	
0.049	4.97	9.714	14.993	19.523	24.491	29.597	
0.051	4.965	9.731	14.848	19.535	24.641	29.661	
0.053	4.957	9.758	14.907	19.514	24.704	29.685	
0.055	4.972	9.736	14.946	19.417	24.684	29.691	
0.057	4.937	9.725	14.979	19.424	24.616	29.725	
0.059	4.956	9.755	15.001	19.333	24.662	29.661	
0.061	4.961	9.733	14.997	19.441	24.687	29.717	
0.063	4.974	9.764	15.006	19.395	24.704	29.72	
0.065	4.935	9.724	15.039	19.451	24.64	29.742	

Tabla C.13. Datos de capa límite en Z en X=2.4 m.						
Z	U	U	υυ		U	U
(m)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
0.007	3.685	7.281	10.825	14.066	17.495	20.634
0.009	3.702	7.579	10.906	14.656	18.231	21.473
0.011	3.835	7.78	11.325	15.016	18.493	22.194
0.013	3.904	8.145	11.695	15.32	18.986	22.635
0.015	4.048	8.295	12.011	15.828	19.397	23.095
0.017	4.217	8.454	12.242	16.139	19.892	23.981
0.019	4.387	8.583	12.424	16.451	20.439	24.577
0.021	4.266	8.705	12.789	16.91	20.87	25.219
0.023	4.33	8.792	13.114	17.254	21.138	25.484
0.025	4.418	8.924	13.289	17.416	21.656	25.793
0.027	4.625	9.212	13.414	17.797	21.998	26.176
0.029	4.67	9.361	13.667	18.195	22.433	26.655
0.031	4.76	9.422	13.913	18.463	22.685	26.963
0.033	4.567	9.585	14.143	18.621	22.651	27.379
0.035	4.779	9.689	14.209	18.597	23.196	27.714
0.037	4.973	9.764	14.296	18.805	23.293	28.226
0.039	4.809	9.822	14.449	18.979	23.643	28.588
0.041	4.768	9.873	14.642	19.087	23.808	28.643
0.043	4.989	9.878	14.624	19.364	23.939	29
0.045	4.959	9.958	14.746	19.231	24.163	28.896
0.047	4.958	9.842	14.789	19.308	24.092	29.201
0.049	4.881	9.959	14.871	19.405	24.165	29.281
0.051	5.006	9.961	14.988	19.76	24.191	29.34
0.053	5.026	9.978	14.873	19.794	24.265	29.423
0.055	5.026	10.025	14.807	19.763	24.339	29.573
0.057	5.003	9.985	14.804	19.866	24.361	29.56
0.059	5	9.927	14.827	19.833	24.383	29.534
0.061	5.049	9.982	14.889	19.817	24.335	29.532
0.063	4.943	10.012	14.822	19.766	24.378	29.375
0.065	4.929	9.972	14.881	19.784	24.283	29.432
0.007	3.685	7.281	10.825	14.066	17.495	20.634

Tabla C.14. Tabla de parametros de calibración de la sonda 55P61.								
U	E1	E2	Т	Р	Ecorr1	Ecorr2	U1calc	U2calc
0.496	1.424	1.423	11.37	79.604	1.424	1.423	0.459	0.45
0.625	1.434	1.435	11.372	79.601	1.434	1.436	0.611	0.619
0.809	1.451	1.453	11.382	79.596	1.451	1.453	0.846	0.85
1.046	1.47	1.473	11.393	79.593	1.47	1.473	1.106	1.117
1.335	1.494	1.497	11.406	79.593	1.494	1.497	1.41	1.41
1.707	1.522	1.525	11.417	79.59	1.522	1.525	1.764	1.765
2.173	1.551	1.554	11.431	79.593	1.551	1.555	2.16	2.158
2.742	1.584	1.586	11.445	79.587	1.584	1.586	2.637	2.618
3.508	1.621	1.624	11.46	79.587	1.622	1.624	3.253	3.238
4.485	1.663	1.665	11.481	79.59	1.663	1.665	4.068	4.046
5.754	1.75	1.753	11.507	79.576	1.751	1.754	6.397	6.403
7.145	1.781	1.784	11.515	79.571	1.781	1.785	7.459	7.483
9.059	1.821	1.825	11.527	79.573	1.822	1.825	9.072	9.099
11.824	1.875	1.878	11.535	79.571	1.876	1.878	11.624	11.625
14.841	1.926	1.93	11.539	79.573	1.927	1.93	14.558	14.581
19.198	1.992	1.995	11.539	79.568	1.993	1.996	19.02	19.007
24.049	2.053	2.056	11.534	79.565	2.054	2.057	23.937	23.911
30.547	2.125	2.128	11.518	79.568	2.125	2.128	30.633	30.594
38.882	2.203	2.207	11.46	79.565	2.204	2.207	39.111	39.088
49.34	2.286	2.291	11.319	79.562	2.286	2.29	49.268	49.315

